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Abstract For instance, in graph colouring arbitrary assignments of
_ . _ _ o colours to nodes constitute potential solutions. If we dxd t
The main contribution of this paper is the definition of the condition that an answer set is to be disregarded if it assign

preference description langua@®L. This language allows
us to combine qualitative and quantitative, penalty basefd p
erences in a flexible way. This makes it possible to express

the same colour to neighbouring nodes, then the remaining
answer sets will be the solutions to our original graph colou

complex preferences which are needed in many realisticopti NG problem. o

mization settings. We show that several preference hapdlin Answer set optimization goes one step further: from a
methods described in the literature are special cases of our ~ constraint programming paradigm to a paradigm of qualita-
approach. We also demonstrate tRd2L expressions can be tive optimization. In terms of the above mentioned method-

compiled to logic programs which can be used as tester pro-  ology, a third step is added:

grams in a generate-and-improve method for finding optimal 3. among the solutions generated by the program, pick one
answer sets. of the solutions with maximal quality.

. The (relative) quality of an answer set is described using a
Introduction preference ordering on answer sets. A solution of an answer

Answer sets (Gelfond & Lifschitz 1991), originally invente ~ S€tOptimization problem is a non-dominated answer set, tha
to define the semantics of (extended) logic programs with is, an answer set such that no strictly better answer sdsexis

default negation, have proven to be extremely useful for . Many Al problems have natural formulations as optimiza-
solving a large variety of Al problems. Two important de- 10N Problems (see for instance (Brewka 2004a) for a discus-
velopments were essential for this success: slon pf abduction anq diagnosis, Inconsistency handling an
solution coherence viewed as an optimization problem), and
1. the development of highly efficient answer-set provers, many problems which can be represented in a “hard” con-
the most advanced among them beSgodel{Niemela straint programming paradigm have fruitful, more flexible
& Simons 1997) andlv (Eiteret al. 1998), refinements as optimization problems. Consider planning

2. a shift from a theorem proving to a constraint program- as a typical example. We know how to represent planning

ming perspective (Niemela 1999),(Marek & Truszczyhski Problems asd.SP problems (Lifschitz 2002). Moving from
1999). a constraint programming to an optimization perspective al

) ) . lows us to specify criteria by which we can rank plans ac-
It turned out that many problems, for instance in reasoning ¢ording to their quality. This allows us to select good plans
about actions, planning, diagnosis, belief revision amlpr 5y 1o generate suboptimal plans if there is no way to satisfy
uct configuration, have elegant formulations as logic pro- 4 requirements).
grams so that models of programs, rather than proofs of  An example for quantitative optimization is planning un-
queries, describe problem solutions (Lifschitz 2002; Boin ey action costs (Eiteet al. 2002a). Qualitative optimiza-
nen 2000; Baral 2003; Eitest al. 1999). This view of o techniques in the context of planning are investigated
logic programs as constraints on the sets of literals which (Son & Pontelli 2004).

may count as solutions has led to a new problem solving " oyr interest in optimization based on qualitative prefer-

paradigm called answer set programmidg(). ences stems from the fact that for a variety of applications
The predominant methodology HhSP ISa generate-and-  nymerical information is hard to obtain (preference edicit
test method which proceeds as follows: tion is rather difficult) - and often turns out to be unneces-

1. generate answer sets which represent potential saition  sary. On the other hand, if numerical information is avail-
able then it is often convenient to use it. For instance, it is

sometimes rather straightforward to assign numericallpena
ties to suboptimal solutions, and our approach will allow fo
Copyright © 2004, American Association for Artificial Intelli- flexible combinations of qualitative and numerical, pepalt
gence (www.aaai.org). All rights reserved. based preference handling techniques.

2. specify conditions which destroy those answer sets which
do not correspond to actual solutions.



Of course, the use of optimization techniques in answer Answer sets: a short reminder

set programing is not new. There is a large body of work |n this section we recall the definition of answer sets agintr
on preferred answer sets, see for instance (Schaub & Wang duced by (Gelfond & Lifschitz 1991). Readers familiar with
2001) and the references in that paper. Also some of the answer sets can safely skip this section. We consider propo-
existing answer set solvers have (numerical) optimization sjtional extended logic programs with two kinds of nega-
facilities: Smodelswvith weight constraints has.azimize  tion, classical negation and default negationot . Intu-
andminimize statements operating on weights of atomsin jtively, not a is true whenever there is no reason to believe
answer sets (Simons, Niemela, & Soininen 2002). Aninter- 4 whereas-a requires a proof of the negated literal. An

esting applicat.ion of these constructs to modeling austion extended logic prograniprogram, for short)P is a finite
can be found in (Baral & Uyan 20014dlv has weak con- collection of rules- of the form

straints (Buccafurri, Leone, & Rullo 2000) of the form ¢ ay,... ay notby, ... not by 1)

+ body. [w: ] where thes;, b; andc are classical ground literals, i.e., either
positive atoms or atoms preceded by the classical negation
sign—. We denote byheadr) the head: of rule » and by
body(r) the bodyay, . .., a,, not by, . .., not b, of the rule.
We will call a4, .. . , a, theprerequisitef the rule and use
pre(r) to denote the set of prerequisitesrof

We say a rule of the form (1) isdefeated by a literaf,
if £=0b; forsomei € {1,... ,m}, and we say it islefeated
by a set of literalsX, if X contains a literal that defeats
r. Moreover, a rule is applicable inX whenever it is not
defeated byX and its prerequisites are iN. We denote
this condition byX |= body(r). A ruler is satisfied byX
(denotedX [= r) if headr) € X orif X [~ bodyr). A set
of literals X is consistentf, for all atomsa, a € X implies
that—a ¢ X.

wherew is a numerical penalty ands a priority level. For
each priority level, the sum of the penalties of all violated
constraints (i.e., constraints whose bodies are satisiied)
computed. The answer sets with minimal overall penalty in
one level are compared based on the overall penalties of the
next level, etc. Such constraints were used, for instance,
to implement planning under action costs as described in
(Eiter et al. 2002a) and for knowledge based information-
site selection (Eiteet al. 2002b). For the use of logic
programs with ordered disjunction (Brewka, Niemela, &
Syrjanen 2002) andl SO programs (Brewka, Niemela, &
Truszczyhski 2003) for several generic optimization prob
lems see (Brewka 2004a).

