
Complex Preferences for Answer Set Optimization

Gerhard Brewka
University of Leipzig

Dept. of Computer Science
Augustusplatz 10-11

04109 Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract

The main contribution of this paper is the definition of the
preference description language

���
. This language allows

us to combine qualitative and quantitative, penalty based pref-
erences in a flexible way. This makes it possible to express
complex preferences which are needed in many realistic opti-
mization settings. We show that several preference handling
methods described in the literature are special cases of our
approach. We also demonstrate that

���
expressions can be

compiled to logic programs which can be used as tester pro-
grams in a generate-and-improve method for finding optimal
answer sets.

Introduction
Answer sets (Gelfond & Lifschitz 1991), originally invented
to define the semantics of (extended) logic programs with
default negation, have proven to be extremely useful for
solving a large variety of AI problems. Two important de-
velopments were essential for this success:

1. the development of highly efficient answer-set provers,
the most advanced among them beingSmodels(Niemelä
& Simons 1997) anddlv (Eiteret al. 1998),

2. a shift from a theorem proving to a constraint program-
ming perspective (Niemelä 1999),(Marek & Truszczyński
1999).

It turned out that many problems, for instance in reasoning
about actions, planning, diagnosis, belief revision and prod-
uct configuration, have elegant formulations as logic pro-
grams so that models of programs, rather than proofs of
queries, describe problem solutions (Lifschitz 2002; Soini-
nen 2000; Baral 2003; Eiteret al. 1999). This view of
logic programs as constraints on the sets of literals which
may count as solutions has led to a new problem solving
paradigm called answer set programming (���).

The predominant methodology in��� is a generate-and-
test method which proceeds as follows:

1. generate answer sets which represent potential solutions,

2. specify conditions which destroy those answer sets which
do not correspond to actual solutions.

Copyright c
�

2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

For instance, in graph colouring arbitrary assignments of
colours to nodes constitute potential solutions. If we add the
condition that an answer set is to be disregarded if it assigns
the same colour to neighbouring nodes, then the remaining
answer sets will be the solutions to our original graph colour-
ing problem.

Answer set optimization goes one step further: from a
constraint programming paradigm to a paradigm of qualita-
tive optimization. In terms of the above mentioned method-
ology, a third step is added:
3. among the solutions generated by the program, pick one

of the solutions with maximal quality.
The (relative) quality of an answer set is described using a
preference ordering on answer sets. A solution of an answer
set optimization problem is a non-dominated answer set, that
is, an answer set such that no strictly better answer set exists.

Many AI problems have natural formulations as optimiza-
tion problems (see for instance (Brewka 2004a) for a discus-
sion of abduction and diagnosis, inconsistency handling and
solution coherence viewed as an optimization problem), and
many problems which can be represented in a “hard” con-
straint programming paradigm have fruitful, more flexible
refinements as optimization problems. Consider planning
as a typical example. We know how to represent planning
problems as��� problems (Lifschitz 2002). Moving from
a constraint programming to an optimization perspective al-
lows us to specify criteria by which we can rank plans ac-
cording to their quality. This allows us to select good plans
(or to generate suboptimal plans if there is no way to satisfy
all requirements).

An example for quantitative optimization is planning un-
der action costs (Eiteret al. 2002a). Qualitative optimiza-
tion techniques in the context of planning are investigatedin
(Son & Pontelli 2004).

Our interest in optimization based on qualitative prefer-
ences stems from the fact that for a variety of applications
numerical information is hard to obtain (preference elicita-
tion is rather difficult) - and often turns out to be unneces-
sary. On the other hand, if numerical information is avail-
able then it is often convenient to use it. For instance, it is
sometimes rather straightforward to assign numerical penal-
ties to suboptimal solutions, and our approach will allow for
flexible combinations of qualitative and numerical, penalty
based preference handling techniques.

Of course, the use of optimization techniques in answer
set programing is not new. There is a large body of work
on preferred answer sets, see for instance (Schaub & Wang
2001) and the references in that paper. Also some of the
existing answer set solvers have (numerical) optimization
facilities: Smodelswith weight constraints has� ���� �� �
and� ���� �� �

statements operating on weights of atoms in
answer sets (Simons, Niemelä, & Soininen 2002). An inter-
esting application of these constructs to modeling auctions
can be found in (Baral & Uyan 2001).dlv has weak con-
straints (Buccafurri, Leone, & Rullo 2000) of the form

� �	
� �
� : ��
where� is a numerical penalty and� is a priority level. For
each priority level, the sum of the penalties of all violated
constraints (i.e., constraints whose bodies are satisfied)is
computed. The answer sets with minimal overall penalty in
one level are compared based on the overall penalties of the
next level, etc. Such constraints were used, for instance,
to implement planning under action costs as described in
(Eiter et al. 2002a) and for knowledge based information-
site selection (Eiteret al. 2002b). For the use of logic
programs with ordered disjunction (Brewka, Niemelä, &
Syrjänen 2002) and��� programs (Brewka, Niemelä, &
Truszczyński 2003) for several generic optimization prob-
lems see (Brewka 2004a).

All these approaches are based on fixed built-in prefer-
ence handling strategies. For realistic applications the avail-
ability of a variety of strategies is highly important, and in
particular the possibility to combine different strategies in
flexible ways. For this reason we develop in this paper the
preference description language���. The language allows
us to describe complex preferences among answer sets. Our
approach shares a lot of motivation with��� programs
(Brewka, Niemelä, & Truszczyński 2003): we treat the logic
program generating candidate solutions separately to make
answer set selection independent form answer set genera-
tion, and the rules we use here to express preferences are
the same as in (Brewka, Niemelä, & Truszczyński 2003),
apart from allowing for the explicit specification of penal-
ties. However, rather than using preference programs, that
is sets of rules, to describe preferences, we use�� � expres-
sions which give us much more flexibility.

The outline of the paper is as follows: we first give a
short reminder on answer sets. We then discuss a course
scheduling example motivating the need of complex pref-
erence combination methods. The subsequent section in-
troduces syntax and semantics of�� �, the new preference
description language. We also show how the preferences
needed for the scheduling example can be expressed using
�� �.

We then demonstrate how several preference handling
methods described in the literature can be expressed using
�� �, and we discuss complexity issues. Finally, we show
how optimal answer sets can be computed on top of a stan-
dard answer set solver using a generate and improve strat-
egy. For this purpose, arbitrary�� � expressions are com-
piled to logic programs. We conclude with a discussion of
related work.

