
Parameterized Splitting:
A Simple Modification-Based Approach?

Ringo Baumann1, Gerhard Brewka1, Wolfgang Dvořák2, and Stefan Woltran2

1 Leipzig University, Informatics Institute, Postfach 100920, 04009 Leipzig, Germany,
{baumann,brewka}@informatik.uni-leipzig.de

2 Vienna University of Technology, Institute of Information Systems, Favoritenstraße 9–11,
A-1040 Vienna, Austria, {dvorak,woltran}@dbai.tuwien.ac.at

Abstract. In an important and much cited paper Vladimir Lifschitz and Hudson
Turner have shown how, under certain conditions, logic programs under answer
set semantics can be split into two disjoint parts, a “bottom” part and a “top”
part. The bottom part can be evaluated independently of the top part. Results
of the evaluation, i.e., answer sets of the bottom part, are then used to simplify
the top part. To obtain answer sets of the original program one simply has to
combine an answer set of the simplified top part with the answer set which was
used to simplify this part. Similar splitting results were later proven for other
nonmonotonic formalisms and also Dung style argumentation frameworks.
In this paper we show how the conditions under which splitting is possible can
be relaxed. The main idea is to modify also the bottom part before the evaluation
takes place. Additional atoms are used to encode conditions on answer sets of
the top part that need to be fulfilled. This way we can split in cases where proper
splitting is not possible. We demonstrate this idea for argumentation frameworks
and logic programs.

1 Introduction

In an important and much cited paper Vladimir Lifschitz and Hudson Turner have
shown how, under certain conditions, logic programs under answer set semantics can
be split into two disjoint parts, a “bottom” part and a “top” part. The bottom part can
be evaluated independently of the top part. Results of the evaluation, i.e., answer sets
of the bottom part, are then used to simplify the top part. To obtain answer sets of the
original program one simply has to combine an answer set of the simplified top part
with the answer set which was used to simplify this part.

Splitting is a fundamental principle and has been investigated for several other non-
monotonic formalisms, including answer-set programming [13, 7] default logic [15]
and most recently argumentation [3, 4, 12]. It has important implications, both from the
theoretical and from the practical point of view. On the the theoretical side, splitting
allows for simplification of proofs showing properties of a particular formalism. On the
practical side, splitting concepts are useful for solving since the possibility to compute

? This work has been funded by Vienna Science and Technology Fund (WWTF) through project
ICT08-028.

solutions of parts of a program, and then to combine these solutions in a simple way,
has obvious computational advantages.

In this paper we present a simple generalization of the “classical” splitting results
for argumentation and logic programming. Generalizations for the latter have been in-
vestigated in depth in [11]. In fact, Janhunen et al. describe an entire rather impressive
module theory for logic programs based on modules consisting of rules together with
input, output and hidden variables. To a certain extent some of our results can be viewed
as being “implicit” already in that paper. Nevertheless, we believe that the constructions
we describe here complement the abstract theory in a useful manner. In particular, we
present a generalized approach to splitting which is based on simple modifications of the
components that are obtained through splitting. The general idea is to add certain con-
structs (new atoms in case of logic programs, new arguments in case of argumentation
frameworks) representing meta-information to the first component. Solutions computed
for the augmented first component thus will contain meta-information. This information
is used, together with the standard propagation of results known from classical splitting,
to modify the second component. The aim is to guarantee that solutions of the second
part match the outcome for the first component. The main advantage of this approach
is practical: standard solvers can directly be used for the relevant computations.

The outline of the paper is as follows. In Sect. 2 we provide the necessary back-
ground on classical splitting for logic programs and argumentation frameworks. Sect. 3
introduces quasi-splittings for argumentation frameworks and shows how stable exten-
sions of AFs can be computed based on them. Sect. 4 defines quasi-splittings for normal
logic programs and treats the computation of answer sets in a similar spirit. Finally, in
Sect. 5 we propose a general theory of splitting abstracting away from concrete for-
malisms and take a closer look at computational issues concerned with quasi-splitting.
We conclude the paper with a brief summary and an outlook on future work.

2 Background

In this section we give the necessary background on argumentation frameworks and
logic programs.

Argumentation Frameworks. Abstract argumentation frameworks (AFs) have been in-
troduced by Dung [6] and are widely used in formal argumentation. They treat argu-
ments as atomic entities, abstracting away from their structure and content, and focus
entirely on conflict resolution. Conflicts among arguments are represented via an attack
relation. Different semantics have been defined for AFs. Each of them singles out sets of
arguments which represent reasonable positions based on varying principles. We start
with some notation.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a
finite set of arguments and R ⊆ A×A is the attack relation. For a given AF F = (A,R)
we use A(F) to denote the set A of its arguments and R(F) to denote its attack relation
R. We sometimes write (S, b) ∈ R in case there exists an a ∈ S, such that (a, b) ∈ R;
likewise we use (a, S) ∈ R and (S, S′) ∈ R.

a1

a2

a3

b1

b2

b3

b4

b5

Fig. 1. An argumentation framework which is our running example.

