

Enterprise Computing
Einführung in das Betriebssystem z/OS

Prof. Dr. Martin Bogdan
Dr. rer. nat. Paul Herrmannn

Prof. Dr.-Ing. Wilhelm G. Spruth

WS 2009/2010

Teil 11

MQSeries

es 0101 ww6 wgs 09-99

Überblick

Queues and Channels

Trigger

MQ – CICS Bridge

Literature: Dieter Wackerow: MQSeries Primer. www.redbooks.ibm.com/redpapers/pdfs/redp0021.pdf
also available at http://www.informatik.uni-leipzig.de/cs/Literature/index.html

 Windows, Linux

 Client
 Prozess Anfrage z.B. z/OS

 Reaktion
 Server
 Prozess
 Anfrage

 Client Reaktion
 Prozess

Client/Server-Modell

Prozesse auf einem Klienten-Rechner nehmen die Dienstleistungen eines Servers in Anspruch. Ein Server bietet
seine Dienste (Service) einer Menge a priori unbekannter Klienten (Clients) an.

Klient: Nutzer eines ServerDienstes
Server: Rechner, der Dienst-Software ausführt
Dienst (Service): Software-Instanz, die auf einem oder mehreren Server Rechnern ausgeführt wird
Interaktionsform: Anfrage / Reaktion (Request/Reply)

Ein Rechner kann gleichzeitig mehrere Serverdienste (Services) anbieten.

 Klient Server

 Klienten-
Programm warten

 RPC (.....) ;
 RPC
 Aufruf

 warten Server
 Programm

 RPC
 Ergebnis

 warten

Synchroner RPC

Klient blockiert während der

Ausführung des Server
Programms

 Client Argumente Server

 Aufrufende Aufgerufene
 Prozedur Ergebnisse Prozedur

 Client Server

 Aufrufende Aufgerufene
 Prozedur Prozedur

Argumente Ergebnisse Argumente Ergebnisse

 Client Server
 Stub Stub

 Request Reply Request Reply
Nachricht Nachricht Nachricht Nachricht

 Netzwerk

 Local Procedure Call

Ein aufrufender Prozess führt eine
aufgerufene Prozedur in seinem
eigenen Adressraum aus

Remote Procedure Call

Client und Server laufen als zwei
separate Prozesse. Sie können
(Ausnahmefall), müssen aber nicht, auf
dem gleichen Rechner laufen.

Die beiden Prozesse kommunizieren
über Stubs. Stubs sind Routinen,
welche lokale Prozedur Aufrufe auf
Netzwerk RPC Funktionsaufrufe
abbilden.

Beispiele für Remote Procedure Calls

Klassische RPCs

• Sun RPC
• DCE RPC

Moderne RPCs

• Corba
• RMI

• Web Services RPC (SOAP RPC)

00..00

 RPC RPC RPC
Service Service Service

 RPC Server andere Prozesse

 Betriebssystem Kernel

Die RPC Services können entweder in getrennten virtuellen Adressenräumen laufen, oder alternativ als Threads
innerhalb eines virtuellen Adressenraums implementiert werden.

Ein RPC Service wird auch als Implementation bezeichnet.

Häufig hunderte unterschiedlicher RPC Services auf dem gleichen Rechner.

Der RPC Server stellt Verwaltungsdienste für seine RPC Services zur Verfügung, z.B. das Binding.

Auf einem Rechner können mehrere RPC Server laufen, die z.B. unterschiedliche Arten von RPC Services gruppieren.

FF..FF

Applications

Middleware

Operating System

Middleware

Software, which is located between applications and the operating system, is called middleware.

Some middleware examples are transaktion processing monitors like CICS, IMS/DC, Tuxedo or the SAP/R3
transaktion processing monitor.

Other examples are RPC, DCE, CORBA, RMI as well as Message oriented Middleware(MOM).

Message Based Queuing (MBQ)
Message oriented Middleware (MOM)

MBQ and MOM (both are synonyms) are methods for program to program communication. Programs are enabled to
send and receive information without any direct connection between them. Programs communicate by depositing
messages in message-queues, and by retrieving messages from message-queues.

Leading MOM manufacturers are:

• BEA MessageQ
• IBM MQSeries, now renamed WebSphere MQ
• Microsoft MS Message Queue Server (MSMQ)
• Oracle Advanced Queuing (AQ),

Message Based Queuing is attractive for integration of heterogenious hardware, software and application
environment.