All these approaches are based on fixed built-in prefer- A t of Ai t of literalsS sati
ence handling strategies. For realistic applications Wiaé-a /AN answer set of a prograi IS a Set ot literalss satis-
ability of a variety of strategies is highly important, amd i fylrlg two corlwdltlons-. ] ] ] )
particular the possibility to combine different strategia 1. if r € P is applicable inS, thenr is applied, that is,
flexible ways. For this reason we develop in this paper the ~ headr) € S, and
preference description langua§®L. The language allows 2. all literals inS have a non-circular derivation using only
us to describe complex preferences among answer sets. Our rules undefeated b§.
approach shares a lot of motivation withSO programs We can make this precise as follows:

(Brewka, Niemela, & Truszczyhski 2003): we treat the togi

program generating candidate solutions separately to make Definition 1 Let P be an extended logic program, and let
answer set selection independent form answer set genera-x pe a set of literals. Thél-reduct of P, denotedP™ , is
tion, and the rules we use here to express preferences arethe collection of rules resulting frot® by

the same as in (Brewka, Niemela, & Truszczyhski 2003),
apart from allowing for the explicit specification of penal-
ties. However, rather than using preference programs, that
is sets of rules, to describe preferences, weRBé expres-
sions which give us much more flexibility. This construction is often called Gelfond-Lifschitz reduc

The outline of the paper is as follows: we first give a tjon, after its inventors.
short reminder on answer sets. We then discuss a course
scheduling example motivating the need of complex pref- Definition 2 Let R be a collection of rules without default
erence combination methods. The subsequent section in- negation. Then, QiR) denotes the smallest sgwf literals
troduces syntax and semanticsfbL, the new preference  such that

1. deleting each rule which is defeated Ky and

2. deleting all default negated literals from the remaining
rules.

description language. We also show how the preferences; g is closed under, i.e., for any rulec < as, ... ,a, in
needed for the scheduling example can be expressed using g ifq,.... a, € S, thenc € S; and B
PDL. ST ' ’

2. S is logically closed, i.e., eithef is consistent oIS =

We then demonstrate how several preference handling Lit(R), the set of all literals

methods described in the literature can be expressed using
PDL, and we discuss complexity issues. Finally, we show pefinition 3 Let R be a collection of rules. Define an oper-
how optimal answer sets can be computed on top of a stan- 410 v (X) on sets of literals as follows:

dard answer set solver using a generate and improve strat- X

egy. For this purpose, arbitra®DL expressions are com- Tr(X) = Cn(R™)

piled to logic programs. We conclude with a discussion of Then, a sef of literals is an answer set @& iff S = yr(S).
related work. The collection of answer sets Bfis denoted byd S(R).



As mentioned in the introduction, in many applications of paper an intuitive understanding of cardinality constisis
answer set programming one can distinguish a generate andsufficient. The reader is referred to the original papers for

a test part of the program: the generate part produces candi-further details.

date solutions, the test part destroys those answer seth whi To make sure that each answer set contains an assignment
do not represent solutions. For the test part rules of tha for  of lecturers, rooms and time slots to courses, we can use the
+ bodywith empty head are often used. Such a rule is an following rules:

abbreviation for 1{teaches(L,C) : lecturer(L)}1 + course(C)

1{in(R,C) : room(R)}1 « course(C)

1{at(S, C) : slot(S)}1 « course(C)

wherenew is a new atom not appearing elsewhere in the go|utions to the scheduling problem have to satisfy several
program. The effect of the rule is that all answer sets satis- n5rd constraints:

fying body are eliminated. These rules are also called con-

new ¢ not new, body

1. asdiscussed earlier, there is only one course per lecture

straints.
Although answer set programs are basically proposi- 2- different courses cannot take place in the same room at
tional, it is common to use rule schemata containing vari-  the same time.
ables. These schemata are representations of their gnoundi This can be expressed by the following constraints:
stances, and current answer set solvers use intelligembdro « teaches(L,C), teaches(L,C"),C # C'

instantiation techniques before the actual answer set atemp +« in(R,C),in(R,C"),at(S,C),at(S,C"),C # C'
tation takes place. We will also frequently use schemata wit
variables.

Here is a standard example, the graph colouring problem.
Given a description of a graph in terms of atoms built from
predicate symbolsod€-) andedgé€-, -), the answer sets of
this program contain colour assignmentsf¢r red, b for
blue, g for green) to nodes such that neighbouring nodes
have different colours.

Each answer set now corresponds to a solution of our
scheduling problem: the assignments of lecturers, rooms
and time slots to, say, a courseare part of each answer
set in the form of atomgeaches(l, ¢), in(r, c) andat(s, c).

So far our logic program allows us to generate possible
solutions of the scheduling problem. Of course, not all of
these solutions are of the same quality since the personal
preferences of lecturers are not yet taken into account. In

col(X,r) + nod€ X), not col(X, b), not col( X, g) the example, several kinds of preferences may exist:
col(X,b) <+ nodgX), not col(X,r),not col(X, g) 1. Lecturers will have preferred courses which they liked(an
col(X,g) < nod€X), not col(X, b),not col(X, r) are able) to teach.

