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Abstract. We give a simple proof that any injective self-mapping of an infinite
set M can be written as a product of an injection and a permutation of M both
having infinitely many infinite orbits (and no others). This implies Ore’s influential
theorem that each permutation of M is a commutator, a similar result due to
Mesyan for the injections of M , and a result on which injections f of M can be
written in the form f = xm · yn.

1 Introduction

For words w = w(x1, · · · ,xn) in free variables x1, · · · ,xn, it often leads to difficult
problems to describe groups G for which each element g ∈ G is expressible in the
form g = w(g1, · · · , gn) for some g1, · · · , gn ∈ G. In the case of commutators w =
x−11 · x

−1
2 · x1 · x2, this is known to be true for all finite and infinite alternating groups

[12], all semi-simple complex Lie groups [13], all semi-simple connected algebraic
groups [14], and many others; recently, it was established for all finite non-abelian
simple groups [6], thereby confirming Ore’s conjecture.

Ore [12] showed that, in contrast to the finite symmetric groups Sn somewhat
surprisingly, each element of the infinite symmetric groups S(M) of all permutations of
an infinite set M is a commutator. His proof involved a non-trivial case analysis of cycle
types. Here, we wish to provide a simple geometric proof of an extension of this result.
We will consider the monoids Inj(M) of all injections of an infinite set M . An Ore-type
result for these monoids Inj(M) was recently established in Mesyan [8]; see [9, 3] for
consequences and descriptions of the normal subsemigroups of Inj(M). Our main result
will be a simple proof showing that each injection f ∈ Inj(M) can be written as a
product f = g · h with an injection g ∈ Inj(M) and a permutation h ∈ S(M) each
having infinitely many infinite orbits (and no others). This result itself also follows from
a general result given in [8] which, however, involves a more complicated case analysis
of possible orbits and previous results for S(M). Our idea is to take as underlying set
M = Z× Z (for the crucial case that M is countable) and to represent f in a suitable
form. This idea was also used for the symmetric group S(M) in [2] and in [4] with
applications for extension results on coverings of surfaces. As an immediate consequence



of the above result we obtain an Ore-type result for Inj(M), Ore’s result for S(M), and
a description of all elements f of Inj(M) which can be written in the form f = xm · yn
with x, y ∈ Inj(M).

2 Background

Here we summarize the notation and background results, as needed subsequently.

Let M be an infinite set, Inj(M) the monoid of all injective maps of M and S(M)
the symmetric group of all permutations of M . Let f ∈ Inj(M). If x ∈ M , the set
{y ∈M | xf i = y or yf i = x for some i ≥ 0} is called the f -orbit of x, or an orbit
of f . We call an orbit a forward orbit, if it is the f -orbit of some x such that x 6∈Mf .
Note that then this orbit equals {xf i | i ≥ 0} and is infinite. This gives a bijection
between M\Mf and the set of forward orbits of f . We have the following important
observation.

Proposition 2.1. Let f , g ∈ Inj(M). Then

|M\Mfg| = |M\Mf |+ |M\Mg|.

Proof. We have
M\Mfg = (M\Mf)g ∪̇ (M\Mg).

ut

As usual, for g ∈ Inj(M) and h ∈ S(M), we let gh = h−1gh. We say that
two injections f , g ∈ Inj(M) are conjugate if f = gh for some h ∈ S(M). We let
gS(M) = {gh | h ∈ S(M)}, the set of conjugates of f . Next we wish to describe when
two elements of Inj(M) are conjugate.

We let N denote the set of positive integers, and N∞ = N∪{∞}. Given f ∈ Inj(M),
we call any orbit U of f with U ⊆ Mf , i.e., which is not a forward orbit, a closed
orbit; then clearly f�U ∈ S(U). We define f̄ to be the map from N∞ to the cardinals by
letting f̄(n) be the number of closed orbits of size n of f , for each n ∈ N∞. Recall that
|M\Mf | is the number of forward orbits of f .

