Quantitative Methoden Wissensbasierter Systeme

Probabilistische Netze und ihre Anwendungen

Robert Remus

Universität Leipzig Fakultät für Mathematik und Informatik Abteilung für Intelligente Systeme

23. Januar 2008

1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen

Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Bedingte Wahrscheinlichkeit

- Sei P eine Wahrscheinlichkeitsfunktion
- Seien A, B Formeln mit P(A) > 0
- Dann ist die bedingte Wahrscheinlichkeit von B gegeben A definiert als

$$P(B \mid A) = \frac{P(A \land B)}{P(A)}$$

• $P(B \mid A)$ gibt also die Wahrscheinlichkeit dafür an, dass wenn A wahr ist, auch B wahr ist

Der Satz von Bayes

- Sei P eine Wahrscheinlichkeitsfunktion und
- seien A, B Formeln mit P(A) > 0, P(B) > 0,
- dann gilt der Satz von Bayes

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen

Graphentheoretische Grundlagen

Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Cliquen

- $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$ sei ein ungerichteter Graph mit
 - V Menge der Knoten
 - lacksquare $\mathcal E$ Menge der Kanten
- Eine Menge $C \subseteq V$ heißt Clique von \mathcal{G} , wenn C eine maximal vollständige Menge ist, d.h.
 - lacktriangle wenn alle Knoten aus lacktriangle paarweise durch eine Kante aus $\mathcal E$ miteinander verbunden sind und
 - lacktriangle wenn es keine vollständige Teilmenge von f V gibt, die f C echt enthält

Triangulierte Graphen

- $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$ sei ein ungerichteter Graph
- Eine Sehne eines Zyklus' v_0,\ldots,v_n in $\mathcal G$ ist eine Kante zwischen zwei nicht aufeinanderfolgenden Knoten v_i,v_j , d.h. |i-j|>1
- $\mathcal G$ heißt trianguliert, wenn jeder einfache Zyklus der Länge l>3 eine Sehne besitzt

Fill-in-Graphen

- $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$ sei ein ungerichteter Graph
- ullet lpha sei eine **lineare Ordnung** auf den Knoten von ${\mathcal G}$
- Der Fill-in von \mathcal{G} bzgl. α ist die Kantenmenge $\mathcal{F}(\alpha)$, wobei
 - $(v,w) \in \mathcal{F}(\alpha)$ gdw. $(v,w) \notin \mathcal{E}$ und es einen Weg zwischen v,w gibt, der außer v,w nur Knoten enthält, die bzgl. der Ordnung $\alpha \ v,w$ nachgeordnet sind
- Der Fill-in-Graph von $\mathcal G$ bzgl. α ist der Graph

$$\mathcal{G}(\alpha) = \langle \mathbf{V}, \mathcal{E} \cup \mathcal{F}(\alpha) \rangle$$

• $G(\alpha)$ ist trianguliert

Morale Graphen

- $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$ sei ein DAG^1
- Der morale Graph \mathcal{G}_m zu \mathcal{G} wird folgendermaßen konstruiert:
 - Sind zwei Knoten u,v Elternknoten eines gemeinsames Kindknotens w, d.h. $u,v \in pa(w)$ und sind u,v noch durch keine Kante verbunden, füge die Kante (u,v) oder die Kante (v,u) zu $\mathcal E$ hinzu
 - lacksquare Dadurch entsteht ein gerichteter Graph \mathcal{G}_m^d
 - lacksquare \mathcal{G}_m ist der zu \mathcal{G}_m^d gehörige ungerichtete Graph

¹Directed <u>A</u>cyclic <u>G</u>raph

1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen

Motivation Bayes'scher Netze

Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Motivation Bayes'scher Netze - Beispiel

- die Zufallsvariablen A, B bezeichnen die Ergebnisse der Würfe zweier gleicher, fairer Münzen
- die Zufallsvariable C bezeichnet das Klingeln einer Glocke gdw. die Münzen nach einem Wurf das gleiche Bild zeigen
- A, B sind unabhängig
- A, B sind bedingt abhängig unter Kenntnis von C
- ein Graph G müsste nun die Unabhängigkeit von A,B und die Abhängigkeit von A,B,C, d.h. einseitige Abhängigkeiten, zum Ausdruck bringen
- dies ist jedoch mit einem ungerichteten Graphen G' nicht möglich

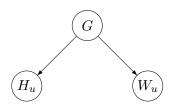
1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Beispiele Bayes'scher Netze I

"Holmes & Watson in London"

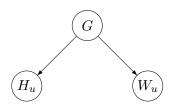
- G, H_u, W_u seien zweiwertige Zufallsvariablen
 - \blacksquare G : glatte Straßen
 - \blacksquare H_n : Holmes hat einen Unfall
 - $\blacksquare W_u$: Watson hat einen Unfall



Beispiele Bayes'scher Netze I

"Holmes & Watson in London"

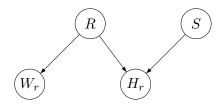
- G, H_u, W_u seien zweiwertige Zufallsvariablen
 - \blacksquare G : glatte Straßen
 - \blacksquare H_n : Holmes hat einen Unfall
 - $\blacksquare W_u$: Watson hat einen Unfall



