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Demystification of the Geometric Fourier
Transforms and resulting Convolution Theorems
Roxana Bujacka∗, Gerik Scheuermanna, and Eckhard Hitzerb

As it will turn out in this paper, the recent hype about most of the Clifford Fourier transforms is not thoroughly worth the pain.
Almost every one that has a real application is separable and these transforms can be decomposed into a sum of real valued
transforms with constant multivector factors. This fact makes their interpretation, their analysis, and their implementation almost
trivial. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. Introduction

For a general introduction to noncommutative harmonic analysis, see [1]. In recent literature, three different approaches to hypercomplex
Fourier transforms have been considered. As in [2], we can identify them as follows:

• A: Eigenfunction approach
• B: Generalized roots of -1 approach
• C: Characters of spin group approach

Approach A is studied in many papers like [3, 4, 5], approach B comprehensively in [6]. The third approach is followed in [7, 8]. In this paper,
we analyze the generalized square roots of -1 approach, because even though the concept of approach C differs very much from approach
B, the resulting transforms can be expressed as special cases of approach B. This paper is self-consistent, but we highly recommend to take
a look at [6] for a deeper understanding of the origin of the analyzed issues. This is where the following definition was introduced.

Definition 1 (Geometric Fourier transform) The general geometric Fourier transform (GFT) FF1,F2(A) of a multivector field A : Rm =

Rp′,q′ →C`p,q, p′+q′ = m ∈ N, p+q = n ∈ N is defined by the calculation rule

FF1,F2(A)(u) :=
∫
Rm

∏
f∈F1

e− f (x,u)A(x) ∏
f∈F2

e− f (x,u) dmx, (1)

with two ordered finite sets F1 = { f1(x,u), ..., fµ(x,u)}, F2 = { fµ+1(x,u), ..., fν(x,u)} of mappings fl(x,u) :Rm×Rm→I p,q,∀l = 1, ...,ν
and x,u ∈ Rm.

We will only work with transforms from Definition 1 throughout this paper. That covers all known Fourier transforms over Clifford algebras that
belong to approach B and C.

Example 2 Depending on the choice of F1 and F2 in the definition of the GFT, we get already developed transforms. The following six
examples have already been chosen as standard examples in [6]. We will use them again to visualize how the general propositions reduce
to special applications.

1. For A : Rn →C`n,0,n = 2 (mod 4) or n = 3 (mod 4), we can reproduce the Clifford Fourier transform introduced by Jancewicz [9]
for n = 3 and expanded by Ebling and Scheuermann [10] for n = 2 and Hitzer and Mawardi [11] for n = 2 (mod 4) or n = 3 (mod 4)
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using the configuration

F1 = /0,

F2 ={ f1},
f1(x,u) =2πinx ·u,

(2)

with in being the pseudoscalar of C`n,0.
2. Choosing multivector fields Rn→C`0,n,

F1 = /0,

F2 ={ f1, ..., fn},
fk(x,u) =2πekxkuk,∀k = 1, ...,n,

(3)

we have the Clifford Fourier transform introduced by Sommen [12] and reestablished by Bülow [13].
3. For A : R2→C`0,2 ≈H, and pure unit quaternions iii, jjj ∈H, iii2 = jjj2 =−1, the quaternionic Fourier transform established by Ell [14],

reestablished by Bülow [13] and later extended by Hitzer and Sangwine [15] to an arbitrary steerable (even non-orthonormal) pair of
pure quaternion square roots of −1 is generated by

F1 ={ f1},
F2 ={ f2},

f1(x,u) =2πiiix1u1,

f2(x,u) =2π jjjx2u2.

(4)

4. Using C`3,1, we can build the spacetime Fourier transform by Hitzer [16] with the C`3,1-pseudoscalar i4 and ε4 =±1 as follows

F1 ={ f1},
F2 ={ f2},

f1(x,u) =e4x4u4,

f2(x,u) =ε4e4i4(x1u1 + x2u2 + x3u3).

(5)

5. The Clifford Fourier transform for color images by Batard, Berthier and Saint-Jean [7] for m = 2,n = 4,A :R2→C`4,0, a fixed bivector
B, and the pseudoscalar i can be written as

F1 ={ f1, f2},
F2 ={ f3, f4},

f1(x,u) =
1
2
(x1u1 + x2u2)B,

f2(x,u) =
1
2
(x1u1 + x2u2)iB,

f3(x,u) =−
1
2
(x1u1 + x2u2)B,

f4(x,u) =−
1
2
(x1u1 + x2u2)iB.

(6)

6. For C`0,n, the definition produces the cylindrical Fourier transform as introduced by Brackx, de Schepper and Sommen in [17] by

F1 ={ f1},
F2 = /0,

f1(x,u) =−x∧u.
(7)

In the following section, we will introduce a powerful tool for the analysis of the geometric Fourier transforms: the trigonometric transform.
Then, we will first use it to reveal the true nature of the subclasses of the separable and the explicitly invertible GFTs, which cover almost
every applied Clifford Fourier transform. In the last two sections of the paper, we will enjoy the advantages of this insight and show how it
leads to a convolution theorem that is superior to the one in [18] because it requires less restrictions.

2. The Trigonometric Transform

For the GFT convolution theorem in [18], we made use of geometric trigonometric transforms. These are generalized GFTs that may also
contain the cosine of the functions F1,F2 or their sine paired with the square root of minus one instead of only their exponentials. In contrast
to the hypercomplex definition in [18], we want to define real valued general trigonometric transforms, that only consist of scalar appearances
of sines and cosines. Therefore we use the following notation.

2 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–14
Prepared using mmaauth.cls



Bujack et al.