Given F = (A,R) and a set S ⊆ A, we write F |S to denote the AF (S,R∩(S×S))
induced by S. Furthermore, S⊕R = {b | (S, b) ∈ R} and S	R = {a | (a, S) ∈ R}; as
well S+

R = S ∪ S⊕R and S−R = S ∪ S	R .

Several semantics for argumentation frameworks have been studied in the literature,
see e.g. [1, 2]; we focus here on the stable semantics as introduced already in [6], not the
least due to its close connection to the ASP semantics. Intuitively, a set S of arguments
is a stable extension if no argument in S attacks another argument in S, and moreover
all arguments not in S are attacked by an element of S.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F), denoted
as S ∈ cf (F), iff there are no a, b ∈ S, such that (a, b) ∈ R. Moreover, S is called a
stable extension of F iff S ∈ cf (F) and S+

R = A. The set of all stable extensions of F
is given by stb(F).

Example 1. Figure 1 shows an example AF with stable extensions {a3, b2, b5} and
{a1, b2, b3, b4}.

Logic Programs. We restrict the discussion in this paper to normal logic programs.
Such programs are sets of rules of the form

a← b1, . . . , bm, not c1, . . . , not cn (1)

where a and all bi’s and cj’s are atoms. Intuitively, the rule is a justification to “estab-
lish” or “derive” that a (the so called head) is true, if all default literals to the right of
← (the so called body) are true in the following sense: a non-negated atom bi is true
if it has a derivation, a negated one, not cj , is true if cj does not have one. Variables
can appear in rules, however they are just convenient abbreviations for the collection of
their ground instantiations.

The semantics of (ground) normal logic programs [8, 9] is defined in terms of an-
swer sets, also called stable models for this class of programs. Programs without nega-
tion in the bodies have a unique answer set, namely the smallest set of atoms closed
under the rules. Equivalently, this set can be characterized as the least model of the
rules, reading← as classical implication and the comma in the body as conjunction.

For programs with negation in the body, one needs to guess a candidate set of atoms
S and then verifies the choice. This is achieved by evaluating negation with respect
to S and checking whether the “reduced” negation-free program corresponding to this
evaluation has S as answer set. If this is the case, it is guaranteed that all applicable
rules were applied, and that each atom in S has a valid derivation based on appropriate
rules. Here is the formal definition:

Definition 3. Let P be a normal logic program, S a set of atoms. The Gelfond/Lifschitz-
reduct (GL-reduct) of P and S is the negation-free program PS obtained from P by

1. deleting all rules r ∈ P with not cj in the body for some cj ∈ S,
2. deleting all negated atoms from the remaining rules.

S is an answer set of P iff S is the answer set of PS . We denote the collection of answer
sets of a program P by AS (P).

For convenience we will use rules without head (constraints) of the form

← b1, . . . , bm, not c1, . . . , not cn (2)

as abbreviation for

f ← not f, b1, . . . , bm, not c1, . . . , not cn (3)

where f is an atom not appearing anywhere else in the program. Adding rule 2 to a
program has the effect of eliminating those answer sets of the original program which
contain all of the bis and none of the cjs.

For other types of programs and an introduction to answer set programming, a prob-
lem solving paradigm based on the notion of answer sets, the reader is referred to [5].

3 Quasi-splittings for argumentation frameworks

In this section we develop our approach for argumentation frameworks under stable
semantics. We start with the definition of quasi-splittings.

Definition 4. Let F = (A,R) be an AF. A set S ⊆ A is a quasi-splitting of F . More-
over, let S̄ = A \ S, RS

→ = R ∩ (S × S̄) and RS
← = R ∩ (S̄ × S) . Then, S is

called

– k-splitting of F , if |RS
←| = k;

– (proper) splitting of F , if |RS
←| = 0.

Note that above definition also allows for trivial splittings, i.e. S = ∅ or S = A. In
what follows, we often tacitly assume quasi-splittings to be non-trivial.

A quasi-splitting S of F induces two sub-frameworks of F , namely FS
1 = F |S and

FS
2 = F |S̄ , together with the sets of links RS

→ and RS
← connecting the sub-frameworks

in the two possible directions.3 All these components are implicitly defined by S. For
this reason specifying this set is sufficient.

Our goal is to use - under the assumption that k is reasonably small - a k-splitting
to potentially reduce the effort needed to compute the stable extensions of F . The case
k = 0, that is proper splitting, was considered by Baumann [3]4.