Beispiele Bayes'scher Netze II

"Holmes & Watson in Los Angeles"

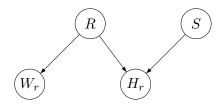
- R, S, H_r, W_r seien zweiwertige Zufallsvariablen
 - \blacksquare R: es hat geregnet
 - S: der Rasensprenger hat sich eingeschaltet
 - \blacksquare H_r : Holmes' Rasen ist nass
 - \blacksquare W_r : Watsons Rasen ist nass



Beispiele Bayes'scher Netze II

"Holmes & Watson in Los Angeles"

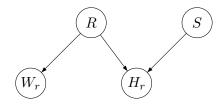
- R, S, H_r, W_r seien zweiwertige Zufallsvariablen
 - \blacksquare R: es hat geregnet
 - S: der Rasensprenger hat sich eingeschaltet
 - \blacksquare H_r : Holmes' Rasen ist nass
 - \blacksquare W_r : Watsons Rasen ist nass



Beispiele Bayes'scher Netze II

"Holmes & Watson in Los Angeles"

- R, S, H_r, W_r seien zweiwertige Zufallsvariablen
 - \blacksquare R: es hat geregnet
 - S: der Rasensprenger hat sich eingeschaltet
 - \blacksquare H_r : Holmes' Rasen ist nass
 - \blacksquare W_r : Watsons Rasen ist nass



1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze

Definition eines Bayes'schen Netzes

Definition eines Bayes'schen Netzes

- V sei eine Menge von Aussagenvariablen
- P sei eine gemeinsame Verteilung über V
- $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$ sei ein DAG
- für jedes $A_i \in \mathbf{V}$ bezeichne
 - $pa(A_i) \subseteq \mathbf{V}$ die Menge aller **Elternknoten**,
 - $de(A_i) \subseteq V$ die Menge aller Nachkommen und
 - $\blacksquare nd(A_i) \subseteq V$ die Menge aller Nicht-Nachkommen

von A_i

- $\mathcal{B} = \langle \mathbf{V}, \mathcal{E}, P \rangle$ heißt dann Bayes'sches Netz, wenn für jedes A_i gilt:
 - $\blacksquare A_i \perp \!\!\! \perp_P nd(A_i) \mid pa(A_i)^2$

 $^{^2}$ d.h. A_i ist probabilistisch unabhängig von der Ausprägung seiner Nicht-Nachkommen unter Kenntnis der Ausprägung seiner Elternknoten

Berechnung der gemeinamen Verteilung P

Wendet man die Kettenregel an und lässt in sie die Unabhängigkeitsannahmen $A_i \perp \!\!\! \perp_P nd(A_i) \mid pa(A_i)$ einfließen, zerfällt die Verteilung P in ein handliches Produkt:

- $\mathcal{B} = \langle \mathbf{V}, \mathcal{E}, P \rangle$ sei Bayes'sches Netz
- ullet die gemeinsame Verteilung P lässt sich dann durch

$$P(\mathbf{V}) = \prod_{V \in \mathbf{V}} P(V \mid pa(V))$$

$$\mathsf{mit}\ P(V\mid\emptyset) = P(V)\ \mathsf{darstellen}$$

1 Bayes'sche Netze

Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Bayes-Netze und ihre Potentialdarstellungen

- $\mathcal{B} = \langle \mathbf{V}, \mathcal{E}, P \rangle$ sei Bayes'sches Netz mit DAG $\mathcal{G} = \langle \mathbf{V}, \mathcal{E} \rangle$
- \mathcal{G}_u sei eine Triangulierung des moralen Graphen \mathcal{G}_m von \mathcal{G}
- $\{C_i \mid 1 \leq i \leq p\}$ seien die Cliquen von \mathcal{G}_u
- Wähle für jedes $V \in \mathbf{V}$ eine Clique $clq(V) \in \{C_i \mid 1 \le i \le p\}$, so dass $V \cup pa(V) \subseteq clq(V)$ gilt
- Definiere für $1 \le i \le p$

$$\psi(\mathbf{C}_i) = \prod_{V: clq(V) = C_i} P(V \mid pa(V))$$

• $\{C_1, \ldots, C_p; \psi\}$ ist dann eine Potentialdarstellung von P

Bayes'sche Netze

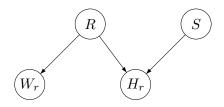
Wahrscheinlichkeitstheoretische Grundlagen Graphentheoretische Grundlagen Motivation Bayes'scher Netze Beispiele Bayes'scher Netze Definition eines Bayes'schen Netzes

Der permanente Cliquenbaum als Wissensbasis

Cliquenbaum und Potentialdarstellung bilden zusammen die Wissensbasis.

