TCP-nets - Introducing Variable Importance Tradeoffs into
CP-nets

Ronen I. Brafman BRAFMAN@CS.BGU.AC.IL
Department of Computer Science

Ben-Gurion University
Beer Sheva, Israel 84105

Carmel Domshlak DCARMEL@CS.CORNELL.EDU
Department of Computer Science

Cornell University
Ithaca, NY 14853

Solomon E. Shimony SHIMONY@CS.BGU.AC.IL
Department of Computer Science

Ben-Gurion University
Beer Sheva, Israel 84105

Abstract

The ability to make decisions and to assess potential courses of action is a corner-stone
of many Al applications. Typically, this ability requires explicit information about the
decision-maker’s preferences. In many applications, preference elicitation is a serious bot-
tleneck. The user either does not have the time, the knowledge, or the expert support
required to specify complex multi-attribute utility functions. In such cases, a method that
is based on intuitive, yet expressive, preference statements is required. In this paper we
suggest the use of TCP-nets, an enhancement of CP-nets, as a tool for representing, and rea-
soning about qualitative preference statements. We present and motivate this framework,
define its semantics, and study various computational aspects of reasoning with TCP-nets.
Finally, we show how to perform constrained optimization efficiently given a TCP-net.

1. INTRODUCTION

The ability to make decisions and to assess potential courses of action is a corner-stone of
numerous Al applications, including expert systems, autonomous agents, decision-support
systems, recommender systems, configuration software, and constrained optimization ap-
plications. To make good decisions, we must be able to assess and compare different al-
ternatives. Sometimes, this comparison is performed implicitly, as in many recommender
systems. But frequently, explicit information about the decision-maker’s preferences is re-
quired.

In classical decision theory and decision analysis utility functions are used to represent
the decision-maker’s preferences. However, the process of obtaining the type of information
required to generate a good utility function is involved and time-consuming and requires
non-negligible effort on the part of the user. Sometimes such effort is necessary and possible,
but in many applications the user cannot be engaged for a lengthy period of time and
cannot be supported by a human decision analysts. This is the case, e.g., in on-line product
recommendation systems and other software decision-support applications.

When a utility function cannot be or need not be obtained, one should resort to other,
more qualitative forms of preference representation. Ideally, this qualitative information
should be easily obtainable from the user by non-intrusive means. That is, we should be
able to generate it from natural and relatively simple statements about preferences obtained
from the user, and this elicitation process should be amenable to automation. In addition,
automated reasoning with this representation should be feasible and efficient.

One framework for preference representation that addresses these concerns is that of
Conditional Preference Networks (CP-nets) (Boutilier et al. (1997, 1999, 2002)). In CP-nets,
the decision maker is asked to describe how her preference over the values of one variable
depends on the value of other variables. For example, she may state that her preference
for a dessert depends on the value of the main-course as well as whether or not she had
an alcoholic beverage. Her choice of an alcoholic beverage depends on the main course and
the time of day. This information is described by a graphical structure in which the nodes
represent variables of interest and the edges represent dependence relations between the
variables. Each node is annotated with a conditional preference table (CPT) describing the
user’s preference over alternative values of this node given different values of the parent
nodes. CP-nets capture a class of intuitive and useful natural language statements of the
form “I prefer the value zg for variable X given that Y = y¢ and Z = 23”. Such statements
do not require complex introspection nor a quantitative assessment.

From the practical perspective, there is another class of preferential statements, not
captured by the CP-net model, that is no less intuitive or important. These statements
have the following form: “It is more important to me that the value of X be high than that
the value of Y be high.” We call these relative importance statements. For instance, one
might say “The length of the journey is more important to me than the choice of airline”. A
more refined notion of importance, though still intuitive and easy to communicate, is that
of conditional relative importance: “The length of the journey is more important to me than
the choice of airline if I need to give a talk the following day. Otherwise, the choice of airline
is more important.” The latter statement is of the form: “A better assignment for X is
more important than a better assignment for Y given that Z = z(.” Notice that information
about relative importance is different from information about independence. For instance,
in the example above, my preference for an airline does not depend on the duration of the
journey because, e.g., I compare airlines based on their service, security levels, and the
quality of their frequent flyer program. Using statements of relative importance, the user
expresses her preference over compromises that may be required. Such information is very
important in customised product configuration applications (Sabin & Weigel, 1998; Haag,
1998; Freuder & O’Sullivan, 2001), where production, supply, and other constraints are
posed on the product space by the producer, and these constraints are completely unknown
to the customer.

In this paper we suggest enhancing the expressive power of CP-nets by introducing infor-
mation about importance relations, obtaining a preference-representation structure which
we call TCP-nets (for tradeoffs-enhanced CP-nets). TCP-nets capture both information
about conditional independence and conditional relative importance. Thus, they provide
a richer framework for representing user preferences, allowing stronger conclusions to be
drawn. Yet, they remain committed to the use of intuitive, qualitative information as their
source. The added relative importance information has significant impact on both the con-

sistency of the specified relation, and the techniques used for reasoning about it. We show
that the structure of the "mixed” set of preferential statements captured in a TCP-net can
be exploited in order to achive efficiency both in consistency testing and in preferential
reasoning.

This paper is organized as follows: Section 2 describes the notions underlying TCP-
nets: preference relations, preferential independence, and relative importance. In Section 3
we define TCP-nets, provide a number of examples, discuss their semantics and various
modeling issues. In Section 4 We characterize a class of TCP-nets whose consistency is
guaranteed and discuss the complexity of identifying members of this class. In Section 5
we present an algorithm for outcome optimization in conditionally acyclic TCP-nets, and
discuss the related tasks of reasoning about preferences given a TCP-net. We conclude with
a discussion of related future work in Section 6.

2. PREFERENCE ORDERS, INDEPENDENCE, AND RELATIVE
IMPORTANCE

In this section we describe the ideas underlying TCP-nets: preference orders, preferential
independence, conditional preferential independence, as well as relative importance and
conditional relative importance.

2.1 Preference and Independence

A preference relation is a total pre-order (a ranking) over a set of outcomes. Given two
outcomes o0, o', we write o = o’ to denote that o is at least as preferred as o’. Likewise, o = o
denotes that o is strictly preferred over o’. The types of outcomes we are concerned with
consist of possible assignments to some set of variables. More formally, we assume some
given set V. = {Xy,...,X,,} of variables with corresponding domains D(X1),...,D(Xy).
The set of possible outcomes is then D(X;) x --- x D(X,,). For example, in the context of
the problem of configuring a personal computer (PC), the variables may be processor type,
screen size, operating system etc., where screen size has the domain {17in, 19in, 21in},
operating system has the domain {LINUX, Windows98, WindowsXP}, etc. Each assign-
ment to the set of variables specifies an outcome — a particular PC configuration. Thus, a
preference ordering over these outcomes specifies a ranking over possible PC configurations.

The number of possible outcomes is exponential in n, while the set of possible total orders
on them is doubly exponential in n. Therefore, explicit specification and representation of
a ranking is not realistic. We must implicitly describe this preference relation. Often, the
notion of preferential independence plays a key role in such representations. Intuitively,
X C V is preferentially independent of Y = V — X if and only if for all assignments to
Y, our preference over X values is identical. More formally, let x;,x9 € D(X) for some
X C V (where we use D(-) to denote the domain of a set of variables as well), and let
v1,¥2 € D(Y), where Y =V — X. We say that X is preferentially independent of Y iff, for
all X1, X9, y1, y2 we have that

x1y1 = x2y1 iff x1y2 = x2y2

For example, in our PC configuration example, the user may assess screen size to be pref-
erentially independent of processor type and operating system. This could be the case if

the user always prefers a larger screen to a smaller screen, independent of the selection of
processor and/or OS.

Preferential independence is a strong property, and is therefore not very common. A
more refined notion is that of conditional preferential independence. Intuitively, X is con-
ditionally preferentially independent of Y given Z if and only if for every fixed assignment
to Z, the ranking of X values is independent of the value of Y. Formally, let X,Y and Z
be a partition of V and let z € D(Z). X is conditionally preferentially independent of Y
given z iff, for all x1, X9, y1, y2 we have that

X1y12 = Xoy12 iff X1y922z = X2y92

Finally, X is conditionally preferentially independent of Y given Z iff X is conditionally
preferentially independent of Y given every assignment z € D(Z). Returning to our PC
example, the user may assess operating system to be independent of all other features given
processor type. That is, he always prefers LINUX given an AMD processor and Windows98
given an Intel processor (e.g., because he might believe that Windows98 is optimized for the
Intel processor, whereas LINUX is otherwise better). Note that the notions of preferential
independence and conditional preferential independence are among a number of standard
notions of independence in multi-attribute utility theory (Keeney & Raiffa, 1976).

