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Abstract. A number of prioritized variants of Reiter’s default logieve been
described in the literature. In this paper, we introduce matural principles for
preference handling and show that all existing approachiésof satisfy them.
We develop a new approach which does not suffer from thes#csiaings. We
start with the simplest case, supernormal default theonibere preferences are
handled in a straightforward manner. The generalizatiqoréoequisite-free de-
fault theories is based on an additional fixed point condifar extensions. The
full generalization to arbitrary default theories uses duntion of default the-
ories to prerequisite-free theories. The reduction canibaed as dual to the
Gelfond/Lifschitz reduction used in logic programming tbe definition of an-
swer sets. We finally show how preference information carepeasented in the
logical language.

1 Introduction

In nonmonotonic reasoning conflicts among defaults are ubiquitougngtance, more
specific rules may be in conflict with more general ones, a problem which has been
studied intensively in the context of inheritance networks [21, 2B, @hen defaults
are used for representing design goals in configuration tasks conflictalhaarise.
The same is true in model based diagnosis where defaults are used to refiresen
assumption that components typically are ok. In legal reasoning cor#tindsg rules
are very common [22] and keep many lawyers busy (and rich).

The standard nonmontonic formalisms handle such conflicts by gergenaditiple
belief sets. In default logic [23] and autoepistemic logic [18] these aet called ex-
tensions or expansions, respectively. In circumscription [17] thiefossts correspond
to different classes of preferred models.

Usually, not all of the belief sets are plausible. We often tend to prefaesdf the
conflicting rules and are interested in the belief sets generated by the prefdesd
only. One way to achieve this is to rerepresent the defaults in such a wathéhun-
wanted belief sets are not generated, for instance by adding new consistaditiocs
to a default. This approach has the advantage that the logical machineryuoicbgy-
ing nonmonotonic logic does not have to be changed. On the otherileaapgresenting



the defaults that way is a very clumsy business. The resulting new tiefand to be
rather complex. Moreover, the addition of new information to theledge base may
lead to further rerepresentations. In other words, elaboration tolerawicdaited.

For this reason we prefer an approach where preferences among defaults can be
represented via an explicit preference relation and where the logical machsrexy i
tended accordingly. Indeed, for all major nonmonotonic formalismsh guwioritized
versions have been proposed in the past. Among them are prioritizedhsitaption
[12], hierarchic autoepistemic logic [15], prioritized theory rémis[2, 19], prioritized
logic programming [25, 28], or prioritized abduction [10].

Also several prioritized versions of Reiter's default logic, the logecare dealing
with in this paper, have been described in the literature [16, 4, 1, 9jeliss of defea-
sible logics beyond default logic [20, 13]. However, as we willglio Section 3, these
approaches are not fully satisfactory. It turns out that some of therticithprecast
Reiter's default logic to a logic of graded beliefs, while others do lgvenforce the
application of rules with high priority, which leads to counteririi@tbehavior.

Our approach takes a different perspective, which is dominated by the fiojow
two main ideas. The firstis that the application of a default rule meanstp jo a con-
clusion, and this conclusion is yet another assumption which has teeldeglebally in
the program for the issue of deciding whether a rule is applicable niThe second
is that the rules must be applied in an order compatible with the pyrimfiormation.
We take this to mean that a rule is appliealess it is defeated via its assumptions by
rules of higher prioritiesThis view is new and avoids the unpleasant behavior which
is present with the other approaches. Our formalization of these idedgdaawdual
of the standard Gelfond-Lifschitz reduction and a certain operator usehetk satis-
faction of priorities. In order to base our approach on firmer groundetésth some
abstract principles that, as we believe, any formalization of prioritizeduliefogic
should satisfy. We demonstrate that our approach satisfies these lesneipile other
approaches violate them.

The remainder of this paper is organized as follows. The next section réwoalls
basic definitions of default logic and introduces the notion of arfiized default the-
ory. Section 3 introduces two basic principles for preference handiwvigws some
approaches to prioritized default logic and demonstrates that they faditigfysthe
principles. In Section 4, we then present our approach, by introducengahcept of
preferred extensions. We will introduce this notion in a stepwiaemer, starting with
the simplest case, namely prerequisite-free normal defaults, which are désib sal
pernormal defaults. We then extend our definition to prerequisite-ffsutl theories,
showing that an additional fixed point condition is needed to get the defirof pre-
ferred extensions right. Finally, we handle arbitrary default thedryeeducing them
to the prerequisite-free case. The reduction can be viewed as dual to thesf@abu
fond/Lifschitz reduction for extended logic programs. In Sectionessivow how pref-
erence information can be expressed in the logical language. This makesiltlpos
reason not only with, but also about preferences among rules. Section 6sgisae-
lated work, and concludes the paper by considering possible extensibasigining
further work.



The work reported here generalizes the approach presented in [7], which ¢wvers t
fragment of default logic equivalent to extended logic programs, amhdstthe results.