Mathematical
Methods in the
Applied Sciences

Notation 3 Let C`p,q denote the real Clifford algebra of the non-Euclidean vector space Rp,q [19]. A multivector valued function f (x,u) :
R2→Ip,q = {B ∈C`p,q,B2 ∈ R−} ⊂C`p,q that squares to a negative real number, can be separated into a unit part and a real part. This
separation is not unique. There are two functions† ±i(x,u) : R2→{B ∈C`p,q,B2 =−1} ⊂ Ip,q ⊂C`p,q that square to minus one

±i(x,u) =± f (x,u)
|| f (x,u)||

, (8)

and leave the positive real valued function || f (x,u)|| =
√
− f (x,u)2 : R2 → R+. We can choose one of them and define the function

| f (x,u)| : R2→ R, which can also take negative values, by

| f (x,u)|= f (x,u)
i(x,u)

. (9)

Now, with j ∈ {0,1}, we define the decomposition

e f (x,u)
j :=

{
cos(| f (x,u)|), if j = 0,
sin(| f (x,u)|), if j = 1.

(10)

Lemma 4 The exponential of a multivector valued function f (x,u) : R2→Ip,q = {B ∈C`p,q,B2 ∈ R−} ⊂C`p,q that squares to a negative
real number satisfies

e f (x,u) = ∑
j∈{0,1}

(
f (x,u)
| f (x,u)|

) je f (x,u)
j . (11)

Proof: Because of i(x,u) = f (x,u)
| f (x,u)| squares to −1 and | f (x,u) ∈ R, the hypercomplex equivalent to the Euler equation as in [20] leads to

e f (x,u) =ei(x,u)| f (x,u)|

=cos(| f (x,u)|)+ i(x,u)sin(| f (x,u)|)
Not. 3
= i(x,u)0e f (x,u)

0 + i(x,u)1e f (x,u)
1

= ∑
j∈{0,1}

i(x,u) je| f (x,u)|j

= ∑
j∈{0,1}

(
f (x,u)
| f (x,u)|

) je f (x,u)
j ,

(12)

which proves the assertion. �

Remark 5 The minus sign that appears in the Fourier transform can be left with the real valued function

e− f (x,u) = ∑
j∈{0,1}

(
− f (x,u)
|− f (x,u)|

) je− f (x,u)
j

= ∑
j∈{0,1}

i(x,u) je− f (x,u)
j .

(13)

Definition 6 (Trigonometric transform) Let A : Rm → C`p,q be a multivector field, x,u ∈ Rm vectors, F a finite set of ν, mappings
Rm×Rm→C`p,q, and j ∈ {0,1}ν a multi-index‡. The Trigonometric transform (TT) FF is defined by

FF (A)(u) :=
∫
Rm

A(x)
ν

∏
l=1

e− fl(x,u)
jl dmx (14)

with e− fl(x,u)
jl ∈ R from Notation 3.

†Note, that in the current paper we generally do not use i as an index, but rather as a function i(x,u), or i(u), or simply a constant i, all squaring to −1, reminiscent of
the complex imaginary unit in C.
‡Note, that for distinction an index is written in normal font j,k, . . ., and a multi-index is written with bold font j,k, . . ..
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Remark 7 The e− f (x,u)
jl ∈ R are in the center of the geometric algebra. Therefore, there is no need to distinguish the order of their

appearances. But it may be helpful though in order to stress their relation to the GFT. Let FF j
1 ,F

k
2

be a geometric Fourier transform and

j ∈ {0,1}µ,k ∈ {0,1}(ν−µ) multi-indices. Then,

FF j
1 ,F

k
2
(A)(u) :=

∫
Rm

µ

∏
l=1

e− fl(x,u)
jl A(x)

ν

∏
l=µ+1

e− fl(x,u)
kl

dmx (15)

is a trigonometric transform.

Notation 8 The standard sine transform

Fs(A)(u) =
∫
Rm

sin(−2πx ·u)A(x)dmx = F(2πix·u)1(A)(u), (16)

the standard cosine transform

Fc(A)(u) =
∫
R

cos(−2πx ·u)A(x)dmx = F(2πix·u)0(A)(u), (17)

and their compositions in higher dimensions are special cases of the trigonometric transform. For them, we will sometimes write the letters s
and c as lower index of the transform for the sake of brevity and to stress their special shape. As an example, we would write Fsc instead of
F(i1x1u1)1,(i2x2u2)0 , which means

Fsc(A)(u) =
∫
R2

sin(−x1u1)cos(−x2u2)A(x)dx. (18)

3. The True Nature of Separable GFT

The definition of separability has already been introduced in [6].

Definition 9 We call a mapping f : Rm×Rm→C`p,q x-separable or separable with respect to its first argument, if it suffices

f = | f (x,u)|i(u), (19)

where i :Rm→C`p,q is a function that does not depend on x and | f (x,u)| :R2→R a real valued function as in Notation 3. Analogously we
call it separable or separable with respect to both arguments, if it suffices

f = | f (x,u)|i, (20)

with constant i ∈C`p,q, i2 =−1.

Analogously, a geometric Fourier transform that consists of separable mappings F1,F2 is called separable. Separability is a central quality
for multiplication, shift and convolution properties of GFTs. Almost every transform from approach B and C is separable.

Example 10 Every transform of our standard examples from Example 2, except for the cylindrical Fourier transform for dimensions higher
than two, is separable.

In this section, we want to take a closer look at this vast class of GFTs. By expressing them by means of the trigonometric transforms, we
will be able to reveal their true nature: they are combinations of simple real-valued transforms.