¢ col(X, €), col(Y;, ), edgd X, V), X # Y 2. Some of the lecturers prefer to teach, say, in the morning,
A motivating example others may prefer afternoon or evening lectures.

In this section we want to illustrate the need for flexible 3- Some lecturers may even have their preferred lecture
preference strategies as provided by the language to be de- 00MS, maybe because they are close to their offices.
veloped in this paper. We will consider a simplesP- 4. Finally, since in most realistic cases it is impossible to
based scheduling system that assigns lecturers, time slots satisfy the personal preferences of each single lecturer, i
and rooms to university courses. To simplify our discussion  is necessary to specify how conflicts are solved, in other
we will assume that each lecturer has to teach exactly one  words, which preferences are more important than others.

course per semester. _ . In case of the preferred courses one can ask each lecturer to
The mforma‘uon needed to solve this pr_oblem includes rank courses, for instance using pena|ty values. A good SO-
the available lecturerd,,... ,l,, the available rooms |ution with respectto these preferences then is one where th
T1,---,Tm, the time slotss,,...,s,, and the courses  overall penalty is small. Preferences regarding time siots
c1,--- ,¢;. Torepresentthis information in a logic program,  rooms may be purely qualitative. Conflict solving in a uni-
we use atoms built from the unary predicafesturer, versity environment may be based on the rule that professors
room, slot andcourse, respectively. and their wishes are more important than assistants. In any

To solve this problem in the answer set programming case, we need flexible ways of expressing preferences, and
paradigm it is convenient to use programs with cardinality jt must be possible to combine them using various combina-
constraints (Niemela & Simons 2000; Simons, Niemela, & tion strategies to yield a single preference order on answer

Soininen 2002) Intuitively, a Cardinality constraint et sets. The |anguagEDL to be deve|oped in the next section
forml{ai,... ,a,}uis satisfied if at leadtand at most: of allows us to do this.

the atomsu; are satisfied, whereandw are integers. Sim-

ilarly, I{a(z) : b(z)}u is satisfied if at least and at most Preference description language

u ground intances af(z) are satisfied, where is replaced
by a ground terny for which b(g) holds. It was shown in
(Simons, Niemela, & Soininen 2002) that cardinality con-
straints do not increase complexity. For the purposes sf thi

In this section we developDL, a language for represent-

ing preference information. This language will then be used

to select maximally preferred answer sets of generating pro

grams. The language generalizes the rule based preference
We follow the Prolog convention that terms starting with-cap ~ programs of (Brewka, Niemela, & Truszczyhski 2003) in

ital letters are variables. two respects:



e it allows us to combine qualitative and numerical, penalty We can characterize the intuitive meaning of a preference
based preference information within a single framework, rule of the form above as follows: given two answer sets
and S1 andS, such that both satisfy the body of the rule and at

« itallows us to use different preference combination strate  1€ast one of the options in the head, thénis preferred to
gies for different aspects of the answer sets. S if, for somej, 51 |= Cj andj < min{i | Sz = Ci}.

) ) ) Moreover, as in (Brewka, Niemela, & Truszczyhski 2003)
Before introducing?DL we define whatwe mean by anan- e consider answer sets for which the rule is irrelevant -
swer set optimization problem. because the body is not satisfied or because none of the al-

o o _ ternatives in the head is satisfied - to be as good as the best
Definition 4 An answer set optimization problem (AOP) is  answer sets. This is due to our penalty based view of rule

apair O = (P, prex) whereP is a logic program angrex preferences: if a rule is irrelevant to an answer set it does
a PDL expression (to be defined below). A solutior)as not seem appropriate to penalize the answer set at all, based
an answer set of which is optimal according to the pre-  on this rule. A preference rule thus represents a ranking of
order represented byrex. answer sets. Moreover, the penalty values associated with

the options represent a numerical measure of our degree of
dissatisfaction.

Preference rules are the basic building blocksP@iL.
In addition, PDL allows us to specify combination strate-
gies. Some of these strategies make use of the actual penalty
values, for instance by using their sum. Others, like the
Pareto strategy, are more qualitative in nature. For this re
son not all combinations make sense and we restrict the syn-
tax accordingly by distinguishing between a suliRBt? of
PDL, the penalty producing expressions.

Note that the generating prografhcan be any kind of logic
program (e.g. normal, extended, disjunctive etc.) as leng a
it generates answer sets, that is sets of literals. An expres
sion of our preference description langudgfeL represents
a preorder, that is a transitive and reflexive relation, on an
swer sets. A preorder induces an associated strict partial
order>via S > S'iff S > S’ and notS’ > S. An answer
setS is optimal according to the preorderiff for each an-
swer setS’ such thatS’ > S we also haveS > S’. PDL
expressions thus play a similar role in our framework as ob-
jective functions in numerical optimization. L , i ,
The basic building blocks oPDL are rules which rep- Definition 7 PDLP and PDL expressions are inductively
resent context dependent preferences. The rules are simila defined as follows:
to the ones in (Brewka, Niemela, & Truszczyhski 2003) but 1. ifr is a preference rule theme PDIL?,
allow us to specify numerical penalties for suboptimal 0p- 3 if ¢, ... e, are in PDI? then (psum e;...ex) €
tions. PDI?,

i D
Definition 5 Let A be set of atoms. Areference rul®ver 3. ife € PDL” thene € PDL,

Ais of the form . if e1,...,ex are in PDLP then (inc ey...e),
(rinc e1...ex), (card e ...e;) and (rcard e; . ..ey)
Ch: P> > Ch: Pk < Q1,y... ,4n,0N0t by, ... ,n0t by, are in PDL,

o

if e1,...,e, are in PDL then (pareto e;...e;) and

here thea; and b, are literals built from atoms ir4, the ;
e ’ , I . : (lex ey ...ex) are in PDL.

