
Database Preference Queries Revisited
Extended abstract

Ronen I. Brafman brafman@cs.bgu.ac.il
Dept. of Computer Science, Ben-Gurion University, Israel

Carmel Domshlak dcarmel@cs.cornell.edu

Dept. of Computer Science, Cornell University, Ithaca, NY 14853
tel: 607-2578903, fax: 607-2554428

1. Introduction

The problem of preference elicitation and preference management has generated much interest
in the database systems community in recent years. This interest stems from a rapidly growing
class of untrained, lay users browsing extremely large databases accessible through the Inter-
net. Typically these users do not have clear knowledge about the particular items that these
databases contain, nor do they have a particular result in mind. Rather, they are attempting
to identify items that are useful for them in some manner, or in other words, items that suit
their preferences best. Examples include users looking for gifts in the databases of online mer-
chants, users searching for attractive vacation packages, users looking for vendors/competitors
in a particular area, etc. To support such users, database systems must be able to process
preference queries, i.e., queries that describe desirable properties of the end result of the search
process. Such queries must be intuitive to formulate by the user, correctly interpreted by the
system, computationally efficient to process, and enable the user to quickly home-in on desirable
elements.

The need to support preference queries has not gone unnoticed by the database commu-
nity, and a number of general frameworks emerged in the past decade (see [6] for a survey).
Support for preference-queries raises two primary concerns: semantic clarity and adequacy, and
computational efficiency. The semantic issue is particularly thorny in this context: When asked
for their preferences, most users should be expected to supply only simple statements such as:
”I prefer Continental to Delta” or ”In a minivan I prefer automatic transmission to manual
transmission”, and we need to interpret these statements properly. Therefore, the first step to
supporting preference queries is to clearly define the meaning of this, very circumscribed class of
natural language statements. This semantics must ensure that the set of most-preferred items
induced by it will reasonably match users’ expectations, for otherwise, users will turn away
from these systems. Some recent work on preference queries in database systems skirt the se-
mantic issue, instead considering general frameworks that support multiple interpretations (e.g.,
see [7, 16]). The scientific value of such work is clear, but any actual implementation must make
a concrete commitment. Authors in the DB community who indirectly considered such concrete
semantics seem to uniformly favor what we call the ”totalitarian intersection” approach. The
main conceptual contribution of this paper is: (1) To show that the “totalitarian intersection”
approach is unsuitable as it fails to meet the basic demand of semantic adequacy and yields
unintuitive or empty results even for very simple and natural queries; (2) To provide a different
interpretation, the ”ceteris paribus union” interpretation. This semantics is considered the most
natural by philosophers (see, e.g., [14]), but has not been considered in the DB community.

Semantically, the ceteris paribus interpretation is by far superior, but computationally, it is
problematic. The operator BEST that extracts from the database the set of all most preferred

1

t1
t2
t3
t4
t5
t6
t7
t8

category ext-color int-color

minivan red bright

minivan red dark

minivan white bright

minivan white dark

SUV red bright

SUV red dark

SUV white bright

SUV white dark

s1 I prefer red minivans to white minivans.
s2 I prefer white SUVs to red SUVs.
s3 In white cars I prefer a dark interior.
s4 In red cars I prefer a bright interior.
s5 I prefer minivans to SUVs.

(a) (b)

Figure 1: (a) Instance of the Car schema; (b) A schema-dependent preference query over Car.
items (independently proposed in [7, 16, 22] as the ultimate operator for evaluating preference
queries) can be computationally intractable within this semantics: The worst-case time com-
plexity of BEST is O(exp(n) ·D2), where n is the arity and D is the size of the database relation.
The main technical contribution of this paper is to introduce a relaxation of BEST, an oper-
ator that we call ORD, and to show a significant class of preference queries for which ORD is
computable in time O(nD log D).

The technical results of this paper with respect to the ceteris paribus semantics use and
extend some recent results presented in [3, 8]. The rest of the paper is structured as follows: In
Section 2 we discuss the basic issues that arise in interpreting preference queries and some key
technical assumptions. In Section 3 we discuss the totalitarian semantics and explain why it is
inadequate. In Section 4 we discuss the ceteris paribus interpretation, showing that it works
much better when we attempt to combine preference statements. In Section 5 we explain how
we can efficiently answer preference queries in the context of the ceteris paribus semantics by
using the ORD operator. We conclude the paper in Section 6.

