Stabilizers of direct composition series

Manfred Droste and Riidiger Gobel

Abstract

Let R be a domain, V a left R-module, and £ a composition series of direct summands
of V. Our main results show that if U is a stabilizer group of £ containing the McLain-
group associated with £, then U determines the chain (£, C) uniquely up to isomorphism

or anti-isomorphism.

1 Introduction

In two of his very early papers [1, 2] Paul Conrad investigates the group A of o-automorphisms
of an abelian o-group G with the aim to provide examples of non-abelian o-groups A and
to understand how A and G are related. He wants to know: When can G be reconstructed
from A? As a consequence and with the aim to get useful examples (see Theorem 1 in [1]
and [2]) Conrad studies groups A of finitary triangular matrices over an infinite dimensional
vector space (over the field of rationals Q) which now fall under the generic name McLain
groups. While McLain groups for obvious reasons were mainly promoted by non-commutative
group theorists (see below), we will follow here Conrad’s road and investigate the relationship
between A and GG, where A is the automorphism group of the abelian group G controlled by
an ordering on G which is expressed as a composition series of G. In our case G will be a
module over a domain R.

Our new results in this paper will also contribute to the following more recent investiga-

tions [4, 5, 12, 13, 15, 16]. In the introduction we want to state our main theorem, explain
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the techniques of its proof and indicate the connection with these references. As mentioned
above, this subject was motivated from group theory by the celebrated result due to McLain
establishing the existence of characteristically simple locally finite (thus locally nilpotent)
p-groups. These groups are subgroups of the group of finitary transformations of an infinite
dimensional vector space - in contrast to Paul Conrad - over the field Z, with p elements
taking care of a fixed linear ordering of a fixed basis of a vector space of countable dimension.
This setting can be seen as a fixed choice of a composition series of this vector space. Thus it
is natural to consider an extension of the McLain construction over a more general ordering
and an arbitrary (not necessarily commutative) ring R. A first investigation, using more
general rings can be found in Roseblade [17]. In order to avoid complications it is reasonable
to assume that R has no zero-divisors. Then it turns out that generalized McLain groups
can be defined in this generality with respect to a fixed composition series £; see Definition
2.1. The fact that over fields we have decomposition of immediate factors of the composition
series is reflected in our Definition 2.1 (2) of a direct composition series - by using projec-
tivity of R. It follows immediately from the restriction to such composition series, that the
R-modules V in question (replacing the vector spaces V') are now submodules of cartesian
products R", thus torsion-less, in the sense of Bass. Now McLain groups can be defined as in
Definition 3.5. One of the basic question for investigating (generalized) McLain groups is the
reconstruction of the composition series £ from the knowledge of the McLain group M (L);
it is the analogue of Wedderburn’s theorem showing that from the matrix rings Endg (V)
of a finite dimensional vector space the dimension and the ground field K can be recovered.
This is also a crucial topic in [4, 5] and in Puglisi [15]. We will succeed here in showing the
following main theorem. We begin with a few easy remarks and obvious, known definitions.
Let R (for the moment) be a domain, i.e. a commutative ring without zero-divisors and
L ={V\| XA € A} a direct composition series of a left R-module V. We let the index set A
carry the order inherited from the chain (£, C). For pu € A, let ™ denote the direct successor
pin A (if it exists). Then let AT ={A € A | Ju € A: X = uT}. We say that h € Endg V
stabilizes L if V,,+h C V), for each i € A. Let

G(L)={9g=1+a€ Autg(V) | a stabilizes L},

the stabilizer group of L. It follows from the definitions that the generalized McLain group

is a subgroup of the stabilizer group.

Theorem 1.1. Let R is any domain. Let L1,Lo be two direct composition series. Let



M(L;) CU; C G(L;) fori = 1,2, and assume that Uy = Us. Then the chains (£1,<) and

(L2, C) are either isomorphic or anti-isomorphic.

This result comes in three parts. We must distinguish the cases when L£*, the direct
composition series without 0,V, the smallest and the largest element, has no smallest or
no largest element, when £* is bounded and char(R) # 2, and when £* is bounded and
char(R) = 2, see Theorems 4.11, 6.5 and 6.9. The proof is based on the fact that the maximal
normal abelian subgroups of U; must be mapped bijectively onto the corresponding subgroups
of Us. This leads to the order-theoretic normal subgroups of U; which allow us to recover the
betweenness relation on £1 when £ is not bounded. In case £] is bounded and char(R) # 2,
we need to employ the mazimal intersection groups (groups maximal among the intersections
of pairs of distinct maximal abelian normal subgroups). We also consider those maximal
abelian normal subgroups which do not contain a maximal intersection group. The case of
characteristic two with bounded direct composition series L] requires even further algebraic
information transported from U; to Us by the group isomorphism. For this case, we also
consider maximal intersections of pairs of distinct maximal intersection groups. Investigation
of these classes of abelian normal subgroups leads to the above theorem. We do not know
if the case of anti-isomorphisms between £ and Lo can occur. In the particular situation
of fields which are not of characteristic two, Puglisi [15] is able to exclude this case using
heavily dimension arguments and deep group theoretic results. Thus it seems very likely that
anti-isomorphisms cannot come up in general. Also for McLain groups defined directly on a
linear ordering as in [4] it can be shown that an isomorphism between those McLain groups

induces an order-isomorphism or anti-isomorphism of the ordering.

2 Basic Constructions

Let R be any (not necessarily commutative) ring with 0 # 1 and without zero-divisors.
Moreover, let V be a left R-module and Autp V' its group of R-automorphisms with 1 €
Autr V the identity on V. Then we consider

FGL(V,R) ={g € Autr V | tk(V (g — 1)) < o0}.
This is a normal subgroup of Autg V' and obviously

FGL(V,R) = (1+Fin V)N AutgrV,



where FinV = {0 € Endr V |tk Vo < oo} is a useful ideal of the endomorphism ring Endg V'
in connection with realization theorems of algebras, see [9]. If R is commutative, then Endg V'
is an R-algebra and FinV is a two sided ideal of this algebra. An element g € AutgpV is
called unipotent if there is an n € N such that (¢ —1)" = 0 in Endgr V. If H C AutpV
consists of unipotent elements only, then H is said to be unipotent. It is natural to relate

unipotent subgroups of Aut V' to stabilizers of composition series of V.

Definition 2.1. Let R be a ring without zero-divisors and V a left R-module. A family
L={Vy| X € A} of submodules of V' is a composition series if the following conditions are
satisfied.

(1) L is linearly ordered under inclusion and contains 0 and V.
(2) L is closed under arbitrary unions and intersections.

(3) If Vi is a direct successor of V,, in L then Vy/V, = R.

(4) L is maximal with respect to (1), (2), and (3).

Note that any composition series is closed under unions and intersections. Also observe
that if A\, x € A and V), is a direct successor of V,,, then V,, C V) (a direct summand), since
R is projective. This implies that if £ is an ascending (i.e., well-ordered) composition series,
then £ is a direct composition series. Hence initial segments of £ are also composition series.

We call £ a direct composition series if the elements of £ are direct summands of V.

Next we show that for composition series over domains the converse of (3) holds.

Proposition 2.2. Let R be a domain, V a left R-module and L a composition series. If
V, C Vy in L with VA/VM = R, then V) is a direct successor of V,, in L.

Proof. Let V,, CW C Vy in £ with V) /V,, = R. Since L is a composition series, we can
find W C U Cc U C V), in L such that U is a direct successor of U’ in £. Thus U/U’' = R
and so U = U’ @ R. Consider (U'/V,)® R= (U'® R)/V, C V\/V, = R, which represents a
direct sum of ideals of the commutative ring R. But R has no zero-divisors. It follows that
U=V, Hence W=V,. =

We let A carry the natural induced ordering defined by p < X iff V,, C V), for A, p € A.
We write A = u™ (or u = A) if X is the direct successor of p in A, that is, 4 < A\ and there is



no p € A with 4 < p < A. Put
AT ={NeA|FueA: x=pu"}
Moreover, let

Vi =WVa\Vy for A€ AT, and V" = | J V}, for A € A,
H<A
Note that V\ = V" if A = sup{p | p < A}, and if A € AT, then V)/V~ = R. We will often
use that whenever 0 # v € V, then v € V{ for some A € AT. A left R-module V is called

torsionless if V embeds into some product R".
Proposition 2.3. Let R be a ring without zero-divisors and V a left R-module.
(a) If V has a direct composition series, then V is torsionless.

(b) If R is principal ideal domain and V is torsionless, then V has a direct composition
series. Moreover this series can be chosen to be descending, i.e. anti-isomorphic to an

ordinal.

Proof. (a) Let £ = {V) | A € A} be a direct composition series of V. For each A € A
choose a decomposition V' =V, @ C) and let 7y : V — V), be the projection modulo C) and
ox:Vy— V)\/VA_ be the canonical projection. Put oy = mypyx. Then

O’ZHO’)\ZV—> HVA/VA_
AEAT AEAT
is an embedding, because if 0 # v € V, then v € V" for some A € AT, hence v ¢ ker oy, thus

kero = 0. Since [] Va/Vy = RM| the claim follows.
AEAT
(b) Since V is torsionless, we can assume that V' C R" for some cardinal k. Write R* =

[[eiR and put Ny = ][] e;Rand V) =V NNy (X € k). It follows that £L={V\ | A € K} is
1€ER A<i€r
descending and each V) is a direct summand of V. We show that £ satisfies condition (2).

Assume A, i € k such that V) is a direct successor of V, in £. Choose a minimal X" € x such
that V) = V). By definition of the V,, (v € k), L is closed under intersections. Thus there is

a maximal p’ € k with V,, = V},.. Then ' is a direct successor of X' in x. Hence
0# V)\/VM = V)\//Vul = (V N N)\/)/(V ﬂNM/) < N)\//N =2 R.
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Since R is a principal ideal domain, we obtain V/V,, = R. Hence (1) and (2) hold.
Now choose a composition series £’ such that £ C £’. Consider any A, € s such that
V) is a direct successor of V), in £. Then V/V,, = R by (2). Hence, by Proposition 2.3, V)

is a direct successor of V,, in £'. Since L is descending, it follows that £L=L'. =

In view of Proposition 2.3(b), we note that V' in general does not have an ascending (i.e.

well-ordered) composition series as the following result shows.

