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Abstract
The paper is a theoretical study of a generalization of the lexicographic rule for combining ordering relations. We
define the concept of priority operator: a priority operator maps a family of relations to a single relation which
represents their lexicographic combination according to a certain priority on the family of relations. We present four
kinds of results.
� We show that the lexicographic rule is the only way of combining preference relations which satisfies natural

conditions (similar to those proposed by Arrow).

� We show in what circumstances the lexicographic rule propagates various conditions onpreference relations, thus
extending Grosof’s results.

� We give necessary and sufficient conditions on the priority relation to determine various relationships between
combinations of preferences.

� We give an algebraic treatment of this form of generalized prioritization. Two operators, calledbut andon the
other hand, are sufficient to express any prioritization. We present a complete equational axiomatization of these
two operators.

These results can be applied in the theory of social choice (a branch of economics), in non-monotonic reasoning (a
branch of artificial intelligence), and more generally wherever relations have to be combined.

Keywords: Preference relations, priority relations, default reasoning, lexicographic combination, Arrows theorem,

social choice.

1 Introduction

The lexicographic combination of orderings constructs a single ordering from several indi-
vidual ones. Traditionally, theindividual orderings will order words according to their�th
letter using alphabetical ordering, and the combination will then be the usual ordering of dic-
tionaries. This combination thus says that a letter on the left is more important than any letter
on its right, thereby giving apriority between letter indices. If the first letter of the first word
is strictly before the first letter of the second word, this first word will indeed appear first in
the dictionary. In case of ties, the second ordering will be used, and so on.

J. Logic Computat., Vol. 12 No. 1, pp. 13–53 2002



14 Operators and Laws for Combining Preference Relations

In this paper we study a generalization of this combination of relations, in which the pri-
ority ordering on the indices may be an arbitrary order instead of a finite linear one, and the
relations themselves need not be orders.

Applications of this work potentially include any application of the lexicographic rule in
computer science and artificial intelligence, and are therefore varied and widespread. We
mention some of them here:

Artificial intelligence. Default logics have been used in AI for twenty years[13, 5]. The
lexicographic rule was first proposed for prioritized defaults by Lifschitz [19, 20] in the
setting of circumscription. Later, Grosof [14] recognized its applicability to any preferen-
tial logic, and dubbed itgeneralized prioritization. The lexicographic rule has also been
used for preferential logics in Ryan [25] and Schobbens [30]. In this context, a priority
operator is a policy for controlling which defaults represent exceptions for which other
defaults. In the specific case of circumscription, a priority operator is a circumscription
policy. The lexicographic rule has also been used in belief revision [28].

Requirements specification. The requirements that users may specify are often soft, and as
such express a preference over a set of possible implementations rather than a hard set of
implementations. Inconsistencies easily arise if the requirements are interpreted as hard,
whereas resolving a set of soft requirements involves finding a compromise between the
preferences each requirement denotes. Priority operators in this setting represent a policy
for putting together the requirements.
Concretely, the use of default constraints in specifications has been proposed for mod-
elling requirements [4, 30, 26, 27, 15]. The priority operator used to put together the
preferences on models these defaults express may be derived from the structure of the
specification [26], the use of a logical connective ‘but’ expressing exceptions [30], or an
explicit hierarchy [9].

Economics. Preferences originate from economics, and naturally our work can also be used
there. Two subdomains are more particularly concerned:
Social choice. The study of combinations of preferences for social choice was initiated by

Condorcet [7]. Here, each input relation represents the preferences of a member of the
group, and the output represents the preferences of the group. This domain has yielded
mostly negative results, the best known being Arrow’s impossibility of combining lin-
ear orders under very natural conditions [1] recalled in section 3. In this paper, we
show that, surprisingly, when working in the slightly more general settings of relations,
or even pre-orders, we obtain, on the contrary, a possibility theorem, yielding our lex-
icographic combinations as the only solution. Various extensions of the lexicographic
combination were also studied in [11, 12, 3, 17, 18].

Multi-criteria decision. Currently these results are more used in a different branch of
economics, multi-criteria decision. Arrow has rewritten his results withthis application
in mind in [2]. Here, the input relations represent rankings according to the various
relevant criteria, and the single output represents their combination, on which the final
choice will be based.

This section intuitively introduces the problems and the solutions considered in this pa-
per. We use an example from Economics, since such examples are readily explained from
common sense.

EXAMPLE 1.1
Claire and Bob have to replace their old car. As often, they have different criteria for selecting
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the new car, although some of them are common, but ranked differently.
The preference of Claire is guided by the following criteria (in increasing order of impor-

tance):

� the maximum speed (M);

� the elegance of the design (D);

� the ease with which it can be driven in town (E);

� the price (P).

The criteria for Bob are ranked differently:

� the ease with which the car can be driven in town (E);

� the maximum speed (M);

� the price (P).

Some of these criteria are simple, and can be directly computed from the technical data of
the car. Others can be decomposed, say: the ease with which the car can be driven in town
(E) is an aggregation of:

� the length of the car (L);

� its weight (W);

� its turning circle diameter (C);

� the presence of automatic transmission (A).

Let us say the last one is the most important, the other ones are equally important, but are
clearly expressed in incomparable units, so that, for instance, adding them makes no sense.
The final choice should at least be Pareto-optimal: no other car will be better for both Claire
and Bob than the one selected.

Now, these criteria must be applicable to any specific market. In this paper, we do not work
directly with numerical criteria like the ones above. We consider the market� containing
economic alternatives, in this case the various cars that are available; say� � ��� �� ���� ��.
The numerical criteria are converted into a preference ordering. For instance, if the actual
characteristics of the cars are as in Table 1, we forget the numeric values to remember only

TABLE 1. Car characteristics
t h r m n

length L 3.5 3.5 7.3 5.0 3.7
weight W 0.7 0.9 3.5 1.5 0.7

turning circle diameter C 3.2 3.4 6.4 3.4 3.2
automatic transmission A N Y Y N N

maximal speed M 110 130 180 250 120
price P 10 10 100 20 11

their ordering. For example, for the turning circle diameter (C), we remember only that� is
equivalent to� (in the notation of the main part of this paper,� 	�

� �), while � is strictly
preferred to� (written � 	�

� �), and so on: in summary,�	�
��	�

��	�
��	�

��. In some
cases, no meaningful comparison can be established, so that both incomparable alternatives
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should be kept in the final choice. For instance a shoe cannot be compared to a car, say. We
write this
 	� �.

In the example, all preferences are transitive, and this is usually considered as a condition
for them to be rational. However, many empirical studies have shown that intransitive pref-
erences are the norm rather than the exception for human decision makers. Therefore, this
study does not assume transitivity, but intends to preserve it when it exists. That is to say,
when the underlying preferences are transitive, so should be their combination. We shall use
(T) to refer to preservation of transitivity. We assume several other properties of the com-
bination. It should not advantage any alternative except from the selected criteria (B), and
should respect the criteria when they are unanimous (U). Finally, alternatives that are not
involved in a comparison should not influence the result (I): for instance, if� is preferred to
�, this should not depend on whether� is present in the market� or not, but only on the
performance of��� for the selected criteria.

If we accept these natural rationality postulates (IBUT), we demonstrate below that the
problem can be expressed by priority graphs, or by algebraic expressions. For instance, the
algebraic expressions for the example above are:

������ � ������
�	
 � �����

����� � � ��������
������ � Bob�Claire

where� expresses priority of the second term, while� puts both sides on equal priority. In
this example, our theory shows how to simplify the computations: it is useless to repeat the
computation of� for Bob, of� for Claire, since anyway these criteria will be better taken
into account by the other person. So Result� �������� gives the same result more
efficiently. It is also clear from this expression that� is to be chosen in the example, without
even looking at criteria������.

Our principal definition is that ofpriority operator. A priority operator specifies a way
of putting together a family of relations to make a single relation. We call these relations
preference relations: the idea is that they relate elements of� (interpretations, economic
alternatives, etc.) according to some preference criterion.

We present results of four kinds.

1. We show that priority operators are canonical: they are the only way of combining pref-
erence relations with different priorities which satisfies the very natural conditions above,
inspired by Arrow [1, 2].

2. Next, we define several natural properties of preference relations: transitivity, reflexivity,
irreflexivity, and well-foundedness. We show in what circumstances these properties are
propagatedby priority operators. This generalizes a result by Grosof [14].

3. We give necessary and sufficient conditions on the priority relation to determine whether
the result of a priority operator is alwaysincludedin the result of another combination.
This also extends a result of Grosof [14]. We also give necessary and sufficient condi-
tions for other relationships between the results of priority operators, such asequalityand
preferential entailment.

4. We give an algebraic treatment of generalized prioritization. We formally define two
binary priority operators, calledbutandon the other hand, and show them to be sufficient
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to express any priority operator. We present a complete equational axiomatization of these
two operators.

The structure of the paper is as follows. The next section presents basic definitions. Sec-
tion 3 presents the results which show that the lexicographic rule is the only way of combining
preference relations that satisfies the natural generalization of Arrow’s conditions. Propaga-
tion of properties of preference relations by the rule is summarized in Section 4, Table 3.
Section 5 develops proof rules for priority graphs, and 6 explores composition of priority op-
erators. Section 7 summarizes our algebraic treatment of priority operators, and conclusions
are drawn in Section 8.

There is a long appendix to this paper, which covers the mathematical details and proofs
which have been omitted from the text in order not to interrupt the flow. The structure of the
appendix mirrors that of the paper.

2 Priority operators

Let � be a set containing at least two elements. The elements of� are the subject of the
preferences: in the example above, it was the set of cars which were available on the market.
From the point of view of our application to default reasoning,� is the set of interpretation
structures of the logic. Default rules or formulas express preferences on� . The results
presented in the paper work for any applications of prioritized preference, such as default
reasoning, social choice or multi-criteria decision.� is simply the set of objects which are
ordered by preference, which in economics are called economic alternatives. (Of course there
must be at least two of them, otherwise there is nothing to choose.)

DEFINITION 2.1
A preference relation(sometimes just called apreference) is any binary relation on� . Pref-
erence relations will be written	, 	�� 	�� � � � � or 	�� 	�� � � �.

For intuition, the reader will be helped by reading	 as meaning ‘better than, or indif-
ferent’ or ‘as preferred as’. We do not assume that	 is transitive and reflexive, since our
mathematical results do not depend on these properties.

In the non-monotonic application, each default formula denotesa preference relation on
� which orders interpretations according to hownearly they satisfy the default information.
As usual in the literature, interpretations ‘lower’ in the relation are those which are closer to
satisfying the default. For��� � � , the expression� 	 � means that� is as preferred as
�.

DEFINITION 2.2
Given a preference relation	, we define the derived relations

� 	 � iff not �	�. ‘not better (nor indifferent)’
� 	� � iff �	� and not�	�. ‘strictly better’
� 	� � iff �	� and�	�. ‘indifferent’
� 	� � iff neither�	� nor�	�. ‘incomparable’

We also use� to denote the full relation� �� , and� to denote the empty relation. Thus,
� � �� � �� � �� � �� � � and�� � �� � � � � .

Now suppose we have a family of preference relations	����� , all on the same set� .
This can come about because we have several defaults, each of them denoting a preference
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relation among interpretations of a non-monotonic logic, or because we have several deciders,
each having its own preference among the economic alternatives. Also, the preferences can
originate from different criteria that we wish to combine according to their importance. We
want to combine these relations into a single relation on the same set� . The next step is
usually to pick the minimal (or preferred) interpretations (or alternatives) according to it.

DEFINITION 2.3
A � -ary operator is any map taking some preference relations	����� and returning a
single preference relation. (� may be infinite.)

Of particular interest are operators which combine preference relations according to some
priority, which is a strict partial order on� .

