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Abstract. We consider endomorphism monoids of graphs. It is well-known that any
monoid can be represented as the endomorphism monoid M of some graph Γ with count-

ably many colors. We give a new proof of this theorem such that the isomorphism
between the endomorphism monoid End(Γ) and M is absolute, i.e. End(Γ) ∼= M holds

in any generic extension of the given universe of set theory. This is true if and only if

|M | , |Γ | are smaller than the first Erdős cardinal (which is known to be strongly inac-
cessible). We will encode Shelah’s absolutely rigid family of trees [15] into Γ. The main

result will be used to construct fields with prescribed absolute endomorphism monoids,

see [8].

1. Introduction

In 1982 Shelah [15] constructed absolutely rigid families of 2-color trees for any cardinal
λ < κ(ω), where κ(ω) denotes the first ω-Erdős cardinal, see [11, p. 302, Definition 17.28].
This is the smallest cardinal κ satisfying the uniformization principle κ → (ω)<ω, i.e. for
every function f from the finite subsets of κ to 2 there exist an infinite subset X ⊂ κ and
a function g : ω → 2 such that f(Y ) = g(|Y |) for all finite subsets Y of X. The cardinal
κ(ω) is (a large) strongly inaccessible cardinal [11, p. 303], and if it exists then it will
also exist in Gödel’s universe. In [15] is was also shown that the restriction to cardinals
below κ(ω) is necessary when constructing families of absolutely rigid trees. Families of
colored trees are called rigid, if there are no homomorphisms between two distinct members
of this family, where a homomorphism is a mapping that preserves the ordering, height
and color of the trees (see also Section 2). Moreover, such families are called absolutely
rigid if rigidity is preserved when passing to generic extensions of the universe of set theory.
On one hand, there are well-known criteria for absolute properties (see Levi [12]), on the
other hand there are many statements (like being a powerset or an indecomposable ℵ1-
free abelian group of infinite rank) which are not absolute. Intuitively, if a property of
a structure is absolute, for instance it remains true if in another model of set theory the
structure has another cardinality, e.g. becomes countable. Thus it is interesting to check
if certain algebraic results also hold absolutely. Here it is helpful to encode Shelah’s trees
into other algebraic structures. This way we can find new constructions which in addition
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have absolute properties. A first application is the existence of absolutely rigid families of
abelian groups in [9] and more general of modules in [7]. In [8] we want to apply this idea
to the construction of fields with absolutely prescribed endomorphism monoid. In this case
we will follow a classical argument [6, 13] and want to encode graphs into fields. In order to
do this absolutely, we will need an absoluteness result realizing monoids as endomorphism
monoids of graphs. Again, there are well-known classical realization theorems for monoids as
endomorphism monoids, but it is the aim of this paper to express monoids as endomorphism
monoids of absolute graphs. Such results can only be derived if the involved cardinals are
below κ(ω), as explained in Section 4. Also note that we cannot replace graphs in this paper
by trees, because many groups (as well-known) are not automorphism groups of trees. We
will give examples in Corollary 3.4. One of our main results is Theorem 2.5 showing that
the classical realization of all monoids as endomorphism monoids of graphs with countably
many colors carries over to absoluteness if the monoid and the graph have size < κ(ω).

2. Construction of graphs with prescribed endomorphisms

In this section we will present a new construction (in ZFC) of a family of colored graphs with
an arbitrary prescribed monoid of endomorphisms M . As a consequence, all left-cancellative
monoids arise as monoids of monomorphisms of some colored graph. The size of the colored
graphs can be any cardinal ≥ |M |.

