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Figure 1: The similarity of the underlying field to the counter oriented double vortex is encoded in the brightness of the circles.

ABSTRACT

The analysis of 2D flow data is often guided by the search for char-
acteristic structures with semantic meaning. One way to approach
this question is to identify structures of interest by a human ob-
server. The challenge then, is to find similar structures in the same
or other datasets on different scales and orientations.

In this paper, we propose to use moment invariants as pattern de-
scriptors for flow fields. Moment invariants are one of the most pop-
ular techniques for the description of objects in the field of image
recognition. They have recently also been applied to identify 2D
vector patterns limited to the directional properties of flow fields.

In contrast to previous work, we follow the intuitive approach
of moment normalization, which results in a complete and inde-
pendent set of translation, rotation, and scaling invariant flow field
descriptors. They also allow to distinguish flow features with differ-
ent velocity profiles. We apply the moment invariants in a pattern
recognition algorithm to a real world dataset and show that the the-
oretic results can be extended to discrete functions in a robust way.

Index Terms: I.4.7 [Image Processing and Computer Vision]:
Feature Measurement —Moments; I.5.2 [Pattern Recognition]:
Design Methodology —Classifier design and evaluation.

1 INTRODUCTION

Visualization and data analysis play an essential role in the process
of understanding flow simulations. The definition and extraction of
characteristic flow structures from the data is of special importance
and is the topic of many discussions in the field of fluid mechanics.
Respective questions concern, e.g., the formation and development
of “coherent structures” [14], sometimes identified with vortices.
Even though many scientists have an intuitive feeling about such
structures, there is no commonly accepted definition. It is often
challenging to translate these intuitive notions into a mathemati-
cally tractable property. The goal of this work is to support this
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task allowing flexible pattern definition, e.g. through visual selec-
tion. Thereby, the major challenge is the definition of expressive
descriptors. They should be detailed enough to encode the relevant
information about a pattern but also general enough to allow vari-
ations in terms of size and orientation. Once structures of interest
are identified, similar patterns can be automatically detected.

Similar questions can be found in the field of image analysis.
There, very successful and commonly used shape descriptors for
automatic object recognition are moment invariants. Moments are
characteristic numbers of a function. For example, the mean and
the variance are moments. They are the projection of a function to
an L2 function space basis. They are robust, flexible, easy to use,
and an excellent tool to construct invariants. Invariants mean in this
context that they do not change under certain transformations. Their
invariance property allows to compare objects in one single step in-
stead of considering every possible transformed version of it. Since
moments have been introduced about 50 years ago, many different
categories of invariants have been developed and analyzed [10].

Some of these ideas have been generalized to vector fields by
Schlemmer et al. [23] proposing a set of complex invariant mo-
ments for vector fields. The results are promising but show only
first steps towards the full utilization of the potential that moments
offer to flow pattern recognition. At first, the method is restricted to
vector fields that are normalized with respect to velocity. This ap-
proach does not allow to distinguish flow patterns with different ve-
locity profiles, which is essential for the characterization of vortex
structures. Another effect is that two of the proposed moments are
not only dependent but identical for this setting carrying redundant
information. Schlemmer further used complex conjugation in his
definition of independence, as he had seen in Flusser et al. [9], even
though this operation leads to elements outside the set of invariants
with respect to flow field rotation. This paper introduces a new ap-
proach to vector moments with the focus on these limitations. To
achieve invariance of the descriptors, two major approaches have
been proposed in the past. One way is the explicit definition of a
set of algebraic invariants. This is also the way chosen by Schlem-
mer et al.. This is an elegant approach but not very intuitive and
it has the disadvantage that the question of independence and com-
pleteness of these sets is not easy to answer [9]. Another way is the
method of normalization [5], i.e. the pattern is brought into a stan-
dard or reference position by setting certain moments to pre-defined
values. The remaining moments are used as the discriminating in-
variants. Flusser et al. state that both methods are equivalent [10]



for scalar fields. The second option has not yet been generalized to
the vector field case.