Theorem 2.4. Let k be an infinite cardinal and R a countable principal ideal domain. Then

the following are equivalent:
(1) R is a field.
(2) R* has an ascending direct composition series.

Proof. (1) — (2): If R is a field, then R" is a vector space over R of dimension 2%. A
well-ordering of a basis induces an ascending direct composition series.
(2) — (1): If R is not a field, then R is slender, see Eklof and Mekler [6, p. 64, Corollary
2.4] or Gobel and Trlifaj [9]. Suppose V' = R" has an ascending direct composition series
Vi (A € A), where A is an ordinal. Since |R| < |V| = 2" and |V)| < R for all A < w; we
have w; € A and |V,,,| = N;. Also V,, T R", so by Nunke [14, p. 69, Theorem 5a] and
a slight extension (replacing Z by R) we obtain V,,, = RP for some cardinal p. If follows
that X; = 2”7, hence p = w and CH holds. Express V,,, = [[Re;. Also, {V\ | A € w1} is a
composition series of V,,,. Since cf(w1) = w; we can find A Zeei)l such that {e; | i € w} C Vj.
Write V,,, = V@ C) and let 7 : V,, — C) be the canonical projection. From e;m = 0 for
all i € w it follows that 7 induces 7 : ([[ Re;)/(ED Re;) — C) with Im(7) = Im(7). However

tew €W
[ Rei/ D R, is cotorsion by Hulanicki, see Fuchs [7, vol.1, p. 176, Corollary 42.2]. On the
€W €W
other hand C) C R“ and therefore cotorsion-free, see Eklof and Mekler [6, p.138, Theorem
2.9]. Hence

0=Im(7) =Im(7r) =Cy and V,,, = V).

But A € wy and V) is countable, a contradiction. m

Next we consider endomorphisms stabilizing L.



Definition 2.5. Let R be a ring without zero-divisors and L = {V\ | A\ € A} a direct

composition series of a left R-module V.

(a) If g € Autr(V), then a = g — 1 € Endg V'; we often write g =1+ a.

(b) We say that h € Endgr V stabilizes £ if VAh C V~ for each A € A™T.

(c) Let G(L) ={g =1+ a € Autr(V) | YA € AT : Vya C V, }, the stabilizer group of L.
Proposition 2.6. G(L) is a group.

Proof. Let g =1+ a € G(L£). We first show that Vg = V), for each A € A. The inclusion
Vig C V) is clear. Now let v € V' for some \ € AT. Since g € Autr V, there is u € V with
v =1ug =u+ua. Then u € V; for some u € AT, and ua € V. Sowv € V7, showing u = A
and v = ug € Vig.

Now ¢! = 1+ b with b = ¢g~! — 1, and by the above, Vb C V) for each \. We claim
that Vb C V™ for each A € AT. Since 1 = gg7' = (1 +a)(1 +b) =1+ a+ b+ ab, we have
0 =a+b+ab. Now if v € V), then vb = —va — vab. We get va € V, by assumption, so
vab € V,~ by the above, thus vb € V|~ as needed. m

We will write FG(L£) = G(£) N FGL(V, R) for the finitary stabilizer of L.

Example 2.7. We give an example of a mazimal series L of submodules of V' with FG(L)
not unipotent. Choose J, = R =V, the ring of p-adic integers, and V,, = p™J, (n € w).
Then £ ={V,, | n € w} is a mazimal descending series of J,-submodules with V,,/Vy, 41 = Zy,
and FG(L) =1+ p Jp,.

Proof. Note that J, = EndJ, by scalar multiplication. If ¢ = 1+ pa € 1+ pJ, then
g is invertible because pJ, is the Jacobson radical of J,. Hence g represents an element
in Autg V. Moreover V;,pa C V41 for all n € w and all J,-submodules have rank 1, thus
g=1+paeFG(L).

Conversely, let g =1+ a € FG(L). Then J,a C pJ, and a € pJ, is immediate.

Note that J, is a domain, hence 1 4 p J, has no non-trivial unipotent elements. m



3 Relating G(£) and McLain-groups

In all of this section let R be a ring without zero-divisors and £ = {V) | A € A} a direct
composition series of a left R-module V. Here we will investigate the relationship between
the stabilizer group G(£) and related McLain-groups.

Given g =14 a € Autg V, we put

9] = [a] = {(a,8) E AT x AT | Fv €V} :va € Vﬁ*},
the support of g respectively a. We also put
lg)i = [ah ={a e AT |3 AT (a,8) € [g]},

gl = a2 = {B € AT [Ja € AT : (a,B) € [g]},

the 1-support resp. 2—support of g resp. a.
We often write g=' = 1+ a*. Then a + a* + aa* = a + a* + a*a = 0. Subsequently, the

symbols «, 3,7, A\, i, v,w will always denote elements from AT,

Lemma 3.1. Let g =1+ a € G(L), (o, B) € [a] and &/ > a. Then (/,3') € [a] for some
g =B

Proof. Choose any u' € V. If u'a € V, we are done. Now let v'a = 0 or u'a € V for
some v # (3. Choose u € V' with ua € Vj. Then v’ +u € V, and (v’ + u)a = v'a + ua €
Vy U Vy, showing (o/,7) € [a] if v > 3, and (o, B) € [a] otherwise. =

Lemma 3.2. Let g =1+a € G(L) and g~ =1+ a*. Then [a] = [a*]. Moreover, if 3 = v
and v € Vg, then va = —va®™ mod V.

Proof. We have a + a* + aa* = 0. Let (a, ) € [a]. Choose u € V; with ua € V. Then
ua® = —ua — uaa®. Since (ua)a® € V', we have ua™ € Vj and so (a,5) € [a*]. Now let
B =~ and v € V3. Then Vgaa™ C Vﬁ/_. Hence va +va* =0 mod Vﬁf_. n

Lemma 3.3. Let g = 1+a € Autg(V). Then g € G(L) iff for all (o, B) € [g] we have a > 3.



Proof. The ‘only-if-part’ is obvious. For the converse, let 0 # v € V with va # 0. Then
there are o, 3 € AT such that v € V} and va € V5. Thus (a, B) € [a], showing o > (3 and
vacV, . =

Lemma 3.4. Giwen a homomorphism h : V. — V with V\h C V~ for all X\ € AT. Let
g=1+h. Then:

(a) g is a monomorphism.
(b) Assume Yv € VIn € N:vh"t =0. Then g € Autg(V) and

g l=1—h+h>—---£h"F....

(c) If A is well-ordered, then g € Autr(V).

Proof. (a) We have ug = u + uh and vg = v+ vh. If ug = vg, then u — v = (v —u)h. If
u # v, there is @ € AT with u — v € V and so (u — v)h € V', a contradiction.
(b) Immediate by (1+ h)g~! = 1.
(c¢) By assumption on h and A, there is no v € V with vh™ # 0 for each n € N. Now apply
(b). =

Next we define particular group elements stabilizing L.

Definition 3.5. Let o,3 € A" with a > 3. Choose any elements u € V¥ and v € Vﬁ*
with Vo, = Ru® V. Write V= (Ru® V) ® C. Define hog : V. — V by uhop = v and
(Vo ©C)hap = 0. Then h’ 5 =0, 50 gap = 1+ hap € Autg(V) by Lemma 3.4, s0 gap € G(L)
by choice of hag, and g(;ﬁl =1~ hag.

All elements gop = 1 + hop arising this way (i.e., by suitably chosen u,v,C) will be called
McLain-elements of type («, 3). We put

ML) = <gaﬁ | gap a McLain-element of type (o, 3),a > 3 in A+>,
the McLain-group of L. Thus M(L) C G(L).

Lemma 3.6. Let o > 3. Then [hog) = {(¢/,B) | & > a}. However, for each o > «, there
exists u' € VY, with w'hag = 0. We have Vhog = Rv C V.



Proof. Let hapg arise from the decomposition V = (Ru @ V) & C with u € V; and
v € Vy. Let (o/, ) € [hap]. Choose any w € Vj, with whag # 0. Then w ¢ V7, so o/ > «
and w = ru + w' for some x € R\ {0} and w' € V- @& C. Thus whes = av € Vj§ by
xz # 0. Hence [hog] C {(¢/,3);0/ > a}. Conversely, let o > a. By Lemma 3.1, we have
(!, ") € [hqp] for some §'. By what we have already shown, then 5 = 3. Moreover let
v =w =w—au. Then v € V) and v/ € V; & C, so u'hag = 0. The final statement is

clear. =

The following example, an immediate consequence of the main result in Gébel, Wald [10,
Theorem, p. 271], illustrates the assumptions of the next Proposition 3.7. There is an abelian

group V of cardinality 280 with the following properties.
(1) @nEw Ze” c 4 - HnEw Zen
(ii) EndV =Z & FinV with FinV = {p € EndV |tk < oo}
(iii) V is slender.

(A similar result, but replacing w in (i) by arbitrary uncountable, regular cardinals follows
from [3], see also [9].)

Since P =[]
by the requirement that Im ¢ is finitely generated (and free). It also follows that FinV is the

new Lén is Ni-free it is clear that the rank-condition in (ii) can be replaced
collection of endomorphisms ¢ that extend (uniquely) to ¢ : P — V with e;¢o = 0 for almost
all i € w. (This is related to condition (iii).) Thus any element of Fin V' can be expressed as
a finite sum of endomorphisms v, with e;1,, = 0 (for ¢ # n) and acting non-trivially only on
Zey,. The units of EndV are the automorphisms of V, i.e. AwtV = {£idy +f | f € FinV}.
If P, =[l;>,, Ze;, then V;, = VN P, (n < w) represents a descending composition series
L={V,|n <_ w} of V' of order type w* with (1), ., Vi, = 0 such that V;, = Ze, © Viq1.
The family F' = {¢ € EndV | V,,po C V,41} of all endomorphisms of V' which stabilize £
is a subring (without a 1) of the two-sided ideal FinV of EndV = Z @& Fin V. Thus F is
generated (as a ring) by all ¢ € FinV shifting elements non-trivially only on Ze,, for some
n € w, this means e;pp = 0if i # n and e, € V,, 1. In particular G(£) = {£idy +a | a € F}.
Applying Definition 3.5, and the remarks above it follows by simple arguments from linear
algebra (similar to the proof of the finite case in Proposition 3.7) that M (L) = G(L).
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This example shows that we cannot expect that the next proposition (in case of descending
chains) can hold for domains R (even if R = Z). To characterize finite composition series we

must restrict to fields R or must avoid descending chains as above.

