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Abstract. We give a simple proof that any injective self-mapping of an infinite
set M can be written as a product of an injection and a permutation of M both
having infinitely many infinite orbits (and no others). This implies Ore’s influential
theorem that each permutation of M is a commutator, a similar result due to
Mesyan for the injections of M, and a result on which injections f of M can be

written in the form f = z™ - y".

1 Introduction

For words w = w(x1,- - , 2, ) in free variables 1, - - - , 2, it often leads to difficult
problems to describe groups G for which each element g € G is expressible in the
form g = w(g1,--- , gn) for some g1,---, g, € G. In the case of commutators w =
xfl “ Ty L. 21 - a9, this is known to be true for all finite and infinite alternating groups
[12], all semi-simple complex Lie groups [13]], all semi-simple connected algebraic
groups [14], and many others; recently, it was established for all finite non-abelian
simple groups [6]], thereby confirming Ore’s conjecture.

Ore [12] showed that, in contrast to the finite symmetric groups S,, somewhat
surprisingly, each element of the infinite symmetric groups S(M) of all permutations of
an infinite set M is a commutator. His proof involved a non-trivial case analysis of cycle
types. Here, we wish to provide a simple geometric proof of an extension of this result.
We will consider the monoids Inj( M) of all injections of an infinite set M. An Ore-type
result for these monoids Inj(M) was recently established in Mesyan [8]]; see [9] [3]] for
consequences and descriptions of the normal subsemigroups of Inj(} ). Our main result
will be a simple proof showing that each injection f € Inj(M) can be written as a
product f = ¢ - h with an injection g € Inj(M) and a permutation h € S(M) each
having infinitely many infinite orbits (and no others). This result itself also follows from
a general result given in [8] which, however, involves a more complicated case analysis
of possible orbits and previous results for S(M ). Our idea is to take as underlying set
M = Z x Z (for the crucial case that M is countable) and to represent f in a suitable
form. This idea was also used for the symmetric group S(M) in [2] and in [4] with
applications for extension results on coverings of surfaces. As an immediate consequence



of the above result we obtain an Ore-type result for Inj(M ), Ore’s result for S(M), and
a description of all elements f of Inj(A/) which can be written in the form f = ™ - y»
with z,y € Inj(M).

2 Background
Here we summarize the notation and background results, as needed subsequently.

Let M be an infinite set, Inj()) the monoid of all injective maps of M and S(M)
the symmetric group of all permutations of M. Let f € Inj(M). If x € M, the set
{ye M |zft =y or yfi =z forsomei > 0} is called the f-orbit of x, or an orbit
of f. We call an orbit a forward orbit, if it is the f-orbit of some x such that x & M f.
Note that then this orbit equals {zf* | i > 0} and is infinite. This gives a bijection
between M\ M f and the set of forward orbits of f. We have the following important
observation.

Proposition 2.1. Let f,g € Inj(M). Then
[M\M fg| = |[M\Mf| + |M\Mg].

Proof. We have
M\Mfg = (M\Mf)gU (M\Mg).

O

As usual, for g € Inj(M) and h € S(M), we let g" = h~lgh. We say that
two injections f,g € Inj(M) are conjugate if f = g" for some h € S(M). We let
g°M) = {g" | h € S(M)}, the set of conjugates of f. Next we wish to describe when
two elements of Inj(M) are conjugate.

We let N denote the set of positive integers, and Noo, = NU{o0}. Given f € Inj(M),
we call any orbit U of f with U C M f, i.e., which is not a forward orbit, a closed
orbit; then clearly f [ € S(U). We define f to be the map from N, to the cardinals by
letting f(n) be the number of closed orbits of size n of f, for each n € N.. Recall that
|M\M f| is the number of forward orbits of f.

The following result, which is well-known for permutations, describes that two
elements of S(M) resp. Inj(M) are conjugate if and only if they have the same “orbit
structure”.

Proposition 2.2. (a) Let f,g € S(M). Then f and g are conjugate if and only U‘f: g.
(b) Mesyan [8]]) Let f,g € Inj(M). Then [ and g are conjugate if and only if f = g
and |M\M f| = [M\Mg].