C; are boolean combinations ovel, and thep; are integers

satisfyingp; < p; whenevei < j. The semantics of #DL expression is a preorder, that is,

We useCy > Cs > ... > Cy « body as abbreviation for a re_zflexive and transitive relation, on answer sets. We first
C1:0>Cy:1>...> Cy: k-1 < body. Rulesofthiskind ~ define penalties of answer sets, denqted(S, prez), for
were used in (Brewka, Niemela, & Truszczynski 2003). the penalty generating preference expressionBMi” as

A boolean combinatiorover A is a formula built of follows:
atoms inA by means of disjunction, conjunction, strong 1. If prez is a rule of the form
(=) and default fot ) negation, with the restriction that
strong negation is allowed to appear only in front of atoms, Ciipr > ... > Ckl pr  body
and default negation only in front of literals. For example,
aA(bVnot —c¢) is a boolean combination, wheraas; (aVb)
is not. The restriction simplifies the treatment of boolean
combinations later on.

then:

pen(S,prex) = p;, wherej = min{i | S |= C;},if S
satisfiesody and at least on€’;,

pen(S, prex) = 0 otherwise.

Definition 6 Let S be a set of literals, Satisfaction of a 2 If prez is a complex expression of the form

boolean combinatiol in S (denotedS | C) is defined (psum e . .. ex)

as:
S 1 (1 literal) iff les thenpen(S, prezx) = Zlepen(S, €;).
S Enotl(lliteral) iff &S We useOrd(prez) to denote the preorder associated with
SECVG iff SECiorSEC a PDL expressiorprez. For a ruler we have(S, S2) €
SECIAC: iff SECirandS [ C,. Ord(r) iff pen(S1,r) < pen(Ss,r).



For complex expressions the corresponding preorders are Brewka, Benferhat, & Le Berre 2002).

defined as follows:

Let >;,...,>; be the preorders represented by
e1,...,ex. Let >1,...,>; be the corresponding strict
partial orders (defined a8 >; S’ iff S >; S’ and not
S >; S). Let K = {1,...,k}. Furthermore, for the
case whereey, ... ,e; are penalty producing, we define
P% = {j € K |pen(S,e;) =n}.

o (51,52) € Ord(pareto e; . .. ey) iff
S1>; Saforallj € K.

(S1,82) € Ord(lex e - . . ep) iff
S1 >, Sy forallj € K or
Si1 >; S, forsomej € K, and foralli < j: S; >; Ss.

(S1,52) € Ord(inc ey . ..ey) iff
Py D PY,.

(S1,S2) € Ord(rinc ey . . . eg) iff
pen(Sl,%,-) = pen(Sa,e;) forall j € K or
P% D Pg,, for somep, and for allg < p, P4 = PZ,.

(S1,S52) € Ord(card e; .. .ey) iff
P8, > P, .

(S1,852) € Ord(rcard ey .. .ey) iff

|P¢ | = |Pg,| forall p or

|PE | > |Pg,|, for somep, and|P§ | =|P¢ |forallq < p.
(S1,52) € Ord(psum ey .. .eyg) iff

Sh pen(S1,ei) < T, pen(Sa, e:).

pareto is the standard Pareto ordering whékeis at least

as good as, if it is at least as good with respect to all con-
stituent orderings>;. S: is strictly preferred ovesS; if it

is strictly better according to at least one of the constitue
orderings and at least as good with respect to all other order
ings.

lex is a lexicographic ordering which considers the con-
stituent preorder%; in the order in which they appear in
preference expression$; is as good a$ if it is as good
with respect to alb>;, or if it is strictly better.S; is strictly
better if, for somei, it is as good asS, with respect to
>1,...,>i_1, and strictly better with respect t9;. An
order>; is thus only used to distinguish between answer
sets which are equally good with respect to all orderings ap-
pearing before>;.

inc is an inclusion based strategy which prefers answer sets

satisfying more (in the sense of set inclusion) orderings as
well as possible, that is with lowest penalty 0.

rinc (ranked inc) is agnc an inclusion based strategy, but
does not consider penalty 0 only. If two answer sets are
equally good with respect to penalpy then in a next step
the set of orderings satisfied with penaity 1 is considered

to compare answer sets. Orderings of this kind were used in
(Brewka, Niemela, & Syrjanen 2002).

card is similar toinc but based on theumberof orderings
satisfied with penalty 0 rather than set inclusion.

rcard is similar torinc in using increasing penalties to dis-
tinguish between answer sets. Asrd, it considers the
number of orderings satisfied to a particular degree. Or-
derings of this kind were used in (Benferhettal. 1993;

psum adds the penalties obtained by the component order-
ings and prefers answer sets where the sum is smaller.

Course scheduling, revisited

We are now in a position to specify the preferences for our
course scheduling program which we discussed informally
earlier. We assume that each lecturer can assign penalties
to courses he does not like to teach. To make sure penalties
do not become arbitrarily high, we allow each lecturer to
assign a total of 10 penalty points to arbitrary courseshEac
lecturerl; will thus specify a seC; of preference atoms of

the formteaches(l;, c) : p such that

2

teaches(l;,c):p

p = 10.

Similarly, each lecturel; can express a sé&; of time and
room preferences. For instance, the rule:

am(S) > pm(S) « teaches(l;,C),at(S,C)

expresses that lecturdy prefers teaching in the morn-
ing. Here we assume that the predicai@ss and
pm are defined accordingly, for instance by specifying
am(7), ... ,am(12),pm(13),... ,pm(18). The rule

in(ry,C) > T « teaches(l;,C)

specifies that; prefers to teach in room and is indifferent
about any other possible lecture room.

