Contexts and Preferences in Answer Set Programming

Gerhard Brewka

brewka@informatik.uni-leipzig.de

Universität Leipzig

Motivation 1: preferences

- preferences determine how agents decide and act
- pop up everywhere:

coffee	>	tea
car	>	train
relax	>	work
Chelsea London	>	Bayern München
Madonna	>	Britney Spears
marry	>	don't marry
sleep	>	listen to talk

Preferences in AI

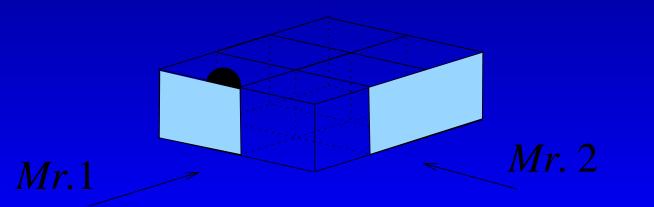
- diagnosis: prefer more plausible hypotheses
- planning/configuration: prefer cheaper plan; satisfy more important constraints
- revision: give up less preferred beliefs
- reasoning about action: prefer fewer unexplained changes
- ontologies: prefer more specific information
- legal/deontic reasoning: prefer more recent law
- linguistics: prefer more important constraints (optimality theory)

Issues

- how to represent space of outcomes here: answer sets
- how to represent preferences here: qualitative orderings
- how to interpret preferences here: defeasible multi-criteria
- how to represent dependencies here: rule preconditions specify context

Motivation 2: contexts

- McCarthy: we offer no definition of context
- viewpoints, perspectives, granularity, agents, ...
- (almost) independent units of reasoning
- locality: different languages, reasoning methods
- compatibility: information flow between contexts
- essential for handling complexity, consistency, ...



Outline

- 1. Motivation (done)
- 2. Answer set programming
- 3. Qualitative preferences
 - Formalisms
 - Applications
- 4. Contexts
 - Formalism
 - Examples
- 5. Conclusions

2. Answer set programming

Answer sets

- define semantics for logic programs with strict and default negation (extended LPs)
- rules of the form $(a, b_i, c_j \text{ literals})$:

$$a \leftarrow b_1, \ldots, b_n, \operatorname{not} c_1, \ldots, \operatorname{not} c_m$$

AS acceptable set of beliefs based on program
requirements:

closed: all rules used to generate AS
if all b_i ∈ AS, no c_j ∈ AS, then a ∈ AS
grounded: a in AS implies derivation of a from rules whose not -preconds are not in AS

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether S = closure of reduced program

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether S = closure of reduced program

 $\begin{array}{l} a \leftarrow \operatorname{not} b \\ b \leftarrow \operatorname{not} c \end{array}$

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether S = closure of reduced program

 $\begin{array}{l} a \leftarrow \operatorname{not} b \\ b \leftarrow \operatorname{not} c \end{array}$

 $\{a\}$ NO, not closed

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether S = closure of reduced program

 $\begin{array}{c} a \leftarrow \operatorname{not} b \\ b \leftarrow \operatorname{not} c \end{array}$

 $\{a, b\}$ NO, not grounded

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether S = closure of reduced program

 $\begin{array}{c} a \leftarrow \operatorname{not} b \\ b \leftarrow \operatorname{not} c \end{array}$

{b} **YES, grounded and closed**

Example: graph coloring

Description of graph:

 $node(v_1), \ldots, node(v_n), edge(v_i, v_j), \ldots$

Generate: every node needs exactly 1 color

 $col(X, r) \leftarrow node(X), not col(X, b), not col(X, g)$ $col(X, b) \leftarrow node(X), not col(X, r), not col(X, g)$ $col(X, g) \leftarrow node(X), not col(X, r), not col(X, b)$

Test: linked nodes cannot have same color

 $\leftarrow edge(X,Y), col(X,Z), col(Y,Z)$

Each answer set describes a solution!

Example: graph coloring

Description of graph:

 $node(v_1), \ldots, node(v_n), edge(v_i, v_j), \ldots$

Generate: every node needs exactly 1 color

 $col(X, r) \leftarrow node(X), \text{not } col(X, b), \text{not } col(X, g)$ $col(X, b) \leftarrow node(X), \text{not } col(X, r), \text{not } col(X, g)$ $col(X, g) \leftarrow node(X), \text{not } col(X, r), \text{not } col(X, b)$

Test: linked nodes cannot have same color

 $f \leftarrow edge(X, Y), col(X, Z), col(Y, Z), \text{not } f$

Each answer set describes a solution!