Answer sets: a short reminder
In this section we recall the definition of answer sets as intro-
duced by (Gelfond & Lifschitz 1991). Readers familiar with
answer sets can safely skip this section. We consider propo-
sitional extended logic programs with two kinds of nega-
tion, classical negation� and default negation��� . Intu-
itively, ��� � is true whenever there is no reason to believe
�, whereas�� requires a proof of the negated literal. An
extended logic program(program, for short)� is a finite
collection of rules� of the form� � �� � � � � � �� � ��� �� � � � � � ��� �� (1)

where the�� � � and� are classical ground literals, i.e., either
positive atoms or atoms preceded by the classical negation
sign �. We denote byhead!� " the head� of rule � and by
body!� " the body��, � � � , �� , ��� ��, � � � , ��� �� of the rule.
We will call �� � � � � � �� theprerequisitesof the rule and use
pre!� " to denote the set of prerequisites of�.

We say a rule� of the form (1) isdefeated by a literal#,
if # $ �� for some

� % &'� � � � � � (, and we say it isdefeated
by a set of literals) , if) contains a literal that defeats
�. Moreover, a rule� is applicable in) whenever it is not
defeated by) and its prerequisites are in) . We denote
this condition by) *$ body!� ". A rule � is satisfied by)
(denoted) *$ �) if head!� " %) or if) +*$ body!� ". A set
of literals) is consistentif, for all atoms�, � %) implies
that�� ,%) .

An answer set of a program� is a set of literals- satis-
fying two conditions:
1. if � % � is applicable in- , then � is applied, that is,

head!� " % - , and

2. all literals in- have a non-circular derivation using only
rules undefeated by- .

We can make this precise as follows:

Definition 1 Let � be an extended logic program, and let
) be a set of literals. The) -reduct of� , denoted� . , is
the collection of rules resulting from� by
1. deleting each rule which is defeated by) , and
2. deleting all default negated literals from the remaining

rules.

This construction is often called Gelfond-Lifschitz reduc-
tion, after its inventors.

Definition 2 Let / be a collection of rules without default
negation. Then, Cn!/ " denotes the smallest set- of literals
such that
1. - is closed under/ , i.e., for any rule� � �� � � � � � �� in

/ , if �� � � � � � �� % - , then� % - ; and
2. - is logically closed, i.e., either- is consistent or- $

Lit !/ ", the set of all literals.

Definition 3 Let / be a collection of rules. Define an oper-
ator 01 !) " on sets of literals as follows:

01 !) " $ Cn!/ . "
Then, a set- of literals is an answer set of/ iff - $ 01 !- ".
The collection of answer sets of/ is denoted by�� !/ ".

As mentioned in the introduction, in many applications of
answer set programming one can distinguish a generate and
a test part of the program: the generate part produces candi-
date solutions, the test part destroys those answer sets which
do not represent solutions. For the test part rules of the form� bodywith empty head are often used. Such a rule is an
abbreviation for ��� � ��� ��� �body

where
��� is a new atom not appearing elsewhere in the

program. The effect of the rule is that all answer sets satis-
fying body are eliminated. These rules are also called con-
straints.

Although answer set programs are basically proposi-
tional, it is common to use rule schemata containing vari-
ables. These schemata are representations of their ground in-
stances, and current answer set solvers use intelligent ground
instantiation techniques before the actual answer set compu-
tation takes place. We will also frequently use schemata with
variables.

Here is a standard example, the graph colouring problem.
Given a description of a graph in terms of atoms built from
predicate symbolsnode!�" andedge!�� �", the answer sets of
this program contain colour assignments (� for red, � for
blue, � for green) to nodes such that neighbouring nodes
have different colours.1

col!) � r " � node!) " � ��� col!) �b" � ��� col!) � g"
col!) �b" � node!) " � ��� col!) � r " � ��� col!) �g"
col!) �g" � node!) " � ��� col!X � �" � ��� col!X� � "� col!) � � " �col!� � � " � edge!) � � " �) +$ �

A motivating example
In this section we want to illustrate the need for flexible
preference strategies as provided by the language to be de-
veloped in this paper. We will consider a simple��� -
based scheduling system that assigns lecturers, time slots
and rooms to university courses. To simplify our discussion
we will assume that each lecturer has to teach exactly one
course per semester.

The information needed to solve this problem includes
the available lecturers�� � � � � � �� , the available rooms
�� � � � � � �� , the time slots�� � � � � � �� , and the courses�� � � � � � � . To represent this information in a logic program,
we use atoms built from the unary predicates��������,
�		� , ��	� and�	�� ��

, respectively.
To solve this problem in the answer set programming

paradigm it is convenient to use programs with cardinality
constraints (Niemelä & Simons 2000; Simons, Niemelä, &
Soininen 2002). Intuitively, a cardinality constraint of the
form � &� � � � � � � �� (� is satisfied if at least� and at most� of
the atoms�� are satisfied, where� and� are integers. Sim-
ilarly, � &� !� " 	 � !� "(� is satisfied if at least� and at most� ground intances of� !�" are satisfied, where� is replaced
by a ground term� for which � !� " holds. It was shown in
(Simons, Niemelä, & Soininen 2002) that cardinality con-
straints do not increase complexity. For the purposes of this

1We follow the Prolog convention that terms starting with cap-
ital letters are variables.

paper an intuitive understanding of cardinality constraints is
sufficient. The reader is referred to the original papers for
further details.

To make sure that each answer set contains an assignment
of lecturers, rooms and time slots to courses, we can use the
following rules:'&����
�� !� � � " 	 �������� !� "(' � �	�� �� !� "'&�� !/ � � " 	 �		� !/ "(' � �	�� �� !� "'&�� !- � � " 	 ��	� !- "(' � �	�� �� !� "
Solutions to the scheduling problem have to satisfy several
hard constraints:
1. as discussed earlier, there is only one course per lecturer,

2. different courses cannot take place in the same room at
the same time.

This can be expressed by the following constraints:� ����
�� !� � � " � ����
�� !� � � �" � � +$ � �� �� !/ � � " � �� !/ � � �" � �� !- � � " � �� !- � � � " � � +$ � �
Each answer set now corresponds to a solution of our
scheduling problem: the assignments of lecturers, rooms
and time slots to, say, a course� are part of each answer
set in the form of atoms����
�� !� � �", �� !� � �" and�� !� � �".

So far our logic program allows us to generate possible
solutions of the scheduling problem. Of course, not all of
these solutions are of the same quality since the personal
preferences of lecturers are not yet taken into account. In
the example, several kinds of preferences may exist:
1. Lecturers will have preferred courses which they like (and

are able) to teach.

2. Some of the lecturers prefer to teach, say, in the morning,
others may prefer afternoon or evening lectures.

3. Some lecturers may even have their preferred lecture
rooms, maybe because they are close to their offices.

4. Finally, since in most realistic cases it is impossible to
satisfy the personal preferences of each single lecturer, it
is necessary to specify how conflicts are solved, in other
words, which preferences are more important than others.