Proposition 3.7. If R is a domain and L is ascending with M (L) = G(L), then L is finite,
and conversely, if L is finite, then M (L) = G(L). In particular, if R is a field, then we have
M(L) =G(L) if and only if L is finite.

Proof. First let R be a domain, and assume that £ is finite. We may also assume that
Vj :@LlRei for1<j<n,V=V,and Vj = {0}. Choose any 1 #g=1+a € G(L). We
claim that g € M(L).

Choose ¢ < n minimal with e;a # 0, say e;a € V" with 1 < j <. Define hj; : V — V
by e;hi; = —e;a and (@k#l Vi)hij = 0. Then 1+ h;; € M (L) and

(1+a)(1—|—hij):1—|—a—|—hij—|—ahij:1—|—a/:g/€g(£)

satisfies exa’ = 0 for each 1 < k <i. By induction, we have ¢’ € M (L) and hence g € M(L).

Now assume that £ is ascending, but infinite. Note that by Lemma 3.6, for each g € M (L),
the 2-support [g]2 is finite.

Let £ contain a copy of the ordinal w, i.e. there is an ascending sequence (A;);c,, € AT. We
=V\,®Ru;®C;. Also, let V = (U Vy,)®C.
Choose h € End(V) with u;41h = w; and C;h = 0 for each i € w, and Chli 0. Then
g =1+ h € G(L) by Proposition 3.4 and \; € [g]s for each i € w. So g ¢ M(L).

Now assume that R is a field and suppose that £ is infinite but contains no copy of w.
There is a descending sequence (A;);c,, € AT. We may write V), =V, ® Ru, & C),, and
let U = @,c, Run, C = ,,c,Cn. Since R is a field, it follows U ® C ® D = V and
we can define h € End(V) such that u;h = w;y; for all i € w and (C ® D)h = 0. Then

g=1+heG(L), \it1 € g, foreachi € w,and g ¢ M(L). =

can successively write V, = Rug® Cp and V}, .

n—1

Next we show a connection between the present groups and the generalized McLain-groups
as investigated in [4, 5]. We introduce some notation. Let R be a domain and (.S, <) a linearly
o.BeS with ro3 € R is called row-finite, if for each ao € §
the set {3 € S| rop # 0} is finite, and lower-triangular, if ro3 = 0 for all o, f € S with o < 3.

Let (R, S) be the collection of all row-finite lower-triangular .S x S-matrices (ras), scg Over

ordered set. An S x S-matrix (r,g)

R and diagonal = 1, i.e., 74 = 1 for all @ € S. With the usual matrix multiplication, Q(R, S)
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is a monoid. For a, f € S with a > 3, let e, € Q(R, S) be the matrix with entry 1 at («, 3)
and 0 elsewhere. Now let G(R,S) comprise all matrices A = (r43) € (R, S) for which the
set {(a, B) | rap # 0, > B)} is finite. Then G(R,S) is a group and generated by the set of
all elements 1+ aeap (a € R, o, f € S with o > g}, cf. [4, Lemma 2.1]. This group G(R, S)
is called the (generalized) McLain-group over R and S.

Now let V' be a left R-module and £ = {V), | A € A} a direct composition series. For
each a € AT we choose and fix e, € V. The set {e, | @« € AT} generates a free R-
module which may be a proper submodule of V. We call £ a generating composition series,
if V= (eq| @€ AT). Now assume that £ is generating. To each endomorphism h € End V'
stabilizing £ we associate a (AT x AT)-matrix Aj, = (rog) over R with respect to the basis
{eqa | @ € AT} as usual, ie. eqh =10 ropgep, with o, B1,...,0n € AT and a > 1 > -+ >
Bm without loss of generality; we put 74 = 1 for each @ € AT. Since h is stabilizing, we
obtain A, € Q(R,AT). Conversely if A € Q(R,A™) , we obtain a homomorphism h € End V'
stabilizing £ with A = Ap. Since this procedure preserves products, we can identify the
monoid {g =14 h | h € EndV stabilies £} with Q(R, A™).

Proposition 3.8. Under the above assumptions, we have G(R,A*T) C M(L) C G(L) C
Q(R,A"), and G(L) is the maximal subgroup of the monoid Q(R,A™).

Proof. For each g = 1+ h € G(L£), the associated matrix Aj is invertible in Q(R,A™T).
Furthermore, if A € Q(R, A™") is invertible and A = Ay, for a stabilizing h € EndV as above,
then g =14 h € AutgV, so g € G(L£). It remains to show that G(R,AT) C M(L).

Leta € Rand o, 3 € AT witha > 3. Weput C, = (ex | A > ). Since V = (e | A € AT),
we have V7 = (e) | A < a), hence V,, = Re, &V, and V =V, & C,. Now define the McLain-
element go,3 = 1 + hapg such that eyhas = aeg and (V,, @ Cy)hap = 0. The choice of Cy
implies 1+ aeqag = gap € M(L). Since G(R, AT) is generated by the elements 1 + ae,s (a €
R,a,3 € AT with a > (3), our claim follows. m

Proposition 3.9. Under the above assumptions, we have G(R,A™) = M(L) if and only if L
1s finite or of order-type 1 + w* or 2 + w*.
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Proof. We may assume that £ is infinite. Then L is not of order-type 1+ w™* or 2 4+ w* iff
there are a, 3 € AT such that « > 8 and {\ € A | A > «} is infinite. First assume the latter.

Let g = 1+ hopg be a McLain-element of type (a, 3). Then by Lemma 3.1, A € [hqg]1 for
each A > «, so Ahaﬁ contains 1 in each A-row besides at the main diagonal, so Ahaﬁ is not
finite. Hence g € G(R,A™T).

Now let £ be of order-type 1 + w* or 2 + w*. In order to show G(R,AT) = M(L), let
g =1+4hag € M(L) be an arbitrary McLain-element obtained from V = Rv, @V, @ C,, with
o, € AT. Hence V, D V3 D {0} = min(L). We claim that g € G(R,A"). Indeed Vhyg C
Vi, Vi hap = {0}, and V/V, and therefore Vh,g has finite rank. Since {A € AT | XA > o}
is finite, the matrix A, has only finitely many non-zero entries outside the diagonal, hence
g € G(R, A+). n

4 Relating £ and M(L).

In all of this section let R be a ring without zero-divisors and £ = {V | A € A} a direct
composition series of a left R-module V. Here we will investigate the relationship between

the structure of £ and M (L). First we derive basic properties of McLain-elements.

Lemma 4.1. Let o > S and a > . Letu € Vi, v € Vg, w € V¥, and let 1+hapg be a McLain-
element of type (o, B) with uhag = v, arising from a decomposition V = (Ru @ V; ) @ C as
above in Definition 3.5. Let h : V. — V' be a homomorphism with vh = w. Then 1+ hogh
is a McLain-element of type (o, ) arising from the same decomposition of Vas hag, and

uhagh = w.
Proof. Trivial. =

Lemma 4.2. Let a > 3 > v, and let 1+ hqop, 1+ hg, be McLain-elements of type (o, B) resp.

(B,7)- Then 1+ hoghgy is a McLain-element of type (o, ), arising from any decomposition
of V' as for hqag.

Proof. Let u € Vi with V = (Ru&® V) ® C and v = uhapg € V. Let o' € Vi with
Vs = Rv'®Vy and v'hgy, = w € V. Then v = rv' +w’ for some 0 #r € R,w’ € V. So

vhgy =10'hgy = 1w € V. Lemma 4.1 implies the claim. w
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Lemma 4.3. Let o > 3,7 > 0 and either

(a) v > B or

(b) B>~ V =(RudV,)®C a decomposition for hog with uhag = v € Vﬁ* and V =
(Rw @ V)@ C" a decomposition for hys with v € C'.

Then haghys = 0.

Proof. By V3 C V" resp. v € ' and C'h,5 =0. =

In all of this section let U be a group such that M (L) C U C G(L£). The following
‘commutator lemma’ will be very important for us.

Lemma 4.4. Let g=14+a c U withg ' =1+a*. Let ( > in AT and e = 1+ he¢s.

Then the commutator ¢ = [g,e] = 1 — a*h¢s — (1 + a*)hesa, hence

le,g] = [g.e]™t =1+ a*h¢s + (1 + a*)hesa. If also v > € > ¢ in AT and f = 1+ hoe, then
[e; /] =1+ hyea”hesg + haghesas

Proof. First we recall that a + a* + aa™ = a* + a + a*a = 0. Hence

c=lg.e] =g e Ige = (1+a")(1 — hes)(1+a)(1+ hes)
=1- h<5a + ah@ — a*h<5a + a*ah<5
=1- hg(;a — a*h@a — a*hg(s =1+k.

Using k% = 0, so k* = —k, the formula for [e, g] is clear. Now let v > ¢ > ¢ and f = 1 + h.e.
The formula for [g, ] implies

[C, f] =1+ kh«,g - (1 - k)hpygk
— 1= hock
=1+ hychesa + h-yga*h@a + h»yga*hgg,
as claimed. =
If AC AT welet Al={\ € At | X > pu for some u € A} and we define A| dually. Next

we consider particular pairs of subsets of A which resemble Dedekind cuts in linear orderings

and which will be used to define particular normal subgroups of U.

Definition 4.5. Let A, B C At. The pair (A, B) is a couple if the following conditions hold:
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(1) A#0#B,
(2) A> B,
(8) A is closed upwards, i.e. A= AT, and B is closed downwards, i.e. B = B].
We write (A,B) C (A",B") if AC A and BC B'. Let Nap={g €U | [g] C Ax B}, which

we call an order-theoretic normal subgroup of U.

Lemma 4.6. (a) Na p is an abelian normal subgroup of U.
(b) (AaB) C (AlaB/) Zﬁ NA,B - NA’,B’

Proof. (a) Let g =14 a and h =1+ b be elements in N4 p. Then gh =1+ a+ b+ ab
and hg = 14+ a+ b+ ba. We will show that ab = ba = 0. If ab # 0, then there is (a, ) € [ab].
Hence there is 8 with (o, 3) € [a] and (8,7) € [b], so f € AN B, a contradiction. Thus ¢g and
h commute. Moreover, gh € N4 p and a?=0,s0¢g'=1—-ac Na,B.

Now let k =1+ u € U with k~! = 1+ u*. Then

F=0+u)1+a)(l4+u) =1+a+u+u* +u*a+au+u*u+u*au

=1+4+a+u*a+au+uau.