Proof. Note that (a) is a special case of (b). We indicate the proof of (b) for the
convenience of the reader. If f = ¢" for some h € S(M ), then h maps the orbits of
g onto the orbits (of the same length) of f. Hence f = g and |[M\M f| = |M\Mg|.



Conversely, given a length-preserving and forwardness-preserving bijection 7 from the
orbits of ¢ onto the orbits of f, for each orbit U of g, choose elements z; € U, yy € Un
(and such that iy € Mg, yy € M f in case U is a forward orbit), put zyh = yy and
extend h uniquely to a permutation of M satisfying hf = gh. a

3 The main result

In this section we will provide a simple proof for the following result.

Theorem 3.1. Let M be an infinite set. Then every injection f € Inj(M) is a product
f = g-hof aninjection g € Inj(M) and a permutation h € S(M ) both having infinitely
many infinite orbits (and no others). We also have f = h-gwith g € Inj(M), h € S(M)
as described before.

We note that Theorem [3.1]is a special case of the main result of Mesyan [8] whose
proof, however, involves a detailed analysis of the orbit structure of elements of Inj(M)
and uses previous results on S(1M).

For our proof of Theorem [3.1] if M is countable, we take M = Z x Z, the integer
plane. We will show that for any f € Inj(M) there is a conjugate f’ of f which moves
each element of M at most one unit up or down. For this, we construct f’ with the same
“orbit structure” as f by employing a Cantor-like enumeration of Z x Z or of suitable
subsets (like half-planes). For the case that f € S(M), this is also described in [2]] and
[4] (see sections 3-5).

Lemma 3.2. Let M = Z x Z. Then for each f € Inj(M) there is f' € Inj(M) such
that f = f', IM\Mf| = |M\Mf'| and (i,5)f' € Zx {j — 1,4, + 1} for each
(i) € M.

Proof. If f has infinitely many orbits, it is easy to construct such an injection f” satisfying
even (i,7)f' € Z x {j} for each (4,j) € M, i.e., the orbits of f’ are all contained in
the horizontal lines of M = Z x Z. Therefore now let f have only finitely many orbits.
Consequently, f has at least one infinite orbit.

First, let f have only one forward orbit (and no others). Then consider the “infinite
spiral”

(0,0) = (1,0) —» (1,1) —» (0,1) = (-1,1) = (-1,0) = (—-1,-1) —

which gives f’.
This construction leaves a lot of freedom for changes enabling us to deal with the
other cases. For instance, assume that f € S(M) has precisely one infinite closed

orbit (and no others). Then let f/ € S(M) act on the upper half plane Z x Ng, where
No = N U {0}, similarly as above, like

(0,0) — (1,0) = (1,1) — (0,1) —» (—1,1) = (=1,0) — (—2,0) —



(-2,1) = (-2,2) = (—-1,2) — (0,2) — --- .

By a similar enumeration of the lower half plane Z x {—n | n > 0}, we define the
pre-images of (0, 0) under f.

Now if f has k + 1 infinite orbits (k > 0), we can define f” such that it has each half-

line N x {i} (i = 1,--- , k) as an infinite orbit and has the set M\ Ule N x {i} as the
remaining infinite orbit, in each case realizing forwardness or closedness as necessary.

Finally, for the finite orbits of f (note that by our assumption, f has only finitely
many orbits), we can take a suitably large interval in N x {0} to realize the corresponding
orbits of f/, and use the complement of this interval for the infinite orbits of f’. a

Now we can show Theorem 3.1

Proof of Theorem It suffices to consider the case that M is countable. Indeed, if
M is uncountable and f € Inj(M), by a standard argument we can split | J;; M; into
pairwise disjoint f-invariant countable sets M;, so f[as, € Inj(M;). Then by the result
of the countable case, for each ¢ € I write f [, = g; - h; with an injection g; € Inj(M;)
and a permutation h; € S(M;) both having infinitely many infinite orbits (and no others).
Then g = J,;c; 9: € Inj(M) and h = | J;; hi € S(M) satisfy f = g - h as claimed.