This paper introduces a new approach to vector moments with
the focus on these limitations. We generalize the theory of two-
dimensional invariants with respect to translation, rotation, and
scaling (TRS) from scalar functions to 2D vector fields making use
of the isomorphism between the Euclidean and the complex plane.
The major contribution of this paper can be summarized as:

• Theoretic framework for the generalization of the moment
normalization method to 2D vector fields, also distinguishing
patterns with different velocity profiles.

• Derivation of a complete and independent set of flow field
descriptors that are invariant with respect to rotation, back-
ground flow and velocity.

• Analysis of their numerical properties on discrete data and
their robustness with respect to noise.

• Application of the descriptors to translation, rotation, and
scaling invariant pattern recognition of flow fields.

2 RELATED WORK

The analysis of vector fields has a long tradition in the area of vi-
sualization. Accordingly, there has been much interesting work,
which goes beyond the scope of this section. But we would like to
point at some good overview articles dealing with vector field visu-
alization with different foci: Texture and Feature-Based Flow Visu-
alization [8], Integration-Based Geometric Flow Visualization [17],
and Illustrative Flow Visualization [2].

Of special interest in context with the represented method, are
feature extraction and pattern recognition methods. Typical vector
features may either be directly based on the given vector field, e.g.
vector field topology, or on derived scalar, vector, or tensor fields.
Vector field topology focuses on finding features like sources, sinks,
and saddle points as well as separatrices connecting them [16, 21].
Scalar features are mostly defined as iso-contours or as the extremal
structure of a derived scalar field [25]. Examples are vortex like
features using identifiers as vorticity [19, 20], l2 [13], or the accel-
eration magnitude [15], all based on the Jacobian matix of the flow
field. Such predefined features are very successful when looking
for specific well-known structures. But they might be too specific
when looking for more general patterns.

A more flexible way to define features interactively as patterns

is provided by methods originating from image processing. In con-
trast to the features described above, such patterns are not locally
defined by having a spatial extension. A first attempt in this direc-
tion has been made by Heiberg et al. [11] who introduced a con-
volution operator for vector field data. This idea has been further
elaborated by Ebling et al. [7, 6]. To find patterns of different size
and orientation, the respective filter masks have to be adjusted and
the filtering process has to be performed multiple times.

To avoid these high computational costs, pattern descriptors that
are invariant under rotation and scaling have been proposed. In
the area of image processing, Hu [12] introduced his famous seven
moment invariants to the pattern recognition society. These are ex-
pressions that do not change under shift, rotation, and scale and
therefore help to identify the same object aligned differently. They
are one of the most important sets of shape descriptors. There has
been much related work since. The use of complex moments [26, 1]
simplified the construction of rotation invariants because of the easy
way to describe rotations by means of complex exponentials. Two
major ways for the construction of invariants have been introduced.
Flusser [9] uses an independent basis by explicitly defining a set of
invariants. A different approach to achieve invariance is the method
of normalization [5], there the pattern is brought into a standard po-
sition by setting certain moments to given values. Flusser et al.
state that both methods are equivalent. For a more comprehensive

introduction to moment invariants we recommend [10]. Building
on this work, Schlemmer et al. [23, 22] have defined a moment ba-
sis for vector fields. Thereby, the scale invariance is implemented
by a moment pyramid, which serves as basis for an efficient com-
parison. These moments have then been applied to follow charac-
teristic patterns in time-dependent datasets [24]. While generating
first promising results, a concise mathematical formulation of vec-
tor moments is still missing. Another interactive feature or pattern
selection method for vector fields that also considers neighborhood
characteristics has been presented by Daniels et al. [4]. They define
features by attributes that describe the neighborhood of a sample
within the input vector field.

3 BASICS - MOMENTS FOR SCALAR FIELDS

In the following section, we summarize the most important basics
for classical complex moment invariants, on which our work builds.
In particular, we discuss the two different approaches to construct
invariant descriptors; the construction of an invariant basis in com-
parison to normalization to motivate our design decision.

Throughout the paper, we will perform all theoretical calcula-
tions in the notation of the complex numbers. Please keep in mind
that every result for a complex function f : C! C

f (z) = f1(x1 + ix2)+ i f2(x1 + ix2)'
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can be automatically understood as a result for a two-dimensional
vector field v : R2 ! R2 using the isomorphism with v1/2 = f1/2.