Theorem 11 (GFT decomposition into TT) Any geometric Fourier transform FF1,F2 with x-separable mappings ∀l = 1, ...,ν : fl(x,u) =
| fl(x,u)|il(u) of a multivector field A(x) = ∑r ar(x)er is the sum of real valued trigonometric transforms FF j

1 ,F
k

2
(ar)(u) ∈R with multivector

factors

FF1,F2(A)(u) = ∑
r

∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

FF j
1 ,F

k
2
(ar)(u)

µ

∏
l=1

il(u) jl er
ν

∏
l=µ+1

il(u)kl .
(21)

4 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–14
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Proof: Using Notation 3, we can write any GFT as

FF1,F2(A)(u) =
∫
Rm

µ

∏
l=1

e− fl(x,u)A(x)
ν

∏
l=µ+1

e− fl(x,u) dmx

Lem. 4
=

∫
Rm

µ

∏
l=1

∑
jl∈{0,1}

(
fl(x,u)
| fl(x,u)|

) jl e− fl(x,u)
jl A(x)

ν

∏
l=µ+1

∑
kl∈{0,1}

(
fl(x,u)
| fl(x,u)|

)kl e− fl(x,u)
kl

dmx.
(22)

Since the GFT has x-separable mappings, we can replace fl(x,u)
| fl(x,u)| by il(u) with il(u)2 =−1 and write

FF1,F2(A)(u) =
∫
Rm

µ

∏
l=1

∑
jl∈{0,1}

il(u) jl e− f (x,u)
jl A(x)

ν

∏
l=µ+1

∑
kl∈{0,1}

il(u)kl e− f (x,u)
kl

dmx. (23)

We collect the indices jl , l = 1, ...,µ into the multi-index j ∈ {0,1}µ and kl , l = µ+1, ...,ν into the multi-index k ∈ {0,1}ν−µ and get

FF1,F2(A)(u) = ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

∫
Rm

µ

∏
l=1

il(u) jl e− fl(x,u)
jl A(x)

ν

∏
l=µ+1

e− fl(x,u)
jl il(u)kl dmx.

(24)

Since the e fl(x,u)
jl ∈ R, this leads to

FF1,F2(A)(u) = ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl
∫
Rm

µ

∏
l=1

e− fl(x,u)
jl A(x)

ν

∏
l=µ+1

e− fl(x,u)
jl dmx

ν

∏
l=µ+1

il(u)kl

(25)

and together with Definition 6 to

FF1,F2(A)(u) = ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl FF j
1 ,F

k
2
(A)(u)

ν

∏
l=µ+1

il(u)kl .
(26)

The trigonometric transform itself does not contain any multivector and therefore preserves the basis blades of the multivector field
A = ∑r arer, i.e.

FF j
1 ,F

k
2
(A)(u) =FF j

1 ,F
k

2
∑
r

arer(u)

=∑
r

FF j
1 ,F

k
2
(ar)(u)er

(27)

with FF j
1 ,F

k
2
(ar)(u) ∈ R. As a result the x-separable GFT can be written as

FF1,F2(A)(u) = ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl ∑
r

FF j
1 ,F

k
2
(ar)(u)er

ν

∏
l=µ+1

il(u)kl

= ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

∑
r

FF j
1 ,F

k
2
(ar)(u)

µ

∏
l=1

il(u) jl er
ν

∏
l=µ+1

il(u)kl ,

(28)

which leads to the assertion. �

Remark 12 The formula (21) can be written more beautifully as

FF1,F2(A)(u) = ∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl FF j
1 ,F

k
2
(A)(u)

ν

∏
l=µ+1

il(u)kl ,
(29)

but we prefere the first version, because it stresses how the transform is done completely in the real numbers.

Corollary 13 A geometric Fourier transform FF1,F2 with separable mappings ∀l = 1, ...,ν : fl(x,u) = il | fl(x,u)|, i2l ∈ R
− of a multivector

field A(x) = ∑r ar(x)er is the sum of real valued trigonometric transforms FF j
1 ,F

k
2
(ar)(u) ∈ R with constant multivector factors

FF1,F2(A)(u) = ∑
r

∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

FF j
1 ,F

k
2
(ar)(u)

ν

∏
l=1

i jl
l er

ν

∏
l=µ+1

ikl
l . (30)
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That means, if we interpret a multivector valued signal as many signals, saved in 2n channels, the separable geometric Fourier transforms
can be interpreted as real valued transforms, that work one after another on each of the channels, get added in a certain way and written into
certain channels depending on the multivector factor. As a result they can be interpreted, analyzed, and implemented with the same tools as
the classical real-valued transforms.

This corollary shows that the separable geometric Fourier transforms may look difficult, but really are structures hardly more complicated
than the classical Fourier transform. They are linear combinations of the real valued trigonometric transforms in a Clifford algebra.

Example 14 The restrictions of Corollary 13 are fulfilled by all transforms from Example 2, except for the cylindrical transform for dimensions
higher than two. All transforms from Example 2, including the cylindrical transform for dimension two, take the following shapes.

1. For the Clifford Fourier transform from [9, 10, 11] for multivector fields A :Rn→C`n,0, n = 2 (mod 4) or n = 3 (mod 4) the Corollary
takes the form

F f1(A) =∑
r

∑
k∈{0,1}

F f k
1
(ar)erikn

=∑
r

Fc(ar)er +Fs(ar)erin,
(31)

with n-dimensional sine and cosine transforms.
2. The transform by Sommen [12, 13] satisfies

F f1,..., fn(A) =∑
r

∑
k∈{0,1}n

F
f k1
1 ,..., f kn

n
(ar)er

n

∏
l=1

ekl
l . (32)

3. The quaternionic Fourier transform [14] takes the shape

F f1, f2(A) =∑
r

∑
j,k∈{0,1}

iii jF f j
1 , f

k
2
(ar)er jjjk

=∑
r

Fcc(ar)er +Fcs(ar)er jjj+ iiiFsc(ar)er + iiiFss(ar)er jjj.
(33)

4. Analogously, the spacetime Fourier transform [16] takes the shape

F f1, f2(A) =∑
r

∑
j,k∈{0,1}

e j
4F f j

1 , f
k
2
(ar)er(ε4e4i4)k

=∑
r

Fcc(ar)er +Fcs(ar)erε4e4i4 + e4Fsc(ar)er + e4Fss(ar)erε4e4i4.
(34)

5. The Clifford Fourier transform for color images [7] with bivector B takes the form

F f1, f2, f3, f4(A) =∑
r

∑
j,k∈{0,1}2

B j1(iB) j2F
f j1
1 , f j2

2 , f k1
3 , f j3

4
(ar)erBk1(iB)k2 .

