Answer Set Optimization

Gerhard Brewka
brewka@informatik.uni-leipzig.de

Universität Leipzig
Motivation

preferences determine how agents decide and act
pop up everywhere:

- coffee > tea
- car > train
- relax > work
- Borussia Dortmund > Bayern München
- Madonna > Britney Spears
- marry > don’t marry
- sleep > listen to talk
Preferences in AI

- diagnosis: prefer more plausible hypotheses
- planning/configuration: prefer cheaper plan; satisfy more important constraints
- revision: give up less preferred beliefs
- reasoning about action: prefer fewer unexplained changes
- ontologies: prefer more specific information
- legal/deontic reasoning: prefer more recent law
- linguistics: prefer more important constraints (optimality theory)
Issues

- how to represent space of outcomes: often used: constraints; here: answer sets
- how to represent preferences: traditionally: numbers; here: qualitative numbers difficult to obtain; not always necessary
- how to interpret preferences: strict vs. defeasible; ceteris paribus
- how to represent (in)dependencies: preferences almost always context dependent
Outline

1. Motivation (done)
2. Answer set programming
3. Qualitative optimization
4. Applications
5. Related issues
6. Conclusions
2. Answer set programming
Answer sets

- define semantics for logic programs with strict and default negation (extended LPs)
- rules of the form \((a, b_i, c_j \text{ literals})\):

 \[
 a \leftarrow b_1, \ldots, b_n, \text{not } c_1, \ldots, \text{not } c_m
 \]

- AS acceptable set of beliefs based on program requirements:
 - closed: all rules used to generate AS if all \(b_i \in \text{AS}\), no \(c_j \in \text{AS}\), then \(a \in \text{AS}\)
 - grounded: \(a\) in AS implies derivation of \(a\) from rules whose not-preconditions are not in AS
A simple test

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether $S = \text{closure of reduced program}$
A simple test

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether $S = \text{closure of reduced program}$

\[
a \leftarrow \text{not } b \\
b \leftarrow \text{not } c
\]
A simple test

To check whether S is AS of P

- remove S-defeated rules ($\text{not } L \text{ in body, } L \in S$)
- remove not literals from remaining rules
- check whether $S = \text{closure of reduced program}$

\[
\begin{align*}
a & \leftarrow \text{not } b \\
b & \leftarrow \text{not } c
\end{align*}
\]

$\{a\}$

NO, not closed
A simple test

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether $S = \text{closure of reduced program}$

\[
\begin{align*}
a & \leftarrow \text{not } b \\
 b & \leftarrow \text{not } c \\
\end{align*}
\]

\{a, b\}

NO, not grounded
A simple test

To check whether S is AS of P

- remove S-defeated rules (not L in body, $L \in S$)
- remove not literals from remaining rules
- check whether $S = \text{closure of reduced program}$

\[
\begin{align*}
 a & \leftarrow \text{not } b \\
 b & \leftarrow \text{not } c
\end{align*}
\]

\{b\}

YES, grounded and closed
Example: graph coloring

Description of graph:

\[node(v_1), ..., node(v_n), edge(v_i, v_j), ... \]

Generate: every node needs exactly 1 color

\[\text{col}(X, r) \leftarrow \text{node}(X), \text{not} \text{col}(X, b), \text{not} \text{col}(X, g) \]
\[\text{col}(X, b) \leftarrow \text{node}(X), \text{not} \text{col}(X, r), \text{not} \text{col}(X, g) \]
\[\text{col}(X, g) \leftarrow \text{node}(X), \text{not} \text{col}(X, r), \text{not} \text{col}(X, b) \]

Test: linked nodes cannot have same color

\[\leftarrow \text{edge}(X, Y), \text{col}(X, Z), \text{col}(Y, Z) \]

Each answer set describes a solution!
Example: graph coloring

Description of graph:

\[\text{node}(v_1), \ldots, \text{node}(v_n), \text{edge}(v_i, v_j), \ldots \]

Generate: every node needs exactly 1 color

\begin{align*}
\text{col}(X, r) & \leftarrow \text{node}(X), \\text{not}\ \text{col}(X, b), \\text{not}\ \text{col}(X, g) \\
\text{col}(X, b) & \leftarrow \text{node}(X), \\text{not}\ \text{col}(X, r), \\text{not}\ \text{col}(X, g) \\
\text{col}(X, g) & \leftarrow \text{node}(X), \\text{not}\ \text{col}(X, r), \\text{not}\ \text{col}(X, b)
\end{align*}

Test: linked nodes cannot have same color

\[f \leftarrow \text{edge}(X, Y), \text{col}(X, Z), \text{col}(Y, Z), \text{not}\ f \]

Each answer set describes a solution!
A useful language extension

Bounds on number of satisfied literals:

$L\{a_1,\ldots, a_k\}U$

Read: at least L and at most U of the a_is must be true

Allows us to replace 3 color assignment rules with

$$1\{\text{col}(X, r), \text{col}(X, b), \text{col}(X, g)\}1 \leftarrow \text{node}(X)$$
Why LPs under AS semantics?