A useful language extension

Bounds on number of satisfied literals:

$$L\{a_1,\ldots,a_k\}U$$

Read: at least L and at most U of the a_i s must be true

Allows us to replace 3 color assignment rules with:

 $1\{col(X,r), col(X,b), col(X,g)\}1 \leftarrow node(X)$

or, if extension of *color* is $\{r, b, g\}$:

 $1\{col(X,Y):color(Y)\}1 \leftarrow node(X)$

Why LPs under AS semantics?

- simple yet expressive language
- transitive closure, nonmonotonic rules, ...

 $flies(X) \leftarrow \operatorname{not} ab(X), bird(X)$

• simple epistemic distinctions, particularly useful for preference reasoning

 $safe > not \neg safe > \neg safe$

- interesting implementations: dlv, Smodels, nomore, ASSAT ...
- interesting applications: configuration, diagnosis, planning, reasoning about action, shuttle control, model checking, information integration, ...

3. Qualitative Preferences3.1 Formalisms

Adding preferences to ASP

	rule preference	formula preference
fixed	(P, <)	(P, <)
	< order on P	< order on <i>Lit</i>
	B-Eiter	Sakama-Inoue
	Delgrande-Schaub	Foo-Zhang
	•••	•••
conditional	< predicate in P	ordered disjunction
	applied to rules	ASO programs
	B-Eiter	B-Niemelä-Syrjänen
	Delgrande-Schaub	B-N-Truszczyński

• • •

Ordered disjunction

LPOD: finite set of rules of the form:

$$C_1 \times \ldots \times C_n \leftarrow body$$

if body then some C_j must be true, preferably C_1 , if impossible then C_2 , if impossible C_3 , etc.

- answer sets defined through split programs
- satisfy rules to different degrees, depending on best satisfied head literal
- use degrees to define global preference relation on answer sets
- different options how to do this

Preferences among answer sets

How to generate global preference ordering from satisfaction degrees?

Many options, for instance:

 $P^i(S) = P$ -rules *i*-satisfied in S. $S_1 > S_2$ iff

- some rule has better satisfaction degree in S_1 and no rule better degree in S_2 ,
- at smallest degree i with $P^i(S_1) \neq P^i(S_2)$, S_1 satisfies superset of rules satisfied in S_2 ,
- at smallest degree i with $|P^i(S_1)| \neq |P^i(S_2)|$, S_1 satisfies more rules than S_2 .

Prioritized graph coloring

 $col(X, r) \times col(X, b) \times col(X, g) \leftarrow node(X) \\ \leftarrow col(X, C), col(Y, C), edge(X, Y)$

M preferred over M' if

- par at least 1 node has nicer color in M than in M', no node less preferred color.
- *incl* nodes red in M superset of nodes red in M', or same nodes red in M and M' and nodes blue in M superset of nodes blue in M'.
- card more nodes red in M than in M', or as many nodes red in M as in M' and more blue in M.

The ASO approach

- decoupled approach to answer set optimization
- logic program G generates answer sets
- preference program P used to compare them
- preference program set of rules

$$C_1 > \ldots > C_k \leftarrow body$$

C_i boolean combination built using ∨, ∧, ¬, not
rule satisfaction and combination as for LPODs

LPODs vs. ASO

 ASO: arbitrary generating programs, no implicit generation of options, general preferences: combinations of properties preferred over others:

$$a > (b \land c) > d \leftarrow f$$

equally preferred options:

 $a > (b \lor c) > \operatorname{not} d \leftarrow g$

• LPODs: compact and readable representations

3.2 Applications

Configuration

- often represented as AND/OR trees
- simple representation with Smodels cardinalities:

 $\begin{array}{rl} 4\{starter, main, dessert, drink\}4 & \leftarrow dinner\\ 1\{soup, salad\}1 & \leftarrow starter\\ 1\{fish, beef, lasagne\}1 & \leftarrow main \end{array}$

- add case description and preferences, e.g.
 fish ∨ beef > lasagne
 beer > wine ← beef
 wine > beer ← not beef
- preferred answer sets: optimal configurations

- H: measles, flu, migraine
- O: headache, fever
- $\begin{array}{lll} K: & fever \leftarrow measles \\ & red\text{-}spots \leftarrow measles \\ & headache \leftarrow migraine \\ & nausea \leftarrow migraine \\ & fever \leftarrow flu \\ & headache \leftarrow flu \end{array}$

- H: measles, flu, migraine
- O: headache, fever
- $\begin{array}{lll} K: & fever \leftarrow measles \\ & red\text{-}spots \leftarrow measles \\ & headache \leftarrow migraine \\ & nausea \leftarrow migraine \\ & fever \leftarrow flu \\ & headache \leftarrow flu \end{array}$

 $\neg measles \times measles \qquad \neg flu \times flu \\ \neg migraine \times migraine \qquad \neg$

