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Abstract contexts in which they hold, and so-called bridge rules are

) . ) ) used to represent information flow.
In this paper we introduce a multi-context variant of

Reiter’'s default logic. The logic provides a syntac-

tical counterpart of Roelofsen and Serafini’s infor-

mation chain approach (IJCAI-05), yet has several i

advantages: it is closer to standard ways of repre- Mrl - ~— Mr.2
senting nonmonotonic inference and a number of

results from that area come “for free”; it is closer Figure 1: a magic box.

to implementation, in particular the restriction to
logic programming gives us a computationally at-
tractive framework; and it allows us to handle a
problem with the information chain approach re-
lated to skeptical reasoning.

Most of the existing work in the field is based on classical,
monotonic reasoning. The single exception we are aware of is
[Roelofsen and Serafini, 20D5To allow for reasoning based
on the absence of information from a context, the authors add
default negation to a rule based multi-context system amsl th
combine contextual and default reasoning.

This paper presents a related approach. We propose a con-
Interest in formalizations of contextual information anteir-  textual variant of Reiter’s Default Logic D[Reiter, 1980
contextual information flow has steadily increased over thecalled Contextual Default Logic (ConDL) which shares a lot
last years. Based on seminal papers by McCdit8871 and  of motivation with the Roelofsen/Serafini paper, in partcu
Giunchiglia[1993 several approaches have been proposedhe basic idea of keeping information local for conceptual a
most notably the propositional logic of context developedcomputational reasons (as opposed to merging default theo-
by McCarthy[1993 and McCarthy and Buvaf199d, and ries[Baralet al, 1994). A major difference is that our de-
the multi-context systems devised by Giunchiglia and Serscription is syntactical rather than semantical. This leas s
afini [1994, which later have been associated with the lo-eral advantages: from a computational perspective, it iemo
cal model semantics introduced by Giunchiglia and Ghidiniconvenient to manipulate sets of formulas rather than dets o
[2001. Serafini and Bouqudf004 have argued that multi- models; it allows us to link multi-context default reasagin
context systems constitute the most general among these fanore closely to earlier work in nonmonotonic reasoning:syn
mal frameworks. tactic restrictions lead directly to contextual variantt$ogic

Intuitively, a multi-context system describes the informa programming under answer set and well-founded semantics
tion available in a number of contexts (i.e., to a number ofand thus to a fully computational approach; and it paves the
people/agents/databases, etc.) and specifies the informat way to handle a serious weakness of the approach to skeptical
flow between those contexts. A simple illustration of themmai reasoning developed [Roelofsen and Serafini, 20p5
intuitions underlying the multi-context system framewdsk The outline of the paper is as follows: we first briefly
provided by the situation depicted in Figure 1, one of thereview the approach of Roelofsen and Serafini and discuss
standard examples in the area. Two agents, Mr.1 and Mr.2he weakness of skeptical, well-founded reasoning in this a
are looking at a box from different angles. The box is calledproach. We then introduce ConDL and show that extensions
magic, because neither Mr.1 nor Mr.2 can make out its deptrof ConDL are in exact correspondence with stable informa-
As some sections of the box are out of sight, both agents hauwen chains inf[Roelofsen and Serafini, 20D3NVe next show
partial information about the box. To express this informa-how well-founded reasoning can be defined for ConDL, es-
tion, Mr.1 only uses proposition lettetéthere is a ball on the caping the difficulty of the information chain approach by
left) andr (there is a ball on the right), while Mr.2 also uses appeal to paraconsistent reasoning. We finally discuss con-
a third proposition letter (there is a ball in the center). To textual logic programming and give various examples to il-
model situations of this kind, formulas are labeled with thelustrate that our formalism is indeed useful.

1 Introduction



2 The information chain approach premises. Now: is a stable solution chain iffis the minimal
solution chain of the-reduced system.

Based on the observation that stable solution chains may
not exist, Roelofsen and Serafini also define a skeptical se-
mantics which draws its intuitions from well-founded seman
tics for logic programgvan Geldert al,, 1991. It is based
on the construction of the so-called canonical chain We
present this semantics in somewhat more detail because it ha
a serious problem which we will later solve.

