Logic-based description of weighted architecture styles

Paulina Paraponiari, George Rahonis

Aristotle University of Thessaloniki Macedonia, Greece

WATA 2018 Leipzig, May 25, 2018

1 / 29

A single Master/Slave architecture

- Does PCL suffice to describe any architecture?
 - NO
- We need a way to describe architectures with arbitrarily many components!
- Components???
- M, S are the components of the Master/Slave architecture communicating via ports

- We need to describe generic architectures
 - For any number of components
 - Satisfying concrete topologies
 - e.g. Star

- We need to describe generic architectures
 - For any number of components
 - Satisfying concrete topologies
 - e.g. Star, Ring

- We need to describe generic architectures
 - For any number of components
 - Satisfying concrete topologies
 - e.g. Star, Ring, Pipe Filter

Pipe Filter

- We need to describe generic architectures
 - For any number of components
 - Satisfying concrete topologies
 - e.g. Star, Ring, Pipe Filter, Grid

- T_1, \ldots, T_n : component types
- $c: T_i$ component c of type T_i
- First-order configuration logic, Syntax:

$$F ::= true \mid \phi \mid \neg F \mid F \sqcup F \mid F + F$$

$$\mid \exists \, (c:T) \, (\Phi(c)).F \mid \sum (c:T) \, (\Phi(c)).F$$

- ullet ϕ interaction formula,
- \bullet $\Phi(c)$ set-theoretic predicate on c

- T_1, \ldots, T_n : component types
- $C_{T_i} = \{c : T_i \mid c \text{ component of type } T_i\}$
- P_{T_i} : ports of component type T_i
- $B \subseteq C_{T_1} \cup \ldots \cup C_{T_n}$ set of component instances
- $\bullet \ P_B \subseteq P_{T_1} \cup \ldots \cup P_{T_n}, \ \gamma \in \mathcal{P}(\mathcal{P}(P_B))$

$$\begin{array}{lll} (\mathcal{B},\gamma)\models \mathit{true} \\ (\mathcal{B},\gamma)\models \phi & \mathit{iff} \quad \gamma\models \phi \\ (\mathcal{B},\gamma)\models \neg F & \mathit{iff} \quad (\mathcal{B},\gamma)\not\models F \\ (\mathcal{B},\gamma)\models F_1\sqcup F_2 & \mathit{iff} \quad (\mathcal{B},\gamma)\models F_1 \ \mathit{or} \ (\mathcal{B},\gamma)\models F_2 \\ (\mathcal{B},\gamma)\models \exists \ (c:T)\ (\Phi(c)).F & \mathit{iff} \quad (\mathcal{B},\gamma)\models \bigsqcup_{c':T\in \mathcal{B}\land\Phi(c')}F[c'/c] \\ (\mathcal{B},\gamma)\models \sum (c:T)\ (\Phi(c)).F & \mathit{iff} \quad (\mathcal{B},\gamma)\models \sum_{c':T\in \mathcal{B}\land\Phi(c')}F[c'/c] \end{array}$$

How can we represent quantitative features of architectures?

Star with quantitative features

- $(K, \oplus, \otimes, 0, 1)$ commutative semiring
- T_1, \ldots, T_n : component types
- $c: T_i$ component c of type T_i
- Weighted first-order configuration logic, Syntax:

$$F ::= true \mid \phi \mid \neg F \mid F \sqcup F \mid F + F \mid$$

$$\exists (c : T) (\Phi(c)).F \mid \sum (c : T) (\Phi(c)).F$$

$$Z ::= k \mid F \mid Z \oplus Z \mid Z \otimes Z \mid Z \oplus Z \mid$$

$$\bigoplus (c : T)(\Phi(c)).Z \mid \bigotimes (c : T)(\Phi(c)).Z \mid \biguplus (c : T)(\Phi(c)).Z$$

- $ullet \phi$ interaction formula,
- $\Phi(c)$ set-theoretic predicate on c,
- $k \in K$

- T_1, \ldots, T_n : component types, P_{T_i} : ports of component type T_i
- $C_{T_i} = \{c : T_i \mid c \text{ component of type } T_i\}$

•
$$B \subseteq C_{T_1} \cup \ldots \cup C_{T_n}$$
, $P_B \subseteq P_{T_1} \cup \ldots \cup P_{T_n}$, $\gamma \in \mathcal{P}(\mathcal{P}(P_B))$
 $\|k\| (B, \gamma) = k$
 $\|F\| (B, \gamma) = \begin{cases} 1 & \text{if } (B, \gamma) \models F \\ 0 & \text{otherwise} \end{cases}$
 $\|Z_1 \oplus Z_2\| (B, \gamma) = \|Z_1\| (B, \gamma) \oplus \|Z_2\| (B, \gamma)$
 $\|Z_1 \otimes Z_2\| (B, \gamma) = \|Z_1\| (B, \gamma) \otimes \|Z_2\| (B, \gamma)$
 $\|Z_1 \oplus Z_2\| (B, \gamma) = \bigoplus_{\gamma = \gamma_1 \cup \gamma_2} (\|Z_1\| (B, \gamma_1) \otimes \|Z_2\| (B, \gamma_2))$
 $\|\bigoplus (c:T)(\Phi(c)).Z\| (B, \gamma) = \bigoplus_{c':T \in B \land \Phi(c')} \|Z[c'/c]\| (B, \gamma)$
 $\|\bigotimes (c:T)(\Phi(c)).Z\| (B, \gamma) = \bigoplus_{\gamma = \cup \gamma_{c'}, c':T \in B \land \Phi(c')} \|Z[c'/c]\| (B, \gamma)$
 $\|\bigoplus (c:T)(\Phi(c)).Z\| (B, \gamma) = \bigoplus_{\gamma = \cup \gamma_{c'}, c':T \in B \land \Phi(c')} \|Z[c'/c]\| (B, \gamma_{c'})$