3.1 Complex moments
The moments of a scalar field or function are its coefficients with
respect to a function space basis. We are dealing with functions
defined over R2 ' C and use complex moments [26, 1], which are
the coefficients with respect to the standard complex monomials
zpzq. The first complex monomials interpreted as 2D vector fields
are shown in Figure 2. Complex moments are easy to use, inter-
pret, and implement and sufficiently powerful for our issues. They
were originally introduced to deal with real valued functions, but
the generalization to complex-valued functions is straight forward.

Definition 1. For the pair p,q 2 Z, with grade n = p+ q and the
complex function f :C!C, the complex moments cp,q are defined
as

cp,q =
Z

C
zpzq f (z)dz. (2)

Using the polar form for complex numbers z = reif 2 C, we can
alternatively write

cp,q =
Z 1

0

Z •

0
rp+qeif(p�q) f (r,f)r df dr. (3)

The complex moments of low orders have a very intuitive geometric
meaning. The zeroth order moment

c0,0 =
Z

C
f (z)dz (4)

can be interpreted as the mass of the function. The moments of
order one represent the center of mass of a real valued function via

c1,0
c0,0

=

R
C z f (z)dzR
C f (z)dz

. (5)
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Figure 2: The first complex monomials interpreted as 2D vector fields
visualized with line integral convolution (LIC) [3] and a color map rep-
resenting the velocity. Blue means low and red high velocity.

Example 1. To illustrate the geometric meaning of the moments,
we use the characteristic function f : C ! {0,1} representing the
triangle in Figure 3 (a) as an example,

f (z) =

(
1, if 0 < Re(z)< 1 and 0 < Im(z)< Re(z),
0, else.

(6)

Its moments up to the second order are

c0,0 =
1
2
, c1,0 =

1
3
+

1
6

i, c0,1 =
1
3
� 1

6
i,

c1,1 =
1
3
, c2,0 =

1
6
+

1
4

i, c0,2 =
1
6
� 1

4
i.

(7)

The surface area or mass of the triangle is given by by the zeroth
order moment c0,0 = 1/2, and its center of mass by the first order
moment c1,0/c0,0 = 2/3+1/3i.

3.2 Moment invariants
Useful descriptors on the basis of moments should respect some
invariances. In general invariants are characteristics that do not
change under certain transforms. Depending on the specific ap-
plication, interesting transforms can be changes in position, size,
orientation, convolution, affine transforms, blur, perspective, con-
trast, or color.

To fulfill the demand for invariances, two basically different ap-
proaches have been proposed. These are:

• Construction of a basis of moment invariants.

• Normalization of the moments.

According to Flusser et al. [10], these approaches may have differ-
ent origins but are equivalent with respect to their results. The first
approach defines an explicit calculation rule for an independent and
complete basis. Applying this rule, an infinite set of moment invari-
ants can be generated. The calculation rules are usually inspired by
results of the much older field of algebraic invariants and are not
very intuitive. The second approach, which is called normalization,
is much easier to imagine. In order to achieve an invariant descrip-
tion of the patterns, a standard position is defined. The easiest way
is to set certain moments to predefined values. These chosen mo-
ments will take the same values for any pattern; all the remaining
moments can be used as independent discriminators. Whenever two
patterns shall be compared, there is no need to test all orientations,
but only the moments of the patterns in standard position.

The original triangle from (6) Normalization with respect to
translation

Normalization with respect to
translation and scaling

Normalization with respect to
translation, scaling, and rotation

Figure 3: Normalization of the triangle from equation (6)

Example 2. To illustrate the geometric interpretation of normaliza-
tion we use again the function of Example 1 and define a standard
position with respect to translation, scaling, and rotation.

• Translation: a self-evident standard with respect to transla-
tion would be the claim for the center of mass to coincide
with the origin of coordinates. In the language of moments,
that means we set the moment c1,0 = 0.

• Scaling: a reasonable suggestion is to demand the area of the
pattern to have unit magnitude, i.e. c0,0 = 1.

• Rotation: in order to standardize the orientation of a pattern,
we can choose a moment and align it with the positive real
axis. Usually the moment c2,0 2 R+ is chosen.

