Weighted Timed Automata and Timed Migration in Distributed Systems

Bogdan Aman Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iași, Romania and "A.I.Cuza" University, Iași, Romania

> WATA 2018 May 24, 2018

B.Aman; G.Ciobanu

Weighted Timed Automata and Timed Migration in Distributed Systems

- 4 間 ト 4 ヨ ト 4 ヨ ト

1/21

- 2 Syntax and Semantics of ${
 m cTiMo}$
- Weighted Timed Automata
- ${f 0}$ Translating ${
 m cTIMo}$ into Weighted Timed Automaton
- $\mathbf{5}$ Verification of cTIMO Networks in UPPAAL

6 Conclusion

(4 間) トイヨト イヨト

Introduction

- TIMO is a calculus describing distributed systems in which processes are able to migrate between a number of explicit locations.
- Processes can move from location to location to communicate with other processes (rather than using the client/server method).
- Two processes may communicate if are present at the same location.
- Timing constraints over migration and communication are used to coordinate processes in time and space.
- Timing constraints for migration allow one to specify a temporal interval after which a mobile process must move to another location.
- Timing constraints for communication allow interaction any time in the temporal interval.
- We work here with cTIMO (cost Timed Mobility), an extension of TIMO with costs over locations and actions.

B.Aman; G.Ciobanu

< ロト < 同ト < ヨト < ヨト

Syntax and Semantics of ${\rm cT{\scriptstyle I}Mo}$

${\rm cTiMo}\ {\rm Syntax}$

- $\bullet\,$ A timer in ${\rm cTiMo}$ is denoted either by:
 - t (for migration actions) or
 - Δt (for output and input actions).
- When it is associated with a migration process $go_c^t / then P$ it indicates that process P moves from the current location to location l after t time units, while the cost of movement is c.

B.Aman; G.Ciobanu

Syntax and Semantics of ${\rm cTiMo}$

Since Syncer				
Processes	P, Q	::=	$\operatorname{go}_{c}^{t} I$ then P_{\perp}	(move)
			$a_c^{\Delta t} \langle v \rangle$ then P else Q +	(output)
			$a_c^{\Delta t}?(u)$ then P else Q	(input)
			0	(termination)
			id(v)	(recursion)
Located processes	L	::=	/[[_c P]]	
Networks	Ν	::=	L + L N	

• Since *I* can be a variable with its value assigned dynamically through communication with other processes, this form of migration supports a flexible scheme for the movement of processes between locations.

• Thus, the behaviour can adapt to various changes of the environment.

cTIMO Syntax

Syntax and Semantics of ${\rm cTiMo}$

${\rm cTIMo}\xspace$ Syntax

Processes	P, Q	::=	go_c^t / then P	(move)
			$a_c^{\Delta t} \langle v \rangle$ then <i>P</i> else <i>Q</i> +	(output)
			$a_c^{\Delta t}?(u)$ then P else Q	(input)
			0	(termination)
			id(v)	(recursion)
Located processes	L	::=	/[[_c P]]	
Networks	Ν	::=	L + L N	

- A timer Δt associated with an output/input communication process makes the channel *a* available for communication for at most *t* time units with the associated cost *c*.
- In both cases, if the interaction does not happen in the interval [0, t], the process gives up, and continues as the alternative process Q.

B.Aman; G.Ciobanu

不良 とうきょう

${\rm cTiMo}$ Operational Semantics

- We use multiset labelled transitions of form $N \xrightarrow{\Lambda,C} N'$ where:
 - the multiset Λ indicates the actions executed in parallel in one step;
 - the multiset C of costs indicates the costs of each of the actions from Λ .
- The order of the costs in C depends on the order of actions in Λ , as each action has an unique execution cost.
- When the multiset Λ contains only one action λ with cost c, we simply write $N \xrightarrow{\lambda, c} N'$.
- The transitions of form $N \xrightarrow{t,C} N'$ represent a time step of length t and costs C for a network N.

イロト イポト イヨト イヨト

B.Aman; G.Ciobanu

Weighted Timed Automata and Timed Migration in Distributed Systems

イロト イポト イヨト イヨト

Syntax and Semantics of ${\rm cTiMo}$

• A complete computational step is captured by a derivation: $N \xrightarrow{\Lambda,C} N_1 \xrightarrow{t,C'} N'.$

Theorem

For any networks N, N' and N'' we have the following properties:

(idle) $N \xrightarrow{0,0} N$; (time-determinism If $N \xrightarrow{t,C} N'$ and $N \xrightarrow{t,C} N''$, then $N' \equiv N''$; (time-continuity) $N \xrightarrow{(t+t'),C''} N'$ if and only if there is a N'' such that $N \xrightarrow{t,C} N''$ and $N'' \xrightarrow{t',C'} N'$, where C'' = C' + C''(component-wise sum).