- H: measles, flu, migraine
- O: headache, fever
- $\begin{array}{lll} K: & fever \leftarrow measles \\ & red\text{-}spots \leftarrow measles \\ & headache \leftarrow migraine \\ & nausea \leftarrow migraine \\ & fever \leftarrow flu \\ & headache \leftarrow flu \end{array}$

 $\neg measles \times measles \qquad \neg flu \times flu \\ \neg migraine \times migraine \qquad \leftarrow not \ fever$

- H: measles, flu, migraine
- O: headache, fever
- $\begin{array}{lll} K: & fever \leftarrow measles \\ & red\text{-}spots \leftarrow measles \\ & headache \leftarrow migraine \\ & nausea \leftarrow migraine \\ & fever \leftarrow flu \\ & headache \leftarrow flu \end{array}$

 $\neg measles \times measles \qquad \neg flu \times flu \\ \neg migraine \times migraine \qquad \neg flu \times flu \\ \neg flu$

 $\leftarrow \text{not } headache \qquad \leftarrow \text{not } fever$ inclusion preferred: {migraine, measles}, {flu}

Inconsistency handling

- program *P*, possibly inconsistent; consistency restoring rules *R*
- names N_P and N_R for rules in P and R
- generate weakening of $P \cup R$ by replacing

$$head \leftarrow body$$
 with $head \leftarrow body, r_i$

where r_i rule's name

- add $\{r \times \neg r \mid r \in N_P\} \cup \{\neg r \times r \mid r \in N_R\}$
- minimal set of *P*-rules switched off, minimal set of *R*-rules switched on

Prisoners' dilemma

	Coop.	Defect
Coop.	3,3	0,5
Defect	5,0	1,1

Prisoners' dilemma

	Coop.	Defect
Coop.	3,3	0,5
Defect	5,0	1,1

Player 1:Player 2: $D_1 \times C_1 \leftarrow C_2$ $D_2 \times C_2 \leftarrow C_1$ $D_1 \times C_1 \leftarrow D_2$ $D_2 \times C_2 \leftarrow D_1$

Move clause: $1\{C_1, D_1\}1$

Game theory

Prisoners' dilemma

	Coop.	Defect
Coop.	3,3	0,5
Defect	5,0	1,1

Player 1:Player 2: $D_1 \times C_1 \leftarrow C_2$ $D_2 \times C_2 \leftarrow C_1$ $D_1 \times C_1 \leftarrow D_2$ $D_2 \times C_2 \leftarrow D_1$

Move clause: $1\{C_1, D_1\}$ 1 Preferred answer set = Nash equilibrium

Related issues

- meta-preferences: one preference rule/ordered disjunction more important than another
- preference description language: combines different preference strategies; integrates qualitative with quantitative methods
- implementation: *generate and improve* method; iterative calls to answer set solver generate sequence of strictly improving answer sets
- integration with CP-nets: combines graph based methods with flexibility of ASO preferences

4. Contexts4.1 Formalism

Contexts: the Trento school

Multi-context system

 $({T_i}, Delta_{br})$

each $\overline{T_i} = (L_i, \Omega_i, \Delta_i)$ formal system, $Delta_{br}$ bridge rules using labeled formulas c : p with $p \in L_c$.

- semantics: local models + compatibility
- information flow across contexts via bridge rules
- reasoning within/across contexts monotonic
- exception (Roelofsen/Serafini 05) has problems

Contextual default logic

Contextual default theory $((D_1, W_1), \dots, (D_n, W_n))$. (D_i, W_i) default theory, default rules in D_i possibly refer to other contexts.

 $\Gamma(S_1,\ldots,S_n)$ minimal tuple (S'_1,\ldots,S'_n) with:

- 1. $W_i \subseteq S'_i$,
- 2. S'_i deductively closed (over L_i), and
- 3. $(c_1:p_1), ..., (c_t:p_t): (c_{t+1}:q_1), ..., (c_{t+k}:q_k)/r \in D_i \text{ and for all } i, j: p_i \in S'_{c_i} \text{ and } \neg q_j \notin S_{c_{t+j}},$ then $r \in S'_i$.

Extension fixpoint of Γ .

Contextual logic programming

- Contextual LP system: $C = (P_1, \ldots, P_n)$.
- P_i contextual LP: labeled literals (c:l) allowed in rule bodies (c context, l literal in c's language).
- Minimal context model of definite C (no **not**): smallest (S_1, \ldots, S_n) with:
 - 1. $a \in S_i$ if $a \leftarrow (c_1 : b_1), \dots, (c_k : b_k) \in P_i$, $b_1 \in S_{c_1}, \dots, b_k \in S_{c_k}$,

2. $S_i = Lit_i$ if S_i has complementary literals.