The following result, which is well-known for permutations, describes that two
elements of S(M) resp. Inj(M) are conjugate if and only if they have the same “orbit
structure”.

Proposition 2.2. (a) Let f , g ∈ S(M). Then f and g are conjugate if and only if f̄ = ḡ.
(b) (Mesyan [8]) Let f , g ∈ Inj(M). Then f and g are conjugate if and only if f̄ = ḡ
and |M\Mf | = |M\Mg|.

Proof. Note that (a) is a special case of (b). We indicate the proof of (b) for the
convenience of the reader. If f = gh for some h ∈ S(M), then h maps the orbits of
g onto the orbits (of the same length) of f . Hence f̄ = ḡ and |M\Mf | = |M\Mg|.
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Conversely, given a length-preserving and forwardness-preserving bijection π from the
orbits of g onto the orbits of f , for each orbit U of g, choose elements xU ∈ U , yU ∈ Uπ
(and such that xU 6∈ Mg, yU 6∈ Mf in case U is a forward orbit), put xUh = yU and
extend h uniquely to a permutation of M satisfying hf = gh. ut

3 The main result

In this section we will provide a simple proof for the following result.

Theorem 3.1. Let M be an infinite set. Then every injection f ∈ Inj(M) is a product
f = g ·h of an injection g ∈ Inj(M) and a permutation h ∈ S(M) both having infinitely
many infinite orbits (and no others). We also have f = h ·g with g ∈ Inj(M), h ∈ S(M)
as described before.

We note that Theorem 3.1 is a special case of the main result of Mesyan [8] whose
proof, however, involves a detailed analysis of the orbit structure of elements of Inj(M)
and uses previous results on S(M).

For our proof of Theorem 3.1, if M is countable, we take M = Z× Z, the integer
plane. We will show that for any f ∈ Inj(M) there is a conjugate f ′ of f which moves
each element of M at most one unit up or down. For this, we construct f ′ with the same
“orbit structure” as f by employing a Cantor-like enumeration of Z× Z or of suitable
subsets (like half-planes). For the case that f ∈ S(M), this is also described in [2] and
[4] (see sections 3-5).

Lemma 3.2. Let M = Z × Z. Then for each f ∈ Inj(M) there is f ′ ∈ Inj(M) such
that f̄ = f̄ ′, |M\Mf | = |M\Mf ′| and (i, j)f ′ ∈ Z × {j − 1, j, j + 1} for each
(i, j) ∈M .

Proof. If f has infinitely many orbits, it is easy to construct such an injection f ′ satisfying
even (i, j)f ′ ∈ Z × {j} for each (i, j) ∈ M , i.e., the orbits of f ′ are all contained in
the horizontal lines of M = Z× Z. Therefore now let f have only finitely many orbits.
Consequently, f has at least one infinite orbit.

First, let f have only one forward orbit (and no others). Then consider the “infinite
spiral”

(0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (−1, 1)→ (−1, 0)→ (−1,−1)→

(0,−1)→ (1,−1)→ (2,−1)→ (2, 0)→ · · ·

which gives f ′.
This construction leaves a lot of freedom for changes enabling us to deal with the

other cases. For instance, assume that f ∈ S(M) has precisely one infinite closed
orbit (and no others). Then let f ′ ∈ S(M) act on the upper half plane Z× N0, where
N0 = N ∪ {0}, similarly as above, like

(0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (−1, 1)→ (−1, 0)→ (−2, 0)→

3



(−2, 1)→ (−2, 2)→ (−1, 2)→ (0, 2)→ · · · .

By a similar enumeration of the lower half plane Z × {−n | n > 0}, we define the
pre-images of (0, 0) under f ′.

Now if f has k+ 1 infinite orbits (k > 0), we can define f ′ such that it has each half-
line N× {i} (i = 1, · · · , k) as an infinite orbit and has the set M\

⋃k
i=1 N× {i} as the

remaining infinite orbit, in each case realizing forwardness or closedness as necessary.