2.2 Relative Importance

Although statements of preferential independence are natural and useful, the orderings ob-
tained by relying on them alone are relatively weak. To understand this, consider two
preferentially independent boolean attributes A and B with values a1, as and by, by, respec-
tively. If A and B are preferentially independent, then we can specify a preference order
over A values, say a; > a2, independently of the value of B. Similarly, our preference over
B values, say by > bo, is independent of the value of A. From this we can deduce that a1b;
is the most preferred outcome and agby is the least preferred outcome. However, we do
not know the relative order of a1b2 and a9by. This is typically the case when we consider
independent variables: We can rank each one given a fixed value of the other, but often,
we cannot compare outcomes in which both values are different. One type of information
that can address some (though not necessarily all) such comparisons is information about
relative importance. For instance, if we state that A is more important than B, it means
that we prefer an improvement in A over an improvement in B. In that case, we know that
a1by > a2b;1, and can (totally) order the set of outcomes as a1b; > a1by > agb; > agzbs.

Returning to our PC configuration example, suppose that operating system and processor
type are independent attributes. We might say that processor type is more important than
operating system, e.g, because we believe that the effect of the processor’s type on system
performance is more significant than the effect of the operating system.

Formally, let a pair of variables X and Y be preferentially independent given W =
V —{X,Y}. We say that X is more important than Y, denoted by X > Y, if for every
assignment w € D(W) and for every x;,x2; € D(X), ya,yp € D(Y), such that x; > x; given
w, we have that:

TiYaW = T;YpW.

4

(Note that the above preference holds even when y;, > y, given w.) For instance, when both
X and Y are binary variables, and x; > x5 and y; > y2 hold given w, then X > Y iff we
have z1ysw > xoyyw for all w € D(W). Notice that this is a strict notion of importance
— any reduction in Y is preferred to any reduction in X. Clearly, this idea can be refined
by providing an actual ordering over elements of D(XY). We have decided not to pursue
this option farther because in our opinion it is less natural to specify. However, our results
generalize to such specifications as well. In addition, one can consider relative importance
assessments among more than two variables. However, we feel that such statements are
somewhat artificial and less natural to articulate.

Relative importance information is a natural enhancement of independence information.
As such, relative importance retains a desirable property - it corresponds to statements that
a naive user would find simple and clear to evaluate and articulate. Moreover, it can be
generalized naturally to a notion of conditional relative importance. For instance, suppose
that the relative importance of processor type and operating system depends on the primary
usage of the PC. For example, when the PC is used primarily for graphical applications, then
the choice of an operating system is more important than that of a processor because certain
important software packages for graphic design are not available on LINUX. However, for
other applications, the processor type is more important because applications for both
Windows and LINUX exist. Thus, we say that X is more important than Y given z if we
always prefer to reduce the value of Y rather than the value of X, whenever z holds.

Formally, let X,Y, W be as above, and let Z C W. We say that X is more important
than Y given an assignment z € D(Z) (ceteris paribus) iff, for every assignment w on

W =V - ({X,Y}UZ) we have:
TiYaZW > T;YpZW

whenever z; > x; given zw. We denote this relation by X >, Y. Finally, if for some
z € D(Z) we have that either X >, Y, or Y >, X, then we say that the relative importance
of X and Y is conditioned on Z, and write RZ(X,Y|Z).

3. TCP-NETS

The TCP-net (for Tradeoff-enhanced CP-nets) model is an extension of CP-nets (Boutilier
et al., 1999) that encodes conditional relative importance statements, as well as the con-
ditional preferences available in CP-nets. We use this graph-based representation for two
reasons: First, it is an intuitive visual representation of preference independence and rela-
tive importance statements. Second, the structure of the graph has important consequences
on issues such as consistency and complexity of reasoning. In particular, as we later show,
when this structure is “acyclic” (for a suitable definition of this notion!), the preference
statements contained in the graph are guaranteed to be consistent — that is, there is a total
pre-order that satisfies all the preference statements.

3.1 TCP-net definition

TCP-nets are annotated graphs with three types of edges. The nodes of a TCP-net corre-
spond to the problem variables V. The first type of (directed) edge captures preferential

dependence, i.e., an edge from X to Y implies that the user has different preferences over
Y values given different values of X. The second (directed) edge type captures relative
importance relations. The existence of such an edge from X to Y implies that X is more
important than Y. The third (undirected) edge type captures conditional importance re-
lations: Such an edge between nodes X and Y exists if there exists some Z for which
RZ(X,Y,Z) holds.

As in CP-nets, each node X in a TCP-net is annotated with a conditional preference table
(CPT). This table associates a preferences over D(X) for every possible value assignment
to the parents of X (denoted Pa(X)). In addition, in TCP-nets, each undirected edge is
annotated with a conditional importance table (CIT). The CIT associated with such an edge
(X,Y) describes the relative importance of X and Y given the value of the conditioning
variables.

Formally, a TCP-net N is a tuple (V,cp,i,ci, cpt, cit):

1. V is a set of nodes, corresponding to the problem variables {X1,..., X,,}.

2. cpis aset of directed cp-arcs {a, ..., ar} (where cp stands for conditional preference).

B ——
A cp-arc (X;, X;) is in AV iff the preferences over the values of X; depend on the actual
value of Xj.

3. iis a set of directed i-arcs {f1,...,0} (where i stands for importance). An i-arc
—_—
(XZ',X]‘) is in NV iff X, > Xj.

4. ci is a set of undirected ci-arcs {v1,...,vm} (where ci stands for conditional impor-
tance). A ci-arc (X;, X;) is in NV iff we have RZ(X;, X;, Z) for some Z C V—{X;, X;}.1

5. cpt associates a CPT with every node X € V. A CPT is from D(Pa(X)) (i.e.,
assignment’s to X’s parent nodes) to total pre-orders over D(X).

6. cit associates with every ci-arc (X;, X;) a subset Z of V — {X;, X} and a mapping
from a subset of D(Z) to total orders over the set {X;, X;}. We call Z the selector
set of (X;, X;) and denote it by S(X;, X;).2

A CP-net (Boutilier et al., 1999) is simply a TCP-net in which the sets i and ci (and
therefore cit) are empty.

3.2 TCP-net examples

This sub-section provides examples of TCP-net. For simplicity of presentation, in the
following examples all variables are binary, although the semantics of TCP-net is defined
with respect to arbitrary finite domains.

Example 1 (Evening Dress) Figure 1(a) presents a CP-net that consists of three variables
J, P, and S, standing for the jacket, pants, and shirt, respectively. I strictly prefer black to

[

1. Observe that every i-arc (X;, X;) can be seen as representing RZ(X;, X;,). However, a clear distinction
between i-arcs and ci-arc simplifies specification of many forthcoming notions.

2. The set Z should be the minimal context upon which the relative importance between X; and X;
depends.

white as a color for both the jacket and the pants, while my preference for the shirt color
(red/white) is conditioned on the color combination of jacket and pants: If they are of the
same color, a white shirt will make my dress too colorless, therefore, red shirt is preferable.
Otherwise, if the jacket and the pants are of different colors, a red shirt will probably
make my evening dress too flashy, therefore, a white shirt is preferable. The solid lines
in Figure 1(c) show the preference relation induced directly by the information captured
by this CP-net; The top and the bottom elements are the worst and the best outcomes,
respectively, and the arrows are directed from less preferred to more preferred outcomes.

In turn, Figure 1(b) depicts a TCP-net that extends this CP-net by adding an i-arc
from J to P, i.e., having black jacket is (unconditionally) more important than having
black pants. This induces additional relations among outcomes, captured by the dashed
lines in Figure 1(c). <

)

Jo APy | Sy > Suw
Juw APy | Sw = Sr
Jy APy | Sw >~ Sr
Juw NPy | Sr = Sw

Jy NPy A Sy

(b) (c)
Figure 1: ”"Evening Dress” CP-net & TCP-net.

The reader may rightfully ask whether the statement of importance in Example 1 is
not redundant: According to my preference, it seems that I will always wear a black suit
with a red shirt. However, while my preferences are clear, various constraints may make
some outcomes, including the most preferred one, infeasible. For example, I may not have
a clean black jacket, in which case the most prefered feasible alternative is a white jacket,
black pants, and a white shirt. Or, suppose that the only clean clothes I have are velvet

black jacket and white pants, and silk white jacket and black pants. My wife forbids me to
mix velvet and silk, and so I will have to compromise, and to wear either the black (velvet)
jacket with the white (velvet) pants, or the white (silk) jacket with the black (silk) pants. In
this case, the fact that I prefer wearing the preferred jacket to wearing the preferred pants
determines higher desirability for the velvet combination. Now, if my wife has to prepare
my evening dress while I am late at work writing a paper, having this information will help
her to choose the most preferred, available evening dress for me.

