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Part 0

Introduction



Motivation: Natural Language Semantics

Background Abstract Meaning Representation (AMR,
Banarescu et al. 2013) represents sentence
meaning as directed (acyclic) graphs.

Goal Develop appropriate types of automata for
such structures, generalizing ordinary finite
automata and tree automata, with and
without weights.

Mindset Do not kling too much to the informal
description of AMR. Instead, focus on the
essentials to create a theory with good
computational and structural properties.



Motivation: Natural Language Semantics
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“John desperately wants Mary to believe him. She claims she does.”

[Directed acyclic graph (DAG) inspired by AMR]



Existing Approaches

Existing notions of DAG and general graph automata:

• Kamimura & Slutzki 1981

• Thomas 1991

• Charatonik 1999 and Anantharaman et al. 2005

• Priese 2007

• Fujiyoshi 2010

• Quernheim & Knight 2012

• Bailly et al. 2018

• . . . and a few others.



Why Propose Yet Another Approach?

None of the previous approaches seems ideal for handling AMR-like
graph languages. In particular, we do not want much power.

A partial wish list:

1 path languages should be regular,

2 Parikh images should be similinear,

3 emptiness and finiteness should be efficiently decidable,

4 there should be efficient membership tests, and

5 the weighted case should be a natural extension.

(In general, we are going to fail at 4 .)



The Remainder of this Tutorial

Types of DAG languages covered in the remaining parts:

Parts 1 & 2: Unweighted DAG languages, ordered and of bounded

degree.

Parts 3 & 4: Weighted DAG languages, unordered and (eventually)

of unbounded degree.



Part 1

DAG automata

The basic case and its properties



Directed Acyclic Graphs (DAGs). . .

Type(s) of DAGs considered:

• Labels are on the nodes.

• For simplicity, edges are unlabelled.

• The outgoing/incoming edges of a node are ordered.

• There are (of course) no directed cycles.

These choices (except the last) are not too important:

• Edge labels can easily be added.

• Unordered DAGs instead of ordered ones can be considered without
essential changes.(∗)

(∗) except that deterministic automata do not make sense anymore



DAG Automata

Defining DAG automata

Runs (=computations) assign states to edges.

A rule for a symbol σ, also σ-rule, takes the form

p1 · · · pm︸ ︷︷ ︸ σ−→ q1 · · · qn︸ ︷︷ ︸ .

↑
states on

incoming edges

↑
states on

outgoing edges

A run is an assignment of states to edges. It is accepting if it, at each
node, coincides with a rule:

σ

· · ·

· · ·

p1 pm

q1 qn



The Accepted DAG Language

Regular DAG Language

Automaton A accepts DAG D if D has an accepting run.

The DAG language L(A) of A consists of all nonempty
connected DAGs that A accepts.

Such a DAG language is called a regular DAG language.

Remark: We may alternatively view A as a reglar DAG grammar that
generates DAGs top-down (or bottom-up).



Notes. . .

Worthwhile pointing out:

• Rules of the form λ
σ−→ q1 · · · qn and p1 · · · pm

σ−→ λ process
roots/leaves (no initial/final states are needed).

• Ordinary tree automata “are” those DAG automata in which |I| ≤ 1
for all rules I

σ−→ O.

• Regular DAG languages are of bounded node degree.

• We restrict L(A) to nonempty and connected DAGs because A
accepts D iff it accepts all connected components of D.

• In particular, the restriction makes it meaningful to talk about
emptiness and finiteness of regular DAG languages.

• The automata would work on cyclic graphs as well, but we
exclude them.



An Example



Example

a
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Swapping edges with equal states.
Note that we now have two roots!

∅ a−→ {•, •}
{•} a−→ {•, •}

{•} �−→ {•}

{•, •} b−→ {•}
{•, •} b−→ {•}
{•, •} b−→ ∅

paths(L(A)) ∩ {a, b}∗

= {anbn | n > 0}

(likewise for anbncn etc)
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Swapping Is a Useful Technique



Non-closedness under Complement

Consider binary roots labelled by s and binary leaves labelled by a or b.

The language of DAGs not containing any b is clearly regular. Suppose
its complement (DAGs containing at least one b-labelled leaf) is regular:

s1 s2 sn−1 sn

a1 a2 a3 an−1 b

. . .

is in the language. For large n a state p occurs twice. Swapping yields:

sk−1 sk sl−1

ak al−1 al
p

p

. . . . . . . . .

⇒ both connected components are in the language,

but only one contains a b.



Two Pumping Lemmata Obtained by Swapping

Large DAGs can be pumped by swapping edges between copies:

Undirected cycles always allow to pump:

e0 e0

e1

e0 e1

e2



What a Difference a Root Makes



What a Difference a Root Makes

All (?) earlier notions of DAG automata can restrict the number of roots.

