Verena Fritzsche WS 2002/2003

Gliederung

- 1. Traditioneller Ansatz
- 2. Neuer Ansatz: Satisfiability Planning
- 3. Experimentelle Untersuchungen
- 4. Zusammenfassung
- 5. Quellen / Literatur

Traditioneller Ansatz

- Planen traditionell als **Deduktion** formalisiert
 - ightarrow Plan-Problem beschrieben durch ein Theorem der Form

Anfangsbedingungen + Sequenz von Aktionen ⊃ Zielbedingungen

- \rightarrow Planen = Finden eines deduktiven Beweises für das Theorem
- Axiome geben an, dass aus dem Auftreten einer Aktion bei Erfülltsein ihrer Vorbedingungen - ihre Effekte folgen
 - \rightarrow z.B.: \forall x,y,z,i. on (x,y,i) \land clear (x,i) \land clear (z,i) \land move (x,y,z,i) \supset on (x,z,i+1) \land clear (y,i+1)
- unterschiedliche Repräsentationen für Aktionen und Fluents

Traditioneller Ansatz

Bsp.:

Start A

2-Schritt-Plan ?

Ziel B A

 $\rightarrow \text{Formalisierung:}$

∃ x_1 , y_1 , z_1 , x_2 , y_2 , z_2 . on (A,B,1) ∧ on (B,table,1) ∧ clear(A,1) ∧ move (x_1 , y_1 , z_1 ,1) ∧ move (x_2 , y_2 , z_2 ,2) ⊃ on (B,A,3)

→ Plan entspricht dann der Instantiierung der beiden Instanzen des move-Prädikates

Traditioneller Ansatz

- Verbreiteter Glaube, Planen sein ein von Natur aus systematischer Prozess
 - \rightarrow systematische Suche im Zustandsraum oder im Raum partieller Pläne
 - \to großer Erfolg des STRIPS-Systems schuf grundlegendes Paradigma für praktisch alle nachfolgende Arbeit im Planen

Satisfiability Planning

- Neuer Ansatz:
 - ightarrow Test auf aussagenlogische Erfüllbarkeit
 - \rightarrow gesamte aufgabenspezifische Information in uniformer Notation repräsentiert (Klauselform)
 - \rightarrow keine Unterscheidung zwischen Operationen und Zuständen (Fluents)

Plan-Problem = Menge von Axiomen
Planen = Finden eines Modells für diese Axiome

ightarrow zu jedem Modell der Axiome korrespondiert ein Plan

- Beispiel von vorhin: Start A 2-Schritt-Plan? Ziel B A
- Axiomatisierung:
 - \rightarrow Start- und Zielzustand
 - on (A,B,1) ∧ on (B,table,1) ∧ clear (A,1) ∧ on (B,A,3)
 - \rightarrow Aktionen
 - ∀x,y,z,i. on (x,y,i) ∧ clear (x,i) ∧ clear (z,i) ∧ move (x,y,z,i)
 ⊃ on (x,z,i+1) ∧ clear (y,i+1)
 - → Frame-Axiome
 - $\forall x,y,u,v,w,i$. on $(x,y,i) \land move (u,v,w,i) \land x \neq u \supset on (x,y,i+1)$
 - $\forall x,u,v,w,i$. clear $(x,i) \land move (u,v,w,i) \land x \neq w \supset clear (x,i+1)$

- Finden eines Modells für die Axiome:
 - \rightarrow Bsp. 1: on (A,B,1), on (B,table,1), clear (A,1), on (B,A,2), on (B,A,3)
 - $\!\rightarrow\! \text{erfüllt die gegebenen Axiome}$
 - $\rightarrow\!$ Aber: Welt ändert sich, obwohl keine bekannte Aktion auftritt
 - \rightarrow Bsp. 2: on (A,B,1), on (B,table,1), clear (A,1), move (B,table,A,1), on (B,A,2), on (B,A,3)
 - ightarrowerfüllt ebenfalls alle Axiome
 - \rightarrow Aber: es wird eine Aktion ausgeführt, deren Vorbedingungen nicht erfüllt sind