In case of the preferred courses one can ask each lecturer to
rank courses, for instance using penalty values. A good so-
lution with respect to these preferences then is one where the
overall penalty is small. Preferences regarding time slotsand
rooms may be purely qualitative. Conflict solving in a uni-
versity environment may be based on the rule that professors
and their wishes are more important than assistants. In any
case, we need flexible ways of expressing preferences, and
it must be possible to combine them using various combina-
tion strategies to yield a single preference order on answer
sets. The language�� � to be developed in the next section
allows us to do this.

Preference description language
In this section we develop�� �, a language for represent-
ing preference information. This language will then be used
to select maximally preferred answer sets of generating pro-
grams. The language generalizes the rule based preference
programs of (Brewka, Niemelä, & Truszczyński 2003) in
two respects:

� it allows us to combine qualitative and numerical, penalty
based preference information within a single framework,
and

� it allows us to use different preference combination strate-
gies for different aspects of the answer sets.

Before introducing�� � we define what we mean by an an-
swer set optimization problem.

Definition 4 An answer set optimization problem (AOP) is
a pair

� $!� �� ��� " where� is a logic program and� ���
a �� � expression (to be defined below). A solution of

�
is

an answer set of� which is optimal according to the pre-
order represented by� ���.

Note that the generating program� can be any kind of logic
program (e.g. normal, extended, disjunctive etc.) as long as
it generates answer sets, that is sets of literals. An expres-
sion of our preference description language�� � represents
a preorder, that is a transitive and reflexive relation, on an-
swer sets. A preorder� induces an associated strict partial
order� via - � - � iff - � - � and not- � � - . An answer
set- is optimal according to the preorder� iff for each an-
swer set- � such that- � � - we also have- � - �. �� �
expressions thus play a similar role in our framework as ob-
jective functions in numerical optimization.

The basic building blocks of�� � are rules which rep-
resent context dependent preferences. The rules are similar
to the ones in (Brewka, Niemelä, & Truszczyński 2003) but
allow us to specify numerical penalties for suboptimal op-
tions.

Definition 5 Let � be set of atoms. Apreference ruleover
� is of the form

� �: � � � � � � � �� : � � � �� � � � � � �� � ��� �� � � � � � ��� ��
where the� and �� are literals built from atoms in� , the
� � are boolean combinations over� , and the� � are integers
satisfying� � � � whenever

� � � .

We use� � � � � � � � � � �� � �	
� as abbreviation for
� �: 	 � � � : ' � � � � � �� :
-

' � �	
� . Rules of this kind
were used in (Brewka, Niemelä, & Truszczyński 2003).

A boolean combinationover � is a formula built of
atoms in� by means of disjunction, conjunction, strong
(�) and default (���) negation, with the restriction that
strong negation is allowed to appear only in front of atoms,
and default negation only in front of literals. For example,
�� !����� ��" is a boolean combination, whereas��� !�� �"
is not. The restriction simplifies the treatment of boolean
combinations later on.

Definition 6 Let - be a set of literals, Satisfaction of a
boolean combination� in - (denoted- *$ �) is defined
as:

- *$ � (� literal) iff � % -
- *$ ��� � (� literal) iff � +% -
- *$ � � � � � iff - *$ � � or - *$ � �
- *$ � � � � � iff - *$ � � and- *$ � � .

We can characterize the intuitive meaning of a preference
rule of the form above as follows: given two answer sets
-� and- � such that both satisfy the body of the rule and at
least one of the options in the head, then-� is preferred to
-� if, for some� , -� *$ � and� � � �� &� * -� *$ � � (.
Moreover, as in (Brewka, Niemelä, & Truszczyński 2003)
we consider answer sets for which the rule is irrelevant -
because the body is not satisfied or because none of the al-
ternatives in the head is satisfied - to be as good as the best
answer sets. This is due to our penalty based view of rule
preferences: if a rule is irrelevant to an answer set it does
not seem appropriate to penalize the answer set at all, based
on this rule. A preference rule thus represents a ranking of
answer sets. Moreover, the penalty values associated with
the options represent a numerical measure of our degree of
dissatisfaction.

Preference rules are the basic building blocks of���.
In addition,�� � allows us to specify combination strate-
gies. Some of these strategies make use of the actual penalty
values, for instance by using their sum. Others, like the
Pareto strategy, are more qualitative in nature. For this rea-
son not all combinations make sense and we restrict the syn-
tax accordingly by distinguishing between a subset�� �
 of
���, the penalty producing expressions.

Definition 7 ���
 and �� � expressions are inductively
defined as follows:

1. if � is a preference rule then� % �� �
 ,
2. if

�� � � � � � �� are in ���
 then !� ��� �� � � � �� " %
�� �
 ,

3. if
� % ���
 then

� % ���,
4. if

�� � � � � � �� are in �� �
 then !��� �� � � � �� ",
!���� �� � � � �� ", !���
 �� � � � �� " and !� ���
 �� � � � �� "
are in �� �,

5. if
�� � � � � � �� are in ��� then !� ����	 �� � � � �� " and

!��� �� � � � �� " are in �� �.

The semantics of a��� expression is a preorder, that is,
a reflexive and transitive relation, on answer sets. We first
define penalties of answer sets, denoted� �� !- �� ��� ", for
the penalty generating preference expressions in�� �
 as
follows:

1. If � ��� is a rule of the form

� �: � � � � � � � �� : � � � �	
�
then:
� �� !- �� ��� " $ � , where� $ � �� &� * - *$ � � (, if -
satisfies�	
� and at least one� �,
� �� !- �� ��� " $ 	 otherwise.

2. If � ��� is a complex expression of the form

!� ��� �� � � � �� "
then� �� !- �� ���" $ � ��� � � �� !- � ��".

We use
� �
 !� ���" to denote the preorder associated with

a ��� expression� ���. For a rule� we have!-� � -� " %
� �
 !� " iff � �� !-� � � " � � �� !- � � � ".

For complex expressions the corresponding preorders are
defined as follows:

Let � � � � � � � �� be the preorders represented by�� � � � � � �� . Let � � � � � � � �� be the corresponding strict
partial orders (defined as- � - � iff - � - � and not
- � � -). Let � $ &'� � � � �
 (. Furthermore, for the
case where

�� � � � � � �� are penalty producing, we define
� �� $ &� % � * � �� !- � � " $ � (.
� !-� � -� " % � �
 !� ����	 �� � � � �� " iff

-� � - � for all � % � .
� !-� � -� " % � �
 !��� �� � � � �� " iff

-� � - � for all � % � or
-� � - � for some� % � , and for all

� � � : -� � � -�.
� !-� � -� " % � �
 !��� �� � � � �� " iff

� ��� � � ��� .
� !-� � -� " % � �
 !� ��� �� � � � �� " iff
� �� !-� � � " $ � �� !-� � � " for all � % � or
�
�� � �
�� , for some� , and for all� � � , � �� � $ � ��� .