The basic idea is as follows. We first find a stable extension of FS
1 . However, we

have to take into account that one of the elements of S may be attacked by an argument
of FS

2 . For this reason we must provide, for each argument a in FS
1 attacked by an

argument in FS
2 , the possibility to assume it is attacked. To this end we add for a a

new argument att(a) such that a and att(a) attack each other. Now we may choose to
include the new argument in an extension which corresponds to the assumption that a
is attacked. Later, when extensions of FS

2 are computed, we need to check whether the
assumptions we made actually are satisfied. Only if they are, we can safely combine the
extensions of the sub-frameworks we have found.

Definition 5. Let F = (A,R) be an AF, S a quasi-splitting of F . A conditional exten-
sion of FS

1 is a stable extension of the modified AF [FS
1] = (AS , RS) where

– AS = S ∪ {att(a) | a ∈ A+
RS
←
}, and

– RS = (R ∩ (S × S)) ∪ {(att(a), a), (a, att(a)) | a ∈ A+
RS
←
}.

In other words, [FS
1] is obtained from FS

1 by adding a copy att(a) for each argument a
attacked from FS

2 , and providing for each such a a mutual attack between a and att(a).
For a k-splitting we thus add k nodes and 2k links to FS

1 - a tolerable augmentation for
reasonably small k. For a proper splitting S, note that [FS

1] = FS
1 .

Example 2. Consider S = {a1, a2, a3}, a splitting of our example AF F , and the result-
ing frameworks [FS

1] and FS
2 as depicted in Figure 2. We have RS

→ = {(a3, b4)} and
RS
← = {(b1, a1), (b2, a2), (b3, a2), (b3, a3)}. The set of the grey highlighted arguments

E = {att(a1), att(a2), a3} is a conditional extension of FS
1 , i.e. a stable extension of

the modified framework [FS
1]. Further stable extensions of [FS

1] are E1 = {a1, att(a2),
att(a3)}, E2 = {att(a1), a2, att(a3)}, E3 = {att(a1), a2, a3} and E4 = {att(a1),
att(a2), att(a3)}.

Each conditional extension E of FS
1 may contain meta-information in the form of

att(x) elements. This information will later be disregarded, but is important to verify
the assumptions extensions of FS

2 need to fulfill so that E can be augmented to an

3 Unlike Lifschitz and Turner we enumerate the sub-frameworks rather than calling them bottom
and top framework. For quasi-splittings there does not seem to be a clear sense in which one
is below the other.

4 Note that Baumann used a more involved definition of a splitting. The definition we use here
is not only simpler but also closer to the one used by Lifschitz and Turner.

[FS
1] FS

2

a1att(a1)

a2

att(a2)

a3att(a3)

b1

b2

b3

b4

b5

Fig. 2. A splitting of our example framework.

extension of the entire argumentation framework F . As in [3], E will be used to modify
FS

2 accordingly, thus propagating effects of elements in E on FS
2 . In the generalized

case we also need to take the meta-information in E into account to make sure the
assumptions we made are valid. In particular,

– if att(a) is in E yet a is not attacked by another element in E ∩ S, then we know
that a must be externally attacked from an element of FS

2 . In other words, we are
only interested in extensions of FS

2 which contain at least one attacker of a.
– if b is in E yet it is attacked by some argument in FS

2 , then we are only interested
in extensions of FS

2 not containing any of the attackers of b.

Before we turn these ideas into a definition we present a useful lemma which helps to
understand our definition.

Lemma 1. Let F = (A,R) be an AF. Let further B and C1, . . . , Cn be sets s.t.
B,C1, . . . , Cn ⊆ A, and D = {d1, . . . , dn} s.t. D ∩ A = ∅. The stable extensions
of the AF

F ′ = (A ∪D,R ∪ {(b, b) | b ∈ B or b ∈ D} ∪ {(c, dj) | c ∈ Cj , 1 ≤ j ≤ n})

are exactly the stable extensions E of F containing no element of B and at least one
element of every Ci, i.e. Ci ∩ E 6= ∅ for every i ∈ {1, . . . , n}.

Proof. Let E ∈ stb(F), s.t. E does not contain an element of B (+) and Ci ∩ E 6= ∅
for every i ∈ {1, . . . , n} (*). We observe E ∈ cf (F ′) because of E ⊆ A and (+), and
furthermore, E+

R(F ′) = E+
R(F) ∪D = A ∪D because of (*). Thus, E ∈ stb(F ′).