Finally, we need information about who is a professor and
who is an assistant. L&}, be the union of all; such that
l; is a professor, and |€f, be the union of alC; such thaf;
is an assistant. Similarly, |g8, and P, be the collections
of time and room preferences of professors, respectively
the corresponding collections for assistants. We mentione
in our informal discussion that professors’ preferences ar
more important than assistants’ preferences. More pilgcise
we want to giveC, more importance tha@',, but consider
C, as more important thaR,.

We slightly abuse notation and wrifeomb S) rather than
(comb s1,...,s;) wheneverS = {sy,..., sy} and the or-
der of elements iy is irrelevant for the combination method
comb. This is the case for all methods excépt.

The preferences involved in the scheduling problem can
now be stated using the followin@D L-expression:

(lex (psum Cp)(psum Cy)(pareto Pp,)(pareto P,)).

Although the example is still pretty simple it already
demonstrates the importance of different preference han-
dling strategies and combination methods.

Now assume a solution for the scheduling problem has
been computed and published on the web, but at the last
minute one of the lecturers becomes unavailable. In such
a situation simply starting from scratch and rerunning the
scheduling system would not be a good idea - even if the
original preferences are taken into account - as this may
lead to a new solution with different assignments of lectur-
ers, rooms and slots for a large number of classes. This is



certainly unwanted: what we would like to have is a new so-
lution which isas close as possible to the original solution

Generating coherent solutions given small changes in the
problem description is again an optimization problem. To
solve this problem, we need a description of the old solution
together with a specification of what we mean by closeness.
In a qualitative setting closeness can be described in terms
of preferences.

For the class scheduling system different types of new
preferences play a role when an existing solution needs to
be modified. In addition to the original personal preferance
of the lecturers we have the following:

1. in general, not changing the original lecturer, time and
room assignments is preferred over changing them,

2. if a change is necessary, then it is more desirable to
change the room rather than the time slot of a class (be- ™
cause in that case no email notification is necessary),

. if the time slot for a course needs to be changed, it is
preferable to make changes which require fewer notifica-
tions to be sent to students, that s, it is better to resdeedu
a course with few students.

One can easily think of further preference criteria for such
situations. All these preferences need to be taken into ac-
count and combined adequately. We are not going to for-
malize this extended problem here. However, we hope to
have convinced the reader that the complex preferences in-
volved in realistic problems require a description languag
like PDL.

Special cases

One of the nice properties d¥DL is that a number of dif-
ferent approaches to be found in the literature can easily be
expressed and thus turn out to be simple special cases of our
approach. We have the following results:

1. In (Brewka, Niemela, & Truszczyhski 2003) preference
programs are used for answer set optimization. Since the
rules used in preference programs are a special case of our
rules the translation is simple: a preference program

Ppref = {Tl, e ,T‘k}
corresponds to the DL expression
(paretory ...7g)-

An ASO program as defined in that paper is thus a simple
special case of our approach.

2. The mentioned paper also discusses preference programs
with meta-preferences which split the set of preference
rules into preference levels. .. ,n. Assumingr; ; be-
longs, for eachi, to level: we can express programs with
meta-preferences as:

be anLPOD, P alogic program such that the answer sets
of Py andP coincide? Let

{r1,...,r%}

be the set of preference rules obtained fiBgmby replac-
ing x with >. Let

prex = (rincry ... 7).

ThenS is an optimal answer set &t under the inclusion
based strategy iff is a solution for the answer set opti-
mization problen{ P, prex). Similarly, by replacing-inc
with rcard in the preference expression, we obtain solu-
tions corresponding to optimal answer setsyf under
the cardinality based strategy.

4. Weak constraints of the form

+ body. [w]

as implemented irllv can be represented as preference
rules of the form

T: w + body

whereT is a tautology of the forna V not a, using the
psum-strategy. Alternatively we can use the preference
fact (preference rule with empty bod¥ddy’: w where
body' is the conjunction of literals in the body. Weak con-
straints with priority levels of the form

+ body. [w: ]

have the same translation as above, but must be grouped
according to their priority levdl. For each priority level
let

{ria, - ik}
be the translations of the weak constraints of that level.
The preference strategy can be expressed as:

(lex (psum iy ...T1 k) ... (PSUM TR . Tk, )

wheren is the greatest priority level (with minimal prior-
ity).

. Smodelstatements of the form

minimize{a; = wi,... ,a; = Wi}
can be represented as
(psum ay: wy ...ak: wg),
sequences of such statements as

(lex (psum ...)...(psum...)).

It is obvious thatPDL allows us to express a lot more

combination strategies than the ones discussed in this sec-

(lex (paretoriy...T1ky)--- (paretorny ... "ok, ))-

. Cardinality and inclusion based combination strategges
described in (Brewka, Niemela, & Syrjanen 2002) for
LPODs can be described usimgne andrcard. Let Py

tion.

2Note that this requires a nonstandard definition of answsr se
for P since the answer sets @t are not necessarily inclusion
minimal.



Complexity below), the translatiofi'rans(prez, 1) of the preference ex-

The complexity results established fdrSO-programs in pression, and a constraint eliminating answer sets whieh ar
(Brewka, Niemela, & Truszczyhski 2003) also hold for an- Nt better tham/ with respect tprez. As our target lan-
swer set optimization problen(®, prez) and can be shown ~ 9uage we will use the language 8odelsvith cardinality
using similar proofs. The exact complexity depends on constraints here (Simons, Niemela, & Soininen 2002) which

the class of generating progra®s To simplify the treat- we also_ used .for our course ;cheduling examplg. This lan-
ment, we consider here only generating programs where 9Uage is particularly we_II—swted for the translation oé th
deciding existence of an answer setN®-complete (Si- cardinality based strategies.

mons, Niemel, & Soininen 2002). This class of programs ~ FOr the translation we need an indexing scheme for all
includes ground normal programs (possibly extended with Subexpressions gfrex. Expressions have a tree structure
strong negation or weight and cardinality constraints)e Th ~@nd the indexing can be done in a standard manner. We as-
following two results indicate that - as fefSO-programs - sume index 1 is assigned to the whole expression (this is the

allowing preferences adds an extra layer of complexity. reason for index 1 in the constraigt not better; and in
Trans(prez,1) above), 1.1 to 1.k to its immediate subex-

pressions, 1.1.1 to the first subexpression of expressibon 1.
etc.