What happens if we add this ability?

this model restricted to single root

emptiness polynomial [3, 2] decidable [4]

finiteness polynomial [2] decidable [1]

path language regular [3, 2]
not context-free (related to
multicounter automata) [1]

unfolding regular tree lang. [2] ? (but not context-free)

Parikh image semi-linear [1]

membership NP-complete [3]



From DAGs to Trees to Strings



Unfolding

Unfolding a DAG D from a node v recursively yields a (unique) tree: if v
has label σ and outgoing edges to v1, . . . , vk then

treeD(v) = σ(treeD(v1), . . . , treeD(vk)).

Theorem

For every DAG automaton A the tree language

tree(L(A)) = {treeD(v) | D ∈ L(A) and v is a root of D}

is regular. Consequently the path language of L(A) is a
regular string language.



Proving Regularity of tree(L(A))

Proof: Assume that A does not contain useless rules. Turn A into a tree
automaton B with the following rules:

λ
σ−→ q1 · · · qn for every rule λ

σ−→ q1 · · · qn of A

(pi)
σ−→ q1 · · · qn for every rule p1 · · · pm

σ−→ q1 · · · qn of A

and 1 ≤ i ≤ m

Then tree(L(A)) = L(B). The direction tree(L(A)) ⊆ L(B) should be
obvious.

Proof sketch of L(B) ⊆ tree(L(A)): next slide.



Proving Regularity of tree(L(A))

Consider a run of B on a tree t.

• For every node v, if pi
σ−→ q1 · · · qn is used at v, choose a run on a

DAG Dv using p1 · · · pm
σ−→ q1 · · · qn at (a copy of) v.

• Similarly, if v is the root and λ
σ−→ q1 · · · qn is used at v, choose a

run on a DAG Dv using λ
σ−→ q1 · · · qn at (a copy of) v.

• The disjoint union D∪ of all Dv is accepted by the union of the runs.

• On Du, the run uses “the right rule” at u.

• By swapping, we turn D∪ into a suitable DAG D by redirecting each
edge leaving u to the right v in Dv.



Proving Regularity of tree(L(A))

Example:
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fragment of t fragment of Du fragment of Dv

(Note that the other 5 edges leaving the nodes are treated similarly.)
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Part 2

Deterministic DAG Automata



Determinism

Definition

For a rule u
σ−→ v let u be the head and v the tail.

A DAG automation is

• top-down deterministic if no two σ-rules for any σ have
pairwise distinct heads, and

• bottom-up deterministic if no two σ-rules for any σ have
pairwise distinct tails.

Observation

L(A)R = L(AR), and A is top-down deterministic iff AR is
bottom-up deterministic, where -R reverses edge directions in
DAGs and interchanges heads and tails in automata.



Determinism Is a (Serious) Restriction

Observations

1 The well-known tree language

L = {f(a, b), f(b, a)}

(viewed as a DAG language) is not top-down deterministic,
and so LR is not bottom-up deterministic.

2 Consequently, L ∪ LR is not deterministic at all.

3 Thus, there is no general determinization procedure.



Minimization



Distinguishable States for Top-Down Determinism

Definition

States p, p′ are distinguishable if
there are α, β ∈ Q∗ and σ s.t.

• there is a σ-rule with head
αpβ but none with head
αp′β, or

• both σ-rules

αpβ
σ−→ q1 · · · qn

αp′β
σ−→ q′1 · · · q′n

exist and qi and q′i are
distinguishable for some i.

Indistinguishable states are
equivalent.

σ

σ′

σ′′

p

p1

p2

σ

σ′

σ′′

q

q1

q2×



Minimization

Theorem: Minimal top-down deterministic DAG automata

Given a deterministic DAG automaton A, an equivalent min-
imal deterministic DAG automaton Amin can be constructed
in polynomial time. Minimal deterministic DAG automata are
unique up to state renaming.

Proof parts:

1 State equivalence is an equivalence relation.

2 Useless rules (not only in deterministic DAG automata) can be
detected and removed in polynomial time.

3 Replace every state by its equivalence class.

4 This affects neither determinism nor the language.

5 Prove minimality and uniqueness (next slides).



Minimality

Proof of Minimality

Suppose A′ has fewer states than Amin.
⇒ there are accepted DAGs D,D′ with edges e, e′ such that

1 Amin assigns states p and q, p 6= q, to e and e′,

2 A′ assigns the same state to e and e′.

Since p 6= q, they are distinguishable in Amin.



Minimality

D
p

σ

σ′

σ′′

p

p1

p2

1 Amin accepts the left DAG (by swapping) but
rejects the right one. (The bottom rule does not
exist, by distinuishability.)