2. Main Concepts and Issues

In this paper we focus on the qualitative approach to database preference queries (adopted,
e.g., in [7, 18, 12, 16]), in which user preferences are represented by a general binary preference
relation over a relation schema1. Formally, given a relation schema R, a preference query Q
over R consists of a set Q = {s1, · · · , sm} of preference statements. These preference statements
define preference relations {�1, · · · ,�m}, respectively, from which one should derive the global
preference relation �Q. Subsequently, given a relation instance R of R, the database system
should return a subset of R containing, e.g., those tuples that are “optimal” according to �Q.
To illustrate these concepts, consider a relation schema Car (category, ext-color, int-color),
and an instance R of Car described in Figure 1(a). Suppose that the user expresses the preference
statement s: ”I prefer red minivans with bright interior to white minivans with dark interior”.
The preference relation induced by this statement over the tuples of R is �s= {t1 �s t4} (while
other pairs of tuples from R are incomparable in �s).

2.1 Interpretation and Evaluation of Preference Queries

The interpretation of statement s above poses no serious difficulties because it explicitly com-
pares tuples. However, this is the exception, rather than the rule. Preference statements typi-

1. More quantitative forms of specifications are possible, too (e.g., see [1, 15]), though they require more user
effort, and typically amount to the specification of an additive value function.

2

cally mention only a subset of attributes, as in s′: “I prefer red minivans to white SUVs”. This
immediately leads to the first fundamental semantic question: What preference order over the
database tuples is induced by a preference statement over the values of a (strict) subset of the
attribute set? Two conflicting ways of addressing this question immediately present themselves:
ignore the other attributes or fix their values. These interpretations correspond to the totali-
tarian semantics and the ceteris paribus semantics, respectively. According to the totalitarian
semantics – a term we use following Hansson’s notion of totality account [14] – s′ implies that
any tuple in which category = minivan and ext-color = red is preferred to any tuple in
which category = SUV and ext-color = white. In particular, in our example we will have
�s′= {t1 �s′ t7, t1 �s′ t8, t2 �s′ t7, t2 �s′ t8}. On the other hand, according to the ceteris
paribus semantics, s′ implies that a tuple in which category = minivan and ext-color = red
is preferred to a tuple in which category = SUV and ext-color = white, provided that both
tuples agree on the value of all other attributes. (Hence the name ceteris paribus, which stands
for “all else being equal” in Latin.) Under the ceteris paribus semantics, in our example we will
have �s′= {t1 �s′ t7, t2 �s′ t8}.

Authors in the DB community seem to implicitly favor the totalitarian semantics (e.g., see the
query examples in [7, 16, 22]), perhaps because it provides a much stronger preference order than
the ceteris paribus semantics, making the set of “optimal” tuples smaller, and perhaps because it
appears to have attractive computational properties. The ceteris paribus semantics, on the other
hand, seems more faithful to the actual content of the preference statement, and appears to be
almost uniformly favored by philosophers [13, 14], economists [2], and AI researchers [3, 11, 21].

As illustrated in example Figure 1(b), preference queries typically consist of a number of
preference statements. This begs the second fundamental semantic question: How should a set
of preference orders be aggregated into a single preference order? Previous work considered two
types of aggregation operators, namely boolean and prioritized compositions (e.g., see [7, 16]).
Boolean composition considers all the preference statements in Q as equally important and com-
bines the corresponding preference relations using one of the set operators such as intersection
or union. In contrast, prioritized composition considers preference statements in Q according
to some hierarchy of importance . ⊂ Q×Q, where si . sj means that statement si is more im-
portant to the user than statement sj . According to the prioritized composition rule, for every
pair of tuples t, t′ ∈ R, we have t �Q t′ if and only if [∃i : t �i t′] ∧ [∀j : [sj . si] → [t′ �j t]].
The importance hierarchy . must either be a part of the inputed preference query or must be
derived from the given statements somehow. In the first case, additional strain is placed on the
user. In the second case, we run into non-trivial semantic and computational issues very much
similar to those that arise in non-monotonic reasoning, and to which there is no agreed-upon
solution. Thus, in this paper, we focus on boolean composition.

After constructing the composed preference relation �Q, the database system should eval-
uate the query and extract those tuples that fit the requirements. Unlike standard, concrete
database queries, the result of evaluating a preference query is not well defined. However,
a consensus on this issue seems to have been reached: The query evaluation operator that
has been (independently) proposed in [7, 16, 22] retrieves all the undominated tuples from
R. In what follows, we refer to this operator as BEST. It is formally defined as follows:
BEST(R,�Q) = {t ∈ R | ∀t′ ∈ R : t′ �Q t}. In [6] it is shown that, depending on var-
ious properties of �Q, several algorithms can be used to implement BEST(R,�Q). The main
point to note is that all these algorithms incrementally eliminate every tuple, t, for which there
is a dominating tuple t′ �Q t. This seemingly innocuous step has a dramatic impact on the
computational complexity of the BEST operator, as we later show.

3

2.2 The Scope of Preference Queries

To formalize the notion of a preference query, we introduce the following notation: Let A(R) =
{a1, · · · , an} denote the set of attributes specifying the relation schema R, and letD(a1), · · · ,D(an)
denote the domains of these attributes, respectively. The tuple space of the schema R is the set
D(R) = ×D(ai). (We use D(·) denote the domain of a set of attributes as well.)