SMTP (internet mail) and X.500 electronic mail are primitive message oriented applications.

IBM MQSeries, now renamed WebSphereMQ, is the undisputed market leader. The product is available for nearly all
operating system platforms, e.g.: AIX, DG/UX, HP-UX, Windows, OS/390, z/OS, OS/400, Psion Pervasive SOD,
Sequent, Sinix, Solaris, Tandem, TPF, TrueUnix, VMS/VAX.

Program-to-Program Communication - One System

Program-to-Program Communication - Two Systems

A program may send messages to another program that runs in the same machine as the queue manager, or to a
program that runs in a remote system, such as a server or a host. The remote system has its own queue manager
with its own queues.

Transmission Queue Target Queue

MQSeries is used by thousands of customers in every major industry in many countries around the world. MQSeries
speeds implementation of distributed applications by simplifying application development and test.

The MQSeries products enable programs to communicate with each other across a network of unlike components,
such as processors, subsystems, operating systems and communication protocols. MQSeries programs use a
consistent application program interface (API) across all platforms.

The figure above shows the main parts of an MQSeries application at run time. Programs use MQSeries API calls, the
Message Queue Interface (MQI), to communicate with a queue manager (MQM), the run-time program of MQSeries.
For the queue manager to do its work, it refers to objects, such as queues and channels.

Queue Manager Queue Manager

What is Messaging and Queuing?

Message queuing is a method of program-to-program communication. Programs within an application communicate
by writing and retrieving application-specific data (messages) to/from queues, without having a private, dedicated,
logical connection to link them. Messaging means that programs communicate with each other by sending data in
messages and not by calling each other directly.

Queuing means that programs communicate through queues. Programs communicating through queues need not be
executed concurrently.

With asynchronous messaging, the sending program proceeds with its own processing without waiting for a reply to
its message. In contrast, synchronous messaging waits for the reply before it resumes processing. For the user, the
underlying protocol is transparent. The user is concerned with conversational or data-entry type applications.

MQSeries is used in a client/server or distributed environment. Programs belonging to an application can run in one
workstation or in different machines on different platforms. Applications can easily be moved from one system or
platform to another. The programs can be written in various programming languages, including Java. The same
queuing mechanism is valid for all platforms, and so are the currently 13 APIs.

Since MQSeries communicates via queues it can be referred to as using indirect program-to-program communication.
The programmer cannot specify the name of the target application to which a message is sent. However, he or she
can specify a target queue name; and each queue is associated with a program. An application can have one or more
“input” queues and may have several “output” queues containing information for other servers to be processed, or
for responses for the client that initiated the transaction.

The programmer does not have to worry about the target program being busy or not available. He or she isn’t even
concerned about the server being down or having no connection to it. The programmer sends messages to a queue
that is associated with an application; and the application may or may not be available at the time of the request.
MQSeries takes care of the transport to the target application and even starts it, if necessary.

MQI - MQSeries API

MQCONN stellt eine Verbindung mit einem Queue-Manager mit Hilfe von Standard-Links her.

MQGET

MQPUT

MQCLOSE

MQPUT1 öffnet eine Queue, legt eine Message darauf ab und schließt die Queue wieder. Dieser API-Call stellt eine
Kombination von MQOPEN, MQPUT und MQCLOSE dar.

MQDISC schließt die Übergabe einer Arbeitseinheit ein. Das Beenden eines Programms ohne Unterbrechung der
Verbindung zum Queue-Manager verursacht ein "Rollback" (MQBACK).

MQBEGIN startet eine Arbeitseinheit, die durch den Queue-Manager koordiniert wird und externe XA-kompatible
Ressource-Manager enthalten kann.

MQINQ fordert Informationen über den Queue-Manager oder über eines seiner Objekte an, wie z.B. die Anzahl der
Nachrichten in einer Queue.

MQSET verändert einige Attribute eines Objekts.

MQCMIT gibt an, dass ein Syncpoint erreicht worden ist.

MQBACK teilt dem Queue-Manager alle zurück gekommenen PUT´s- und GET´s-Nachrichten seit dem letzten
Syncpoint mit.

 1 2 4

 Message

 3

 Sender Receiver

Persistent and Non-Persistent Messages

Application design determines whether a message must reach its destination under any circumstances, or if it can be
discarded when it cannot get there in time. MQSeries differentiates between persistent and non-persistent messages.
Delivery of persistent messages is assured; they are written to logs to survive system failures. Non-persistent
messages cannot be recovered after a system restart.