2 Prioritized Default Theories

We first recall the basic definitions underlying Reiter's default logicefault theory

is a pairA = (D, W) of a theoryW containing first-order sentences and a set of de-
faults D. Each default is of the form : by,...,b,/c, n > 1, whereaq, b;, andc are
first-order formulas. The intuitive meaning of the default i% i§ derived and thé; are
separately consistent with what is derived, then inféformulaa is called theprereq-
uisite, eachb; ajustification andc theconsequensf the default. For a defaultwe use
pre(d), just(d), andcons(d) to denote the prerequisite, the set of justifications, and
the consequent af, respectively-just(d) denoteg—a | a € just(d)}. As usual, we
assume thal” andD are in skolemized form and that open defaults, i.e., defaults with
free variables, represent the sets of their ground instances over the Heunigerse
[23]; a default theory with open defaults is closed by replacing open dsfaith their
ground instances. In what follows, we implicitly assume that defhelties are closed
before extensions etc are considered.

A (closed) default theory generates extensions which represent acceptable sets of
beliefs which a reasoner might adopt based on the given default thBo#¥"). Exten-
sions are defined in [23] as fixed points of an operator I'4 maps an arbitrary set of
formulasS to the smallest deductively closed s#tthat containd? and satisfies the
condition: ifa : by,...,b,/c € D,a € S" and—b; ¢ S thenc € S'. Intuitively, an
extension is a set of beliefs containifg such that

1. as many defaults as consistently possible have been applied, and
2. only formulas possessing a noncircular derivation fidhusing defaults irD are
contained.

A default theoryA may have zero, one or multiple extensions. Default theories pos-
sessing at least one extension will be called coherent. We say a defdult. . . ,b,/c
is defeatedby a set of formulas, iff —b; € S for somei € {1,...,n}.

A defaultd = a : b/cis callednormal if b is logically equivalent te; it is called
prerequisite-freeif a is a logical truth, which is denoted by . Defaults which are
both prerequisite-free and normal are calfegbernormal A default theory is called
normal (prerequisite-free, supernormaif all of its defaults are normal (prerequisite-
free, supernormal), respectively.

A defaultd is calledgeneratingn a set of formulas, if pre(d) € S and—just(d)N
S = 0; denote byGD(E, D) the set of all defaults fronD which are generating
in E. It is well-known [23] that every extension of a default theaty= (D, W) is
characterized througAD(D, E), i.e.,

E =Th(W U cons(GD(D, E))) 1)

wherecons(D") = {cons(d) | d € D'} for any setD’. Moreover, if A is prerequisite-
free, then evenE which satisfies (1) is an extension (cf. [16]).



We now introduce the notion of a prioritized default theory. Basicallg extend
default theories with a strict partial order (i.e.,d £ d andd < d', d' < d" implies
d < d") on the default rules. A default will be considered preferred over defad!f
wheneved < d' holds.

Definition 1. A prioritized default theory is a triple\ = (D, W, <) where(D, W) is
a default theory anek is a strict partial order onD.

Partially ordered default theories have the advantage that the prefererecmgrd
among certain defaults can be left unspecified. This is important because ircasasy
there is no natural way of assigning preferences. However, the case ofigrpirtial
orders can be reduced to particular refinements, namely well-orderings, in@iacano
way. Recall that a partial order is a well-ordering, iff every subset otthments has
the least element; observe that any well-ordering is a total ordering.

Definition 2. A fully prioritized default theory is a prioritized default theory =
(D, W, <) where< is a well-ordering.

Conclusions of prioritized default theories are defined in terms of pexfeaxten-
sions, which are a subset of the classical extensiods o€., the extensions ¢D, W)
according to [23]. The definition of preferred extension for fullyopitized default the-
ories will be given in the next section. The general case of arbitraryifized default
theories can then be reduced to this case as follows.

Definition 3. LetA = (D, W, <) be a closed prioritized default theor#. is a priori-
tized extension of iff E is a prioritized extension of a fully prioritized default theory
A" = (D, W, <) such thatd < d' impliesd <’ d'.

The preferred extensions of an open prioritized default thebgre the preferred
extensions ofA* obtained by closingA. The partial ordek is inherited fromD to
the ground set of instancd3* in the obvious way. We assume here that no conflict
arises, i.e.d < d does not result for ang € D*; otherwise, no preferred extensions
are defined.

In the remainder of this paper, we will restrict our discussion toyfplioritized
default theories. Unless stated otherwise, all default theories are tacitipedgo be
closed.

3 Problems with Existing Approaches

Different prioritized versions of default logic have been proposedtiéniterature, e.g.
[16,4,1,24,9]. We will show that all of them fail to satisfy naturaihgiples for pref-
erence handling in default logic.