As mentioned earlier, using statements of relative importance, the user expresses her
preference over compromises that may be required. Such information is very important in
customised product configuration applications (Sabin & Weigel, 1998; Haag, 1998; Freuder
& O’Sullivan, 2001), where production, supply, and other constraints are posed on the prod-
uct space by the producer, and these constraints are completely unknown to the customer.
We return to the use of TCP-nets in this application area later in the paper.

Example 2 (Flight to the USA) Figure 2(a) illustrates a more complicated CP-net, de-
scribing my preference over the flight options to a conference in the USA, from Israel. This
network consists of five variables, standing for various parameters of the flight:

Day of the Flight The variable D distinguishes between flights leaving a day (D14) and
two days (Dsg) before the conference, respectively. Since I am married, and I am
really busy with my work, I prefer to leave on the day before the conference.

Airline The variable A represents the airline. I prefer to fly with British Airways (Ap,)
than with KLM (Agm).

Departure Time The variable T distinguishes between morning/noon (7},) and evening/night
(T},) flights. Among flights leaving two days before the conference I prefer an evening/night
flight, because it will allow me to work longer on the day of the flight. However, among
flights leaving a day before the conference I prefer a morning/noon flight, because I
would like to have a few hours before the conference opening in order to rest at the
hotel.

Stop-over The variable S distinguishes between direct (Sps) and indirect (Si5) flights,
respectively. On day flights I am awake most of the time and, being a smoker, prefer
a stop-over in Europe (so I can have a smoking break). However, on night flights I
sleep, leading to a preference for direct flights, since they are shorter.

Ticket Class The variable C' stands for ticket class. On a night flight, I prefer to sit
in economy class (C.) (I don’t care where I sleep, and these seats are significantly
cheaper), while on a day flight I prefer to pay for a seat in business class (C}) (Being
awake, I can better appreciate the good seat, food, and wine).

The CP-net in Figure 2(a) captures all these preferential statements, and the underlying
preferential dependencies, while Figure 2(b) presents a TCP-net that extends this CP-net
to capture relative importance relations between some parameters of the flight. First, there
is an i-arc from T to A, since getting more suitable flying time is more important to me
than getting the preferred airline. Second, there is a ci-arc between S and C, where the
relative importance of S and C depends on the values of T and A:

D1g T = Th

Doy | Ty =T @
—>—>~

Tm Sls - SOS
Tn SOs - Sls
A
@ @
T Cy = C, / T N Ak, | S>C
T C>C; T ANApa | C> S
@ Tn A Apa S>C

(a) (b)

Figure 2: "Flight to the USA” CP-net & TCP-net from Example 2

1. On a KLM day flight, an intermediate stop in Amsterdam is more important to me
than flying business class (I feel that KLM’s business class does not have a good
cost /performance ratio, while visiting a casino in Amsterdam’s airport sounds to me
like a good idea.)

2. For a British Airways nignt flight, the fact that the flight is direct is more important
to me than getting a cheaper economy seat (I am ready to pay for business class, in
order not to spend even one minute at Heathrow airport at night).

3. On a British Airways day flight, business class is more important to me than having
a short intermediate break (it is hard to find a nice smoking area at Heathrow).

The CIT of this ci-arc is also shown in Figure 2(b). <

3.3 TCP-net semantics

The semantics of a TCP-net is straightforward, and is defined in terms of the set of prefer-
ence rankings consistent with the set of constraints imposed by its preference and importance
information. We use =3 to denote the preference relation over the values of X given an
assignment u to U D Pa(X).

Definition 1 Let A/ be a TCP-net over a set of variables V.

1. Let W = V—({X}UPa(X)) and let p € D(Pa(X)). A preference ranking > satisfies
>—1)D(iff x;pw > x;pw, for every w € D(W), whenever x; >-§ x; holds.

2. A preference ranking > satisfies the CPT of X iff it satisfies >ff for every assignment
p of Pa(X).

3. A preference ranking > satisfies X > Y iff for every w € D(W) s.t. W=V —{X Y},
TiYaW > T;jypW whenever z; =x ;.

4. A preference ranking > satisfies X >, Y iff for every w € D(W) st. W =V —
({X,Y}UZ), z;yazw = z;ypzw whenever z; =5, ;.

5. A preference ranking > satisfies the CIT of the ci-arc (X,Y) if it satisfies X >, Y
whenever an entry in the table conditioned on z ranks X as more important.

A preference ranking > satisfies a TCP-net A iff it satisfies:
1. every CPT in NV,

2. X > Y for every i-arc (X;, X;) in N, and

3. every CIT in V.

Definition 2 A TCP-net is satisfiable iff there is some ranking = that satisfies it; o = o’ is
implied by a TCP-net N iff it holds in all preference rankings that satisfy .

Lemma 1 Preferential entailment with respect to a satisfiable TCP-net is transitive. That is,

ifNEo=odand N Eo >0 then N Eo> 0.

Proof: If N Eo=o0 and N |E 0o = 0" then o = 0o and o’ = 0’ in all preference rankings
satisfying N. As each of these rankings is transitive, we must have o = 0” in all satisfying
rankings. W

3.4 Discussion

Looking at Example 2, the reader may rightfully ask whether the notion of relative (con-
ditional) importance ceteris paribus, as specified in Section 2.2, is not too strong when the
variables are not binary. For example, consider a more refined notion of departure time
(variable T'), and suppose there are more than two companies flying from Israel to the
USA (variable A). In this case, one may prefer a better flight time, even if this requires
a compromise in the airline, as long as this compromise is not too great. For example,
one may be willing to accept any airline among those she ranks in the top 7 places in this
context. Such information can be maintained using a more refined CIT. In such a CIT, the
relative importance of two variables X and Y will be conditioned on the actual values of X
and Y, as well as on the values of the selector variables (as in ci-arcs), i.e., the preference
ranking will be provided over elements of D(XY'). As mentioned in Section 2.2, our results
generalize to such specifications as well.

Depending on the application, a typical process of constructing a TCP-net would com-
mence by asking the decision maker to identify the variables of interest, or by presenting
them to the user, if they are fixed. For example, in the application of CP-net to adap-
tive web-page presentation (Domshlak, Brafman, & Shimony, 2001), the web-page designer
chooses a set of content elements, which correspond to the set of variables. For an online
shopper-assistent agent, the variables are likely to be fixed (e.g., if the agent is an online PC

10

customizer). Next, the user is asked to consider for each variable, the value of which other
variables influence her preferences over the values of this variable. At this point cp-arcs and
CPTs are introduced. Next, the user is asked to consider relative importance relations, and
the i and ci-arcs are added. For each ci-arc, the corresponding CIT is filled.

Note that, in decision theory, the preference order reflects the preferences of a decision
maker. The typical decision maker in preference-based product configuration is the con-
sumer. However, in some domains, the product vendor may decide that customer preference
elicitation is inappropriate, or simply impossible. In this case, the role of the decision maker
may be relegated to a product expert, who is knowledgeable about appropriate component
combinations for different customer classes. Following (Junker, 2001), consider the example
of configuring a car. Suppose the expert indicates that:

(i) Older women typically prefer white cars to red cars, while the inverse is true for all
other groups of customers, and

(ii) Young men typically value a fashionable look more than reliability, while the inverse
is true for older men.

In this case, the product expert could specify a TCP-net as in Figure 3(a) over variables that
stand for parameters both of the product and of the customer. The latter variables serve
as network parameters, and are depicted by the shaded nodes in Figure 3(a). The network
parameters are instantiated at the beginning of each session of personalized configuration
once some personal information about the customer is obtained. Each such variable is a
root variable in the TCP-net, as it does not participate in ci-arcs or in i-arcs, and it has
only outgoing cp-arcs. However, it may serve as a selector variable in some ci-arcs of the
network. No preference relation on its values is needed. After the network parameters
are instantiated, the network is refined accordingly. For example, Figures 3(a), (b) and
(c) depict the TCP-net from Figure 3(a), refined for young male, older male, and women
customers, respectively.

