Weighted Context-Free Grammars over Bimonoids

George Rahonis and Faidra Torpari

Aristotle University of Thessaloniki, Greece

WATA 2018 Leipzig, May 22, 2018

Faidra Torpari (Aristotle University of Thessaloniki)

Motivation Bimonoids

Why bimonoids?

LogicGuard Project I,II

- http://www.risc.jku.at/projects/LogicGuard/
- http://www.risc.jku.at/projects/LogicGuard2/

network security specification & verification formalism
tool for runtime network monitoring

McCarthy-Kleene logic

- four valued logic: t, f, u, e
- truth tables

		f				and				
t	t	t	t	t	_	t	t	f	и	е
f	t	t f	и	е		f	t f	f	f	f
и	t	u e	и	е		u e	и	f	и	е
е	е	е	е	е		е	е	е	е	e

- on-commutative
- in practice an "error" is not always a critical error, hence sometimes the system stops without reason
- a fuzzy setup has been arisen

イロト 不得下 イヨト イヨト 二日

Fuzzification of MK-logic

$$K = \{(t, f, u, e) \in [0, 1]^4 \mid t + f + u + e = 1\}$$

 $\mathbf{k_1} = (t_1, f_1, u_1, e_1), \ \mathbf{k_2} = (t_2, f_2, u_2, e_2) \in K$

 $\textbf{k}_3 = \textbf{k}_1 \sqcup \textbf{k}_2 ~\textit{MK-disjunction}$

$$\mathbf{k_3} = (t_3, f_3, u_3, e_3) \qquad \begin{array}{l} t_3 = t_1 + (f_1 + u_1)t_2 \\ f_3 = f_1 f_2 \\ u_3 = f_1 u_2 + u_1(f_2 + u_2) \\ e_3 = e_1 + (f_1 + u_1)e_2 \end{array}$$

 $\mathbf{k}_4 = \mathbf{k}_1 \sqcap \mathbf{k}_2$ *MK-conjunction*

$$\mathbf{k_4} = (t_4, f_4, u_4, e_4) \qquad \begin{array}{l} t_4 = t_1 t_2 \\ f_4 = f_1 + (t_1 + u_1) f_2 \\ u_4 = t_1 u_2 + u_1 (t_2 + u_2) \\ e_4 = e_1 + (t_1 + u_1) e_2 \end{array}$$

Weighted Context-Free Grammars

10

The bimonoid of the MK-fuzzy setup

 □ and □ are: non-commutative, do not distribute to each other

•
$$\mathbf{0} = (0, 1, 0, 0), \quad \mathbf{1} = (1, 0, 0, 0)$$

•
$$(K,\sqcup,\mathbf{0}), \ (K,\sqcap,\mathbf{1})$$
 monoids

•
$$\mathbf{k} = (t, f, u, e) \in K$$

 $\mathbf{0} \sqcap \mathbf{k} = \mathbf{0} \quad \text{but} \quad \mathbf{k} \sqcap \mathbf{0} = (0, t + f + u, 0, e)$

• $(K, \sqcup, \sqcap, 0, 1)$ left multiplicative-zero bimonoid

(人間) トイヨト イヨト

Examples of Bimonoids

- $(M_n(S), \cdot, \odot, I_n, \mathbf{1})$
 - S: non-commutative semiring $(S, +, \cdot, 0, 1)$
 - $M_n(S)$: set of all $n \times n$ maxtrices with elements in S
 - ordinary multiplication of matrices
 - • Hadamard product
 - 1: $n \times n$ maxtrix with all elements equal to 1
- $(M_n(S), \cdot, \odot, I_n, I'_n)$
 - \odot binary operation, where $A \odot B = C n \times n$ maxtrix with $c_{i,i} = a_{i,1}b_{n,i} + a_{i,2}b_{n-1,i} + \ldots + a_{i,n}b_{1,i}$
 - I'_n : $n \times n$ maxtrix where $i'_{1,n} = i'_{2,n-1} = \ldots = i'_{n,1} = 1$ and the rest equal to 0

$$(K, +, \cdot, 0, 1)$$
: left multiplicative-zero bimonoid

Motivation Weighted context-free grammars (wcfg)

Why weighted context-free grammars over bimonoids?