The lexicographic combination of	����� (� �� �) according to priority� on� is the
relation	 given by

�	� 	
 �� � �� �	�� � � � �� � � � ��	�
� ���� ��

This generalizes the familiar rule used for the alphabetic ordering of words in a dictionary,
by allowing the priority� (position of letter in word) to be an arbitrary partial order, and by
allowing the preference relations (ordering of letters in alphabet) to be an arbitrary relation.
Intuitively, the lexicographic rule says that� is preferred to� overall if it is preferred at
each index, except possibly those for which there is an index of greater priority at which�
is strictly preferred to�. To understand how this reduces tothe familiar alphabetic ordering
when� is a finite total order (among positions in the word), observe that it says: in order
that word� comes before (or equal) word�, we must have that for any�, the�th letter of�
precedes or equals the�th letter of�, unless there was a smaller� such that the�th letter of
� strictly precedes the�th letter of�.

A number of definitions of the lexicographic ordering, which are all equivalent when used
with a finite linear priority, can be found in the literature:

1. �	�� iff � � �	�
� � and�� � �� �	�

� � [23, p.49];

2. �	�� iff  � ����	�
� �� is not empty and�	�

� �, where� is the�-minimum element of
 [12, p.1442];

3. �	� iff ���� � ��	�
� ��
 �	�� [14]‘.

When we generalize to apartially ordered priority:

� Definition 1 may yield both�	�� and�	��, and is thus not useful in this context.

� Definition 2 needs to be generalized, since will not have a single minimum but a set of
minimals. So we could require that�	�

� � for all these minimals.

� Definition 3 is directly usable.

Definition 3, and our generalization of Definition 2, are each equivalent to our definition in
equation (�) under the assumption that� is well-founded (see Theorem 2.11). This is an
assumption we will make frequently in the paper; it is generally valid for applications.

The formulation�� of the lexicographic combination is not as general as we would like,
however, because it forbids usfrom replicating an argument	� several times in the prioriti-
zation. We can generalize it by considering the following notion of priority graph.
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DEFINITION 2.4
A priority graph is a tuple���� �� where� is a set (of ‘nodes’),� is a strict partial order
on � (the ‘priority relation’) and� is a function from� to a set of variables.� may be
infinite.

This definition and the following one are the most fundamental in the paper; everything
else depends on them. So, what is a priority graph? It is just an ordering of variables, but
crucially it allows some variables to be represented several times in the ordering, simply by
repeating the variable in the priority graph. (A priority graph essentially represents a policy
for prioritizing certain things represented by the variables, and the ability to allow repetition
of the variables greatly increases the expressive power of the representation. We will prove
this later.)

A priority graph denotes an operator on preference relations. The operator it denotes com-
bines its arguments according to the given priority, using the lexicographic rule.

DEFINITION 2.5
The� -ary operator� denoted by the priority graph���� �� is given by

� �	����� � � 	
 �� � �� �	����� �  � ��  � � ��	�
��	����

where� � ��� �, the variables that occur in the graph.

This says that the variables in the priority graph are instantiated to be the argument prefer-
ence relations. The operator returns the preference relation, which is their prioritized combi-
nation according to�, using the lexicographic rule.

The difference between Definition 2.5 and equation�� is that the elements of� are or-
dered, rather than the elements of� directly. The onus is on us to show that this added
complication is really useful. It turns out tobe useful because the ability to duplicate one
of the arguments	� in the ordering increases the expressive power we are giving to priority
operators. This is shown by Example 2.8 below.

Our notion of priority operator can now be seen to generalize the notion of circumscription
policy [20] in three ways.

� it works for arbitrary preferential logics;

� it allows the priority to be partial;

� it allows repetition of the prioritized criteria in the ordering; and this increases the expres-
sive power (Example 2.8 below).

EXAMPLE 2.6
Consider the priority graph!� � ���� �� given by� � ��� �� ��with � � � and� � � and
��� � �, ��� � � and��� � �. Priority graphs will normally be written using a graphical
notation in which we leave out the names of elements of� , showing the base of the partial
order� on the variables given by� (this is usually called the Hasse diagram of the priority).
Recall that elements with the highest priority are, surprisingly perhaps, written at the bottom
of our diagrams. The priority graph!� is:

�

��
��

��
��

�

��
��

��
�

�
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This denotes a binary operator since there are only two distinct variables in the graph. It takes
two preference relations, say	 and", and returns a preference relation which represents the
combination of	 and" with the priority which represents	 once and" twice. One of the
representations of" has priority over the other and over	. Thus, if�� is the operator denoted
by the graph, then��	�"� is the following prioritized combination of	 and":

	

��
��

��
� "

��
��

��
�

"

Applying the definition of the lexicographical rule (and simplifying), we obtain that
��	�"� � 	 � "� � "�. We may also write�� � #�� �� � � �� � ��, although we
will generally leave out#s and details of variable binding, and write�� � � � �� � ��.

There may be several graphical representations of the same operator. As a trivial example,
any priority graph whose nodes are all labelled by the same variable� denotes the identity
operator, which is the only unary priority operator.

DEFINITION 2.7
Priority graphs!�� !� are said to beequivalent, written !� � !�, if they denote the same
operator on preference relations.

The graph!� in the preceding example is equivalent to the graph!�

�

�

(which does not have any repetition of variables), in the sense that the two graphs denote the
same operator�� � � � �� � ��.

EXAMPLE 2.8
The priority graph!�

� �

� �

denotes the operator�� � �� � �� � ���� � � � �, and isnotequivalent to any graph which
does not repeat the variable� (this will be proved later, in Example 5.7). In particular, it is
not equivalent to

�

��
��

��
�

��
��

��
��

� �

which denotes�� � � � ���� � � � �. To see that these expressions may be different, try
� � ��� ��,� � �, � � ��� , � � ��� ��� �� ��� �� ���. Then the first expression yields
�, while the second one yields��� ���.
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EXAMPLE 2.9
The graphs

� �

� �

and

�

��
��

��
��

�

��
��

��
�

�

denote the same operator, namely� � � � �� � ��.

The lexicographic rule applied to graphs is not the only way of defining operators on rela-
tions, but is an important one.

DEFINITION 2.10
A priority operatoris an operator which is denoted by some priority graph.

By convention, we extend the usual properties of posets to priority graphs and thence to
operators in the obvious way: for instance, we say that a priority operator iswell-founded
iff there is a graph���� �� denoting it such that���� is well-founded, (i.e. there is no
infinite descending sequence�� $ �� $ �� $ � � �, �
 � � ). A � -ary operator isfinitary if �
is finite.

Notice that the identity of nodes (elements of� ) in a priority graph is irrelevant. For
this reason we can think of priority graphs as partially ordered multisets (pomsets[24]) of
variables.

The following theorem is useful in two respects. First, it should help the reader build up
intuitions for the behaviour of the lexicographic rule coded into Definition 2.5. Secondly, it
will be used for proving most results in all later sections, e.g. Theorems 3.2 and 4.1.

THEOREM 2.11
Suppose���� is well-founded, and let	 � �	����� �. Then

1. �	� iff �� � �� � � �� �	�
��	��� implies�	�����.

2. �	� iff �� � �� �	����� or  � �� �	�
��	�� and� � �  � �	�

��	�����.

3. �	�� iff �	� and� � �� �	�
�����.

4. �	�� iff �� � �� �	�
�����.

3 Canonicity of the lexicographic rule

We have defined priority operators, which takeas arguments some preference relations and
combine them according to some priority, usingthe lexicographic rule.Arrow [1, 2] has stud-
ied operators taking sets of preference relations to preference relations, and proposed natural
conditions that they should satisfy. Our aim in this section is to show that priority operators
can be defined by a variant of Arrow’s conditions, which is also very natural. Historically, we
arrived at these conditions when looking for further preferential operators, mainly a counter-
part for disjunction, only to discover that there are no further operators.

Let � be an operator taking	����� and returning	 � �	����� �. To be natural, the
operator� should:

I. be independentof irrelevant alternatives: the resulting preference on elements in� de-
pends only on the argument preferences on these elements. That is,

�� � ��� �	����� ��� � � �	��� ����� ��



22 Operators and Laws for Combining Preference Relations

This is condition 2 in [1] and [2];

B. be basedon preferences only:� is a function of the	�’s only, and may not take into
account the identity of any element of� . That is, if there is an isomorphism% between
� and� � (i.e. a bijection% such that�� � ����� � � ���	�� iff %��	�

�%��)
then the results are the same:�	� iff %��	�%��. This condition is called permutation
invariance in algebraic logic. It was not used byArrow, but by algebraists, order theorists,
and economists [12, p. 1448] and seems very natural;

U. beunanimous with abstentions: for intuition, we use here analogies from the theory of
social choice. Let us consider that each	� represents the preference-or-indifference
relation of the person called�, member of a group� of voters. To establish the preference
of the group, each pair of alternatives�� � will be presented in a vote, where the members
can vote on whether� is preferable to�. For a given pair, each member� has four possible
votes, corresponding to the cases of Definition 2.2: vote for� (�	�

� �); vote for� (�	�
� �);

�� � are considered incomparable (�	�
� �); or indifferent (also called equivalent) (�	�

� �).
In this last case, we say that� abstainsin the vote of� against�. Incomparability, on the
contrary, is a strong opinion here: it means that the two alternatives cannot compete, and
this vote will override decided votes of the same priority. In the first two cases, we say
that� is decided.
If all the 	�s determine a certain vote between� and� (which could be�	�

� �, �	�
� �,

�	�
� �, or �	�

� �) apart from those which abstain (�	�
� �), then the condition of unanim-

ity states that	 also determines the same vote between� and�. That is, for all� �
���$����� if � � � � such that� � �� � and�� � � �� �	�

��, and�� � � �� �� �	�
� �,

then�	��.
Respecting unanimity is the motivation for condition 4 of [1], but after motivating this
condition, [1] writes a much weaker mathematical condition;

T. preserve transitivity: if all the argument preferences	����� are transitive, then the
resulting preference	 is also transitive. This condition is not stated in [1] but is implicitly
used;

N. benon-dictatorial: it does not simply return a fixed one of its arguments without regard
to the others. We formulate this technically as follows: if�� � $ � then there is no� � �
such that	 � 	� for all possible values of the other	�s. This definition comes from
[2].

In the case of total pre-orders, Arrow’s well-known theorem shows that the property of
non-dictatoriality is incompatible with the other conditions. In our case of arbitrary relations
in which we have generalized his conditions, it is easy to show an opposite result.

THEOREM 3.1
Every operator satisfying unanimity with abstentions is non-dictatorial. More generally, the
result of such an operator cannot be independent of any of its arguments.

PROOF. Assume� is dictatorial in�; thus� � ��� is not empty. Take some non-full relation
" and define	� � � and	� � " for all other�. By U, �	����� � � " �� 	�.

Thus non-dictatorial is not only compatible with IBUT, but implied by U. There are two
explanations for this inversion, depending on the version ([1] or [2]) to which we compare:

1. Unanimity with abstentions is a powerful and natural condition, for pre-orders. The proof
of [2] relies strongly on linear orders, where abstentions are impossible.
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2. The definition of dictatoriality [2] we use is natural but restrictive: some of our operators
would be dictatorial under the wider definition of [1]. Arrow (in both versions) uses a
supplementary unstated condition: the preservation of totality. As shown in Theorem 4.1
below, this amounts to requiring a linear (total) priority. In this case, the relation with
highest priority is a dictator in the sense of [1], but not of [2].

So, of course, there is no mathematical contradiction between Arrow’s results and ours. But
curiously, all informal explanations of [1] could be retained to justify the conditions of our
inverse result—just draw opposite extra-mathematical generalizations.

The main result of this section shows that only lexicographic combinations of preferences
satisfy conditions IBUT (or equivalently IBUTN). We may state it as follows.

THEOREM 3.2
A finitary operator satisfies conditions IBUT iff it is a priority operator.

The proof, found in Section A.3 in the Appendix, works by performing ‘tests’ on the
operator in order to find a priority graph which denotes it.