An additional issue that, at least in some cases, can be addressed naturally using the
TCP-net model, is non-rigidness of the variable set (Mittal & Falkenhainer, 1990; Sabin
& Weigel, 1998; Soininen & Gelle, 1999; Veron & Aldanondo, 2000). As argued in (Sabin
& Weigel, 1998), different components for the same functional role may need nonidentical
sets of additional components, or functional roles. For example, if the a CD player is
part of the car’s configuration, one has the option of specifying preference for front/back
speakers and an equilizer. However, if no audio component is included, the choice of speakers
become irrelevant. In such cases, the set of variables in a solution changes dynamically
on the basis of assignments of values to other variables — the related CSP formulation is
known as a Dynamic CSP (Mittal & Falkenhainer, 1990). A DCSPs can be reduced to
standard CSPs using a simple transformation, which can be applied in this case as well.
We simply let one of the values in the domain of X stand for the absence of X. This way,
the presence/absence of some variables may condition the presence of some other variables,
their relative importance, and the preference on their values (and even their presence). Some
of such conditionings may be entailed by the core configuration problem, and not by the
user’s preferences. In this case, they can be added into the TCP-net automatically, after the
preference elicitation stage, by a straightforward extension of the specified TCP-net. This

11

>—{Relizbilty

Look—"“&"% _(Reliability
(a) (b)

«—{(Reliabiliy
(c) (d)

Figure 3: A parametrized TCP-net.

approach of automatically extending CP-nets was exploited in (Gudes, Domshlak, & Orlov,
2002) for preference-based presentation of tree-structured multimedia documents. In this
domain, (i) the preferences on the value (= option of content appearance) of a document’s
component may be conditioned on the value of some other components, and (ii) whether
it should be shown or hiden depends directly on which of its ancestors in the document
hierarchical structure are shown.

To illustrate the above notion of activity values, consider the TCP-net graph in Fig-
ure 4(a), specifying preferences of a person looking for a sports utility car. This person
prefers:

(i) convertibles (Convertible),

(ii) a sliding sun roof to a moon roof (Roof Window),
(iii) a multiple CD player to a single CD player (Audio System), and
(iv) a premium sound system to a standard one (Sound System).

Likewise, in a convertible, the customer values the quality of the sound system more than
the robustness of the audio system.

A piece of information that is missing in the above description is that convertibles do not
have sun or moon roofs. In general, the customer may be unaware of this fact. Therefore,
once the preferences of the customer as above has been elicitated, the search/configuration
engine of the dealership (possibly) adds a value None to the domain of the variable Roof Window,
and sets this value to be the most preferable if Convertible = Not (see Figure 4(b)).

12

Convertible

(a)

Convertible

Sound System 2" _(AydioSystem

(b)

Roof Window

Figure 4: A TCP-net with activity values. (a) is the original TCP-net, and (b) is the
modified one.

4. CONDITIONALLY ACYCLIC TCP-NETS

The definition of satisfiability in TCP-net (Definition 2) provides no practical tools for
testing TCP-net satisfiability. A large class of TCP-nets, called conditionally acyclic, whose
members are always satisfiable, is described in this section. Algorithms for testing TCP-nets
for membership in this class, are developed.

First, let us define two types of directed graphs induced by all TCP-nets.

Definition 3 The dependency graph of TCP-net N contains all the nodes and directed
edges of NV (i.e., the cp-arcs and the i-arcs) as well as a pair of directed edges (X, X;) and
(Xk, X;) for every ci-arc (X;, X;) in N and every X € S(X;, X;).

Figure 5(b) depicts the dependency graph of the TCP-net from the ”Flight to USA”
example, repeated for convenience in Figure 5(a).

For the following definition, recall that the selector set of a ci-arc is the set of nodes
whose value determines the “direction” of this arc.

Definition 4 Let S(N) be the union of all selector sets of A/. Given an assignment w to
all nodes in S(N), the w-directed graph of N contains all nodes and directed edges of N/
and the edge from X; to X if (X;, X;) is a ci-arc of N and the CIT for (X;, X;) specifies
that X; > X; given w.

Figure 5(c) presents all the four w-directed graphs of the TCP-net from the ”Flight to
USA” example. Note that, for the KLM night flights, the relative importance of S and C
is not specified, thus there is no edge between S and C' in the (n A klm)-directed graph of
the TCP-net.

13

Tm N Akim S>C
T A Apg cr>S
Tn/\Aba S>C

(a) (b)

(Trm N\ Agim)-directed (Tra A\ Ak)-directed (Tm N Apg)-directed Tn A Aba) directed

()

Figure 5: ”Flight to USA” TCP-net (a), its dependency graph (b), and four w-directed
graphs (c).

Now, using Definitions 3 and 4, we specify a relatively wide subclass of TCP-nets, and
show that it is satisfiable.

Definition 5 A TCP-net N is conditionally acyclic if its induced dependency graph is
acyclic and for every assignment w to S(N), the induced w-directed graphs are acyclic.

Theorem 1 Every conditionally acyclic TCP-net is satisfiable.

The constructive proof of Theorem 1 is given in Appendix A, p. 26. Note that, unlike
acyclicity in directed graphs, the property of conditional acyclicity cannot be easily tested,
in the general case. Despite that, we will argue that in practical cases, the problem is not
hard.

4.1 Verifying conditional acyclicity

Verifying conditional acyclicity requires testing for two properties: Verifying the acyclicity
of the dependency graph is simple, and can be done in time linear in the number of edges

14

in NV. However, naive verification of the acyclicity of every w-directed graph can require
time exponential in the combined size of the selector sets. Here we study the complexity
of verifying conditional acyclicity, discuss some hard and polynomial subclasses of this
problem, and provide some sufficient and/or neccessary conditions for conditional acyclicity
that can be easily checked for some subclasses of TCP-nets.

Let N be a TCP-net. If A contains directed cycles, then surely both the induced
dependency graph and every w-directed graph is cyclic. Since such directed cycles are
simple to detect, let us assume that they do not arise in N'. Next, note that if there are no
cycles in the undirected graph induced by N (i.e., the graph obtained from N by removing
the direction of its directed edges) then clearly all w-directed graphs are acyclic. This case
is also quite simple to check. Finally, if there are cycles in the induced undirected graph, but
each such cycle, when projected back to N, contains directed arcs in different directions,
then all w-directed graphs are still acyclic. This latter sufficient condition can be checked
in (low order) polynomial time.

We are left with the situation where A contains sets A of edges that form a cycle in
the induced undirected graph, not all of these edges are directed, yet all the directed edges
point in the same direction (i.e., clockwise or counter-clockwise). We call these semi-directed
cycles, and focus on their investigation in the rest of this section.

Each assignment w to the selector sets of ci-arcs in a semi-directed cycle A induces a
direction for all these arcs. We say that cycle A is conditionally acyclic if under no such
assignment w do we obtain a directed cycle from A. Otherwise, A is called conditionally
directed.

Showing that a TCP-net is conditionaly acyclic, i.e., that it does not contain any directed
cycles, is hard in the general case.

Theorem 2 Given a binary-valued TCP-net V, the decision problem: is there a conditionally
directed cycle in N, is NP-complete, even if for every ci-arc v € N we have |S(y)| = 1.

For the proof of Theorem 2, see Appendix A, p. 27.

Thus, determining that a TCP-net is conditionally acyclic is Co-NP hard. In practice,
this may not be too bad, as we do not expect to see users specify preference relations
over more than a few dozen variables. However, we are interested in characterizing classes
of conditionally acyclic networks that are easy to identify. First, we note that testing
conditional acyclicity for TCP-nets is naturally decomposable.

Lemma 2 A TCP-net \V is conditionally acyclic if and only if each one of its semi-directed
cycles is conditionally acyclic.

Proof: The proof is straightforward: If there is a variable assignment that makes one of
the semi-directed cycles of N conditionally directed, then no other cycle need be examined.
Conversely, consider one of the semi-directed cycles A of AN. If no assignment to S(.A)
makes A conditionally directed, then additional assigments to variables in other selector
sets do not change this property. B

Given this property, it is natural to consider networks in which the number of cycles is
not too large. Indeed, one reason for the complexity of the general problem, as emerges from

15

the proof of Theorem 2, is the possibility that the number of simple cycles is exponential
in the size of the TCP-net. A TCP-net N where the number of different simple (possibly
mixed) cycles is at most m is called m-cycle bounded.

From Lemma 2 it follows that, given an m-cycle bounded TCP-net N, if m is polynomial
in the size of NV, then we can reduce testing conditional acyclicity of N to testing conditional
acyclicity of every semi-directed cycle A of N. A naive check for the conditional acyclicity
of a semi-directed cycle A requires time exponential in the size of S(.A) — where S(A) is the
union of the selector sets of all ci-arcs in A. Thus, if S(A) is small for each semi-directed
cycle A in the network, then conditional acyclicity can be checked for quickly. In fact, often
we can determine that a semi-directed cycle is conditionally directed/acyclic even more
efficiently.

Lemma 3 Let A be a semi-directed cycle in N. If A is conditionally acyclic then it contains
a pair of ci-arcs 7;,7; such that S(v;) N S(v;) # 0.

In other words, if the selector sets of the ci-arcs in A are all pairwise disjoint, then A
is conditionally directed. Thus, Lemma 3 provides a necessary condition for conditional
acyclicity of A that can be checked in time polynomial in the number of variables.