� !-� � -� " % � �
 !���
 �� � � � �� " iff
*� ��� * � *� ��� *.

� !-� � -� " % � �
 !� ���
 �� � � � �� " iff
*�
�� * $ *�
�� * for all � or
*�
�� * � *�
�� *, for some� , and*� ��� * = *� ��� * for all � � � .

� !-� � -� " % � �
 !� ��� �� � � � �� " iff
� ��� � � �� !-� � �� " � � ��� � � �� !-� � �� ".

� ����	 is the standard Pareto ordering where-� is at least
as good as-� if it is at least as good with respect to all con-
stituent orderings� �. -� is strictly preferred over-� if it
is strictly better according to at least one of the constituent
orderings and at least as good with respect to all other order-
ings.
��� is a lexicographic ordering which considers the con-
stituent preorders� � in the order in which they appear in
preference expressions.-� is as good as-� if it is as good
with respect to all� �, or if it is strictly better.-� is strictly
better if, for some

�
, it is as good as- � with respect to

� � � � � � � � �	�, and strictly better with respect to� �. An
order � is thus only used to distinguish between answer
sets which are equally good with respect to all orderings ap-
pearing before� .��� is an inclusion based strategy which prefers answer sets
satisfying more (in the sense of set inclusion) orderings as
well as possible, that is with lowest penalty 0.
� ��� (ranked inc) is as

��� an inclusion based strategy, but
does not consider penalty 0 only. If two answer sets are
equally good with respect to penalty� , then in a next step
the set of orderings satisfied with penalty�
 '

is considered
to compare answer sets. Orderings of this kind were used in
(Brewka, Niemelä, & Syrjänen 2002).���
 is similar to

��� but based on thenumberof orderings
satisfied with penalty 0 rather than set inclusion.
� ���
 is similar to� ��� in using increasing penalties to dis-
tinguish between answer sets. As���
, it considers the
number of orderings satisfied to a particular degree. Or-
derings of this kind were used in (Benferhatet al. 1993;

Brewka, Benferhat, & Le Berre 2002).
� ��� adds the penalties obtained by the component order-
ings and prefers answer sets where the sum is smaller.

Course scheduling, revisited
We are now in a position to specify the preferences for our
course scheduling program which we discussed informally
earlier. We assume that each lecturer can assign penalties
to courses he does not like to teach. To make sure penalties
do not become arbitrarily high, we allow each lecturer to
assign a total of 10 penalty points to arbitrary courses. Each
lecturer�� will thus specify a set� � of preference atoms of
the form����
�� !�� � �" 	 � such that

�
�
���
� ��� ��� �

� $ '	 �

Similarly, each lecturer�� can express a set�� of time and
room preferences. For instance, the rule:

�� !- " � �� !- " � ����
�� !�� � � " � �� !- � � "
expresses that lecturer�� prefers teaching in the morn-
ing. Here we assume that the predicates�� and
�� are defined accordingly, for instance by specifying
�� !�" � � � � � �� !'�" ��� !'�" � � � � ��� !'�". The rule

�� !�� � � " � � � ����
�� !�� � � "
specifies that�� prefers to teach in room�� and is indifferent
about any other possible lecture room.

Finally, we need information about who is a professor and
who is an assistant. Let�
 be the union of all� � such that
�� is a professor, and let� � be the union of all� � such that��
is an assistant. Similarly, let�
 and� � be the collections
of time and room preferences of professors, respectively
the corresponding collections for assistants. We mentioned
in our informal discussion that professors’ preferences are
more important than assistants’ preferences. More precisely,
we want to give�
 more importance than� � , but consider
� � as more important than�
 .We slightly abuse notation and write!�	� � - " rather than
!�	� � �� � � � � � �� " whenever- $ &�� � � � � � �� (and the or-
der of elements in- is irrelevant for the combination method�	� �. This is the case for all methods except���.

The preferences involved in the scheduling problem can
now be stated using the following���-expression:

!��� !� ��� �
 " !� ��� � � " !� ����	 �
 " !� ����	 � � "" �
Although the example is still pretty simple it already

demonstrates the importance of different preference han-
dling strategies and combination methods.

Now assume a solution for the scheduling problem has
been computed and published on the web, but at the last
minute one of the lecturers becomes unavailable. In such
a situation simply starting from scratch and rerunning the
scheduling system would not be a good idea - even if the
original preferences are taken into account - as this may
lead to a new solution with different assignments of lectur-
ers, rooms and slots for a large number of classes. This is

certainly unwanted: what we would like to have is a new so-
lution which isas close as possible to the original solution.

Generating coherent solutions given small changes in the
problem description is again an optimization problem. To
solve this problem, we need a description of the old solution
together with a specification of what we mean by closeness.
In a qualitative setting closeness can be described in terms
of preferences.

For the class scheduling system different types of new
preferences play a role when an existing solution needs to
be modified. In addition to the original personal preferences
of the lecturers we have the following:

1. in general, not changing the original lecturer, time and
room assignments is preferred over changing them,

2. if a change is necessary, then it is more desirable to
change the room rather than the time slot of a class (be-
cause in that case no email notification is necessary),

3. if the time slot for a course needs to be changed, it is
preferable to make changes which require fewer notifica-
tions to be sent to students, that is, it is better to reschedule
a course with few students.

One can easily think of further preference criteria for such
situations. All these preferences need to be taken into ac-
count and combined adequately. We are not going to for-
malize this extended problem here. However, we hope to
have convinced the reader that the complex preferences in-
volved in realistic problems require a description language
like �� �.

Special cases
One of the nice properties of��� is that a number of dif-
ferent approaches to be found in the literature can easily be
expressed and thus turn out to be simple special cases of our
approach. We have the following results:

1. In (Brewka, Niemelä, & Truszczyński 2003) preference
programs are used for answer set optimization. Since the
rules used in preference programs are a special case of our
rules the translation is simple: a preference program

�
�
� $ &�� � � � � � �� (
corresponds to the��� expression

!� ����	 �� � � � �� " �
An ��� program as defined in that paper is thus a simple
special case of our approach.