It is not obvious that the conditions IBUT are all we should require; we could also think
that a natural operator should:

1. preserve reflexivity: usually, one conventionally considers that preferences are reflexive.
This convention should be preserved by the operator;

2. preserve irreflexivity: if we take the opposite convention, it should also be preserved;

3. preserve antisymmetry: often preferences are taken to be antisymmetric; then the result
should also be;

4. preserve well-foundedness: the goal of preferences is to find minima, and to ensure their
existence we must forbid infinite regression. It is clearly important that this property is
preserved;

5. allow majority extensionor respond positively[2]: Given a situation where the result is
some vote (for instance, that� and� are indifferent), then any situation identical except
that more individual preferences give that vote, should have the same resulting vote;

6. be justified: if the result is to prefer one of the interpretations, then at least one default
(called thejustification) must prefer this interpretation;

7. obeyPareto ruleor bebenevolent: if one criteria strictly prefers an alternative, and the
other ones prefer it, it should be strictly preferred globally.���	�����	�

� �
 �	��.

Fortunately, all these conditions can be derived from the four basic ones (at least for fini-
tary operators). The preservation properties (1–4) are theorems of the next section. Properties
(5–6) are proved in Lemmas A.11 and A.9, respectively, of Appendix A.3. The Pareto rule is
a special case of U. There is, however, one condition (proposed by [10]) that we cannot add,
namelydecidedness: that the global preference is decided (prefers one of the two interpreta-
tions to be compared) as soon as one of the individual preferences is decided. Intuitively, this
condition seems rather strong: for instance, theoperator cannot decide that two interpreta-
tions are incomparable, even if a vast majority of defaults share this opinion or if two equally
important sets of defaults hold opposite opinions. If we add decidedness, no combination
operator can be found, since we fall back on the conditions of the original Arrow theorem:
the operator will preserve totality.
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TABLE 2. Properties of a relation	 and their closures

Property Definition ‘Closure(s)’

Reflexive �� � ���	� �	�� iff �	� or � � �

Irreflexive �� � ���	� �	 ��� iff �	� and� �� �

Symmetric ���� � �� �	�
 �	�� �	�� iff �	� or �	�

�	�� iff �	� and�	�

�	�� iff �	� and�	�.

Antisymmetric ���� � �� �	� � �	� 
 � �
��

�	�� iff �	� and�	�

Transitive ��������� � �� ��	�� �
��	�� 
 ��	���

�	�� iff �� �	
�

Total ���� � �� �	� � �	��

Empty ���� � �� �	� � (the empty relation)

Full ���� � �� �	� � (the full relation)

Well-founded transitive, and there is no
	�-sequence
� � ��� 	� �� 	� ��

�Zorn 	 transitive, and each chain (totally
	-ordered subset) in� has a lower
bound.

4 Propagation of properties via priority operators

Grosof [14] has shown that a lexicographic combination of transitive preferences is transitive,
provided the set of nodes is well-founded. A more systematic treatment of such properties
is summarized in Table 3, for the classical properties described in Table 2. For example,
Grosof’s result is represented as line 5 of Table 3. This says that for any priority operator
� and non-empty family	����� of arguments, the resultant relation	 � �	����� � is
transitive if each of the argument relations	� is transitive, and also the priority� on� is
well-founded.

Other conditions, such as reflexivity, irreflexivity and symmetry, propagate more simply,
without extra conditions on the priority relation.

THEOREM 4.1
Table 3 holds; i.e. the properties are propagated by the lexicographic combination in the
manner shown in the table.

In preferential logics, we are interested in finding the minimals of preference relations.
A strong property guaranteeing the existence of minimals is well-foundedness. Assuming
that the relation	 is transitive, well-foundedness is equivalent to saying that	 restricted
to any non-empty subset� � of � has minimals, i.e. Min�� �� �� �. Table 3 shows that
well-foundedness is propagated by the lexicographic rule under simple assumptions.
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TABLE 3. How the properties propagate through priority operators

Let ����� �� be a priority graph denoting the priority operator�.

The result of� is. . . if. . . argument is, and also . . .

1. reflexive each

2. irreflexive some

3. symmetric each

4. antisymmetric some there is no infinite�-chain below it.

5. transitive each the priority is well-founded.

6. total each the priority is total.

7. empty some its node is minimal in�����.

8. full each

Now suppose� is finite, and each����� is transitive.

9. well-founded each

10. �Zorn each for each� � � the relation
�
��� ����� is �Zorn.

However, well-foundedness may be rather stronger than we actually need. This is because
we do not require the existence of minimals inanynon-empty set� � � � , but only in those
sets which are denoted by a theory in the logic. This is the motivation behind the condition
of stopperedness [21] (aka smoothness [16]) in the literature.

To study the propagation of stopperedness, let� be the set of subsets of� which are
closed, i.e. which are the denotation of a theory. Take any� � � �. We say that	 has the
�Zorn property (pronounced downwards-Zorn) with respect to� � if each	 chain in� � has
a lower bound in� �. That is the condition that is required in order to apply Zorn’s lemma to
find minimals in� �. Thus, to study the propagation of stopperedness it is sufficient to study
the propagation of�Zorn in each of the sets in�. The propagation of�Zorn in any set is
described in Table 3.
THEOREM 4.2
Well-foundedness and�Zorn are related as follows. Let	 be a transitive relation on� . 	 is
well-founded iff (for all� �� 	� is �Zorn).

Line 10 of Table 3 is considerably harder to prove than the others, and requires several
lemmas. The proofs are in the Appendix, Section A.4.

5 Proof rules for priority graphs

5.1 Refinement and equivalence

Checking equivalence between priority graphs by applying the lexicographic rule to convert
them into priority operators is a time-consuming and error-prone process. Fortunately, there
are some syntactical rules which can help us. We consider only well-founded priority graphs
with finitely many variables. As well as checking equivalence, we develop proof rules for
checkingrefinementbetween priority operators.

DEFINITION 5.1
We say that�� refines�� and write�� � �� if, for all argument tuples	����� , we have
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��	����� � � ��	����� � as relations. This notion is lifted naturally to priority graphs:
!� � !� if !�� !� denote operators��� �� and�� � ��.

If ���� �� is a priority graph and� � � , we write�� for the set� � � �  � �� and
��� �� for �� � �  � � �� for any� � � � . Thus����� � �� � �  � �� is the set of
variables occurring below the node�.

THEOREM 5.2
!� � !� iff for each � ��, there is a� � ��:

� ���� � �� �; and

� ������� � ����� �.

COROLLARY 5.3
(Cf. Grosof [14], Theorem 3) If�� � �� and�� � �� and�� � �� then!� � !�.

COROLLARY 5.4
If !� � !�, then������ � ������.

The theorem is easily extended to a simple and effective test for equivalence between prior-
ity graphs (recall that two graphs are said to be equivalent if they denote the same operator):

COROLLARY 5.5
!� � !� iff

� for each� � ��, there is a � �� such that���� � �� � and����� � � �������, and

� for each � ��, there is an� � �� such that���� � �� � and������� � ����� �.

PROOF. Simply apply Theorem 5.2 to the refinements!� � !� and!� � !�.

EXAMPLE 5.6
Some refinement and equivalence relationships between priority graphs, which are easily
checkable using the rules expressed by these theorems:
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EXAMPLE 5.7
The priority graph!�

� �

� �

was presented in example 2.8, and it was stated that it could not be written with just one
occurrence of the variable�. Corollary 5.5 can be used to prove this. Suppose!� has just
a single occurrence of�, say at node� � ��, and!� � !�. Then by the first part of 5.5,
������� must be a subset of��� and of���, hence (since�� � are distinct variables) it must
be empty. By the second part, either��� � ������� or ��� � �������, so������� cannot be
empty. Contradiction.

COROLLARY 5.8
If !� � !�, then������ � ������.

We are interested in simplifying priority graphs without changing the operator they denote.
To this end, we define the notion of a priority graph normal form; the normal form of a graph
is the ‘simplest’ graph which is equivalent to it. (Here ‘simplest’ means with a minimal
number of nodes, but surprisingly, with a maximal number of links.)

DEFINITION 5.9
Let ! � ���� ��. A node� � � is critical if for all & � � with ��� � �&�, we have
���&� �� �����.

That is to say, a node� is critical if the set of variables beneath it (�����) is minimal com-
pared with other nodes& labelled by the same variable. The importance of critical nodes can
be seen in Definition 2.5: the�� need only range over critical nodes, because if� is not critical
then the existence of an appropriate beneath it is guaranteed by its existence for a critical
node.

DEFINITION 5.10
Thenormal formof a priority graph! � ���� �� is the graph� �� ��� ��� where

� � � ����� ������ � � critical in !�
� �� ��� �� �� ���� ������ � ��� � � �� �� � �����

������ ������� � ����

(We will soon justify the term ‘normal form’ by giving rewrite rules for priority graphs.)

THEOREM 5.11
1. Any priority graph is equivalent to its normal form.

2. Two priority graphs are equivalent iff their normal form is the same.

COROLLARY 5.12
The normal form operator is idempotent.

We now give rewrite rules for transforming a finite graph into its normal form, up to renaming
of the nodes.

DEFINITION 5.13
The rewrite rules for priority graphs are
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(link) Link  below� if this does not change the down-set of�.

More formally:!
link
�
 !� if: there are��  � � with � ��  , ��� ���� �� � �����������,

and�� is the transitive closure of� � � � ���.

(del) Delete a node if:
� it is not critical or there is an equivalent node, and
� deleting it does not change the down-sets ofother nodes. Note that this last condition

will eventually be obtained by application of (link), so that only one copy of each
critical node will be kept.

More formally: !
del
�
 !� if: there are distinct��  � � with ��� � � ����� � ����� and

��� � � � � � for some�, and for all�� $ � there exists��� � �� with ����� � �, and
� � � � � ���, and�� � �� � (the restriction of� to � �), and�� � �� � .

EXAMPLE 5.14
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THEOREM 5.15
By applying rules (link) and (del) repeatedly in any order until none applies, any finite priority
graph is brought into a form which is equal to its normal form, up to renaming of elements of
� .
COROLLARY 5.16
Any priority graph in which each variable occurs at most once is in normal form.

Of course, there are priority graphs with several occurrences of a variable which are in
normal form, such as the one corresponding to the term��������� (Example 5.7).

5.2 Preferential entailment and preferential equivalence

In the setting of preferential logics, the models of interest are the minimal models according
to the preference (sometimes calledpreferred models).

Min	� � �� � � � � � � ���	����

Let us define the relation ofpreferential entailmentbetween operators as inclusion of pre-
ferred models.
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DEFINITION 5.17
�� preferentially entails��, written �� �� �� iff for any arguments	����� , we have
Min��	����� �� � Min��	����� ��. As for refinement, this notion naturally extends
to priority graphs.

Note that preferential entailment (��) is distinct from refinement (�). Analogously to
refinement, however, we can check preferential entailment by means of a simple syntactic
characterization on graphs denoting the operators.

THEOREM 5.18
!� �� !� iff ������ � ������ and for each node� � �� either����� � �������, or there is a
 � �� such that��� � � � and��� � � �����.

COROLLARY 5.19
If !� �� !�, then������ � ������

DEFINITION 5.20
��� �� arepreferentially equivalentif �� �� �� and�� �� ��. Again, this extends naturally to
graphs.

Although preferential entailment and refinement are distinct, it turns out rather surprisingly
that preferential equivalence and equivalence are the same.

PROPOSITION5.21
Two priority graphs are preferentially equivalent iff they are equivalent.

PROOF. 
. Suppose without loss of generality that the graphs are in normal form. It is
impossible that������� � ����� (� ����� by Corollary 5.19) because� wouldn’t be critical.
So we have the other case, which is just the characterization of inclusion (Theorem 5.2) in
each direction, yielding equivalence.	. Obvious.

So the computation of the normal form can also be used for preferential equivalence. When
constants for given relations are introduced, this property may fail.

The results of this section are directly operational, and yield algorithms for deciding equal-
ity, refinement, preferential entailment, preferential equivalence and computation of the nor-
mal form.

6 Composing priority graphs

6.1 Composition vs graphical insertion

Since an operator� maps some preferences	����� to a preference�	����� �, operators
can be composed with each other to give further operators. Therefore, priority operators can
be composed, but are their compositions also priority operators? In certain circumstances the
answer is yes; indeed, we can compose priority operators simply by manipulations on the
graphs that denote them.