Proof (Lemma 3) If all selector sets, S(7;), are pairwise disjoint, then we can find an
assignment on S(A) that will orient all ci-arcs in one direction.
|

Before we develope sufficient conditions for conditional acyclicity, let us introduce some
useful notation. First, given a ci-arc v = (X,Y), we say that an assignment w to a subset
S’ of S(7) orients v if all rows in CIT(y) express the same relative importance between X
and Y, if any. In other words, w orients +y if, given w, the relative importance between X
and Y is independent of S(7)\S’. Second, if a semi-directed cycle A contains some directed
edges, we refer to this (obviously unique) direction as the direction of A.

Lemma 4 A semi-directed cycle A is conditionally acyclic if it contains a pair of ci-arcs 7;,v;
such that either:

(a) A contains directed edges, and for every assignment w to S(v;) NS(7;), i or ; is oriented
by w in the direction opposite to the direction of A.

(b) All edges in A are undirected, and for every assignment w to S(v;) N S(7;), v and v; are
oriented by w in opposite directions with respect to A.

Proof: : Follows immediately from the conditions in the lemma. H

Lemma 4 provides a sufficient condition for conditional acyclicity of A that can be
checked in time exponential in the maximal size of selector set intersection for a pair of
ci-arcs in A. Note that the size of the TCP-net is at least this large because the description
of the CIT is exponential in the size of the corresponding selector set. Thus, checking this
condition is only linear in the size of the network.

16

Definition 6 Given a semi-directed cycle A, we let shared(A) denote the union of all
pairwise intersections of the selector sets of the ci-arcs in A:

shared(A) =] S(v)NnS(y)

ViV €A

Lemma 5 (a) If a semi-directed cycle A contains directed edges, then A is conditionally
acyclic if and only if, for each assignment u on shared(A), there exists a ci-arc vy € A
that is oriented by u in the direction opposite to the direction of A.

(b) If a semi-directed cycle A contains only ci-arcs, then A is conditionally acyclic if and only if,
for each assignment u on shared(A), there exist two ci-arcs 4,72 € A that are oriented
by u in opposite directions with respect to A.

Proof: The sufficiency of the above condition is clear, since it subsumes the condition in
Lemma 4. Thus, we are left with proving necessity. We start with the second case in which
A contains only ci-arcs, assuming to the contrary that A is conditionally acyclic, but there
exist an assignment u on shared(A) such that no pair of ci-arcs in A are oriented by u in
opposite directions with respect to A.

For each ci-arc v € A, let $*(y) = S(v) \ shared(A). Consider the following disjoint
partition A = Al U AS induced by u on A: For each ci-arc v € A, if u orients v, then we
have v € Al,. Otherwise, if the direction of 7 is not independent of S*(v) given u, we have
v € AS. We make two observations:

1. Our initial (contradicting) assumption induces that all the (now directed) edges in
A\, agree on the direction with respect to A.

w since all the

2. If for some ci-arc v € A we have §*(v) = (), then we have v € A
selectors of v are instantiated by u.

If we have AS = (), then the first observation trivially contradicts our initial assumption
that A is conditionally acyclic. Alternatively, if AS #), then, by definition of shared(A),
we have that S*(y;) N S*(v;) = 0 for each pair of ci-arcs 7;,7; € AS. This means that
we can assign each such (non-empty, by the second observation) $*(;) independently, and
thus can extend u into an assignment on S(A) that will orient all the ci-arcs in AS either
in the direction of Al, if A\, # (), or in an arbitrary joint direction if A}, = (). Again, this
contradicts our assumption that A is conditionally acyclic. Hence, we have proved that our
condition is necessary for the second case. The proof for the first case in which A contains
some directed edges is similar. Wl

In general, the size of shared(A) is O(|V]). Since we have to check the set of assignments
over shared(A), this implies that the problem may be hard. Theorem 3 shows that this is
indeed the case.

Theorem 3 Given a binary-valued, 1-cycle bounded TCP-net N/, the decision problem: is
there a conditionally directed cycle in V', is NP-complete, even if for every ci-arc v € N we have
IS() < 3.

17

The proof of Theorem 3 by reduction from 3-SAT appears in Appendix A, p. 28. This
proof does not work when the size of all the selector sets is bounded by 2, since 2-SAT is
in P. The question is whether in this latter case the problem becomes tractable, and the
answer is affirmative.

Theorem 4 Given a binary-valued, m-cycle bounded TCP-net N\, where m is polynomial in
the size of N and, for every ci-arc v € N we have |S(y)| < 2, the decision problem: is there a
conditional directed cycle in NV, is in P.

The proof of Theorem 4 by reduction to 2-SAT appears in Appendix A, p. A. To
summarize the above analysis, one must first identify the semi-directed cycles in the network
— a network without semi-directed cycles is consistent. Next, one must show that given each
assignment w to the context variables of each semi-directed cycle, the w-directed graph is
acyclic. This problem is Co-NP hard in general networks, but there are interesting classes
of networks in which it is tractable. This is the case when the number of semi-directed
cycles is not too large and either the size of shared(A) for each such cycle or the size of
each selector set is not too large. Note that in practice, one would expect to have small
selector sets — statements such as “X is more important than Y when A = a and B = b and
C = ¢” appear to be more complex than what one would expect to hear. Thus, Lemma 4,
Lemma 5 (for semi-directed cycles with small shared(A)), and Theorem 4 are of more than
just theoretical interest. Naturally, extending the toolbox of TCP-net subclasses that can
be efficiently tested for consistency is clearly of both theoretical and practical interest.

5. REASONING ABOUT CONDITIONALLY ACYCLIC TCP-NETS

While automated consistency verification is the core part of the preference elicitation stage,
efficient reasoning over user preferences is one of the main desiderata of any model for
preference representation. Of particular importance is the task of preference-based opti-
mization and constrained optimization, which we discuss in the first part of this section.
Another important task, which provides an important component in the algorithm for con-
strained optimization we present, is outcome comparison — discussed in the second part of
this section.

5.1 Generating Optimal Assignments

One of the central properties of the original CP-net model (Boutilier et al., 1999) is that,
given an acyclic CP-net A/ and a (possibly empty) partial assignment 7 on its variables, it is
simple to determine an outcome consistent with z (in Comp(z)) that is preferentially optimal
with respect to A/. The corresponding linear time forward sweep procedure is as follows:
Traverse the variables in some topological order induced by N, and set each unassigned
variable to its most preferred value given its parents’ values.

Our immediate observation is that this procedure works as s also for conditionally
acyclic TCP-nets: The relative importance relations do not play a role in this case, and

3. This actually means that when the network is not too large, we can probably solve this in a reasonable
amount of time.

18

Search-TCP (N, C, K)
Input: Conditionally acyclic TCP-net A/, Constraints C,

Partial assignment K on the variables of the original TCP-net.
Output: Set of all, Pareto-optimal w.r.t. N, solutions for C.

—

Choose any variable X s.t. there is no cp-arc (Y, X),
no i-arc (Y,—>X), and no (X,Y) in \V.
Let z1 > ... > x be the preference ordering of D(X)
given the assignment on Pa(X) in K.
Initialize the set of local results by R = ()
for (i=1; i<k;i++)do
X = ZT;
Strengthen the constraints C by X = x; to obtain C;
if C; C C; for some j < i or C; is inconsistent then
continue with the next iteration
else
Let K’ be the partial assignment induced by X = x; and C;
N; = Reduce (N,K')
Let AV, ..., N/™ be the components of A;, connected
either by the edges of A; or by the constraints C;.
for (j=1; j<m; j++) do
R} = Search-TCP(N?,C;, K UK')
if R7 # () for all j < m then
foreach 0 € K’ x R} x -+ x R do
if LU % K Uo holds for each o' € R then add o to R
return R

Figure 6: The Search-TCP algorithm for conditionally acyclic TCP-net based constrained
optimization.

the network is traversed according to a topological order induced by the CP-net part of the
given TCP-net.

Corollary 1 The forward sweep procedure constructs the most preferred outcome in Comp(z)
with respect to a given conditionally acyclic TCP-net.

This strong property of outcome optimization with respect to acyclic CP-nets (and
conditionally acyclic TCP-nets) does not hold if some of the TCP-net variables are mutually
constrained by a set of hard constraints, C. In this case, determining the set of Pareto-
optimal® feasible outcomes is not trivial. For the acyclic CP-nets, a branch and bound

4. An outcome o is said to be Pareto-optimal with respect to some preference order > and a set of outcomes
S if there is no other o’ such that o' > o.