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung I

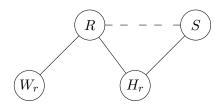
Gegeben sei das Bayes'sche Netzwerk $\mathcal{B} = \langle \mathbf{V}, \mathcal{E}, P \rangle$ mit DAG $(\mathbf{V}, \mathcal{E})$ aus dem "Holmes & Watson in Los Angeles Beispiel":



1 Bilde den moralen Graphen \mathcal{G}_m von $(\mathbf{V}, \mathcal{E})$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung II

• Lösung: Der morale Graphe \mathcal{G}_m von $(\mathbf{V}, \mathcal{E})$:



2 Triangulierung von \mathcal{G}_m : Bestimme mittels Maximum Cardinality Search eine lineare Ordnung α auf den Knoten $V \in \mathbf{V}$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung III

• Lösung: Eine lineare Ordnung α auf den Knoten in \mathbf{V} :

$$\alpha(W_r) = 1$$

$$\alpha(R) = 2$$

$$\alpha(S) = 3$$

$$\alpha(H_r) = 4$$

2 Triangulierung von \mathcal{G}_m : Berechne den Fill-in-Graphen $\mathcal{G}(\alpha)$ von \mathcal{G}_m

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung IV

- Lösung: Der Fill-in-Graph $\mathcal{G}(\alpha)$ von \mathcal{G}_m enthält keine neuen Kanten, es gilt also $\mathcal{G}(\alpha) = \mathcal{G}_m = \mathcal{G}'$
- $oldsymbol{3}$ Ordnung der Cliquen: Bestimme die Cliquen \mathbf{C}_i von \mathcal{G}'

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung V

• Lösung: Die Cliquen C_i von \mathcal{G}' :

$$\mathbf{C}_1 = \{R, W_r\}$$
$$\mathbf{C}_2 = \{R, S, H_r\}$$

 $oldsymbol{3}$ Ordnung der Cliquen: Ordne die Cliquen $oldsymbol{C}_i$ nach dem gemäß lpha jeweils größten in ihnen vorkommenden Knoten

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung VI

- ullet Lösung: Ordnung der Cliquen ${f C}_i$ ist gegeben durch $({f C}_1,{f C}_2)$
- **4** Bestimme für $1 \le i \le p$ die Mengen \mathbf{R}_i und \mathbf{S}_i :

$$\mathbf{S}_i = \mathbf{C}_i \cap (\mathbf{C}_1 \cup \ldots \cup \mathbf{C}_{i-1})$$

 $\mathbf{R}_i = \mathbf{C}_i \setminus \mathbf{S}_i$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung VII

• Lösung: die Mengen \mathbf{R}_i und \mathbf{S}_i für $1 \le i \le p = 2$:

$$\mathbf{S}_1 = \mathbf{C}_1 \cap \mathbf{C}_0 = \emptyset$$

$$\mathbf{S}_2 = \mathbf{C}_2 \cap \mathbf{C}_1 = \{R\}$$

$$\mathbf{R}_1 = \{R, W_r\}$$

$$\mathbf{R}_2 = \{S, H_r\}$$

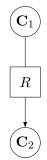
5 Bestimme für jedes i > 1 ein j < i, so dass $\mathbf{S}_i \subseteq \mathbf{C}_j$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung VIII

- Lösung: Ein j < i für i > 1, so dass $\mathbf{S}_i \subseteq \mathbf{C}_j$: j = 1, da $\mathbf{S}_2 = \{R\} \subseteq \{R, W_r\} = \mathbf{C}_1$. \mathbf{C}_1 heißt jetzt Elternclique von \mathbf{C}_2
- 6 Bilde anhand der im vorherigen Punkt festgelegten Eltern-Kind-Beziehungen einen Cliquenbaum

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung IX

• Lösung: Der Cliquenbaum:



7 Bestimme zu jedem $V \in \mathbf{V}$ eine Clique clq(V) mit $\{V\} \cup pa(V) \subseteq clq(V)$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung X

• Lösung: Cliquen clq(V) mit $\{V\} \cup pa(V) \subseteq clq(V)$ für jedes $V \in \mathbf{V}$:

$$clq(W_r) = \mathbf{C}_1$$

 $clq(R) = \mathbf{C}_2$
 $clq(S) = \mathbf{C}_2$
 $clq(H_r) = \mathbf{C}_2$

8 Definiere für $1 \le i \le p$

$$\psi(\mathbf{C}_i) = \prod_{V: clq(V) = \mathbf{C}_i} P(V \mid pa(V))$$

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung XI

• Lösung: Definition von $\psi(\mathbf{C}_i)$ für i=1

$$\psi(\mathbf{C}_1) = \psi(\{R, W_r\}) = P(W_r \mid R)$$

also

R	W_r	$\psi(\{R,W_r\})$
0	0	0.8
0	1	0.2
1	0	0
_ 1	1	1

Erzeugung des permanenten Cliquenbaums mit Potentialdarstellung XII

• Lösung: Definition von $\psi(\mathbf{C}_i)$ für i=2:

$$\psi(\mathbf{C}_2) = \psi(\{R, S, H_r\}) = P(R)P(S)P(H_r \mid R, S)$$

also

R	S	W_r	$\psi(\{R,S,H_r\})$
0	0	0	0.72
0	0	1	0
0	1	0	0.008
0	1	1	0.072
1	0	0	0
1	0	1	0.18
1	1	0	0
1	1	1	0.02