The canonical chain for a multi-context systefris con-
structed iteratively by applying an operatins to a pair of

F—G/A...ANGnANotHy A...AnotH, (1) chains(c,a). Intuitively, the first chainc approximates:s

from above: at every stage of the iteration it contains the

where I, all G’s, and all H’s are labeled formulas.F" is  models that argossiblyin cg (initially, every model may
called the consequence ofind denoted byons(r); all G's  possibly be incg, so in each context we start with the set
are calledpositive premisesf » and together constitute the of all models). The second chain which is referred to as
setprem™(r); all H’s are callechegative premisesf r and  the anti-chain approximatess from below: at every stage
together make up the sgtermn ™ (7). A rule without premises it contains the models that anecessarilyin ¢ (initially, no
is called aact If a rule has positive premises only, it is called model is necessarily ing, so in each context we start with
apositiverule. A normal multi-context systeis a finite set  the empty set of models).
of rules. Note thanhot is interpreted as default negation, the  Given a certain chain-anti-chain pdit, a), the intended
rules are thus nonmonotonic. transformation¥ g first determines which rules isiwill (not)

- : be applicable w.r.t.cs, and then refinegc, a) accordingly.
Example 1 (Integration) Let d;,d, be two meteorological . ; ; '
databases collecting data from sensors located in diﬂterenThle can?mca}l Ch?'as off]wnl be the<f|rss ccam_?fofnent ofthe
parts of the country. Each database sends its data to a third~" ,e‘?t 'szmt 8 ‘I',S’.V\{ _(:'E'_re<|c, qf>f < {c,a ‘?I I or e\I/eré/”
databasels, which integrates the information obtained. SUp':ﬁgin(’Ci ;’;;r; a; C a; (intuitively, iff (c, a) is "less evolve
pose thatd; regardsd; as more trustworthy thad,: any W Cf.’a ecifv howd < d . hich rules will
piece of information that is established dh is included in e first specify howl s determines which rules will (not)

; . : S - P be applicable w.r.tcs. Let (¢, a) and a ruler in S be given.
ds, but information obtained i@ is only included inds if it e A LS L
; ; P If » has a positive premis€, which is satisfied by, then
is notrefuted byl The following rules model this: G will also be satisfied bys. On the other hand, if has

3:p « 1:9p a negative premisé/, which is not satisfied bya, then H
will not be satisfied by:s either. So if all positive premises
of r are satisfied by and all negative premises ofare not
A classical interpretatiom of languagel; is called alocal ~ satisfied by, thenr will be applicable with respect tes:

We now give a brief review of the approach [[Roelofsen
and Serafini, 2005 The authors consider a set of contexts
C ={1,...,n} and a languagé,; for each contexi € C.
C and L; are assumed to be fixed, eath is built over a
finite set of proposition letters, using standard proposdi
connectives.

To state that the information expressed by a formula
L; is established in context the labeled formula(i : ) is
used. Arule r is an expression of the form:

3:¢p «— 2:pAnotl:-p

modelof contexti. A set of local models is called lacal VG € prem*(r): c = G
information state Intuitively, every local model in a local g+ ) = (e and
information state represents a possible state of affaira. | ’ VH € prem=(r) 1 a ¥ H

local information state contains exactly one local modwednt . i . .

it represents complete information. If it contains morentha !f 7 has a positive premis€’, which is not satisfied by,

one local model, then it represents partial informationreno thenG will not be satisfied by either. If has a negative

than one state of affairs is considered possible. premiseH, which is satisfied by, then H will be satisfied
A distributed information statés a collection of local in-  BY ¢s @s well. In both caseswill certainly not be applicable

formation states, one for each context. Distributed infarm With respect tag:

tion states are referred to elsains For systems withoutot, 3G € prem™*(r) :a ¥ G
the semantics is defined in terms of minimal solution chains: S~ (c,a) = resS or
starting with the set of all models for all contexts, rule &pp JH € prem™(r):cl= H

cation is captured semantically by eliminating those medel . ) )
from a context in which the consequent of an applicable ruld"OF convenience, we writé™(c, a) = 5\ S~ (c, a). Think of
is not true. Iterating this model elimination process uatil °" (¢, @) as the set of rules that apwssiblyapplicable with
fixpoint is reached yields the unique minimal solution chain "€SPect ta:s, and notice thab™ (¢, a) C S~(c, a). N