The shape of the triangle after every step can be followed in Fig-
ure 3. The normalized moments of the triangle are

c0,0 =1, c1,0 =0, c0,1 =0,

c1,1 =
2
9
, c2,0 =

1
9
, c0,2 =

1
9
.

(8)

Please note that other choices for a standard position would lead to
equally valid normalizations. This one coincides with aligning the
principal ases of the principal component analysis to the Carthe-
sian basis axes.



In practice, the normalization process is not done by explicitly
moving the pattern. To describe and compare different patterns, it
is sufficient to normalize the moments. Thus, no resampling and
interpolation of the function is necessary. Normalization has many
advantages compared to the independent basis approach.

• It has a clear motivation and reasonable geometric interpreta-
tion.

• No work needs to be put into the analysis and proof of the
independence and the completeness because these properties
are directly inherited from the function space basis.

• Its generalization to higher dimensions and other kinds of
functions and spaces is straightforward.

It should be noted that normalization cannot be used to create in-
variants with respect to a transform that has no reasonable standard
representation, like blur. Since our objective is invariance with re-
spect to translation, rotation, and scaling, this is no issue for our
application. Due to the prevalence of the advantages of the normal-
ization approach for flow pattern recognition, we decided to follow
this approach.

4 MOMENT INVARIANTS FOR FLOW FIELDS

In this section, we discuss moment invariants applied to pattern
analysis for flow fields. Many of the ideas introduced for shape
recogniton can be generalized but there are also substantial
differences.

Relevant transformations – An essential decision is the class of
transformations that are considered for invariance. There are many
more options to define geometric transformations for vector fields
than for scalar functions and other transformations are of signifi-
cance. To compare patterns with arbitrary orientation, position, and
size, it is not sufficient to apply the transformation to the domain.
It is necessary to transform the vectors correspondingly. In the
following, we refer to the transformation of the domain as inner

transformation and the change of the values of the vector field as
outer transformation.

Driving questions – But also the driving questions are very
different. In shape analysis, the questions are often related to a
discrete classification of pre-segmented patterns, whereas in flow
analysis, we are interested in a similarity measure that expresses
the strength of a given feature at a certain position. Relevant
patterns are often relatively small compared to the size of the field
and can even exist at the same position at different scales.

For a general complex function, translation, rotation, and scal-
ing can be applied to its argument and its value. That means we
generally deal with six degrees of freedom

f 0(z) =soeiao
�

f (sieiai z+ ti)+ to
�
, (9)

with the inner and outer scaling factors si,so 2 R+, translational
differences ti, to 2 C, and rotation angles ai,ao 2 [�p,p]. In the
following we will discuss these six central transformations.

Rotations
Since the rotation invariance is of special importance in the con-
text of flow analysis, we will describe this transformation in more
detail. An example for a rotation of a vector field is shown in Fig-
ure 4. Analogous considerations are also valid for other geometric
transformations as translation and scaling.

Let Ra be an operator that describes a mathematically positive
rotation by the angle a and let f , f 0 : C! C be two vector fields.
We say the two fields differ by an inner rotation if

f 0(z) = f (R�a (z)). (10)

Original vector
field: f (z)

Inner rotation:
f (R�a (z))

Outer rotation:
Ra ( f (z))

Total rotation:
Ra ( f (R�a (z)))

Figure 4: Effect of the rotation operator Ra applied to an example
vector field in three different ways.

This means that the starting position of every vector is rotated by
a and then the original vector is reattached at the new position.
The inner rotation is suitable to describe the rotation of a 2D color
image or a complex valued function over a plane. The color or
the complex value respectively is represented as a vector and does
not change when the underlying domain is rotated. The two vector
fields differ by an outer rotation if

f 0(z) = Ra ( f (z)). (11)

Here, every vector on the vector field f 0 is a rotated copy of every
vector in the vector field f , while its location remains fixed. For
complex valued functions, it describes a phase shift in the image
space. This kind of rotation appears, for example, in color images
when the color space is turned but the picture is not moved [18]. A
third type is the total rotation, which combines the inner and outer
rotation

f 0(z) = Ra ( f (R�a (z))). (12)

It represents a coordinate transform for a vector field with geomet-
ric, physical meaning, like a flow field. Here the positions and the
vectors are stiffly connected during the rotation. This is the kind of
rotation, we will use in this paper.