Then [u*a], [au], [u*au] C A x B, so gk € Na . Hence N p is normal in U.

(b) Let (A,B) C (A/,B’) and let g = 1+ a € Ngp. Then [g C Ax B C A’ x B', so
g € Ny pr. Conversely, suppose Na g € N pr. Choose (o, ) € Ax B. The McLain-element
g = 14 hap belongs to U, so it satisfies g € Nap € Na p. Hence (a,3) € [g] € A’ x B/,
showing (A,B) C (A',B’). =

Subsequently we denote by T the greatest element of AT and by L the smallest element
of AT, provided they exist.

Lemma 4.7. Let N be an abelian subgroup of U with normalizer containing M (L). Suppose
g=1l4a,h=14+beN anda> >~ > 0§ in AT with (o, 3) € [g] and (v,0) € [h]. Then
a=T,d=L,and =~ or B = ~. Consequently, if k € N, then [k] can only contain the
pairs (u,v) if w > B >~ > v and possibly (T,3) or (v, L), possibly (T,v) or (B8,L) if B = =,
and possibly either (T,v) if v = B =", or (u, L) if 8=+ > p (but not both).
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Proof. Let g7' =1+ a* and h=! =1+ b*.
Case 1. Let 3 > 7. Suppose there is §' € AT with § > §’. We can choose u € V* such that
ua € V. Since [b] = [b*] by Lemma 3.2, there is v € V' such that vb* € V. Choose v’ € V,
v € Vi and w € V5; with Vg = Ru’@Vﬁ_ and Vs = Rv'@V; , and write V = V3@ C = Vo C'.
Next let f = 14+hg, and e = 14 hsy be the McLain-elements arising from «’, v, C respectively
v, w,C’. By 3>~ >4 >¢ and Lemma 4.4, we have

N> 1 =[hse], f] =1+ hgyb"hay h + hyhagb =1+,

We have ua = ryu’ +u” and vb* = ryv' +0” with 0 # ry, 7, € Rand u” € VB_,U” € Vs . Then
uab’ = r vt = ryry(w + wb) + ryvhsyb € ryryw + Vi, C V55 But ub’ € Vy and ub'a € Vy, .
Hence a and b do not commute, a contradiction. Hence § =_1.

Case 2. Let 3 = v. Suppose there is & € AT with § > §’. Again [b] = [b*].

First we show that whenever w € Vﬁ_ then wb* € Vy. Indeed, otherwise there are
B>p >49" >0 and w € Vj with wb* € V. Then (8,9') € [b*] = [h] and we get a
contradiction by Case 1.

Now we choose u' € Vj with V5 = Ru’ & V. We claim that u'b* € V. Indeed, by
(B,6) € [b] = [b*] there is v € Vj with vb* € V", Write v = yu’ +v” with 0 # y € R and
v" € V. Then vb* = yu'b* +v"b* € Vi and v"b* € Vi as shown above. Hence yu'b* € Vy
and our claim follows.

We choose v' € Vi and v’ € Vg with Vs = RV @ V5, and write V = Vs & C. Let

e = 1+ hss be the McLain-element arising from v’,w’, C. By Lemma 4.4 we have
Noh =[he]=1-b"hsy — (1 +b)hssb=1+1V.

Now choose u € Vy with ua € V. Then ua = u’ +u" for some 0 # z € Rand v” € V5. By
our first claim, we have u”b* € Vi, and hence v’ € V5, . By our second claim, u/b* = zv'+w"
for some 0 # z € R and w” € Vy . So u'b*hsy = zw', hence vV’ € —zw + V5. Thus
uab' = zu'V +u"V € —zzw' +Vy C V5. But ub’ € Vy and uba € Vj,, so a and b’ do not
commute, a contradiction. Hence § =_1.

Case 3. Let 3 > 7. Suppose there is o/ € AT with o/ > «a. Since [a] = [a*], we can
choose u € V; with ua™ € V and v € V¥ with v' = vb € Vy". Write V3 = Ru' & Vs . Then
ua* = ryu’ +u” with 0 # r, € R and v’ € Vs Since V is torsionless, we can choose a
decomposition V = (Ru' @ V) ® C' with u € C". Next, choose McLain-elements e = 1+ hg,
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arising from v/, v, C" and f = 14+hyq with whe/q = u for some w € V5. Then o/ > a > > v
and hoqhgy = 0 by Lemma 4.3(b). By Lemma 4.4 we get

N3g =[g,e], f] =14 haat*hs,g + harahgya =1+ hooa*hgy(1+a) =1+d.

Note that ab = ba, so wa'b = (v +va)b = r,(v' +vba) = r,(v' +v'a) € V5" as v'a € V.
But wb € V,, so wba’ = 0 and ba’ # a'b, a contradiction. So o = T.

Case 4. Let 8 = v. Suppose there is o/ € AT with o/ > «. We first show that vb = 0 for
each v € V. Indeed, otherwise there is (8,8 € [b] with a > 3> ' > ¢, so Case 3 yields
a=T.

Choose u € V' with ua € Vj, and v € Vjj with Vg = Rv @ V. Choose w € Vj with
wb € V. Then w = yv+w' for some 0 # y € Rand w’ € V. But w'b =0, so yvb = wb € V§
showing vb € V"

Now ua = zv + v’ for some 0 # x € R and v € Vﬁ_. Again v'b = 0, so uab = zvb € Vj'.

Now choose u' € V¥, and a McLain-element e = 1+ hq/q with «'hyq = u. By Lemma 4.4

we obtain

N3¢ =[g,e] =1—a*hyo— (1+a)hgaa=1+d.
Then u'ba’ = 0, but v'a’b = —u'hyeab = —uab € V', so ba’ # a'b, a contradiction. Hence
a=T.

Case 5. There is n € AT with 3 > n > v. Again, since [a] = [a*], we can choose u € V*
with ua* € Vﬁ* and v € V7 with vb € V{’. Decompose Vj = Ru' @ Vﬁ_ and V;, = Rw V.
Write ua* = ryu’ +u” with 0 # r, € R and v € Vs . Let e =1+ hg, and e =14 hyy be
McLain-elements such that u'hg, = w and wh,, = v. By Lemma 4.4 then

N>g,e] =1—-a"hg,— (14+a")hgya =1+ c and
N3 [he]=1=b"hyy — (1 +b")hyb=1+d.

Then ucd = wa*hgyhy,b = r,wb € V5 but udc = 0, contradicting that N is abelian. Hence

B >~ implies § = 7.
Finally, the last statement of the lemma is immediate by the preceding one. =

Trivially we have 0,V € £. We put £* = £\ {0,V}.
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Theorem 4.8. Let L* contain no mazximal or no minimal element. Then each abelian normal

subgroup N of U is contained in an order-theoretic normal subgroup Na .

Proof. f N # 1, let A = (Jyenlgh and B = U,cylhl2- By Lemma 3.1, A is closed
upwards. Next we show that B = B|. Let («,3) € [g] for some g = 14+ a € N, and
let 3 > ~. Choose u € V} and v € Vﬁ* with ua* = v. Decompose V3 = Rv' @ VB_’ Then
v =rv'+v" for some 0 # r € Rand v" € V. Next choose a McLain-element e = 1+hg, with
v'hgy, =w € VF. Then N 3 ¢ = [g,e] = 1 +d, and Lemma 4.4 shows that ud € —rw + vy,
so (a,7) € [c] and v € B.

By Lemma 4.7 there are no g,h € N with (o,3) € [g], and (v,d) € [h] such that
a> (3>~ >4. It follows that A > B. Hence (A, B) is a couple, since N # 1, and N C Ny p

by construction. =

A chain (C, <) is called Dedekind-complete, if for any non—empty subset A C C which
has an upper bound in C' there exists the supremum (= least upper bound) sup A in (C, <);
equivalently, any non-empty lower bounded subset has an infimum in C. Clearly, since £
is closed under unions and intersections, the chain (£, C) and thus also (A, <) is Dedekind-
complete.

For any A € A, let (00, \) ={y € A |~ > A} and (o0, A\] = {yv € A| v > A}. Similarly, the

intervals (A, —oo) and [\, —o0) are defined.

For A€ Alet Ny ={g €U | g1 > A > [g]2}. Hence N, is an order-theoretic normal
subgroup of U by Lemma 4.6(a).

Let (A, B) be a maximal couple. Since A is Dedekind-complete, either A = (0o, \) N AT
and B = [A\,—00) N AT, or A = (c0,A]NAT and B = (A\,—00) N AT where A € A. If X has
a predecessor 7, clearly (0o, \| N AT = (0o,n) N AT and (A, —c0) N AT = [, —c0) NAT. If A
has no predecessor, we have A ¢ AT, hence (0o, \] N AT = (00, A\) N AT and (A, —o0) NAT =
[\, —00) NAT. Hence we can always write A = (00, \) N AT and B = [\, —00) N AT for some
A€ A, s0 Nyp= Ny.

As an immediate consequence of Theorem 4.8 we obtain a group-theoretic characterization

of the order-theoretically defined normal subgroups Ny.

Corollary 4.9. Let L* contain no mazimal or no minimal element. Then the maximal

abelian normal subgroups of U are precisely the groups Ny (A € A).
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Proof. By Theorem 4.8, all maximal abelian normal subgroups of U are of this form.
Conversely, to show that each V) is a maximal abelian normal subgroup, apply again Theorem
4.8 and observe that if Ny C N, then A = ;s by Lemma 4.6. =

The following tool will enable us to recover the order structure of (A, <) via the groups
Nj.

Lemma 4.10. Let p,v,A € A. Then N, NN, C Ny if and only if X lies between p and v,
i.e., either u > A>v orv>A>p.

Proof. We may assume that u > v. Hence N, N Ny = N 1), [1,—0c)- By Lemma 4.6(b),
we have N(oo,u),[u,—oo) - N)\ iff 1% > A >V. m

Now we obtain:

Theorem 4.11. Let L1, Ly be two direct composition series such that L7, L5 each have either
no maximal or no minimal element. Let M(L;) C U; C G(L;) for i = 1,2, and assume that

Uy 2 Uy. Then the chains (L£L1,C) and (Lo, <) are either isomorphic or anti-isomorphic.