2. The mentioned paper also discusses preference programs
with meta-preferences which split the set of preference
rules into preference levels

'� � � � � �. Assuming�� � be-
longs, for each

�
, to level

�
we can express programs with

meta-preferences as:

!��� !� ����	 � � �� � � � � � ��� " � � � !� ����	 �� �� � � � �� ��� "" �
3. Cardinality and inclusion based combination strategiesas

described in (Brewka, Niemelä, & Syrjänen 2002) for
�� �� s can be described using� ��� and� ���
. Let � �

be an�� �� , � a logic program such that the answer sets
of � � and� coincide.2 Let

&�� � � � � � �� (
be the set of preference rules obtained from� � by replac-
ing � with �. Let

� ��� $!���� �� � � � �� " �
Then- is an optimal answer set of� � under the inclusion
based strategy iff- is a solution for the answer set opti-
mization problem!� �� ���". Similarly, by replacing� ���
with � ���
 in the preference expression, we obtain solu-
tions corresponding to optimal answer sets of� � under
the cardinality based strategy.

4. Weak constraints of the form
� �	
� �
� �

as implemented in
�� can be represented as preference
rules of the form

�: � � �	
�
where� is a tautology of the form� � ��� �, using the
� ��� -strategy. Alternatively we can use the preference
fact (preference rule with empty body)�	
� �: � where�	
� � is the conjunction of literals in the body. Weak con-
straints with priority levels of the form

� �	
� �
� : ��
have the same translation as above, but must be grouped
according to their priority level�. For each priority level�
let &� � �� � � � � � � � �� � (
be the translations of the weak constraints of that level.
The preference strategy can be expressed as:

!��� !� ��� �� �� � � � � � ��� " � � � !� ��� �� �� � � � �� ��� ""
where

�
is the greatest priority level (with minimal prior-

ity).

5. Smodelsstatements of the form

� ���� �� �&�� $ � � � � � � � �� $ � � (
can be represented as

!� ��� ��: � � � � � �� : � � " �
sequences of such statements as

!��� !� ��� � � � " � � � !� ��� � � � "" �
It is obvious that��� allows us to express a lot more

combination strategies than the ones discussed in this sec-
tion.

2Note that this requires a nonstandard definition of answer sets
for � since the answer sets of� � are not necessarily inclusion
minimal.

Complexity
The complexity results established for���-programs in
(Brewka, Niemelä, & Truszczyński 2003) also hold for an-
swer set optimization problems!� �� ���" and can be shown
using similar proofs. The exact complexity depends on
the class of generating programs� . To simplify the treat-
ment, we consider here only generating programs where
deciding existence of an answer set isNP-complete (Si-
mons, Niemelä, & Soininen 2002). This class of programs
includes ground normal programs (possibly extended with
strong negation or weight and cardinality constraints). The
following two results indicate that - as for���-programs -
allowing preferences adds an extra layer of complexity.

Theorem 1 Let
� $!� �� ���" be an answer set optimiza-

tion problem and- an answer set of� . Then deciding
whether- is a solution of

�
is coNP-complete.

Theorem 2 Given an an answer set optimization problem� $!� �� ���" and a literal �, deciding whether there is a
solution- of

�
such that� % - is ��� -complete.

The complexity results imply that (unless the polynomial
hierarchy collapses) the problem of finding a solution for
an answer set optimization problem cannot be mapped in
polynomial time to a problem of finding an answer set of
a program� � obtained by translating!� �� ���". As men-
tioned above, the proofs of these theorems are similar to the
proofs of the corresponding results in (Brewka, Niemelä, &
Truszczyński 2003) and are therefore omitted.

Implementation
In (Brewka, Niemelä, & Truszczyński 2003) an implementa-
tion technique for computing optimal answer sets for���
programs on top of a standard answer set prover has been
developed. A similar technique has earlier been used in
(Janhunenet al. 2000) to compute stable models of dis-
junctive logic programs usingSmodels, and in (Brewka,
Niemelä, & Syrjänen 2002) to compute preferred answer
sets of logic programs with ordered disjunction. The com-
putation is based on a tester program that takes as input an
answer set and generates a strictly better one if such an an-
swer set exists. The computation starts with an arbitrary an-
swer set generated by the generator. This answer set is given
to the tester program. If the tester fails to generate a strictly
better one, we have found an optimal answer set and we are
done. If a strictly better answer set is discovered, the tester
is run with the new answer set as input. This continues until
an optimal answer set is reached.

This technique can be adapted for computing optimal an-
swer sets of an answer set optimization problem!� �� ��� "
by compiling� ��� to a suitable tester program for a given
answer set� . The tester program� !� �� �� ���" $

� � � !� " � � ��� � !� ��� � '" � &� ��� ������ � (
consists of the original generating program� , a descrip-
tion of the answer set� to be tested for optimality, denoted
� !� " (a description of the penalty values is sufficient, see

below), the translation� ��� � !� ��� � '" of the preference ex-
pression, and a constraint eliminating answer sets which are
not better than� with respect to� ���. As our target lan-
guage we will use the language ofSmodelswith cardinality
constraints here (Simons, Niemelä, & Soininen 2002) which
we also used for our course scheduling example. This lan-
guage is particularly well-suited for the translation of the
cardinality based strategies.

For the translation we need an indexing scheme for all
subexpressions of� ���. Expressions have a tree structure
and the indexing can be done in a standard manner. We as-
sume index 1 is assigned to the whole expression (this is the
reason for index 1 in the constraint� ��� ������� and in
� ��� � !� ��� � '" above), 1.1 to 1.k to its immediate subex-
pressions, 1.1.1 to the first subexpression of expression 1.1
etc.

For each subexpression with index
�

we define predicates� �� � and ������� which express that the new generated an-
swer set is at least as good as the old one, respectively
strictly better than the old one, according to the preorder rep-
resented by expression

��. For the penalty producing expres-
sions we have additionally a predicate� �� �. A preference
rule � $
� �: � � � � � � � �� : � � � �� � � � � � �� � ��� �� � � � � � ��� ��
with index

�
can be translated according to the techniques

discussed in (Brewka, Niemelä, & Truszczyński 2003). In
the translation we assume that atoms of the form	�
� �� � are
used to represent the answer set� to be tested.� ��� � !� � �"
consists of the following rules:

� �� � � � �� � !� � " � 	�
� �� � !� � " � � � � � �������� � � �� � !� � " � 	�
� �� � !� � " � � � � � ��	
�� � �� � � � � � �� � ��� �� � � � � � ��� ��

��
� � � � (for each�)
� �� � !	 " � ��� �	
��
� �� � !	 " � ���
��
� �
� �� � !� � " � �� � �	
��
� �� � !� � " � ��� �� � �� � �	
��� � �
� �� � !� � " � ��� �� � � � � � ��� ��	� � �� � �	
��

Here� is an atom representing the fact that boolean combi-
nation� is satisfied. Such atoms are needed for all subex-
pressions of the boolean combinations. Additionally we
have to add rules capturing the conditions under which the
combinations are satisfied. For example, if� is a disjunc-
tion � � � � � , then we add rules� � �� and� � ��.