Scaling and Translation
Because flow patterns have a limited spatial extend, we do not want
to compare fields but only parts of it. This means, we have to restrict
the analysis to windows of the size of the pattern. Thus, the inner
translation and scaling cannot be covered using moment invariants.
This problem is solved by searching at ’all’ possible places and
for ’all’ possible scales in the big vector field. As a result, it is
not useful to include these parameters in the calculation (9) we set
ti = 0,si = 1. To be in accordance with rotation invariance, we have
chosen a circular window A = Br(0).

The outer translation can be interpreted as a distortion of the
pattern by some background flow or a moving frame of reference.
Since we would like to be able to detect moving flow patterns, we
will consider normalization with respect to outer translation to. The
outer scale represents the velocity of the flow. We want to detect the
pattern independent from its speed, so also normalize with respect
to outer scale so. Please note that during this operation we will not
set every vector to unit length. The ratio between the lengths of the
vectors and the velocity pattern are preserved.

In Summary: Considered Transformations
All in all, the transforms of a function f (z) with respect to which
we want to normalize, take the shape

f 0(z) =seia
✓

f
�
e�ia z

�
+ t

◆
, (13)

with the scaling factor s 2 R+, translational difference t 2 C, rota-
tion angle a 2 [�p,p]. In the next section, we will show how this
special kind of normalization can be produced.



Discrete Formulation
For the practical computation a discrete formulation of the integral
definitions in Sec. 3.1 have to be used. For a given position z0 =
x0 + iy0 and scale s, discrete functions are sampled on a uniform
grid with spacing h = 1/s and the moments of order n = p+q are
computed as

cpq(z0) =
s

Â
k,l=�s

p
s2+k2

Â
l=�

p
s2+k2

(kh+ ilh)p(kh� ilh)q f (z0 + kh+ ilh).

(14)
It should be noted that integration using discrete filters, still reduces
the accurateness of the rotation invariance, see Section 6. The com-
putation of the moments is defined as a convolution and can be
efficiently performed using the fast Fourier transform (FFT).

5 CONSTRUCTION OF THE INVARIANTS BY NORMALIZATION

The transformation (13) has four real, respectively two complex,
degrees of freedom. This means, in order to define a standard po-
sition with respect to total rotation, outer scaling, and outer trans-
lation for the normalization, we have to choose two complex mo-
ments and move the function such that these are set to specified
values. These moments should be of low order to be robust [1].
Mathematically speaking, we look for parameters s0 2 R+, t0 2 C,
and a0 2 [�p,p), such that the function

f 0(z) =s0eia0

✓
f
�
e�ia0 z

�
+ t0

◆
(15)

has two complex moments with fixed values.

Lemma 1. Let s 2 R+, t 2 C,a 2 [�p,p) be parameters for outer
scaling, outer translation, and total rotation and let

f 0(z) =seia
✓

f
�
e�ia z

�
+ t

◆
, (16)

be the transformed copy of a complex function f : C ! C. Then,
the complex moments c0p,q of f 0 over the circular area A = Br(0)
satisfy

c0p,q = seia(p�q+1)�cp,q + t
Z

A
zpzq dz

�
. (17)

Proof. With a suitable substitution of the integration variable, the
complex moments c0p,q of f 0 suffice

c0p,q =
Z

A
zpz̄q f 0(x,y)dz =

Z

A
zpz̄qseia� f (e�ia z)+ t

�
dz

=seia
Z

A
(eia z)p(eia z)q� f (z)+ t

�
dz

=seia(p�q+1)
Z

A
zpzq� f (z)+ t

�
dz

=seia(p�q+1)�cp,q + t
Z

A
zpzq dz

�
,

(18)

which proves the assertion.

The choice of the moments that can be used for the normalization
is not arbitrary. As can be seen from Lemma 1, the parameter t only
has influence on moments c0p,q with p = q, because

R
A zpzq dz = 0

for any pair p 6= q. That means we have to take one of these. A
reasonable choice is setting c0,0 = 0 because in our application, the
moment of order zero represents the average flow or the background
flow of the field and a suitable standard position is a vanishing back-
ground flow. Applying Lemma 1 gives

c0
0,0 = seia0

�
c0,0 + t0

Z

A
dz
�

(19)

and leads to the following condition for t0

c0
0,0 = 0 , t0 =�

c0,0R
A dz

. (20)

This operation is generally defined for any non vanishing area
/0 6= A ⇢ C. So, we can always preset the moment of order zero
to zero to normalize with respect to outer translation.