3.1 Principles for priorities

The first principle can be viewed as a meaning postulate for the term “prefefrand
states what we consider a minimal requirement for preference handlingeimaskd
systems:



Principlel.  Let B; andB, be two extensions of a prioritized default theakygen-
erated by the defaul® U {d: } andR U {d»}, whered,,d» ¢ R, respectively. If
dy is preferred oved,, thenB; is not a preferred extension Bt

We find it hard to see how the use of the term “preference among rules” ceuld b
justified in cases where Principle | is violated.

The second principle is related to relevance. It tries to capture the ideshthat
decision whether to believe a formylar not should depend on the priorities of defaults
contributing to the derivation gf only, not on the priorities of defaults which become
applicable whem is believed:

Principle Il. Let E be a preferred extension of a prioritized default thedry=
(D, W, <), d a (closed) default such that the prerequisitd & not in E. ThenE
is a preferred extension af’ = (D U {d}, W, <') whenever’ agrees with< on
priorities among defaults id.

Thus, adding a rule which is not applicable in a preferred belief set can resdar this
belief set non-preferred unless new preference information changes preferenogs am
some of the old rules (e.g. via transitivity). In other words, adfskt is not blamed for
not applying rules which are not applicable.

We will see that each of the existing treatments of preferences for defaidt log
described in [16, 4, 1, 24], violates one of these principles.

3.2 Control of Reiter's quasi-inductive definition

The first group of proposals [16, 4, 1] uses preferences to controluasi-inductive
definition of extensions [23]: in each step of the generation of exteagle defaults
with highest priority whose prerequisites have already been derived pliechpNow
what is wrong with this idea? The answer is: the preferred extensionstdiake se-
riously what they believe. It may be the case that a less preferred defaydplgd
although the prerequisite of a conflicting, more preferred default is\m=l in a pre-
ferred extension. As we will see, this can lead to situations where Plérldgpviolated.
The mentioned approaches differ in technical detail. We do not want to présent t

exact definitions here. Instead, we will illustrate the difficultiesngsain example for
which all these approaches obtain the same result.

Example 1.Assume we are given the following default theory:

1) a:b/b
(2) T:=b/-b
(3) T:a/a

Assume further that (1) is preferred over (2) and (2) over (3). This detaeory
has two classical extensions, namély= T'h({a, b}), which is generated by rules (1)
and (3), andE, = Th({a,b}), which is generated by rules (2) and (3). The single
preferred extension in the approaches mentioned abokk.i¥he reason is that the
prerequisite of (2) is derived before the prerequisite of (1) in thestaction of the
extension. The approaches thus violate Principle I. |



The selection ofE, in the previous example was already observed in [4]. In that
paper, the first author tried to defend his approach arguing that therbyisieak evi-
dence for the literak in our example. We revise our view, however, and do not support
this argument any longer. After all, default logic is not a logic of gchdelief where
degrees of evidence should play a role. Default logic models acceptancesftiaesied
on defeasible arguments. Singés an accepted belief, we believe rule (1) should be
applied and®; should be the preferred extension in the example.

3.3 Rintanen’s approach

An entirely different approach was proposed in [24]. Rintanen uses a tataf on
(normal) defaults to induce a lexicographic order on extensions.

Call a normal default rule = a:b/b appliedin a set of formulasl (denotedr €
appl(E)), if a andb are inE. An extensionE is then preferred over extensid!, if
and only if there is a defautt € appl(E) \ appl (E') satisfying the following condition:
if ' is preferred over andr’ € appl(E'), thenr' € appl(E).

Unfortunately, also this approach leads to counterintuitive resultsceadiolation
of our principles.

Example 2.Consider the following default theory:

(1) a:b/b
(2) T:-a/-a
(3) T:a/a

Again (1) is preferred over (2), and (2) over (3). The default theory haslassical
extensions, namelf, = Th({-a}) andE; = Th({a,b}). Intuitively, since the deci-
sion whether to believe or not depends on (2) and (3) only, and since (2) is preferred
over (3), we would expect to conclude, in other words, to prefef; .

However, the approach of Rintanen prefBgs The reason is that iR, default (1) is
applied. Belief ina is thus accepted on the grounds that this allows us to apply a default
of high priority. This is far from being plausible and amounts tehfiil thinking. It is
also easy to see that Principle Il is violatdd: clearly is the single preferred extension
of rules (2) and (3) in Rintanen’s approach. Adding rule (1) which isapplicable in
E; makesE; a non-preferred extension. [ |

Since all these approaches suffer from drawbacks, we develop our nevaelpjpmo
the following section.

4 Preferred Extensions

In this section we introduce our new notion of preferred extensions$ully priori-
tized default theories. As mentioned before, arbitrary prioritized defagdtrtes can be
reduced to that case in a canonical manner.

We will consider the simplest case first, namely supernormal defaultiésedve
then proceed to prerequisite-free default theories and, finally, to arbiedaylt theo-
ries.



4.1 Supernormal default theories

Preference handling in prioritized supernormal default theories is ratherdesob-
vious idea is to check the applicability of defaults in the order of preferewe first
introduce an operatd@? which, given a fully prioritized prerequisite-free default theory
A (which is not necessarily supernormal), produces tentative concludiafis o

Call a defaulid activein a set of formulas, if pre(d) € S, —just(d)N S =@ and
cons(d) ¢ S all hold. Intuitively, a default is active i if it is applicable wrt.S and
has not yet been applied.