- Einfache Übernahme der Axiome aus dem deduktiven Ansatz genügt nicht
- unerwünschte Modelle müssen ausgeschlossen werden
- Einführung von zusätzlichen Axiomen:
 - Möglichkeit ausschließen, dass Aktionen ausgeführt werden, deren Vorbedingungen falsch sind
 - → eine Aktion impliziert sowohl ihre Vorbedingungen, als auch ihre Effekte
 - \rightarrow Bsp.: $\forall x,y,z,i.$ move $(x,y,z,i) \supset (clear (x,i) \land clear (z,i) \land on (x,y,i))$

- → Zu jedem Zeitpunkt wird nur eine Aktion ausgeführt
- $\rightarrow Bsp.: \forall x,x',y,y',z,z',i. \ (x\neq x'\ \lor\ y\neq y'\ \lor\ z\neq z')\supset \\ \neg\ move\ (x,y,z,i)\ \lor\ \neg\ move\ (x',y',z',i)$
 - → Zu jedem Zeitpunkt wird irgendeine Aktion ausgeführt
- kann auch no-op sein
- \rightarrow Bsp.: \forall i<N. $\exists x,y,z.$ move (x,y,z,i)
- Wenn ein Plan-Problem durch Angabe eines kompletten Initialzustandes spezifiziert wird, so garantieren diese Axiome, dass alle Modelle zu gültigen Plänen korrespondieren

Zurück zum Beispiel von vorhin:

Start
$$A$$
 B 2-Schritt-Plan? Ziel A

 \rightarrow einziges Modell:

```
on (A,B,1), on (B,table,1), clear(A,1),
move (A,B,table,1), on (A,table,2), clear(B,2),
move (B,table,A,2), on(B,A,3)
```

- Vorteil des Ansatzes: sehr ausdrucksstark
 - ightarrow beliebige Bedingungen über beliebige (Zwischen-)Zustände und über die Struktur des Planes selbst
 - z.B. zum Zeitpunkt 5 soll auf Block C oder auf Block D etwas stehen
 - \rightarrow ¬ clear(C,5) ∨ ¬clear(D,5) zur Problem-Spezifikation hinzufügen
 - → schwierig im deduktiven Ansatz
 - z.B. Aktion move (A,B,C,3) soll nicht enthalten sein
 - \rightarrow ¬ move (A,B,C,3) zur Spezifikation hinzufügen
 - → ist im deduktiven Ansatz nicht möglich

- ightarrow Beziehungen zwischen Prädikaten können explizit angegeben werden
 - es ist nicht nötig, "einfache" von "abgeleiteten" Prädikaten zu unterscheiden
 - z.B. behandeln die meisten STRIPS-Operatoren die Pr\u00e4dikate clear und on separat
 - im Erfüllbarkeitsansatz kann einfach zugewiesen werden: clear (x,i) ≡ ¬∃y. on (y,x,i)

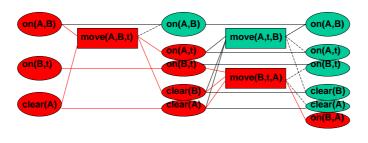
- Zusammenfassung:
 - Plan-Problem = Menge von Axiomen
 - Planen = Finden eines Modells für diese Axiome
 - keine Unterscheidung zwischen Axiomen für Operationen und Axiomen für Zustände
 - Domain-Axiome im allg. stärker als im deduktiven Ansatz, da ungewollte Modelle ausgeschlossen werden müssen:
 - \rightarrow 1. Eine Aktion impliziert sowohl ihre Vorbedingungen, als auch ihre Effekte
 - ightarrow 2. Zu jedem Zeitpunkt wird genau eine Aktion ausgeführt
 - ightarrow 3. Anfangszustand ist vollständig spezifiziert
 - jedes Modell der Axiome korrespondiert zu einem gültigen Plan

- Vergleich von verschiedenen Problem Encodings
 - ightarrow 1. Graphplan-basierte Darstellung
 - ightarrow 2. Lineare Darstellung
 - ightarrow 3. Zustandsbasierte Darstellung
- Systematische vs. Stochastische Suche
- Betrachtung von Instanzen aus der rocket- und der logistics-Domäne, sowie einiger großer Blockwelt-Probleme

Experimentelle Untersuchungen Problem - Encodings

Graphplan-basierte Darstellung

wird gewonnen aus dem Plangraphen



Problem - Encodings

Graphplan-basierte Darstellung (2)