DEFINITION 6.1
Let ! � ���� �� having variables� � ��� �, and for each� � � let !� � ��� ��� ���
be a priority graph. The graphical insertion!� � !�!����� � of the priority graphs!� in the
priority graph! is � �� ��� ��� where

� � � � ���  � � � � ��  � ������,
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� ���  �� �� ���  �� iff �� � ��� or (�� � �� and � �����  �),

� ���  �� � ����� �.

EXAMPLE 6.2
If !, !�, !� are respectively the priority graphs
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For well-founded priority operators, graphical insertion is the syntactical counterpart of
semantical composition of priority operators.

THEOREM 6.3
Let ! be a well-founded graph denoting operator� with variables� . Let !����� be a family
of well-founded graphs denoting operators������ with variables������ . Let !� be the
graphical insertion of!����� in !, and let�� be the operator denoted by!�.

Then�� is the composition of� with ������ , i.e.

��
�
	����

�
���	��� 


�
� �

�
��	�����������

�
�

COROLLARY 6.4
Well-founded priority operators are closed under composition.

6.2 The binary priority operators

There are essentially only two binary priority operators; they are denoted by the graphs

�

�

and � �

Strictly speaking, there is also a third one, which is like the first one but with� and� swapped
around. All other binary priority graphs (i.e. graphs having possibly more than two nodes but
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precisely two variables) are equivalent to one of these three. Since the third one is essentially
the same as the first, we focus just on the first two.

The two binary priority operators are of great importance for the remainder of the paper.
We will write them respectively as��� and���, and call� ‘but’ and � ‘on the other hand’.
The reason for these names is the following. From the point of view of default reasoning, the
‘but’ operator combines two defaults by putting the second in a position of greater priority
than the first. Thus,��� means ‘apply the criteria� and�, and where they conflict we apply
�’. This is like the natural language connective ‘but’. The operator ‘�’ combines two defaults
by putting them at incomparable priority. The expression ‘on the other hand’ does the same
job in natural language.

Applying the lexicographic rule, we can see that

PROPOSITION6.5
1. ��� � � � ��� � �, which is also equal to� � �� � ��.

2. � � � � � � �.

PROOF. Immediate from the definitions.

The importance of these two operators is that any finitary priority operator can be written
in terms of these two, using graphical insertion, as we now explain.

The operators�� � apply to other operators in the standard compositional way:�����
and ����� are defined by������	����� � � ��	����� ����	����� �, and
������	����� � � ��	����� ����	����� �. According to Theorem 6.3, the opera-
tors� and� can equivalently be applied at the level of priority graphs, in which case they
correspond respectively to the graphical operations oflinear sumanddisjoint union[6].

THEOREM 6.6
Any finitary priority operator is denoted by a term built from�� � and the variables that occur
in the priority graph for the operator.

EXAMPLE 6.7
The 12 priority graphs in Example 5.6 are respectively equivalent to the following terms:
������, ���, ���, �, �������������, ������, ������, ���������, �����������,
������, ������, and�����.

Notice how the�� � term can be obtained from the shape of the priority graph. When two
equivalent priority graphs are given, we obtained the term using the second one. Extracting
the term from the first graph in the first example, we obtain�������������, which can be
shown to be equal to������.

EXAMPLE 6.8
We cannot graphically obtain a term from the ‘N’ shaped graph
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and so it denotes the operator��(���������.

COROLLARY 6.9
Any finitary operator satisfying conditions IBUT is equivalent to a term built from�� � and
the variables.

PROOF. Follows from Theorems 3.1 and 6.6.

The notions of refinement, equivalence, preferential entailment and preferential equiva-
lence of the last section all extend naturally to terms.

EXAMPLE 6.10
������ � ���������; however,��������� � ������ but not conversely.

EXAMPLE 6.11
��� �� �� ��� �� � � �� ����� �� � � �.

We note in passing that, for any relation	 (and where� is the full relation� �� and�
the empty relation):

	�� � 	
��	 � 	
	�� � �
��	 � 	�

	�� � ��	 � 	
	�� � ��	 � ��

7 Algebraic treatment

Now that we have terms for describing priority operators, we can study their algebraic prop-
erties. Consider a set of relations on� which is closed under the binary operators� and�,
defined as before by

��� � � � �� � ��

� � � � � � ��

We call such analgebra a preferential algebra, or PA. Preferential algebras are a special
case of algebras of binary relations, a survey on which can be found in N´emeti [22] and
Schein [29].

Terms in the language of PAs are made from variables and the binary operators�� �. If �
is the set of variables occurring in a term) , then) denotes the� -ary priority operator which
evaluates the term after substituting its arguments in place of the variables. The following
theorem rephrases Theorem 6.6 in algebraic terminology.

THEOREM 7.1
For any finitary� -ary priority operator� there is a term) of the language of preferential
algebras such that for any preferential algebra� and relations	����� in � we have that
�	����� � � )	����� �.

As usual with relational algebras, we may identify certain equalities which hold between
terms, however their variables are substituted. For example, it was seen in Example 6.10 that
������ � ���������.

The following theorem gives a finite axiomatization of all the equations (equalities between
terms) true in preferential algebras.
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THEOREM 7.2
An equation is true in all preferential algebras iff it is derivable from the following seven
axioms:

1. ��� � � (� Idempotent)
2. ������ � ������ (� Associative)
3. ��� � ��� (� Commutative)
4. ���� � � (� Idempotent)
5. ������ � ������ (� Associative)
6. ������ � ��������� (� Distributes over�)
7. ������ � ��� (Absorption)

Some subsets of these axioms are interesting on their own:

� Two terms yield the same priority graph by graphical insertion iff they can be proved
equal by the axioms 2, 3, 5.

� We can define theforest formof a term, as the term obtained by normalizing it using the
axiom 6 from left to right.

� The rules 1, 2, 3 form a complete axiomatization of the�-reduct (a trivial class of algebras,
isomorphic to sets with intersection).

� In contrast, the rules 4, 5 do not axiomatize the�-reduct: we have to add����� � ���
(Example 7.3(3) below). This subclass is again rather trivial, since the free algebras are
isomorphic to strings of variables without repetition.

EXAMPLE 7.3
Some interesting derived equations.

1. ������ � ������������ absorption
� ��������� � associative, idempotent
� ��� � idempotent

2. ������ � ������������ (1)
� ������������ � associative, commutative
� ��������� absorption
� ��� � idempotent

3. ����� � ����������� (1) where� � ���
� ��������������� � idempotent
� ������� (1) where� � �����
� ��� � idempotent

4. ��������� � ���������������� (1) where� � ���
� �������������� � associative, idempotent
� ������� (1)

5. ��������� � ��������������� (4)
� ����������������� (2)
� �������������� absorption
� ������ (1)
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6. ��������� � ����������� (5)
� ������ (3)

7. �������� � ����� absorption
� ��� idempotence

These axioms are also complete for inclusion, since	� � 	� iff 	��	�� � 	�. It is also
possible to construct a (uninteresting) proof system for inclusion without resorting to equality

Preferential algebras have turned out to be an interesting case of relational algebras. We
gave in theorem 7.2 a finite set of axioms from which all equations true of PAs may be proved.
There are many other issues in relational algebra which can be discussed. For example, is
PA axiomatizable in the following stronger sense: is there a finite set of equations which are
true of all andonlyall algebras in PA? If so, PA is avariety. The answer is no; this is proved
in the appendix. However, PA is a quasi-variety (also proved in the appendix), which means
that it can be axiomatized (in this strong sense) by conditional equations.

The following theorem gives a derivation system for preferential entailments true in pref-
erential algebras.

THEOREM 7.4
A preferential entailment) �� * holds in all preferential algebras iff it is derivable from the
equality axioms 1–7, together with the following:

8. If � �� � then��� �� � (C1)
9. If ��� � � and� � � � � then� �� � (S1)

8 Conclusion

The paper develops the theory of generalized prioritization begun by Grosof [14]. It in-
troduces priority operators, an analog of circumscription policies applicable in preferential
logics. Furthermore:

� It shows that priority operators are canonical with respect to a generalization of Arrow’s
conditions;

� It gives criteria for deciding: refinement, equality and preferential entailment of priority
operators;

� It shows that the two binary operators can express any priority operator, and hence any
operator satisfying generalized Arrow’s conditions;

� It gives a complete axiomatization of the operators and their relationships.

Topics for further study include investigating the supplementary laws that can be estab-
lished for specific preferential logics, and for their combinations. We would also like to relax
the requirement that operators be finitary, and study a logic for expressing infinitary operators.
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Appendix

A Mathematical details

A.1 Introduction
This Appendix covers many mathematical details (including proofs of theorems stated in the text). Its structure
mirrors the structure of the main part of the paper. New definitions and lemmas are given new numbers, but theorems
which are stated in the text and proved here retain their old numbers.

A.2 Priority operators
Let � � ����� �� be a priority graph denoting the operator�.

THEOREM2.11
Suppose����� is well-founded, and let� � ��������� �. Then
1. 	�
 iff �� � �� �� � �� 	��

����

� implies	�����
.

2. 	�
 iff �� � �� �	�����
 or �� � �� 	��
����

 and�� � � 	��

�����

��.

3. 	��
 iff 	�
 and�� � �� 	��
����

.

4. 	��
 iff �� � �� 	��
����

.

PROOF. 1. (�) Suppose� is such that� � �� 	��
����

. We require to show that	�����
. Suppose not; then

� � �	��
����

, a contradiction.

(�) Suppose� is such that	�����
. We require to find � � such that	��
����

. By hypothesis,�� � �

	������
 or 
������	. If 	������
, then
������	 so	��
�����


, so we set � �. Otherwise, again

using the hypothesis,�� � � 	������
 or 
������	. Again, we set � � or we find� with the same
property. This procedure must terminate, for otherwise we have an infinite descending sequence� � � � 	 	 	,
contradicting thewell-foundedness of�����.

2. (�) immediate. (�) Similarly to part 1, find minimal with	��
����

.

3. (�) Suppose	 ��������� �
� 
. Then	 ��������� � 
 is immediate. Also,	 ��������� �

� 
 implies

 ��������� � 	, so��� 
�����	. Since	 ��������� � 
, either	�����
, in which case	��� 
 as
required; or� � �� 	��

����

, also proving the result.

(�) Let � be minimal in the set
� � 	��
����

�. Then
�����	 and� � �� 
�

�
����	, so
 ��������� � 	

4. Similar ideas.



Operators and Laws for Combining Preference Relations37

A.3 Canonicity of the lexicographic rule
Our aim in this section is to prove Theorem 3.2. This will involve inventing a new view of priority operators in terms
of what we callvotes. We do this in a sequence of lemmas. The first oneshows that an operator that is independent,
unanimous, and based on preferences (in short: IBU) is determined by its responses to all possible relations on a
fixed two-point domain.

LEMMA A.1
Let�� � 
	�
� � ��	 � 
, and��� �� be two IBU operators. If for all families of relations������� we
have���������� ����	
� � ���������� ����	
� then, for all������� , ���������� � � ���������� �.

PROOF. Take any�� � �� . We show� ���������� � � iff � ���������� � �.
� If � � �, we have���� � or���� � for all �. Then by U, we haveeither� ���������� �� � and� ���������� �

�

�, or � ���������� �
� � and� ���������� �

� �, depending on whether���� � for some� or not. In any
case,��� �� agree at�� �.

� If � � �: define the family�������� in terms of������� as follows:��� � �� except at�	�
�, where
	���
� ����. Then

����������� ����	��� � � ���������	������ � � by I
� 	 ����������	
����� � 
 by B
� 	 ����������	
����� � 
 by hypothesis
� � ���������	������ � � by B
� � ���������� ����	�� � by I.

DEFINITION A.2
A voteis an element of� � 
��������.

DEFINITION A.3
A vector of�� � votes, one per variable of� , is called anentry.