In this paper we restrict our attention to schema-dependent queries over single attributes,
which seem to cover all the examples we have seen in the DB literature. The core requirement
will be that preferences are expressed in terms of the values of the schema’s attributes only.
A preference statement s over the relation schema R is called schema-dependent if and only
if there exist two disjoint subsets of attributes Ac(s),Ar(s) ⊆ A(R) (the subscripts stand for
”conditioning” and ”reference”, respectively), such that Ar(s) 6= ∅ and s can be presented
as: α ⇒ 〈{β1 � β′

1}, · · · , {βl � β′
l}〉, where α ∈ D(Ac(s)), and, for 1 ≤ j ≤ l, we have

βj , β
′
j ∈ D(Ar(s)) and βj 6= β′

j . A preference query Q = {s1, · · · , sm} is called schema-dependent
if and only if each statement si ∈ Q is schema-dependent.

To illustrate the notion of schema-dependent queries, assume we have a database schema
containing the attributes category, ext-color, sunroof, and price. Consider the statement
s1: ”In red sports car, I prefer a sunroof.” This statement can be written as:

[category = Sport] ∧ [ext−color = Red] ⇒ 〈{[sunroof = Yes] � [sunroof = No]}〉

whereAc(s1) = {category, ext−color}, andAr(s1) = {sunroof}. Now, consider the statement
s2: ”I prefer to pay less.” Here we have Ar(s2) = {price} and, since s2 is unconditional, we have
Ac(s2) = ∅. Notice that s2 induces a preference relation between all possible values of price,
making the size of the relation �2 extremely large. To work with such preference relations, we
must represent them implicitly, as in: ⇒ 〈{p � p′ | p < p′}〉. To simplify the presentation,
in the rest of the paper we assume that the domain size of each attribute is bounded by some
constant. This assumption causes no loss of generality, and all the results and discussion in the
paper apply to naturally ordered infinite domains as in the example above.

Our second restriction is with respect to the size of the set Ar describing the number of
attributes being varied. Consider the following three preference statements:

s1 I prefer to have a sunroof.
s2 In sport cars, I prefer to have a sunroof.
s3 I prefer sports car with a sunroof to family sedans without a sunroof.

The first statement expresses (unconditional) preference over the values of a single attribute –
sunroof. The second statement expresses a conditional preference over the value of a single
attribute: when category = Sport, I prefer sunroof = Y es. Although two attributes appear in
this preference statement, one only serves to constrain the set of tuples to which the preference
for sunroof apply. Thus, in both s1 and s2, we have |Ar| = 1. The third statement expresses a
preference between two assignments to two attributes: category and sunroof. Here, |Ar| = 2.

¿From a semantic point of view, the size of |Ar| is inconsequential. However, it does affect
the complexity of various operations. Generally speaking, preference statements where |Ar| > 1
are not very natural for users to express. Indeed, all the examples that we have seen in the
DB literature deal with preferences over the value of a single attribute, possibly conditioned
by concrete assignments to one or more additional attributes. This is why we restricted our
attention to preference statements in which |Ar| = 1. Finally, we assume that the preference
relation induced by a preference query Q forms a strict partial order over D(R) (i.e. we assume
that �Q is irreflexive, asymmetric, and transitive).

4

3. The Totalitarian Semantics

The totalitarian semantics together with aggregation using intersection appears to be the implicit
choice of past authors in the DB community [7, 16, 22]. The goal of this section is to show that
this semantics is inadequate. We demonstrate this with a number of examples. First, consider
the single preference statement: “I prefer choclate ice-cream to vanilla ice-cream.” If expressed
in the context of selecting ice-cream flavors only, this statement is innocuous. But suppose it
is expressed in the context of selecting a meal. The implications according to the totalitarian
semantics is that any bizarre choice for main course is preferred to any other choice provided the
first comes with choclate ice-cream and the second comes with vanilla ice-cream. This should
already disqualify this semantics in the eye of many readers because it is unlikely to match the
user’s intentions. Of course, one could argue that if this is the only preference the user expressed,
then this result is warranted. That is not unreasonable, so let us consider what happens when
we have more than one preference statement.

Consider the two statements: (s1) “I prefer red to white as the color of my car,” and
(s2) “I prefer minivans to family sedans.” If we compose the preference orders induced by
the totalitarian semantics for these statements using union aggregation, we get an inconsistent
preference relation: According to s1 a red family sedan is preferred to a white minivan, whereas
according to s2 a white minivan is preferred to a red family sedan. Since users are highly likely
to express preferences for values of different schema attributes separately, we are likely to face
this problem often. This is perhaps why authors have looked into the intersection operator
instead. Hence, consider a third example: (s1) – “In minivans, I prefer Ford to Chrysler,” and
(s2) – “In SUVs, I prefer Toyota to Isuzu.” These two natural statements describe preferences
in different contexts. The intersection of the corresponding preference relations is empty. This
illustrates an odd aspect of intersection composition: the addition of new preference statements
may cause us to ignore the information in previous statements.