Persistent messages implement communication with ACID Properties. The message is stored persistently by the
sender before being sent. The receiver stores the message persistenly, before any action is takten on it, and confirms
receipt to the sender. Persistent messages are transmitted with ACID properties.

Transmission queue Target queue

Channel

Persistent Messaging Operation

 1 2 3 4

 Client Solaris Queue Queue z/OS DB2 Server

 A B

Steps 1 - 3 : If successfuk, send confirmation

Step 4: If z/OS to DB2 unsuccessful, roll back to Queue B, then recover

A message queue is used to store messages sent by programs. They are defined as objects belonging to the queue
manager.

When an application puts a message on a queue, the queue manager ensures that the message is:

• Stored safely
• Is recoverable
• Is delivered once, and once only, to the receiving application

This is true even if a message has to be delivered to a queue owned by another remote queue manager This property
is known as the assured delivery property of WebSphere MQ.

About Messages

A message is a string of bytes that is meaningful to the applications that use it. Messages are used to transfer
information from one application program to another (or to different parts of the same application). The applications
can be running on the same platform, or on different platforms.

 Header Binary Data

WebSphere MQ messages consist of two parts:

1. Data, that is sent from one program to another
2. The message descriptor or message header.

The message descriptor identifies the message (message ID) and contains control information, also called attributes,
such as message type, expiry time, correlation ID, priority, and the name of the queue for the reply.

 Application Program Application Program
 using using
 MQSeries API Calls MQSeries API Calls
 e.g. MQPut e.g. MQGet

 MQI MQI

 Sender Receiver

 Queue Manager A Queue Manager B

 MQSeries System A MQSeries System B
 e.g. Windows XP e.g. z/OS

MQSeries Operation

The application program puts a message into queue A (transmission queue), using the MQPut call , which is part of
the Message Queue Interface (MQI). Queue A is owned by queue manager A, who uses its sender to transmit the
message over the MQ channel to the receiver of queue manager B. Queue manger B owns queue B (target queue,
also called request queue or destination queue), where it stores the message. The receiving application program can
now retrieve the message from queue B at ist leisure.

Message
Queue Interface

Queue B MQ
ChannelQueue A

MQSeries pseudosynchronous operation

MQSeries operates asynchronously and unidirectional. Bidirectional operation requires 2 duplicate queues.

Although MQSeries uses asynchroner operation, a Request/reply Modus can simulate synchronous operation, and is
frequently used that way.

 Request Queue

 Application Application
 A B

 Response Queue

For this, the message header containst a „Reply to“ indicator.

If the target program is not available, the messages stay in a queue and get processed later. The queue is either in the
sending machine or in the target machine, depending whether the connection between the two systems can be
established or not. Applications can be running all day long or they can be triggered, that is, automatically started
when a message arrives or after a specified number of messages have arrived.

The figure above shows how two programs, A and B, communicate with each other. We see two queues; one is the
“output” queue for A and at the same time the “input” queue for B, while the second queue is used for replies flowing
from B to A.

The squares between the queues and the programs represent the Message Queuing Interface (API) the program uses
to communicate with MQSeries’ run-time program, the queue manager. As said before, the API is a simple multi
platform API consisting of 13 calls. The API will be discussed later.

MQI

MQI

MQI

MQI

The table below contains some interesting attributes of the message descriptor. We mention them here because they
explain some of the functions the queue manager provides for you.

Some Attributes of the Message Descriptor

• The version of the message descriptor depends on the MQSeries version and platform you use. For the
functions used with z/OS,additional fields were needed to keep information about segments and their order and
distribution list information, to name a few. This enlarged structure carries the version number 2 (or higher).
Managers who don’t support these functions (“Version 1 queue managers”) treat the additional information as
data.

• Message and/or correlation ID are used to identify a specific request or reply message. The programmer can

move a value in one or both fields or have MQSeries create a unique ID for him or her. Before the programmer
puts the request message in the queue he or she can save the ID(s) and use them in a subsequent get operation
for the reply message. The program that receives the request message copies this information into the reply
message. This allows the originating program (the one that gets the reply) to instruct MQSeries to look for a
specific message in the queue instead of getting the first one in the queue.

• We will discuss persistent and non-persistent messages further down. Persistent messages always arrive at

their destination, even when the system fails. They are “hardened”, that is, saved on disk. You can make a
specific message persistent or all messages on a particular queue.