Definition 4. LetA = (D, W, <) be a fully prioritized prerequisite-free default theory.
The operatorC is defined as follows®(A) = |J, ¢ Ea» WhereEy = Th(W), and
for every ordinaly > 0, B

E,, if no default fromD is active inE ;
E, =14 Th(E, U {cons(d)}) otherwise, where
d=min{d' € D | d'is activeinE,},

whereE, = ;. Eg. (Note that for each successor ordinak 8 + 1, E,, = Eg.)

In the case of supernormal default theories, the opeK@tatways produces an
extension in the sense of Reiter and thus can directly be used to definequefeien-
sions:

Definition 5. LetA = (D, W, <) be a fully prioritized supernormal default theody.
is the preferred extension &f if and only if E = C'(A).

Itis obvious that there is always exactly one preferred extension.tNattéhe definition
of this extension is fully constructive. It extends the notion kfprred subtheories as
developed in [3] to the infinite case.

4.2 Prerequisite-free default theories

Can we simply extend the definition for supernormal defaults to thisx@ke answer
is obviously no. It may be the case that defaults are applied during th&trootion
which are defeated later through the application of defaults of lower priori

So, can we simply say: if the construction gives us an extension, taeaxtension
is preferred? Unfortunately, the answer is again no.

Example 3.Consider the following default theory:

()T :-b/a (3) T:a/a
(2T :-a/-a (4 T:b/b

Assume(l) < (2) < (3) < (4). Applying operatoiC to this default theory yields
E = Th({a,b}). As easily seen, this is a classical extension. Nonetheless, one would
certainly not say that this extension preserves priorities. What wemg#r®efault
(2) is defeated inE by applying a default which is less preferred than (2), namely
default (3). In the construction @f(A) this remains unnoticed, since rule (1), although
defeated irF, blocks the applicability of (2). In other words, without a speciedtment
of such cases, a rule (e.g. (3)) may inherit a high preference from a rili¢he same
consequent (namely (1)), even if that latter rule is not applicable inxttemsion. [



To avoid this, we have to impose an additional condition on an extenm the
construction of the tentative conclusions, we have to discard each hdseaconse-
quent is inE, but which is defeated i. Since we have to takE as the result of the
construction into account, this amounts to adding a fixed point comdi/hat we will
do is check whether we arrive at the same set of formulas after eliminatiegwich
are defeated iy and whose head is if.

Definition 6. LetA = (D, W, <) be a fully prioritized prerequisite-free default theory.
Then, a sef of formulas is a prioritized extension df, if and only if

E = C(A*F),

whereA*F is obtained fromA by deleting all defaults whose consequents ar® and
which are defeated .

This definition is coherent with the intuition that preferred extemsiare distin-
guished classical extensions. Moreover, as in the case of supernormadshte pre-
ferred extension (if it exists) is unique.

Proposition 1. Let A = (D, W, <) be a fully prioritized prerequisite-free default the-
ory. Then, every preferred extensifiiof A is a classical extension, and has at most
one preferred extension.

Proof. To show the first part, assume thalts a preferred extension af. We show
thatE = Th(W Ucons(GD(D, E))) (*) holds; since all defaults are prerequisite-free,
this implies thatF is a classical extension af (cf. paragraph after Equation (1)).

SinceE = C(A*F), no default fromD \ GD(D, E) is applied in the construction
of E; hence,E C Th(W U cons(GD(D, E))) follows. On the other hand, since each
E, is included inE and E does not defead, for everyd € GD(D, E), it follows
cons(d) € C(A*F); hence,Th(W U cons(GD(D, E))) C E follows. This implies
(*), and proves thaF is a classical extension af.

For the second part, assume that different preferred extenBicAsE’ exist. We
derive a contradiction. Let be the least default i such that eithefi) d € GD(D, E)
andcons(d) ¢ E', or (ii) d € GD(D, E') andcons(d) ¢ E. SinceE # E', d must
exist. Consider first the cage). It follows thatd € D*E'; for, otherwisecons(d) €
E' holds, which is a contradiction. The defadltmust be defeated bg’; from the
definition of C(A*E), it follows thatd is defeated byI'h(W U cons(K)) for K =
{d' € GD(D, E'") | d' < d}. From the minimality ofl, it follows that for everyd’ € K
it holds thatcons(d') € E. HenceT'h(W Ucons(K)) C E, which means defeatsi.
This is a contradictiontd € GD(D, E), however. The casgi), i.e.,d € GD(D, E')
andcons(d) ¢ E is analogous. This proves the result. |

4.3 General default theories

We will now reduce the general case to the prerequisite-free case. The besiis id
the following: in order to check whether an extensiBrof a fully prioritized default
theory A is preferred, we evaluate the prerequisites of the default rules accoodimg t



extensionE. Evaluating prerequisites means (1) eliminating prerequisites which are
contained in the extensiofl from the corresponding rules, and (2) eliminating rules
whoseprerequisites are not contained ii. Observe that this operation can be viewed
as a dual of the standard Gelfond/Lifschitz reduction from logic mogning [11], in
which the justifications rather than the prerequisites are used to elerandtsimplify
rules.