For the general case, Roelofsen and Serafini use a tech- Next, we specify howt s refines(c, a), based orb™ (c, a)
nique similar to the Gelfond/Lifschitz reduction for stabl @ndS™(c,a). Everylocal modein € ¢; that does not satisfy

models or answer sef§elfond and Lifschitz, 1988; 1991 the consequence of a rule §if" (¢, a) should certainly not be
a ruler is defeated by an information chain= (c1, . .., c,) in ¢ and is therefore removed from On the other hand,

whenever it has a negative premiset (i : p) such thayy ~ €VeTY Iocal_ moden € ¢; that satisfies thg consequences of
is true in all models inc;. By eliminating all -defeated  €Very rule inS~(c, a) should certainly be ims (S provides
rules and all negative premises from thendefeated rules, N0 ground for removing it) and is therefore added o

we obtain a reduced multi-context system without negative Ys((c,a) = (PS({c,a)),Te({c,a)))



where: Definition 1 LetC = ((D1, W1),...,(D,,W,)) be a de-
fault context system. L€85y,...,S,,) be a tuple of sets of

c _ + .
Oe((c,a) = e\ {m|3re i (¢;a) :m¥ cons(r)} o las. Define the operatdt such that
Pe({e,a = aU{m|Vre ST (c,a): m k= cons(r

() = aU{m] (c,) - | cons(r) FSh S (S )

Unfortunately, this approach has a serious problem. Con-
sider the following example: where(S1,...,S.) is the minimal tuple of sets of formulas

satisfying for alli (1 < i < n):
l:p <« notl:—p
1. w; C S,

l:=p <« notl:p . .
2:f — notl:q 2. S!is deductively closed (ovdr;), and

One would expect2:t) to be derivable. However, the 3. Ilf)(,cl ﬂpel)é}' 'fb(rcg|'|p;()1' (<ct2-+l<' f)l)’a'r;d;(c.“g qu)/?oer

canonical chain approach does not give any conclusion. The aII“'p(Zl < .Cw'< k) thenr & S7. ! 5 Citj

problem is that no model can satisfy bgitand —p, so no JAEST =R, ) v ) o

model will ever be added to the anti-chainand thus it is The tuple(Si, ..., S,) is a contextual extension ¢t if it is

never established thét : ¢) cannot be derived. The essential a fixpoint ofl".

problem is this: the canonical model approach assumes thi{ the special case where default rules do not refer to other
exactly the problem addressed Brewka and Gottlob, 1997 of the individual default theories. In the general caserimia-

in the context of default logic. We will later show how the so- tion flows, via the default rules, from one context to anather
lution presented there can be applied to the problem of wellpefaults thus play the role of bridge rules.

founded multi-context reasoning as well. It turns out that each extension corresponds exactly to a
. stable solution chain in the information chain approache Th

3 Contextual default logic translation between our default context systems and the sys

As before letC = {1,...,n} be the set of contexts/agents tems used there (which we call RS-systems after their inven-

with associated propositional languadesA default context ~ tors from now on) is straightforward: each default
system forC is a tuple (c1:p1)y. s (ceipe) s (cewr:q)s oo, (Couniqr)/r

(A1, An) in D, is translated to the rule
where eact\; = (D;, ;) is a contextual default theory. )
A contextual default theory is like a regular Reiter default (i:r) = (er:p)-os (ee:p),
theory, with the exception that default rules may refer girth not (ci41:-¢q1),...,N0t (Coqr :qr)

prerequisites and justifications (not in their consequet!
other contexts.
More precisely, a contextual default rule is of the form

and each formula € W; to the rule(i: p) —. We have the
following proposition:

Proposition 1 LetC' be a default context systeiRi,the cor-

A=D1y D Gy G/ responding RS-system. L6t = (S;,...,S,) be a se-
wherep,...,pm,q1, ..., qr are regular formulas or labeled quence of deductively closed sets of formulas afid=
formulas, and the consequentalso denotedons(d)) isa  (Mji,...,M,) a sequence of sets of models such that for all
regular formula. A contextual default thear®;, W;) thenis i (1 <i <n)
just a pair consisting of a set of regular formul&s (the cer- M; ={m|mE S;}.

tain knowledge) and a set of contextual default rulss Wi g is a contextual extension @f iff M is a stable solution
and the unlabeled formulas in defaults have to be expressgghain of R.
in L;. Each context thus has its own language for expressin

its particular view of the world. QVe can thus view our approach based on contextual default

Note that if a default rule contains a regular formula, this!09iC as a syntactical characterization of the semantipal a
g proach in[Roelofsen and Serafini, 20p5The advantage of

formula is implicitly assumed to refer to the context of the O oL
default. We may thus assume without loss of generality thaP!" characterization is threefold: it is closer to standapd

all prerequisites and justifications are labeled formulise ~ Proaches in nonmonotonic reasoning and allows us to trans-
reason we allow more than one prerequisite for a default fer results which have been established for default logitequ

which is not necessary for Reiter’s logic — is that we Wameasily to the multi-context case; it is more amenable to com-

to be able to refer to more than one context without usind?Utation; itallows us to handle the difficulty of the semeati
context labels inside logical formulas. approach with respect to skeptical reasoning, as we will see