Assume now E ∈ stb(F ′). We observe that E ∩ B = ∅ since conflict-freeness
has to be fulfilled. Furthermore, Ci ∩ E 6= ∅ for every i ∈ {1, . . . , n} has to hold be-
cause E+

R(F ′) = A ∪ {d1, . . . , dn} and only arguments in Ci attack the argument di

by construction. Obviously, E ⊆ A since the elements of D are self-attacking. Further-
more, E ∈ cf (F) because R(F) ⊆ R(F ′). Consider now the attack-relation R(F ′).
We obtain E+

R(F) = E+
R(F ′)\D = (A ∪D)\D = A which proves E ∈ stb(F). �

Based on the lemma we can now define the modification of FS
2 that is needed to

compute those extensions which comply with a conditional extension E, capturing also
the assumptions made in E. First, we can eliminate all arguments attacked by an ele-
ment of E. This step corresponds to the usual propagation needed for proper splittings
as well. In addition, we make sure that only those extensions of the resulting framework
are generated which (1) contain an attacker for all externally attacked nodes of S, and
(2) do not contain an attacker for any element in E. For this purpose the techniques of
the lemma are applied.

Definition 6. Let F = (A,R) be an AF, S a quasi-splitting of F , and let E be a
conditional extension of FS

1 . Furthermore, let

EA(S,E) = {a ∈ S \ E | a /∈ (S ∩ E)⊕R}

denote the set of arguments from FS
1 not contained in E because they are externally

attacked. An (E,S)-match of F is a stable extension of the AF [FS
2]E = (A′, R′)

where

– A′ = (S̄ \ E+
RS
→

) ∪ {in(a) | a ∈ EA(S,E)}, and
– R′ = (R ∩ (A′ × A′)) ∪ {(in(a), in(a)), (b, in(a)) | a ∈ EA(S,E), (b, a) ∈
RS
←} ∪ {(c, c) | (c, E) ∈ RS

←}.

In other words, we take the framework FS
2 and modify it w.r.t. to a given conditional

extension E of FS
1 . To this end, we remove those arguments from FS

2 which are at-
tacked by E via RS

→ but we make a copy of each argument a in FS
1 externally at-

tacked by FS
2 via RS

←. These additional self-attacking arguments in(a) are used to
represent the forbidden situation where an externally attacked argument a actually re-
mains unattacked. Finally, we exclude those arguments in FS

2 from potential extensions
which attack an argument in E located in FS

1 ; these are the self-loops (c, c) for argu-
ments s with (c, E) ∈ RS

←. Again the size of the modification is small whenever k is
small: we add at most k nodes and 2k links to FS

2 .

Example 3. We continue our running example with Figure 3. On the right-hand side we
have the modification of FS

2 w.r.t. the conditional extension E = {att(a1), att(a2), a3},
i.e. the AF [FS

2]E . Observe that EA(S,E) = {a2} because a2 is not an element of E
and furthermore, it is not attacked by an argument in E ∩ S = {a3}. Hence, we have
to add a self-attacking node in(a2) to FS

2 which is attacked by the attackers of a2,
namely the arguments b2 and b3. The argument a3 (which belongs to the extension E)
is attacked by the argument b3 and attacks the argument b4. Hence, we have to add a
self-loop for b3 and further, we have to delete b4 and its corresponding attacks. The
set of the light-grey highlighted arguments E′ = {b2, b5} is an (E,S)-match of F ,
i.e. a stable extension of [FS

2]E ; in fact, it is the only (E,S)-match of F . Recall that
(E ∩ S) ∪ E′ = {a3, b2, b5} is a stable extension of the initial AF F ; we will below

[FS
1] [FS

2]E

a1att(a1)

a2

att(a2)

a3att(a3)

b1

b2

b3

in(a2)

b4

b5

Fig. 3. Propagating conditional extensions to the second AF.

show this result in general. One can further check that {b2, b3, b4} is an (E1, S)-match
of F with E1 as given in the previous example. On the other hand, for the remain-
ing conditional extensions of FS

1 , no corresponding matches exist. Take, for instance,
E2 = {att(a1), a2, att(a3)}; here we have to put self-loops for b2 and b3, but b2 re-
mains unattacked in [FS

2]E2
. Thus no stable extension for [FS

2]E2
exists.

Theorem 1. Let F = (A,R) be an AF and let S be a quasi-splitting of F .

1. If E is a conditional extension of FS
1 and E′ an (E,S)-match of F , then (E∩S)∪

E′ is a stable extension of F .
2. If H is an extension of F , then there is a set X ⊆ {att(a) | a ∈ A+

RS
←
} such that

E = (H ∩ S)∪X is a conditional extension of FS
1 and H ∩ S̄ is an (E,S)-match

of F .