For each subexpression with indewe define predicates
geq; andbetter; which express that the new generated an-
swer set is at least as good as the old one, respectively
strictly better than the old one, according to the preorep+ r
resented by expressien For the penalty producing expres-
sions we have additionally a predicaten;. A preference
ruler =

Theorem 1 LetO = (P, prex) be an answer set optimiza-
tion problem andS an answer set of?. Then deciding
whetherS is a solution of0 is coNP-complete.

Theorem 2 Given an an answer set optimization problem
O = (P,prez) and a literal, deciding whether there is a
solutionS of O such that € S is ¥ -complete.

The complexity results imply that (unless the polynomial
hierarchy collapses) the problem of finding a solution for
an answer set optimization problem cannot be mapped in
polynomial time to a problem of finding an answer set of with indexi can be translated according to the techniques
a programP’ obtained by translatingP, prex). As men- discussed in (Brewka, Niemela, & Truszczyhski 2003). In
tioned above, the proofs of these theorems are similar to the the translation we assume that atoms of the fol#ipen; are
proofs of the corresponding results in (Brewka, Niemela, & used to represent the answer &£to be testedT'rans(r, 1)
Truszczyhski 2003) and are therefore omitted. consists of the following rules:

Ciip1>...>Cripp < a1,--- ,0,,00t by, ... ,n0t by,

i geqi <+ pen;(P1),oldpen;(F), P < Py
) Implementatlor_] ) better; <+ pen; EPlg, oldpen; EPOg, P <P
In (Brewka, Niemela, & Truszczyhski 2003) an implementa- body; <+ ai,...,an,n0tby,... ,not by,
tion technique for computing optimal answer sets A&O heads; + ¢; (foreachC;)
programs on top of a standard answer set prover has been pen;(0) <« not body;
developed. A similar technique has earlier been used in peni(0) <« not heads;
(Janhuneret al. 2000) to compute stable models of dis- peni(p) < c1,body;
junctive logic programs usingmodels and in (Brewka, peni(p2) < not ey, 2, body;
Niemela, & Syrjanen 2002) to compute preferred answer
sets of logic programs with ordered disjunction. The com- pen;(px) + notcy,...,notcy_1,ck,body;

putation is based on a tester program that takes as input an

answer set and generates a strictly better one if such an an-Herec; is an atom representing the fact that boolean combi-
swer set exists. The computation starts with an arbitrary an nationCj is satisfied. Such atoms are needed for all subex-
swer set generated by the generator. This answer set is givenpressions of the boolean combinations. Additionally we
to the tester program. If the tester fails to generate atistric ~ have to add rules capturing the conditions under which the
better one, we have found an optimal answer set and we are combinations are satisfied. For exampleCifis a disjunc-
done. If a strictly better answer set is discovered, thetest tion Cj, V Cj, then we add rules; < ¢, andc; < ¢.

is run with the new answer set as input. This continues until ~ For complex expressiongrez = (comb e ...ex) with

an optimal answer set is reached. indexi (comb is one of our 7 combinators) the translation
This technique can be adapted for computing optimal an- consists of the translations of the subexpressians. e
swer sets of an answer set optimization probld@iprez) together with new rules for the whole expression. More pre-

by compilingprez to a suitable tester program for a given  cisely, we hav&'rans(prez,i) =
answer sef\/. The tester prograf(P, M, prex) =

PUD(M)UTrans(prez,1) U {+ not better, }

Teomb(i, k) UTrans(er,i.1) U...UTrans(ex,i.k).

We define the rule¥,,..»(i, k) below for each of the 7
consists of the original generating progrdm a descrip- cases. The variablg ranges ovef1, ...k}, J (possibly
tion of the answer se¥/ to be tested for optimality, denoted  with index) over{0,...,k}, and P,@ range over penalty
D(M) (a description of the penalty values is sufficient, see values:



e prex = (pareto e ...ep):
geq; < geqi.a,--- ,9€qik
better; < geq;, better; 1

better; < geq;, better;
o prex = (lex ey ...ex):

geq; < gegi.a, ..., 9€qik

geq; <+ better;

better; < better; 1

better; < geqi .1, better; o

better; < geq;.1,--- ,9€q;r_1,better; i

e prex = (ince;y ...ex):
geq; < not worse; (0)
better; < better;(0),not worse;(0)
better;(0) < pen;.z(0), oldpen; z(P),0 < P
worse; (0) < oldpen; z(0),pen; z(P),0 < P

e prex = (rincey ...ex):
geq; < not worse;
geq; <+ better;
worse; < worse;(P)
better; < better;(P), not worse-upto;(P)
better;(P) < pen; z(P), oldpen; z(Q), P < Q
worse;(P) < oldpen; z(P),pen; z(Q),P < Q
worse-upto;(P) < worse;(Q),Q < P

e prex = (card ey ...e):
geq; « card; (0, J1),oldcard; (0, J2), J1 > Jo
better; < card; (0, J1), oldcard; (0, Js), J1 > J2
card;(0,J) < J{pen;1(0),... ,pen; 1 (0)}J
oldcard; (0, J) < J{oldpen; 1(0),... ,oldpen; (0)}J