Of course, more complex aggregation operators that are semantically attractive may exist.
For example, we could use union on disjoint contexts and intersection on similar contexts.
Unfortunately, this suggestion is not trivial to operationalize: the contexts of two statements
can overlap in various ways, and the nature of overlaps become more and more complicated the
more statements we have. Another option is to use union with priorities. If we require priorities
from the user, we are making the preference elicitation process more complex. If the user specifies
similar priorities for two preferences on disjoint attributes, we obtain an inconsistent relation
again. Trying to infer priorities automatically is both conceptually non-trivial, and can have
serious computational cost. Indeed, such attempts are reminiscent of the problem of agreeing
on the meaning of default statements in non-monotonic reasoning. The accepted semantics for
default statements is in terms of a preference order over truth assignments [17, 20] – much like the
type of structures we consider. The literature in that area is full of alternative interpretations,
some of which employ explicit and implicit priorities. Moreover, the computational complexity
of inference in these formalism is often prohibitive. The only redeeming aspect of the totalitarian
semantics with intersection is that it is computationally cheap to compare tuples. But given
its serious semantic problems, this provides little consolation. In the next section, we study
an alternative approach based on the ceteris paribus semantics and the union operator, which,
because of its conservative nature, evades the semantic pitfalls of the totalitarian semantics.

5

?>=<89:;t2 //
&&?>=<89:;t4 //

""EE
EE
?>=<89:;t8

""EE
EE

// ?>=<89:;t6

?>=<89:;t1

<<yyyy
// 66?>=<89:;t3 // ?>=<89:;t7 // ?>=<89:;t5

<<yyyy

?> =<89 :;category //?> =<89 :;ext-color //?> =<89 :;int-color

Cmv � Csuv
Cmv Er � Ew

Csuv Ew � Er

Er Ib � Id

Ew Id � Ib

(a) (b)

Figure 2: (a) Preference relation between the tuples from Figure 1(a), induced by the query in
Figure 1(b) under ceteris paribus semantics; (b) the CP-net for this query.

4. The Ceteris Paribus Union Semantics

“When discussing with my wife what table to buy to our living room, I said: ’A round table is
better than a square one.’ By this I did not mean that irrespectively of their other properties,
any round table is better than a square-shaped table. Rather, I meant that any round table
is better (for our living room) than any square table that does not differ significantly in its
other characteristics, such as height, sort of wood, finishing, price, etc. This is preference ceteris
paribus or “everything else being equal”. Most of the preferences that we express or act upon
seem to be of this type.” This passage from [13] concisely expresses the motivation shared by
authors in diverse areas for adopting the ceteris paribus semantics for preference statements.

This more conservative semantics does not lead to controversial conclusions. Those who
may view this as a drawback because fewer tuples are now comparable must remember that
meaningful preference queries usually involve multiple preference statements. And while union-
based aggregation is problematic with totalitarianism, it works just fine with the ceteris paribus
semantics. Thus, as we would expect, the more preference statements we have, the more tuples
that are comparable and the more intricate the preference order obtained. And without unin-
tended side-effects. ¿From now on, when we use the term ceteris paribus semantics we mean
the ceteris paribus semantics with union-based aggregation.

To illustrate the ceteris paribus semantics, consider our running example in Figure 1. The
union of the preference relations �1, · · · ,�5 under ceteris paribus semantics is graphically de-
picted in Figure 2(a): The nodes stand for the tuples t1, . . . , t8, and there is a directed edge
from t to t′ if for one of the statements si, 1 ≤ i ≤ 5, we have t �i t′. The resulting preference
relation is specified by the transitive closure of this graph.

In the past few years our understanding of the ceteris paribus semantic and its computational
properties has considerably improved. In particular, [4] introduced CP-nets, a graph-based
formalism for describing the relationship between preference statements over single attributes in
the context of the ceteris paribus semantics, capturing the preferential independence assertion
inherent in these statements, and [8] showed how the topology of CP-nets affects the complexity
of various types of preference queries. A CP-net is a directed graph that is induced by a set of
preference statements. In terms of the database applications, the CP-net nodes correspond to
the schema’s attributes, and a directed edge exists from v to v′ if there is a preference statement
s such that v ∈ Ac(s) and v′ = Ar(s). That is, s describes the preference over the domain of v′

conditioned on the value of v and possibly other attributes. Finally, the preference information
induced by the statements of Q on the attributes of R is annotated with the corresponding nodes
in the graph. Formally, CP-nets are defined as follows:

Definition 1 A CP-net N over variables V = {X1, . . . , Xn} is a directed graph G over the
nodes X1, . . . , Xn, and there is a directed edge from Xi to Xj if the preference over the value

6

of Xj is conditioned on the value of Xi. Each node Xi ∈ V is annotated with a conditional
preference table (CPT(Xi)) that associates a strict (possibly empty) partial order �ui with each
instantiation ui of Xi’s parents Ui.