Finally, we check whether the resulting prerequisite-free thebgyhasE as its
preferred extension.

Definition 7. Let A = (D, W, <) be a fully prioritized default theory anfl a set of
formulas. The default theody = (Dg, W, <g) is obtained fromA as follows:
Dg results fromD by

1. eliminating every default € D such thapre(d) ¢ E, and
2. replacingpre(d) by T in all remaining defaults;

<g is inherited from< as follows: for any ruleg andd’ in Dg, d <g d' holds if and
only if d1 < d1" holds for the<-least rulesd1 anddl’ in D which give rise tal andd’
(i.e.,d1g = d anddl’; = d'), respectively.

The resulting default theory is clearly prerequisite-free. We thus can daféferred
extensions for general default theories as follows:

Definition 8. LetA = (D, W, <) be a fully prioritized default theory. Thef; is apri-
oritized extensionf A, if (¢) E is a classical extension af, and(i:) E is a prioritized
extension oA g.

Let us show that the problematic examples discussed in Section 3 are hemitsztly
in our approach:

Example 4.Consider the default theow}:

(1) a:b/b
(2) T:-b/-b
(3) T:a/a

Again we assume that (1) is preferred over (2) and (2) over (3). This d¢fealry
has two classical extensions, namély = Th({a,b}) andE; = Th({a,b}). Ag,
consists of the rules

(1) T:b/b
(2) T:—b/-b
(3) T:a/a

It is not difficult to see tha€'(Ag,) = E;. Since there are no rules whose head is
in E; but which are defeated iR, E; is a preferred extension. On the contrdty, is
not preferred. Note that the duBlb-reduct ofA is the same as the duBl -reduct, and
thatC(-) applied to the reduct does not reproduge |



Example 5.Consider the following default theors}':

(1) a:b/b
(2) T:=a/-a
(3) T:a/a

Again (1) is preferred over (2), and (2) over (3). The default theory hasRwiter
extensions, namelf; = Th({-a}) andE> = Th({a,b}). We argued in Section 3
that £y should be preferred. ConsidéYy, :

(2) T:-a/-a
(3) T:a/a

Clearly,C(A%,) = Ei, and since again there are no rules defeate;iwwhose
head is inE;, we have thaF); is preferred.
Es is not preferred sinc€ (A%, ) = Th({b, ~a}) which differs fromEs. |

The following proposition tells us that all rules which are not geriegan a pre-
ferred extension must be defeated by some appropriate generating ruiels,murst
have higher priority.

Proposition 2. LetA = (W, D, <) be a fully prioritized ground default theory, and let
E be a classical extension gf. Then,E is a preferred extension af, if and only if for
each defaultl € D suchthapre(d) € E andcons(d) ¢ E, there exists a set of defaults
K, C{d € GD(D,E) | d' < d} such thaid is defeated il'h(W U cons(K,)). |1

Proof. (<) Suppose that for every defadisuch thapre(d) € E andcons(d) ¢ E
asetKy C {d € GD(D,E) | d < d} exists such thaf'h(W U cons(K,)) defeatsi.
By (transfinite) induction on the sef,, o > 1, we show that the least active defadit
from D%F in E,, provided one exists, stems from sothe GD(D, E) andcons(d) €
E, holds.

Fora = 1, the statement holds. Indeed. the least dyeof D3F is active. Let
d be the least parent afg in D, i.e.,d = min.{d’' | dy = dg}. Assuming that
d € D\ GD(D,E), we obtainK; = (J, and hencel is defeated by, = Th(W).
This contradicts thaig is active inE; = Ej, however. Thus¢ € GD(D, E) holds,
andcons(d) € E, follows.

Let thena > 1 and assume the statement holds forlak 3 < «a. Suppose the
least defauldg from DiF active in E, exists, and that its least parentinis not
in GD(D, E). The induction hypothesis implies that for eathe GD(D, E) such
thatd' < d it holds thatcons(d') € E,. Hence Th(W U cons(Kq4)) C E,, which
implies thatd is defeated byE . This contradicts thadg is active. Thus, ilg exists,
thend € GD(D, E) holds; clearlycons(d) € E,. This concludes the induction, from
which C(A%F) = Th(W U cons(GD(D, E))) follows. By Equation (1), it follows
E = C(A%F), which means thaF is a preferred extension.