Proof. Let ¢ : Uy — U, be the given isomorphism. Then ¢ maps the maximal abelian
normal subgroups of U; bijectively onto those of Us. Hence, by Corollary 4.9, ¢ induces a
bijection 9 : Ay — Ay satisfying N = Ny, for each A € A;. By Lemma 4.10, ¢ and Pt
preserve the induced betweenness relations of the chains (A1, <), (A2, <). Thus, ¢ : (Aq, <

) — (A2, <) is either an order-isomorphism or anti-isomorphism. m

5 Bounded composition series

We call a chain (C, <) bounded, if (C, <) contains both a greatest and a smallest element,
denoted by max C respectively min C. Now we investigate the case that AT is bounded. We
write T = max A", L= minA". Recall that V|~ =0 and V& = V. For each A € AT we fix
decompositions V) = Rvy @V, with vy € Vy. Hence for each p > v in AT any McLain-
element h = 1 + hy, determines a unique ring element r,, € R defined by v, hu,, = r,v,
mod V. We call r,, the ring element associated with h,,. Conversely, for each r € R we

have an associated McLain-element of type (u,v) given by h" =1+ h/,

o where v, hi, = v,
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and (V,” @ Cu)hfw = 0. Furthermore, for each 8,7 € A" with § > ~, we have V =V, @& C,
and vg = rguy + ¢ for some uniquely determined r3 € R and ¢ € V7 @ C,. Formally we put
rg=1if B =1.

Lemma 5.1. Observe that Vhy,, = Rrv,. Whenever 3 = ~ and t € R, then Uﬁh’;l =
7’51@}12L =rgtv, = Uﬁh;ﬁi, 50 vﬁ(hf/ h;u) 0.

Next show that elements of the type described in Lemma 4.7 can be written in a particular

standard form.

Lemma 5.2. Let T > 3 >~ >1 in AT such that either 8 = ~ or 3 =, and g € G(L).
Assume that [g] contains at most the pairs (T,03),(T,v),(8,L),(v,L) and (u,v) with p >
B>~ >v. Then g can be written in the form

g=1+h,+hl +hy +ht, —h} +d
with p,q,s,t € R,q=t=0 if 8 =7, and [a'] C[T,B) x (v, L]. Moreover, p,q,s,t and a’ as
above are unique. We have p # 0 iff (T,0) € [g], and if B = =, then t #0 iff (v, L) € [g].

Proof. Write g = 1 + a. We have vta = pug + ¢/ for some p € R and v’ € Vg €V,
Then v' = quy +v" with ¢ € R and v" € V7. If 8 = «, here clearly ¢ = 0. Then

vTa = UT(h’-’m + h‘-lm) + v”. Furthermore, since vga,vya € Vi and V| = {0}, we get
vga = vﬁth and vya = vwhtyl for some s,t € R. In case 8 = -, here we put t = 0. Put
a=a- (h?rﬁ + thA/ +hj, + hfﬂ - hmt) We have to show that [a/] C [T, 3) x (v, L]. First
let v € V7. Then v = zvt + w for some z € R and w € V. By definition of @/, we have
vra =" — v-r(h%L + h';l — h;‘f) € V" and similarly wa’ € wa + V) C V.7 by assumption

on [g], so va' € V7.
If w € V3, then w = zvg + yv, + w' for some z,y € R and v’ € Vo, letting y = 0 if
B = 7. Then w'a’ = w'a = 0 by assumption on [a]. Furthermore, v a’ = vqja — v ht, =0
gt v YL
and vga' = vga — vg(h%L + hfyl — h;‘f) = 0 by Lemma 5.1. Hence wa’ = 0 and our claim
about [d'] follows. Finally, the uniqueness of p, g, s,t and o’ and the properties of p and t are

easy by considering the action of a on vt,vg and v,. =

Now we consider the commutation behavior of elements having the standard form just
described.
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Lemma 5.3. Let T > [ > v >_1 such that either 3 = ~ or ==, and let g,h € G(L).
Assume that [g],[h] contain at most the pairs (T,03),(T,v),(8,L),(v,L) and (u,v) with
>3 >~>v. Choose p,q,s,t € R as in Lemma 5.2 for g and p',¢',s',t' € R for h. Then

(a) g and h commute iff ps' + qt' = p's + ¢'t.

(b) h commutes with all M (L)-conjugates g™ of g (m € M (L)) iff
ps’ 4+ qt' = p's + ¢'t and pxt’ = —p'xt for each x € R.

(c) Assume (T,[3),(v,L) € [g] and B > ~. Then g commutes with all its M (L)-conjugates
iff char(R) = 2.

Proof. (a),(b) By Lemma 5.2, write g =1+a+a’ and h =14 b+ b with

. 3t
(i) a=hhy+nhS, +hy +h, — Ry,

(i) b=hy+hY +hs +h! —h),

(iii) [a'], (] € [T, 8) x (v, L],

(iv) p,q,s,t,p,¢, s, e Randq=¢ =t=t =0if f =1.
Then aa’ = 0,s0 g =1+a+d = (1+a)(1+d) and similarly h = (1 4+ b)(1 + b'). Let
m=1+ce M(L) and m™t =1+ c*. Also, a'b=ba’ =a'bl =bd =0,s0 (1+a)™ and h
commute and (1+ a)™ and 1+ commute. Thus ¢" and h commute iff (1 +a)™ and 1+ b
commute iff m~'amb = bm~'am. We note that h?m(hf;l - hgﬁ) =0= hl%lﬁ(hityL - h;ﬁi) both
if 3=+ (since ' =t=0) and if 8 > 7 (by Lemma 5.1).

We calculate
m~tamb = (1 + ¢"a(l + )b = (W 5+ hT )(1 + )b
= BB gh, + hE B, + B gehl = he

and
bm~am = b(1 + ¢*)a(l + ¢) = b1 + ¢*) (5, + by — L)

= W ghs, +hL Bl + R e | = k.

Hence ¢™ and h commute iff h, = k.. Letting ¢ = 0 and applying hc, k. to vT, the result of
(a) follows. This also implies (b) in case of 3 = ~.
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Now let § > ~. To show (b), let x € R and assume ¢, h commute and ¢, h commute,
where m = 1+h%_, m~l = 1—h%. . Then ps’'+qt' = p's+q¢'t and ps’'+qt'+pxt’ = p's+q't—p'xt,
hence pxt’ = —p'xt.

Conversely, assume these equalities. To show that h commutes with all conjugates

g™ (m € M) of g, it suffices to prove that
hl—)l—ﬁchid_ = hl?l—ﬁc*hny_ (+)
forallm=1+c€ M. Let m =1+ c€ M. By Lemma 3.2 we have vgec = —vgc® mod V.~
and vgc* = zvy + v for some z € R, v € V. So
vTh’-’rﬁchfyL = pvgchf/l = —pvgc*hf/l = —pat'vy
=plztv, = p’vﬁc*hfyL = v-rh’%lﬁc*hﬁ/l.
This implies (+).

(c) By Lemma 5.2, we have p # 0 # t, so pt # 0 since R has no zero-divisors. Hence, by (b),
g commutes with all its conjugates iff pzt = —pat for each x € R iff char(R) =2. =

From now on, let R be commutative. Let p,q,s,t,p’,q,s',t' € R with p # 0 # ¢, and
ps’ 4+ qt' = p's + ¢'t and pt' = p't. The latter equation holds trivially if ¢ = ¢/ = 0, and

also in case pt’ = —p't (cf. Lemma 5.3(b)) and char(R) = 2. Now we solve these two linear
equations in Q(R). Let r = % = tt—/ € Q(R), so p' = rp,t' = rt. Hence ps’ + qrt = rps + ¢'t,
so p(s’ —rs) = t(q — qr), thus % = % =z € Q(R) showing s’ = zt +rs, ¢ = 2p + rq.

This motivates part (b) of Definition 5.4.

Definition 5.4. (a) Let £ € AT with T > & >1 and p,s € R\ {0}.
Then D" = <(1 +a)V | a=hE +hr € Q(R),rp,rs € R> and N{° = DNt ) (e,1]-
(b) Let T >3 = v>1 in A" and p,q,s,t € R. Then put

Dg?yst —(1+a)V |a= h?_"g)ﬁ + hi_pﬁqu n h;ﬁ—rs n hTYtJ_ _ h?f,
rz € Q(R),rp,rt,zp+rg, 2zt +rs € R)
pgst __ rypgst
and Ng = = Dg " N1 8)(,1]-

Note that NNy is defined for each X\ € A, whereas Ng’ ®is only defined for £ € AT and N é’f’y‘gt
only if 8,7 € AT and 3 = ~.
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Observe, for instance 1+ hf- 5+ h‘—lr,y +h3, + hfy - h?j € Dg‘fft and 1+ hszﬁ/ + hffi € Dg‘fft
for any z € R.

Proposition 5.5. Let T > & >1 and p,s € R. Then Ng’s 18 an abelian normal subgroup of
U.

Proof. First we claim that Dgs is abelian. Let g =1+ hTTp5 + hgi, h=1+ hTT/? + hg/f and
r,r" € Q(R) with rp,rs,r'p,7’s € R. Then rpr's = r’prs, so by Lemma 5.3(b), h commutes
with all conjugates of g. Our claim follows. Since g commutes with all elements of N ¢) ¢ 1],
it follows that Ng’ ®is abelian. m

We note that ings = <1 +a;a= hTTp5 +hgl,m € Q(R),rp,7s € R>, then Ngs = EgsN[T@(&H.
Indeed, if g = 1+ a with a = h%—i—hgj and v = 1+ c € U with u™! = 1 4+ ¢*, then g% =
(14+a)* =14a+bwithb= h?’gc—i—c*hgi, soab=0and g* = (1+a)(1+b) € EgsN[T,g)(g,“.
Since the elements of Egs commute with those of Nt ¢)¢ 1), we obtain Dgs C EgsN[T@(&H
and our claim. However, this product decomposition is not direct, since Egs N N eye, 1
contains the element (1 + h’-’rg +hg )1+ h}’g +hel) =1+ T # 1.

Proposition 5.6. Ng’ft is a normal subgroups of U. Moreover, Nggft is abelian if and only
if char(R) =2 orp=0 ort=0.