To fix the terminology, we first recall some standard notations. Let (A, (Ri)i<ω) and
(B, (Si)i<ω) be two relational structures (with arities ni of Ri and Si respectively, for each
i < ω). A homomorphism is a map f : A → B such that f(Ri) ⊆ Si for each i < ω, with
f extended naturally to tuples of elements. A partially ordered set (T,≤) is called a tree,
if (T,≤) is lower directed and for each x ∈ T , the set {t ∈ T | t < x} is a well-ordered
chain; we will call the ordinal type of this set the height of x, denoted by htT (x) or ht(x)
if T is clear from the context. We denote the smallest element of T by ⊥; thus ht(⊥) = 0.
Let (T,≤) be a tree in which each branch (= a maximal subchain of (T,≤)) is finite. We
will call the structure (T,≤, (Hi)i<ω) where Hi = {x ∈ T | ht(x) = i} (i < ω) a (height-)
valuated tree. If, moreover, Pi ⊆ T for i ∈ I, then we call T = (T,≤, (Hi)i<ω, (Pi)i∈I) a
colored valuated tree; here, I is the set of colors, and if x ∈ Pi we call i the color of x. Thus,
a homomorphism between two such colored valuated trees is a mapping which preserves the
order, the heights and the colors.

The following lemma summarizes the properties of Shelah’s trees.

Lemma 2.1. (Shelah [15]) Let λ < κ(ω) be a cardinal. Then there is a family of λ colored
valuated trees {Tα | α < λ} with |Tα| = λ such that Hom(Tα, Tβ) = ∅ holds absolutely for all
α, β < λ with α 6= β.

Proof. See [15] or [8]. �

A graph is a structure (S, R) where R ⊆ S×S. We will call a structure Γ = (S, R, (Qi)i<ω)
with R ⊆ S × S and Qi ⊆ S for each i < ω an ω-colored graph.

We want to present a rigid colored graph Γ with End(Γ) = {id}. This result itself is
well-known, see e.g. [14] However, the standard proofs involve limit ordinals (cf. [14, Ch.
II] making them non-absolute. Here we will use the trees of Lemma 2.1 to ensure that our
graph Γ will also be absolutely rigid for |Γ | < κ(ω).



ABSOLUTE GRAPHS WITH PRESCRIBED ENDOMORPHISM MONOID 3

Theorem 2.2. Let λ be a cardinal. There exists an ω-colored graph

Γ = (S,≤, (Fj)j<ω, (Hj)j<ω, P1, P2)

of size λ such that End(Γ) = {id}.
Proof. Let F = {Tα | α ∈ I} be the absolutely rigid family of colored valuated trees from
Lemma 2.1 with

Tα = (Tα,≤α, (Hα
i )i<ω, Pα

1 , Pα
2 )

and |Tα | = λ = | I | for each α ∈ I.
We may assume that Tα ∩ Tβ = ∅ for any α 6= β in I, and we define an ω-chain of trees

(S0,≤0) ⊆ (S1,≤1) ⊆ . . .

as follows. First, choose any tree T0 ∈ F and put (S0,≤0) = (T0,≤). Next, split

F \ {T0} =
·⋃

1≤i<ω
Fi,

a countable disjoint union, such that |Fi | = λ for each 1 ≤ i < ω. Now assume that i < ω
and that we have constructed the tree (Si,≤i) such that |Si | = λ and each branch in (Si,≤i)
is finite. Then the set Fi of all maximal elements in (Si,≤i) has size λ. We choose a bijection
from Fi onto Fi+1 mapping x ∈ Fi onto, say, Tx ∈ Fi+1. Then let Si+1 = Si ∪

⋃
x∈Fi

Tx,
and we define the partial order ≤i+1 on Si+1 such that it extends ≤i, the order ≤x for each
x ∈ Fi and x <i+1 y for each x ∈ Fi and y ∈ Tx. Then (Si+1,≤i+1) is again a tree with
finite branches. Now let (S,≤) =

⋃
i<ω(Si,≤i). Then (S,≤) is a tree of size λ in which each

element has finite height and is not maximal. Moreover, let Hi = {s ∈ S | ht(x) = i} (i < ω)
and Pj =