e prex = (rcard ey ...e):
geq; < not diffcard;
geq; < better;
diffcard; < card;(P,J1),oldcard;(P, J2), J1 # Ja
better; < better;(P), not worse-upto;(P)
better;(P) « card;(P, J1),oldcard;(P, Js), J; > J2
worse;(P) < card;(P, J1), oldcard;(P, J2), J1 < Jo
worse-upto;(P) + worse;(Q),Q < P
card;(P,J) « J{pen;1(P),... ,pen;,(P)}J
oldcard;(P,J) < J{oldpen;1(P),... ,oldpen; ;(P)}J

o prex = (psum ey ...ex):

peni(X) + pen;i1(Xi1),...,penip(Xg), X = X1 + ... + Xp,

geq; + pen;(X),oldpen;(Y),X <Y

better; <+ pen;(X),oldpen;(Y),X <Y
The space required for the translation to non-ground pro-
grams is polynomial in the size girex. For the ground
instantiation we need to restrict the possible penaltyeslu
to a finite subset of the integers. Not surprisingly, thedran
lations of the ranked strategiesc andrcard are the most
involved ones. Some of the rules feinc havek x p? in-
stances, whergis the number of different penalty values. It
is thus advisable to keggprather low. A complete translation
example is contained in the Appendix.

The descriptionD (M) of the candidate answer saf
consists of ground atoms of the foraddpen;(v) for all
penalty producing expressions (preference rulespgadh-
expressions) iprex, the preference expression of the cur-

rent optimization problem. The easiest way to produce these
atoms is to add to the original prografha variant of the
rules definingpen; in the translations of preference rules
and of psum-expressions, where each occurrence®f;

for some index is replaced byldpen;. We have the fol-
lowing theorem:

Theorem 3 Let M be an answer set d. If T (P, M, prex)

has an answer sef, then S restricted to the original lan-
guage ofP is an answer set foP that is strictly preferred
to M according toOrd(prez), and ifT'(P, M, prex) has no
answer set, then no answer set strictly preferredf@xists.

Proof: (Sketch) Consider first the resulting program with-
out the constraint— not better;. This program contains
the original generating progra. As can easily be ver-
ified, the remaining rules are stratified. Moreover, apart
from the lowest stratum which contains literals frdmthe
language ofP and that of the rest of the program, that
is, of D(M) U Trans(prez, 1), is different. We can thus
apply the splitting set theorem (Lifschitz & Turner 1994)
and show that there is a bijection between answer sets of
P and answer sets dP U D(M) U Trans(prez,1) such
that for each answer sgtof P there is an answer sét of
PuUD(M)UTrans(prez,1) with S = S'n L(P), where
L(P) is the language aP.

It can be shown by induction on the structureeéz that
an answer sef’ of P U D(M) U Trans(prez, 1) contains
geqy iff (S" N L(P),M) € Ord(prex), andS’ contains
bettery iff (S'NL(P), M) is an element of the strict partial
order induced byOrd(prez). The proof is somewhat te-
dious, but not difficult since the different combination met
ods are represented declaratively in the programs regultin
from the translation.

With these results it immediately follows that adding the
constraink— not better; has the effect of destroying all an-
swer setsS’ of T'(P, M, prex) for which S = S’ N L(P) is
not strictly better thad/. O

Discussion

The main contribution of this paper is the definition of the
languagePDL for specifying complex preferences. We
showed that several existing preference handling methods
turn out to be special cases of our approach. We also demon-
strated thatPDL expressions can be compiled to logic pro-
grams to be used as tester programs in a generate-and-
improve method for finding optimal answer sets.

Answer set programming is basically a propositional ap-
proach, and the currently available answer set solvers work
for ground programs only. Nevertheless, rule schemata are
widely used and sophisticated ground instantiation tech-
niques have been implemented. They can be usdelih
as well in almost all cases because most of R, combi-
nation strategies are independent of the order of their imme
diate subexpressions. The single exceptidaiswhere the
order clearly matters. A rule schema can be used as a direct
subexpression dez only if there is an additional specifica-
tion of the order of the ground instances, that is, lisaof
ground instances is represented rather than a set.



The work presented in this paper shares some motiva-
tion with (Brewka 2004b). Also in that paper a language,
called LPD, for expressing complex preferences is pre-
sented. However, there are several major differences which
are due to the fact tha®DL is taylored towards answer set
optimization:

1. LPD is goal based rather than rule based. The basic
building blocks are ranked knowledge bases consisting of
ranked goals rather than rules with prioritized heads.

. LPD is used to describe the quality of models. Since
PDL is used to assess the quality of answer sets (i.e.,
sets of literals) rather than models, it becomes impor-
tant to distinguish between an atom not being in an an-
swer set and its negation being in an answer set. In other
words, the distinction between classical negation and de-
fault negation (negation as failure) is relevant. This dis-
tinction does not play a role ihPD.

different from our rule-based interpretation. The former
views the available preferences as (hard) constraints on
a global preference order. Each preference relates only
models which differ in the value of a single variable. Our
preference rules, on the other hand, are more like a set of
different criteria in multi-criteria optimization. In pe-

ular, rules can be conflicting. Conflicting rules may neu-
tralize each other, but do not lead to inconsistency.