A classical choice for the preset value for a standard position
with respect to scaling is to require unit magnitude for a selected
moment. For the standard position with respect to rotation, we fol-
low a common choice and align a moment to the positive real axis.
The magnitude and the direction can both be encoded in a single
complex moment. Thus, it is sufficient to choose one moment com-
bining the normalization of rotation and scaling, and set it to one. It
should be noted that a moment only qualifies as candidate for this
normalization if it is non-zero. This means that the choice of an ap-
propriate moment depends on the respective pattern function. We
suggest to test the magnitude of the rotationally variant moments
of the pattern in ascending order and take the first one with a sig-
nificant value. We denote it by cp0,q0 . This leads to the following
theorem, a main result of this paper.

Theorem 1. Let f : C!C be a complex function with the complex
moment cp0,q0 6= 0 for a pair p0,q0 2 N,q0 � p0 6= 1. Then, there
are p� q+ 1 total rotations by angles a0 2 [�p,p) and a unique
outer scaling by the factor s0 2 R+ such that the moment c0

p0,q0
of

the normalized function f 0(z) = seia0 f (e�ia0 z) takes the value 1.
These are the rotations about the angles

a0 =
2kp � arg(cp0,q0)

p0 �q0 +1
(21)

with k 2 Z such that a0 2 [�p,p) and the scaling by the factor

s0 =
1

|cp0,q0 |
. (22)

Proof. Application of Lemma 1 gives the relation

c0
p0,q0

=s0eia0(p�q+1)cp0,q0 , (23)

which leads to

|c0
p0,q0

|= 1 ,|s0eia0(p0�q0+1)cp0,q0 |= 1

,|s0||cp0,q0 |= 1

,s0 =
1

|cp0,q0 |

(24)

and

c0
p0,q0

2 R+ ,s0eia0(p0�q0+1)cp0,q0 2 R+

,arg(s0eia0(p0�q0+1)cp0,q0) = 0
,a0(p0 �q0 +1)+ arg(cp0,q0) = 2kp

,a0 =
2kp � arg(cp0,q0)

p0 �q0 +1
.

(25)

with k 2 Z. Please note that the restriction of s0 2 R+ guarantees
the uniqueness of s0 and a0 2 [�p,p) the total number of p0 �
q0 +1 solutions for a0. The existence of s0 is ensured by the claim
cp0,q0 6= 0 and the existence of a0 by the claims q0 � p0 6= 1 and
cp0,q0 6= 0.

The application of these parameters to the general formula (15)
gives the normalized function. The calculation of the function is
not necessary. The pattern recognition is done by comparing the
moments of the pattern to the ones in the field. That means we only
have to transform the moments as in Lemma 1 and not resample
and interpolate the function.



Corollary 1. Let f : A = Br(0) ! C be a complex function with
the complex moment cp0,q0 6= 0 for a pair p0,q0 2 N,q0 � p0 6= 1.
Further let

t0 =�
c0,0R
A dz

, s0 =
1

|cp0,q0 |
, ak

0 =
2kp � arg(cp0,q0)

p0 �q0 +1
(26)

with k = 1, ..., |p0�q0+1|. Then, for p,q 2N, the set of |p0�q0+
1| normalized complex moments

c0
p,q = {s0eiak

0 (p�q+1)�cp,q + t0
Z

A
zpzq dz

�
,k = 1, ..., |p0 �q0 +1|}

(27)
is well defined and invariant with respect to outer scaling, outer
translation, and total rotation.

6 EXPERIMENTS

Our algorithm is based on the standard complex moments. We only
changed the computation of the invariants. That means the numeri-
cal behavior is equal to the results given by Abu-Mostafa and Psaltis
[1] and Teh and Chin [27] for complex moments. Our practical ex-
periments support their fundamental findings.