Proof. ad 1. First we will show that (E ∩ S) ∪ E′ ∈ cf (F). Given that E is a con-
ditional extension of FS

1 we deduce E ∈ cf ([FS
1]). Consequently, E ∩ S ∈ cf ([FS

1])
(less arguments) and thus, E∩S ∈ cf (FS

1) (less attacks). Finally, E∩S ∈ cf (F) since
(FS

1)|S = F |S holds. Let E′ be an (E,S)-match of F , i.e. E′ ∈ stb([FS
2]E). Accord-

ing to Lemma 1, E′ ∈ stb(F ′) where F ′ = (S̄ \ E⊕
RS
→
, R(F) \ (E⊕

RS
→
, E⊕

RS
→

)). Thus,

E′ ∈ cf (F). Obviously, (E ∩ S,E′) /∈ R(F) since E ∩ S ⊆ S and E′ ⊆ S̄ \ E⊕
RS
→

.
Assume now (E′, E ∩ S) ∈ R(F). This means, there are arguments e′ ∈ E′ and
e ∈ E ∩ S, s.t. (e′, e) ∈ R. This contradicts the conflict-freeness of E′ in [FS

2]E be-
cause R([FS

2]E) contains the set {(c, c) | (c, E) ∈ RS
←}. Thus, (E′, E ∩ S) /∈ R(F)

and (E ∩ S) ∪ E′ ∈ cf (F) is shown.
We now show that ((E ∩ S)∪E′)+

R(F) = S ∪ S̄ = A. Let us consider an argument
s, s.t. s /∈ ((E ∩ S) ∪ E′)+

R(F). Assume s ∈ S. Consequently, s ∈ EA(S,E). Since

E′ is an (E,S)-match of F , by Lemma 1, E ∈ stb(F ′) such that (E, in(s)) ∈ R(F ′).
By definition of F ′ we have R(F ′) ⊆ R(F) and thus (E, in(s)) ∈ R(F) contradicting
the assumption. Assume now s ∈ S̄. Obviously, s ∈ S̄ \ E⊕

RS
→

. Since E′ is an (E,S)-
match of F we deduce by Lemma 1 that E′ is a stable extension of F ′ as defined
above. Thus, s ∈ (E′)+

R(F) contradicting the assumption. Altogether, we have shown
that (E ∩ S) ∪ E′ is a stable extension of F .

ad 2. Let (H ∩ S)+
R(F)∪̇B = S. Since H ∈ stb(F) is assumed it follows B ⊆

(H ∩ S̄)+
F . This means, B ⊆ A+

RS
←

. Consider now X = {att(b) | b ∈ B}. It can
be easily seen that E = (H ∩ S) ∪ X is a conditional extension of [FS

1]. Note that
B = EA(S,E). Since H ∈ stb(F) it follows H ∩ S̄ ∈ stb(F ′) where F ′ is as above.
Furthermore, there is no argument c ∈ H ∩ S̄, s.t. (c, d) ∈ RS

← with d ∈ E. Remember
that B = EA(S,E). Hence, for every b ∈ B, (H∩S̄)∩{b}⊕

RS
←
6= ∅, since H ∈ stb(F).

Thus, Lemma 1 is applicable which implies that H ∩ S̄ is an (E,S)-match of F . �

4 Quasi-splittings for logic programs

We restrict ourselves here to normal logic programs. A splitting S can then be defined
as a set of atoms dividing a program P into two disjoint subprograms PS

1 and PS
2 such

that no head of a rule in PS
2 appears anywhere in PS

1 .
One way to visualize this is via the dependency graph of P . The nodes of the de-

pendency graph are the atoms in P . In addition, there are two kinds of links, positive
and negative ones: whenever b appears positively (negatively) in a rule with head c,
then there is a positive (negative) link from b to c in the dependency graph. A (proper)
splitting S now is a set of atoms such that the dependency graph has no links - positive
or negative - to an atom in S from any atom outside S.5

Now let us consider the situation where a (small) number k of atoms in the heads of
rules in PS

2 appear negatively in bodies of PS
1 . This means that the dependency graph

of the program has a small number of negative links pointing in the wrong direction. As
we will see methods similar to those we used for argumentation can be applied here as
well.

In the following head(r) denotes the head of rule r, At(r) the atoms appearing
in r and pos(r) (respectively neg(r)) the positive (respectively negative) atoms in the
body of r. We also write head(P) for the set {head(r) | r ∈ P} and At(P) for
{At(r) | r ∈ P}.

Definition 7. Let P be a normal logic program. A set S ⊆ At(P) is a quasi-splitting
of P if, for each rule r ∈ P ,

– head(r) ∈ S implies pos(r) ⊆ S.

Let S̄ = At(P) \ S and VS = {c ∈ S̄ | r ∈ P, head(r) ∈ S, c ∈ neg(r)}. S is called

5 An argumentation framework F can be represented as a logic program P as follows: for each
argument a with attackers b1, . . . , bn, P contains the rule a ← not b1, . . . , not bn. Now the
graph of F corresponds exactly to the dependency graph of P with all links negative.

– k-splitting of P , if |VS | = k;
– (proper) splitting of P , if |VS | = 0.