Now we can generalize the notion of an extension to dell the next section. _ . i
fault context systems. Given two tupléss, ..., S,) and . As an e_xample of the rgsults we basically get “for free” we
(S!,...,5") we define component-wise inclusiofi, as Justmention the following:

(S1,...,80) Ce (S1,...,5)) iff S; C Siforalli(l <  Proposition 2 (Minimality)
1 < n). When we speak of minimality of tuples in the rest of Let E; and E; be extensions of a default context systenif
the paper we mean minimality with respectde. F; C. Ey thenE; = Es.



A normal default context system is one where each defaultin 4. W; U {cons(dy) | (i:dy) € P} F p.

each contextis of the form: LetS = (S1,...,S5,) be a sequence of sets of formulas,
(c1:p1)y---,(ceipe) s/ D = (Dy,...,D,) asequence of sets of contextual defaults.

Proposition 3 (Existence) Define s ) ,

Each normal default context system possesses at least-one ex D” = (Dy,...,Dy)

tension. where D} is the set of defaults fronD; not defeated by

Proposition 4 (Consistency) (dis defeat_ed bys iff ifc has a justification(i : ¢) such that

LetC = ((D1,W1),...,(Dn, W,,)) be a default context sys- ¢ € Si). Wlth_the notion of a default proof, we can express

tem,E = (Ey, ..., E,) an extension of’. If all W; are con-  thel" operator introduced above as followi¥:51, . . ., Sn) =

sistent and each default possesses at least one justificatio(S1, - - -, Sy, iff each 57 is the set of formulas possessing a

then each®); is consistent. default proof fromD*.

We will now define a similar operatdr*, but with an im-
ortant restriction to consistent proofs. This will be stiéfint
to handle the problem described above.

A lot more results for which we do not have space here car%
over. For instance, we can give a quasi-inductive definibion
extensions as ifReiter, 1980. We can define the notion of a

stratified default context system for which a unique extmsi Definition 3 LetP = ((¢1:d1),. .., (¢m :dn)) be a default
exists. Also complexity results carry over which establishproof, S = (S51,...,5,) a sequence of sets of formulas. We
that the main reasoning tasks for contextual default logic a say P is S-consistent iffS; U {cons(d;) | (i:d;) € P}is
on the second level of the polynomial hierarchy. consistent, forali (1 < i < n).

. . Now letT*(Sy,...,S,) = (S1,...,S,) iff each S/ is the set
4 Skeptical contextual default reasoning of formulas possessing a consistent default proof fiofm

The essential problem of the canonical model approach is ddote that bothl" andT'* are antimonotone operators. Ap-
follows: it assumes that the set of potential conclusions igplying the two in sequence thus yields a monotone operation
deductively closed. Thus, whenever two conflicting fornsula which has a least fixpoint. The least fixpoint can be reached
p and—p are considered as potential conclusions, then this iby iterative applications of the two operators to the seqaen
also the case for an arbitrary formujaeven ifq is entirely  consisting of empty sets only.

unrelated. o
N Definition 4 LetC = ((D1,W1),...,(D,,W,)) be a de-
This is exactly the problem addressed@tewka and Got- 5,1t context systems (L (1S1, 1) : Sn)( is the V\Béll-founded

tlob, 1997 in the context of default logic. The solution is to ¢,ncjysjon set of iff S is the least fixpoint of the operator
apply paraconsistent reasoning in determining potentiad ¢ 'y

clusions: bothp and—p are considered as possible conclu- ) ,
sions, but not their deductive closure, i.e. not the setlof al 10 see how this handles the problem consider the ConDL

formulae. In the example discussed above, one should dete¥@"ant of the example discussed above. We have the contex-
that(1: ¢) is not a possible conclusion because the only wayual default theory( (Dy, W1), (Da, W2)) with Wy = W =
to derive this labeled formula is based on an inconsistent sé and
of potential conclusions. The semantics thus should derive Dy ={:p/p,: —p/-p}
(2I: t)fB k d Gottlob, 1997 f diff t Da = {: (1:7a)/2}-

n [Brewka and Gottlob, sequence of different se- o . _ .
mantics was introduced which allows to trade-off the eﬁortlndeed’ application of " to the sequencé = (0, ) yields
spent for consistency checking with the strength of skepti- S" = (Th({p}) UTh({-p}), Th({t})).
cal inference. Rather than presenting the different seiggnt
here, we focus on a single one (callBdF'S; in the cited
paper) and directly describe its generalization to comndaxt
default theories.