• You can assign a priority to a message and so control the order in which it is processed.

• The queue manager stores time and date when the MQPUT occurred in the message header. The time is in GMT

and the year has four digits and so is Y2K compliant.

• You can also specify an expiration date. When this date is reached and an MQGET is issued, then the message
will be discarded. There is no “daemon” that checks queues for expired messages. Expired messages can stay
in a queue for weeks, until a program attempts to read it.

• The return address is very important for request/reply messages. You have to tell the server program where to

send the reply message. Clients and servers have a one-to-many relationship and usually the server program
cannot find out from the user data where the request message came from. Therefore, the client provides the
reply-to queue and reply-to queue manager in the message header. The server uses this information when it
performs the MQPUT API call.

• In the format field, the sender can specify a value that the receiver can use to decide whether data conversion

can be done or not. It is also used to indicate that there is an additional header (extension) present.

• The message also carries information about the sending application (program name and path) and the platform
it is running on.

• Report options and feedback code are used to request information, such as confirmation on arrival or delivery,

from the receiving queue manager. For example, the queue manager can send a report message to the sending
application when it puts the message in the target queue or when the application gets it off the queue.

• Each time a message is backed out, the backout counter is increased. An application can check this counter

and act on it, for example, send the message to a different queue where the reason for the backout is analyzed
by an administrator.

• Message segmenting and grouping has been mentioned earlier. The queue manager uses the message header

to store information about the physical message; for example, if it is a message group, the first or last segment,
or which one in between.

Message Types

MQSeries knows four types of messages that can be spezified in the message descriptor:

• Datagram: A message containing information for which no response is expected.
• Request: A message for which a reply is requested.
• Reply: A reply to a request message.
• Report: A message that describes an event such as the occurrence of an error or a confirmation on arrival or

delivery.

The MQSeriers Queue Manager on a system can serve multiple applications with multiple queues simultaneously.

Queue Manager

The heart of MQSeries is the message queue manager (MQM), which is MQSeries’ run-time program.

Before you can let your application programs use WebSphere MQ on your z/OS system, you must install the
WebSphere MQ for z/OS product and start a queue manager. The queue manager owns and manages the set of
resources that are used by WebSphere MQ. These resources include:

• Page sets that hold the WebSphere MQ object definitions and message data
• Logs that are used to recover messages and objects in the event of queue manager failure
• Processor storage
• Connections through which different application environments (CICS ® , IMS ™ , and Batch) can access the

WebSphere MQ API
• The WebSphere MQ channel initiator, which allows communication between WebSphere MQ on your z/OS

system and other systems

The queue manager has a name, and applications can connect to a rempte queue manager using its name.

The job of the queue manager is to manage queues and messages for applications. It provides an API, the Message
Queuing Interface (MQI), for communication with applications. Application programs invoke functions of the queue
manager by issuing API calls. For example, the MQPUT API call puts a message on a queue to be read by another
program using the MQGET API call. This scenario is shown below.

The queue manager can retain messages for future processing in the event of application or system outages.
Messages are retained in a queue until a successful completion response is received through the MQI.

For the queue manager to do its work, it refers to objects that are defined by an administrator, usually when the
queue manager is created or when a new application is added. The functions of a queue manager can be summarized
as follows:

• It uses existing networking facilities to transfer messages to other queue managers when necessary.

Note: The Networking Blueprint for the MQI identifies three communication styles (two in addition to MQI):

1. Common Programming Interface - Communications (CPI-C, an RPC like method, originally developed for
SNA)

2. Remote Procedure Call (RPC)
3. Message Queue Interface (MQI)

• It coordinates updates to databases and queues using a two-phase commit. Gets and puts from/ to queues are

committed together with SQL updates, or backed out if necessary.
• It segments messages (if necessary) and assembles them. It also can group messages and send them as one

physical message to their destination where they are automatically disassembled.
• It can send one message to more than one destination with one API call using a user-defined dynamic

distribution list, thus reducing network traffic. Distribution lists are not supported in WebSphere MQ for z/OS.
• It provides additional functions that allow administrators to create and delete queues, alter the properties of

existing queues, and control the operation of the queue manager. MQSeries for Windows provides graphical
user interfaces; other platforms use the command line interface or panels.

MQSeries clients do not have a queue manager in their machines. Client machines connect to a queue manager in a
server. The queue manager manages the queues for all clients attached to it.