2 A′ also accepts the left one (by equivalence).

3 However, then A′ accepts the right one as well (by
swapping, since e, e′ carry the same state r).

4 Hence, L(Amin) 6= L(A′).
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Minimality
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Uniqueness

Proof of Uniqueness

Assume A′ has the same number of states as Amin, but there is no
bijection between the state sets that turns Amin into A′.
⇒ again, there are D,D′ ∈ L(Amin) with edges e, e′ such that

1 Amin assigns different states to e and e′ in D and D′,
resp.,

2 A′ assigns the same state to both.

As we just saw, this implies L(A′) 6= L(Amin).
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Equivalence Testing



The Equivalence Test

Equivalence of top-down deterministic A och B can be tested as usual:

1 Detect and remove useless rules.

2 Minimize both automata.

3 Check whether Amin and Bmin are isomorphic.

Each of these steps takes at most polynomial time.



Checking Isomorphism

1 Reject right away if A′ has more rules than A.

2 Initialize f as the empty partial mapping from Q to Q′.

3 Repeat as long as there are unprocessed rules left:

1 Choose a rule r = (α
σ−→ β) of A such that f is defined on all

states in β.
2 Check if B has a σ-rule α′

σ−→ β′ with α′ = f(α), and that f
can be extended so that f(β) = β′.

3 If so, extend f , remove r and repeat; otherwise reject.

4 When no rule is left, accept.



Part 3

Weighted DAG Automata



Unordered DAGs

1 Following Chiang et al. [3] we now consider unordered DAGs.

2 Unordered means that there is no order on the incoming and
outgoing edges of nodes.

3 This reflects the NLP motivation slightly better, but makes little
formal difference except when being interested in

• determinism or
• dropping the restriction to bounded degree (last part).



Putting some Weight on

Weighted DAG Automata

Let (S,⊕,⊗, 0, 1) be a commutative semiring.

1 Heads and tails of a rule I
σ−→ O are now finite

multisets of states.

2 A weight function δ assigns a non-zero weight to each
rule in the set of rules.

3 As usual, the weight of a run is the ⊗-product of the
weights of its rules and the weight of a DAG is the
⊕-sum of the weights of its runs.

4 The resulting mapping of DAGs to weights is a
weighted DAG language.



More formally

A = (Σ, Q,R, δ) consists of

1 sets Σ and Q of node labels and states,

2 a finite set R of rules I
σ−→ O with I,O ∈ NQ and σ ∈ Σ, and

3 a weight function δ : R→ S \ {0}.

A run ρ on DAG D maps every node v to a rule ρ(v):

σ

· · ·

· · ·

e1 em

f1 fn

7→ {ρ(e1), . . . , ρ(em)} σ−→ {ρ(f1), . . . , ρ(fn)}

A(D) =
⊕
run ρ

⊗
node v

δ(ρ(v)) is the weight of D.



Weight Computation



Weight Computation is Difficult

Even in the Boolean case, the computation of
weights (i.e., the membership problem) is difficult.



NP-Completeness

Even non-uniform membership (i.e., for a fixed unweighted DAG
automaton) is easily shown to be NP-complete:

∧

∨

∨

xx

x

∨

¬

x

∧

xx

((x1 ∧ x2) ∨ ¬x2) ∧ (x3 ∨ (x2 ∨ x1))

blue = true

red = false

{•, •} x−→ {•},
{•, •} x−→ {•},

...

{•} ∧−→ {•, •},
{•} ∧−→ {•, •},

...



NP-Completeness
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However, let’s do it anyway. . .



A Weight Computation Algorithm

Edge contraction algorithm for an input DAG D:

1 Turn D into its linegraph (nodes turn
into hyperedges, edges into nodes).

2 Annotate each hyperedge with all
valid state assignments and their
respective weights.

3 Repeatedly contract 2 neighboring
hyperedes, multiplying weights of
assignments which agree on the
contracted “arms”, and summing up.

4 Stop when only one hyperedge is left,
return w() if defined, zero otherwise.

σ

τ

Optimal contraction order yields a running time
exponential in the treewidth of the linegraph of D.
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The treewidth of the line graph is at least the node degree of D.

Is there a way to make the node degree smaller?



Binarization



The Basic Idea of Binarization

• Similar to the first-child
next-sibling encoding.

• In-/outdegree becomes as most
2, overall degree at most 3.

• Adapting the original DAG
automaton is straightforward.

• It will then accept the image of
the original DAG language after
binarization.
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Binarization Along a Tree Decomposition

Can binarization speed up recognition?

Aim: Get rid of the potentially large treewidth of the linegraph.