⋃
α∈I Pα

j for j = 1, 2, and put Γ = (S,≤, (Fj)j<ω, (Hj)j<ω, P1, P2).
Next, we prove that End(Γ) = {id}. Let h : Γ → Γ be any color preserving homomorphism

h : Γ → Γ. We claim that h = id. Choose any x ∈ S and let x′ = h(x). Then x ∈ Sj

for some j < ω. If i = ht(x), then x ∈ Hi and hence x′ = h(x) ∈ Hi, so ht(x′) = i. Now
choose y ∈ Fj and x ≤ y. We obtain h(y) ∈ Fj and y′ = h(y) ≥ h(x) = x′. Note that
Ty = {s ∈ Sj+1 | y ≤j+1 s} and Ty′ = {s ∈ Sj+1 | y′ ≤j+1 s}. In Γ we have Sj+1 = {s ∈
S | ∃z ∈ Fj+1 with s ≤ z}. Since h is color preserving it follows that h(Fj+1) ⊆ Fj+1 and
hence h(Sj+1) ⊆ Sj+1. Hence Ty = {s ∈ S | y ≤ s ≤ z for some z ∈ Fj+1} and we obtain
h(Ty) ⊆ Ty′ . Since htS(y) = htS(y′), it follows that

h � Ty : Ty → Ty′

preserves the heights of the elements and thus is a homomorphism between Ty and Ty′ . By
the rigidity property of our family of trees, we obtain Ty = Ty′ , i.e. y = y′. Since (S,≤) is
a tree, x ≤ y, x′ ≤ y and ht(x) = ht(x′), we get x = x′, proving the claim. �

We call any structure (S, (Ri)i∈I) where S is a set and Ri ⊆ S × S for each i ∈ I an
edge-colored graph. If (x, y) ∈ Ri, then i is the color of the edge (x, y).

In the following simple lemma we represent a given monoid M as the homomorphism
monoid of an edge-colored graph of arbitrary size. This is an obvious variation of Frucht’s
theorem and well-known. We include the proof for the sake of transparence of later argu-
ments.

Lemma 2.3. Let M be a monoid. Then there exists an edge-colored graph Γ = (M, (Ri)i∈I)
with I = M \ {1} such that M ∼= End(Γ). Moreover, M is left-cancellative if and only if
End(Γ) = Mon(Γ).
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Proof. Put Ri = {(m,mi) | m ∈ M} for all i ∈ I. Define

ϕ : M −→ End(Γ)

x 7→ (fx : Γ → Γ by m 7→ xm).
We claim that ϕ is an isomorphism. It is clear that ϕ is a homomorphism. Now let x, x′ ∈ M
with x 6= x′. Then fx(1) = x 6= x′ = fx′(1), hence ϕ is injective. Next, let g ∈ End(Γ)
and put x = g(1). We claim that fx = g. Indeed, let m ∈ M . Then (1, 1m) ∈ Rm and
hence (g(1), g(m)) ∈ Rm which implies g(m) = g(1)m = xm = fx(m) and our claim follows.
Hence ϕ is an isomorphism.

Now assume that M is left-cancellative and let g ∈ End(Γ). By the above, g = fx for
some x ∈ M . If g(m) = g(m′) for some m,m′ ∈ M , then xm = fx(m) = fx(m′) = xm′,
so m = m′ by left-cancellation and hence g is injective. Conversely, assume that every
g ∈ End(Γ) is injective. If x,m,m′ ∈ M with xm = xm′, then fx(m) = fx(m′), so m = m′

and M is left-cancellative. �

Note that the set I in Lemma 2.3 can be arbitrarily enlarged by adding empty relations
Ri.

Observe that if the monoid M is uncountable, then Lemma 2.3 gives a realization result
for M as M ∼= End(Γ) by some edge-colored graph Γ using |M | colors for the edges. The
final graph in this paper will be applied in [8] for the construction of fields with prescribed
endomorphism monoids and thus encoded into a field by adding roots of prime elements.
Thus a realization result by ω-colored graphs is needed. This is done in our next result which
uses the rigid colored valuated tree of Theorem 2.2. We will apply a simplified version of a
construction of graphs from [14, pp. 72 ff.]

Theorem 2.4. Let Γ = (X, (Ri)i∈I) be an edge-colored graph with I infinite. Then there
exists an ω-colored graph Γ̃ = (X̃, R, (Ci)i<ω) of the same size such that End(Γ) ∼= End(Γ̃).
Moreover Mon(Γ) ∼= Mon(Γ̃).