Lemma A.1 tells us that a� -ary IBU operator� determines a unique function� �� � � � , and conversely. The
function takes as argument the vote each�� gives on the two-point domain�� (i.e. an entry), and returns as
result the vote that��������� � gives on��. Such functions can be represented finitely by anoperator table. For
instance, the operator ‘but’ defined in Section 6.2 is described by Table 4:

TABLE 4. Table of ‘but’ (�)

	� � � � � � � � � $ $ $ $ � � � �
	� � � $ � � � $ � � � $ � � � $ �
	 � � $ � � � $ � � � $ $ � � $ �

Each column above the line is an entry, and the element in the same column below the line is the corresponding
result. For an entry� and vote�, �� is the subset of variables that gives vote�. In particular, Thewinners� of an
entry� is the subset of� that gives the same vote as the result�; theabstainers�� is the subset of� that abstains,
i.e., votes�; the rest is called theopposition, which is divided in two subgroups, since four votes are possible. A
vote isdecidedif it is � or�.

DEFINITION A.4
Theconverseof a vote is defined by the table:

� ���

� �
� �
� �
� �
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LEMMA A.5
If an IBU operator gives a result� for entry� � ������� then it gives��� for entry���.

PROOF. By B.

Note that any table with this property will give us an IB operator.

COROLLARY A.6
There are��

������������ 
-ary IBU operators.

PROOF. The possible tables are��
�

. Symmetry (Lemma A.5) reduces this to��
�

, which is thus the number of
IB operators. The cases eliminated by unanimity, are given by choosing a non-empty unanimous subset (there are
�
 � �), choosing its vote (three possibilities: either��� or �), setting the rest to�. Plus one for the case where
all votes are� and the result is�.

We will illustrate proofs of the next few lemmas in tabular form, which should be understood as a schematic
excerpt from an operator table such as Table 4. The leftmost column indicates subsets of the variables� . Each
column will represent a possible combination of votes (an entry) and the result computed by the operator. New
columns can be deduced from preceding columns, according to the following rules of inference, derived from the
respective conditions on the operators.
S. Symmetry: from an entry of the table with a given result, we deduce the converse entry with the converse result

(Lemma A.5). In our tabular proofs, we will omit the entry on which it is applied when it operates on the previous
column of the proof table.

U. Unanimity: any unanimous column must have the result of the unanimous subset (unless it is empty). This rule
operates on the current column.

T. Transitivity: in Table 5, we compute the admissible compositions of votes for transitivity. The vertical dimension

TABLE 5. Table of compatible compositions

Æ � � $ �
� � ����� �$��� ���
� ����� ��� � ���
$ �$��� � �$� �$�
� ��� ��� �$� ���

indicates the relation between� and�, the horizontal dimension the relation between� and�. The corresponding
cell shows the implied relation between� and�. For instance, the first cell states that if���� and����, then
no restriction on��� can be deduced. The cell diagonally below states that if���� and����, then����. If
two columns are known, and we build a third entry which is compatible for transitivity with these two columns,
then the result of this entry must also be compatible for transitivity with the results of the two known columns.
For otherwise we would have built a counterexample to preservation of transitivity, by using a domain
�� �� ��
where preferences between��� �� are given by the first column, between��� �� by the second, and between��� ��
by the third. For instance, if we compose two entries with results��� respectively, we see in the table that the
result of the composition must be� or � for any entry which is compatible with the first two. If� is the only
variable and the vote of�� was� in the first entry and� in the second entry, then any value of�� must yield�
or �. During a proof we will usually try to constrain the result while letting the entry vary as widely as possible
to get stronger results. By default, T uses the two previous columns of the proof table.

These table excerpts will be schematic: usually, the designation on the left will not be single variables, but sets of
variables, indicating that the line has to be replicated as many times as they are variables in the set (sometimes 0).
Also, the content of the cell can be a set. We will sometimes omit the set braces, for compactness. In the result, the
comma (e.g. in���) thus means ‘or’. We convene that�� is the name of the first entry (the second column), and
�� is the name of the�th entry (the� � �th column). The justification will be indicated below each entry. It will be
one of the basic rules (S,U,T) or the number of a lemma. Further examples are provided in the proofs below.

For the rest of this section, we will omit the reference to the (fixed) IBUT operator. For instance, whenever we
speak of ‘the result of an entry’, it means the result ofapplying the currently considered IBUT operator.
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LEMMA A.7
The result of� is � iff all arguments are�.

PROOF. ‘If’: by U.
‘Only if’:

�� �� �� ��
�� � � � �
�� � � � �
�� � � � �
�� � � � �

� � � � �
�� � �� ��

Read this table as follows. Suppose we supply a certain entry,��, which of course is divided in�� ����� votes.
The result (by hypothesis) is�. Construct the converse entry�� � ���� ; by�, the result is also�. Now consider
the argument votes�� of the 4th column. Since they are compatible for transitivity with��� ��, the result��
should also be compatible (justification: T). But that means it must be�. Now consider the argument votes of
the last column,��; by U, the result should be�. The last two columns contradict, as indicated by�, unless the
subsets��� ��� �� of � are all empty, so that U cannot be applied on��.
Hence the only way of making the result� is by having��� ��� �� empty, i.e. all votes for�.

The sequence of lemmas that follows proves that IBUT operators have many of the properties of priority operators.
For example, the next lemma says that if a definite result isobtained from a given entry, then the same result will be
obtaineda fortiori if some abstainers join the winners, whatever the opposition does.

LEMMA A.8
If an entry� yields�, then any entry with some arguments in��� �� replaced by any vote, and/or some in��

replaced by�, will also yield�.

PROOF. Let� be the names of the votes changing from� to�, and let�� � be any tuple of votes.

�� � � � �
�� � � � �
�� � � � �
�� � � � � � �
�� � � � � � �

� � � � �
�� � � � ���� ���

LEMMA A.9
If the result of� is�, then some argument must be�.

PROOF. Assume�� empty. Then:

�� � � �
�� � � �
�� � � �

� � � �
�� ��	� ��

The next lemma is very similar to Lemma A.8: It says that if an incomparability result is obtained from a given
entry, then the same result will be obtaineda fortiori if some abstainers or opposition join the winners. But here, the
opposition could change the result by making a coalition.

LEMMA A.10
If an entry yields�, then the entry where some elements have been replaced by� also yields�.
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PROOF. Assume not: it cannot yield� by Lemma A.7, so it yields� (or symmetrically�) as shown in��. Then

�� � � �
� � �

�� � � �
� � �

�� � � �
� � �

�� � � �

� � � �
�� � ��	�

LEMMA A.11
If some elements are replaced by the result (in other words, if the winners are extended), then the result remains the
same.

PROOF. If the result is:
� �, the proof follows by Lemma A.10;

� ���: by Lemma A.8;

� �: by Lemma A.7,�� � � and thus cannot be extended.

DEFINITION A.12
We say an operatorpropagatesa property of relations, if its result has the property as soon as one of its arguments
relation has it.

An operatorpreservesa property of relations, if its result has theproperty when all its argument relations have it.

Clearly, propagation implies preservation unless� is empty.

COROLLARY A.13
Any IBU operator preserves reflexivity; propagates irreflexivity; preserves symmetry. Any IBUT operator propagates
antisymmetry.

PROOF. By U and Lemma A.7.

(These facts are recalled in Theorem 4.1 forthe narrower class of priority operators.)

DEFINITION A.14
Let��� � � such that� is disjoint from�. � shows� iff the entry where all arguments in� are�, all arguments
in� are�, all other ones are�, yields either� or�. This result is called theshow-result.

LEMMA A.15
If � � � disjoint from�, � shows�, then shows�.

PROOF. Suppose that does not show�, as indicated in�� below. Let! � � � � � be the rest of the
variables.

� � �
� � �
 � � � �
! � �

� � �
�� ��	

The second entry contradicts the hypothesis that� shows�.

LEMMA A.16
If � � " , " disjoint from�, � shows�, then� shows" .
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PROOF. Suppose that� does not show" , as in��. Let! � � � " � � be the rest of the variables.

� � �
" �� � �
� � �
! � �

� �
�� ��	

Again,�� contradicts the hypothesis that� shows�.

LEMMA A.17
If � � �, � � � shows�.

PROOF. By U.

LEMMA A.18
If � is finite and disjoint from�,� shows� iff for some�� � ��� shows
���.

PROOF. For the implication: We treat the case of� � 
��� ��� ��� for notational convenience, but the induction
will work for any finite set. Let! � � � ���. Assume (H1)� shows� and for all�� � �, (H2.i)� doesn’t
show
���.

� � � � � � �
�� � � � � � �
�� � � � � � �
�� � � � � � �
! � � � � � �

� � � � � ���
�� !��� !��� � !��
 �� !��

The other direction is just Lemma A.16.

LEMMA A.19
If � shows disjoint��" , then both show-results are�.

PROOF. Since,a priori, there two possibilities for both show-results, we have to exclude three cases, but two are
symmetric. Let! � � �� � " � � be the rest.
1. Both show-results are�.

� � � � �
� � � � �
" � � � �
! � � � �

� � � ���
�� !� !� �� ��

2. One show-result (say�) is�, the other is�.

� � � � �
� � � � �
" � � � �
! � � � �

� � ��� ���
�� !� !� �� ��

The lemmas above demonstrate that ‘shows’ is completely determined by the sentences of the form ‘� shows
��’
where� is minimal. We will now prove that these sentences canbe encoded in a priority graph, and finally, that this
graph can reconstruct the operator, which closes the cycle and proves the equivalence of all these representations
(for � finite).
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DEFINITION A.20
Thepriority graph of an IBUT operatoris defined by:
� � � 
��� �� � � is a minimal subset of� showing
���.
� ���� ��� � ���� ��� iff �
��� � ��� � ��.
� ����� ��� � �.

Note that the node ordering� is irreflexive and transitive and thus acyclic.

LEMMA A.21
If ��� �� � � , then for any� � �, � � 
�� shows
��.

PROOF. (H1)� shows
��. Since� is a minimal showing set, (H2)��
�� does not show
��. Now assume (H3)
� � 
�� shows
�� is false:

� � � � �
� � � � �
� � 
�� � � � �
��#$ � � � �

��� � � �
!�� !� !
 ��

COROLLARY A.22
If � is finite, then for any��� �� � � , � � 
� � ��� ��� ��� � ��� ���.

PROOF. Clearly
� � ��� ��� � ��� ��� � � by the definition of the order. Conversely, take� � �. By Lemma
A.21,� � 
�� shows�. Since� is finite, it is Zorn, and so there is a�� � � minimal such that�� shows�, and
��� ��� � ��� ��.

LEMMA A.23
Assume� is finite.� shows
�� iff � is minimal in� � �, i.e. �� � � ����� � ��  ��������� � � � �� � ��.

PROOF. By contraposition, assume� doesn’t show
��. Since� � 
�� shows
�� by Lemma A.17, there must
be a minimal� such that� � ��� shows
��. Since� � �, we can pick some� � � � �. We have
����� � � , and��� ��� � � for some�� . By Corollary A.22,��� ��� � �����, contradicting the minimality
of � in � ��.

Conversely, if� is minimal, all nodes below� � ��� �� are in�. By Lemma A.22, they form�, so� shows

��� � � ��� � �. By Lemma A.16,� shows
��.

THEOREM3.2
A finitary operator satisfies conditions IBUT iff it is a priority operator.

PROOF. We show that the priority operator denoted by the priority graph defined for it in Definition A.20, is identical
to the given operator. By Lemma A.1, it is sufficient to show this for relations on a universe of two elements (i.e.
votes), that is, for any entry�. The priority graph is well-founded, so that we can use Theorem 2.11. Look at the
non-abstainers,� � 
� � � � �� � �� and take its minimals for priority� � Min	��� � 
� � � � �� �
�� ���� � � � ��� � �� �� � �� ����� � ��. We note that the priority result (the result given by the priority graph)
is
�
��� �� , by Theorem 2.11, and that� � 
��� shows
���, by Lemma A.23. Consider the possible priority

results:
� The priority result is�: iff all arguments are� by Theorem 2.11.4; iff the IBUT result is� by Lemma A.7.
� The priority result is�: iff � � � and all arguments in� are� by Theorem 2.11(3).� shows� by Lemma

A.16. By Lemma A.8, the IBUT result is also�.
� The priority result is�: symmetrically.
� The priority result is�: iff one of the two following cases arises, by theorem 2.11:

– some argument� in� is�. Ad absurdum, assume that the result isn’t�. It can’t be� either, by Lemma A.7.
Say (H) it is�. (� is solved symmetrically.) then by Lemma A.8,� doesn’t show
��, contradicting Lemma
A.23. Tabularly:

� � �� � �
�� � �
�� � �
� � �
�� � 
�� � �

� �
�� ! ��	
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– some argument� � � is �, another� � � is �. Then let� � ��� " � �� in Lemma A.19. By
Lemma A.10, the IBUT result is�. Tabularly:

� � �� � �
� � �� � �
" � �� � �
� � �� � �

� �
�� ���� ����

A.4 Propagation of properties via priority operators
We prove the theorems implied by Table 3.