Finally, for the finite orbits of f (note that by our assumption, f has only finitely
many orbits), we can take a suitably large interval in N×{0} to realize the corresponding
orbits of f ′, and use the complement of this interval for the infinite orbits of f ′. ut

Now we can show Theorem 3.1.

Proof of Theorem 3.1. It suffices to consider the case that M is countable. Indeed, if
M is uncountable and f ∈ Inj(M), by a standard argument we can split

⋃̇
i∈IMi into

pairwise disjoint f -invariant countable sets Mi, so f�Mi
∈ Inj(Mi). Then by the result

of the countable case, for each i ∈ I write f�Mi
= gi ·hi with an injection gi ∈ Inj(Mi)

and a permutation hi ∈ S(Mi) both having infinitely many infinite orbits (and no others).
Then g =

⋃
i∈I gi ∈ Inj(M) and h =

⋃
i∈I hi ∈ S(M) satisfy f = g · h as claimed.

So, let M be countable. We may assume that M = Z × Z. Let f ∈ Inj(M). By
Lemma 3.2, there is f ′ ∈ InjM moving each point x ∈M at most one unit up or down
such that f̄ = f̄ ′ and |M\Mf | = |M\Mf ′|. Then, f ∈ f ′S(M) by Proposition 2.2.

Now define h : M → M by letting (i, j)h = (i, j + 2) for each (i, j) ∈ M .
So h ∈ S(M) has infinitely many infinite orbits (and no others). Now consider
g = f ′ · h ∈ Inj(M). Since f ′ moves each point x = (i, j) ∈M at most one unit up or
down and h moves each point two units up, we obtain xg ∈ Z×{j+ 1, j+ 2, j+ 3}, so
g moves each point at least one unit up. Hence g has only infinite orbits, and all elements
(i, 0), i ∈ Z, lie in different orbits of g, thus g has infinitely many infinite orbits. So
f ′ = g · h−1 as claimed, and the first statement of the result follows.

For the second statement, write f = g · h = h · (h−1gh); then gh ∈ Inj(M) as
claimed. ut

Let C∞ be the conjugacy class in S(M) comprising all permutations of M with
infinitely many infinite orbits (and no others). Note that if in Theorem 3.1 f ∈ S(M) is
a permutation, by the proof of Theorem 3.1 (or by Proposition 2.1) we obtain f = g · h
with permutations g,h ∈ S(M). Hence, as an immediate consequence of Theorem 3.1
we have:

Corollary 3.3. (Gray [5]). Let M be an infinite set. Then S(M) = C2
∞.

By subsequent work of Bertram, Göbel and the author, the author, and Moran,
culminating in Moran [10], all conjugacy classes C in S(M) were described satisfying
S(M) = C2.
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4 Ores’s theorem and universal words

Here we will derive Ore’s theorem and results on universal words for S(M) and Inj(M)
as immediate consequences of Theorem 3.1. First we have:

Corollary 4.1. (Ore [12]). Let M be an infinite set. Then each element f ∈ S(M) is a
commutator f = [g,h].

Proof. By Theorem 3.1 (or Corollary 3.3), write f = g−1 · k with g, k ∈ C∞. Then
k = h−1gh for some h ∈ S(M) and f = [g,h]. ut

Mesyan [8] gave a general result describing when an arbitrary injection f ∈ Inj(M)
can be written as a product of two injections g,h ∈ Inj(M) both having at least one
infinite orbit. As an immediate consequence, he obtained the subsequent Ore-type result
for Inj(M) which we wish here to deduce from Theorem 3.1.

Corollary 4.2. (Mesyan [8]). Let M be an infinite set and f ∈ Inj(M). Then f can be
written in the form f = ga · gb for some g ∈ Inj(M) and a, b ∈ S(M) if and only if
|M\Mf | is either an even integer or infinite.

Proof. Clearly, if f = ga · gb is of the form described, by Proposition 2.1 we have
|M\Mf | = 2 · |M\Mg| as claimed.