Proof. The first statement is clear. Now let char(R) =2 or p =0 or t = 0. We show that
D¥" s abelian. Let g = 1+ a with @ = B, + 2™ + W + by — b7 and h =1+
with b = hTj + hzTngrq + h;lfrrls + hfyli - hgﬁt and .2 € Q(R). Then rpr't = r'prt
and rp(2't + r's) + (zp + rq)r't = 'p(zt + rs) + (2'p + r'q)rt. So by Lemma 5.3(b), h
commutes with all conjugates of g. Since g also commutes with all elements of Nt gy (; 1],
it follows that Ngﬁ’y‘% is abelian. Conversely, assume Ngﬁ’y‘% is abelian and p # 0 # t. Then
g=1 +h?rﬁ+hgr7+hgl —I—hE/l —hgﬁ € Ngﬁ’y‘% with (T,0),(v,L) € [g] by p # 0 # t. Now
Lemma 5.3(c) shows that char(R) =2. =

Similarly as before, we note that if char (R) = 2 and

ng]yst — < 1+ a;a = h’_if’ﬁ + h,_zl_pﬁ/-i-?“q + hgtj—rs + h;tj_ - hgitv

r,z € Q(R),rp,rt,zp+rq,zt + rs € R ),
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then Ngfft = EZ?{StN[Tvg)(% 1], and again this product decomposition is not direct, e.g. if
p#0#L.

Indeed, consider g = 1 +a € Eg‘fft with a = herﬁ + hsz;rrq + hétfm + hg’l - h?f and
u=1+c€Uwithu? =1+c*" Then ¢g* = (1+a)* =1+a+b with b = herﬁc—i—
hfrp,jrqc + (YT + hf — h?lt). Then yc = 2v, + v’ for some z € R and v € V7, so
v-rh;pﬁc = rpuge = rprvy +rpv’ = UTher,f +rpv’. Since char(R) = 2, we have ¢* = c+cc*. So
b = %Ch;ﬁ_ = :m)«,h;tl =artv, = vghfff. Hence b = h’%x$+hgit +d with [d] C [T, 3)x (v, L],

+rz)p+ +rz)t+ t t i
so g¥ = (1+ hfg’ﬁ + h(TZ,Y relptra 4 h(ﬁi rejttrs 4 hg’l - hg’l )(1+4d) e ng]ys N7 8),(v,1]- Since
all elements of Eg:’ft commute with those of N[t g)(,, 1], we obtain Dg‘ffﬁ C Eg?yStN (T.8),(7,L]
and our claim.

Again this decomposition is not direct. If ps 4+ gt # 0, let a be as above, with r = 1
and z = 0. Then, using Lemma 5.1, Eg?ft N NiT,5)(y,1] contains (1 4+ a)* = 1+ a® =
1+ hhghi) +hT bl =1+ W £ 1,

Now let ps+qt = 0 and consider g = [[2_, (14a;) with a; = h?g—%h?swiq—l—h?fms—khzi—
h;ﬁft andr; =719 =20 =23 =1,r3 =2, =0. Theng € Eg?ft and Y r; =>2,=0,80> a; =
0. Hence g =1+>",_;
with @;; = (riz; +27;)pt using ps+qt = 0. But 3, xi; = 3pt =pt # 0,50 g = 1+h¢¢ #1
belongs to ngft O NI 8)(y, ]

. ) by . _ t iy
a;a; and, again emma 5.1, a;a; = TGS 4 pRPTTApTE i
j and, again by L 5.1, aia; = hhg, Ty yL = Tl

The following result is the analogue of Theorem 4.8 for the case that L£*is bounded.

Theorem 5.7. Let L* be a bounded series. Let N be an abelian subgroup of U with normalizer
containing M (L). Then N is contained either in some order theoretic normal subgroup Ny
where A € A, or in some normal subgroup Ng’s where £ € AT, T > & >1 and p,s € R\ {0},
or, provided that char(R) = 2, in some Ng?ft where 8,7y € AT, T >3 = v>1 and p,q,s,t €
R,p#0#t.

Proof. Case 1. First assume that for all g,h € N and « € [g]1, 3 € [h]2 we have a > £3.

Following the proof of Theorem 4.8, we obtain a couple (A, B) such that N C Ny p. Then
Ny, € N¢ for some & € A.

Case 2. Assume that there are g,h € N with (T,&) € [g] and (&, L) € [h], but for each
ke N,if £ = ~ then (v,L1) € [k] and if v > & then (T,v) & [k]. We will eventually show
that N C Ng’s for some p,s € R\ {0}.

Let k =1+ c € N. By Lemma 4.7, [k], [g],[h] can only contain the pairs (T,¢), (&,L1)
and (p,v) with p > ¢ >v. Let g=1+a and h =1+ b. We may assume that g was chosen
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such that also (£, L) € [g]. Indeed, suppose (§, L) & [g]. If (T,&) € [h], replace g by h. Now
let (T,&) ¢ [h]. Since (T,) € [a], there is v € VF with va € V. Then vh = v + vb and
vb € Vi, vba = 0 by the assumption on [h] and [g]. Hence vha = va € V" and (T,¢§) € [hal.
Similarly (&, L) € [bg] and we replace g by hg.

Hence, by Lemma 5.2 we have

o a=hh, +hi +d,

o c=hZ +hf +¢,

o [@],[d]C[T,8) x (& 1],

e p,s,pis’ € Randp#0#sby (T,6),(§ 1) €[g]

Now Lemma 5.3(a) implies ps’ = p's, so % = %, in Q(R). Then k' =1+ h‘T-T—/5 + hZIJ_ € DY
showing k =1+ c=k'(1+¢) € Nf* and so N C N{”.

Case 3. Finally, by Lemma 4.7, it remains to consider the case that there are g,h € N
with (T,08) € [g],(v,L) € [h] and T > 3 > v >L. We will show that N C Ngfft for some
p,q,s,t € R.

Let k € N. Lemma 4.7 implies that [k], [g], [h] each can only contain the pairs (T, 3),(T,~), (5, L
), (v, L) and (u,v) with p > 8 > v > v. We may assume that g was chosen such that
also (v,L1) € [g]. Indeed, suppose that (v, L) & [g]. If (T,3) € [h], replace g by h. If
(T,B) ¢ [h], clearly, as before, (T, ), (v, L) € [hg] and we replace g by hg. Now, by Lemma
5.2 write g = 1 + h’-’rﬁ —Fh‘-lrV +th + hlfyL — h?i + a’ where p,q,s,t € R,p # 0 # t and
[a'] C [T,B) x (y,L1]. Since g commutes with all its conjugates, by Lemma 5.3(c) we have
char(R) = 2. We claim that k € Ngf/st. By Lemma 5.2 we can write k in the form k = 1+c+¢
with ¢ = h’%,ﬁ +h‘—1r,,y +h§L +hf;l - hg’f where p',¢',s',t' € R and [] C [T, ) x (v, L]. Then
k= (14+c)(1+c)and 14¢" € N1 g)(4,1], 50 it remains to show that 14-c € Dg‘f{“. By Lemma
5.3(b) we have pt’ = p't and ps’ + qt' = p's + ¢'t, and the calculations before Definition 5.4
show that p’ = rp,t' = rt,s' = 2zt+rs,q = zp+rq for some r,z € Q(R). Hence 1+c € Dg‘fygt,
showing N C Ngg“.

Next we show that any two of the normal subgroups NNy, Ng SN gf/“qt cannot be contained

in each other.
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Lemma 5.8. Let T > {£,¢'} >1 and p,s,p’, s’ € R\ {0}.
(a) If Ng’s - Ngsl, then £ = &' and Ng’s = Ngls/. Furthermore Ng’s = Ng’/sl iﬁ% =<,
(b) If X € A, then Ngs ¢ Ny and Ny € Ng’s.

Proof. Let g =1+ hl‘)rg + hg . Then (T,§), (&, L) € [g].

(a) Clearly g € Ngs C Ng’,,s/, solg] C[T,¢]x[¢,1L]and £ =¢. Also, g € N = Ng/s,, an
abelian normal subgroup, and for this situation it was shown in the proof of Theorem 5.7, case
2, that N C Ngs and ps’ = p’s. Conversely, if ps’ = p’s we have Egs = Eglsl and therefore
Ng’ ¥ = Ng LS (This could also be proved by elementary calculations using the definition of
Ng’ )

(b) Again g € Ngs \ Na. If X > &, then h = 1+ hl, € N, and suppose h € Ng’s. Then
A=¢fand h=1+ h’%pf + hg’ +a’ for some r € Q(R) and [a'] C [T, &) x (£, L]. Then ' =0
and r = 1, but hZ # 0 by s # 0, a contradiction. If £ > A, then h =1+ h¢, € Ny, and if

he Ng’ ® we obtain a contradiction as before. m

Lemma 5.9. Assume char(R) = 2. Let T > 3 = v >1,T > > + >1 and

p,q,s,t,p ¢, s\t € Rwithp#0#£t, p #0#t.

(a) If Ngﬁ’y“ C Ng:gislt/, then 8 = 3,7 =+ and Ngﬁ’y‘% = Ng;q/slt/. Furthermore, Ngﬁ’y“ =
Ng;q/s,t/ iff there are some uniquely determined r,z € Q(R) with p' = rp,t' = rt,s’ =
2t +rs,q = z2p+rq.

(b) If X € A, then NEI*' & Ny and Ny € NG,

(c) IfE€ AT and p' #0 # 8, then Ng?ft Z Ng’s and Ngs ¢z Ng‘ft.

Proof. Let g = 1+ hby+h% +h%, +ht — R
(a) Clearly g € Nggft C Ng:gislt/, so [g] C [T,9] x [#,L]. Since (T,03), (v,L) € [g], we
obtain ' > 8 and v > 4. Since 8 = vy and ' = 7/, we get 3 =  and v = /. Also,
g€E N = Né’;qlslt/, an abelian normal subgroup, and for this situation it was shown in the

proof of Theorem 5.7, case 3, that N C Ng?ft and p' = rp,t' =rt, s’ = 2t+rs, ¢ = zp+rq for

s'—rs

some 7,z € Q(R). Hence r = % and z = . Conversely, if r,z € Q(R) and p’ = rp,t' =

7
rt,s’ =zt +rs,q' = zp + rq, we have Eg?ft = Eg:?lslt, and therefore Nggft = Ng;qlslt/.

(b) Since (T, 8), (7, L) € [g], we have g € NE?\ N. First let A > 7. Then h = 1+hl_ € Ny,
and we claim h € N gf]ft. Indeed, otherwise we would obtain h = 1 + hffﬁ + h jrq + hgtfrs +
hg’l - h;ﬁf +a’ for some r,z € Q(R) and [d/] C [T,3) x (v, L]. Thena’ =0andr =0, z =1,
but htﬁL # 0 by t # 0, a contradiction. Now let v > A. Then h = 1 + htﬁl € N,, and if
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heN gf/St, we obtain a contradiction as before.