Many related ideas can be found in constraint satisfac-
tion, in particular valued (sometimes also called weighted
constraint satisfaction (Freuder & Wallace 1992; Fargier,
Lang, & Schiex 1993; Schiex, Fargier, & Verfaillie 1995;
Bistarelli, Montanari, & Rossi 1997). Here a solution is
an assignment of values to variables. A valued constraint,
rather than specifying hard conditions a solution has te sat
isfy, yields a ranking of solutions. A global ranking of so-
lutions then is obtained from the rankings provided by the
single constraints through some combination rule. This is

. PDL distinguishes between penalty producing and other exactly what happens in our approach based on preference
strategies. Both numerical and qualitative combination rules. Also in constraint satisfaction we find numerical as
strategies are thus usell’D focuses entirely on qualita-  well as qualitative approaches. In MAX-CSP (Freuder &
tive methods. Wallace 1992), for instance, constraints assign pendtties

An interesting related paper is (Son & Pontelli 2004) which ~ solutions, and solutions with the lowest penalty sum are pre
introduces a preference language for planning. The lan- ferred. In fuzzy CSP (Fargier, Lang, & Schiex 1993) each
guage is based on a temporal logic and is able to expresssolqtlon is charactenzeql by the worst violation of any con-
preferences among trajectories. Preferences can be com-Straint. Preferred solutions are those where the worst vi-
bined via certain binary operators. The major difference olation is minimal. We are not aware of any approach in
certainly is that our approach aims at being application- constraint satisfaction trying to combine different stgaes. _
independent, whereas (Son & Pontelli 2004) is specifically For this reason we believe the language developed here will
geared towards planning. be of interest also for the constraint community.

Also related is (Andreka, Ryan, & Schobbens 2002). The ~ Although we presente®DL in the context of answer set
authors investigate combinations of priority orderingsdsh ~ Optimization, it should be obvious that the language can be
on a generalized lexicographic combination method. This Used in other optimization contexts - like constraint opti-
method is more general than usual lexicographic orderings Mization - as well. To us&DL it is only required that can-

- inc|uding the ones expressib|e through e Operator - d|date solutions can be evaluated with respe:ct to the expres
since it does not require the combined orderings to be lin- Sions in the rules. We also want to emphasize that we con-
early ordered. It is based on so-called priority graphs wher sider PDL as an extendible language. We certainly do not
the suborderings to be combined are allowed to appear more ¢laim that the 7 combinators used in this paper are the only
than once. The authors also show that all orderings satisfy- interesting ones. Many other combination methods have
ing certain properties derived from Arrow’s conditions {Ar been used in different areas of Al, for an excellent overview
row 1950) can be obtained through their method. This is See (Lang 2004). The reader should be aware, though, that
an interesting result. On the other hand, we found it some- for the compilation of preference expressions to logic pro-
what difficult to express examples like our course schedul- 9rams it is essential that two answer sets can be directly

ing problem using this method. We believe our language is
closer to the way people actually describe their preference
In (Boutilier et al. 1999; 2004; Brafman & Dimopou-
los 2003) CP-networks are introduced, together with cor-
responding algorithms. These networks are a graphic rep-
resentation, somewhat reminiscent of Bayes nets, for con-
ditional preferences among feature values undec#ieris
paribusprinciple. Our approach differs fro@P-networks
in several respects:

e Preferences inCP-networks are always total orders of
the possible values of a single variable. We are able to
relate arbitrary formulas in the heads of rules - and to
express partial preference information, that is, to refrai
from judgement if we do not care.

e The ceteris paribus interpretation of preferences is very

compared.

Acknowledgements

The author acknowledges support from the EC (IST-2001-
37004, WASP) and DFG (BR 1817/1-5, Computationale Di-
alektik). Thanks to R. Booth for proofreading.

Appendix: Translation Example
In this appendix we illustrate our compilation method and
give the complete translation of the preference expression
(lex 1 (pareto o 13))

with

r1:aVb>g« f

r9 : a/Anotd>e < notc

r3: aV-b>f



Our indexing scheme assigns indeko lex, 1.1 to r{, 1.2
to pareto, 1.2.1 tory and1.2.2 to rs. The translation ofex
yields:

geqr + geqii,geqia
geq: <+ better;
better; < betteriy
better;y <+ geqi.1,bettery o

Forr; we obtain:

geqii <+ penii(Pr),oldpen,  (P),PL < Py
better1.1 « peny1(P1),oldpent 1(Py), Pr < Py
bOdyl_l «— f
headsi1 + cave
heads;1 <+ ¢
CaVb «— a
Cavh < b
g — g
peny1(0) <+ not body; 1
peni1(0) <+ not headsy .
pen11(0) <«  cavp,bodys 1
peni1(1) <« not cavs,cy,bodys 1

Frompareto we get:

geqi2 < geqi2., geqi.2.2
betteri.o < geqi.2,bettery o1
better; o <« geqy.o,bettery 2o

The ruler;, gives us:

geqia1  + penyoi(Pr),oldpeny o1 (FPo), Pr < Py
betteri o1 < pen1,2,1(P1),oldpenl.g,l(Po),Pl < PO
body; 21 <+ mnotc
headsy21 < Cganot d
headsi01 <+ ¢Ce
Carnotd < a,notd
Ce +— €
peni2.1(0) <+ not bodys 2.1
peny21(0) <+ not headsy o1
peni21(0) < Caanot d,b0dy1 2.1
penioi1(l) < not coanot ds Ce, bOAdY1 2.1

Finally, r3 yields:

geqiae  penisa(Pr),oldpens 22(Po), P1 < Py
better; oo <+ penioa(Pr),oldpeny s o(Py), P < Py
body, 2.2
headsi.22 < Cav-b
headsi22 <+ cy
Cov—b € Q
CaVv—b — _|b
Cy — f
peni2.2(0) <+ not body; 2.0
peni2.2(0) < not heads; .2
peni22(0) < cav—p,bodyi 2.
peni2.2(l) 4 notcey-p,cy,body:.2.2

This completes the translation. Of course, the translation
could be simplified. For instance, an atom ldggepresent-
ing an option in the head of a rule consisting of a literal can
immediately be replaced Hy For sake of clarity we did not
make simplifications of this kind above.
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