19

algorithm for determining the optimal feasible outcomes was introduced in (Boutilier et al.,
1997). This algorithm has the important anytime property — once an outcome is added to
the current set of non-dominated outcomes, it is never removed. An important implication
of this property is that the first assignment generated that satisfies the set of constraints is
also Pareto-optimal. Thus, in some sense, the optimization problem is not harder than the
underlying CSP!

Here we develop an extension/modification of the algorithm of (Boutilier et al., 1997)
to conditionally acyclic TCP-nets. The extended algorithm Search-TCP retains the any-
time property and it is shown in Figure 6. The key difference between processing an
acyclic CP-net and a conditionally acyclic TCP-net is that the semantics of the former
implicitly induces a single partial order of importance over the variables (where each node
preceeds its descendents) (Boutilier et al., 2002), while the semantics of the latter induces
a hierarchically-structured set of such partial orders: Each such partial order corresponds
to a single assignment to the set of selector variables of the network and is consistent with
the dependency graph of V.

Reduce (N, K')
foreach {X = z;} € K’ do
foreach cp-arc <)W') €N do
Restrict the CPT of Y to the rows dictated by X = x;.
foreach ci-arc v = (Y1,Y2) € N s.t. X € S(v) do
Restrict the CIT of 7 to the rows dictated by X = x;.
if, given the restricted CIT of ~, relative importance
between Y7 and Y3 is independent of S(7y), then
if CIT of v is not empty then
Replace v by the corresponding i-arc.
else Remove 7.
Remove from N all the edges involving X.
return N.

Figure 7: The Reduce procedure.

The Search-TCP algorithm is guided by the underlying TCP-net N. It proceeds by as-
signing values to the variables in a top-down manner, assuring that outcomes are generated
according to the preferential ordering induced by N — on a call to the Search-TCP proce-
dure with a TCP-net NV, the eliminated variable X is one of the root variables of N'. The
values of X are considered according to the preferential ordering induced by the assignment
on Pa(X). Note that X is observed in some context K which necessarily contains some
assignment on Pa(X). Any additional variables assignment X = x; converts the current
set of constraints C into a stronger constraint set C;. As a result of this propagation of
X = z;, values for some variables (at least for the variable X) are fixed automatically, and
this partial assignment K’ extends the current context K in processing of the next variable.
The Reduce procedure, presented in Figure 7, refines the TCP-net N with respect to K’:
For each variable assigned by K’, we reduce both the CPTs and the CITs involving this

20

variable, and remove this variable from the network. This reduction of the CITs may remove
conditioning of relative importance between some variables, and thus convert some ci-arcs
into i-arcs, and/or remove some ci-arcs completely. The main point is that, in contrast
to CP-nets, for a pair of X values z;,z;, the dependency graphs of the networks N; and
N, resulted by propagating C; and C;, respectively, may disagree on the ordering of some
variables.

If the partial assignment K’ causes the current CP-net to become disconnected with
respect to both the edges of the network and the inter-variable constraints, then each
connected component invokes an independent search. This is because optimization of the
variables within such a component is independent of the variables outside that component.
In addition, after strengthening the set of constraints C by X = z; to C;, some pruning
takes place in the search tree (see the continue instruction® in the algorithm): If the set of
constraints C; is strictly more restrictive than some other set of constraints C; = CU{X = x;}
where j < i, then the search under X = x; is not continued. The reason for this pruning is
that it can be shown that any feasible outcome a involving X = z; is dominated by (i.e.,
less preferable than) some feasible outcome b involving X = z; and thus a cannot be in
the set of Pareto-optimal solutions for the original set of constraints. Therefore, the search
is depth-first branch-and-bound, where the set of nondominated solutions generated so far
is a proper subset of the required set of the Pareto-optimal solutions for the problem, and
thus it corresponds to the current lower bound.

When the potentially nondominated solutions for a particular subgraph are returned
with some assignment X = x;, each such solution is compared to all nondominated solutions
involving more preferred (in the current context K) assignments X = z;, j < i. A solution
with X = z; is added to the set of the nondominated solutions for the current subgraph
and context if and only if it passes this nondomination test. Note that, from the semantics
of the TCP-net, given the same context C, a solution involving X = x; can not be preferred
to a solution involving X = x;, j < i. Thus, the generated global set R never shrinks.

Note that, if we are interested in getting one Pareto-optimal solution for the given set of
constraints (which is usually the case), we can output the first feasible outcome generated
by Search-TCP. No dominance queries between pairs of outcomes are required because there
is nothing to compare with the first generated solution. If we are interested in getting all,
or even a few Pareto-optimal solutions, then the efficiency of dominance queries becomes
an important factor in the entire complexity of the Search-TCP algorithm.

5.2 Dominance testing for TCP-nets

A fundamental query we may pose to any preference-representation formalism is whether
some outcome o dominates (i.e., is strictly preferred to) some other outcome o’. As discussed
above, dominance queries are required whenever we wish to generate more than one Pareto-
optimal outcome. Much like in CP-nets, a dominance query (N, o, 0’) with respect to a TCP-
net can be treated as a search for an improving flipping sequence from the (purported) less
preferred outcome o’ to the (purported) more preferred outcome o through a sequence of
successively more preferred outcomes, such that each flip in this sequence is sanctioned by

5. This pruning was introduced in (Boutilier et al., 1997) for acyclic CP-nets, and it remains valid for
conditionally acyclic TCP-nets.

21

the given TCP-net. Formally, an improving flipping sequence in the context of TCP-nets
can be defined as follows:

Definition 7 A sequence of outcomes
o =09 <01 < <0m1=<0m=0

is an improving flipping sequence with respect to a TCP-net N if and only if, for 0 < i < m,
either

1. (CP-flips) outcome o; is different from the outcome 0;41 in the value of exactly one
variable X, and 0;[j] < 0;41[j] given the (identical) values of Pa(X;) in o; and 0441,
or

2. (I-flips) outcome o; is different from the outcome 0,41 in the value of exactly two
variables X; and Xy, 0;[j] < 0i+1[j] and o0;[k] > 0;41[k] given the (identical) values
of Pa(X;) and Pa(X}) in o; and 0,41, and X; > X, given RZ(X;, Xy, Z) and the
(identical) values of Z in o; and 0;41.

Clearly, each value flip in such a flipping sequence is sanctioned by the TCP-net A/, and
the CP-flips are exactly the flips allowed in CP-nets (Boutilier et al., 1999).

Theorem 5 Given a TCP-net N and a pair of outcomes o and o', we have that N |= 0 > o
if and only if there is an improving flipping sequence with respect to A/ from o’ to o.

The proof of Theorem 5 is given in Appendix A, p. 29. Various methods can be used to
search for a flipping sequence. In particular, we believe that at least some of the techniques,
developed for this task with respect to CP-nets in (Domshlak & Brafman, 2002; Domshlak,
2002; Boutilier et al., 2002) can be applied to the TCP-net model — an issue left for future
research.

6. DISCUSSION

In this paper we introduced the qualitative notions of absolute and conditional relative
importance between pairs of variables and extended the CP-net model to capture the cor-
responding preference statements. The extended model is called a TCP-net. We identified
a wide class of TCP-nets that are satisfiable, notably the class of conditionally acyclic
TCP-nets, and analyzed complexity and algorithms for testing membership in this class of
networks. We also studied reasoning about TCP-nets, focusing on outcome optimization in
conditionally acyclic TCP-nets with and without hard constraints.

Our work is motivated by the need for preference elicitation, representation, and rea-
soning techniques in diverse areas of AIl. One of the main application areas we have in
mind is product configuration. Keeping this application area in mind, we now review some
related approaches to preference-based optimiziation that appeared in the literature. A pri-
mary example of preference-based optimization is the soft-constraints formalism (e.g., see
Bistarelli et al. (1997)), developed to model constraint satisfaction problems that are either
overconstrained (and thus unsolvable in the standard meaning of the satisfaction) (Freuder
& Wallace, 1992), or suffer from imprecise knowledge about the actual constraints (Fargier

22

& Lang, 1993). In this formalism, the constrained optimization problem is represented
as a set of preference orders over assignments to subsets of variables, together with some
operator for combining the preference relations over these subsets of variables to a pref-
erence relation over the assignments to the whole set of variables. Each such subset of
variables corresponds to an original constraint that now can be satisfied to different extent
by different variable assignments. There is much flexibility in how such ”local” preference
orders are specified, and how they are combined: Various soft-constraints models, such as
weighted (Bistarelli, H.Fargier, Montanari, Rossi, Schiex, & Verfaillie, 1999), fuzzy (Schiex,
1992), probabilistic (Fargier & Lang, 1993), and lexicographic (Fargier, Lang, & Schiex,
1993) CSPs, are discussed in the literature on constraint satisfaction.