Proof. We first define the graph Γ̃ and then prove its properties. Let

∆ = (I,≤, (Fn)n<ω, (Hn)n<ω, P1, P2)

be the rigid graph given by Theorem 2.2 on I with End(∆) = {id}. Moreover, let

Γ̃ = (X̃, R, C1, C2, C3, (Fn)n<ω, (Hn)n<ω, P1, P2),

with
(i) X̃ = X

·
∪ I

·
∪ (X ×X),

(ii) C1 = X, C2 = I, and C3 = X ×X,
(iii) Fn,Hn, P1, P2 ⊆ I as given before (n < ω),
and R ⊆ X̃ × X̃ defined in the following way:
(a) xR(x, y) for all x, y ∈ X,
(b) (x, y)Ry for all x, y ∈ X,
(c) (x, y)Ri :⇔ xRiy for all x, y ∈ X, i ∈ I,
(d) iRj :⇔ i ≤ j for i, j ∈ I.

In Figure 1 the graph and its relations are sketched to illustrate the structure.
For each mapping f : X → X we define a mapping f̃ : X̃ → X̃ by

f̃ � X = f, f̃ � I = idI , f̃((x, y)) = (f(x), f(y)) for (x, y) ∈ X ×X.
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Figure 1. The graph Γ̃ and its relations

Now define
ϕ : End(Γ) → End(Γ̃) by ϕ(f) = f̃ .

We will prove that ϕ is an isomorphism.
Let f ∈ End(Γ). First we claim that f̃ ∈ End(Γ̃). For this, it suffices to consider

x, y ∈ X̃ and i ∈ I such that (x, y)Ri. Then xRiy and since f is color-preserving we obtain
f(x)Rif(y). With f(x) = f̃(x), f(y) = f̃(y) this implies (f̃(x), f̃(y))Ri.

Moreover, ϕ(fg) = f̃g = f̃ g̃ = ϕ(f)ϕ(g) and ϕ(idX) = idX̃ which implies that ϕ is a
homomorphism.

Since f̃ � X = f for each f ∈ End(Γ) it is clear that ϕ is injective.
Next we prove that ϕ is surjective. Choose any g ∈ End(Γ̃). Then g(X) ⊆ X, g(I) ⊆ I

and g(X × X) ⊆ X × X. Put f = g � X : X → X. We claim that f̃ = g. As g(I) ⊆ I
it follows that g � I ∈ End(∆) and hence g = idI . Now let x, y ∈ X. Then xR(x, y)Ry.
We obtain f(x) = g(x)Rg((x, y))Rg(y) = f(y) with g((x, y)) ∈ X × X. Hence g((x, y)) =
(f(x), f(y)) = f̃((x, y)) and we conclude g = f̃ . It remains to prove that f ∈ End(Γ). Let
x, y ∈ X, i ∈ I such that xRiy. Then (x, y)Ri and hence (f(x), f(y)) = g((x, y))Rg(i) = i.
We deduce f(x)Rif(y). Hence ϕ is an isomorphism.

Next, we show that the restriction ϕ � Mon(Γ) : Mon(Γ) → Mon(Γ̃) is an isomorphism.
If f ∈ Mon(Γ), then we claim that f̃ ∈ Mon(Γ̃). It is easily seen that f̃ is injective. By
definition of f̃ , it only remains to show that f̃ reflects R. First let x ∈ X and (z, y) ∈ X×X

such that f̃(x)Rf̃(z, y). We have to show that xR(z, y).
Since f̃(x)Rf̃(z, y) it follows that f(x)R(f(z), f(y)) which implies that f(x) = f(z).

Now, as f is injective, we obtain x = z and hence xR(z, y). Similarly f̃(z, y)Rf̃(x) implies
(z, y)Rx. Second, let x, y ∈ X and i ∈ I such that f̃(x, y)Rf̃(i) holds. Then we obtain
f(x)Rif(y) and hence xRiy as f reflects Ri which implies (x, y)Ri. Hence f̃ ∈ Mon(Γ̃).