Publish-Subscribe architecture (applications to IoT)

Weighted Publish-Subscribe architecture: assigns to subscribers their priorities for the topics

Does first-order configuration logic always suffice? NO

- T_1, \ldots, T_n : component types
- $c: T_i$ component c of type T_i , $C: T_i$ set of components of type T_i
- Second-order configuration logic, Syntax:

$$S ::= true \mid \phi \mid \neg S \mid S \sqcup S \mid S + S \mid \exists (c : T) (\Phi(c)).S \mid \\ \sum (c : T) (\Phi(c)).S \mid \exists (C : T) (\Psi(C)).S \mid \sum (C : T) (\Psi(C)).S$$

- ullet ϕ interaction formula,
- ullet $\Phi(c)$ set-theoretic predicate on c, $\Psi(C)$ set-theoretic predicate on C

- T_1, \ldots, T_n : component types
- $c: T_i$ component c of type T_i , $C: T_i$ set of components of type T_i

$$S ::= true \mid \phi \mid \neg S \mid S \sqcup S \mid S + S \mid \exists (c:T) (\Phi(c)).S \mid \sum (c:T) (\Phi(c)).S \mid \exists (C:T) (\Psi(C)).S \mid \sum (C:T) (\Psi(C)).S$$

$$\Xi ::= k \mid S \mid \Xi \oplus \Xi \mid \Xi \otimes \Xi \mid \Xi \oplus \Xi \mid \bigoplus (c : T) (\Phi(c)).\Xi \mid$$

$$\bigotimes (c : T) (\Phi(c)).\Xi \mid \biguplus (c : T) (\Phi(c)).\Xi \mid$$

$$\biguplus (C : T) (\Psi(C)).\Xi \mid \bigotimes (C : T) (\Psi(C)).Z \mid$$

$$\biguplus (C : T) (\Psi(C)).\Xi$$

- $k \in K$.
- \bullet S is a second-order configuration logic formula

Architectures with quantitative characteristics can be described by weighted second-order configuration logic formulas

$$\|k\|(B,\gamma) = k \qquad \|S\|(B,\gamma) = \begin{cases} 1 & \text{if } (B,\gamma) \models S \\ 0 & \text{otherwise} \end{cases}$$

$$\|\Xi_1 \oplus \Xi_2\|(B,\gamma) = \|\Xi_1\|(B,\gamma) \oplus \|\Xi_2\|(B,\gamma)$$

$$\|\Xi_1 \otimes \Xi_2\|(B,\gamma) = \|\Xi_1\|(B,\gamma) \otimes \|\Xi_2\|(B,\gamma)$$

$$\|\Xi_1 \oplus \Xi_2\|(B,\gamma) = \bigoplus_{\gamma = \gamma_1 \cup \gamma_2} (\|\Xi_1\|(B,\gamma_1) \otimes \|\Xi_2\|(B,\gamma_2))$$

$$\|\bigoplus(c:T)(\Phi(c)).\Xi\|(B,\gamma) = \bigoplus_{c':T \in B \land \Phi(c')} \|\Xi[c'/c]\|(B,\gamma)$$

$$\|\bigotimes(c:T)(\Phi(c)).\Xi\|(B,\gamma) = \bigotimes_{c':T \in B \land \Phi(c')} \|\Xi[c'/c]\|(B,\gamma)$$

$$\|\bigoplus(c:T)(\Phi(c)).\Xi\|(B,\gamma) = \bigoplus_{\gamma = \cup \gamma_{c'},c':T \in B \land \Phi(c')} (\bigotimes_{c':T \in B \land \Phi(c')} \|\Xi[c'/c]\|(B,\gamma))$$

$$\|\bigoplus(C:T)(\Psi(c)).\Xi\|(B,\gamma) = \bigoplus_{C':T \subseteq B \land \Psi(C')} \|\Xi[C'/C]\|(B,\gamma)$$

$$\|\bigotimes(C:T)(\Psi(C)).\Xi\|(B,\gamma) = \bigotimes_{C':T \subseteq B \land \Psi(C')} \|\Xi[C'/C]\|(B,\gamma)$$

$$\|\bigoplus(C:T)(\Psi(C)).\Xi\|(B,\gamma) = \bigoplus_{\gamma = \cup \gamma_{C'},C':T \subseteq B \land \Psi(C')} \|\Xi[C'/C]\|(B,\gamma)$$

$$\|\bigoplus(C:T)(\Psi(C)).\Xi\|(B,\gamma) = \bigoplus_{\gamma = \cup \gamma_{C'},C':T \subseteq B \land \Psi(C')} \|\Xi[C'/C]\|(B,\gamma)$$

Open problems under investigation

- Normal form for first-order configuration logic (fragment?)
- Normal form for weighted first-order configuration logic (fragment?)
- Implementation in Maude of weighted first-order configuration logic
- (Weighted) configuration logic with data transfer among components

References

A. Mavridou, E. Baranov, S. Bliudze, J. Sifakis, Configuration logics: Modelling architecture styles, *J. Log. Algebr. Methods Program.* 86(2016) 2–29. Extended abstract in: *Proceedings of FACS 2015, LNCS* 9539(2015) 256–274.

P. Paraponiari, G. Rahonis, On weighted configuration logics, in: *Proceedings of FACS 2017, LNCS* 10487(2017) 98–116, and https://arxiv.org/abs/1704.04969v5

Thank you Ευχαριστώ