=∑
r

Fcccc(ar)er +Fcccs(ar)eriB+Fccsc(ar)erB+Fccss(ar)erBiB

+ iBFcscc(ar)er + iBFcscs(ar)eriB+ iBFcssc(ar)erB+ iBFcsss(ar)erBiB

+BFsccc(ar)er +BFsccs(ar)eriB+BFscsc(ar)erB+BFscss(ar)erBiB

+BiBFsscc(ar)er +BiBFsscs(ar)eriB+BiBFsssc(ar)erB+BiBFssss(ar)erBiB.

(35)

Please note that here expressions like Fcccs, ... refer to two-dimensional sine and cosine transforms with respect to the variables
x1u1 + x2u2 each.

6. The cylindrical Fourier transform [17] is not separable except for the case n = 2. Here, it satisfies

F f1(A) =∑
r

∑
j∈{0,1}

(e12)
jl F f j

1
(ar)er

=∑
r

Fc(ar)er + e12Fs(ar)er,
(36)

with sine and cosine transforms of the variables |x∧u|. But for all other dimensions, no closed formula can be constructed in a similar
way.

4. The explicitly invertible GFT

There is another important class of GFTs, which we want to take a closer look at.

6 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–14
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Definition 15 Let F1 := {i1, ..., iµ},F2 := {iµ+1, ..., im} be two ordered finite sets of square roots of minus one, ik ∈ C`p,q,∀k = 1, ...,m :
i2k =−1, then we denote the transform

FF1,F2(A)(u) := (2π)−
m
2

∫
Rm

(
µ

∏
k=1

e−ikxkuk

)
A(x)

(
m

∏
k=µ+1

e−ikxkuk

)
dmx (37)

of a function f : Rm→C`p,q by explicitly invertible geometric Fourier transform (EIGFT).

This definition is a special case of the general geometric Fourier transform from Definition 1 and of the separable GFT from the previous
section. Please note that it also covers many transforms that can be brought into this form by renaming the components of x and u or by
substitution of the integration variables. For example the factor (2π) can be removed from the front into the exponentials by substitution. We
chose to use this shape because it has played a special role in [21] and [2], where this shape was used. This restricted version of Definition
1 is so popular because the additional claims guarantee that the inverse transform of any EIGFT is an EIGFT itself, namely

F−1
F1,F2

= F{−iµ,...,−i1},{−im,...,−iµ+1}. (38)

Even though we do no know yet if the restrictions in Definition 15 are necessary to guarantee the existence of a GFT inverse, so far it is the
only restrictions that we have. Therefore, this class of GFTs is very important because the applications of a transform that puts a function
into a space from which it may never return are rather sparse. We were able to construct a bijective transform, that that does not satisfy
the Definition 15. But if there exists a bijective GFT whose inverse is a GFT itself that does not satisfy Definition 15 is a matter of current
research.

Example 16 Our standard examples of geometric Fourier transforms form Example 2 satisfy the restricted definition of a EIGFT, except for
the Clifford Fourier transform for color images [7] and the cylindrical Fourier transform [17].

It is easy to show that the color image transform is not bijective if we look at real valued functions a(x) : Rm→ R. Since they are in the
center of the Clifford algebra, the exponentials cancel each other out

F f1, f2, f3, f4(A)(u) =
∫
R2

e
1
2 (x1u1+x2u2)Be

1
2 (x1u1+x2u2)iBa(x)e−

1
2 (x1u1+x2u2)iBe−

1
2 (x1u1+x2u2)B d2x

=
∫
R2

a(x)e
1
2 (x1u1+x2u2)Be

1
2 (x1u1+x2u2)iBe−

1
2 (x1u1+x2u2)iBe−

1
2 (x1u1+x2u2)B d2x

=
∫
R2

a(x)d2x.

(39)

The functions are transformed to one constant real number, their integral. So, this GFT is clearly not bijective. Batard et al. use the transform
for vector valued functions only, for which it is invertible.

Whether or not the cylindrical Fourier transform for dimensions higher than two can be inverted is not that easy to decide.

Theorem 17 (EIGFT decomposition into classic TT) A explicitly invertible geometric Fourier transform of a multivector field is the sum of
the composition of standard 1D sine and cosine transforms with constant multivector factors

FF1,F2(A)(u) =∑
r

∑
j∈{0,1}m

F(i1x1u1) j1

(
...F(imxmum) jm (ar(x))(u)

))) µ

∏
l=1

i jl
l er

m

∏
l=µ+1

i jl
l . (40)

Proof: We start out with Theorem 11 .