For example, the CP-net NQ induced by query Q from our running example in Figure 1
is depicted in Figure 2(b); The tables are the CPTs, and the values {Cmv, Csuv}, {Er, Ew}
and {Ib, Id} shortly represent the domains {minivan, suv}, {red, white}, {bright, dark} of the
attributes category, ext-color, and int-color, respectively. Since in this particular example
we have R = D(R), Figure 2(a) can be considered as a graphical illustration of a relation,
the transitive closure of which is exactly the preference relation induced by NQ over R: An
arc in this graph directed from tuple ti to tuple tj indicates that a preference for ti over tj
can be determined directly from one of the CPTs in the CP-net. For example, the fact that
Cmv ∧Ew ∧ Id is preferred to Cmv ∧Ew ∧ Ib (as indicated by a directed arc between them) is a
direct consequence of the ceteris paribus semantics of CPT (I).

An important property of the ceteris paribus semantics is that acyclic CP-nets always induce
strict partial preference orders. When the CP-net is cyclic, such preference cycles may exist,
depending on both the network’s structure and the particular preferences [9]2. Of course, cyclic
preferences are no less problematic with the totalitarian semantics. Finally, in what follows we
call a CP-net N completely specified if for each variable Xi, each assignment u on Ui, we have
that �u is a total order over the domain of Xi.

5. The BEST and ORD Operators

Our ultimate goal is to provide quick and appropriate responses to a preference query made by
a user. At this point, we hope to have convinced the reader that, semantically, there is only one
adequate option – the ceteris paribus semantics. Now, we take a closer look at the computational
cost associated with evaluating queries under this semantics.

Consider a preference relation �Q defined by a schema-dependent query Q = {s1, · · · , sm}.
The complexity of answering preference queries should be measured as a function of |R|, n (the
number of attributes), and m. Recall that the BEST operator was defined as: BEST(R,�Q) =
{t ∈ R | ∀t′ ∈ R : t′ �Q t}, and that a basic sub-routine in all algorithms for computing
BEST is dominance-testing , i.e. comparing between two tuples to determine whether one is
better than the other. Unfortunately, here we ran into a problem: In [3, 8, 19] it is shown
that the Achilles heel of all but the most simplistic qualitative preference representation models
is exactly the complexity of dominance testing. For instance, the results in [3, 8] show that
even for schema-dependent queries forming acyclic CP-nets over binary-valued attributes, the
problem is np-hard, and for non-binary attributes it is even not in np. Our conclusion at this
point is somewhat pessimistic: at least theoretically, the worst-case complexity of BEST is not
appropriate for database systems. In the rest of this section we describe an alternative to BEST,
the ORD operator, which can be computed in low polynomial time for many queries that are
problematic for BEST.

ORD is an alternative to the BEST operator that immediately presents itself: It is based on
sorting the given data set R according to the query preference relation �Q, and providing the
user with the top k tuples of R in a non-increasing order of preference, possibly extending the
presentation on demand. ORD is closely related to the standard ORDER BY operator of SQL
in which a qualitative preference query is used as the metric for comparison between tuples.
Formally, ORD is defined as follows:

2. A weaker notion of consistency discussed in [5, 10] can be used to answer certain queries in cyclic nets.

7

Definition 2 Given a relation schema R, let Q be a schema-dependent preference query in-
ducing a strict partial preference order �Q over D(R). Given a relation instance R of R,
ORD(R,�Q) contains all the tuples of R, totally ordered such that, for every t, t′ ∈ R, if t
appears on ORD(R,�Q) before t′, then we have t′ 6�Q t.

Informally, ORD provides us with a total-order over the database relation that is consistent
with �Q: If t �Q t′, then we know that ORD will show t prior to t′, but if t and t′ are
incomparable according to �Q, then ORD will order them arbitrarily. Observe that there is no
apparent computational difference between the operators BEST and ORD, since both correspond
to this or another form of sorting, and comparing between the elements of the list is a basic part
of any sorting algorithm. Hence, using ORD instead of its stronger counterpart BEST seems to
be a bad idea in the first place. However, below we show that there is slight difference between
BEST and ORD that turns out to be (complexity-wise) crucial.