For complex expressions� ��� $!�	� � �� � � � �� " with
index

�
(�	� � is one of our 7 combinators) the translation

consists of the translations of the subexpressions
�� � � � ��

together with new rules for the whole expression. More pre-
cisely, we have� ��� � !� ��� � �" $

� ��� � !� �
 " � � ��� � !�� � � �'" � � � � � � ��� � !�� � � �
 " �
We define the rules� ��� � !� �
 " below for each of the 7

cases. The variable	 ranges over
&'� � � � �
 (,
 (possibly

with index) over
&	 � � � � �
 (, and� �� range over penalty

values:

� � ��� $!� ����	 �� � � � �� ":� �� � � � �� � �� � � � � � � �� � ��������� � � �� � � ������� ��
...������� � � �� � � ������� ��

� � ��� $!��� �� � � � �� ":� �� � � � �� � �� � � � � � � �� � ��� �� � � �������������� � ������� ��������� � � �� � �� � ������� ��
...������� � � �� � �� � � � � � � �� � ��	� � ������� ��

� � ��� $!��� �� � � � �� ":� �� � � ��� � 	� ��� !	"������� � ������� !	" � ��� � 	���� !	 "������� !	" � � �� � �� !	" � 	�
� �� � �� !� " � 	 � �� 	� ��� !	 " � 	�
� �� � �� !	" �� �� � �� !� " � 	 � �
� � ��� $!���� �� � � � �� ":� �� � � ��� � 	� ���� �� � � �������� 	� ��� � � 	� ��� !� "������� � ������� !� " � ��� � 	� ��

-�� �	� !� "������� !� " � � �� � �� !� " � 	�
� �� � �� !� " � � � �� 	� ��� !� " � 	�
� �� � �� !� " �� �� � �� !� " � � � �� 	� ��
-�� �	� !� " � � 	� ��� !� " �� � �

� � ��� $!���
 �� � � � �� ":� �� � � ���
� !	 �
� " � 	�
���
� !	 �
� " �
� �
�������� � ���
� !	 �
� " � 	�
���
� !	 �
� " �
� �
����
� !	 �
 " �
 &� �� � �� !	" � � � � �� �� � �� !	 "(
	�
���
� !	 �
 " �
 &	�
� �� � �� !	" � � � � � 	�
� �� � �� !	 "(

� � ��� $!����
 �� � � � �� ":� �� � � ��� ��� ���� �� �� � � ���������� ���� � � ���
� !� �
� " � 	�
���
� !� �
� " �
� +$
�������� � ������� !� " � ��� � 	� ��

-�� �	� !� "������� !� " � ���
� !� �
� " � 	�
���
� !� �
� " �
� �
�� 	� ��� !� " � ���
� !� �
� " � 	�
���
� !� �
� " �
� �
�� 	� ��
-�� �	� !� " � � 	� ��� !� " �� � ����
� !� �
 " �
 &� �� � �� !� " � � � � �� �� � �� !� "(
	�
���
� !� �
 " �
 &	�
� �� � �� !� " � � � � � 	�
� �� � �� !� "(

� � ��� $!� ��� �� � � � �� ":� 	
 � �
 � � � 	
 � �� �
 �� � ���� � 	
 � �� �
 � � �
 �
 � � ��� �
 �
� �� � � � �� � !) " � 	�
� �� � !� " �) � �������� � � �� � !) " � 	�
� �� � !� " �) � �

The space required for the translation to non-ground pro-
grams is polynomial in the size of� ���. For the ground
instantiation we need to restrict the possible penalty values
to a finite subset of the integers. Not surprisingly, the trans-
lations of the ranked strategies���� and� ���
 are the most
involved ones. Some of the rules for� ��� have
 � � � in-
stances, where� is the number of different penalty values. It
is thus advisable to keep� rather low. A complete translation
example is contained in the Appendix.

The description� !� " of the candidate answer set�
consists of ground atoms of the form	�
� �� � !� " for all
penalty producing expressions (preference rules and� ��� -
expressions) in� ���, the preference expression of the cur-

rent optimization problem. The easiest way to produce these
atoms is to add to the original program� a variant of the
rules defining� �� � in the translations of preference rules
and of� ��� -expressions, where each occurrence of� �� �
for some index

�
is replaced by	�
� �� �. We have the fol-

lowing theorem:

Theorem 3 Let� be an answer set of� . If � !� �� �� ���"
has an answer set- , then- restricted to the original lan-
guage of� is an answer set for� that is strictly preferred
to� according to

� �
 !� ���", and if� !� �� �� ��� " has no
answer set, then no answer set strictly preferred to� exists.

Proof: (Sketch) Consider first the resulting program with-
out the constraint� ��� ������ �. This program contains
the original generating program� . As can easily be ver-
ified, the remaining rules are stratified. Moreover, apart
from the lowest stratum which contains literals from� , the
language of� and that of the rest of the program, that
is, of � !� " � � ��� � !� ��� � '", is different. We can thus
apply the splitting set theorem (Lifschitz & Turner 1994)
and show that there is a bijection between answer sets of
� and answer sets of� � � !� " � � ��� � !� ��� � '" such
that for each answer set- of � there is an answer set- � of
� � � !� " � � ��� � !� ��� � '" with - $ - � � � !� ", where
� !� " is the language of� .

It can be shown by induction on the structure of� ��� that
an answer set- � of � � � !� " � � ��� � !� ��� � '" contains� ��� iff !- � � � !� " �� " % � �
 !� ��� ", and - � contains������ � iff !- � � � !� " �� " is an element of the strict partial
order induced by

� �
 !� ��� ". The proof is somewhat te-
dious, but not difficult since the different combination meth-
ods are represented declaratively in the programs resulting
from the translation.

With these results it immediately follows that adding the
constraint� ��� ������ � has the effect of destroying all an-
swer sets- � of � !� �� �� ���" for which - $ - � � � !� " is
not strictly better than� . �

Discussion
The main contribution of this paper is the definition of the
language�� � for specifying complex preferences. We
showed that several existing preference handling methods
turn out to be special cases of our approach. We also demon-
strated that�� � expressions can be compiled to logic pro-
grams to be used as tester programs in a generate-and-
improve method for finding optimal answer sets.

Answer set programming is basically a propositional ap-
proach, and the currently available answer set solvers work
for ground programs only. Nevertheless, rule schemata are
widely used and sophisticated ground instantiation tech-
niques have been implemented. They can be used in�� �
as well in almost all cases because most of the��� combi-
nation strategies are independent of the order of their imme-
diate subexpressions. The single exception is��� where the
order clearly matters. A rule schema can be used as a direct
subexpression of��� only if there is an additional specifica-
tion of the order of the ground instances, that is, if alist of
ground instances is represented rather than a set.