Process Definitions

A process definition object defines an application to a queue manager. For example, it contains the name of the
program (and its path) to be triggered when a message arrives for it.

Program-to-Program Communication - One System

Program-to-Program Communication - Two Systems

A program may send messages to another program that runs in the same machine as the queue manager, or to a
program that runs in a remote system, such as a server or a host. The remote system has its own queue manager
with its own queues.

Transmission Queue Target Queue

Overview of WebSphere

MQ
on a single

z/OS system

On z/OS, WebSphere MQ runs as a
z/OS subsystem that is started at IPL
time. Within the subsystem, the queue
manager is started by executing a JCL
procedure that specifies the z/OS data
sets that contain information about the
logs, and that hold object definitions
and message data (the page sets). The
subsystem and the queue manager
have the same name, of up to four
characters. All queue managers in
your network must have unique
names, even if they are on different
systems, sysplexes, or platforms.

The figure on the left is an example of
program-to-program Communication
on a single system.

Überblick

Queues and Channels

Trigger

MQ – CICS Bridge

WebSphere MQ Objects

WebSphere MQ uses the term “object”.

Many of the tasks you carry out when using WebSphere MQ involve manipulating WebSphere MQ objects. In
WebSphere MQ for z/OS the object types are queues, processes, authentication information objects, namelists,
storage classes, Coupling Facility structures, channels, clusters, system objects, and queue manager security
objects. The queue manager itself is an object, too.

Channel Objects are an example. You may look at channel objects as definitions. The attributes of a channel object
define how communication is performed. For example, these attributes can specify whether Secure Sockets Layer
(SSL) authentication is required when establishing a channel

Usually, an administrator creates one or more queue managers and their objects. The manipulation or administration
of objects includes the following:

• Starting and stopping queue managers.
• Creating objects, particularly queues, for applications.
• Working with channels to create communication paths to queue managers on other (remote) systems.

The properties of an object are defined by its attributes. Some you can specify, others you can only view.

The objects are common across different MQSeries platforms. There are other objects that apply to z/OS systems
only, such as the buffer pool, PSID (table space page set identifier), and storage class.

WebSphere MQ Objects

In WebSphere MQ for z/OS the object types are

• queues,
• processes,
• authentication information objects,
• namelists,
• storage classes,
• Coupling Facility structures,
• channels,
• clusters,
• system objects, and
• queue manager security objects.

The queue manager itself is an object, too.

What is a Queue (Message Queue)

A queue (message queue) is a data structure used to store messages until they are retrieved by an application.

Queues are managed by a queue manager. The queue manager is responsible for maintaining the queues it owns,
storing all the messages it receives onto the appropriate queues, and retrieving the messages in response to
application requests.

The messages might be put on the queues by application programs, or by a queue manager as part of its operation.

There are local queues that are owned by the local queue manager, and remote queues that belong to a different
queue manager.

Local queues are real queues; the queue manager can sore a message in them. Non-local queues are queue objects
with attributes, which provide definitions which can be used by a local queue manager.

Queues

The term queue is used frequently in WebSphere MQ terminology. However, in different contexts, the term has
different meanings:

• Queue objects are definitions, and are used to define a queue and ist properties. Queue objects can represent
either an actual queue that can contain messages, or a method for finding the destination of another queue
within the WebSphere MQ infrastructure.

• Queues that can contain messages are called local queues. Local queue objects are the only type of queue
object that represent a real queue that holds messages.Transmission queues, which are the intermediate
queues between queue managers, are special cases of local queues.

• Message queues are used to store messages sent by programs. There are local queues that are owned by the
local queue manager, and remote queues that belong to a different queue manager.

• A cluster instance of a queue, known to the local queue manager, is generally referred to as cluster queue. A
cluster queue is not an actual queue object on the local queue manager. It is a local representation to the queue
manager of an instance of a queue object that exists somewhere within a queue manager cluster.

Message Queues

Queues are defined as objects belonging to a queue manager. MQSeries knows a number of different queue types,
each with a specific purpose. The queues you use are located either in your machine and belong to the queue
manager to which you are connected, or in your server (if you are a client), or on a remote server. Listed below are
different queue types and their purposes.