THEOREM4.1
Items 1–8 of Table 3 hold; i.e. the properties reflexivity, irreflexivity, symmetry, antisymmetry, transitivity, totality,
empty and full are propagated by the lexicographic combination in the manner shown in the table.

PROOF. Let � � ����� �� be a priority graph denoting the operator�, and let� � �� �.
1. Suppose for each� � � ,����� is reflexive. We want to show that��������� � is reflexive. Take any	 � � .

Since�� � �� 	�����	, it follows by Definition 2.5 that	 ��������� � 	.

2. 	 ��������� � 	 iff �� � �� 	�����	 by Definition 2.5, since	��
����
	 is always false. But�� �

�� 	�����	 is false if there there is an irreflexive preference.

3. 	 ��������� � 
 implies ��� 	�����
 since each����� is symmetric. Therefore��� 
�����	, so

 ��������� � 	.

4. Let � be such that����� is symmetric and there is no infinite�-chain below it in the priority graph. Assume
	 ��������� � 
 and
 ��������� � 	 and	 � 
. We will derive a contradiction. If	�����
�����	

then by symmetry of����� we have	 � 
, a contradiction. Suppose (without loss of generality) that	�����
.

Then there’s some � � such that	��
����

. Therefore,
�����	, so there is some% �  such that
��

����
	.

Therefore,	�����
, and by continuing in this way an infinite chain of nodes below� is produced—a contradic-
tion.

5. Suppose	� ��������� � 	� ��������� � 	�; we will show	� ��������� � 	�. Let � � � ; we show
	������	� or	��

�
����
	� for some � �.

Suppose	������	�. If 	������	� then	������	�. Otherwise,	������	�, so let�� � � be such that
	��

�
�����
	�, and let�� be minimal with this property, that is, we have	��������	� for ��� � ��; here we make

use of the fact that� is well-founded. If	�������	�, then let � �� be such that	��
�
����
	�. Then � �

and	��
�
����
	� follows from	��

�
����
	� and	������	�. If 	�������	�, let  � ��. Then � �, and

	��
�
����
	� follows from	������	� and	��

�
����
	�.

On the other hand, suppose	������	� and let�� � � be minimal such that	��
�
�����
	� (so again we have

	��������	� for all ��� � ��). Again, consider separately the two cases	�������	� and	�������	�.
If 	�������	�, set  � ��; then  � �, and	��

�
����
	� follows from 	��

�
����
	� and	������	�.

Otherwise,	�������	� so let � �� be such that	��
�
����
	�; then � �, and	��

�
����
	� follows from

	������	� and	��
�
����
	�.

6. Suppose
 ��������� � 	. We show that	 ��������� � 
. Since
 ��������� � 	, there is� such that

�����	 and� � �� 
�����	. But since these are total orders, this implies	��

����

 and� � �� 	�����
.

But� is also total, so this proves that	 ��������� � 
.

7. Let � be the minimal node such that����� is empty. Suppose	 ��������� � 
. Then either	�����
, or
� � � 	 	 	, both alternatives contradicting our hypothesis.

8. Let	�
 �� . Since each����� is full, 	�����
. Thus, by definition 2.5,	 ��������� � 
.

9,10. The last two cases are treated separately below due to their length.
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LEMMA A.24
Item 9 of Table 3 holds; i.e. if� is finite, and each����� is transitive and well-founded, then��������� � is
well-founded.

PROOF. Suppose not, i.e. suppose	 	 		� ��������� �
� 	� ��������� �

� 	� is an��������� �
�-

sequence. Each	
�� ��������� �
� 	
 gives us an�
 (by Theorem 2.11(3)) such that	
���

�
�����

	
. Let

�� � 
� � � � 

 � � � �
� is infinite�. Since� is finite,�� � �. Let�� � �� be the�-minimal points
of ��; also�� � �. Let � � ��� 
	 be the last
 where�
 � ��. We have�
� � 
		
�������	
 and for
infinitely many
,	
���

�
����
	
. Since����� is transitive, it is easy to pick a sequence showing that����� is not

well-founded, contradicting the hypothesis.

THEOREM4.2
Well-foundedness and�Zorn are related as follows. Let� be a transitive relation on� . � is well-founded iff (for
all & �� ��� is �Zorn).

PROOF. (�.) Let& � � , and let� be an� chain in& . Since� � � and� is well-founded,� has a minimal
element, say�. We now show that� is a lower bound for�. Let	 � �. We must show that��	. Since� is a
chain, either	�� or ��	. If 	�� then��	. But also, if	��, then��	, otherwise we would contradict�’s
minimality.

(�.) Suppose not; let& be an infinite descending� sequence. As� is transitive, it is an��� -chain, but has no
��� -lower bound, so��� is not�Zorn.

Theorem A.30 requires several lemmas. Fix a finite graph����� �� denoting operator�. Let us write�� instead
of ����� and� instead of��������� �, in order to keep the notation lighter.

DEFINITION A.25
Let	�
 �� . The	�
-frontier, written fr�	� 
�, is the set of�-minimal elements of the set
� � � � 	��� 
�.

Note that if
� � � � 	��� 
� � � then fr�	�
� � �.

LEMMA A.26
Suppose	�
. Then� � fr�	�
� iff 	��� 
 and� � �� 	��� 
.

PROOF. (If) Immediate. (Only if) Let	�
 and � � fr�	� 
�. (1) We prove	��
; for if not, by definition,
� � �� 	��� 
, i.e.	��� 
, contradicting#’s minimality. (2) Since� � fr�	� 
�,	��� 
. Thus	��� 
.

Now suppose � �. Since� is minimal in
� � � � 	��� 
�, we have	��� 
.

DEFINITION A.27
Let� � � . We write	��
 if � � �� 	��
. We also write� � for 
� � � � � � �� � � �.

Now, and for the remainder of this subsection, suppose�� is transitive for each� � � and� is finite.

LEMMA A.28
Let& �� be a�-chain with no minimal element. Then there exists� � � and' � & such that
1. � � �� �� � �� �	�
 � &� �
�	�' and � � � implies 
��	 — that is,

 � & � 
�'� forms a
�
� -chain.

2. � � �� �	 � &� 	�' implies�( � &� �(��	 and(��� 	� — that is, the same set also forms a�� -chain
with no minimal element.

3. �� � �� �	�
 � &� 
�	�' implies �
��	 or � � ��  � ��.

PROOF. The idea of the proof is the following. First, we obtain a set� � � � which contains those� which
participate in frontiers all the way down the chain& . Then find an element' of & below whichall the frontiers
are in� �. � is defined as the minimal elements of� �. Then it is possible to proveproperty 1. Property 2 follows
because we have stipulated that& have no minimal element; that is, for each
 � & there is a
� � & with 
���
.
Property 3 follows because� is the set of minimal elements of� �.

Let� � � 
� � � � �	 � &� �
� ( � &� (��
�	 and� � fr�
� (��.
� If � � � � then let' be an arbitrary element of& .

� Otherwise, for each� � � � � � let	� � & be such that�
� ( � & , if (��
�	� then� � fr�
� (�, and let
' � ����
	� � � � � � � ��. That each	� can be found follows from the definition of� �, and that their
minimum can be found is guaranteed by the facts that& is a chain and� is finite.
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Now we show that� � is non-empty. Let	�
 � & be such that
��	�'. The fact that& has no minimal element
guarantees that these can be found. Since
��	, fr�	� 
� � �, and since	�
�', we have fr�	�
� � � �.
1. Let � �, � � � and	�
 � & be such that� �  and
�	�'. If � � fr�	�
� then
��� 	 (Lemma A.26);

otherwise, if� � fr�	�
� and
��	 then�� � �� 
��
��
	, contradicting the minimality of in�.

2. Let � � and	 � & with	�'. Since � � �, we can pick
� ( � & with (��
�	 and � fr�
� (�. By
part 1,(��
��	; and since � fr�
� (� we have(��� 
. By transitivity,(��� 	.

3. If 
��	 then�� � fr�	�
� � � �� � � � (Theorem 2.11(2)), and since� consists of the minimal elements
of � � (and, since� is finite,� is well-founded),� � ��  � �.

Now we show, subject to a certain condition, that it is possible to find a lower bound for any�-chain. The
condition says that lower bounds can be found for intersections (i.e. conjunctions) of the�� relations.

LEMMA A.29
Suppose for every� � � , every�� -chain has a lower bound. Then every�-chain has a lower bound.

PROOF. Let& be a�-chain. If& has a minimal element, then that serves as its lower bound. Suppose, then, that
& has no minimal element. Let� � � and' � & be as defined in Lemma A.28. Let� � � � 
� � � �
� � ��  � ��. We now show that the set
	 � & � 	�'� forms a�
� chain. Without loss of generality,
let	�
 � & be such that
�	�', and� � � and� � � be such that� � �. We need to show that
��	. If
� � � then
��	 by Lemma A.28(1). Otherwise,� � ��  � � (definition of� ). Therefore, � �. Suppose

��	. Then by Lemma A.28(3),� � ��  � �, a contradiction. So
��	.

Now let � be a�
� lower bound for
	 � & � 	�'�. We show that it is also a� lower bound for that set,
and hence for& . Let	 � & with	�'; we show that��	, using the lexicographic rule.

First note that (i) �� � implies���	 (by definition of�). Also, (ii)  � � implies	��� �. To see this, take


 such that
��� 	 by Lemma A.28(2); but then���
, so���� 	.

Now let � � � . We show that either���	 or � � �� ���� 	. If � �� � , ���	 by (i). If � �� � , then� � � .

By definition of� , � � ��  � �; by (ii), ���� 	.

Hence we have:

LEMMA A.30
Item 10 of Table 3 holds; i.e. if� is finite, and each����� is transitive and for each� � � the relation

�
��� �����

is �Zorn, then� is �Zorn.

A.5 Proof rules for priority graphs
THEOREM5.2
�� � �� iff for each � ��, there is a� � ��:
� ����� � ����; and

� ������ � �����.

PROOF. Let ��� �� be the operators denoted by��� ��.
�: Suppose not, i.e. suppose there’s an in �� s.t. for every� in �� with ����� � ���� � � there is a% � �

in�� with ��%� � � s.t.� � ���.
� Either there is no such�; then let us set�� � ) for all � � � except�, and�� � �. So���������� � �
) (since� doesn’t occur in it), and���������� � � � (since� does occur in it): but clearly) � �, so
contradiction.

� Or, if some� exists, each� might give us a different�. Let�� � �; for each of those�s, let�� � � for some
relation� s.t.�� � � (such a relation exists since� contains two elements); and let�� � ) , the full relation,
for every other variable�.

Then���������� � is just the relation��. That is because, graphically, it has a collection of) s,�s and�s (the
last two occurring at least once), but there is an� below each�; so we just use Definition 2.5. On the other hand,
in the graph for���������� � we have an� with only) occurring below it, and by Definition 2.5 the result is�.
Therefore,���������� �� �, so the inclusion fails; contradiction.
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�: Suppose	 ���������� � 
. We show	 ���������� � 
. Suppose for some node in �� we have
	������
. By the hypothesis,�� � ��� 	������
, and since	 ���������� � 
, there is a% �� � s.t.
	��

�����

. But ������ � �����, so there is a%� � �� with ���%�� � ���%� and therefore,	��

������

.

Therefore,	 ���������� � 
.