Now let |M\Mf | be even or infinite. If f ∈ S(M), the result is immediate by
Corollary 3.3. Hence assume f ∈ Inj(M)\S(M), so f has at least two infinite forward
orbits. Split M = M1∪̇M2 in such a way that |M1| = |M2|, both M1 and M2 are
f -invariant, and M1 and M2 contain the same number of infinite forward orbits of f . By
Theorem 3.1, write f�M1 = g1 ·h1 and f�M2 = h2 ·g2 with injections gi ∈ Inj(Mi) and
permutations hi ∈ S(Mi) such that |Mi\Mif | = |Mi\Migi|, and gi,hi have infinitely
many infinite orbits (and no others), for i = 1, 2. Let g = g1 ∪ h2 and g′ = h1 ∪ g2.
Then g, g′ ∈ Inj(M) satisfy

|M\Mg| = |M1\M1g1| = |M1\M1f | = |M2\M2f | = |M2\M2g2| = |M\Mg′|

and g, g′ each have infinitely many infinite closed orbits (and no other closed orbits).
Hence f = g · g′ = g · gb for some b ∈ S(M) as claimed. ut

Let G be a group and w = w(x1, · · · ,xn) a word in the free group over x1, · · · ,xn.
Then w is said to be G-universal, if for each g ∈ G there are g1, · · · , gn ∈ G
such that g = w(g1, · · · , gn). By Corollary 4.1, the commutator word w = [x, y] is
S(M)-universal for infinite sets M . Clearly, no power w = xn (n ≥ 2) is
S(M)-universal. As a further immediate consequence of Corollary 3.3, we have:

Corollary 4.3. (Silberger [15]). LetM be an infinite set andw = xm ·yn withm,n 6= 0.
Then w is S(M)-universal.

Proof. Let f ∈ S(M). Write f = g · h with g,h ∈ C∞. Since gm,hn ∈ C∞, they are
conjugate to g and h and the result follows. ut
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We note that we could also obtain Corollary 4.3 as follows. First, write f ∈ S(M)
as a product f = g · h of two involutions g,h ∈ S(M) each having infinitely many 2-
orbits. Note that the m-th power of a cycle of length 2m consists of m disjoint 2-cycles.
Hence we can write g = am with a ∈ S(M) having only orbits of length 2m and,
possibly, fixed points. Similarly, h = bn with b ∈ S(M) having only orbits of length 2n,
and, possibly, fixed points. In the above proof of Corollary 4.3, we have obtained that
f = am · bn with a, b ∈ C∞. Extensions of this result are contained in [2]. Mycielski
[11] and Lyndon [7], cf. [1], showed that each word w = w(x1, · · · ,xn) which does
not reduce to a power is S(M)-universal.

Now consider a semigroup S and a word w = w(x1, · · · ,xn) in the free semigroup
over x1, · · · ,xn. We say that g ∈ S is a w-element, if there are g1, · · · , gn ∈ S such that
g = w(g1, · · · , gn). Given a free semigroup word w(x1, · · · ,xn), let e(xi) be the sum
of the exponents of xi in w, for i = 1, · · · ,n. Clearly, by Proposition 2.1, if f ∈ Inj(M)
is a w-element, then either M\Mf is infinite or |M\Mf | ∈ 〈e(x1), · · · , e(xn)〉, the
subsemigroup of (N, +) generated by e(x1), · · · , e(xn). Now we show that for products
of powers, we also have the converse.

Corollary 4.4. Let M be an infinite set, m,n ≥ 1, and f ∈ Inj(M). Then f is a
xm · yn-element if and only if M\Mf is infinite or |M\Mf | ∈ 〈m,n〉.