B.Aman; G.Ciobanu

イロト 不得下 イヨト イヨト

- As the cost cannot be tested upon in any guard or invariants, it does not influence the behaviour of the system.
- This means that a network N is guaranteed to proceed even when costs are omitted or null (i.e., *erase*(N)).

Theorem

• If
$$N \xrightarrow{\Lambda,C} N'$$
, then $erase(N) \xrightarrow{\Lambda} erase(N')$.
• If $N \xrightarrow{t,C'} N'$, then $erase(N) \xrightarrow{t} erase(N')$.

B.Aman; G.Ciobanu

Weighted Timed Automata and Timed Migration in Distributed Systems

10 / 21

Example

Consider the network N = L₁ | L₂ | L₃, where L₁ and L₂ are defined below, and L₃ can be of any form.
L₁ = l[[₂ go₁³ l' then P₁]] and
L₂ = l'[[₃ a₁^{Δ5}?(x) then 0 else 0]], where
P₁ = a₂^{Δ2}!⟨v⟩ then P₂ else P₃
P₂ = go₁² l'' then 0
P₃ = go₁¹ l'' then 0.

In the above network we assume that the cost of location I'' is 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

Syntax and Semantics of ${\rm cTiMo}$

Example

• If L_3 does not interfere with L_1 and L_2 executions, a possible execution of N can lead to the following finite executions of L_1 and L_2 : $L_1 = I[[_2 \text{ go}_1^3 I' \text{ then } P_1]]$ $\xrightarrow{3,6}$ /[[2 go⁰₁ /' then P₁]] $\xrightarrow{l \triangleright l',1} l'[[_3 P_1]] = l'[[_3 a_2^{\Delta 2}! \langle v \rangle \text{ then } P_2 \text{ else } P_3]]$ $\stackrel{!\langle v \rangle @l',2}{\longrightarrow} l'[[_3 P_2]] = l'[[_3 \operatorname{go}_1^2 l'' \text{ then } 0]]$ $\xrightarrow{2,6}$ //[[$_3 \operatorname{go}_1^0$ /" then 0]] $\xrightarrow{I' \triangleright I'', 1} I''[[_3 0]]$ $L_2 = l'[[_3 a_1^{\Delta 5}?(x) \text{ then } 0 \text{ else } 0]]$ $\stackrel{3,9}{\longrightarrow} l'[[_3 a_1^{\Delta 2}?(x) \text{ then } 0 \text{ else } 0]]$ $\xrightarrow{?(x)@l',1}/[[_30]]$ The costs for the executions of L_1 and L_2 are 16 and 10, respectively.

・ 伊 ト ・ ヨ ト ・

Definition

A weighted timed automaton \mathcal{A} over X (finite set of clocks) and AP (finite set of atomic propositions) is a tuple (L, l_0 , T, λ , cost), where:

- L is a finite set of locations,
- $I_0 \in L$ is the initial location,
- T ⊆ L × C(X) × Σ × 2^X × L is a finite set of transitions,
- $\lambda: L \to 2^{\mathsf{AP}}$ a labelling function,
- cost : L ∪ T → N assigns costs to locations and transitions.

A Weighted Timed Automata

A network state is a pair $\langle I, v \rangle$, where *I* denotes a vector of current locations of the network (one for each automaton), and *v* is a clock assignment storing the current values of all network clocks.

Definition

The operational semantics of a weighted timed automaton is given by:

- delay transitions: $(I, v) \xrightarrow{\delta(d)} (I, v + d)$ if $d \in \mathbb{R}_+$;
- discrete transitions: $(I, v) \xrightarrow{tr} (I', v')$ if exists a transition $tr = (I, g, \sigma, Y, I') \in T$ such that $v \models g$. $v' = [Y \leftarrow 0]v$ and $\sigma \in \Sigma$.