In [3] it is shown how one can efficiently order a set of tuples with respect to a completely
specified CP-net, and this despite the np-hardness of dominance-testing in these networks. In
terms of database queries, this result can be stated as follows:

Theorem 1 (based on [3]) Let Q be a schema-dependent preference query over a relation
schema R with n attributes, R be an instance of R, and |R| = D. If Q induces an acyclic,
completely specified acyclic CP-net, then ORD(R,�Q) can be computed in time O(nD2).

¿From the perspective of database preference queries, this is a key result for the ceteris
paribus semantics. Unfortunately, this result requires the CP-net in question to be completely
specified. That is, for each attribute, we must provide a total order over its values for every
possible value assignment to its parents in the CP-net. This is not a very attractive requirement
from the database perspective, as it requires the user to supply much information. Moreover,
quadratic complexity in the size of the database relation, especially for the sort of very large
online databases we have in mind, can be problematic. Below we show how to obtain a similar
result, but with an incompletely specified acyclic CP-net, i.e., with any schema-dependent query
over single attributes that induces an acyclic CP-net graph.3 Moreover, the computational
complexity is reduced to O(nD log D).

Let us begin with a simple but very important observation that provides a key distinction
between ORD and BEST. To order a pair of tuples t and t′ consistently with a preference relation
�Q, we can be satisfied by knowing only that t 6�Q t′ or t′ 6�Q t. Note that this information
is weaker than knowing the exact preference relationship between t and t′. Now consider the
following important auxiliary lemma:

Lemma 2 Let N be an acyclic CP-net, and t 6= t′ be a pair of complete assignments on the
variables of N . Let Xi be a variable in N such that t and t′ assign the same values to all
ancestors of Xi in N , and different values to Xi. If, given the assignment u provided by t (and
t′) to Ui, we have t[Xi] �u t′[Xi], then we have N 6|= t′ � t. Otherwise, if t[Xi] and t′[Xi] are
incomparable given u, we have both N 6|= t′ � t and N 6|= t � t′.

It is not hard to see that the condition presented by Lemma 2 can be verified in time O(n)
by a top-down traversal of the CP-net. In what follows, we refer to this procedure as ordering
operator. The only problematic point is that Lemma 2 presents a condition that is sufficient but
not necessary for the truth of the query N 6|= t′ � t, i.e. our ordering operator is incomplete.

3. We note again, cyclic preferential dependencies are semantically and computationally complicated for both
totalitarian and ceteris paribus semantics.

8

order−pair (N, t, t′)

1. Let Vt,t′ be the set of all variables Xi, such that t and t′ assign different values to Xi but
the same values to all ancestors of Xi in N (in particular, ut = ut′ for all such Xi). Identify
Vt,t′ by a top-down traversal of N .

2. Fix a total topological ordering . of the variables of N . For each variable Xi ∈ N , and each
assignment u to Ui, fix a total order >u, consistent with the strict partial order �u specified
by CPT (Xi).

3. For each Xi ∈ Vt,t′ , let u∗ be the assignment to Ui made by t (and t′). If, for each
Xi ∈ Vt,t′ , we have t[Xi] >u∗ t′[Xi], then return t � t′. Otherwise, if for each Xi ∈ Vt,t′ ,
we have t′[Xi] >u∗ t[Xi], then return t′ � t.

4. Otherwise, order Vt,t′ with respect to ., and pick the first variable Xi in the sorted Vt,t′ .
If t[Xi] >u∗ t′[Xi], then return t� t′, otherwise return t′ � t.

Figure 3: A complete procedure for ordering a pair of complete assignments consistently with a
given CP-net.

For instance, consider the tuples t3 = Cmv ∧ Ew ∧ Ib and t8 = Csuv ∧ Ew ∧ Id in our running
example from Figures 1 and 2. According to the CP-net of the query in question, these two
assignments are incomparable (i.e., neither can be proven to be preferred to the other). However,
N 6|= t3 � t8 cannot be deduced using the condition of Lemma 2, because category is the only
root variable of this CP-net, and t3 assigns it a more preferred value than that assigned by t8.
Hence, the only conclusion so far (and not very useful one) is that some queries of the form
N 6|= t′ � t can be answered efficiently. Fortunately, the following result shows that the ordering
operator is complete in a weaker, yet sufficiently strong sense.

Lemma 3 Given an acyclic CP-net N , and two complete assignments t and t′ on the variables
of N , the truth of at least one of the queries N 6|= t′ � t or N 6|= t � t′ can be determined using
a pair of the corresponding ordering operators.

Using this ”partial completeness” of the algorithm for paired queries stated by Lemma 3, we
can provide an enhanced version of the ordering operator that defines a complete extension �
of the preference ordering � induced by the CP-net. The enhanced ordering operator order−pair
is specified in Figure 5, and its correctness is asserted in Theorem 4.