Note that context 1 does not contginFor this reason, apply-
ingI" to S’ gives us(Th(D), Th({t})). Thisis also a fixpoint
and we establishin context 2, as intended.

. Based on a modification of a corresponding proof in
Definition 2 Let C = ((D1, W), ..., (Dy, Wy)) b€ @ de- [grewka and Gottlob, 1997ve can show that well-founded

fault context system. Ldd" = (Dj,..., D;) be atuple of  gomantics for contextual default theories is correct with r
subsets of the defaults @. Letp be a formula. AC-default spect to contextual extensions.

proof forp from D’ in context is a finite sequence .
Proposition 5 (Correctness)

P=((erzdr)s.s (em:dm)) Let C = ((Dy, W), ...,(Dn,W,)) be a default context
of context/default pairs such that the following condis@me  system,E = (Ei,...,E,) an extension of” and S =
satisfied: (51, ...,Sn) the well-founded conclusion set@f We have

1. d;e D, forallj(1<j<m), Si € Eiforalli, 1 <i<mn.
2. em =1, 5 Contextual ASP

3. foreach and each prerequisite : ¢) of d;, ¢ is alogical

consequence of A syntax restriction leads to contextual answer set program

ming (contextual ASP), respectively contextual logic pro-
WeU{cons(dk) | k <1, (c:dy) € P}, gramming under well-founded semantics. As beforelet



{1,...,n} be a set of contexts/agents. A logic programming6 Applications

context system (LPCS) is a tup(®, ..., P,) where eactP;

In this section we illustrate the use of contextual logic-pro

is a contextual logic program. A contextual logic program isgramming with further examples. Our setting was proposi-

a set of rules of the form
.,not b,

whereq is a literal, eacld; is either a literal or a labeled literal
of the form(c: 1) wherec is a context and a literal.

a — bl,...bk,notbkﬂ,..

For LPCSs wheraot does not appear in the bodies of any
rule (let’s call them definite LPCSs), we can define the notio

of a minimal context model:
Definition 5 LetC = (P,..., P,) be a definite LPCS. An
n-tuple of sets of literal§' = (54, ..., S,) is called the mini-
mal context model af' iff S is the smallest n-tuple satisfying
the following conditions:
1. a € S; wheneven «— (¢ :b1),...,(ck:br) € P;
b, € Sc],...,bk S Sck,
2. S; is the setLit; of all literals in L; wheneverS; con-
tains a pair of complementary literals—i.
The definition of stable model is now straightforward:
Definition 6 LetC = (Py,..., P,) be an (arbitrary) LPCS,
andsS = (54,...,5,) atuple of sets of literals. Th&-reduct
of C, denoted”?, is obtained fronC' by

1. deleting in eactP; all rules with body literalnot (c: 1)
such that € S,

2. deleting from all remaining rules in all prograni3 all
default negated literals.
Definition 7 LetC = (Py,..., P,) be an (arbitrary) LPCS,
andS = (54,...,5,) atuple of sets of literalsS is a stable
context model of iff it is the minimal context model @f*.

Well-founded semantics for LPCSs can be defined in the, e
same spirit as for ConDL. However, consistency checking be-

comes much easier. F6t= (P, ...
of literals.S = (51, ...

, P,) and a tuple of sets
,Sn) lety(S) be the minimal context

tional so far. In ASP it is common to use variables in rules
as shorthand for the set of all ground instances of the rules.
Users represent their knowledge in terms of programs with
variables, a grounder (likiparse then generates the purely
propositional ground instantiation of the rules which isrth

rpassed on to an answer set solver like[tleoneet al,, 2007

or smodelg§Simonset al., 2004.

