Handling Exceptions in Knowledge Representation: A Brief Introduction to Nonmonotonic Reasoning

Gerhard Brewka

Computer Science Institute
University of Leipzig
brewka@informatik.uni-leipzig.de
Part I: Background and Simple Forms of Nonmon

1. Background and Motivation
2. Closed World Assumption
3. Argumentation Frameworks
Part I: Background and Simple Forms of Nonmon

1 Background and Motivation
2 Closed World Assumption
3 Argumentation Frameworks

Part II: Answer Set Programming
Part I

Background and Simple Forms of Nonmon
1. Background and Motivation

- Classical logic allows us to represent universal statements:

 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics
1. Background and Motivation

- Classical logic allows us to represent universal statements:

 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
1. Background and Motivation

Classical logic allows us to represent universal statements:

$$\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x)$$

Useful, e.g. for concept definitions or in mathematics

Less useful to represent generic statements which may have exceptions:

- Professors teach ...

- Birds fly ...

- Owls hunt at night ...

- Students hate theoretical computer science ...

- After spending 2 hours in the doctor's waiting room patients get angry ...
1. Background and Motivation

- Classical logic allows us to represent universal statements:

\[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - *Professors teach ... unless they are on sabbatical.*
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[
 \forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x)
 \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ...
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]
- Useful, e.g. for concept definitions or in mathematics
- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
1. Background and Motivation

- Classical logic allows us to represent universal statements:

\[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ...
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ...
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
1. Background and Motivation

- Classical logic allows us to represent universal statements:

\[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor’s waiting room patients get angry ...
1. Background and Motivation

- Classical logic allows us to represent universal statements:
 \[\forall x. \text{PhDstudent}(x) \rightarrow \text{Student}(x) \]

- Useful, e.g. for concept definitions or in mathematics

- Less useful to represent generic statements which may have exceptions:
 - Professors teach ... unless they are on sabbatical.
 - Birds fly ... unless they are penguins.
 - Owls hunt at night ... unless they live in a zoo.
 - Students hate theoretical computer science ... unless they are very clever.
 - After spending 2 hours in the doctor’s waiting room patients get angry ... unless they are close to finishing a proof.
 - ...
A solution?

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
A solution?

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x. \text{Bird}(x) \rightarrow \text{Flies}(x)$ we use
 $$\forall x. \text{Bird}(x) \land \neg \text{Ab}(x) \rightarrow \text{Flies}(x)$$
A solution?

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x. Bird(x) \rightarrow Flies(x)$ we use
 \[\forall x. Bird(x) \land \neg Ab(x) \rightarrow Flies(x) \]

and add

\[\forall x. Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \ldots \]
A solution?

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x. Bird(x) \rightarrow Flies(x)$ we use
 $$\forall x. Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$
 and add
 $$\forall x. Ab(x) \leftrightarrow Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \ldots$$
- Problem 1: no exhaustive list of abnormalities.
A solution?

- Most of our commonsense knowledge is of this kind
- What can we do to represent it adequately?
- What if instead of $\forall x. Bird(x) \rightarrow Flies(x)$ we use

 $$\forall x. Bird(x) \land \neg Ab(x) \rightarrow Flies(x)$$

 and add

 $$\forall x. Ab(x) \iff Penguin(x) \lor Ostrich(x) \lor Injured(x) \lor \ldots$$

- Problem 1: no exhaustive list of abnormalities.
- Problem 2: does not give us $Flies(tweety)$ unless $tweety$ is known not to be an exception.
How to use generic information

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.
How to use generic information

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.

- If additional information tells us something is abnormal, retract former conclusion.

 ⇒ *Conclusions do not grow monotonically with premises.*
How to use generic information

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.

- If additional information tells us something is abnormal, retract former conclusion.
 \[\Rightarrow \text{Conclusions do not grow monotonically with premises.} \]

- Classical logic cannot model this, as it is monotonic:
 \[X \subseteq Y \Rightarrow \text{Th}(X) \subseteq \text{Th}(Y). \]

- Why? \(q \) follows from \(X \) if \(q \) holds in all models of \(X \). Models of \(Y \) a subset, thus \(q \) holds in all of them as well.
How to use generic information

- Want to draw conclusions from generic information *as long as nothing indicates an exception*.
- If additional information tells us something is abnormal, retract former conclusion.
 \[\Rightarrow \text{Conclusions do not grow monotonically with premises.} \]
- Classical logic cannot model this, as it is monotonic:
 \[X \subseteq Y \Rightarrow \text{Th}(X) \subseteq \text{Th}(Y). \]
 Why? \(q \) follows from \(X \) if \(q \) holds in all models of \(X \). Models of \(Y \) a subset, thus \(q \) holds in all of them as well.
- Observation led to the AI field of nonmonotonic reasoning, active for over 30 years.
Defaults may give rise to conflicting conclusions:

1. Quakers normally are pacifists.
2. Republicans normally are not pacifists.
3. Nixon is a quaker and a republican.

(1) and (2) conflicting.