- Plangraph kann in KNF konvertiert werden:
- Startzustand = gültige Fluents in Schicht 1
 Zielzustand = gültige Fluents in höchster Schicht
 - \rightarrow on (A,B,1) \land on (B,table,1) \land clear (A,1) \land on (B,A,3)
- Durchlaufen des Plangraphen von Zielschicht rückwärts
 - ightarrow jede Proposition in Level i impliziert die Disjunktion aller Aktionen des Levels i-1, die sie als add-Effekt haben
 - z. B. on $(A,B,3) \supset (no-op (on (A,B,2)) \lor move (A,table,B,2))$
 - → Aktionen implizieren ihre Vorbedingungen
 - z. B. move (B,table,A,2) \supset (clear (B,2) \land clear (A,2) \land on (B,table,2))
 - $\,\,
 ightarrow\,\,$ widersprüchliche Aktionen schließen sich wechselseitig aus
 - z. B. ¬ move (A,table,B) ∨ ¬ move (B,table,A)
- liefert Klausel-Form des Erfüllbarkeitsansatzes

Experimentelle Untersuchungen Problem - Encodings

Lineare Darstellung

- Bedingungen, um sicherzustellen, dass alle Modelle für eine Menge von Axiomen zu gültigen Plänen korrespondieren:
 - ightarrow eine Aktion impliziert sowohl ihre Vorbedingung als auch ihre Effekte
 - ightarrow zu jedem Zeitpunkt tritt genau eine Aktion auf
- Modelle korrespondieren unter diesen Bedingungen zu linearen Plänen
- Problem: viele Aktionen → Darstellung sehr lang

Problem - Encodings

Lineare Darstellung (2)

 größte Reduktion der Problem-Größe durch Reduzieren der Quantifier-Schachtelungstiefe erreichbar

```
Bsp.: \forall x,x',y,y',z,z',i. (x \neq x' \lor y \neq y' \lor z \neq z')

\supset \neg move (x,y,z,i) \lor \neg move (x',y',z',i)

move (x,y,z,i) ersetzen durch {object (x,i), source (y,i), dest (z,i)}

\forall i, x_1,x_2, x_1 \neq x_2 \supset \neg object (x_1,i) \lor \neg object (x_2,i)

\forall i, y_1,y_2, y_1 \neq y_2 \supset \neg source (y_1,i) \lor \neg source (y_2,i)

\forall i, z_1,z_2, z_1 \neq z_2 \supset \neg dest (z_1,i) \lor \neg dest (z_2,i)
```

Experimentelle Untersuchungen

Problem - Encodings

Zustandsbasierte Darstellung

- Zustandsaxiome geben an, was es für jeden individuellen Zustand heißt, gültig zu sein
 - z. B. in der blocks world sichern Zustandsaxiome, dass auf einem Block nur ein anderer sein kann; dass ein Block nicht gleichzeitig frei sein und etwas auf ihm stehen kann, usw. ...
- Zustandsaxiome sichern, dass jeder Zustand intern konsistent ist
- zur Beschreibung von Zustandsübergängen relativ wenige Axiome nötig
 - $\rightarrow\,$ Axiome über mögliche Aktionen, die für eine Änderung verantwortlich sein können
 - z. B. (¬ on (A,B,i) \wedge on (A,B,i+1)) $\supset \exists \ z$. move (A,z,B,i)
 - ightarrow Axiome über den wechselseitigen Ausschluss von widersprüchlichen Aktionen
 - → Axiome, die zusichern, dass eine Aktion ihre Vorbedingungen und ihre Effekte impliziert

Problem - Encodings

- Kann noch kompakter gemacht werden:
 - ightarrow 1. Trick mit der Argumentreduktion
 - \rightarrow 2. Eliminierung von Aktions-Axiomen, da ihre Wirkung mittels Zustandsaxiomen ausgedrückt werden kann
 - $\rightarrow \, \mathbf{Bsp.:} \, \mathbf{Logistik\text{-}Dom\"ane}$

Ersatz expliziter load-truck-, load-airplane-Axiome durch Zustandsaxiom:

```
at (obj,loc,i) \supset at (obj,loc,i+1) \lor \exists x \in \text{truck} \cup \text{airplane}. in (obj,x,i+1) \land at (x,loc,i) \land at (x,loc,i+1)
```

 sogar soweit fortführbar, dass nur Axiome über Fluents übrigbleiben

Experimentelle Untersuchungen

Verwendete Algorithmen

Tableau

- systematischer Erfüllbarkeitstester
- baut inkrementell Wahrheitswert-Zuweisungen auf
- geht zurück, sobald er feststellt, dass die Zuweisung die Formel nicht erfüllt
- Vereinfachung der Formel während des Durchlaufens
- einer der momentan schnellsten vollständigen Erfüllbarkeitstester