FF1,F2(A)(u) =∑
r

∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

FF j
1 ,F

k
2
(ar)(u)

µ

∏
l=1

il(u) jl er
ν

∏
l=µ+1

il(u)kl

=∑
r

∑
j∈{0,1}µ,

k∈{0,1}(ν−µ)

∫
Rm

µ

∏
l=1

e− fl(x,u)
jl ar(x)

ν

∏
l=µ+1

e− fl(x,u)
kl

dmx
µ

∏
l=1

il(u) jl er
ν

∏
l=µ+1

il(u)kl

(41)

and insert the special shape of the EIGFT. Here ν = m and the factor (2π)−
m
2 appears in front of the integral and not in the exponentials

FF1,F2(A)(u) =(2π)−
m
2 ∑

r
∑

j∈{0,1}µ,

k∈{0,1}(m−µ)

∫
Rm

µ

∏
l=1

e− fl(x,u)
jl ar(x)

m

∏
l=µ+1

e− fl(x,u)
kl

dmx
µ

∏
l=1

i jl
l er

m

∏
l=µ+1

ikl
l . (42)
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Comprehension of the multi-indices j and k into just one multi- index j and integration over each of the coordinates of x separately reveals a
composition of one-dimensional transforms

FF1,F2(A)(u) =(2π)−
m
2 ∑

r
∑

j∈{0,1}m

∫
Rm

m

∏
l=1

e− fl(x,u)
jl ar(x)dmx

µ

∏
l=1

i jl
l er

m

∏
l=µ+1

i jl
l

=(2π)−
m
2 ∑

r
∑

j∈{0,1}m

∫
R

e−i1x1u1
j1 ...

∫
R

e−imxmum
jm ar(x)dxm...dx1

µ

∏
l=1

i jl
l er

m

∏
l=µ+1

i jl
l

=∑
r

∑
j∈{0,1}m

F(i1x1u1) j1

(
...F(imxmum) jm (ar(x))(u)

))) µ

∏
l=1

i jl
l er

m

∏
l=µ+1

i jl
l .

(43)

Depending on whether the multi-indices take the value one or zero, each appearing transform is now a classical one-dimensional sine
transform Fs or cosine transform Fc of a real valued function. � This decomposition directly shows how a classical FFT algorithm can be
applied to efficiently calculate each of the EIGFTs.

Example 18 Theorem 17 can be applied to most of the standard examples from Example 2.

1. The decomposition into the 1D sine and cosine transforms for the Clifford Fourier transform from [9, 10, 11] can be written as

F f1(A) =
∫
Rn

A(x)e2πinx·u dnx

=
∫
Rn

A(x)
n

∏
j=1

e2πinx ju j dnx

=∑
r

∑
j∈{0,1}n

F(inx1u1) j1 ...F(inxnun) jn (ar)eri|j|n .

(44)

But obviously, the equivalent decomposition into higher dimensional sine and cosine transforms like in Example 14 is much more
beautiful.

2. The formula for the the Sommen Fourier transform was already shown in Example 14.
3. The formula for the quaternionic transform was already shown in Example 14.
4. The formula for the spacetime Fourier transform was already shown in Example 14.
5. The color image transform does not suffice the constraints of Theorem 17. It can only be decomposed as shown in Example 14.
6. The shape for the cylindrical transform with dimension n = 2 can be given using a little trick.

F f1(A)(u) =
∫
R2

A(x)ex∧u d2x

=
∫
R

∫
R

A(x1,x2)ee12(x1u2−x2u1) dx1 dx2

(45)

We define the vector u∗ = ue−1
12 = u(−e12) = e12u = u2e1−u1e2, which satisfies x ·u∗ = x1u2− x2u1 and get

F f1(A)(u) =
∫
R

∫
R

A(x1,x2)ee12x·u∗ dx1 dx2

=∑
r

Fc(ar)(u∗)er +Fs(ar)(u∗)ere12

=∑
r

Fc(ar)(e12u)er +Fs(ar)(e12u)ere12.

(46)

5. Convolution theorem for not coorthogonal exponents

So far in this paper, the description of the GFTs by means of the TT has mainly lead to the negative meaning of demystification. We showed,
that most of the GFTs do not differ very much from the real valued trigonometric transforms. That is why, one may regard them as not very
interesting. Now, it is time to use the positive side of the demystification and exploit the simplicity to derive new properties, that could not be
found without it.

In [18], we presented a convolution theorem for general geometric Fourier transforms with F1,F2 being coorthogonal, separable and linear
with respect to the first argument. Coorthogonality can be interpreted as mutual commutation or anticommutation among the functions.

Example 19 Every GFT in Example 2 is coorthogonal.

Although coorthogonality is fulfilled by almost every popular geometric Fourier transform, we want to deduce a convolution theorem that
holds for functions that are separable and linear with respect to the first argument but have arbitrary commutation properties. This formulation
of the theorem is especially useful for the treatment of steerable Fourier transforms over the manifolds of square roots of minus one as in
[21, 22], which are generally not coorthogonal.
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Definition 20 (convolution) Let A(x),B(x) : Rm→C`p,q be two multivector fields. Their convolution (A∗B)(x) is defined as

(A∗B)(x) :=
∫
Rm

A(y)B(x−y)dmy. (47)

Theorem 21 (convolution) Let A,B,C : Rm→C`p,q be multivector fields with A(x) = (C ∗B)(x) and F1,F2 be separable and linear with
respect to the first argument, then the geometric Fourier transform of A satisfies the convolution property

FF1,F2(A)(u) = ∑
j,j′∈{0,1}µ

k,k′∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl+ j′l FF j
1 ,F

k
2
(C)(u)F

F j′
1 ,Fk′

2
(B)(u)

ν

∏
l=µ+1

il(u)kl+k′l .
(48)

Proof: The transform satisfies

FF1,F2(A)(u) =
∫
Rm

∏
f∈F1

e− f (x,u)(C∗B)(x) ∏
f∈F2

e− f (x,u) dmx

=
∫
Rm

∏
f∈F1

e− f (x,u)
∫
Rm

C(y)B(x−y)dmy ∏
f∈F2

e− f (x,u) dmx

x−y=z
=

∫
Rm

∫
Rm

∏
f∈F1

e− f (z+y,u)C(y)B(z) ∏
f∈F2

e− f (z+y,u) dmy dmz.