The conceptual difference between our approach and the soft-constraints formalisms is
that the latter is based on tightly coupled representation of preferences and constraints,
while our representation of these two paradigms is completely decoupled. Informally, soft
constraints machinery has been developed for optimization of partial constraint satisfaction,
while we are dealing with optimization in the face of constraint satisfaction. In customized
product configuration, there are two parties involved typically: the manufacturer and the
consumer. The manufacturer brings forth its product expertise, and with it a set of hard
constraints on possible system configurations and the operating environment. The user
expresses her preferences over properties of the final product. Typically numerous configu-
rations satisfy the production constraints, and the manufacturer strives to provide the user
with maximal satisfaction by finding the most preferred, feasible product configuration.
This naturally leads to a decoupled approach.

Freuder and O’Sullivan (Freuder & O’Sullivan, 2001) proposed a framework of interac-
tive sessions for overconstrained problems. During such a session, if the constraint solver
discovers that no solution for the current set of constraints is available, the user is asked to
consider “tradeoffs”. For example, following (Freuder & O’Sullivan, 2001), suppose that
the set of user requirements for a photo-camera configuration tool is that the weight of the
camera should be less that 10 ounces and the zoom lens should be at least 10X. If no camera
meets these requirements, the user may specify tradeoffs such as “I will increase my weight
limit to 14 ounces, if I can have a zoom lens of at least 10X” (possibly using some sugges-
tions automatically generated by the tool). In turn, these tradeoffs are used for refining the
current set of requirements, and the system goes into a new constraint satisfaction process.

The tradeoffs exploited in (Freuder & O’Sullivan, 2001) correspond to the information
captured in TCP-nets by the i-arcs. However, instead of treating this information as an in-
cremental “compromising” update to the set of hard constraints as in (Freuder & O’Sullivan,
2001), in the TCP-net based constrained optimization presented in Section 5, we exploit
this information to guide the constraint solver to the preferable feasible solutions. On the
other hand, the motivation and the ideas behind the work of Freuder and O’Sullivan as
well as these in some other works on interactive search (see work, e.g., on interactive goal
programming (Dyer, 1972)) open a venue for future research on interactive preference-based
constrained optimization with TCP-nets, where elicitation of the user preferences is to be
interleaved with the search for feasible solution.

Our work opens several directions for future theoretical and applied research. First, an
important open theoretical question is the precise complexity of dominance testing in TCP-
nets. In the context of CP-nets this problem was analyzed in (Domshlak, 2002; Boutilier

23

et al., 2002). Another question is the consistency of TCP-nets that are not conditionally
acyclic. A preliminary study of this issue in context of cyclic CP-nets appears in (Domshlak
& Brafman, 2002).

An interesting practical question related to elicitation of qualitative preferences is model
acquisition from speech/text (Asher & Morreau, 1995; James, 1999). Observe that the in-
tuitiveness of the qualitative preferential statements is closely related to the fact that they
have a straightforward representation in natural language of everyday life. In addition,
collections of preferential statements seems to form a linguistic domain that is apriori con-
strained in a very special manner. This may allow us to develop specialized techniques
and tools for understanding the corresponding language. Both offline and online language
understanding should be considered, since a user can either describe her preferences offline,
as a self-contained text, or can be asked online, as a part of interactive process of (possi-
bly mixed) preference elicitation and preference-based constrained optimization (Boutilier
et al., 1997).

References

Asher, N., & Morreau, M. (1995). What some generic sentences mean. In Carlson, G., &
Pelletier, F. J. (Eds.), The Generic Book, pp. 300-338. Chicago University Press.

Bistarelli, S., H.Fargier, Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1999).
Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison.
Constraints, 4(3), 275-316.

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and
optimization. Journal of the ACM, 44(2), 201-236.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2002). CP-nets: A tool
for representing and reasoning about conditional ceteris paribus preference statements.
submitted for publication.

Boutilier, C., Brafman, R., Geib, C., & Poole, D. (1997). A constraint-based approach to
preference elicitation and decision making. In AA AT Spring Symposium on Qualitative
Decision Theory, Stanford.

Boutilier, C., Brafman, R., Hoos, H., & Poole, D. (1999). Reasoning with conditional ceteris
paribus preference statements. In Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence, pp. 71-80. Morgan Kaufmann Publishers.

Domshlak, C. (2002). Modeling and Reasoning about Preferences with CP-nets. Ph.D.
thesis, Ben-Gurion University. (forthcoming).

Domshlak, C., & Brafman, R. (2002). CP-nets - reasoning and consistency testing. In
Proceedings of the Fighth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pp. 121-132, Toulouse, France.

Domshlak, C., Brafman, R., & Shimony, S. E. (2001). Preference-based configuration of
web page content. In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, pp. 14511456, Seattle.

Dyer, J. S. (1972). Interactive goal programming. Management Science, 19, 62-70.

24

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5, 691-703.

Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: A probabilis-
tic approach. In Proceedings of the European Conference on Symbolic and Qualitative
Approaches to Reasoning and Uncertainty, Vol. 747 of LNCS, pp. 97-104.

Fargier, H., Lang, J., & Schiex, T. (1993). Selecting preferred solutions in fuzzy constraint
satisfaction problems. In Proceedings of the First European Congress on Fuzzy and
Intelligent Technologies, pp. 1128—-1134.

Freuder, E., & O’Sullivan, B. (2001). Modeling and generating tradeoffs for constraint-
based configuration. In Proceedings of 4th Workshop on Configuration (IJCAI-01),
pp. 38-44, Seattle, US.

Freuder, E. C.; & Wallace, R. J. (1992). Partial constraint satisfaction. Artificial Intelli-
gence.

Gudes, E., Domshlak, C., & Orlov, N. (2002). Remote conferencing with multimedia objects.
In Proceedings of the Second International Workshop on Multimedia Data Document
Engineering (MDDE’02).

Haag, A. (1998). Sales configuration in business processes. IEEFE Intelligent Systems and
their Applications, 13(4), 78-85.

James, G. (1999). Challenges for spoken dialogue systems. In Proceedings of the IEEE
ASRU Workshop.

Junker, U. (2001). Preference programming for configuration. In Proceedings of 4th Work-
shop on Configuration (IJCAI-01), pp. 50-56, Seattle, US.

Keeney, R. L., & Raiffa, H. (1976). Decision with Multiple Objectives: Preferences and Value
Tradeoffs. Wiley.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problem. In Pro-
ceedings of the Fighth National Conference on Artificial Intelligence, pp. 26-32. AAAI
Press.

Sabin, D., & Weigel, R. (1998). Product conguration frameworks - A survey. IEEE Intelli-
gent Systems and their Applications, 15(4), 42-49.

Schiex, T. (1992). Possibilistic cosntraint satisfaction, or "How to handle soft constraints”.
In Proceedings of Eighth Conference on Uncertainty in Artificial Intelligence, pp. 269—
275.

Soininen, T., & Gelle, E. M. (1999). Dynamic constraint satisfaction in conguration. In
Proceedings of AAAI Workshop on Conguration.

Veron, M., & Aldanondo, M. (2000). Yet another approach to CCSP for configuration prob-
lem. In Proceedings of 3rd Workshop on Configuration (ECAI-00), Berlin, Germany.

25

Appendix A. Proofs

Theorem 1 Every conditionally acyclic TCP-net is satisfiable.

Proof: We prove this constructively by building a satisfying preference ordering. The
proof is by induction on the number of problem variables, and the result trivially holds for
one variable, as the total ordering is specified by the TCP-net.

Assume that the theorem holds for all conditionally acyclic TCP-nets with fewer than
n variables. Let N be a TCP-net over n variables. Since N is conditionally acyclic, there
is at least one “root” variable X, such that there is:

—

1. no cp-arc (Y, X), and
—

2. no i-arc (Y, X), and

3. no ci-arc (X,Y).

Note that every root node in the dependency graph has this property.

Let D(X) = {z1,...,x} be the domain of the variable X, and let z; < ... < x be
the preferential ordering over D(X) dictated by N. For each z;, 1 < i < k, construct a
TCP-net N;, with n — 1 variables V — {X} by removing X from the original network, and:

1. For each variable Y, such that there is a cp-arc (X,Y) € N, revise the CPT of Y by
restricting each row to X = z;.

2. For each ci-arc v = (Y1, Y3), such that X € S(v), revise the CIT of v by restricting
each row to X = x;. If, as a result of this restriction, all rows in the new CIT express
the same relative importance between Y7 and Y5, replace «y in V; by the corresponding
i-arc, i.e., either (Y7,Y2) or (Y2,Y7). Alternatively, if the CIT of v becomes empty,
then ~y is simply removed from N;.