Local Queue

A queue is local if it is owned by the queue manager to which the application program is connected. It is used to store
messages for programs that use the same queue manager. For example, application program A and application
program B each has a queue for incoming messages and another queue for outgoing messages. Since the queue
manager serves both programs, all four queues are local. Local queues are also called real queues, because the
queue manager can store a message in them. Non-local queues are queue objects, whose attributes can be used by
the queue manager.

Cluster Queue

A cluster queue is a local queue that is known throughout a cluster of queue managers. Any queue manager that
belongs to the cluster can send messages to it without the need of a remote definition or defining channels to the
queue manager that owns it.

Remote Queue

A queue is “remote” if it is owned by a different queue manager. A remote queue is an object, but not a real queue. A
remote queue definition is used by a local queue manager when he wants to send a message to a remote queue. It is
a structure that contains some of the characteristics of a queue hosted by a different queue manager.

The application programmer can use the name of a remote queue just as he or she can use the name of a local queue.
The MQSeries administrator defines where the queue actually is. Remote queues are associated with a transmission
queue.

Notes:

• A program cannot read messages from a remote queue.
• You don’t need a remote queue definition for a cluster queue.

Transmission Queue

This is a local queue with a special purpose. A remote queue is associated with a transmission queue. Transmission
queues are used as an intermediate step when sending messages to queues that are owned by a different queue
manager.

Typically, there is only one transmission queue for each remote queue manager (or machine). All messages written to
queues owned by a remote queue manager are actually written to the transmission queue for this remote queue
manager. The messages will then be read from the transmission queue and sent to the remote queue manager.

Using MQSeries clusters, there is only one transmission queue for all messages sent to all other queue managers in
the cluster.

Transmission queues are transparent to the application. They are used internally by the queue manager. When a
program opens a remote queue, the attributes of the queue are obtained from the transmission queue. Therefore, the
results of a program writing messages to a queue will be affected by the transmission queue characteristics.

Dynamic Queue

Such a queue is defined "on the fly" when the application needs it. Dynamic queues may be retained by the queue
manager or automatically deleted when the application program ends. Dynamic queues are local queues. They are
often used in conversational applications, to store intermediate results. Dynamic queues can be:

• Temporary queues that do not survive queue manager restarts
• Permanent queues that do survive queue manager restarts

Alias Queue

Alias queues are not real queues but definitions. They are used to assign different names to the same physical queue.
This allows multiple programs to work with the same queue, accessing it under different names and with different
attributes.

Model Queue

A model queue is not a real queue. It is a collection of attributes that are used when a dynamic queue is created.

Initiation Queue

An initiation queue is a local queue to which the queue manager writes a trigger message when certain conditions are
met on another local queue, for example, when a message is put into an empty message queue or in a transmission
queue. Such a trigger message is transparent to the programmer. Two MQSeries applications monitor initiation
queues and read trigger messages, the trigger monitor which starts applications and the channel initiator which
starts the transmission between queue managers.

Note: Applications do not need to be aware of initiation queues, but the triggering mechanism implemented through
them is a powerful tool to design and write asynchronous applications.

Reply-to-Queue

A request message must contain the name of the queue into which the responding program must put the reply
message. This can be considered the “return address”. The name of this queue together with the name of the queue
manager that owns it is stored in the message header. This is the responsibility of the application program.

Dead-Letter Queue

A queue manager must be able to handle situations when it cannot deliver a message. Here are some examples:

• The destination queue is full.
• The destination queue does not exist.
• Message puts have been inhibited on the destination queue.
• The sender is not authorized to use the destination queue.
• The message is too large.
• The message contains a duplicate message sequence number.

When the above conditions are met, the messages are written to the dead-letter queue. Such a queue is defined when
the queue manager is created. It will be used as a repository for all messages that cannot be delivered.

Repository Queue

Repository queues are used in conjunction with clustering and hold either a full or a partial repository of queue
managers and queue manager objects in a cluster (or group) of queue managers.

What is a channel?

All network communication in WebSphere MQ is performed across a channel.

Application programmers do not need to know where the program to which they are sending messages runs. They
put their messages on a queue and let the queue manager worry about the destination machine and how to get the
messages there. MQSeries knows what to do when the remote system is not available or the target program is not
running or busy.

Messages are transported from a transmission queue over a channel to a target queue. A channel is a logical
communication link. The conversational style of program-to-program communication requires the existence of a
communications connection between each pair of communicating applications. Channels shield applications from
the underlying communications protocols.

For bidirectional communication you have to define two channel pairs consisting of a sender and a receiver. Message
channel agents are also referred to as movers.