Verwendete Algorithmen

Walksat

- basiert auf zufallsinitialisierter, lokaler Greedy-Suche (Stochastische Methode)
- Wahl einer zufälligen Wahrheitswertebelegung für die Formel
- Zufällige Wahl einer Klausel, die von der Belegung nicht erfüllt wird
- Wahrheitswert einer Variablen dieser Klausel wird geändert ("flip") und damit die Klausel erfüllt
- mehrere andere Klauseln können durch den "flip" unerfüllt werden

Experimentelle Untersuchungen

Verwendete Algorithmen

Walksat (2)

- greedy-Strategie: Auswahl der Variablen, bei deren Änderung die sich ergebende Anzahl erfüllter Klauseln maximal ist
- Strategie zufällig mit einer gewissen Häufigkeit angewendet, um lokale Extrema zu umgehen
- Algorithmus "flipt" solange, bis erfüllende Belegung gefunden oder vordefiniertes Maximum an "flips" erreicht
- wenn keine erfüllende Belegung gefunden, Neustart mit anderer Zufallsinitialisierung
- von Natur aus unvollständig, d. h., kann nicht beweisen, dass eine Formel unerfüllbar ist

Experimentelle Untersuchungen Ergebnisse

				SAT-Darstellung					
	Zeit /	Graphplan		Graphplan-basiert			Direkt		
Problem	Aktionen	Knoten	Zeit	Variablen	syst.	stoch.	Variablen	syst.	stoch
rocket_ext.a	7/34	1.625	520	1.103	4,4	4,7	331	0,8	0,1
rocket_ext.b	7/30	1.701	2.337	1.179	2,8	21	351	2,5	0,2
logistics.a	11/54	2.891	6.743	1.782	6,9	29	828		2,7
logistics.b	13/47	3.382	2.893	2.069	6,4	47	843		1,6
logistics.c	13/65	4.326		2.809	23.061	262	1.141		1,9
bw_large.a	6/12	5.779	11,5	5.772			459	0,5	0,3
bw_large.b	9/18	18.069	27.115				1.087	1,5	22
bw_large.c	14/28						3.016	564	670
bw_large.d	18/36						6.764		937

Experimentelle Untersuchungen Ergebnisse

- Direkte (lineare / zustandsbasierte) Darstellung am kompaktesten → am schnellsten gelöst
- Graphplan-basierte Darstellung + Erfüllbarkeitsalgorithmus leistungsfähiger als Graphplan-System selbst
- stochastische Suche übertrifft systematische in den meisten Fällen deutlich
- besonders gute Performance bei Walksat + zust.basierter Darstellg.
 - \rightarrow Stochastische Methoden + effiziente Darstellungstechniken vielversprechender Ansatz

Experimentelle Untersuchungen Ergebnisse

- Systematische und stochastische Methoden ergänzen sich:
 - \rightarrow z.B. Instanz bw_large.d:
 - Walksat + direkte Darstellung findet den optimalen Plan
 - Tableau findet keine Lösung, kann aber beweisen, dass es keinen kürzeren Plan gibt
 - \rightarrow systematsche und stochastische Methoden kombinierbar:
 - stochastische Methoden zur Plan-Synthese
 - systematische Methoden zum Finden unterer Schranken für die Plan-Länge

Zusammenfassung

- Modell für das Planen basierend auf Erfüllbarkeit anstatt auf Deduktion
- Verstärkung der deduktiven Axiome nötig, um ungewollte Modelle auszuschließen
- sehr ausdrucksstark
- verschiedene effiziente Problem-Encodings
 - $\rightarrow \textbf{zustandsbasierte Darstellung am kompaktesten}$
- Einsatz von stochastischen Methoden
 - ightarrow sind den systematischen oft stark überlegen
- Kombination von stochastischen und systematischen Methoden

Quellen / Literatur

- Kautz, H. & Selman, B. Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search
- Kautz, H. & Selman, B. Planning as Satisfiability
- Prof. G. Brewka Materialien zur Vorlesung WBS WS 01/02
- Cohen, P. & Feigenbaum, E. The Handbook of Artificial Intelligence