So, let M be countable. We may assume that M = Z x Z. Let f € Inj(M). By
Lemma 3.2} there is f’ € Inj M moving each point z € M at most one unit up or down
such that f = f” and |M\M f| = |M\M f'|. Then, f € f"5(M) by Proposition

Now define h : M — M by letting (3, j)h = (i,5 + 2) for each (i,j) € M.
So h € S(M) has infinitely many infinite orbits (and no others). Now consider
g =f"-h €Inj(M). Since f' moves each point x = (i, ) € M at most one unit up or
down and h moves each point two units up, we obtain zg € Z x {j+ 1,5+ 2,5+ 3}, so
g moves each point at least one unit up. Hence g has only infinite orbits, and all elements
(1,0),4 € Z, lie in different orbits of g, thus g has infinitely many infinite orbits. So
f' = g-h~! as claimed, and the first statement of the result follows.

For the second statement, write f = g - h = h - (h~1gh); then g" € Inj(M) as
claimed. O

Let C, be the conjugacy class in S(M) comprising all permutations of M with
infinitely many infinite orbits (and no others). Note that if in Theorem[3.1] f € S(M) is
a permutation, by the proof of Theorem [3.1] (or by Proposition we obtain f =g - h
with permutations g, h € S(M). Hence, as an immediate consequence of Theorem
we have:

Corollary 3.3. (Gray [3]). Let M be an infinite set. Then S(M) = CZ,.

By subsequent work of Bertram, Gobel and the author, the author, and Moran,
culminating in Moran [[10]], all conjugacy classes C in S(M) were described satisfying
S(M) = C?.



4 Ores’s theorem and universal words

Here we will derive Ore’s theorem and results on universal words for S(M) and Inj(M)
as immediate consequences of Theorem First we have:

Corollary 4.1. (Ore [12]]). Let M be an infinite set. Then each element f € S(M) is a
commutator f = [g, h].

Proof. By Theorem(or Corollary , write f = ¢! - k with g,k € C.. Then
k = h=1gh for some h € S(M) and f = [g, h]. O

Mesyan [8] gave a general result describing when an arbitrary injection f € Inj(M)
can be written as a product of two injections g, h € Inj(M) both having at least one
infinite orbit. As an immediate consequence, he obtained the subsequent Ore-type result
for Inj( M) which we wish here to deduce from Theorem 3.1

Corollary 4.2. (Mesyan [8])). Let M be an infinite set and f € Inj(M). Then f can be
written in the form f = g% - g for some g € Inj(M) and a,b € S(M) if and only if
|M\M f| is either an even integer or infinite.

Proof. Clearly, if f = g* - g® is of the form described, by Proposition we have
|[M\M f| =2-|M\Mg| as claimed.

Now let |M\M f| be even or infinite. If f € S(M), the result is immediate by
Corollary [3.3] Hence assume f € Inj(M)\S(DM), so f has at least two infinite forward
orbits. Split M = M;UM, in such a way that |[M7| = | M|, both M; and M, are
f-invariant, and M; and M5 contain the same number of infinite forward orbits of f. By
Theorem write f [, = g1-h1 and f Ty, = he - go with injections g; € Inj(M;) and
permutations h; € S(M;) such that | M;\ M, f| = | M;\M,g;|, and g;, h; have infinitely
many infinite orbits (and no others), for i = 1,2. Let g = g1 U hg and ¢’ = hy U gs.
Then g, ¢’ € Inj(M) satisfy

|IM\Mg| = |Mi\Myg| = [M\\M, f| = |[Ma\Ms f| = |Mz\Maga| = [M\M'|

and g, ¢’ each have infinitely many infinite closed orbits (and no other closed orbits).
Hence f = g- ¢’ = g - g for some b € S(M) as claimed. O

Let G be a group and w = w(x1, - - ,2,) a word in the free group over 1, - -+ , Z,.
Then w is said to be G-universal, if for each g € G there are g1, -+ ,9, € G
such that ¢ = w(g1,- - , gn). By Corollary the commutator word w = [z, y] is
S(M)-universal for infinite sets M. Clearly, no power w = z"™ (n > 2) is
S(M)-universal. As a further immediate consequence of Corollary we have:

Corollary 4.3. (Silberger [[15]). Let M be an infinite set and w = x™ -y™ withm,n # 0.
Then w is S(M)-universal.