- simple yet expressive language
- transitive closure, nonmonotonic rules, ...

 \[\text{flies}(X) \leftarrow \text{not } ab(X), \text{bird}(X) \]
- simple epistemic distinctions, particularly useful for preference reasoning

 \[\text{safe} > \text{not } \neg \text{safe} > \neg \text{safe} \]
- interesting implementations: dlv, Smodels, nomore, ASSAT ...
- interesting applications: configuration, diagnosis, planning, reasoning about action, shuttle control, model checking, information integration, ...
3. Qualitative Optimization
Adding preferences to ASP

<table>
<thead>
<tr>
<th></th>
<th>Rule preference</th>
<th>Formula preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>((P, <))</td>
<td>((P, <))</td>
</tr>
<tr>
<td></td>
<td>(<) order on (P)</td>
<td>(<) order on (Lit)</td>
</tr>
<tr>
<td></td>
<td>B-Eiter</td>
<td>Sakama-Inoue</td>
</tr>
<tr>
<td></td>
<td>Delgrande-Schaub</td>
<td>Foo-Zhang</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Conditional</td>
<td>< predicate in (P) applied to rules</td>
<td>ordered disjunction</td>
</tr>
<tr>
<td></td>
<td>B-Eiter</td>
<td>ASO programs</td>
</tr>
<tr>
<td></td>
<td>Delgrande-Schaub</td>
<td>B-Niemelä-Syrjänänen</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>B-N-Truszczynski</td>
</tr>
</tbody>
</table>
Ordered disjunction

LPOD: finite set of rules of the form:

\[C_1 \times \ldots \times C_n \leftarrow \text{body} \]

if body then some \(C_j \) must be true, preferably \(C_1 \), if impossible then \(C_2 \), if impossible \(C_3 \), etc.

- answer sets defined through split programs
- satisfy rules to different degrees, depending on best satisfied head literal
- use degrees to define global preference relation on answer sets
- different options how to do this
Preferences among answer sets

How to generate global preference ordering from satisfaction degrees?

Many options, for instance:

\[P^i(S) = P\text{-rules } i\text{-satisfied in } S. \]

\[S_1 > S_2 \iff \]

- some rule has better satisfaction degree in \(S_1 \)
 and no rule better degree in \(S_2 \),

- at smallest degree \(i \) with \(P^i(S_1) \neq P^i(S_2) \),
 \(S_1 \) satisfies superset of rules satisfied in \(S_2 \),

- at smallest degree \(i \) with \(|P^i(S_1)| \neq |P^i(S_2)| \),
 \(S_1 \) satisfies more rules than \(S_2 \).
Prioritized graph coloring

\[\text{col}(X, r) \times \text{col}(X, b) \times \text{col}(X, g) \leftarrow \text{node}(X) \]
\[\leftarrow \text{col}(X, C), \text{col}(Y, C), \text{edge}(X, Y) \]

\(M \) preferred over \(M' \) if

- \(\text{par} \) at least 1 node has nicer color in \(M \) than in \(M' \), no node less preferred color.
- \(\text{incl} \) nodes red in \(M \) superset of nodes red in \(M' \), or same nodes red in \(M \) and \(M' \) and nodes blue in \(M \) superset of nodes blue in \(M' \).
- \(\text{card} \) more nodes red in \(M \) than in \(M' \), or as many nodes red in \(M \) as in \(M' \) and more blue in \(M \).
The ASO approach

decoupled approach to answer set optimization
- logic program G generates answer sets
- preference program P used to compare them
- preference program set of rules

$[C_1 > \ldots > C_k \leftarrow body]$

C_i boolean combination built using $\lor, \land, \neg, \text{not}$

rule satisfaction and combination as for LPODs
LPODs vs. ASO

- **ASO:** arbitrary generating programs, no implicit generation of options, general preferences:
 combinations of properties preferred over others:
 \[a > (b \land c) > d \leftarrow f \]
 equally preferred options:
 \[a > (b \lor c) > \neg d \leftarrow g \]
- **LPODs:** compact and readable representations
4. Applications
Configuration

- often represented as AND/OR trees
- simple representation with Smodels cardinalities:

 \[
 4\{\text{starter, main, dessert, drink}\}4 \leftarrow \text{dinner}

 1\{\text{soup, salad}\}1 \leftarrow \text{starter}

 1\{\text{fish, beef, lasagne}\}1 \leftarrow \text{main}
 \]