Now assume that g ∈ Mon(Γ̃). Since ϕ is an isomorphism, we have g = f̃ for some
f ∈ End(Γ). We claim that f ∈ Mon(Γ). As f̃ is injective, we immediately obtain that f
is injective, too. So it remains to prove that f reflects Ri for all i ∈ I. Let x, y ∈ X, i ∈ I
such that f(x)Rif(y). Then f̃((x, y)) = (f(x), f(y))Ri = f̃(i). As f̃ ∈ Mon(Γ̃), we obtain
(x, y)Ri, so xRiy. Hence ϕ � Mon(Γ) is onto. �

The following theorem summarizes our results:
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Main Theorem 2.5. Let λ ≤ κ be two infinite cardinals, and let M be a monoid of size λ.
Then there is an ω-colored graph Γ = (X, R, (Ci)i<ω) of size κ such that:

(i) End(Γ) ∼= M .
(ii) If M is left-cancellative, then Mon(Γ) ∼= M .

Moreover, if κ < κ(ω), then the graph Γ can be constructed in an absolute way, i.e. such that
properties (i) and (ii) are preserved under any generic extension of the underlying model of
set theory.

Proof. Follows by Lemma 2.3, extending the index set I obtained if λ < κ, and Theo-
rem 2.4. The absoluteness claim follows from the fact that all constructions are performed
in an absolute way (see Burgess [2, pp. 408–412] for absolute arguments) involving trees.
The construction of the trees involved is absolute by Lemma 2.1. �

In Section 4 we will see that |Γ| < κ(ω) in the absolute case is really the best we can
achieve.

3. A fully rigid system of colored graphs

In this section we are going to generalize the main theorem of the preceding section by
constructing a fully rigid family of colored graphs with prescribed endomorphism monoids.
This is done in two steps. First we prove a generalized version of Theorem 2.2, which shows
that there is a fully rigid family of colored graphs S such that End(S) = id for all S ∈ S.
Afterwards, we can directly prove the desired generalization of Main Theorem 2.5.

Theorem 3.1. Let λ be any infinite cardinal. There exists a family S of ω-colored graphs
ΓX of size λ such that for all X, Y ⊆ λ we have

Hom(ΓX ,ΓY ) =

{
{id} if X ⊆ Y

∅ if X 6⊆ Y.

Proof. Let F = {Tα | α ∈ I} be the absolutely rigid family of size λ of colored valuated trees

from Lemma 2.1, each also of size λ. Split F =
·⋃

α∈I Fα such that |Fα | = λ for all α ∈ I. We
wish to obtain for each α ∈ I an ω-colored graph Γα =

(
Sα,≤α, (Fα

j )j<ω, (Hα
j )j<ω, Pα

1 , Pα
2

)
of size λ such that End(Γα) = {id}. For this, we follow the proof of Theorem 2.2. Given
α ∈ I, in our first step we choose the tree Tα ∈ Fα; then proceed as before (with F replaced
by Fα and T0 replaced by Tα) to obtain the ω-colored graph Γα as required. We denote the
smallest element of (Sα,≤α) by ⊥α. Note that Sα ∩ Sβ = ∅ for all α 6= β in I.

Next we will construct for each subset X ⊆ I an ω-colored graph

ΓX =
(
SX ,≤X , (FX

n )n<ω, (HX
n )n<ω, PX

1 , PX
2

)
as follows. First choose a new element⊥ not contained in any Sα (α ∈ I). We let SX = {⊥}∪⋃

α∈X Sα, and we define the partial order ≤X on SX such that it extends each ≤α (α ∈ X),
⊥ ≤X s for each s ∈ SX , and x 6≤X y whenever x ∈ Sα, y ∈ Sβ , α, β ∈ X and α 6= β. Hence
(SX ,≤X) is again a tree of size λ. For each n < ω, let HX

n = {x ∈ SX | htSX
(x) = n}. Note

that if x ∈ Sα (α ∈ X), then htSX
(x) = htSα

(x)+1, since we put ⊥ below Sα. Furthermore,
let FX

n =
⋃

α∈X Fα
n for n < ω and PX

j =
⋃

α∈X Pα
j for j = 1, 2.

Clearly, if X ⊆ Y ⊆ I, then SX ⊆ SY and id : ΓX → ΓY is a homomorphism. Now
let X, Y ⊆ I and assume that h : ΓX → ΓY is a homomorphism. We claim that X ⊆ Y
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and h = idSX
. Note that HX

0 = {⊥} = HY
0 , so h(⊥) = ⊥. Now choose any α ∈ X.