Normal forms
In the main text, a canonical form of priority graphs was defined. An important property of this definition is that the
variables below a critical node in a graph are the same asthose below the corresponding node in the normal form.
This lemma will be used in the proof of the theorem that follows.

LEMMA A.31
Let �� � �� ����� ��� be the normal form of� � ����� ��. If � � � is critical, then���� � ���������� ������.

PROOF. Suppose that� � ����. Then there’s a node% � � with % � � and��%� � �. % need not be critical,
but we know that there is a � � critical with ��� � ��%�, and��� � ��%�. Therefore,��� � ���� and
��� � ����, so� � 
��� � ��� � 
���� � ����� � ���������� ������.

Conversely, if� � ���������� ������ then there’s a � � with ��� � � and��� � 
���� � ����, so
� � ����.

THEOREM5.11
1. Any priority graph is equivalent to its normal form.

2. Two priority graphs are equivalent iff their normal form is the same.

PROOF. 1. We apply Corollary 5.5. Suppose�� � �� �� ��� ��� is the normal form of� � ����� ��, as given in
Definition 5.10.
� � ��: If ������ ����� is a node in� � then we pick the critical node� in � . We must show (i) that��������
����� � ����, which is immediate, and (ii) that���� � ���������� ������, which follows from the Lemma
A.31.
�� � �: If � is a node in� , we must find a node in� � with the relevant properties. First, if� is not critical in
� , then pick a critical node�� such that���� � ����� and����� � ����. Now take������� ������ � � �. We
must show (i) that���� � ��������� ������, which is immediate, and (ii) that����������� ������� � ����. For
that, it is sufficient to show that����������� ������� � �����, which follows from the Lemma A.31.

2. � Let ��� �� be two equivalent graphs,���� �
�
� their normal forms. By 1., the normal forms are equivalent,

so by Corollary 5.5, we have two functions, say* � � �
� � � �

� and � � � �
� � � �

�, that respect labels
(���� � ��*����) and decrease down-sets (��*���� � ����). Let % � ��*����; ��%� � ����. But
��%� � ���� is impossible, for then� would not be critical. So��%� � ����. Thus��*���� � ����;
symmetrically������ � ���. Using the definition of normal form, we get*��� � � and��� � . Thus
��� � ���.

� from 1.

LEMMA A.32

1. If �
link
�� �� by linking  below some�, then���� � ������ � ���� � 
�����; and, for all for all% � � with

% � �, ��%� � ����%�.

2. If �
del
�� �� then, for all% � � �, ��%� � ����%�.

PROOF. 1. In the case of�, ������ � ���� � ��� � 
���� � ���� � 
�����. In the case of other%s, the only
non-trivial case is where% � �. But then, the fact that�����
����� hasn’t changed guarantees that��%� hasn’t
either.

2. The only non-trivial%s are those above the deleted�; we must show that���� � ��%� for those. But that is what
is guaranteed by the condition that for all�� � � there exists��� � �� with ������ � �.

THEOREM5.15
By applying rules (link) and (del) repeatedly in any orderuntil none applies, any finite priority graph is brought into
a form which is equal to its normal form, up to renaming of elements of� .
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PROOF. First we show that (link) and (del) are sound. This can be done using Corollary 5.5. Suppose� rewrites to
��

by (link). Corollary 5.5 requires us to find a correspondent in� � for each node in� , and vice versa. Lemma A.32
tells us that usually������ � ���� for all � � � , and hence the correspondent of a node can be the node
itself. The only exception occurs in the case that in the link of below �, we had���� � ���. In that case,
������ � ���� � ����, and the correspondent of� � � should be chosen to be � � �.

by (del). Again, we must show how to pick the correspondents for Corollary 5.5. For each node in� other than the
deleted node, pick the same node in� �. For the deleted node, pick the node in� � referred to as in the (del)
rule. For each node in� � pick the same node in� . Lemma A.32 ensures that these correspondents have the right
properties.
To show that the order of application does not matter, we must also show that the term-rewriting system consisting

of the set of� -ary finite priority graphs with the rules (link) and (del) isterminatingandconfluent[8].
Terminating. Since the graphs are finite, and (link) adds oneedge and (del) removes one node, the number of

rewrites is bounded by
� � 
, where
 � �� �.
Confluent.We show that a rule applies unless� is a renaming of the normal form, so that we cannot terminate

elsewhere. This implies confluence. Let� be distinct from its normal form.
� Either a node� of � is not critical: (for instance, the node� at mid-height in Example 5.14.1) then by Definition

5.9 of critical, there is a% that either can be linked below� (in Example 5.14.1, the low�), or is already below�,
and then� can be deleted.

� Or, several��  are mapped to the same node of the normal form: (for instance, the two nodes� in Example 5.14.1)
if they are not linked, any of them can be linked below the other; else the top one can be deleted.

� Or, all nodes are critical and correspond to a single node of the normal form, but some links are different: In this
case, the links of� are a subset of those of the normal form. Then we can add a missing link.

In all three cases, an application of link or del was possible.

A.5.1 Preferential entailment
THEOREM5.18
�� �� �� iff ����� � ����� and for each node� � �� either���� � ������, or there is a � �� such that
���� � ��� and��� � ����.

PROOF. Let ��� �� be the operators denoted by��� ��.
�. Choose some relation� such that Min���� � � . (This is possible; as there are at least two elements'� �

in� , we could take	�
 iff 	 � ' � 
 � �.) Suppose the RHS is false, i.e. either
� ������ ����� � �. Choose� in this difference, and set�� � �,�� � ) for any other�;

� there is� � �� such that����� � ������ and for all  � �� such that����� � ����, there is a�� �
����� � ������. If there is such a, set������ � �; for each set��� � �; and�� � ) for all other
variables�. Else, pick� � ������ ������, set�� � �, set again������ � �, and set everything else to) .

In either case, by an argument similar to that in the proof of Theorem 5.2, we have���������� �� � and
���������� �� �. But Min����������� �� �� ����������� �, so the LHS is false.

�. Suppose RHS and
 � Min����������� ��. We show that
 � Min����������� ��. Suppose not, i.e.
there is an	 such that	 ���������� �

� 
, i.e.	 ���������� � 
 and� � ��� 	�������
. We’ll show

	 ���������� �
� 
, i.e. (a)	 ���������� � 
 and (b)�� � ��� 	��������
.

(a) Suppose	������
; then by hypothesis, either����� � ������, so �� �� ��	�
�
������


; or there is a

 � �� such that����� � ���� and����� � ������; so	������
 so�% ��  with	��
�����


, but using

����� � ������ we have that�%� �� � with	��
������


.

(b) Either case of the hypothesis again provides � �� such that	��
�����


 and����� � �����.

A.6 Composing priority graphs
THEOREM6.3
Let � be a well-founded graph denoting operator� with variables� . Let ������� be a family of well-founded
graphs denoting operators������� with variables������� . Let �� be the graphical insertion of������� in �,
and let�� be the operator denoted by��.
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Then�� is the composition of� with ������� , i.e.

��
�
������

�
������� �

�
� �

�
�����������������

�
�

PROOF. First observe that if�� ��� � � � � �
 are well-founded, then so is��. This enables us to use Theorem 2.11. Let
us write� � ����� �� and�� � ������� ��� for each� � � � 
�� � � � � 
�. Now,

	 ���������� � 


���� � �� ��� � ������

�
	������ ����


� �� � �������
� ����� �

� �	������� ����
�

� � � ���� � ������� � � �	�
�
����� ��

��
�

�
�

We simplify notation for this proof, by writing�� and�� in place of����� and�����, and by writing��� instead
of 	������ ����
 (	�
 are fixed). We will consistently use unprimedvariables for the ‘outer’ level indices, and
primed variables for the ‘inner’ ones. Thus

	 ���������� � 


���� � �� ��� � ���

�
���� (1a)

� �� � ����� �� �� � ����� (1b)

� � � ���� � �� �� � � � �
���

�
(1c)

���� � �� ��� � ���

�
���� (2a)

� �� � ����� �� �� � ����� (2b)
� � � ���� � �� �� � � � ��� (2c)

� �% � ���% �  � ��� � ����%�
��

��
, (2d)

version (2) following from version (1) by Theorem 2.11(2). But now,

	 ������������ �� � � � � �
�������� �� 

���( � �� �	 ������������� � 
 � �+ � ���+ � ( �	 �������������� ��

� 
��

���( � ��

�
��(� � �����((� � �+� � ����+� �� (� � ��(+���� (3a)

� �+ � ��

�
+ � ( � �(� � ���

�
�+(� (3b)

� �+� � ����+� �� (� � ��++��

�
(3c)

� �+� � �� ���++�
��
� (3d)

3b-d comes from the expansion of	 �������������� ��
� 
 using Theorem 2.11(3).

That (3) implies (1) is easy: if 1a and 1b are not satisfied, set � + in 3b and� � +� in 3d to satisfy 1c. So all
that remains is to show that (2) implies (3).

Suppose we have(� (� which do not satisfy the disjuncts in 3a. We need to find an appropriate+. Setting+ � 
from 2c might work; if it does, we are home. If it doesn’t, we have a troublesome(� � �� for which not�+(� and
there is no appropriate+�.

Use (2) again with� � + and�� � (�, to obtain a � + and� � �� , which we will call� � +, �� � � . Since
� � +, we have by 2d�#� � ����#�; and by transitivity we have� � (, so� satisfies the conditions for+ in 3b.
Moreover,����� (from 2c) guarantees 3d.

The extraction of terms from priority graphs was given by example in the main text. Here, we give formal
definitions in order to prove Theorem 6.6.

DEFINITION A.33
To eliminate such shapes as the N shape in Example 6.8, we define theforest form�� � ) ��� of � as:
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� � � is the the set of maximal up-branches in,. Formally:

� � � 
���� � � � � �
� � 
 � ���- � 
��� � ���� �
� � ����� �  � ����� � � � ����
 � ����

� �� is the suffix ordering. Formally. �� / iff there is a non-empty sequence of nodes0 such that. � 0� / .

� �� takes the label where the branch starts, i.e. if. � ���� � � � � �
� then���.� � �����.

Actually this definition simply removes any ‘V’ shapefrom the graph by replicating the node at the bottom of
the ‘V’ that becomes ‘II’. In particular, we replace any ‘N’ shape by a ‘� I’ shape. This is not always necessary, for
instance in Example 5.6 the V-shaped example could be expressed directly as�� ��1�.

PROPOSITIONA.34
� � ) ���.

PROOF. All down-sets are preserved, so we can use Corollary 5.5.

DEFINITION A.35
Termifying a finite priority graph� to � ��� is done as follows:
� if � is made of a single node labelled by�, set� ����;

� if � is made of disjoint components��� � � � � �
, then we set� ��� � � ���� � � �  � ��
�;

� else, find a� � � such that�	 � �� 
 � � �� we have
 � 	, as follows: Start by setting� to the
maximal nodes of� ; and while there is a node which is not below all elements of� , add it to� . This algorithm
may stop with� � � , in which case it signals failure; else, we set� ��� � � ���1� �� ���.

We see that the algorithm succeeds exactly when� is the graphical insertion of some term (equivalently, when no�
shape is included in�); this term is unique up to associativity of1 and , and commutativity of . (� ��� will have1
associated to the left, since we started from the top.)

THEOREM6.6
Any finitary priority operator is denoted by a term built from1�  and the variables that occur in the priority graph
for the operator.

PROOF. Take any finitary� -ary operator�. Let � be a graph denoting�. Let �� be the forest form of�. It is easy
to check that we can always termify a forest form: The last step succeeds immediately, and� contains the single
maximum element (the root of the tree). So� can be expressed by� ����.

A.7 Algebraic treatment
DEFINITION A.36
! denotes equational derivation from axioms 1–7. This means that a proof can use axioms 1–7, and the classical
rules of equality:

Reflexivity ! / � /
Symmetry / � . ! . � /
Transitivity 2 � .� . � / ! 2 � /
Congruence / � . ! 2� �� / � � 2� �� .�

In order to prove the soundness and completeness of the axioms of Theorem 7.2, we need a lemma.

LEMMA A.37
! .1/ � / , if ��.� � ��/�.