(=) SupposeF is a preferred extension, but soriec D such thatpre(d) € E
andcons(d) ¢ E is not defeated by anfh(W U cons(K)), whereK C {d' €
GD(D,E) | d < d}.Letdbethe leastsuch rule B. SinceFE is a preferred extension,
for everyd’ € GD(D,E) we havecons(d') € C(A%F). By the minimality ofd,
it follows that dg becomes the least active rule I at some stey, and up to

10



this point, only consequents of active redud}s of &' € K have been added, i.e.,
E, = Th(W U cons(K)) holds. SinceE, does not defeadg, the rule is applied,
which impliesC(A%F) # E. ConsequentlyE is not a preferred extension, which is a
contradiction. |

Exploiting this proposition, we can establish that the principbesaf prioritization
approach from above are both satisfied by our approach.

Proposition 3. The approach to preferred extensions satisfies both Principles lland |
as described in Section 3.

Proof. Principle I. Let A = (W, D, <) be a prioritized default theory, and I,
E' be classical extensions df such thaitGD(D,E) = RU {d} andGD(D, E') =
RuU {d'}, whered,,d> ¢ R andd < d'. We have to show thak’ is not a preferred
extension ofA.

Towards a contradiction, suppoBeis a preferred extension. Let’ = (W, D, <')
be a full prioritization of A. Sinced € GD(D, E), it holds thatpre(d) € Th(W U
cons(R)); henced survives the dual GL-reductionwi’, andd, d’ give rise to defaults
dgr, dy € Dgr, respectively.

Sinced ¢ GD(D, E'), it follows thatpre(d) € E' butcons(d) ¢ E'. Hence,
by Proposition 2, it follows tha#l is defeated byl'h (W U cons(K)) for someK C
{d" € GD(D,E'") | d'" < d}. It follows that K C R holds. Sinced is defeated by
Th(W U cons(K)) andTh(W U cons(K)) C E, it follows thatd is defeated by¥.
This contradictel € GD(D, E); satisfaction of Principle | follows.

Principle Il. Let E be a preferred extension df = (W, D, <), and letd be a (closed)
default such thapre(d) ¢ E. We have to show thaE is a preferred extension of
A" = (Du{d}, W, <) where<' is compatible with<.

Consider the dual reduct o’ wrt E, i.e., A, = ((D U {d})g, W, <’). Then,
the defaultd is eliminated in the dual reduct, and we had§, = Ag. SinceE is a
preferred extension of\g, it follows immediately thatZ is a preferred extension of
A'. Thus, Principle Il is satisfied. (Remark: the proof can be easily adapteshfopen
defaultd, if closingd does not lead to inconsistency af.) |

Thus, our approach satisfies these general benchmarks for a prioritizagion |

On the other hand, a less desirable property of the approach is thaténceses no
preferred extension may exist. This is what happens in Example 3; itilg ehecked
that neither of the two classical extensidis= Th({a,b}) andE' = Th({—a,b}) is
a preferred extension.

Another example shows that normal prioritized default theories may hayre-
ferred extension. Thus, the property that supernormal default thexdwiags have ex-
tensions is lost if prerequisites are allowed in the defaults.

Example 6.Consider the following defaults:

(1) a:—b/—b
(2) T:b/b
(3) b:a/a
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This default theory has the unique classical extengioa Th({a,b}). However,
assuming(l) < (2) < (3), E is not preferred, since preference of (1) requires to
conclude-b. |

Intuitively, if no preferred extension exists, then the prioritesspecified by the
user are incompatible with the way in which defaults must be executed traeran
extension. In the preceding example, this is clearly the case. There are=nifpos-
sibilities to react to such an inconsistency, and some of them have besisshs in
[7]. There are two main directions for handling such inconsistencies.direction is
to stop on occurrence of such an inconsistency and notify the user thatishem in-
consistency in the priorities. The other would be trying to overedinis inconsistency,
by reconciling the priority information and the logical entrenchmerdefault appli-
cation by relaxing or modifying the priority information in a waycéuthat preferred
extensions become possible.

We believe that in general, the first direction is preferable to the secoadioce
the user becomes explicitly aware that there is something wrong vatprbferences,
which cannot be satisfied. However, we could require that an approach tdigsio
should be consistent in the sense that if classical extensions &estsbme of them
should always be selected by the prioritization method. In this case, atielaof our
preferred extension approach would be desirable, which selects the prefeersi@ns
if some exist and some classical extensions, according to some ratibnalpreferred
extensions exist.

There are different possibilities for generalizing the preferred exdasdio such
“weakly” preferred extensions. One such possibility is to allow a malireordering of
the defaults inD, i.e., E becomes a preferred extension after switching as few neigh-
bored defaults in< as possible, cf. [7]. Another approach would be to remove pref-
erences between defaults, e.g., to relax the ordediras little as possible such that
preferred extensions exist. We do not pursue these possibilityefsigther here. How-
ever, we observe some limitations of such weakly preferred extensions.

We call a functiony which selects a subsg{A) from the classical extensions of
a prioritized default theonyD a consistent preference relaxatiq@€PR) of preferred
extensions, ify(A) selects all and only preferred extensions if preferred extensions ex-
ist, and selects some (arbitrary) classical extensions provided somieallassension
exists. Then, the following holds.