(49)

Since the functions in F1 and F2 are all linear and separable with respect to the first argument, (49) is equivalent to

FF1,F2(A)(u) =
∫
Rm

∫
Rm

∏
f∈F1

(e− f (z,u)e− f (y,u))C(y)B(z) ∏
f∈F2

(e− f (y,u)e− f (z,u))dmy dmz. (50)

Now, we apply (22) with fl(x,u)
| fl(x,u)| = il(u) and get

FF1,F2(A)(u) = ∑
j,j′∈{0,1}µ

k,k′∈{0,1}(ν−µ)

∫
Rm

∫
Rm

µ

∏
l=1

il(u) j′l e− fl(z,u)
j′l

il(u) jl e− fl(y,u)
jl C(y)B(z)

ν

∏
l=µ+1

il(u)kl e− fl(y,u)
kl

il(u)k′l e− fl(z,u)
k′l

dmy dmz.

(51)

The separated exponentials are real valued and therefore in the center of the geometric algebra. So, this is equivalent to

FF1,F2(A)(u) = ∑
j,j′∈{0,1}µ

k,k′∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl+ j′l
∫
Rm

µ

∏
l=1

e− fl(y,u)
jl C(y)

ν

∏
l=µ+1

e− fl(y,u)
kl

dmy

∫
Rm

µ

∏
l=1

e− fl(z,u)
j′l

B(z)
ν

∏
l=µ+1

e− fl(z,u)
k′l

dmz
ν

∏
l=µ+1

il(u)kl+k′l .

(52)

Using Definition 6, leads to

FF1,F2(A)(u) = ∑
j,j′∈{0,1}µ

k,k′∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl+ j′l FF j
1 ,F

k
2
(C)(u)F

F j′
1 ,Fk′

2
(B)(u)

ν

∏
l=µ+1

il(u)kl+k′l ,
(53)

which completes the proof. �

Corollary 22 (convolution) Let A,B,C : Rm →C`p,q be multivector fields with A(x) = (C ∗B)(x) and F1,F2 each consist of functions in
the center of C`p,q, then the the GFT satisfy the simple product formula

FF1,F2(A)(u) =FF1,F2(C)(u)FF1,F2(B)(u). (54)

Remark 23 For all C`p,q, p+q = n even, the center is trivial {1}. For n odd, the center has two elements {1, in}, with in the pseudoscalar.
In general, the scalar part of every square root of −1 is zero. So, square roots exist in the center of C`p,q only for p+q = n odd and they will
be proportional to in .
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The convolution theorem Theorem 21 is not simply a generalization of the convolution theorem from [18]. That means in the case of
coorthogonal functions F1,F2, it will not reduce to the other theorem. Here, the exponentials are decomposed, while the other theorem
decomposes the multivector functions.

Example 24 Theorem 21 can take various shapes, depending on different GFTs. We shorten the formulae and stress the simplicity using
Notation 8 for the standard sine and cosine transforms.

1. The Clifford Fourier transform from [9, 10, 11] takes the form

F f1(A) = ∑
j, j′∈{0,1}

i j+ j′F f j
1
(C)F

f j′
1
(B)

=Fc(C)Fc(B)−Fs(C)Fs(B)+ i(Fc(C)Fs(B)+Fs(C)Fc(B))
(55)

for n = 2 (mod 4). For n = 3 (mod 4) we can apply Corollary 22

F f1(A) = F f1(C)F f1(B). (56)

Because in this case, the pseudoscalar is in the center of C`n,0.
2. The transform by Sommen [12, 13] satisfies

F f1,..., fn(A) = ∑
k,k′∈{0,1}n

F
f k1
1 ,..., f kn

n
(C)F

f
k′1
1 ,..., f k′n

n
(B)

n

∏
l=1

ekl+k′l
l . (57)

3. The quaternionic Fourier transform [14, 13] has the shape

F f1, f2(A) = ∑
j, j′,k,k′∈{0,1}

iii j+ j′F f j
1 , f

k
2
(C)F

f j′
1 , f k′

2
(B) jjjk+k′

(58)

which can be explicitly written as

F f1, f2(A) =Fcc(C)Fcc(B)−Fsc(C)Fsc(B)−Fcs(C)Fcs(B)+Fss(C)Fss(B)
+ i(Fsc(C)Fcc(B)+Fcc(C)Fsc(B)−Fcs(C)Fss(B)−Fss(C)Fcs(B))
+(Fcc(C)Fcs(B)+Fcs(C)Fcc(B)−Fsc(C)Fss(B)−Fss(C)Fsc(B)) j

+ i(Fcc(C)Fss(B)+Fcs(C)Fsc(B)+Fsc(C)Fcs(B)+Fss(C)Fcc(B)) j.

(59)

4. The convolution theorem for the spacetime Fourier transform [16] takes the same shape as for the quaternionic transform

F f1, f2(A) = ∑
j, j′,k,k′∈{0,1}

e j+ j′
4 F f j

1 , f
k
2
(C)F

f j′
1 , f k′

2
(B)(ε4e4i4)k+k′ . (60)

5. The Clifford Fourier transform for color images [7] with bivector B takes the form

F f1, f2, f3, f4(A) = ∑
j,k∈{0,1}2

(B) j1+ j′1(iB) j2+ j′2F
f j1
1 , f j2

2 , f k1
3 , f k2

4
(C)F

f
j′1

1 , f
j′2

2 , f
k′1
3 , f

k′2
4

(B)(−B)k1+k′1(−iB)k2+k′2 , (61)

which we will not write down summand by summand, because it comprises 256 terms.
6. The cylindrical Fourier transform [17] is not separable except for the case n = 2. Here it satisfies

F f1(A) = ∑
j, j′∈{0,1}

e j+ j′
12 F f j

1
(C)F

f j′
1
(B)

=F f 0
1
(C)F f 0

1
(B)−F f 1

1
(C)F f 1

1
(B)+ e12(F f 0

1
(C)F f 1

1
(B)+F f 1

1
(C)F f 0

1
(B)),

(62)

but for all other no closed formula can be constructed in a similar way.