The work presented in this paper shares some motiva-
tion with (Brewka 2004b). Also in that paper a language,
called ��� , for expressing complex preferences is pre-
sented. However, there are several major differences which
are due to the fact that�� � is taylored towards answer set
optimization:

1. ��� is goal based rather than rule based. The basic
building blocks are ranked knowledge bases consisting of
ranked goals rather than rules with prioritized heads.

2. ��� is used to describe the quality of models. Since
��� is used to assess the quality of answer sets (i.e.,
sets of literals) rather than models, it becomes impor-
tant to distinguish between an atom not being in an an-
swer set and its negation being in an answer set. In other
words, the distinction between classical negation and de-
fault negation (negation as failure) is relevant. This dis-
tinction does not play a role in��� .

3. ��� distinguishes between penalty producing and other
strategies. Both numerical and qualitative combination
strategies are thus used.��� focuses entirely on qualita-
tive methods.

An interesting related paper is (Son & Pontelli 2004) which
introduces a preference language for planning. The lan-
guage is based on a temporal logic and is able to express
preferences among trajectories. Preferences can be com-
bined via certain binary operators. The major difference
certainly is that our approach aims at being application-
independent, whereas (Son & Pontelli 2004) is specifically
geared towards planning.

Also related is (Andreka, Ryan, & Schobbens 2002). The
authors investigate combinations of priority orderings based
on a generalized lexicographic combination method. This
method is more general than usual lexicographic orderings
- including the ones expressible through our��� operator -
since it does not require the combined orderings to be lin-
early ordered. It is based on so-called priority graphs where
the suborderings to be combined are allowed to appear more
than once. The authors also show that all orderings satisfy-
ing certain properties derived from Arrow’s conditions (Ar-
row 1950) can be obtained through their method. This is
an interesting result. On the other hand, we found it some-
what difficult to express examples like our course schedul-
ing problem using this method. We believe our language is
closer to the way people actually describe their preferences.

In (Boutilier et al. 1999; 2004; Brafman & Dimopou-
los 2003)�� -networks are introduced, together with cor-
responding algorithms. These networks are a graphic rep-
resentation, somewhat reminiscent of Bayes nets, for con-
ditional preferences among feature values under theceteris
paribusprinciple. Our approach differs from�� -networks
in several respects:
� Preferences in�� -networks are always total orders of

the possible values of a single variable. We are able to
relate arbitrary formulas in the heads of rules - and to
express partial preference information, that is, to refrain
from judgement if we do not care.

� The ceteris paribus interpretation of preferences is very

different from our rule-based interpretation. The former
views the available preferences as (hard) constraints on
a global preference order. Each preference relates only
models which differ in the value of a single variable. Our
preference rules, on the other hand, are more like a set of
different criteria in multi-criteria optimization. In partic-
ular, rules can be conflicting. Conflicting rules may neu-
tralize each other, but do not lead to inconsistency.

Many related ideas can be found in constraint satisfac-
tion, in particular valued (sometimes also called weighted)
constraint satisfaction (Freuder & Wallace 1992; Fargier,
Lang, & Schiex 1993; Schiex, Fargier, & Verfaillie 1995;
Bistarelli, Montanari, & Rossi 1997). Here a solution is
an assignment of values to variables. A valued constraint,
rather than specifying hard conditions a solution has to sat-
isfy, yields a ranking of solutions. A global ranking of so-
lutions then is obtained from the rankings provided by the
single constraints through some combination rule. This is
exactly what happens in our approach based on preference
rules. Also in constraint satisfaction we find numerical as
well as qualitative approaches. In MAX-CSP (Freuder &
Wallace 1992), for instance, constraints assign penaltiesto
solutions, and solutions with the lowest penalty sum are pre-
ferred. In fuzzy CSP (Fargier, Lang, & Schiex 1993) each
solution is characterized by the worst violation of any con-
straint. Preferred solutions are those where the worst vi-
olation is minimal. We are not aware of any approach in
constraint satisfaction trying to combine different strategies.
For this reason we believe the language developed here will
be of interest also for the constraint community.

Although we presented�� � in the context of answer set
optimization, it should be obvious that the language can be
used in other optimization contexts - like constraint opti-
mization - as well. To use��� it is only required that can-
didate solutions can be evaluated with respect to the expres-
sions in the rules. We also want to emphasize that we con-
sider�� � as an extendible language. We certainly do not
claim that the 7 combinators used in this paper are the only
interesting ones. Many other combination methods have
been used in different areas of AI, for an excellent overview
see (Lang 2004). The reader should be aware, though, that
for the compilation of preference expressions to logic pro-
grams it is essential that two answer sets can be directly
compared.

Acknowledgements
The author acknowledges support from the EC (IST-2001-
37004, WASP) and DFG (BR 1817/1-5, Computationale Di-
alektik). Thanks to R. Booth for proofreading.

Appendix: Translation Example
In this appendix we illustrate our compilation method and
give the complete translation of the preference expression

!��� �� !� ����	 �� �� ""
with

�� 	 � � � � � � �
�� 	 � � ���
 � � � ��� �
�� 	 � � �� � �

Our indexing scheme assigns index
'

to ���,
'�' to ��, '��

to � ����	,
'�� �' to �� and

'�� �� to �� . The translation of���
yields:

� ��� � � ��� �� � � �� � ��� ��� � �������������� � ������� ��������� � � ��� �� � ������� ��
For �� we obtain:

� ��� �� � � �� � �� !� �" � 	�
� �� � �� !�� " � � � � ��������� �� � � �� � �� !� �" � 	�
� �� � �� !�� " � � � � ���	
�� �� � �

��
�� �� � ��� �

��
�� �� � ��

��� � � ���� � � �
�� � �

� �� � �� !	" � ��� �	
�� ��
� �� � �� !	" � ���
��
�� ��
� �� � �� !	" � ��� � � �	
� � ��
� �� � �� !'" � ��� ��� � � �� � �	
� � ��

From� ����	 we get:
� ��� �� � � �� � �� �� � � ��� �� ��������� �� � � �� � �� � ������� �� ��������� �� � � �� � �� � ������� �� ��

The rule�� gives us:
� �� � �� �� � � �� � �� �� !� � " � 	�
� �� � �� �� !� � " � � � � � ������� � �� �� � � �� � �� �� !� � " � 	�
� �� � �� �� !� � " � � � � � ��	
� � �� �� � ��� �

��
�� �� �� � ������ �

��
�� �� �� � �
������ � � � � ���

�
 � �
� �� � �� �� !	 " � ��� �	
�� �� ��
� �� � �� �� !	 " � ���
��
�� �� ��
� �� � �� �� !	 " � ������ � � �	
� � �� ��
� �� � �� �� !'" � ��� ������ � � �
 � �	
� � �� ��

Finally, �� yields:
� �� � �� �� � � �� � �� �� !� � " � 	�
� �� � �� �� !� � " � � � � � ������� � �� �� � � �� � �� �� !� � " � 	�
� �� � �� �� !� � " � � � � � ��	
� � �� ��
��
�� �� �� � ���� �

��
�� �� �� � ������ � � ����� � � ��
�� � �

� �� � �� �� !	 " � ��� �	
�� �� ��
� �� � �� �� !	 " � ���
��
�� �� ��
� �� � �� �� !	 " � ���� � � �	
� � �� ��
� �� � �� �� !'" � ��� ���� � � �� � �	
� � �� ��

This completes the translation. Of course, the translation
could be simplified. For instance, an atom like� � represent-
ing an option in the head of a rule consisting of a literal can
immediately be replaced by�. For sake of clarity we did not
make simplifications of this kind above.

References
Andreka, H.; Ryan, M.; and Schobbens, P.-Y. 2002. Oper-
ators and laws for combining preference relations.Journal
of Logic and Computation12(1):13–53.
Arrow, K. 1950. A difficulty in the concept of social wel-
fare. Journal of Political Economy58:328–346.
Baral, C., and Uyan, C. 2001. Declarative specification
and solution of combinatorial auctions using logic pro-
gramming. InProceedings LPNMR-01, 186–198. Springer
LNCS 2173.
Baral, C. 2003.Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
ISBN 0521818028.
Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, J.; and
Prade, H. 1993. Inconsistency management and prior-
itized syntax-based entailment. InProceedings Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
93, 640–645. Morgan Kaufmann.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint solving and optimization.Journal of the
ACM 44(2):201–236.
Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProc. Uncertainty in Artificial Intelli-
gence, UAI-99, 71–80.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. Journal of Artificial Intelligence Researchto ap-
pear.
Brafman, R., and Dimopoulos, Y. 2003. A new look at
the semantics and optimization methods of CP-networks.
In Proceedings International Joint Conference on Artificial
Intelligence, IJCAI-03, 1033–1038. Morgan Kaufmann.
Brewka, G.; Benferhat, S.; and Le Berre, D. 2002. Qualita-
tive choice logic. InPrinciples of Knowledge Representa-
tion and Reasoning: Proceedings of the 8th International
Conference, KR-02, 158–169. Morgan Kaufmann. journal
version to appear in Artificial Intelligence.
Brewka, G.; Niemelä, I.; and Syrjänen, T. 2002. Imple-
menting ordered disjunction using answer set solvers for
normal programs. InProceedings of the 8th European Con-
ference on Logics in Artificial Intelligence (JELIA 2002),
444–455. Springer Verlag.
Brewka, G.; Niemelä, I.; and Truszczyński, M. 2003. An-
swer set optimization. InProceedings International Joint
Conference on Artificial Intelligence, IJCAI-03, 867–872.
Morgan Kaufmann.
Brewka, G. 2004a. Answer sets: From constraint pro-
gramming towards qualitative optimization. InProceed-
ings LPNMR-04, 34–46. Springer Verlag.
Brewka, G. 2004b. A rank based description language for
qualitative preferences. Insubmitted for publication.
Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Enhancing
disjunctive datalog by constraints.IEEE Transactions on
Knowledge and Data Engineering12(5):845–860.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello,
F. 1998. The KR system dlv: Progress report, comparisons
and benchmarks. InPrinciples of Knowledge Representa-
tion and Reasoning: Proceedings of the 6th International
Conference, KR-98, 406–417. Morgan Kaufmann.

Eiter, T.; Faber, W.; Leone, N.; and Pfeifer, G. 1999. The
diagnosis frontend of the dlv system.AI Communications
12(1-2):99–111.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2002a. Answer set planning under action costs. InProc.
JELIA 2002, volume 12(1-2), 186–197. Springer LNCS
2424.

Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002b.
A generic approach for knowledge-based information-site
selection. InProc. 8th Intl. Conference on Principles of
Knowledge Representation and Reasoning, KR-02, 459–
469. Morgan Kaufmann.

Fargier, H.; Lang, J.; and Schiex, T. 1993. Selecting pre-
ferred solutions in fuzzy constraint satisfaction problems.
In Proceedings of the First European Congress on Fuzzy
and Intelligent Technologies.

Freuder, E., and Wallace, R. 1992. Partial constraint satis-
faction. Artificial Intelligence58(1):21–70.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.

Janhunen, T.; Niemelä, I.; Simons, P.; and You, J.-H. 2000.
Unfolding partiality and disjunctions in stable model se-
mantics. InPrinciples of Knowledge Representation and
Reasoning: Proceedings of the 7th International Confer-
ence, 411–419. Morgan Kaufmann Publishers.

Lang, J. 2004. Logical preference representation and com-
binatorial vote.Annals of Mathematics and Artificial Intel-
ligenceto appear.

Lifschitz, V., and Turner, H. 1994. Splitting a logic pro-
gram. InInternational Conference on Logic Programming,
23–37.

Lifschitz, V. 2002. Answer set programming and plan
generation.Artificial Intelligence Journal138(1-2):39–54.

Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. InThe Logic
Programming Paradigm: a 25-Year Perspective, 375–398.
Springer Verlag.

Niemelä, I., and Simons, P. 1997. Efficient implementation
of the stable model and well-founded semantics for normal
logic programs. InProceedings of the 4th Intl. Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, 421–430. Springer Verlag.

Niemelä, I., and Simons, P. 2000. Extending the Smodels
system with cardinality and weight constraints. In Minker,
J., ed.,Logic-Based Artificial Intelligence. Kluwer Aca-
demic Publishers.

Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm.Annals of
Mathematics and Artificial Intelligence25(3,4):241–273.

Schaub, T., and Wang, K. 2001. A comparative study of
logic programs with preference. InProceedings of the 17th
International Joint Conference on Artificial Intelligence,
IJCAI-01, 597–602.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, IJCAI-95, 631–637.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1-2):181–234.
Soininen, T. 2000.An Approach to Knowledge Representa-
tion and Reasoning for Product Configuration Tasks. Ph.D.
Dissertation, Helsinki University of Technology, Finland.
Son, R., and Pontelli, E. 2004. Planning with preferences
using logic programming. InProc. 7th International Con-
ference on Logic Programming and Nonmonotonic Rea-
soning, LPNMR 04, 247–260. Springer LNAI 2923.