Proposition 4. Every consistent preference relaxatigrof preferred extensions must
violate both Principle | and Principle 1I.

Proof. (Sketch) To show that no CPRcan satisfy Principle | in general, we consider
a prioritized default theor\ = (W, D, <) such thatA has classical extensions but no
preferred extensions, and such thatan not select any of the classical extensions
without violating Principle I. Define

W = {bz — (bi+1 /\C), a; (—)"bi | ) ZO},
D:{T:ai/ai, sz/bzl’LZO}U{T_'C/J_},
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wherea;, b; andc are propositional atoms, and letbe the well-ordering such that

T:ai/ai < T:bi/bi < T:ai+1/ai+1, i>0
T:ai/ai<T:—|c/J_,T:bi/bi<T:—|c/J_ =7

whereL denotes falsity. It can be seen that the classical extensiaAsof of the form
E' =Th(W Ucons({T :ax/ar, T :b;/b; | 0<k <i,j>i})), i>0.

Moreover, for each > 0, it holds thatG D¢ = GD(D, E?) andGD**! = GD(D, E**!)
are of the formGD?! = RU {d'} andGD**! = R U {d} such thad < d', where
R = G.Dl ﬂGDi—H, d=T: ai/a,-, andd' =T : bz/b,

Hence, ify satisfies Principle I, then it must not seldét. Since this holds for all
i > 0, x cannot select any classical extension. Observe that no preferred extensions
exist (cf. Proposition 3). This proves unsatisfiability of Prpieil.

That also Principle Il is unsatisfiable for any CRRs exemplified by the following
prioritized default theonA = (@, D, {1 < 2}), which is rephrased from [7].

)T : =b/c
)T :a/b

The unique classical extensionfis E = Th({b}), which must be selected by
AugmentA by a defaul{0) ¢ : T/—a, suchthad < 1and0 < 2; let A’ be the resulting
default theory. Clearlypre(0) ¢ E. However,E cannot be selected by, sinceA’ has
the unique preferred extensidi = Th({—a, c}). Hence violates Principle Il. I

This result tells us that we have to sacrifice the principles if we wartai® a
“weakly” preferred extension for each coherent default theory. We take this &s add
tional support for our view that the preferences should be reconsidersitlations
where no preferred extension exists.

Observe that the prioritized default theafyyshowing the failure of Principle | is
infinite. It turns out that this is essential. In fact, over a finite (eths), the following
CPRy satisfying Principle | is possible. In the case in whidthas a preferred exten-
sion,x just returns hat collection. In the case in which no preferred extensists gfix
awell-ordering<’ compatible with< in A = (D, W, <), and define a relatior on the
classical extensionsaf by E < E' iff GD(D, E) = Ru{d},GD(D, E') = Ru{d'}
whered, d' ¢ Randd <’ d'. Lettheny select the minimal elements &f, i.e., the clas-
sical extension& such thatE’ £ E for all other classical extensiod®'. It can be
shown that< is irreflexive, and moreover that has some minimal element. Hence,
x(4, <") selects some classical extension(s), if some exist. Moreover, by aotistr
of < it is easily seen that satisfies Principle .

5 Expressing Preferences in the Language

For several applications like legal reasoning it is important to reasbamly with, but

also about the preferences among default rules. Such preferences often depend on th
particular context at hand, and it is not possible to assign preferenagsindently of

a particular context.
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To make reasoning about default priorities possible we must be abdéetioto de-
faults explicitly, and we must introduce a special predicate symbotsenting default
preferences. We, therefore, extend our logical language in two respects.

1. We introduce a distinct set of rule nam¥s A naming function assigns a unique
name to default rules. Formally, default names are simply ground terthe imn-
derlying language.

2. We use the reserved two-place infix predicate symbtu represent default prior-
ity. For instance, itl; andd. are default names, theh < d, is a formula with the
intended meaningl; has priority oveis.

Definition 9. A preferential default theory is a tripld = (D, W, name) where

1. (D, W) is a default theory,
2. name : D — N is an injective function, and
3. W contains axioms guaranteeing thatis a strict partial order.

Note that we do not restrict the appearance<ao . It is possible (and useful) to
have defaults which derive priority relations among other defaults.

An extension of a preferential default theaty = (D, W, name) is just a classi-
cal extension of D, W). The question now is how to define preferred extensions for
preferential default theories.

All the derived preference information now is contained in the extessadm.
What we need is a way to eliminate an extension if it contains prioritgrmétion
which is in conflict with the way the extension was generated.

Given the techniques developed for prioritized default theories, ittigliffacult to
see how this can be done. Basically, an exten&iaof a preferential default theory is
preferred iff E is a preferred extension of a fully prioritized default the¢fy, W, <)
such thak is compatible with the preference informationfih Compatibility is tested
by generating a syntactic description «fin terms of < and checking whether this
description is consistent with.