Analogously to AFs where a splitting induces two disjoint sub-frameworks, here the
set S induces two disjoint sub-programs, PS

1 having heads in S and PS
2 having heads

in S̄. Whenever |VS | 6= 0, there are some heads in PS
2 which may appear in bodies

of PS
1 , but only in negated form. This is not allowed in standard splittings which thus

correspond to 0-splittings.
Note an important distinction between splittings for AFs and for logic programs:

an arbitrary subset of arguments is an AF splitting, whereas a splitting S for a program
P needs to fulfill the additional requirement that for each rule r ∈ P with its head
contained in S, also the entire positive body stems from S.

Example 4. Consider the following simple program

(1) a← not b
(2) b← not a
(3) c← a

The program does not have a (nontrivial) classical splitting. However, it possesses the
quasi-splitting S = {a, c} (together with the complementary quasi-splitting S̄ = {b}).
PS

1 consists of rules (1) and (3), PS
2 of rule (2). It is easily verified that VS = {b}.

For the computation of answer sets we proceed in the same spirit as before by adding
rules to PS

1 which allow answer sets to contain meta-information about the assump-
tions which need to hold for an answer set. We introduce atoms ndr(b) to express the
assumption that b will be underivable from PS

2 .

Definition 8. Let P be a normal logic program, let S be a quasi-splitting of P and
let PS

1 , respectively PS
2 , be the sets of rules in P with heads in S, respectively in S̄.

Moreover, let V be the set of atoms in S̄ appearing negatively in PS
1 .

[PS
1] is the program obtained from PS

1 by adding, for each b ∈ VS , the following
two rules:

b← not ndr(b)
ndr(b)← not b

E is called conditional answer set of PS
1 iff E is an extension of [PS

1].

Intuitively, ndr(b) represents the assumption that b is not derivable from PS
2 (since

b ∈ VS it cannot be derivable from PS
1 anyway). The additional rules allow us to

assume b - a condition which we later need to verify. The construction is similar to the
one we used for AFs where it was possible to assume that an argument is attacked.

Now, given an answer set E of [PS
1], we use E to modify PS

2 in the following way.
We first use E to simplify PS

2 in exactly the same way this was done by Lifschitz and
Turner: we replace atoms in S appearing positively (negatively) in rule bodies of PS

2

with true whenever they are (are not) contained in E. Moreover, we delete each rule
with a positive (negative) occurrence of an S-atom in the body which is not (which
is) in E. We call the resulting program E-evaluation of PS

2 . Next we add adequate

rules (constraints) which guarantee that answer sets generated by the modification of
PS

2 match the conditions expressed in the meta-atoms of E. This is captured in the
following definition:

Definition 9. Let P , S, and PS
2 be as in Def. 8, and let E be a conditional answer set

of PS
1 . Let [PS

2]E , the E-modification of PS
2 , be obtained from the E-evaluation of PS

2

by adding the following k rules

{← not b | b ∈ E ∩ VS} ∪ {← b | ndr(b) ∈ E}.

E′ is called (E,S)-match iff E′ is an answer set of [PS
2]E .

Now we can verify that answer sets of P can be obtained by computing an answer
set E1 of [PS

1] and an answer set E2 of the E1-modification of PS
2 (we just have to

eliminate the meta-atoms in E1).

Theorem 2. Let P be a normal logic program and let S be a quasi-splitting of P .

1. If E is a conditional answer set of PS
1 and F an (E,S)-match, then (E ∩ S) ∪ F

is an answer set of P .
2. If H is an answer set of P , then there is a set X ⊆ {ndr(a) | a ∈ VS} such that

E = (H ∩S)∪X is a conditional answer set of PS
1 and H ∩ S̄ is an (E,S)-match

of P .

Proof. Thanks to the richer syntax of logic programs compared to AFs, the proof of this
result is conceptually simpler than the one for Theorem 1. Due to space restrictions, we
give here only a sketch. The proof is done in two main steps.

First, given a normal program P and S a quasi-splitting of P , define the program
PS = [PS

1] ∪ P
S

2 ∪ {← not b′, b; ← b′,ndr(b) | b ∈ VS} where P
S

2 results from
PS

2 by replacing each atom s ∈ S̄ with a fresh atom s′. One can show that P and
PS are equivalent in the following sense: (1) if E is an answer set of P then X =
(E ∩ S) ∪ {s′ | s ∈ E ∩ S̄} ∪ {ndr(s) | s ∈ VS \ E} is an answer set of PS ; in
particular, by the definition of X and VS ⊆ S̄, we have, for each s ∈ VS , s′ ∈ X iff
s ∈ X iff ndr(s) 6∈ X; (2) if H is an answer set of PS , then (H ∩ S)∪ {s | s′ ∈ H} is
an answer set of P .