3. Remove the variable X, together with all cp-arcs of the form (X,Y’), and all i-arcs of
—
the form (X,Y).

By the inductive hypothesis we can construct a preference ordering »; for each of the
reduced networks N;. Now we can construct the preferential ordering for the original net-
work N as follows. Every outcome with X = z; is ranked as preferred to any outcome
with X = z;, for 1 <1i < j < k. All the outcomes with identical X value, x;, are ranked
according to the ordering >; associated with A; (ignoring the value of X). It is easy to see
that this preference ordering satisfies /. W

26

Theorem 2 Given a binary-valued, TCP-net A, the decision problem: is there a condi-
tionally directed cycle in NV, is NP-hard, even if for every ci-arc v € N we have |S(v)| = 1.

Proof: The proof of hardness is by reduction from 3-SAT. Given a 3-CONF formula F,
construct the following TCP-net /. For every variable X; and every clause C; in F,
construct a boolean variable X; and variable C; in N, respectively (we retain the same
names, for simplicity). In addition, for every clause C;, construct three boolean variables
Ljx, 1 < k < 3, corresponding to the literals appearing in C;. Let n be the number of
clauses in F. The TCP-net N is somewhat degenerate, since it has no cp-arcs. However,
it has an i-arc (Cj, L;) for each clause C; and every literal L;; € C;. In addition, for

every literal L € Cj, there is a ci-arc (Ljy, Clj+1) mod), whose selector variable is the
variable X; represented in L. The relative importance between L;j and Cji1) mod n
on the selector X; as follows: if L; is a positive literal (i.e., X; is not a negated literal),
then variable Ljy is more important than C(11) mod n if X; is true, and less important if
X, is false. For negative literals, the dependence on the selector variable is reversed. This
completes the construction - clearly a polynomial-time operation. Figure 8 illustrates the
subnet of A corresponding to a clause C; = (z1 V @2 V @3), where L; 1, L2, L; 3 correspond
to x1, 2, X3, respectively.

e \ %

H)L
AN

\/

Figure 8: TCP-net subnet for C; = (z1 V 22 V 73).

We claim that N has a conditionally directed cycle just when F is satisfiable. It is easy
to see that there is a path from Cj to C(ji1) mod n just when the values of the variables
participating in C; are such that C is satisfied. Thus, an assignment that creates a directed
path from Cj to Cj is an assignment that satisfies all clauses, and the problems are equivalent
- hence our decision problem is NP-hard. Deciding existence of a conditional directed cycle is
in NP: we need a semi-directed cycle 4 and an assigment on S(.A) (the union of the selector
sets of all ci-arcs in A) which can be checked in polynomial time. Thus, the problem is
NP-complete. W

27

Theorem 3 Given a binary-valued, 1-cycle bounded TCP-net N, the decision problem:
is there a conditionally directed cycle in NNV, is NP-complete, even if for every ci-arc v € N
we have |S(vy)| < 3.

Proof: The proof of hardness is by reduction from 3-SAT. Given a 3-CONF formula F,
construct the following TCP-net /. For every variable X; and every clause C; in F,
construct boolean variables X; and C; in N, respectively (we retain the same names, for

simplicity). In addition, add a single dummy variable C, and an i-arc (Cﬁ). Let n be the
number of clauses in F. Then, there are also n — 1 ci-arcs E; = (C},Cj41), one for each
clause, except the last, for which we have ci-arc (Cy,,C). For all 1 < j < n, the CIT for E;
is determined by clause Cj, as follows. The selector set for E; is just the set of variables
appearing in C;, and the relative importance between the variables of E; is determined as
follows: C} is less important than Cj;1 just when the values of the variables in the selector
set are such that Cj is false. (For j = n, read C instead of Cj1).

We claim that a conditionally directed cycle in A exists just when F is satisfiable. It is
easy to see that the directed path from C to C' exists when all the ci-arcs are being directed
from Cj to Cj41, which occurs exactly when the variable assignment makes the clause C;
satisfiable. Hence, a directed cycle occurs in N exactly when the assignment makes all
clauses satisfiable, making the two problems equivalent. Thus our decision problem is NP-
hard. Finally, as deciding existence of a conditional directed cycle is in NP (see the proof of
Theorem 3), the problem is NP-complete. H

Theorem 4 Given a binary-valued, m-cycle bounded TCP-net A/, where m is polynomial
in the size of N and, for every ci-arc v € N we have |S(vy)| < 2, the decision problem: is
there a conditional directed cycle in N, is in P.

Proof: The proof uses a reduction from testing conditional acyclicity for semi-directed
cycle A with S(v)| < k for every ci-arc v € A to an equivalent K-SAT problem instance.
In particular, since 2-SAT is solvable in linear time (Even, Itai, & Shamir, 1976), together
with Lemma 2 this will prove the claim.

First, assume that A has at least one directed edge (either i-arc or cp-arc). By definition
of semi-directed cycles, all directed edges of S point in the same direction, specifying the
only possible cyclic orientation w of A. For each ci-arc v; € A, let the selector set be
S(vi) = {Xin, .., Xixr}. 9 Clearly, A is conditionally directed if and only if all the ci-arcs
of A can be directed consistently with w.

Given such a semi-directed cycle A, we create a corresponding K-CNF formula F, such
that F is satisfiable just when A is conditionally directed. Let us call all CIT(vy;) entries that
are consistent with w by the term w-entries. Since S(v) = {X;1,..., X;x} and N is binary
valued, we can represent the non-w entries in C'IT(y;) as a conjunction of disjunctions,
i.e. in CNF form. The number of disjunctions is equal to the number of non-w entries
in CIT(v;), and each disjunction is comprised of k literals. Thus, the representation of
CIT(~;) is a k-CNF formula, of size linear in the size of CIT(v;). (In fact, the size of the

6. If |S(v:)| < k, the only impact will be a more compact reduction below.

28

resulting formula can sometimes be significantly smaller, as one can frequently simplify the
component CNF fragments, but this property is not needed here.)

Finally, compose all the CNF representations of the CIT(v;), for every v; € A, resulting
in a k-CNF formula of size linear in the combined number of table entries. The construction
of F is clearly a linear-time operation. Likewise, it is easy to see that F is satisfiable just
when there is an assignment to S(.A) converting A into a directed cycle.

The minor unresolved issue is with semi-directed cycles consisting of ci-arcs only. Given
such a semi-directed cycle A, we generate two different A’ and A", by inserting one dummy
variable and one i-arc to A — clockwise in A’, counter-clockwise in A”. Now, A is condi-
tionally directed if and only if either A" or A” (or both) are conditionally directed. B

Theorem 5 Given a TCP-net A/ and a pair of outcomes o and o/, we have that V' =0 > o
if and only if there is an improving flipping sequence with respect to A/ from o’ to o.

Proof:

<= Given an improving flipping sequence F from o’ to o with respect to N, by Definition 7,
N |= 0y = 01 for any flip from 0; to 0y from F. The proposition follows from the transitivity
of preferential entailment with respect to TCP-nets (Lemma 1).

= Let G be the graph of preferential ordering induced by N, i.e., nodes of G stand for all
outcomes, and there is a directed edge from 01 to o9 if and only if there is an improving
CP-flip or I-flip of 01 to 09, sanctioned by N. Clearly, directed paths in G are equivalent to
improving flipping sequences with respect to N.

First, we show that any preference ordering >~ that respects the paths in G (that is,
if there is a path from 07 to 02 in G, then we have oy = 01) satisfies N'. Assume to the
contrary that =* respects the paths in G, and does not satisfy A'. Then, by the definition
of satisfiability (Definition 2), there must exist either:

1. Some variable X, assignment p € D(Pa(X)), values z,2’ € D(X), and assignment
w to the remaining variables W =V — (X U Pa(X)), such that prw >=* pa’w, but
CPT(X) dictates that z’ > = given p, or

2. Some importance arc £ between a pair of variables X and Y, assignment z € D(S(€))
(if £ is an i-arc, then S(§) = 0), values z, 2’ € D(X),y,y’ € D(Y), and assignment w
to the remaining variables W = V — ({X, Y }US(€)), such that pzyw =* pa’y'w, but
(i) the CPT(X) dictates that 2’ > x, and (ii) the (possibly empty) CIT of £ dictates
that X > Y given z.

However, in the first case, if A specifies 2’ = z given p, there is a CP-flip from pz'w to pzw,
contradicting the fact that =* extends G. Similarly, in the second case, if N specify z’ = z
given w, and X > Y given z, then there is an I-flip from pz’y'w to pryw, contradicting the
fact that =* extends G.

Now, by the construction of G, if there is no improving flipping sequence from o’ to
o, then there is no directed path in G from o’ to o. Therefore, there exist a preference
ordering =* respecting the paths in G in which o' =* 0. However, based on the above

29

observation on preference orderings respecting the paths in G, =* also satisfies N, which
implies N o0 = o'. B

30