6. Short convolution theorem for not coorthogonal exponents

The number of summands in Theorem 21 is 4ν. It is possible to formulate versions of the theorem that consist of only 2ν summands.
This formula still holds for GFT with mappings of arbitrary commutation properties. The main difference to the previous formula is that the
summands are not real valued. The elementary transform terms are half GFTs, half TTs, and multivector valued.
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Theorem 25 (convolution, short) Let A,B,C :Rm→C`p,q be multivector fields with A(x) = (C∗B)(x) and F1,F2 be separable and linear
with respect to the first argument, then the geometric Fourier transform of A satisfies the convolution property

FF1,F2(A)(u) = ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

F−il(u) π

2 jl+ fl(y,u),Fk
2
(C)(u)FF j

1 ,−il(u) π

2 kl+ fl(y,u)
(B)(u).

(63)

with the transforms

FF j
1 ,−il(u) π

2 kl+ fl(y,u)
(B)(u) =

∫
Rm

µ

∏
l=1

e− fl(x,u)
jl B(x)

ν

∏
l=µ+1

eil(u) π

2 kl− fl(y,u) dmx

=
∫
Rm

µ

∏
l=1

e− fl(x,u)
jl B(x)

ν

∏
l=µ+1

(il(u)kl e− fl(y,u))dmx,

F−il(u) π

2 jl+ fl(y,u),Fk
2
(C)(u) =

∫
Rm

µ

∏
l=1

eil(u) π

2 jl− fl(y,u)C(x)
ν

∏
l=µ+1

e− fl(x,u)
kl

dmx

=
∫
Rm

µ

∏
l=1

(il(u) jl e− fl(y,u))C(x)
ν

∏
l=µ+1

e− fl(x,u)
kl

dmx

(64)

for multi-indices j ∈ {0,1}µ or k ∈ {0,1}(ν−µ) and e− f (x,u)
j from Notation 3.

Proof: We start with (50) in the proof of Theorem 21

FF1,F2(A)(u) =
∫
Rm

∫
Rm

∏
f∈F1

(e− f (z,u)e− f (y,u))C(y)B(z) ∏
f∈F2

(e− f (y,u)e− f (z,u))dmy dmz, (65)

apply Lemma 4 and fl(x,u)
| fl(x,u)| = il(u) and get

FF1,F2(A)(u) = ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

∫
Rm

∫
Rm

µ

∏
l=1

(il(u) jl e− fl(z,u)
jl e− fl(y,u))C(y)B(z)

ν

∏
l=µ+1

(e− fl(y,u)
kl

il(u)kl e− fl(z,u))dmy dmz

= ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

∫
Rm

∫
Rm

µ

∏
l=1

e− fl(z,u)
jl

µ

∏
l=1

(il(u) jl e− fl(y,u))C(y)B(z)

ν

∏
l=µ+1

e− fl(y,u)
kl

ν

∏
l=µ+1

(il(u)kl e− fl(z,u))dmy dmz.

(66)

Now, we use for jl ∈ {0,1}

il(u) jl = e
π

2 il(u) jl ⇒ il(u) jl e− fl(z,u) = eil(u)( π

2 jl+|− fl(z,u)|) (67)

and get

FF1,F2(A)(u) = ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

∫
Rm

∫
Rm

µ

∏
l=1

e− fl(z,u)
jl

µ

∏
l=1

eil(u)( π

2 jl+|− fl(y,u)|)C(y)B(z)

ν

∏
l=µ+1

e− fl(y,u)
kl

ν

∏
l=µ+1

eil(u)( π

2 kl+|− fl(z,u)|) dmy dmz

= ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

∫
Rm

µ

∏
l=1

eil(u)( π

2 jl+|− fl(y,u)|)C(y)
ν

∏
l=µ+1

e− fl(y,u)
kl

dmy

∫
Rm

µ

∏
l=1

e− fl(z,u)
jl B(z)

ν

∏
l=µ+1

eil(u)( π

2 kl+|− fl(z,u)|) dmz

= ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

F−il(u) π

2 jl+ fl(y,u),Fk
2
(C)(u)FF j

1 ,−il(u) π

2 kl+ fl(y,u)
(B)(u),

(68)

which completes the proof. �
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Corollary 26 Let A,B,C : Rm→C`p,q be multivector fields with A(x) = (C∗B)(x) and F1,F2 be separable, linear with respect to the first
argument and mutually commutative, then the geometric Fourier transform of A satisfies the convolution property

FF1,F2(A)(u) = ∑
j∈{0,1}µ

k∈{0,1}(ν−µ)

µ

∏
l=1

il(u) jl FF1,Fk
2
(C)(u)FF j

1 ,F2
(B)(u)

ν

∏
l=µ+1

(il(u)kl .
(69)

with e− f (x,u)
j from Notation 3.

Example 27 Theorem 25 can take various shapes, depending on the different GFTs. We show this for the same examples as before.

1. The Clifford Fourier transform from [9, 10, 11] takes the form

F f1(A) =Fc(C)F f1(B)+Fs(C)F f1(B)i (70)

for n = 2 (mod 4). For n = 3 (mod 4) we can apply Corollary 22

F f1(A) = F f1(C)F f1(B). (71)

Because in this case, the pseudoscalar is in the center of C`n,0.
2. The transform by Sommen [12, 13] is the only one of our examples that fulfills all constraints for Theorem 25 but not for Corollary 26.