(c) Again, g € NggSt\Né”,s/. If £ > 3, then 1 + h’-’r/ﬁ/ € Ng’,s, \Ngf{“ as in (b). If v > ¢,
consider h = 1 + hl-)rlg + hgl € Ng’,s/. If v > &, clearly h ¢ Ngg“. Now let £ = v, and suppose
h € Ngg“. Then h = 1+ hlfy + h'-zrpﬁqu + hgtfrs +h hgit + a' for some 7,z € Q(R)
and [a'] C [T,f0) x (y,L]. Then r = 0, but th = hffL implies 0 # s’ = rt and r # 0, a

contradiction. m

Now we can prove the analogue of Corollary 4.9.

Corollary 5.10. Let L* be bounded. Then the mazximal abelian normal subgroups of U are
precisely the groups Ny (A € A), Ng’s (€€ AT p,s € R\ {0}) and, provided that char(R) = 2,
NG (B, € A, B = 7,p,¢,5,t € Ryp £ 0 #1).

Proof. Straightforward by Theorem 5.7 and Lemmas 4.6(b), 5.8, 5.9. =

Hence, in comparison with the situation of Corollary 4.9 here we have obtained ‘new’
maximal abelian normal subgroups. Next we consider intersections of these groups in order
to ultimately obtain normal subgroups which determine the elements of AT and thereby the
order relation of the chain (AT, <).

Lemma 5.11. Let T > &> ¢ >1 and p,s,p’,s’ € R\ {0} with Ngs # Ngs,. Then:
(@) NN Ng™ = Ni7g)er,1)-
Nronma &> A

(b) For any X\ € A, we have NgsﬂN,\: _
Nraeny vA=¢&

Proof. (a) Each element g € Ng N Ngs, can be written in the form
g=1+hE + b5 +a=1+h7E +hii +d

with ;7" € Q(R) and [a] C [T,&) x (&, L], ['] C[T,¢&) x (&, L]. If & > &', r # 0 would imply
(T,€) € [g], and ' # 0 would imply (¢, L) € [g], giving in both cases a contradiction. Hence
r=r'"=0and a=d,s0g € NiTg) e 1) Nowlet { =¢". Then rp = r'p" and rs = r's’. Now
if, say, r # 0, then 7/ # 0 and p = r~'p/, p’ = (+')~'rp and similarly for s,s’, showing that
D?s = Dgls,, a contradiction. So 7 =17 =0and g =1+ a € N7y (1] as required. The

converse inclusion is immediate by Lemma 4.6(Db).
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b) Again, if g =1+ AL, + hZS +a € NP’ N N, we obtain 7 = 0. Then [a] C ([T, &) x (&, L
T £l 3

DN([T,A) x [A,L]), which implies the inclusions from left to right. The converse is again

immediate. m

If 3,7 € AT with 8 = ~ and p,t € R\ {0}, let
Ngfy = <1 + hfrp7 + héﬂ :z € Q(R), 2p, 2t € R> N7 8)(v,1]-

Lemma 5.12. Let char(R) = 2. Let T > 3 = v >L, T >3 =+ >1L.8> 7, and
P st 0,8t € Rwithp #0#t, p/ # 01t and N5 # NE1?

(a)
wpast o past _ YNy B> 5 orif §= " and pt' £ p't
. v Ngy Zfﬂ = ﬁ/ and pt/ = p/t
(b) For any A € A, we have
Ny v >A
NET 0Ny = N, if v =\
NTyea  ifA=p

(¢) For any & € AT and p', s’ € R\ {0}, we have

/! N ) >
Nggst n Ng) s’ _ [T,8)(&,1] 'lf’Y = é-
Nro,y YE=08

Proof. (a) Clearly, N [T.8)(,1] is contained in the left hand side of (a). For the second
case, let 3 = ' and pt' = p't, then v = 7' and
<1 +hP 4+ hE) | 2 € Q(R), zp, 2t € R>
= (1+ W4 B | € QR), W, 2t € R) C BB 0 BRI
Now let g € Nggst N Ng:g:glt’. SO g =1+ hT_iZ’B + hﬁ_pﬁ{-i—rq 4 h?frs + hrytj_ B h;ﬁf +a =

Ty r't/

L+l + WD p2 0 e prf T ! with 7z, 2 € Q(R), [a] € [T, 58) x (v, L]
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and [¢'] C [T,0) x (v/,L]. First assume 3 > . Clearly » = v’ = 0 by considering the
action of g on vt and vy. Again by the action of g on vt and vg, we get z = 2/ = 0. So
g=1+4+a=1+d € Ny gy, 1 Secondly, let 3 = . Then r # 0 iff »' # 0, and in this
case, (T,0),(v,L) € [g], and by the proof of Theorem 5.7, case 3, we get Nggft = Ng;qlslt/,
a contradiction. Hence r = r = 0. Thus zp = 2'p’ and 2t = 2't’. So 2/(pt' — p't) = 0. Now
if pt’ # p't, then z = 2/ = 0 and again g = 1+ a = 1+ a’ € N gyy,1]- If pt' = p't, then
g=1+h¥ +h7)(1+a)e€ Ngfy is as required.

(b) Again, the right-to-left inclusions are clear. Let g € Ng?ft N Ny. Then g =1+ h?’ﬁ +
WEYTI L RE T bt — B +a with 7,z € Q(R),[a] C [T, 8) % (v, 1] and [g] € [T, A)x [\, L].
By the latter property of [g], we get » = 0. If z # 0 then 5 € [g]1,7 € [g]2, so v = A, and
geN gi is as required. If z = 0, then we have g = 1 + a, and the result follows.

(c) Let g belong to the normal subgroups on the left hand side, so g = 1 + h?pﬁ + hfrpjrq +
W+ by = BE o = 1+ hE WY+ with vz, € Q(R), [a] € [T,8) x (v,1]
and [a'] C [T,&) x (&, L]. Then the second equation for g prohibits (T,S), (v, L) € [g], so
r=0. If 7/ # 0, then (T,&), (£, L) € [g] by the second equation for g. If (T,&) € [a], then
~v > & contradicting (£, L) € [g]. Thus (T,¢) € [a] and & = v which implies (v, L) € [g], a
contradiction. Hence r’ = 0. Then [g] = [@/], so z # 0 would imply 8 > £ > v, a contradiction.
Hence g = 1+a = 1+a’ belongs to the normal subgroup on the right hand side. The converse

is clear again. =

These results will be utilized in the following section.

6 Arbitrary composition series

Let R be a domain, £ be any direct composition series of the left R-module V, and let
M(L) CU C G(L). Here we will prove that U determines the chain (£, C) up to isomorphism
or anti-isomorphism also it £ is bounded. For this, we further investigate the abelian normal

subgroups of U.

Definition 6.1. (a) We call a normal subgroup N of U an intersection group, if N =
N1 N Ny for two mazimal abelian normal subgroups N1, No of U with Ny # N.

(b) An intersection group N is maximal, if there is no intersection group N’ with N C N’.

(C) If)\ S A+, let N)\_ = N(oo,)\)()\,—oo)-

29



Note that, if A € AT, then Ny C N,.

Proposition 6.2. Let L* have either no mazximal or no minimal element. Then the maximal
intersection groups of U are precisely the groups Ny (A € AT). For each A € AT, Ny =
NANN,, where p € A satisfies X = p, and this is the unique way to write N, as intersection

of two mazximal abelian normal subgroups.

Proof. It A > v > pin A, then Ny N N, = N_go \)n[p,00) & VA N Ny, hence Ny NN, is
not maximal. If A > pin A, then A € AT and Ny N N, = Ny . Clearly N, is a maximal

intersection group by Lemma 4.6, and the uniqueness part is clear. =

Note that each interval (oo, 3] in A contains p,v € A with co > p = v > 3; hence p € A
but either of v € AT and v ¢ A" could be possible. So, U has ‘many’ maximal intersection

groups.

Corollary 6.3. The mazimal intersection groups are precisely the groups of the form Ny (X €
A1) or, provided that L* is bounded and char(R) = 2, Ngf/ (8 = v,p,t € R\ {0}).

Proof. If L£* is not bounded, the result follows from Proposition 6.2. Now let L* be
bounded and A € A*. By Lemma 5.11(b) we have N = Ni’l N Ny. Also, if char(R) = 2,
B = v and p,t € R\{0}, then Ngfy = Ng,’yo’o’tﬂNy by Lemma 5.12(b). Hence, the description
of the maximal abelian normal subgroups of U given by Corollary 5.10 and by Lemma 5.8(b)
respectively 5.9(b), Ny and N gi are intersection groups.

Now let IV be an intersection group, so N = Ny N Ny for two different maximal abelian
normal subgroups N1, N3 of U. We distinguish between several cases. First let Ny = N, Na =
N, for some i, v € A with, say, > v. Choose A € AT with p > A > v. Then N = N,NN,, C
N,y .

Next assume that Ny = Ngs and Ny = Ngsl for some &,& € AT and p,s,p’,s’ € R\ {0}.
By Lemma 5.11(a), we have N = Ng’s N Ngls/ C Ng and N C NE_" Now let Ny = N, for
some A € A. Then by Lemma 5.11(b) we obtain again N = N" NNy C N, .

Finally, let char(R) = 2 and suppose that N; = Ngfft for some 3 = v and p,q,s,t € R
with p # 0 # t. Then by Lemma 5.12 we obtain that N = Ngg‘% N Ns is either contained
in N1 gy(y,1) € Ny or equals N é’fy Hence in any case N is either contained in some N, or

equals some N é’i
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Now note that clearly N, € N, implies A = . Also, never N, C Ngfy. Indeed, if A > £,
then l—l—hﬂ)—y € N)\_\pr/, and if v > A, then l—l—htﬁl € N;\Ngfy. Also, never Ngfy C Ny since
1+ h‘?m + htﬁL € Ngi \ Ny . Finally, if Ngi - Ng,/f;,, we obtain 3 = 3,y =+ and pt' = p't
as before by Lemma 5.3(b), so V: gfy =N g:f/. Consequently, by the above, it is clear that the
groups N, (A € AT) and Né’fy (8 = 7,p,t € R\ {0}) constitute all maximal intersection

groups. m

Lemma 6.4. Let pu; € AT (i = 1,2,3) be pairwise different and let N; = N (i =1,2,3).
Then N1 N No C N3 iff ug lies between puy and o

Proof. As for Lemma 4.10. =

Now we obtain:

Theorem 6.5. Let L1, Lo be two composition series such that L7 is bounded, and let char(R) #
2. Let M(L;) CU; CG(L;) fori=1,2, and assume that Uy = Us. Then the chains (L1, C)

and (L2, <) are either isomorphic or anti-isomorphic.