Next, we observe that PS has a proper split T with T = S ∪ {ndr(s) | s ∈ VS}.
With this result at hand, it can be shown that after evaluating the bottom part of this
split, i.e. (PS)T1 = [PS

1], the rules {← not b′, b; ← b′,ndr(b) | b ∈ VS} in PS play
exactly the role of the replacements defined in [PS

2]E . In other words, we have for each
E ∈ AS ((PS)T1) = AS ([PS

1]), the E-evaluation of (PS)T2 is equal to ([PS
2]E)′, where

([PS
2]E)′ denotes [PS

2]E replacing all atoms s by s′. Together with the above relation
between answer sets of P and PS the assertion is now shown in a quite straightforward
way. �

Example 5. We follow up on Example 4. To determine the conditional answer sets of
PS

1 we use the program

a← not b
c← a
b← not ndr(b)
ndr(b)← not b

This program has two answer sets, namely E1 = {a, c,ndr(b)} and E2 = {b}.
The E1-modification of PS

2 consists of the single rule← b and its single answer set
∅ is an (S,E1)-match. We thus obtain the first answer set of P , namely (E1 ∩S)∪∅ =
{a, c}.

The E2-modification of PS
2 is the program:

b
← not b

Its single answer set {b} is an (S,E2)-match. We thus obtain the second answer set of
P , namely (E2 ∩ S) ∪ {b} = {b}.

Of course, the example is meant to illustrate the basic ideas, not to show the potential
computational benefits of our approach. However, if we find a k-splitting with small k
for large programs with hundreds of rules such benefits may be tremendous.

As the thoughtful reader may have recognized our results are stated for normal
logic programs while Lifschitz and Turner define splittings for the more general class
of disjunctive programs. However, our results can be extended to disjunctive programs
in a straightforward way.

5 Algorithms for quasi-splittings

For the computation of quasi-splittings it is most beneficial to apply some of the existing
highly efficient graph algorithms. Since AFs actually are graphs, such algorithms can
be directly applied here. For logic programs we have to make a slight detour via their
dependency graphs. Intuitively, a dependency graph is a directed graph with two types
of links, En and Ep, the negative respectively positive links. Recall that the dependency
graph of a logic program P is given by

(At(P), {(a, head(r)) | a ∈ neg(r), r ∈ P}, {(a, head(r)) | a ∈ pos(r), r ∈ P}).

The concepts of quasi-splittings, k-splittings and proper splittings can be defined
for dependency graphs in a straightforward way:

Definition 10. Let D = (V,En, Ep) be a dependency graph and S ⊆ V . Let S̄ =
V \ S, E = En ∪ Ep, RS

→ = E ∩ (S × S̄) and RS
← = E ∩ (S̄ × S) . S is called

– quasi-splitting of D, if RS
← ∩ Ep = ∅

– k-splitting of D, if |RS
←| = k and RS

← ∩ Ep = ∅.
– (proper) splitting of D, if |RS

←| = 0.

Now it is not difficult to see that each quasi-splitting S of the dependency graph of a
program P corresponds to a quasi-splitting of P and vice versa.6 Since all dependencies
in AFs are negative, we can also identify an AF (A,R) with the dependency graph
(A,R, ∅).

We now address the problem of finding splittings of a given dependency graph. For
proper splittings the distinction between negative and positive dependencies is irrele-
vant. Proper splittings are given by the strongly connected components (SCCs) of the
graph (V,En ∪ Ep) (see [3, 4] for more details). It is well known that the SCCs of a
graph can efficiently be computed using, for instance, the Tarjan-algorithm [14].

While proper splittings do not allow splitting within an SCC S, with a k-splitting
we can split S as long as the edge-connectivity of S is ≤ k. However we additionally
have to respect the condition RS

← ∩Ep = ∅, i.e. that there are no positive dependencies
from S̄ to S.

For computing a k-splitting of a dependency graph with minimal k, we can apply
existing polynomial-time algorithms for computing minimum cuts in directed graphs
(see e.g. [10]). Let G = (V,E) be a directed graph where each arc (i, j) has an as-
sociated weight uij , which is a nonnegative real number. A cut is a partition of the
node set into two nonempty parts S and V \ S. The capacity of the cut (S, V \ S) is∑

i∈S,j∈V \S uij , and we denote the capacity of the cut as u(S, V \ S). The minimum
unrestricted cut problem is to find a partition of V into two nonempty parts, S∗ and
V \ S∗, so as to minimize u(S∗, V \ S∗).

To ensure that minimal cuts do not contain forbidden edges we use the weight func-
tion w : E 7→ {1,∞} such that w(e) =∞ for e ∈ Ep and w(e) = 1 for e ∈ En \ Ep.
Now, if (S∗, V \ S∗) is a solution to the problem, then V \ S∗ is a quasi-splitting of
the graph with smallest possible k. More generally, each cut with finite capacity corre-
sponds to a quasi-splitting, and if the minimal cut has weight∞, then no quasi-splitting
exists.