Since HX
1 = {⊥x | x ∈ X} and h(HX

1 ) ⊆ HY
1 , we have h(⊥α) = ⊥β for some β ∈ Y .

Since Sα = {s ∈ SX | ⊥α ≤ s} and h is order-preserving, we obtain h(Sα) ⊆ Sβ . Note
that Tα = {s ∈ Sα | ∃z ∈ FX

1 , s ≤ z}. Since h(FX
1 ) ⊆ FY

1 , we get h(Tα) ⊆ Tβ . As
h : ΓX → ΓY preserves heights, by the above formula so does h � Tα : Tα → Tβ . Using that
Fα

n = Tα ∩FX
n for n < ω and Pα

j = Tα ∩PX
j for j = 1, 2, it follows that h � Tα : Tα → Tβ is

a homomorphism. Thus by rigidity, α = β ∈ Y , proving X ⊆ Y .
Similarly, we obtain that h � Sα : Γα → Γβ = Γα is a homomorphism. Hence h � Sα =

id � Sα. Since α was arbitrary and h(⊥) = ⊥, we get h = idSX
. �

Using the above theorem, now we can prove the corresponding generalization of Theo-
rem 2.4.

Theorem 3.2. Let λ be a cardinal, and let Γ = (X, (Ri)i∈I) be an edge-colored graph of
size λ. Then there exists a family F = {Γ̃Z | Z ⊆ λ} of ω-colored graphs Γ̃Z of size λ such
that End(Γ) ∼= End(Γ̃Z) and Mon(Γ) ∼= Mon(Γ̃Z) for all Z ⊆ λ and

Hom(Γ̃Y , Γ̃Z) =

{
End(Γ̃Y ) ∼= End(Γ) if Y ⊆ Z

∅ if Y 6⊆ Z

Proof. Let Γ = (X, (Ri)i∈I). For every Z ⊆ λ we define ΓZ by using SZ from Theorem 3.1.

Put X̃Z = X
·
∪SZ

·
∪(X ×X) and construct Γ̃Z as in Theorem 2.4. Note that, End(Γ̃Z) ∼=

End(Γ) for all Z ⊆ λ.
As before, for Y ⊆ Z ⊆ λ it follows SY ⊆ SZ . This implies Γ̃Y ⊆ Γ̃Z and hence

End(Γ̃Y ) ⊆ Hom(Γ̃Y , Γ̃Z).
Now let Y, Z ⊆ λ and assume that h : Γ̃Y → Γ̃Z is a homomorphism. Then h � SY :

ΓY → ΓZ is a homomorphism and with Theorem 3.2 we obtain Y ⊆ Z, h � SY = idSY
, and

h ∈ End(Γ̃Y ) and hence the result. �

Corollary 3.3. Let λ ≤ κ be infinite cardinals and let M be a monoid of size λ. Then there
exists a family {ΓZ | Z ⊆ λ} of ω-colored graphs ΓZ of size κ such that for all Z ⊆ λ:

(1) If M is left-cancellative, then Mon(ΓZ) ∼= M .
(2)

Hom(ΓY ,ΓZ) =

{
End(ΓY ) ∼= M if Y ⊆ Z

∅ if Y 6⊆ Z

Moreover, if κ < κ(ω), then the graphs ΓZ can be constructed in an absolute way, i.e. such
that properties (1) and (2) are preserved under any generic extension of the underlying model
of set theory.

Proof. We can proceed as in the argument of Theorem 2.5, using Lemma 2.3 and Theo-
rem 3.2. �

It is well-known (cf. [1]) that a realization result as in Corollary 3.3 does not hold if
we replace the graphs ΓZ by a family of colored trees. Thus in [8] we can not work with
trees and do need the graphs from Corollary 3.3. The following result shows that even



8 MANFRED DROSTE, RÜDIGER GÖBEL, AND SEBASTIAN POKUTTA

automorphism groups of trees have a very restricted structure. We include its proof for the
sake of completeness.

Observation 3.4. Let T = (T,≤) be a tree, and let G = Aut(T ) contain an element of
prime order p. Then G contains the symmetric group Sp as a subgroup.