Intuition:

If we replace each node in D not by a “spine” but by a subtree of
a (binary) tree decomposition of D, the tree decomposition of the
linegraph is only twice that of D.
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No Free Lunch

Advantages and disadvantages for recognition

− Binarization increases the size of the DAG automaton
exponentially in the node degree.

+ The treewidth of the linegraph is only twice that of D.

What is better in practice remains to be seen.

Binarization will, however, turn out to be
useful for handling unbounded degree.



Part 4

Removing the Bound on the Degree



Considerations

How can we handle unbounded degree?

1 An infinite number of rules I
σ−→ O must be described.

2 Obvious idea: use regular expressions α, β (over states) to specify
those I and O which are valid.

3 Thus, the rules will be schemata of the form α
σ−→ β.

4 But α and β should

1 specify languages of multisets of states and
2 be weighted (to give each instance of a rule its individual

weight).



Weighted c-regular Languages

We use a weighted version of Ochmański’s c-regular expressions [6] or,
equivalently, weighted multiset automata.

Weighted c-regular Expression

Defined like ordinary regular expressions, but:

1 Kleene star is restricted to expressions over unary alphabets.

2 Concatenation is interpreted as multiset union.

3 Expression kE multiplies weights by k.

Weighted Multiset Automaton

A weighted automaton such that the order of input symbols does
not matter: For all states i, j and input symbols p, q:⊕

states k

w(i, p, k)⊗ w(k, q, j) =
⊕

states k

w(i, q, k)⊗ w(k, p, j).



Conversion between Expressions and Automata

Special case of general results by Droste & Gastin 1999 [5].

From Expressions to Automata

1 Can use ordinary McNaughton-Yamada for expressions E∗,
because they are over unary alphabets.

2 Construction for EE′ uses shuffle product of automata.

Note: size may become exponential because of the latter.

From Automata to Expressions

1 Consider the automaton as a string automaton and intersect
with q∗1 · · · q∗k.

2 This yields an automaton which is mainly a sequence of k
automata over unary alphabets {qi}.

3 Construct E1 · · ·Ek by converting the automata individually.



Weighted Extended DAG Automaton

Weighted Extended DAG Automaton

In a weighted extended DAG automaton, each rule is of the form
α

σ−→ β, where α, β are weighed c-regular expressions.

1 For a given run, the local weight of a σ-node with incoming
and outgoing edges carrying state multisets I,O is⊕

rule α
σ−→β

[[α]] (I)⊗ [[β]] (O).

2 As usual, multiply all local weights to obtain the weight of a
run; sum up the weights of all runs to obtain the weight of
the input DAG.



Example



ε
want−−−→ qarg0qarg1q

∗
mod

qarg0
ARG0−−−→ qperson

qarg1
ARG1−−−→ qpred

qarg1
ARG1−−−→ qperson

qpred
want−−−→ qarg0qarg1q

∗
mod

qpred
believe−−−−→ qarg0qarg1q

∗
mod

qpersonq
∗
person

propper name−−−−−−−−→ ε

qmod
mod−−→ qtoday

want

ARG1

believe

mod

today

ARG1

Sue

ARG0

Mary

ARG0



Properties of the Boolean (=Unweighted) Case



Recall Basic Binarization

Binarization makes it easy to carry over results:

• The subgraph can be processed
by the multiset automata.
⇒ blow-up exponential or
linear, depending on input
representation.

• Emptiness and finiteness are
preserved.

• Path languages are related by
an FST.

σ ;

σ

σ

σ

σ

σ

σ

σ

σ



Consequences

Theorem

For extended DAG automata over the Boolean semiring

1 emptiness and finiteness are decidable (in polynomial
or exponential time, depending on the input
representation), and

2 the path languages are regular.



Computing Weights



Weight Computation

Weight computation by means of binarization:

1 Binarize the input DAG along a tree decomposition as before.

2 Similarly, transform A into a non-extended DAG automaton A′.
(Turn the multiset automata of A′ into DAG automata rules.)

3 Run the earlier algorithm on D using A′.

Running Time

The running time of this procedure is

O(|ED|(|Q|+m2|Σ|)2tw(D)+3).

A slightly “faster” algorithm avoiding binarization runs in time

O(|ED|(|Q|m2(tw(D)+2) +m3(tw(D)+1)).



Some Questions to Work on



Questions

1 Decidability of decision problems such as equivalence in the basic
(but nondeterministic) case. (Unbounded degree case should follow
by binarization.)

2 Study more general notions of determinism/non-ambiguity.

3 All questions of this kind for the weighted case.

4 n-best algorithms for weighted regular DAG languages.

5 Find useful cases in which recognition/weight computation can be
done efficiently.

6 Learning and training algorithms.

7 Practical evaluation (e.g., apply to AMR bank).



Thank you!
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