- Runtime verification: Context-free grammars as a specification formalism
 - Efficient monitoring of parametric context-free patterns P.O. Meredith, D. Jin, F. Chen, G. Roşu, *Autom. Softw. Eng.* 17(2010) 149–180. doi:10.1007/s10515-010-0063-y
- Software Model Checking: Context-free grammars for component interfaces
 - Interface Grammars for Modular Software Model Checking, G. Hughes, T. Bultan, in: *Proceedings of ISSTA 2007, ACM* 2007, pp. 39–49. doi:10.1145/1273463.1273471

- 4 週 ト - 4 三 ト - 4 三 ト

Weighted context-free grammars over Σ and K

Definition

A weighted context-free grammar (wcfg for short) over Σ and K is a five-tuple $\mathcal{G} = (\Sigma, N, S, R, wt)$ where

- (Σ, N, S, R) context-free grammar with R linearly ordered
- $wt: R \rightarrow K$ mapping assigning *weights* to the rules

$$w \stackrel{r}{\Longrightarrow}_{\mathcal{G}} u$$
 iff $w = w_1 A w_2$, $u = w_1 v w_2$, $r = A \rightarrow v \in R$

We use only **leftmost** derivations (i.e, $w_1 \in \Sigma^*$)

- 4 同 6 4 日 6 4 日 6

Weighted context-free grammars over Σ and K

• derivation of \mathcal{G} : $d = r_0 \dots r_{n-1}$ s.t

there are $w_i \in (\Sigma \cup N)^*$, $w_i \stackrel{r_i}{\Longrightarrow} w_{i+1}$

we write $w_0 \stackrel{d}{\Longrightarrow} w_n$

$$weight(d) = wt(r_0) \dots wt(r_{n-1})$$

• *d* derivation of \mathcal{G} for *w* iff $S \stackrel{d}{\Longrightarrow} w$

Condition

For every $A \in N$ there is not any derivation d of \mathcal{G} such that $A \stackrel{d}{\Longrightarrow} A$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Weighted context-free grammars over Σ and K

 \bullet series $\|\mathcal{G}\|$ of \mathcal{G}

 $w\in \Sigma^*$, d_1,\ldots,d_m all the derivations of ${\mathcal G}$ for w,

 $d_1 \leq_{lex} \ldots \leq_{lex} d_m$ $\|\mathcal{G}\|(w) = \sum_{1 \leq i \leq m} weight(d_i)$

none derivation of \mathcal{G} for w: $\|\mathcal{G}\|(w) = 0$

- series *s* context-free : if there is wcfg \mathcal{G} , $s = \|\mathcal{G}\|$
- $CF(K, \Sigma)$: the class of all context-free series over Σ and K
- $\mathcal{G} = (\Sigma, N, S, R, wt)$ unambiguous : if (Σ, N, S, R) unambiguous

◆ロト ◆帰 ト ◆注 ト ◆注 ト → 三 → のへの

Example of wcfg

 $\mathcal{G} = (\Sigma, N, S, R, wt)$: unambiguous wcfg over $(K, \sqcup, \sqcap, 0, 1)$ and Σ

- (Σ, N, S, R): generates all executions of a concrete program
- finitely many critical errors occuring in an execution
- critical errors: $r \in R$, wt(r) = (t, f, u, e), e > 0
- $d = r_0 r_1 \dots r_{n-1}$ derivation of \mathcal{G} for a execution

at first r_k s.t $wt(r_0) \dots wt(r_k) = (t', f', u', e'), e' > 0$

critical error occurs and the system should stop

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Chomsky normal forms

Definition

A wcfg $\mathcal{G} = (\Sigma, N, S, R, wt)$ over Σ and K is said to be

- in *Chomsky normal form* if every rule $r \in R$ is of the form $r = A \rightarrow BC$ or $r = A \rightarrow a$ with $B, C \in N$ and $a \in \Sigma$,

- in generalized Chomsky normal form if every rule $r \in R$ is of the form $r = A \rightarrow BC$ or $r = A \rightarrow a$ with $B, C \in N$ and $a \in \Sigma \cup \{\varepsilon\}$.

- chain rule: rule of the form $A \rightarrow B$ and B is variable
- ε -rule: rule of the form $A \to \varepsilon$

 \mathcal{G} in Chomsky normal form: neither chain rules nor ε -rules

 ${\cal G}$ in generalized Chomsky normal form: no chain rules

イロト 不得 トイヨト イヨト

Results

Closure properties of context-free series

- $s_1, s_2 \in CF(K, \Sigma) \Longrightarrow s_1 + s_2 \in CF(K, \Sigma)$
- $s = \|\mathcal{G}\|$, \mathcal{G} unambiguous, $k \in \mathcal{K} \Longrightarrow sk = \|\mathcal{G}'\|$, \mathcal{G}' unambiguous