Nothing wrong with the defaults!
Defaults may give rise to conflicting conclusions:

(1) *Quakers normally are pacifists.*
(2) *Republicans normally are not pacifists.*
(3) *Nixon is a quaker and a republican.*

(1) and (2) conflicting.

Nothing wrong with the defaults!

Different approaches to deal with this:

- some apply none of the conflicting defaults,
- most generate different acceptable belief sets (extensions) leave open whether to use them sceptically (*p* true in all of them) or credulously (*p* true in some of them, or in a particular one).
Check the QuantLA Spring School time table

Question: *Is Franz teaching on Friday?*

Your answer (presumably): No
2. The Closed World Assumption

- Check the QuantLA Spring School time table
 - Question: Is Franz teaching on Friday?
 - Your answer (presumably): No

- Why is this answer correct?

- Does not follow from the explicit information in the time table
2. The Closed World Assumption

- Check the QuantLA Spring School time table
 - Question: Is Franz teaching on Friday?
 - Your answer (presumably): No

Why is this answer correct?

- Does not follow from the explicit information in the time table
- But: follows from this information assuming that the list of courses is complete

You (presumably) used this assumption, and do so in many everyday contexts
The Closed World Assumption, ctd.

- In many situations way more negative than positive facts.
The Closed World Assumption, ctd.

- In many situations way more negative than positive facts.
- Communication convention: represent the latter only, leave the former implicit.
 - train/flight schedules
 - TV programs
 - library catalogues
 - list of lectures at a spring school
The Closed World Assumption, ctd.

- In many situations way more negative than positive facts.

- Communication convention: represent the latter only, leave the former implicit.
 - train/flight schedules
 - TV programs
 - library catalogues
 - list of lectures at a spring school

- Know how to infer negative information based on completeness assumption.
Reiter’s formalization

Let KB be a set of formulas, define new form of entailment under CWA:

$$KB \models_c \alpha \iff KB \cup Negs \models \alpha$$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$
Reiter’s formalization

- Let KB be a set of formulas, define new form of entailment under CWA:

 $$KB \models_c \alpha \text{ iff } KB \cup Negs \models \alpha$$

 where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$
Reiter’s formalization

- Let KB be a set of formulas, define new form of entailment under CWA:

$$KB \models_c \alpha \text{ iff } KB \cup Negs \models \alpha$$

where $Negs = \{\neg p \mid p \text{ atomic and } KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$

- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.

- Recursive query evaluation; queries reduced to atomic case.
Reiter’s formalization

- Let KB be a set of formulas, define new form of entailment under CWA:

 $$KB \models_c \alpha \iff KB \cup Negs \models \alpha$$

 where $Negs = \{\neg p \mid p$ atomic and $KB \not\models p\}$

- \models_c nonmonotonic, for instance $\{a\} \models_c \neg b$ whereas $\{a, b\} \not\models_c \neg b$

- CWA makes knowledge complete: for arbitrary α (without quantifiers) we have $KB \models_c \alpha$ or $KB \models_c \neg \alpha$.

- Recursive query evaluation; queries reduced to atomic case.

- Results extend to quantified formulas if we add *domain closure assumption* (each object named by constant) and *unique names assumption* (different constants denote different objects).
A major problem

- Works for simple cases only, e.g. KB a set of atoms.
- Assume $KB \models (p \lor q)$, but $KB \not\models p$ and $KB \not\models q$.
- Now $\neg p \in Negs$ and $\neg q \in Negs$, thus $KB \cup Negs$ inconsistent.
A major problem

- Works for simple cases only, e.g. KB a set of atoms.
- Assume $KB \models (p \lor q)$, but $KB \not\models p$ and $KB \not\models q$.
- Now $\neg p \in \text{Negs}$ and $\neg q \in \text{Negs}$, thus $KB \cup \text{Negs}$ inconsistent.
- Weaker versions of CWA avoiding inconsistency were proposed.
- CWA best viewed as a method for restricted contexts (e.g. databases).
A major problem

- Works for simple cases only, e.g. KB a set of atoms.
- Assume $KB \models (p \lor q)$, but $KB \not\models p$ and $KB \not\models q$.
- Now $\neg p \in Negs$ and $\neg q \in Negs$, thus $KB \cup Negs$ inconsistent.
- Weaker versions of CWA avoiding inconsistency were proposed.
- CWA best viewed as a method for restricted contexts (e.g. databases).