Theorem 4 Given an acyclic CP-net N over the variable set V, the preference relation �
induced by the order−pair operator is a total order (i.e., complete, irreflexive, anti-symmetric,
and transitive) over D(V), consistent with the preference relation � induced by N .

Given the set-theoretic properties of � described in Theorem 4, we can now proceed with
our key result for the ceteris paribus semantics.

Theorem 5 Let Q be a schema-dependent preference query over a relation schema R with
n attributes, R be an instance of R, and |R| = D. If Q induces an acyclic CP-net, then
ORD(R,�Q) can be computed in time O(nD log D).

Using the previous results, the proof of Theorem 5 is straightforward: First, it is easy to
see that the complexity of order−pair is O(n). Second, since � forms a total order, (i.e. every
two tuples in D(R) are comparable with respect to �), we can use any sorting mechanism to
implement ORD.

9

6. Conclusions

We showed that the totalitarian intersection semantics for database preference queries is in-
appropriate. The ceteris paribus semantics is much more appealing, but it computationally
prohibitive when we attempt to compute the BEST operator. Instead, we proposed the use of
the ORD operator, a relaxation of BEST that can be implemented efficiently for wide classes of
preference queries. A closer inspection of the ORD operator shows interesting relationship to the
totalitarian semantics. In a nut-shell, ORD leads to a flexible totalitarian-like approximation of
BEST, with an implicit priority over preferences. For further discussion on this issue, as well as
for analysis of the interplay between ORD and standard relational operators, and a discussion of
the relative merits of qualitative and quantitative models for handling preferences in database
systems, we refer the reader to the full paper.

References

[1] R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences. In SIGMOD-00,
pages 297–306, 2000.

[2] H. Bierens and N. Swanson. The econometric consequences of the ceteris paribus condition in economic
theory. Journal of Econometrics, 95(2):223–253, 2000.

[3] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A tool for representing and
reasoning about conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research,
2003. to appear.

[4] C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris paribus preference
statements. In UAI-99, pages 71–80, 1999.

[5] R. I. Brafman and Y. Dimopoulos. A new look at the semantics and optimization methods of CP-networks.
In IJCAI-03, pages 1033–1038, 2003.

[6] J. Chomicki. Preference queries in relational databases. ACM Transactions on Database Systems. to appear.

[7] J. Chomicki. Querying with intristic preferences. In EDBT-02, pages 34–51, 2002.

[8] C. Domshlak. Modeling and Reasoning about Preferences with CP-nets. PhD thesis, Ben-Gurion University,
2002.

[9] C. Domshlak and R. Brafman. CP-nets - reasoning and consistency testing. In KR-02, pages 121–132, 2002.

[10] C. Domshlak, F. Rossi, C. Venable, and T. Walsh. Reasoning about soft constraints and conditional prefer-
ences: Complexity results and approximation techniques. In IJCAI-03, pages 215–220, 2003.

[11] J. Doyle and M. Wellman. Representing preferences as ceteris paribus comparatives. In Proceedings of the
AAAI Spring Symposium on Decision-Theoretic Planning, pages 69–75, March 1994.

[12] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference queries in deductive databases. New Generation
Computing, pages 57–86, 2001.

[13] S. O. Hansson. What is ceteris paribus preference. Journal of Philosophical Logic, 25(3):307–332, 1996.

[14] S. O. Hansson. Preference logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philosophical
Logic, volume 4, pages 319–394. Kluwer, 2 edition, 2001.

[15] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system for the efficient execution of multi-
parametric ranked queries. In SIGMOD-01, pages 259–269, 2001.

[16] W. Kießling. Foundations of preferences in database systems. In VLDB-02, 2002.

[17] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics.
Artificial Intelligence, 44:167–207, 1990.

[18] M. Lacroix and P. Lavency. Preferences: Putting more knowledge into queries. In VLDB-87, pages 217–225,
1987.

[19] J. Lang. From preference representation to combinatorial vote. In KR-02, pages 277–288, 2002.

[20] Y. Shoham. A semantics approach to non-monotonic logics. In IJCAI-87, pages 388–392, 1987.

[21] S. W. Tan and J. Pearl. Qualitative decision theory. In AAAI-94, pages 928–933, 1994.

[22] R. Torlone and P. Ciaccia. Why are my preferred items? In Workshop on Recommendation and Personal-
ization in E-Commerce, 2002.

10

Appendix A. Proofs

Lemma 2 Let N be an acyclic CP-net, and t 6= t′ be a pair of complete assignments on
the variables of N . Let Xi be a variable in N such that t and t′ assign the same values to all
ancestors of Xi in N , and different values to Xi. If, given the assignment u provided by t (and
t′) to Ui, we have t[Xi] �u t′[Xi], then we have N 6|= t′ � t. Otherwise, if t[Xi] and t′[Xi] are
incomparable given u, we have both N 6|= t′ � t and N 6|= t � t′.