Proof. Let g ∈ G have prime order p. Then for each x ∈ T we have neither x < xg nor
xg < x since otherwise g would have infinite order. Thus, since p is a prime, there is an orbit
A = {a1, ..., ap} of g in T with pairwise incomparable elements such that aig = ai+1 for each
1 ≤ i < p and ang = a1. It follows that z = inf A satisfies z = inf{ai, ai+1} = inf{ap, a1}
for all 1 ≤ i < p. Hence the ’cones’ ↑ ai = {x ∈ T : ai ≤ x} (1 ≤ i ≤ p) are pairwise
order-isomorphic, and also ’side-cones’ 〈z, ai〉 = {x ∈ T | either z ≤ x ≤ ai, or else z ≤
x and x, ai are incomparable} (1 ≤ i ≤ p) are pairwise order-isomorphic. For both systems,
we choose a minimal finite set of such isomorphisms between these posets such that the set
forms a category, in particular it is closed under composition.

We claim that the symmetric group on A can be embedded into G. Indeed, let f be any
permutation of A. Using the above isomorphisms, we can define a canonical extension of
f to an automorphism f ′ of the poset ↑ z = {x ∈ T | z ≤ x}. Moreover, since the given
isomorphisms between the cones resp. the side-cones were chosen to form a category, this
extension can be done such that it gives an embedding of the symmetric group on A into
Aut(↑ z). Clearly we can extend any automorphism of ↑ z trivially to an automorphism of
(T,≤), proving the result. �

4. An upper bound for the size of the absolute graphs

In Section 2 we have shown how to construct colored graphs with prescribed endomorphism
monoid of arbitrary size. But if we want this to hold in any generic extension of the
underlying model of set theory, there is natural bound on the size, the Erdős cardinal κ(ω).
The following result, which explains ‘why’, is an adaption of a more general theorem from
model theory (see Eklof, Shelah [4]) to graphs. For the proof we use the following lemma
which is a slightly simplified version of [4, Theorem 6]:

Lemma 4.1. Let (Q,≤Q) be a partial ordering of cardinality < κ(ω) and let T = {Ti : i < λ}
be a family of Q-colored trees with λ ≥ κ(ω). Then for some distinct i, j < λ there exists an
order-, height- and color-preserving map ϕ : Ti −→ Tj.

Proof. See Eklof, Shelah [4] or Shelah [15]. �

Before continuing, we recall the following notions. Let Γ = (X, (Ri)i<ω) be an ω-colored
graph, let s = 〈s0, . . . , sns〉 be a finite sequence of vertices in X with ns < ω, and let
ϕ(x0, . . . , xns

) be a quantifier-free formula built by finite conjunctions, disjunctions and
negations of atomic formulas in Γ. We say ϕ ∈ tpqf (s/Γ), if and only if ϕ(s0, . . . , sns

) holds
for Γ. Moreover, we define Qcg = {tpqf (s/Γ) | Γ = (X, (Ri)i<ω) ω-(edge-)colored graph, s ∈
X(ω)}, the types of colored graphs which can be ordered by inclusion, i.e. (Qcg,⊆) is a
partially ordered set. Since there are only countably many different formulas (as we use
only ω colors) and Qcg is a subset of the power set of all formulas, it follows that |Qcg| ≤
2ℵ0 < κ(ω), as κ(ω) is strongly inaccessible. Note that for x, y ∈ X these quantifier-free
formulas include the (easy) formula ¬(x = y), as well as x ∈ Ri (or (x, y) ∈ Ri) if Ri is a
vertex-coloring (or an edge-coloring, respectively).
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Theorem 4.2. Let θ = {Γi | i < λ} be a family of ω-(edge-)colored graphs Γi = (Xi, Ri)
with |Γi| ≤ λ for all i < λ, and let λ ≥ κ(ω). Then there exists a generic extension of the
underlying model such that there exists a non-trivial, color-preserving embedding f : Γi → Γj

for some distinct i, j < λ.