We will adopt and extend this use of variables for contex-
tual logic programming. We assume three types of variables:
term variables which are common in ASP and will be de-
noted byX, Y, possibly indexed; context variables denoted
by C, possibly indexed; and proposition variables denoted
by P, possibly indexed. Term variables are to be instanti-
ated by ground terms, context variables by contexts (more
precisely, integers denoting contexts), and propositeni- v
ables by ground literals. For convenience, we will also al-
low literals to appear as terms (strictly speaking we would
have to distinguish between a propositiorand a termt,
representing this proposition; we assume the groundetés ab
to take care of this). As common in ASP we will also use
rules with empty head of the form- body as abbreviation
for f — not f, body wheref is a symbol not appearing else-
where in the program. The effect of the rule is that no answer
set exists in whiclbody holds. With these conventions, it is
easy to model several interesting multi-context scenarios

Information fusion: Assume agent decides to believe an
arbitrary literalp whenever some other agent belieyesnd
none of the agents believes (—p is the complement g,
that is—p if p is an atom, ana if p = —r). This can be
ed by including irP; the rules

P — (C:P),notrej(P)
rej(P) (C:—P)

«—

model OfCS. Define the minimal context set of a definite Again we assume the grounder handles the Comp]emeht “
LPCS like the minimal context model, but without require- adequately. Note that this representation implicitly guar
ment 2 (inconsistent sets of literals do not have to be closedtees that only information consistent witls information is

Let operatory*(S) produce the minimal context set 6f°.

added since in case of conflict a proposition will be rejected

The operators andy™ both are anti-monotone, the combined  One can also think of scenarios where agebelievesp
operatoryy* is thus monotone and possesses a least fixpoinfyhenever the majority of agents does so. iet= n + 1/2 if

We call this fixpoint the well-founded context model@f

The use of this operator can be illustrated using our earlier

example. We have the LPA3 = (P, P») with

P: p <—not-p
-p <« notp
and
Py: t «—not(l:q)

Indeed,y*(0,0) = ({p,—p},{t}). As in the case of con-
textual default logic, context 1 does not containFor this
reason, applying to S’ gives us((), {¢t}). This is already a
fixpoint and we establishin context 2, as intended.

n is odd,m = n + 2/2 otherwise. A corresponding rule is:
P — (C1:P),...,(Cy:P),
C1# Cy,C1 #C3,...,Cp1 # Chy.

Game theory: We show how we can compute Nash equi-
libria for games in normal form using LPCSs. In general,
we need to represent the choices available to each plager, th
best action given a particular choice of the other playerd, a
a rule that says only the best action should be chosen.
Consider the famous prisoner’s dilemma, a game involving
2 agents which can either cooperat ¢r defect (). The
gains obtained by the agents for each combination of choices

Contrary to well-founded semantics for contextual defaultyre gescribed in the following table:
logic, the computation time for well-founded semantics of
LPCSs is polynomial: the number of iterations is bounded c d
by the total number of literals in all contexts, and so is the c|33]05
time needed for each iteration. d| 50|11




The single Nash equilibrium is obtained when both playerdReferences
defect. The game can be modeled as the 2-context systefBaralet al, 1994 Chitta Baral, Sarit Kraus, Jack Minker,

(P1, P2) whereP; is and V. S. Subrahmanian. Combining default logic data-
choose(d) «— notchoose(c) basesint. J. Cooperative Inf. Syst3(3):319-348, 1994.
choose(c) « not choose(d) [Brewka and Gottlob, 1997G. Brewka and G. Gottlob.

best(d) — (2:choose(c)) Well-founded semantics for default logieundamenta In-
best(d) — (2:choose(d)) formaticae 31(3/4):221-236, 1997.

—  choose(X), not best(X) [Gelfond and Lifschitz, 19§8M. Gelfond and V. Lifschitz.
_ . CROOSELA ) s _ The stable model semantics for logic programmingnin
and P, is as P with context 2 replaced by 1. The single ternational Conference on Logic Programming (ICLP 88)

contextual answer set is pages 1070-1080, 1988.

({choose(d), best(d)}, {choose(d), best(d)}) [Gelfond and Lifschitz, 1991Michael ~ Gelfond  and
and corresponds to the Nash equilibrium. In this fashion we Vladimir Lifschitz.  Classical negation in logic pro-
can represent arbitrary games in normal form. grams and disjunctive databases.New Generation

Social choice: So far we have assumed the logic programs C_o_rn_|out|ng9.)(3/4)j3§5—386, 1991. o

representing contexts are so-called extended prograrhs wif Ghidini and Giunchiglia, 2001C. Ghidini and

two types of negation. Of course, we can also use other types F. Giunchiglia.  Local models semantics, or contex-

of programs. A convenient language extension handled by tual reasoning = locality + compatibility. Artificial

thesmodelssystem are cardinality constraifi&imonset al., Intelligence 127(2):221-259, 2001.

2007 of the formL{ay, ...,a;}U. HereL andU are inte-  [Giunchiglia and Serafini, 1994F. Giunchiglia and L. Ser-
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