- add case description and preferences, e.g.

 \[
 \text{fish} \lor \text{beef} > \text{lasagne}

 \text{beer} > \text{wine} \leftarrow \text{beef}

 \text{wine} > \text{beer} \leftarrow \text{not beef}
 \]

- preferred answer sets: optimal configurations
Abductive diagnosis

\[H : \text{measles, flu, migraine} \]
\[O : \text{headache, fever} \]
\[K : \text{fever} \leftarrow \text{measles} \]
\[\text{red-spots} \leftarrow \text{measles} \]
\[\text{headache} \leftarrow \text{migraine} \]
\[\text{nausea} \leftarrow \text{migraine} \]
\[\text{fever} \leftarrow \text{flu} \]
\[\text{headache} \leftarrow \text{flu} \]
Abductive diagnosis

\[H : \text{measles, flu, migraine} \]
\[O : \text{headache, fever} \]
\[K : \text{fever} \leftarrow \text{measles} \]
\[\text{red-spots} \leftarrow \text{measles} \]
\[\text{headache} \leftarrow \text{migraine} \]
\[\text{nausea} \leftarrow \text{migraine} \]
\[\text{fever} \leftarrow \text{flu} \]
\[\text{headache} \leftarrow \text{flu} \]
\[\neg \text{measles} \times \text{measles} \quad \neg \text{flu} \times \text{flu} \]
\[\neg \text{migraine} \times \text{migraine} \]
Abductive diagnosis

\[H : \text{measles, flu, migraine} \]
\[O : \text{headache, fever} \]
\[K : \text{fever} \leftarrow \text{measles} \]
\[\text{red-spots} \leftarrow \text{measles} \]
\[\text{headache} \leftarrow \text{migraine} \]
\[\text{nausea} \leftarrow \text{migraine} \]
\[\text{fever} \leftarrow \text{flu} \]
\[\text{headache} \leftarrow \text{flu} \]

\[\neg \text{measles} \times \text{measles} \]
\[\neg \text{flu} \times \text{flu} \]
\[\neg \text{migraine} \times \text{migraine} \]

\[\leftarrow \text{not headache} \]
\[\leftarrow \text{not fever} \]
Abductive diagnosis

\[H : \text{measles, flu, migraine} \]
\[O : \text{headache, fever} \]
\[K : \text{fever} \leftarrow \text{measles} \]
\[\text{red-spots} \leftarrow \text{measles} \]
\[\text{headache} \leftarrow \text{migraine} \]
\[\text{nausea} \leftarrow \text{migraine} \]
\[\text{fever} \leftarrow \text{flu} \]
\[\text{headache} \leftarrow \text{flu} \]

\[\neg\text{measles} \times \text{measles} \]
\[\neg\text{flu} \times \text{flu} \]
\[\neg\text{migraine} \times \text{migraine} \]

\[\leftarrow \text{not headache} \]
\[\leftarrow \text{not fever} \]

inclusion preferred: \{\text{migraine, measles}\}, \{\text{flu}\}
program P describes normal behavior using ab-predicates

diagnosis minimal subset C' of components C such that

\[
\{ab(c) | c \in C'\} \cup \{\neg ab(c) | c \in C \setminus C'\}
\]

e.xplains observations O

playing $P_{cd}(P, C, O)$:

\[
P \cup \{\leftarrow \text{not } o | o \in O\} \cup \{\neg ab(c) \times ab(c) | c \in C\}
\]
Inconsistency handling

- program P, possibly inconsistent; consistency restoring rules R
- names N_P and N_R for rules in P and R
- generate weakening of $P \cup R$ by replacing

\[
\text{head} \leftarrow \text{body} \quad \text{with} \quad \text{head} \leftarrow \text{body}, r_i
\]

where r_i rule’s name

- add $\{r \times \neg r \mid r \in N_P\} \cup \{\neg r \times r \mid r \in N_R\}$
- minimal set of P-rules switched off, minimal set of R-rules switched on
Solution coherence

- assume solution S for problem P was computed
- problem changes slightly to P'
- not interested in arbitrary solution of P', but solution as close as possible to S.
- distance measure based on symmetric difference:
 \[A \Delta B = A \setminus B \cup B \setminus A \]
 \[S_1 \leq_S S_2 \text{ iff } S_1 \Delta S \subseteq S_2 \Delta S \]
- corresponding preference program:
 \[\{ a > \neg a \mid a \in S \} \cup \{ \neg a > a \mid a \notin S \} \]
Game theory