Proof. Let f € S(M). Write f = g - h with g, h € C. Since g™, h"™ € C, they are
conjugate to g and h and the result follows. a



We note that we could also obtain Corollary 4.3|as follows. First, write f € S(M)
as a product f = g - h of two involutions g, h € S(M) each having infinitely many 2-
orbits. Note that the m-th power of a cycle of length 2m consists of m disjoint 2-cycles.
Hence we can write ¢ = a™ with a € S(M) having only orbits of length 2m and,
possibly, fixed points. Similarly, h = b™ with b € S(M) having only orbits of length 2n,
and, possibly, fixed points. In the above proof of Corollary we have obtained that
f=a™-b"with a,b € Cy. Extensions of this result are contained in [2]]. Mycielski
[11]] and Lyndon [[7], cf. [1]], showed that each word w = w(z1,- - ,x,) which does
not reduce to a power is S(M )-universal.

Now consider a semigroup .S and a word w = w(x1, - - - , z,) in the free semigroup
over x1,--- ,&,. We say that g € S is a w-element, if there are g1, - - - , g, € S such that
g =w(g1, - ,9gn)- Given a free semigroup word w(z1,- - , ), let e(z;) be the sum

of the exponents of z; in w, fori = 1, - - - , n. Clearly, by Proposition 2.1} if f € Inj(M)
is a w-element, then either M\ M f is infinite or |[M\M f| € (e(z1),--- ,e(x,)), the
subsemigroup of (N, +) generated by e(x1), - - - , e(x,,). Now we show that for products
of powers, we also have the converse.

Corollary 4.4. Let M be an infinite set, m,n > 1, and f € Inj(M). Then f is a
™ - y"-element if and only if M\ M f is infinite or |M\M f| € (m,n).

Proof. As noted before, if f = g™ - h™ with g, h € Inj(M), by Proposition[2.1] we have
|[MA\M f| =m - |[M\Mg|+n-|M\MHh|

which is infinite or in (m,n). Conversely, assume that |M\M f| = k- m + £ - n for
some k, ¢ > 0. First assume that k, ¢ > 0. We include the case that M\ M f is infinite
here by letting k¥ = £ = oco. We split M = M7UM; into two disjoint f-invariant subsets
M and M, such that My (resp. M>) contains k - m (resp. £ - n) infinite forward orbits
of f. By Theorem 3.1} we can write f [y, = ¢} - b} and f[r, = hb - g5 with injections
g; € Inj(M;) and permutations h, € S(M;) each having infinitely many infinite orbits
(and no others), for ¢ = 1, 2. In particular,

|Mi\Mgi| = |[MA\M:f| =Fk-m

and
|Mo\Magy| = |Ma\Ma f| = £ - n.

Consequently, ¢f U h, € Inj(M) has k - m forward orbits, infinitely many infinite
closed orbits and no others. Choose any ¢’ € Inj(M) which has k forward orbits if
M\ M f is finite, infinitely many forward orbits if M\ M f is infinite, and in any case
infinitely many infinite closed orbits and no others. Then g U hf is conjugate to g'™.
Therefore, g5 U h, = g™ for some g € Inj(M). Similarly, we have b} U g5 = h™ for
some h € Inj(M). Hence f = g™ - h™.

If K = 0 or £ = 0 (but not both), we can apply a similar (but simpler) argument,
using Theorem [3.1]directly for M. Finally, if k = £ = 0, i.e., f € S(M), the result is
immediate by Corollary O



In view of Corollary and the results of Mycielski and Lyndon for S(M) the
following question arises.

Let w = w(xy,--- ,x,) be a free semigroup word, n > 2, and let f € Inj(M)
satisfy [M\M f| € (e(x1),- - ,e(xy))). Does it follow that f is a w-element?
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