PROOF. (Note that this is obviously valid semantically, since all occurrences in the. part of.1/ are non-critical.)
We first induce on the structure of.:
1. if . is the variable�: we proceed by induction on the structure of the term/ .
(a) / is a variable; since� � ��/�, / is the variable�, so use idempotence of1.
(b) / � �2 .�: Then� � ��2� or � � ��.�. Without loss of generality, assume� � ��2�. Then! 2 � �12 by

the inductive hypothesis, and thus! �1/ � �1���12� .�.
But! �1���1�� �� � ��1�� � is derivable (Example 7.3(6)), thus! �1���12� .� � ��12� . � 2 . � / .
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(c) / � 21..
� � � ��.�. Then

�1/ � �121. def./
� �121�1. ind. hyp.
� 21�1. example 7.3(3)
� 21. ind. hyp.
� / def./ .

� � � ��2�. Then
�1/ � �121. def./

� 21. ind. hyp.
� / def./ .

2. . � �.�1.��: we use associativity of1 to obtain.�1�.�1/�, and first eliminate.� inductively, then.�.

3. . � �.� .��: we use distributivity to obtain�.�1/� �.�1/�, and process inductively each part.

THEOREM7.2
An equation is true in all preferential algebras iff it is derivable from the following seven axioms:

1. � � � � ( Idempotent)
2. � �� �� � �� �� � ( Associative)
3. � � � � � ( Commutative)
4. ��1�� � � (1 Idempotent)
5. �1��1�� � ��1��1� (1 Associative)
6. �� ��1� � ��1�� ��1�� (1 Distributes over )
7. ��1�� � � � � (Absorption)

PROOF. The soundness of the axioms is obvious. (For example, apply Corollary 5.5 to the graph forms of each side
of the axioms.)

Completeness: let! / � Æ abbreviate! / Æ � / (indeed, this use of� matches that in the semantics). We
need only prove statements of the form! / � Æ, since to prove! / � Æ we just prove! / � Æ and! Æ � / ,
which expands to/ � / Æ � Æ.

Suppose/ � Æ semantically. We prove! / � Æ by induction onÆ.
1. Æ is the variable�. We perform induction on/ .
(a) / is a variable. Since/ � Æ, / must also be� (by Theorem 5.2). Idempotence finishes the proof.
(b) / � /�1/�. By Theorem 5.2 we know/�1/� � � iff /� � �, and by inductive hypothesis! /� � �. We

prove! /�1/� � � as follows:

�/�1/�� � � �/�1/�� /� � Example 7.3(1)
� �/�1/�� /� since! /� � �
� /�1/� Example 7.3(1)

(c) / � /� /�. By Theorem 5.2 we know/� /� � � iff /� � � or /� � �. Without loss of generality we
suppose it is/�, and by inductive hypothesis we have! /� � �. Now! /� /� � � �/� �� /� � /� /� , so
! /� /� � �.

2. Æ � 3 .. By the semantics we know that/ � �3 .� is valid iff / � 3 and/ � ., so by inductive hypothesis
we prove! / � 3 and! / � ., which expand to/ 3 � / and/ . � / , from which we prove/ � / �3 .�
using associativity, commutativity and idempotence.

3. Æ � 31.� By induction on3. 3 can be:
(a) 3� 3�: then we use distribution.
(b) 3�13�: then we use associativity to obtainÆ � 3�1�3�1.�.
(c) A variable�. If � occurs in., we suppress it using Lemma A.37. The remaining case is to prove inequalities

of form / � �1., where� is a variable not occurring in.. By Theorem 5.2, an inequation of this form is valid
iff / � . and in the graph of/ there is a node labelled by� such that���� � �.�. We can assume without
loss of generality that/ is in forest form, since we just have to apply distribution repeatedly to obtain this form.
Let 4 denote the subterm below� in the forest form (/ � � � � 1�� � �  ��14��). By convention, we treat the case
where4 is empty uniformly.
i. We prove! / � �14 by induction on/ . Since it is in forest form,/ can be:
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A. �1/�: If � � � and/� � 4 we are done.
Otherwise we rewrite/ to ��1/�� /� using Example 7.3(1) backwards, and we proceed on this last/�
which must have an occurrence of�14 since� � �. Then Theorem 5.2 gives/� � �14, which by
inductive hypothesis gives! /� � �14, thus! ��1/�� /� � �14 using associativity of .

B. /� /�: We know�14 must occur in/� or /� (or both); we proceed inductively on that part, say/�. Again
/� � �14 implies! / � �14 using by Theorem 5.2, inductive hypothesis, and associativity of .

ii. Let’s put this together:
! / � �14 just proved
! / � . by inductive hypothesis
! / � ��14� . as in case 2
! / � �141. by 7.3(7)
! / � �1. � Æ by Lemma A.37

EXAMPLE A.38
We apply the algorithm of the proof of Theorem 7.2 to construct a proof of�1�� �� � ��1�1�� ��1�1��:

�1�� �� � ��1�� ��� � � 7.3(1)
� ��1�� ��� � � ��1�� 7.3(7)
� ��1�� ��� ��1�� 7.3(1)
� ��1�� ��� ���1�� ���1��1��� axiom 7
� ��1�� ��� ��1�1�� A.37
� ��1�� ��� � � ��1�1�� 7.3(1)
� ��1�� ��� � � ��1�� ��1�1�� 7.3(7)
� ��1�� ��� ��1�� ��1�1�� 7.3(1)
� ��1�� ��� ���1�� ���1��1��� ��1�1�� 7.3(1)
� ��1�� ��� ��1�1�� ��1�1�� A.37
� ���1�1��1�� ��� ��1�1�� ��1�1�� A.37
� ��1�1�� � ��1�1�� � axiom 7
� ��1�1�� ��1�1�� � 7.3(1)
� ��1�1�� ��1�1�� 7.3(1)

This identity is the basis of theTuscan form: given a term, rewrite it first using distributivity, and then this
identity. By this process, any term is brought in a form where are outside and1 inside. We can use 3, 4, 1 and
7 to eliminate some duplicates, but this will not yield some unique normal form. For instance,�1�� ��1� �
�1���1�� ��1��� � ��1�1�1�1�� ��1�1�1�1�� � ��1�1�1�� ��1�1�1�� � ��1�1�1�� ��1�� �
��1�� ��1�1�1��; the last four are Tuscan forms, the last two are simplified.

The equations 1–7 given in Theorem 7.2 are not complete, however, with respect to conditional equations (impli-
cations between equations).

THEOREMA.39
There is a conditional equation true in all preferential algebras which is not a consequence of 1–7; for example,
�1�1� � �1�1� ! �1� � �1� is such a conditional equation.

PROOF. The conditional equation is true in all PAs: expand1�  using the equations in Proposition 6.5; now, we
want to prove that����������������� � ����������������� implies�������� � �������� .
Suppose the premiss and that	 ��� � �� � ��� 
. Then either	 �� � �� 
, so	 ��� � �� � ��� 
, and we are
done; or	 �� 
 and	 �� � �� 
. 	 �� 
 implies	 �� � � � �� � ��� � �� � �� 
, since the last disjunct
is true.	 �� � �� 
 means	 � 
 or	 � 
. Since�� � �, the second half is impossible and we have	 � 
.
Using the premiss,	 �� � � � �� � ��� � �� � �� 
, so	 � 
, a contradiction.

The conditional equation cannot be derived from the axioms 1–7: in axioms 1–7, and here in the antecedents,
the same variables occur in the left- and right-hand side. By examining the rules for deriving equations (Definition
A.36), we notice that no rule can eliminate a variable from the antecedent; thus the conclusion must contain� if the
proof uses the antecedent. On the other hand, the proof must use the antecedent, since the consequent is not valid
and thus not a consequence of axioms 1–7.

This means that the class&� of all isomorphic copies of preferential algebras is not axiomatizable by equations,
but we now show that&� can be axiomatized by conditional equations.
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THEOREMA.40
&� is a quasi-variety.

PROOF. We use standard techniques [22] of algebras of relations, namely, we prove that the class� of algebras
isomorphic to a preferential algebra is closed under taking subalgebras, direct products, and ultraproducts.
� � is closed under taking subalgebras, by definition.

� � is closed under taking direct products: let5 be a set and for each� � 5 let "����� 1# be a preferential algebra.
That is,�� is a set of binary relations on some�� closed under intersection and lexicographic combination. We
may assume that the��s are pairwise disjoint. Let� be the union of these��s. For any tuple' � "'� � � � 5#
of elements of the product ('� � ��), let *�'� be the union of'�s, which is indeed a binary relation on� . Let�
be the set of the all these*�'�s. Then� is closed under:
– intersection:�

�
� '�� � �

�
� ��� �

�
��'� � ���, since the�� are disjoint. Now since each�� is closed,� is;

– lexicographic combination:�
�
� '��1�

�
� ��� �

�
��'�1���, for if 	�

�
� ���

�
, it means that	�
 � �� for
some unique�, and thus	��� 
.

The function* is an isomorphism from the direct product of the algebras�� to the algebra"���� 1#: its inverse
is just the tuple of projections on the��s.

� � is closed under taking ultraproducts: The operations of� are definable in6��, the class of binary relation
algebras (i.e.� is a generalized reduct of6��). It is known that6�� is closed under taking ultraproducts
(claim 1.1 of [22]). Hence� is closed under taking ultraproducts.

The axioms presented in Theorem 7.2 are also complete for inclusion, since�� � �� iff ��� ��� � ��. It is
also possible to construct a proof system for inclusion without resorting to equality:

1. � � � (reflexivity)
2. � � �� � � � implies� � � (transitivity)
3. � � � implies� � � � � (monotonicity )
4. � � � implies�1� � �1� (monotonicity1a)
5. � � �� � � � implies�1� � �1� (monotonicity1b)
6. � � � � ( Idempotent)
7. � �� �� � �� �� � ( Associative)
8. � � � � � ( Commutative)
9. � � ��1�� (1 Idempotent)
10. �1��1�� � ��1��1� (1 Associative)
11. ��1��1� � �1��1�� (1 Associative)
12. �� ��1� � ��1�� ��1�� (1 Distributes over )
13. ��1�� ��1�� � �� ��1� (1 Distributes over )
14. � � � ��1�� � (Absorption)
15. �1� � � (1-refinement)

THEOREM7.4
A preferential entailment/ �� . holds in all preferential algebras iff itis derivable from the equality axioms 1–7,
together with the following:

16. If � �� � then�1� �� � (C1)
17. If �1� � � and�  � � � then� �� � (S1)

PROOF. �. We check the soundness of the two new rules.
C1. If Min ���� � Min����, then indeed Min������ � Min����, since the minimals of�1� are among the

minimals of�.

S1. �  � � � means that� � �. �1� � � means that	��
� 	��
. So if	���	, then also	���	, for
all three other possibilities are excluded. So if	 is not minimal for�, it means that�	��	���	, thus	���	,
and	 is neither minimal for�.
� �We want to prove, say,/ �� .. Let ��� �� be their graphs. We use Theorem 5.18. First let5 � 
� � ���� $

������. 5 is upward-closed. If5 � �, let /� be a term representing.. Otherwise we construct/� as follows:
For all % � 5, if � � % then� � 5, so that by Theorem 5.18���� � ��� for some � ��; therefore we have

��%� � ����� � ����, for any� � 5, so that we link any node% � 5 below each minimal� � 5 using rule (link).
Therefore, the graph is now of the form��1�� where�� contains all nodes of5 and�� the rest. We find terms
/�� /� expressing��� �� by Theorem 6.6. Since/ is equivalent to/�1/� by their construction, this is provable by
completeness (Theorem 7.2).
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Since/� only contains nodes outside5: by Theorem 5.18,��/�� � ��.�. Also, by Theorem 5.2,. � /�. By
completeness,/� . � . is provable. By Corollary 5.4,��/�� $ ��.� and thus��/�� � ��.�. So in.1/� , all
occurrences in. are non-critical, implying that.1/� � /� is valid, and thus provable by completeness. Thus, we
can use rule S1 to prove/� �� ., and then rule C1 to prove/�1/� �� ..
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