Chomsky normal forms

- $\mathcal{G} = (\Sigma, N, S, R, wt)$ without chain rules and ε -rules. Then, we can effectively construct an equivalent one in Chomsky normal form.
- G = (Σ, N, S, R, wt). Then, we can effectively construct an equivalent one in generalized Chomsky normal form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

May 22, 2018

13

• Y alphabet, $\overline{Y} = \{\overline{y} \mid y \in Y\}$ copy

Dyck language over Y (D_Y): the language of $\mathcal{G}_Y = (Y \cup \overline{Y}, \{S\}, S, R)$ $R = \{S \rightarrow yS\overline{y} \mid y \in Y\} \cup$ $\{S \rightarrow SS, S \rightarrow \varepsilon\}$

- $\mathcal{K}[\Sigma \cup \{\varepsilon\}]$: set of all $s \in \mathcal{K} \langle \langle \Sigma^* \rangle \rangle$ with |supp(s)| = 1, $\text{supp}(s) \subseteq \Sigma \cup \{\varepsilon\}$
- Δ alphabet, $h: \Delta \rightarrow K[\Sigma \cup \{\varepsilon\}]$

alphabetic morphism induced by $h: h: \Delta^* \to \mathcal{K} \langle \langle \Sigma^* \rangle \rangle$

- $\delta_0, \ldots, \delta_{n-1} \in \Delta$, $h(\delta_i) = k_i . a_i$, $k_i \in K$, $a_i \in \Sigma \cup \{\varepsilon\}$
- $h(\delta_0 \ldots \delta_{n-1}) = k_0 \ldots k_{n-1} \cdot a_0 \ldots a_{n-1}$
- $h(\varepsilon) = 1.\varepsilon$

A Chomsky-Schützenberger type result

Theorem

For every $s \in CF(K, \Sigma)$, there are a **linearly ordered** alphabet $Y \cup \overline{Y}$, a recognizable language L over $Y \cup \overline{Y}$, and an alphabetic morphism $h: Y \cup \overline{Y} \to K[\Sigma \cup \{\varepsilon\}]$ such that $s = h(D_Y \cap L)$.

•
$$h(D_Y \cap L) = \sum_{v \in D_Y \cap L} h(v)$$

• sum up according to the lexicographic order on $(Y \cup \overline{Y})^*$

くほと くほと くほと

Weighted automata over Σ and K

• Weighted automata over K have been already studied.

- MK-fuzzy automata and MSO logics, M. Droste, T. Kutsia, G. Rahonis, W. Schreiner, in: *Proceedings of GandALF 2017*, *EPTCS*256 (2017) 106–120. doi:10.4204/EPTCS.256.8
- Linear order is imposed on states sets.

Definition

A series $s : \Sigma^* \to K$ is called *recognizable* if there is a weighted automaton \mathcal{A} over Σ and K such that $s = ||\mathcal{A}||$.

A B A A B A

Recognizable and context-free series relation

Definition

A wcfg $\mathcal{G} = (\Sigma, N, S, R, wt)$ over Σ and K is called *right-linear* if its rules are of the form $A \rightarrow aB$, $A \rightarrow a$, or $A \rightarrow \varepsilon$ where $B \in N$ and $a \in \Sigma$.

Theorem

Let Σ be a **linearly ordered** alphabet. Then a series $s \in K \langle \langle \Sigma^* \rangle \rangle$ is generated by a right-linear wcfg over Σ and K iff it is recognized by a weighted automaton over Σ and K.

Faidra Torpari (Aristotle University of Thessaloniki)

イロト イポト イヨト イヨト 二日

Open Problems (under investigation)

- Closure under scalar product $ks, k \in K, s \in CF(K, \Sigma)$
- Closure under Cauchy product

$$s, r \in K \langle \langle \Sigma^* \rangle \rangle, \quad w = a_0 \dots a_{n-1} \in \Sigma^*, \quad a_i \in \Sigma$$
$$sr(w) = (s(\varepsilon)r(a_0 \dots a_{n-1})) + (s(a_0)r(a_1 \dots a_{n-1})) + \dots + (s(w)r(\varepsilon))$$
$$sr(w) = (s(a_0 \dots a_{n-1})r(\varepsilon)) + (s(a_0 \dots a_{n-2})r(a_{n-1})) + \dots + s(\varepsilon)r(w))$$

• Weighted pushdown automata over Σ and K

Faidra Torpari (Aristotle University of Thessaloniki)

Weighted Context-Free Grammars

Thank you!

Ευχαριστώ!

Faidra Torpari (Aristotle University of Thessaloniki)

Weighted Context-Free Grammars

イロト イポト イヨト イヨト