It satisfies

F f1,..., fn(A) = ∑
k∈{0,1}n

FFk
2
(C)F−i1 π

2 k1+ f1,...,−in π

2 kn+ fn
(B). (72)

3. The quaternionic Fourier transform [14, 13] has the shape

F f1, f2(A) = ∑
j,k∈{0,1}

i j
1F f1, f k

2
(C)F f j

1 , f2
(B)ik2

=F f1,c(C)Fc, f2(B)+F f1,s(C)Fc, f2(B) j

+ iF f1,c(C)Fs, f2(B)+ iF f1,s(C)Fs, f2(B) j.

(73)

4. And the spacetime Fourier transform [16] principally the same shape

F f1, f2(A) = ∑
j,k∈{0,1}

e j
4F f1, f k

2
(C)F f j

1 , f2
(B)(ε4e4i4)k

=F f1,c(C)Fc, f2(B)+F f1,s(C)Fc, f2(B)ε4e4i4
+ e4F f1,c(C)Fs, f2(B)+ e4F f1,s(C)Fs, f2(B)ε4e4i4.

(74)

5. The Clifford Fourier transform for color images [7] with bivector B takes the form

F f1, f2, f3, f4(A) = ∑
j,k∈{0,1}2

(B) j1(iB) j2F
f1, f2, f

k1
3 , f k2

4
(C)F f j1

1 , f j2
2 , f3, f4

(B)(−B)k1(−iB)k2 , (75)

or explicitly

F f1, f2, f3, f4(A) =F f1, f2, f 0
3 , f

0
4
(C)F f 0

1 , f
0
2 , f3, f4

(B)−F f1, f2, f 0
3 , f

1
4
(C)F f 0

1 , f
0
2 , f3, f4

(B)iB

−F f1, f2, f 1
3 f 0

4
(C)F f 0

1 , f
0
2 , f3, f4

(B)B+F f1, f2, f 1
3 f 1

4
(C)F f 0

1 , f
0
2 , f3, f4

(B)BiB

iBF f1, f2, f 0
3 , f

0
4
(C)F f 0

1 , f
1
2 , f3, f4

(B)− iBF f1, f2, f 0
3 , f

1
4
(C)F f 0

1 , f
1
2 , f3, f4

(B)iB

− iBF f1, f2, f 1
3 , f

0
4
(C)F f 0

1 , f
1
2 , f3, f4

(B)B+ iBF f1, f2, f 1
3 , f

1
4
(C)F f 0

1 , f
1
2 , f3, f4

(B)BiB

BF f1, f2, f 0
3 , f

0
4
(C)F f 1

1 , f
0
2 , f3, f4

(B)−BF f1, f2, f 0
3 , f

1
4
(C)F f 1

1 , f
0
2 , f3, f4

(B)iB

−BF f1, f2, f 1
3 , f

0
4
(C)F f 1

1 , f
0
2 , f3, f4

(B)B+BF f1, f2, f 1
3 , f

1
4
(C)F f 1

1 , f
0
2 , f3, f4

(B)BiB

+BiBF f1, f2, f 0
3 , f

0
4
(C)F f 1

1 , f
1
2 , f3, f4

(B)−BiBF f1, f2, f 0
3 , f

1
4
(C)F f 1

1 , f
1
2 , f3, f4

(B)iB

−BiBF f1, f2, f 1
3 , f

0
4
(C)F f 1

1 , f
1
2 , f3, f4

(B)B+BiBF f1, f2, f 1
3 , f

1
4
(C)F f 1

1 , f
1
2 , f3, f4

(B)BiB.

(76)

6. The cylindrical Fourier transform [17] is not separable except for the case n = 2. Here it satisfies

F f1(A) =F f 0
1
(C)F f1(B)+ e12F f 1

1
(C)F f1(B), (77)

but for all other no closed formula can be constructed in a similar way.
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7. Conclusions

In this paper, we have lifted the mystery around the separable geometric Fourier transforms. This has two big consequences.
The decomposition of separable GFT into real valued trigonometric transforms in Theorem 11 takes away their veil, most of their magic

and some of their fascination. Even though the definition of the GFT covers more than the separable transforms, these are the most popular
ones. When it comes to real applications, even the stronger restriction to EIGFTs is essential. For them, the decomposition into classical
one-dimensional, real-valued sine transforms and cosine transforms with constant multivector factors in Theorem 17 displays their ease of
use.

This insight has not only the sobering side of demystification in the sense of showing their simplicity, but also the positive side of making
them easier to understand, analyze and implement. As examples of the advantages of the new point of view on the GFTs, we present two
convolution theorems. Until this equivalence to the trigonometric transforms was shown, the convolution theorems of the GFT were only valid
for the subclass of the coorthogonal GFT. Now Theorems 21 and 25 give closed expressions for the convolution of any GFT with mappings
that are separable and linear in the first argument, but have arbitrary commutation properties. Another advantage is that the decomposition
into one-dimensional sine and cosine transforms directly shows how a classical FFT algorithm can be applied to efficiently calculate the
transforms.

For future work, this also leads us into three directions. First, to use the simplicity to explore and simplify already found properties for
the separable GFTs and to find new ones using the powerful but easy tool of the TT. Second, and more interesting is to concentrate on the
transforms that are not separable or at least not EIGFT and find out if there are bijective transforms among them and how they actually differ
from real-valued transforms. Third, the techniques developed in this paper may also help to further elucidate Clifford algebra wavelet type of
transforms [23, 24, 25, 26].
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