Prisoners’ dilemma

<table>
<thead>
<tr>
<th></th>
<th>Coop.</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop.</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Defect</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Game theory

Prisoners’ dilemma

<table>
<thead>
<tr>
<th></th>
<th>Coop.</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop.</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Defect</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Player 1: $D_1 \times C_1 \leftarrow C_2$

Player 2: $D_2 \times C_2 \leftarrow C_1$

$D_1 \times C_1 \leftarrow D_2$

$D_2 \times C_2 \leftarrow D_1$

Move clause: $1\{C_1, D_1\}1$
Game theory

Prisoners’ dilemma

<table>
<thead>
<tr>
<th></th>
<th>Coop.</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop.</td>
<td>3,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Defect</td>
<td>5,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Player 1: $D_1 \times C_1 \leftarrow C_2$

Player 2: $D_2 \times C_2 \leftarrow C_1$

$D_1 \times C_1 \leftarrow D_2$

Move clause: $1\{C_1, D_1\}$

Preferred answer set = Nash equilibrium 1,1
5. Related Issues
What else has been done?

- meta-preferences: one preference rule/ordered disjunction more important than another
- preference description language: combines different preference strategies; integrates qualitative with quantitative methods
- implementation: *generate and improve* method; iterative calls to answer set solver generate sequence of strictly improving answer sets
- integration with CP-nets: combines graph based methods with flexibility of ASO preferences
CP-nets

The problem:
- given variables v_1, \ldots, v_n, domains D_1, \ldots, D_n
- describe preference relation on value assignments

The solution:
- specify preference dependency graph
- specify total order of values given parent values
- use \textit{ceteris paribus} interpretation for preferences:

 \textit{red cars preferred over green cars =}
 \begin{align*}
 &\text{if 2 cars differ only in color,} \\
 &\text{then the red one is better than the green one}
 \end{align*}
Example

\[
\text{Main} \left\{ Steak, Fish \right\}
\]

\[
\begin{align*}
\text{Starter} & \quad \text{Drink} \\
\{ Soup, Salad \} & \quad \{ Red, White \}
\end{align*}
\]
Example

Steak \succ Fish

\begin{align*}
\text{Main} & : \{\text{Steak, Fish}\} \\
\text{Starter} & : \{\text{Soup, Salad}\} \\
\text{Drink} & : \{\text{Red, White}\}
\end{align*}

\begin{align*}
\text{Steak} : \text{Salad} \succ \text{Soup} & \quad \text{Steak} : \text{Red} \succ \text{White} \\
\text{Fish} : \text{Soup} \succ \text{Salad} & \quad \text{Fish} : \text{White} \succ \text{Red}
\end{align*}
Flips

- flip replaces value of a single variable
- flip improving: new value better according to relevant preference rule
- assignment c_1 better than c_2: there is a sequence of improving flips from c_2 to c_1.

Fish, Soup, White
\[\Downarrow\]
Steak, Soup, White
\[\Downarrow\]
Steak, Salad, White
\[\Downarrow\]
Steak, Salad, Red
Combining the approaches

- **ASO approach:** complex multi-criteria preferences, conflicting, incomplete, indifferent
 but: no explicit (in)dependencies

- **CP-nets:** structured preference representation and elicitation through explicit (in)dependencies
 but: restricted preferences among variable values

- to obtain the best of both worlds
 - identify variables with programs, their values with answer sets
 - use ASO multi-criteria preferences to specify preferences among answer sets
 - use CP-techniques to represent dependencies
Component systems at a glance

<table>
<thead>
<tr>
<th>CP-nets</th>
<th>Component systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables</td>
<td>programs</td>
</tr>
<tr>
<td>values</td>
<td>answer sets</td>
</tr>
<tr>
<td>value assignment</td>
<td>combination of answer sets</td>
</tr>
<tr>
<td>dependencies</td>
<td>dependencies</td>
</tr>
<tr>
<td>cond. pref. table</td>
<td>preference program</td>
</tr>
<tr>
<td></td>
<td>(+ language restrictions)</td>
</tr>
<tr>
<td>value flip</td>
<td>new answer set</td>
</tr>
</tbody>
</table>
6. Conclusions
What has been achieved?

- ASP a promising declarative paradigm
- simple yet expressive, interesting applications
- interesting answer set solvers
- adding preferences has great potential, conditional formula preferences very useful
- two related approaches presented
- a number of possible applications discussed
- combination with ideas from CP-nets leads to flexible framework for structured preference description and elicitation
What needs to be done?

- more refined implementation techniques
- better integration of qualitative and quantitative methods
- more convincing real world applications
 - trust negotiation (with P. Bonatti)
 - policy description languages (A. Mileo)
 - qualitative decision making (R. Grabos)