Proof. Let ¢ : Uy — Us be the given isomorphism. Then ¢ maps the maximal intersection
groups of Uy bijectively onto those of Us. By Corollary 6.3, U; has maximal intersection
groups N, (A € AT) which can be expressed by Lemma 5.11 (b) in (at least) two ways,
Ny = NyN N, where A > p and Ny = N)\l’1 N Ny, as intersection of two maximal abelian
normal subgroups. By Proposition 6.2, this is impossible for U, if £3 has either no maximal
or no minimal element. Thus £} is also bounded. Since char(R) # 2, by Corollary 6.3, ¢
induces a bijection 1 : Af — A; satisfying (V) )y = N)\_w for each A\ € Af. By Lemma 6.4,
Y and 1~! preserve the induced betweenness relations of the chains (A, <) and (AF, <).
Thus ¢ : (Af, <) — (A7, <) is either an order-isomorphism or anti-isomorphism.

In the first case, ¢ clearly extends to an order-isomorphism from (A, <) onto (Ag, <).

Now assume that 1 is an anti-isomorphism. Let A € Af. We define the component
C) of X to be the set of all u € A; such that the interval between A and pu is finite. This
component is either finite or isomorphic to w or w* or Z. On each such component C' we
proceed as follows. If C' = Z, we let m be the mapping v on C. Now assume C' contains a
smallest element . Then v ¢ Af. Choose 3 € Af with 8 >~ 7. Note that C' = C3. Then
B =By e A; . The goal is to use 9 to construct an anti-isomorphism 7 : Cg — Cg. First,
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there is no o/ € Ay with o/ = (. For, otherwise a = o/¢p~1 € A would satisfy 8 = a,
hence v = a € Af, a contradiction. So, (3’ is the largest element of its component in As.
Choose 7' € Ay with 8/ > +'. Now define 7 : C3 — Cg by putting yr = 3’ and fr = 7.
If v/ ¢ AS, we have Cg = {f',7'} and C = {B,~}. For if there was o € A] with o = 3,
then o = ay € AJ would satisfy 3’ = o/, so o = #, a contradiction. Similarly, if v/ € AJ
then o = 4"y~ 1 € Af’ and a = (3, and we put ar = +’. Continuing in this way, we obtain an
anti-isomorphism 7 : Cg — Cpg. If C contains a largest element, we argue dually.

Now the only elements of A; which do not belong to some component are those A € A; for
which no 1 € A; satisfies 1= A or A = p. But then Ay = [T,\)NA] and By = (A, L] N AT
satisfy inf Ay = A\ = sup By, so we can put A\r = sup(A,7) = inf(By7) using that As is

Dedekind-complete. In total, m: Ay — Ay provides the required anti-isomorphism. m

Assume 9 : A; — A9 is an anti-isomorphism satisfying A ¢ = AJ. We claim that then
for any u,v € Ay with u > v there are a, 3 € Ay with a = p = v = (. Indeed, we have
vV =wvp = mp =y in Ay. Hence v/ € A which implies v € A] and the existence of S.
Also, p € A} ,sop’ € AJ and p' = o for some o/ € Ag. Then a = o/yp~! € Ay with a = p.

By Theorems 4.11 and 6.5, the case remains where £} is bounded and char(R) = 2. For

this, we will investigate intersections of intersection groups.

Definition 6.6. (a) We call a normal subgroup N of U an intersection group of order 2, if
N = Ny N Ny for two maximal intersection groups N1, No of U with N1 # No.

(b) An intersection group N of order 2 is maximal if there is no intersection group N' of
order 2 with N C N'.

Let AT™" = {8 € AT | 3 = v for some v € AT}. Note that possibly AT is empty. If
B€ATT and B = ~, we let N5~ = Nico,8)(7,—0)-

Proposition 6.7. Let £ be any chain. The mazimal intersection groups of order 2 are
precisely the groups Ny~ (B € AT,

Proof. Let 3,7 € AT with 3 = ~. Then Nﬁ__ = Nﬁ_ N N, is an intersection group of
order 2.
Now let N be a maximal intersection group of order 2, so N = N1 N Ny for two different

maximal intersection groups Ni, No. First let Ny = Nﬁ_ and Ny = N~ with 3,7 € AT
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and 3 > 7. If there is § € A with 3 > § > ~, there is A € AT with § > X > v. So
N=N;NN; C NyNNy, contradicting the maximality of N. Hence 8 = v and N = Ny~
as required.

Now, by Corollary 6.3, we may assume that £* is bounded, char(R) = 2 and N; = Ngfy
with 3,7 € AT, 3 = ~ and p,t € R\ {0}. Assume that No = N, for some A\ € A" with
A = p, say. By Lemma 5.12(b), we obtain

N,y ify=A

N:NgiﬂN;:Ng,’yo’o’tmNA,ﬂNAmN: .
Nryea  HA>8

Hence the maximality of IV implies either A=~y or A=,s0 N = N, 5 -
Finally, let Ny = Ng;f;, with 8,7 € AT, = +" and p/,t' € R\ {0}. We may assume
B>p. Ity >, Lemma 5.12(b) implies
_ arpt p't" _ Arp,0,0,t p’,0,0,t’
N = N2 ANBY, = N2O A N, A NESOY A N,
= N5, 1] VNT (v, ] = Ny, & Ng s

a contradiction. Hence 8 = 3'. Now, pt’ = p't would imply

(1412 + ¥, | 2 € Q(R),2p,2t € R)
= <1 + h'—zrp; + héti | 2 € Q(R), zp/, 2’ € R>,

contradicting the assumption N7 # No. Hence pt’ # p't. If p # t, we have N g%o,o,t #N g;yl’l’t
by Lemma 5.9 (a) and so Ngf/ = Ng;/o’o’t N Ng,’yl’l’t by Lemma 5.12 (a). If p = ¢, we have

70707 71707 70707 71707
Ngﬁf b Ng,y " by Lemma ?./9 (a) and so Ngfy = Ngﬁ{ k ﬂNgﬁf " by Lemma 5.12 (a). The
same argument applies to IV g,:’ . Putting these intersections together, by Lemma 5.12 (a) we
obtain N = N1 g)(y,1] = Ny, as required.

Hence all maximal intersection groups of order 2 are of the form N 5 with B e ATT. By

Lemma 4.6, it is clear that these groups N, 5 are maximal of order 2. =

We have obtained in the course of the proof that each maximal intersection group IV, 5

can be obtained only in one of the following ways:
e Ny~ =Nz NNj,
- pt — —_ pt —
° Nﬁ _NBVHNB or Nﬁ —NmﬁN,y , Or
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o« N;” = Ngf/ N Ng,,f/ with pt’ # p't and p,t,p/,t' € R\ {0},

in each case with 3,y € AT such that 8 = . Hence, if v € AT, and N, contains a maximal
intersection group of order 2, this group can only be N~ if v € AT, or N, ,  where i > v.
Similarly, IV gf/ can only contain N 5 -

In other words: Let AY = {3 € At \ AT*: there is no A € A with A = (}. Observe that
possibly A is empty. If 3,7 € AT with 3 = ~ (then v ¢ A, and possibly v € AT\ AT, ie.
v = & with 6 € A\ AT), then both Nﬁ_ and N contain NB__' If 5 € A% then there is Nﬁ_,
but no Ny~ with Ny~ C Nﬁ_.

Hence the groups NV 5 (8 € AY) are precisely the maximal intersection groups which do
not contain a maximal intersection group of order 2.

Recall that possibly AT+ = () or A° = (). However, AT UA” is dense in A. Indeed, since £
is a composition series, for any a,d € A with a > 9§, there are 8,y € A with a > 3 = v > 6.
So e At. If B ¢ A, either B € ATT or there is p € A with @ >y = 3. Then p € A**. In
any case, there is € AT UA? with o > p > 6.

Lemma 6.8. Let p; € ATTUA® (i = 1,2,3) be pairwise different. Let Ny = N~ if u; € AT,
and N; = N, if i € A (i =1,2,3). Then Ny N Ny C N3 iff ps lies between py and pus.

Proof. Observe that if o, 3,7 € A*,u € AY with a > 8 = ~ and N(co,a)(v,—00) € Ny
then 8 # p # v and hence o > p > (3. Now proceed as for Lemma 4.10, with case distinctions

for the different possibilities for each ;. =

Now we obtain our final result:

Theorem 6.9. Let L1, Lo be two composition series such that L7 is bounded, and let char(R) =
2. Let M(L;) CU; CG(L;) fori=1,2, and assume that Uy = Us. Then the chains L1 and

Lo are either isomorphic or anti-isomorphic.

Proof. Let ¢ : Uy — Us be an isomorphism. As shown in the proof of Theorem 6.5, £}
is also bounded. For ¢ = 1,2, the map ¢ is a bijection from the maximal intersection groups
of order i of Uy onto those of Us, preserving inclusion. By Corollary 6.3, Proposition 6.7
and the above remarks, ¢ induces two bijections 1 : AY — A9 and s : Afr — A;Jr with
Ny =Ny, for A€ AY and Ny ~¢ = Ny, for A€ A{. By Lemma 6.8,

¢ =1p1 Uthg : (AT TUAY, <) = (AFTUAY, )
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is either an isomorphism or anti-isomorphism. Observe that each element of Af \AIrJr is the
infimum of a subset of Af’+ U AY. The structure of (A;, <) is hence completely determined
by (AfTUAY, ).

Hence, if ¢ is an isomorphism, it extends (uniquely) to an isomorphism of (A, <) to
(Ag, <).

If ¢ is an anti-isomorphism, we can argue similarly as in the proof of Theorem 6.5 and

we obtain an anti-isomorphism 7 from A; onto As. =

We note that if in the above proof w : Ay — A5 is an anti-isomorphism, then Afﬂ = A; .
So the remark after Theorem 6.5 shows that whenever ;1 > v in Ay, there are a, 8 € A with
o= p=v = pf.
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