While the theory states full invariance for our moments, in practi-
cal applications this is not the case due to discretization errors 4. To
investigate the practical reliability, we performed some experiments
with discretized data for the saddle v(x) = (x2,x1)

T = z = f (z) on
a uniform Cartesian grid x = j/n,y = j/n, j = 1,2, ...n. The com-
plex moments up to a given grade span a feature space. The error is
measured as the Euclidean distance in this vector space. We show
results of these experiments in dependence on the integration step
sizes 1/n and on the maximum grade of the moments in Figure 5.
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Figure 5: Errors due to discretization with a resolution of 0.1 (discr.),
total rotation (rot.), outer translation (tr.), outer scaling (sc.), and
evenly distributed noise with SNR = 3.5 (noise). The lines connect-
ing the points are for visualization purposes only.

First, we compared the calculated moments to the analytic val-
ues. The corresponding graphs in Figure 5 is marked by “discr.”.
The error depends linearly on the resolution but grows faster with
increasing grade. The ’jumps’ after every increment by two is due
to the structure of the moments. The saddle is only represented by
moments of odd grade.

To analyze the invariance of the moments, we rotated and scaled
the saddle and added uniform background flow with different di-
rections and velocity. Figure 5 shows the largest differences of the
moment invariants for these transformations. The corresponding
graphs are marked by “rot.”, “sc.”, and “tr.”. As can be seen, the
errors with respect to rotation and translation are in the order of the
resolution of the discretization. Only the invariance with respect to
scaling is close to perfect. Since the background flow is only rep-
resented by moments of even grade, the ’jumps’ after every second
increment of the translation is shifted compared to the ’jumps’ that
are linked with the saddle.

Finally, we tested robustness with respect to evenly distributed
noise. The resulting error for a signal to noise ratio of SNR = 3.5 is
shown in the graphs marked by “noise” in Figure 5. The influence
of the noise scales linearly with respect to its power. The behavior

of the moments with respect to the chosen noise intensity is repre-
sentative for other noise magnitudes.

7 APPLICATION

The original flow field, in which we look for the patterns.

The field with removed mean flow serves as basis for the pattern selection.

Figure 6: Line integral convolution of the dataset. The colors repre-
sent the velocity of the field: blue is slow, red ist fast.

We applied our algorithm to one time slice of a 2D CFD sim-
ulation of the Kármán vortex street, which is the result of a flow
passing a cylinder. The Line integral convolution (LIC) [3] of this
slice can be found in Figure 6. We calculated the complex moments
for a discrete number of positions and scales in the field to cover the
inner translation and scaling invariance. Then, we normalized the
moments according to Corollary 1. As similarity measure, we used
the reciprocal of the minimum of the Euclidean distances of the
set of moment invariants up to a given grade. The visualization of
the resulting three-dimensional (position and scale) scalar similar-
ity field R2 ⇥R+ ! R was done by extracting the local maxima
with values above the average similarity as a threshold. For any of
these local maxima, we draw a circle in the two-dimensional image
plane in the following way:

• The size (scale) is represented by the diameter of the circle.
• The position (translation) is represented by its center.
• The similarity is represented by the color of the circle: red is

average, yellow is high, and white is extremely high.

Vortex saddle pat-
tern in Figures 7, 10

Double vortex pat-
tern in Figure 1

Double vortex sad-
dle in Figure 11

Figure 8: Query patterns selected from Figure 6 bottom.

In the following examples, we select query patterns from the dataset
field without mean flow (Figure 6 bottom) and search for it in the
original dataset (Figure 6 top). The chosen features are shown in
Figure 8. Results of our algorithm for a maximal grade of three and
five applied to the vortex saddle combination on the left of Figure 8
can be found in Figure 9. It confirms the invariance with respect to
outer translation, the similarity field takes its maximum at exactly
the position and the size, where the pattern itself was selected.

To show that our algorithm works adequately, we overlay its out-
put for the saddle vortex combination from Figure 9 over the LIC of



Figure 7: For comparison, the similarity to the saddle vortex combination was laid over the LIC of the flow field with removed mean flow.

The moments up to a maximal grade of three were used.

The moments up to a maximal grade of five were used.