Proof: Given such a variable Xi, suppose that we have t[Xi] �u t′[Xi], and assume to the
contrary that N |= t′ � t. The semantics of CP-nets entails that there exists a sequence of
outcome improvements from t to t′, where each improvement is sanctioned by one of the CPTs
in N (for a formal definition, see the notion of flipping sequences in [3]). Since in the current
context u, t[Xi] is not improvable to t′[Xi], one of the variables in Ui will have to be improved
first. However, changing an assignment on a rooted subgraph of N , and restoring it back (recall
how we picked Xi at the first place) is impossible. Otherwise, it will entail that acyclic CP-net
may represent inasymmetric orders, and this will violate the very basic Theorem 1 in [3]. Hence,
we proved that N 6|= t′ � t. The proof for the case of t[Xi] and t′[Xi] incomparable given u is
by a similar demonstration that there are no sequences of local improvements neither from t to
t′, nor from t′ to t.

Lemma 3 Given an acyclic CP-net N , and two complete assignments t and t′ on the variables
of N , the truth of at least one of the queries N 6|= t′ � t or N 6|= t � t′ can be determined using
a pair of the corresponding ordering operators.

Proof: Due to the acyclicity of N , a variable X satisfying the conditions of Lemma 2 has to
exist for at least one of the queries N 6|= o′ � o and N 6|= o � o′ (and possibly for both).
Otherwise, it has to be the case that t is identical to t′.

Theorem 4 Given an acyclic CP-net N over the variable set V, the preference relation �
induced by the order−pair operator is a total order (i.e., complete, irreflexive, anti-symmetric,
and transitive) over D(V), consistent with the preference relation � induced by N .

Proof: The completeness of � is immediate from the definition of order−pair. Therefore, we
proceed with showing that the transitive closure of the relation � is asymmetric. Assume to
the contrary that there exists a set of assignments t1, . . . , tk such that:

t1 � t2 � · · · � tk � t1 (1)

For 1 ≤ i ≤ k, let V (ti) be the set of all variables X such that, given the assignment u
provided by ti to UX , the value ti[X] can be improved with respect to >u used by order−pair.
Let Ni be the subgraph of N consisting of the variables in V (ti) and their descendants in N .

By construction of order−pair, we have Ni 6⊃ Ni+1 for 1 ≤ i < k, and Nk 6⊃ N1. To see this,
notice that if, for some i, we have Ni ⊃ Ni+1, then:

1. There exists a variable X such that: (i) all ancestors of X are assigned by both ti and
ti+1 to their highest values with respect to >u, where u = ti[UX] = ti+1[UX]; and (ii)
according to >u, X is assigned to its highest value by ti+1 and one of the other values by
ti.

11

2. There is no variable X such that: (i) all ancestors of X are assigned by both ti and ti+1

to their highest values with respect to >u; and (ii) according to >u, X is assigned to its
highest value by ti and one of the other values by ti+1.

However, this contradicts our assumption that (order−pair will return) ti � ti+1.
For 1 ≤ i ≤ k, let Xi be the highest variable in V (ti) according to the total order . used by

order−pair. Recall that, for 1 ≤ i ≤ k, we have either Ni ⊆ Ni+1, or both Ni \ Ni+1 6= ∅ and
Ni+1\Ni 6= ∅ (i.e. the sets of root nodes of Ni and Ni+1 are not included one in the other). Now,
if Ni ⊆ Ni+1, then each variable node in Ni is either a root node in Ni+1, or is a descendant of
one of these roots. Therefore, we have either Xi+1 . Xi, or Xi+1 = Xi. In the second case of
mutual non-inclusion of Ni and Ni+1, the same relationship between Xi and Xi+1 holds by the
definition of order−pair. (All the above holds for (X1 . Xk) ∨ (X1 = Xk)).

Now, if for some 1 ≤ i ≤ k we have Xi+1.Xi (and not Xi+1 = Xi), the initial assumption (1)
is trivially contradicted. Therefore, we are left with the case of:

X1 = X2 = · · · = Xk = X

Now, by definition of X1, . . . , Xk, we have:

t1[UX] = t2[UX] = · · · = tk[UX] = u

This must be the case since all the ancestors of X are assigned to their unique assignment (of
which u is a part) that is not improvable with respect to the set of total orderings >u defined
by order−pair. This entails

t1[X] >u t2[X] >u · · · >u tk[X] >u t1[X],

which is inconsistent with the definition of CP-nets and step 2 of order−pair. Hence, we have
accomplished the proof that � is a total order over D(V). Finally, if N |= t � t′, then, by
definition of order−pair, we must have t � t′. Therefore, the total order � is consistent with
the relation � induced by N .

12