For each step there is associated a cost defined by:

•
$$cost((l, v) \xrightarrow{\delta(d)} (l, v + d)) = cost(l) \cdot dz$$

• $cost((l, v) \xrightarrow{tr} (l', v')) = cost(tr).$

イロト イポト イヨト イヨト

Network of weighted timed automata

- Is the parallel composition A₁ | ... | A_n of a set of timed automata A₁,..., A_n combined into a single system.
- Synchronous communication inside the network is by handshake synchronisation of input and output actions.
- $\bullet\,$ In this case, the action alphabet Σ consists of
 - a? symbols (for input actions),
 - a! symbols (for output actions),
 - τ symbols (for internal actions).
- A network can perform:
 - delay transitions (delay for some time),
 - action transitions (following an enabled edge).

- 4 伊ト 4 ヨト 4 ヨト

$c\mathrm{TIMo}$ Network decomposition

A given network N can always be transformed into a finite parallel composition of located processes of the form $I_1[[c_1P_1]] | \dots | I_n[[c_nP_n]]$ such that no process P_i has the parallel composition operator at its topmost level.

Construction

- Given a component *I*[[_c P]] of an cTIMO network, we translate it into a weighted timed automaton A = (L, I₀, T, λ, cost) with a local clock x, where L = {I₀}, T = Ø, λ(I₀) = Ø and cost(I₀) = c.
- The nodes of this weighted timed automata are labelled starting from the current location of the located process *P*.
- The components L, T, λ and cost are updated depending on the structure of process P.

イロト 不得下 イヨト イヨト

Translating ${\rm cTIMo~}$ into Weighted Timed Automaton

B.Aman; G.Ciobanu

Weighted Timed Automata and Timed Migration in Distributed Systems

イロト イポト イヨト イヨト

17 / 21

Definition

A symmetric relation \sim over cTIMO networks and their corresponding weighted timed automata is a bisimulation if, whenever it holds that $(N, (\mathcal{A}, \langle I_N, v_N \rangle)) \in \sim$, we have

• if $N \xrightarrow{\lambda,c} N'$, then $\langle I_N, v_N \rangle \xrightarrow{tr_{\lambda}} \langle I_{N'}, v_{N'} \rangle$ and $(N', (\mathcal{A}, \langle I_{N'}, v_{N'} \rangle)) \in \sim$ for some N', where $cost(tr_{\lambda}) = c$;

• if $N \xrightarrow{d,c} N'$, then $\langle I_N, v_N \rangle \xrightarrow{\delta(d)} \langle I_{N'}, v_{N'} \rangle$ and $(N', (\mathcal{A}, \langle I_{N'}, v_{N'} \rangle)) \in \sim$ for some N', where $v_{N'} = v_N + d$ and $cost(\delta(d)) = c$.

Theorem

Given a cT1MO network N, there exists a network A_N of parallel timed automata having a bisimilar behaviour. Formally, $N \sim (A, \langle I_N, v_N \rangle)$.

イロト イポト イヨト イヨト

Verification of cTIMO Networks in UPPAAL

Example

Verification of cTIMO Networks in UPPAAL

UPPAAL can be used to check temporal properties of networks of weighted timed automata, properties expressed in CTL (Computation Tree Logic).

Example

We performed some verifications in UPPAAL for the running example.

• $\mathsf{E}\langle \rangle L1.cost_l2 + L2.cost_l2 == 19$

This formulae is used to check whether there is an evolution such that the cost to reach location L1./2, added to the the cost to reach location L2./2 is equal to 19.

• A[] L1.cost_l2 <= 9

This is used to verify that, whatever are the interactions between the involved located processes, the cost to reach location I2 of L1 is always less than 9.

• E[<= 6; 100000](max: L1.cost_l2)

This is used to estimate the maximum value of $cost_2$ of L1 by performing 100000 simulations no longer than 6 time units. As expected, the value is 9.

B.Aman; G.Ciobanu

- \bullet We presented cTiMo, an extension with costs of TiMo, a calculus suitable to describe complex distributed systems with mobility.
- Given a cTIMO network N, there exists a network A_N of parallel timed automata having a bisimilar behaviour, i.e., $N \sim (A, \langle I_N, v_N \rangle)$.
- We used a running example of applying $cT{\rm IMO}$, illustrating that $cT{\rm IMO}$ provides an appropriate framework for modelling and reasoning about costs in distributed systems with migration and communication.
- \bullet We shown how we can model and verify qualitative and quantitative properties of cTIMO networks by using the software tool UPPAAL .

< ロト < 同ト < ヨト < ヨト