Proof. Let Ti be the tree of finite sequences of elements of Xi for all i < λ. Moreover, for
s = 〈s0, . . . , sns〉 , t = 〈t0, . . . , tnt〉 ∈ Ti we say s ≤ t if and only if ns ≤ nt and t � ns = s.
For every i < λ and s ∈ Xω

i we consider the relation Ri,s = tpqf (s/Γi) for the tree Ti. More
clearly, for every finite sequence of elements s the relation Ri,s consists of all quantifier-free
Lωω-formulas which are valid for s in Γi. Since |Qcg| < κ(ω), by Lemma 4.1 there exist
distinct i, j < λ and an order-, height- and color-preserving map ϕ : Ti → Tj . Let V [G] be
a generic extension in which Γi is countable and let σ : ω → Xi be an enumeration of Xi.
We define the following map

f : Γi → Γj

by f(σ(n)) := ϕ(σ � n + 1)(n).
First note that for k ≥ n + 1 we have that ϕ(σ � n + 1)(n) = ϕ(σ � k)(n) as ϕ is order-
preserving. Hence, for every x, y ∈ Xi there is (clearly) k < ω such that x, y ∈ Range(σ � k)
and f(x), f(y) ∈ Range(ϕ(σ � k′))). Note that k′ could be chosen to be k as ϕ is height-
preserving. Further, we have that Φi(σ � k) ⊆ Φj(ϕ(σ � k)) so that if ‘(x, y) ∈ Ri’ is a
formula which is valid for x, y in Γi then ‘(f(x), f(y)) ∈ Ri’ is a formula which is valid for Γj

and similarly for the formulas ‘x ∈ Ri’ and ‘¬(x = y)’. Hence f : Γi → Γj is a non-trivial,
color-preserving embedding. �

Note that since ϕ is height- and order-preserving, this allows us to define ϕ(σ) =
⋃

n<ω ϕ(σ �
n) which means that the infinite branch σ (read as sequence) in Ti is mapped to an infinite
branch ϕ(σ) in Tj . This is the property which is implicitly used in the above proof.

Using Theorem 4.2 we easily obtain the following two corollaries:

Corollary 4.3. Let Γ = (X,≤, (Ci)i<ω) be an ω-(edge-)colored graph with |Γ| = λ ≥ κ(ω)
and End(Γ) = {id}. Then there exists a generic extension of the underlying model of set
theory such that End(Γ) 6= {id} in the extension model.

Proof. Let Γ be as above. We define the following family of ω-colored graphs:

Γ̂ = {Γi | i < λ} with Γi = (X
·
∪{i},≤, C0, (Cj+1)j<ω) and C0 = {i},

which means that we add a distinct node to every graph with its own color and shift all
other colors. Note that in all Γi the added node has color 0. Now we can apply Theorem 4.2
to obtain an extension model and a non-trivial, color-preserving embedding ϕ : Γi → Γj for
some distinct i, j < λ. As this map is color-preserving, it respects the order-relation as well
as the Ci relations of the graph. Hence i ∈ C0 implies that ϕ(i) ∈ C0, thus ϕ(i) = j. We
conclude that ϕ � Γ : Γ → Γ is a non-trivial graph embedding and it follows End(Γ) 6= {id}
which completes the proof. �

This proves that in Theorem 2.5 the condition λ < κ(ω) is necessary to ensure absolute-
ness of (i) and (ii). The next corollary establishes the same bound for fully rigid systems
of ω-colored graphs. In fact we already get the non-existence from Corollary 4.3 since we
cannot maintain End(Γ) as formulated in Section 3 but here we want to point out that
Hom(ΓY ,ΓZ) 6= ∅ in an extension model although Hom(ΓY ,ΓZ) = ∅ in the base model.
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Corollary 4.4. Let {ΓX | X ⊆ λ} be a family of ω-colored graphs ΓX with |ΓX | = λ ≥ κ(ω)
for all X ⊆ λ and

Hom(ΓY ,ΓZ) =

{
End(ΓY ) if Y ⊆ Z

∅ if Y 6⊆ Z
.

Then Hom(ΓY ,ΓZ) 6= ∅ for some Y, Z ⊆ λ with Y 6⊆ Z holds in some generic extension of
the underlying model of set theory.

Proof. Follows immediately from Theorem 4.2. �
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