Answer sets

- $C = (P_1, \ldots, P_n)$ arbitrary system, $S = (S_1, \ldots, S_n)$, S_i literals in P_i 's language.
- C^S obtained from C by
 - 1. deleting rules with literal **not** (c:l) s.t. $l \in S_c$,
 - 2. deleting **not** literals from remaining rules.
- C^S definite, has minimal context model M_{C^S} .
- S answer set iff $S = M_{C^S}$.

Also possible to define skeptical inference à la WFS

4.2 Examples

Abstraction

Car domain, P_1 abstraction of P_2 , P_1 may contain

 $expensive(X) \leftarrow 2: price(X,Y), Y \ge 30000$ $sportive(X) \leftarrow 2: speed(X,Y), 180 < Y,$ **not** bad-accel(X)bad- $accel(X) \leftarrow 2: 0$ -to-100(X,Y), Y > 10

Assume now intelligent grounder instantiating context, proposition and domain variables correctly.

Information fusion

believe p if someone does and nobody believes -p:

$$P \leftarrow (C:P), \mathbf{not} \ rej(P)$$
$$rej(P) \leftarrow (C:-P)$$

believe p if someone you trust does and nobody you trust believes -p:

 $P \leftarrow (C:P), trusted(C), \mathbf{not} \ rej(P)$ $rej(P) \leftarrow (C:-P), trusted(C)$

believe p if majority does:

 $P \leftarrow N\{(C:P): con(C)\}N, N > n/2$

Information fusion, ctd.

total preference order via numbering: $1 < 2 < 3 \dots$

$$P \leftarrow (C:P), \operatorname{not} rej(C,P)$$
$$rej(C,P) \leftarrow (C:P), (C':-P), C < C'$$

partial preference order via predicate \prec , sceptical

 $P \leftarrow acc(P), \operatorname{not} acc(-P)$ $acc(P) \leftarrow (C:P), \operatorname{not} rej(C,P)$ $rej(C,P) \leftarrow (C:P), (C':-P), C \prec C'$

Prisoners' dilemma II

2-context system (P_1, P_2) with P_1 :

 $P_2 = P_1 \text{ with 2 replaced by 1.}$ Answer set = Nash equilibrium: $(\{choose(d), best(d)\}, \{choose(d), best(d)\})$

Simple majority vote:

 $votes(X, N) \leftarrow N\{(C: best(X)): con(C)\}N, cnd(X)$ $wins(X) \leftarrow \mathbf{not} \neg wins(X)$ $\neg wins(X) \leftarrow votes(X, N), votes(Y, M), M > N$

Condorcet rule:

 $beats(X,Y,N) \leftarrow N\{(C:beats(X,Y)): con(C)\}N, \\ cnd(X), cnd(Y) \\ wins(X) \leftarrow \mathbf{not} \neg wins(X) \\ \neg wins(X) \leftarrow beats(X,Y,N)), beats(Y,X,M), \\ M \ge N$

5. Conclusions

What has been achieved?

- ASP a promising declarative paradigm
- simple yet expressive, interesting applications, interesting solvers
- adding preferences has great potential
- presented two approaches and possible applications
- showed how to add simple notion of context
- missing: current context, switching context, identification of most adequate context, ...

Future work

Better integration of contexts and preferences

- use prioritized logic programs within context
- use priorities among bridge rules
- modify priorities in a context using bridge rules

Thanks to:

I. Niemelä, M. Truszczynski, F. Roelofsen, L. Serafini; you for listening

References

- 1. G. Brewka, Logic programs with ordered disjunction, Proc. AAAI-02, Edmonton, 2002
- 2. G. Brewka, I. Niemelä, M. Truszczynski: Answer set optimization, Proc. IJCAI-03, Acapulco, 2003
- 3. G. Brewka, S. Benferhat, D. Le Berre: Qualitative choice logic, Artificial Intelligence 157(1-2), Special Issue on Nonmonotonic Reasoning, 2004, 203-237
- 4. G. Brewka, I. Niemelä, T. Syrjänen: Logic programs with ordered disjunction, Computational Intelligence 20 (2), 2004, 335-357
- 5. G. Brewka: A rank based description language for qualitative preferences, Proc. ECAI-04, Valencia, 2004, 303-307 (also in: Proc. NMR 2004, 88-93)
- 6. G. Brewka: Complex preferences for answer set optimization, Proc. KR-04, Whistler, Canada, AAAI Press, 2004, 213-223
- G. Brewka, I. Niemelä, M. Truszczynski: Prioritized component systems, Proc. AAAI-05, Pittsburgh 2005
- 8. G. Brewka, J. Dix: Knowledge Representation with Logic Programs, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 12, Springer, 2005, 1-85
- 9. G. Brewka: Answer Sets and Qualitative Decision Making, Synthese 146 (2005), 171-181
- 10. G. Brewka, F. Roelofsen, L. Serafini: Contextual Default Reasoning, IJCAI-07