Proof. As noted before, if f = gm · hn with g,h ∈ Inj(M), by Proposition 2.1 we have

|M\Mf | = m · |M\Mg|+ n · |M\Mh|

which is infinite or in 〈m,n〉. Conversely, assume that |M\Mf | = k ·m + ` · n for
some k, ` ≥ 0. First assume that k, ` > 0. We include the case that M\Mf is infinite
here by letting k = ` =∞. We split M = M1∪̇M2 into two disjoint f -invariant subsets
M1 and M2 such that M1 (resp. M2) contains k ·m (resp. ` · n) infinite forward orbits
of f . By Theorem 3.1, we can write f�M1 = g′1 · h′1 and f�M2 = h′2 · g′2 with injections
g′i ∈ Inj(Mi) and permutations h′i ∈ S(Mi) each having infinitely many infinite orbits
(and no others), for i = 1, 2. In particular,

|M1\M1g
′
1| = |M1\M1f | = k ·m

and
|M2\M2g

′
2| = |M2\M2f | = ` · n.

Consequently, g′1 ∪ h′2 ∈ Inj(M) has k · m forward orbits, infinitely many infinite
closed orbits and no others. Choose any g′ ∈ Inj(M) which has k forward orbits if
M\Mf is finite, infinitely many forward orbits if M\Mf is infinite, and in any case
infinitely many infinite closed orbits and no others. Then g′1 ∪ h′2 is conjugate to g′m.
Therefore, g′1 ∪ h′2 = gm for some g ∈ Inj(M). Similarly, we have h′1 ∪ g′2 = hn for
some h ∈ Inj(M). Hence f = gm · hn.

If k = 0 or ` = 0 (but not both), we can apply a similar (but simpler) argument,
using Theorem 3.1 directly for M . Finally, if k = ` = 0, i.e., f ∈ S(M), the result is
immediate by Corollary 4.3. ut
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In view of Corollary 4.4 and the results of Mycielski and Lyndon for S(M) the
following question arises.

Let w = w(x1, · · · ,xn) be a free semigroup word, n ≥ 2, and let f ∈ Inj(M)
satisfy |M\Mf | ∈ 〈e(x1), · · · , e(xn))〉. Does it follow that f is a w-element?
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[3] M. Droste, R. Göbel: The normal subsemigroups of the monoid of injective maps. Semigroup
Forum 87 (2013), 298-312.

[4] M. Droste, I. Rivin: On extension of coverings. Bull. London Math. Soc. 42 (2010), 1044-
1054.

[5] A. B. Gray: Infinite symmetric and monomial groups. Ph.D. Thesis, New Mexico State
University, Las Cruces, NM, 1960.

[6] M. Liebeck, E. A. O’Brian: A. Shalev and P. H. Tiep; The Ore Conjecture. Journal of the
Europ. Math. Soc. 12 (2010), 939-1008.

[7] R. Lyndon: Words and infinite permutations. Mots, Lang. Raison Calc., Hermès, Paris
(1990), 143-152.

[8] Z. Mesyan: Conjugations of injections by permutations. Semigroup Forum 81 (2010),
297-324.

[9] Z. Mesyan: Monoids of injective maps closed under conjugation by permutations. Israel. J.
Math. 189 (2012), 287-305.

[10] G. Moran: Conjugacy classes whose squares are infinite symmetric groups. Trans. Amer.
Math. Soc. 316 (1989), 439-521.

[11] J. Mycielski: Representations of infinite permutations by words. Proc. Amer. Math. Soc.
100 (1987), 237-241.

[12] O. Ore: Some remarks on commutators. Proc. Amer. Math. Soc. 2 (1951), 307-314.
[13] S. Pasiencier, H. C. Wang: Commutators in a semi-simple Lie group. Proc. Amer. Math.

Soc. 13 (1962), 907-913.
[14] R. Ree: Commutators in semi-simple algebraic groups. Proc. Amer. Math. Soc. 15 (1964),

457-460.
[15] D. Silberger: Are primitive words universal for infinite symmetric groups? Trans. Amer.

Math. Soc. 276, No. 2 (1983), 841-852.

7


	On Ore's Theorem and Universal Words for Permutations and Injections of Infinite Sets

