Answer Set Optimization

G. Brewka, I. Niemelä, M. Truszczynski

brewka@informatik.uni-leipzig.de

Universität Leipzig
Outline

1. Answer sets and answer set programming
2. Describing the quality of solutions
3. Optimization programs
4. Example: solution coherence in meeting scheduling
5. Conclusions
Why are AS interesting?

- provide meaning to logic programs with default negation \textit{not}
- support problem solving paradigm where models (not theorems) represent solutions
- many interesting applications in planning, reasoning about action, configuration, diagnosis, space shuttle control, ...
- several useful extensions: disjunctive LPs, cardinality constraints, weight constraints ...
- interesting implementations: dlv, Smodels
Extended logic programs

Syntax of rules:

\[A \leftarrow B_1, \ldots, B_n, \text{not } C_1, \ldots, \text{not } C_m \]

where \(A \), the \(B_i \) and the \(C_j \) are ground literals.

2 types of negation:

- classical negation \(\overline{\cdot} \)
- default negation \(\text{not} \)
Answer sets

S answer set of program P iff S is

- closed under P:
 $A \in S$ whenever
 $A \leftarrow B_1, \ldots, B_n, \text{not } C_1, \ldots, \text{not } C_m \in P$,
 $B_1, \ldots, B_n \in S$ and $C_1, \ldots, C_m \notin S$,

- logically closed:
 S consistent or equal to set of all literals.

- grounded in P:
 $A \in S$ implies there is a derivation for A from P
 based on rules whose not-Literals are not in S.
Good and bad solutions

- many problems have solutions of different quality
- basic ASP paradigm provides no distinction
- how to compare answer sets?
- quantitative measures, e.g. weights and maximize statements in Smodels, weak constraints in dlv
- here: qualitative measures based on preferences
Preference relations on AS

- different ways of adding preferences to LPs
- preferences between rules vs preferences between literals/formulas
- fixed vs. context dependent (the latter requires preference expressions within programs)
- here: context dependent preferences between literals/formulas
LPs with ordered disjunction

finite set of rules of the form:

\[C_1 \times \ldots \times C_n \leftarrow A_1, \ldots, A_m, \text{not } B_1, \ldots, \text{not } B_k \]

\(C_i, A_j, B_l \) ground literals.

If body then some \(C_j \) must be true, preferably \(C_1 \), if impossible then \(C_2 \), if impossible \(C_3 \), etc.

- Answer sets satisfy rules to different degrees.
- Use degrees to define global preference relation on answer sets.
- Different options how to do this (inclusion based, cardinality based etc.).
Optimization programs

- LPODs amalgamate generation of answer sets with quality assessment
- different types of programs available (disjunctive, cardinality constraints etc.)
- want more general preferences, possibly among unavailable options
- how to obtain more modularity and generality?
- use program P_{gen} to generate answer sets, preference program P_{pref} to compare them
- all we require is that P_{gen} generates sets of literals
Preference programs

Finite set of rules of the form

\[C_1 > \ldots > C_k \leftarrow a_1, \ldots , a_n, \text{not} b_1, \ldots , \text{not} b_m \]

\(a_i, b_j\) literals, \(C_i\) boolean combination:
built using \(\lor, \land, \neg, \text{not}\).
\(\neg\) in front of atoms, \(\text{not}\) in front of literals only.

additional expressiveness:
combinations of properties preferred over others:

\[a > (b \land c) > d \leftarrow f \]
equally preferred options:

\[a > (b \lor c) > \text{not} d \leftarrow g \]
Preference rule satisfaction

Consider \(r = C_1 > \ldots > C_k \leftarrow \text{body} \).

For the degree of satisfaction \(v_S(r) \) of \(r \) given set \(S \) of literals, there are three cases:

1. body not satisfied in \(S \):
 \(r \) inapplicable thus irrelevant: \(v_S(r) = I \)
2. body satisfied and no \(C_i \) satisfied in \(S \):
 rule specifies irrelevant preferences: \(v_S(r) = I \)
3. body satisfied and at least one \(C_i \) satisfied in \(S \):
 \(v_S(r) = \min \{ i : S \models C_i \} \).
Satisfaction preorder

Views on irrelevance:

- I incomparable to other values, or
- I better than 2, 3, ... because no preference is violated

adopt latter view here:

1, I

 2

 ...
Preference satisfaction ordering

\[P_{pref} = \{ r_1, \ldots, r_n \}, \text{ AS } S \text{ induces satisfaction vector } V_S = (v_S(r_1), \ldots, v_S(r_n)). \]

Extend po on satisfaction degrees to po on satisfaction vectors and answer sets:

\[S_1, S_2 \text{ answer sets.} \]

\[V_{S_1} \geq V_{S_2} \text{ if } v_{S_1}(r_i) \geq v_{S_2}(r_i), \text{ for all } i \in \{1, \ldots, n\}. \]

\[V_{S_1} > V_{S_2} \text{ if } V_{S_1} \geq V_{S_2} \text{ and not } V_{S_2} \geq V_{S_1}. \]

\[S_1 \geq S_2 (S_1 > S_2) \text{ iff } V_{S_1} \geq V_{S_2} (V_{S_1} > V_{S_2}) \]
Meta preferences

- Preference rules themselves may be of different importance
- Put rules in subsets R_1, R_2, ... of decreasing importance
- Select answer sets most preferred according to R_1, among those answer sets most preferred according to R_2 etc.
- Allows for distinction among different criteria
Example: solution coherence

- assume solution \(S \) for problem \(P \) was computed
- problem changes slightly to \(P' \)
- not interested in arbitrary solution of \(P' \), but solution as close as possible to \(S \).
- distance measure based on symmetric difference:
\[
A \Delta B = A \setminus B \cup B \setminus A
\]

\[
S_1 \leq_S S_2 \iff S_1 \Delta S \subseteq S_2 \Delta S
\]

- corresponding preference program:
\[
\{ a > \text{not } a : a \in S \} \cup \{ \text{not } a > a : a \notin S \}.
\]
Meeting scheduling

\begin{align*}
 & \text{part}(p_1, m_1) \quad \text{part}(p_3, m_2) \quad \text{unav}(p_1, s_4) \\
 & \text{part}(p_2, m_1) \quad \text{part}(p_3, m_3) \quad \text{unav}(p_2, s_4) \\
 & \text{part}(p_2, m_2) \quad \text{part}(p_4, m_3) \quad \text{unav}(p_4, s_2) \\
\end{align*}

Meetings need 1 slot (using cardinality constraints):

\[1\{\text{slot}(M, S) : \text{slot}(S)\} \leq 1 \leftarrow \text{meeting}(M) \]

Constraints:

\[\leftarrow \quad \text{part}(P, M), \text{slot}(M, S), \text{unav}(P, S) \]

\[\leftarrow \quad \text{part}(P, M), \text{part}(P, M'), M \neq M', \\
 \text{slot}(M, S), \text{slot}(M', S) \]
Meeting scheduling, ctd.

A solution: \(slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_3) \)

\(p_4 \) becomes unavailable at \(s_3 \): \(unav(p_4, s_3) \)

Preference rules:
\(slot(m_1, s_1) > \text{not } slot(m_1, s_1), \)
\(slot(m_2, s_2) > \text{not } slot(m_2, s_2), \ldots \)

Former solution invalid. Some new solutions:

\(S_1 : slot(m_1, s_1), slot(m_2, s_2), slot(m_3, s_4) \)
\(S_2 : slot(m_1, s_2), slot(m_2, s_1), slot(m_3, s_4) \)
\(S_3 : slot(m_1, s_3), slot(m_2, s_2), slot(m_3, s_1) \)

inclusion based strategy: \(S_1 \) better than \(S_2 \).
cardinality based strategy: \(S_1 \) better than \(S_2 \) and \(S_3 \).
More stuff in the paper

- **complexity:**
 one extra layer of complexity, e.g.
 \(\exists \) optimal AS \(S \) with \(l \in S \)? \(\Sigma_2^P \)-complete
 (extended LPs, possibly with cardinality or weight constraints)

- **implementation:**
 iterated improvement of current solution
 generated by tester program

- **relationship to CP-networks:**
 different interpretation of preferences: ceteris
 paribus vs. multi-criteria, theorems show CP-ordering can be approximated
Conclusion

- answer set programming: interesting declarative problem solving paradigm
- inclusion of optimization facilities increases applicability
- context dependent preferences among formulas flexible and powerful
- possible applications: configuration with weak constraints, diagnosis, planning, inconsistency handling ...
- future work: general optimization language for specifying qualitative preferences and optimization strategies