Standard Reference:

2. Argumentation

- Argumentation highly active area in AI.
- Idea: to construct acceptable set(s) of beliefs from given KB:
 1. construct arguments (beliefs with associated reasons),
 2. determine jointly acceptable arguments (extensions),
 3. accept their conclusions.
- Assumption: step 2 can be done independently and abstractly.
- Dung’s Abstract Argumentation Frameworks widely used tool.
Abstract Argumentation

- Arguments “atomic”, their structure irrelevant.
- All that matters are attacks among arguments.
- Argumentation frameworks (AFs) represent attack relations.
- Semantics formalize different intuitions about how to solve conflicts and how to pick acceptable arguments.
- Semantics map an AF to subsets of its arguments (extensions).
- Nonmonotonic: new argument may throw out what was accepted.
Argumentation Frameworks

An argumentation framework (AF) is a pair \((A, R)\) where

- \(A\) is a set of arguments,
- \(R \subseteq A \times A\) is a relation representing “attacks”. (“defeats”)
An argumentation framework (AF) is a pair \((A, R)\) where

- \(A\) is a set of arguments,
- \(R \subseteq A \times A\) is a relation representing “attacks”. (“defeats”)

Example

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e\]
Semantics: minimal requirement no conflicts

Conflict-Free Set

Given an AF $F = (A, R)$. A set $S \subseteq A$ is **conflict-free** in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$cf(F) = \{\{a, c\}\}$,
Semantics: minimal requirement no conflicts

Conflict-Free Set

Given an AF $F = (A, R)$.
A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \not\in R$.

Example

$cf(F) = \{\{a, c\}, \{a, d\}\}$,
Conflict-Free Set

Given an AF $F = (A, R)$.
A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\}$,
Conflict-Free Set

Given an AF \(F = (A, R) \).

A set \(S \subseteq A \) is conflict-free in \(F \), if, for each \(a, b \in S \), \((a, b) \notin R \).

Example

\[
\text{cf}(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset \}
\]
No undefended attacked arguments

Admissible Set

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$adm(F) = \{\{a, c\}\}$,
Admissible Set

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F, where $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

![Graph with nodes a, b, c, d, e and edges: a→b, c→d, e→c, d→e, b→c, c→a]

$adm(F) = \{\{a, c\}, \{a, d\}\}$
Admissible Set

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if
- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$\text{adm}(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}\}$.
Admissible Set

Given an AF $F = (A, R)$. A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F,
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset \}$$
Want all defended arguments

Complete Set
Given an AF $F = (A, R)$. A set $S \subseteq A$ is complete in F, if
- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$comp(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}$
An inherently skeptical approach

Grounded Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is grounded in F, if

- S is complete in F
- for each $T \subseteq A$ complete in F, $T \not\subset S$

Proposition [Dung 95]: The grounded extension of an AF $F = (A, R)$ is given by the least fix-point of the operator $\Gamma_F : 2^A \rightarrow 2^A$, defined as $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$

Example

$ground(F) = \{ \{a, c\}, \{a, d\}, \{a\} \}$
A credulous approach

Stable Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is **stable** in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

$$\begin{align*}
&\begin{array}{c}
 a \\
 b \\
 c \\
 d \\
 e
 \end{array} \\
&\begin{array}{c}
 \rightarrow \\
 \leftarrow \\
 \leftarrow \\
 \rightarrow \\
 \rightarrow
 \end{array}
\end{align*}$$

$stable(F) = \{a, e\}$,
A credulous approach

Stable Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

```
G. Brewka (Leipzig)
Nonmonotonic Reasoning
May 2017
```

$$stable(F) = \{\{a, e\}, \{a, d\}\},$$
A credulous approach

Stable Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

Stable(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\}.
A credulous approach

Stable Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

Example

$$\text{stable}(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}$$
Guaranteeing existence of extensions

Preferred Extension

Given an AF $F = (A, R)$. A set $S \subseteq A$ is preferred in F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in T, $S \not\subseteq T$

Example

![Graph]

$\text{pref}(F) = \{\{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}$
Complexity

Relation between Semantics

- stable
- pref
- compl
- adm
- ground

Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05

Nonmonotonic Reasoning
Complexity

Relation between Semantics

stable ➔ pref ➔ compl ➔ adm

ground

Complexity

<table>
<thead>
<tr>
<th></th>
<th>stable</th>
<th>adm</th>
<th>pref</th>
<th>comp</th>
<th>ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cred</td>
<td>NP-c</td>
<td>NP-c</td>
<td>NP-c</td>
<td>NP-c</td>
<td>in P</td>
</tr>
<tr>
<td>Skept</td>
<td>coNP-c</td>
<td>(trivial)</td>
<td>P-2-c</td>
<td>in P</td>
<td>in P</td>
</tr>
</tbody>
</table>

[Dimopoulos & Torres 96; Dunne & Bench-Capon 02; Coste-Marquis et al. 05]
Further remarks

- AFs: simple graph representation of argumentation scenarios.
- Various semantics model different intuitions how to select reasonable argument sets.

BUT

- Fixed meaning of links: attack; fixed acceptance condition for args: no parent accepted.
- Want more flexibility:
 - Links supporting arguments/positions,
 - Nodes not accepted unless supported,
 - Flexible means of combining attack and support.
- Developed *Dialectical Frameworks* which can have arbitrary relations among args.
- Many options for adding quantities.