Recursive Splitting. We observe that quasi-splittings allow for a recursive procedure to
compute the stable extensions of AFs, resp. the answer-sets of logic programs. This is
in contrast to proper splittings, where a decomposition into SCCs is the “best” we can
do. To exemplify this observation consider an AF with an even cycle

F = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, a)}).

Then we first can find a quasi split, e.g. S = {a, b}. If we now consider [FS
1], we

observe that we now find even a proper splitting of this AF, namely S′ = {a, att(a)}.
The value of such a recursive approach is even more drastic if we consider a, b, c, d
being huge DAGs which are only linked via single edges which however yield a cycle
going through all arguments. This suggests the following simple recursive procedure to
compute stable extensions of an AF.

6 Note, however, that the program quasi-splitting corresponding to a k-splitting of the depen-
dency graph may actually be a k′-splitting for some k′ 6= k. This is due the different ways
to count the size of a splitting. For splittings on the dependency graph we use the number of
(negative) edges going form S̄ to S while in the definition of program quasi-splittings we used
the number of atoms in S̄ such that there is an edge to S.

Function RS ; input is an AF F = (A,R); output is a set of extensions:

1. find non-trivial quasi-splitting S of F (s.t. |RS
←| is minimal);

2. if size([FS
1]) ≥ size(F) return7 stb(F) via some standard method;

3. otherwise, let E = ∅ and do for each E ∈ RS ([FS
1]):

E = E ∪ {(E ∪ E′) ∩A | E′ ∈ RS ([FS
2]E)}.

4. return E .

Note that the function terminates since the size of the involved AFs decreases in
each recursion. The procedure is directly applicable to splitting of programs, by just
replacing F by a program P and stb(F) by AS (P).

6 Discussion

In this paper, we proposed a generalization of the splitting concept introduced by Lif-
schitz and Turner which we showed to be applicable to two prominent nonmonotonic
reasoning formalisms. Compared to other work in the area, the novel contributions of
our work are twofold:

1. with the concept of quasi-splitting, we significantly extended the range of applica-
bility of splitting without increasing the computational cost of finding a split;

2. the concept of a modification-based approach allows to evaluate the components of
a split within the formalism under consideration.

We believe that the approach we have introduced here is applicable to further for-
malisms and semantics. In Section 5 we have already discussed some computation
methods which might pave the way towards a uniform and general theory of splitting.
Future work includes the refinement of our methods in the sense that splitting should,
whenever possible, be performed in such a way that one of the resulting components is
an easy-to-compute fragment.

Finally, we also want to provide empirical support for our claim that quasi-splittings
have computational benefits. Note that quasi-splittings as well as proper splittings, on
the one hand, divide the search space into smaller fractions in many cases, but on the
other hand this might result in the computation of more models (i.e., stable extensions
or answer sets) which turn out to be “useless” when propagated from the first to the
second part of the split (i.e. they do not contribute to the models of the entire frame-
work (or program). So from the theoretical side it is not clear how splitting effects the
computation times. However for classical splitting we have empirical evidence [4] that
splitting improves the average computation time. We thus plan to perform an empirical
analysis of the effects of quasi-splitting on computation times in the spirit of [4].

Acknowledgments

We want to thank the reviewer of this paper for various useful remarks which helped to
improve the presentation.

7 size(F) denotes the number of arguments in F .

References

1. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-
tation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

2. Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In Iyad
Rahwan and Guillermo R. Simari, editors, Argumentation in Artificial Intelligence, pages
25–44. Springer, 2009.

3. Ringo Baumann. Splitting an argumentation framework. In James P. Delgrande and Wolf-
gang Faber, editors, Proceedings of the 11th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of LNCS, pages 40–53.
Springer, 2011.

4. Ringo Baumann, Gerhard Brewka, and Renata Wong. Splitting argumentation frameworks:
An empirical evaluation. In Proc. TAFA, LNCS. Springer, 2012. to appear.

5. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92–103, 2011.

6. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

7. Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Transactions
on Database Systems, 22(3):364–418, 1997.

8. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Logic Programming: Proceedings of the Fifth International Conference and Symposium,
pages 1070–1080, Cambridge, Mass., 1988. MIT Press.

9. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Comput., 9(3/4):365–386, 1991.

10. Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms, 17(3):424–446, 1994.

11. Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects
of disjunctive stable models. J. Artif. Intell. Res., 35:813–857, 2009.

12. Bei Shui Liao, Li Jin, and Robert C. Koons. Dynamics of argumentation systems: A division-
based method. Artif. Intell., 175(11):1790–1814, 2011.

13. Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Pascal Van Hentenryck,
editor, Proceedings of the Eleventh International Conference on Logic Programming (ICLP
1994), pages 23–38. MIT-Press, 1994.

14. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

15. Hudson Turner. Splitting a default theory. In William J. Clancey and Daniel S. Weld, edi-
tors, Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI) Vol. 1, pages 645–
651. AAAI Press / The MIT Press, 1996.