Figure 9: Similarity of the dataset to the vortex saddle pattern.

the field without the mean flow (Figure 6 bottom). Figure 7 shows
the result, which allows some interesting observations:

• As expected, the maximum similarity appears where the pat-
tern meets itself and the following local maxima appear where
the pattern repeats itself along the Kármán street.

• At first sight, it might be surprising that there is no match at
the saddle vortex combinations in the upper half of the image.
Even though the LIC image shows the same pattern, the flow
orientation is reversed. If desired, invariance with respect to
reflection could be easily added to the set of transforms con-
sidered for normalization, e.g. by demanding another moment
to have positive imaginary part. But we liked to keep the mo-
ments sensitive with respect to this feature to stress the differ-
ence in the vortices.

• There are matches with intermediate similarity on the upper
left and right of each strong match. They highlight the rotated
pattern by 2p

3 and 4p
3 that consist of the same vortex and one

of the two upper saddles to the left and the right. The similar-
ity is lower due to the slight, oval deformation of the vortices.

• A higher accumulation of approximately concentric circles
and some appearantly false positves can be observed at the
more distant repetitions. This phenomenon can be reduced by
increasing the maximal grade of the moments, as shown in
Figure 9 bottom. Here we used the 21 moments up to the fifth
grade, which results in a higher discriminating power than us-
ing just the 10 moments up to third order.

We analyzed the robustness of our algorithm with respect to
noise. For this experiment we added a random field of evenly dis-
tributed noise to the data set. Some visual results can be found in
Figure 10. Since the moments are computed by integration, they

SNR = 8.6

SNR = 4.3

Figure 10: Similarity of the dataset to the saddle vortex combination
with distortions by different signal to noise ratios.

are very robust. The similarity values hardly change under the in-
fluence of small noise. The main change in the images is the many
new circles with mostly rather low similarity. The reason for this,
is not the calculation of the moment invariants but the decision to
draw the circles at local maxima. The noise leads to a less smooth
similarity field and therefore an increasing number of maxima. That
is no disadvantage of the moment invariants because they are not in-
trinsically tied to the final visualization of the similarity field. The
calculation of the similarity values starts to fail when the power of
the noise gets close to twice that of the one of the image, which can
be considered pretty robust.

The results of the algorithm in Figure 7 are quite representative.
The mentioned observations can be made with other patterns, too.
As another example, we show the output of our algorithm for the
pattern consisting of the two counter oriented vortices and two sad-
dles from the right og Figure 8. Again, as expected, the original
cutout can be found in the very bright circle and its repetitions with
lower similarity along the Kármán street in Figure 11.

The runtime of the algorithm is comparable to the one of Schlem-
mer’s algorithm.

8 CONCLUSION

In this paper, we have introduced moment normalization for vector
fields to define a new class of moment invariants as descriptors for
vector fields. We have presented the theoretical framework for the
calculation of moment invariants of 2D flow fields using this tech-
nique. By applying it to a real world data set, we could show that
the mathematical results can be used more generally to describe,
analyze, and compare discrete flows in a numerically robust way.

Compared to the invariants suggested by Schlemmer et al., our
approach exhibits a couple of advantages. It is intuitively motivated
and produces a complete and independent set of moment invariants,



Figure 11: For comparison, the similarity to the double vortex saddle pattern was laid over the LIC of the field with removed mean flow.

can easily be generalized to other transformations, as for example
reflections, to other function space bases. It considers the velocity
of the field and thus overcomes the problem of self similarity of
vortex like structures revealing the size of the patterns as maxima in
the scale space. The order of the moments is not limited, resulting
in a substantially higher discriminative power.

The complexity for the computation of the moments is the same
as in the work of Schlemmer et al. The computation of the moments
corresponds to a convolution and can be efficiently implemented us-
ing the FFT. Our current implementation does not focus on an op-
timal performance. For our examples the runtime is approximately
1 minute using the FFT, which we still consider feasible. But when
moving to 3D the runtime becomes a challenge.

In our future work, we plan extend the moment normalization
to time dependent and 3D flow fields. The generalization to 3D
involves a couple of challenges, but should generally be possible.
While the generalization of the approach using algebraic moment
invariants is hard to generalize, the idea of normalization is ex-
tendible to 3D.
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