Definition 10. Let A = (D, W, name) be a preferential default theory a classical
extension ofA. We say is compatible with¥ if and only if

Eu{d; <dy | r; < rg,name(r;) = d;,name(ry) = di}
is consistent.

Definition 11. Let A = (D, W, name) be a preferential default theory. Then, a set of
formulasF is a preferred extension A if and only if E is a preferred extension of
some fully prioritized default theo§D, W, <) such that< is compatible withZ.

Example 7.Let's consider the following scenario. Your mother expects you td ki
on sundays. Your wife likes the opera and expects you to join her whehdozart
is played. Unfortunately, visiting your mother and simultaneousing to the opera is
impossible. Normally, the rules representing your mother’s wishest have preference
over those representing your wife’s whishes. However, if it is yoife'svbirthday, then
you definitely should give preference to her.
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This scenario can be modeled as the following preferential default théldrg. set
of defaultsD contains the following three rules:

(d1) sunday : visit(mother) [ visit(mother)
(d2) play(mozart) : go(opera)/go(opera)
(ds[d,d']) mother_rule(d) A wife_rule(d') : d < d'/d < d’

The following formulas are in the background thed¥y

birthday(wife) A wife_rule(d) A mother_rule(d') — d < d’,
mother_rule(d;), wife_rule(ds), —(visit(mother) A go(opera))

Now assume the following facts hold in addition (i.e., ar&?i):
sunday, play(mozart)

We obtain two classical extensions. Note that both extensions cohtipréfer-
ence informationl; < ds. Itis easy to see that there is no total preference relation
compatible with this information such thék, is a preferred extension ¢D, W, <).
Only the first extension is preferred and you should visit your moth

Now consider what happens if we abidthday(wife). Again we obtain two ex-
tensions E; containinguisit(mother), andE} containinggo(opera). In this case the
preference information in both extensionglis< d;. Note that the applicability of de-
fault ds[d, do] is blocked. NowE] cannot be reconstructed as preferred extension of a
fully prioritized theory(D, W, <) such thai is compatible withZ]. E}, on the other
hand, can be reconstructed in such a way. You just have to use an ordetimg wiry
wherename(ry) = d; andname(rs) = dz. Thatis, you should join your wife and go
to the opera. |

6 Related Work and Conclusion

In this paper, we have presented an approach, based on the ideas of [7]rpoiatiog
priority information into default logic. This approach overcomes penis of previous
approaches with respect to general principles which, as we argue, any prioriiizat
of default logic should satisfy. For space reasons, a detailed compafisaonapproach
to the many other variants of prioritized default logic is necessarilgdigal.

Rintanen’s approach and the approaches in [16,5, 1, 6] have already been briefly
mentioned. The latter handle priorities such that in the (re)congtrucfian extension,
only some of the applicable defaults can be fired in each step.

In [9] priorities are handled by encoding them into the object-levekbrathan con-
straining the construction of extensions at the meta-level. It tautghat in this ap-
proach some reasonable default theories do not possess any preferredestanail.

For instance, no preferred extension exists for Example 1.

Other approaches, somewhat less related to our work, are concerned witmgandli
specificity by respecting logical entrenchment of rules. In [8], an approachrtdling
specificity is developed which rewrites the defaults, based on their logitedénch-
ment, such that more specific rules are preferred. This is in the spe#rdf versions

! We definename implicitly by putting the name of a default in front of the deft.
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of Nute’s defeasible logic (cf. [20]). Nute distinguishes defeasiblé certain rules and
presents a semantics with strong proof theoretic flavor for answerieges to the
system.

Further related work is present in the context of logic programmirtegrey dif-
ferent proposals to enhance extended logic programs with prioritiestbieen made,
cf. [25,28, 13]. Possible extensions of these approaches to full [dédgic remain
to be explored; however, on the common fragment of extended loggraur, these
approaches differ from ours. For a discussion of further approachesotitips and
specificity in default logic, see [8, 1, 6].

Several issues remain for future work. First of all, procedures for réagdrom
prioritized default theories need to be investigated. In the finite witippal case, brave
and cautious reasoning in prioritized and classical default logic are poighdme
equivalent, and thus, by the results in [1Z§ andII5-complete, respectively. In fact,
a suitable full prioritization ofA = (W, D, <) such thatF is a preferred extension of
A" = (W, D, <') can be guessed, and the conditiBn= C(A%”) can be checked in
polynomial time with arNP oracle. As a consequence, theorem provers for Reiter’s
default logic can be used after a polynomial transformation for solséagoning tasks
in prioritized default logic. The design of genuine algorithms faoptized default
logic remains to be explored.

Another issue are approximations of preferred extensions. As weshaven, con-
sistent preference relaxations (CPRs) of preferred extensions are salgjesin lim-
itations. It would be interesting to see to what extent relaxationsfgatiy Principle |
and Il are possible, as well as for which weakenings of the principles CBRzist.
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