Types of Channels

In MQSeries, when talking about network communication links, there are two different kinds of channels:

Message channel

A message channel connects two queue managers through message channel agents (MCAs). A message channel is
unidirectional, comprised of two message channel agents (a sender and a receiver) and a communication protocol.
An MCA transfers messages from a transmission queue to a communication link, and from a communication link to a
target queue. For bidirectional communication, it is necessary to define a pair of channels, consisting of a sender and
a receiver.

The queue manager transfers messages to other queue managers via channels using existing network facilities, such
as TCP/IP, SNA or SPX. Multiple queue managers can reside in the same machine. They also need channels to
communicate.

MQI channel

A Message Queue Interface (MQI channel) connects a WebSphere MQ client (also called a slim client) to a queue
manager. WebSphere MQ clients do not have a queue manager of their own.

An MQI channel is bidirectional.

Clients and Servers

MQSeries distinguishes clients and servers. Before you install MQSeries on a distributed platform you have to decide
if the workstation will be an MQSeries client, an MQSeries server, or both. With MQSeries for Windows a new term
was introduced, the leaf node (described later). There are two kinds of clients:

• Slim client or WebSphere MQ client
• Fat client

The difference between a slim client and a fat client is the way messages are sent. The queues reside either in the end
user’s workstation or on a server. A slim client requires a WebSphere MQ Server that provides queue manager
services. A WebSphere MQ Server usually attaches many slim clients.

Fat clients have a local queue manager; slim clients don't.

When a slim WebSphere MQ client cannot connect to its server it cannot work, because the queue manager and
queues for a slim client reside in the server. Usually, an MQSeries client is a slim client. Several of these clients share
MQSeries objects, and the queue manager is one of them, in the server to which they are attached.

Note: The “MQSeries Client for Java” is a slim client.

However, the client in the tutorial mentioned above (and the associated figure) is a fat client. In some cases it may be
advantageous to have queues in the end user's workstation, especially in a mobile environment. That allows you to
run your application when a connection between client and server does not (temporarily) exist.

The following summarizes the three workstation types:

MQSeries Client

A client workstation does not have a queue manager of its own. It shares a queue manager in a server with other
clients. All MQSeries objects, such as queues, are in the server. Since the connection between client and server is
synchronous, the application cannot work when the communication is broken. You could refer to such workstations
as "slim" clients.

MQSeries Server

A workstation can be a client and a server. A server is an intermediate node between other nodes. It serves slim
clients that have no queue manager and manages the message flow between its clients, itself and other servers. In
addition to the server software you may install the client software, too. This configuration is used in an application
development environment.

Leaf Node

MQSeries for Windows was designed for use by a single user. It has its own "small footprint" queue manager with its
own objects. However, it is not an intermediate node between other nodes. It is called a leaf node. You could also
refer to it as a "fat" client. This product is able to queue outbound messages when connection to a server or host is
not available, and inbound messages when the appropriate application is not active.

MQI Channel

Clients and servers are connected with MQI channels. An MQI channel consists of a sender/receiver channel-pair,
called Client Connection channel and Server Connection channel.

The application on the client machine uses the MQI API to access the MQSeries Client, but the client machine has no
queue manager.

The figure above shows the use of MQI and message channels.

• MQI channels connect clients to a queue manager in a server machine. All MQSeries objects for the client reside
in the server. MQI channels are faster than message channels.

• A message channel connects a queue manager to another queue manager. The queue manager can reside in
the same or in a different machine.

You see four machines, two clients connected to their server machine via MQI channels, and the server connected to
another server or a host via two unidirectional message channels. Some channels can be defined automatically by
MQSeries. There are different types of message channels, depending on how the session between the queue
managers is initiated and for what purpose they are used.

To transmit non-persistent messages, a message channel can run at two speeds: fast and normal. Fast channels
improve performance, but (non-persistent) messages can be lost in case of a channel failure.

A channel can use the following transport types: SNA LU 6.2, TCP/IP, NetBIOS, SPX and DEC Net. Not all are
supported on all platforms.

MQSeries Channels

Überblick

Queues and Channels

Trigger

MQ – CICS Bridge

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.pmc.express.doc/tasks/tjfp0031_.html

Queue name resolution

When an application sends a message, the destination can be a queue on the same queue manager to which the
application is connected. More frequently, it will be a destination on another queue manager within the WebSphere
MQ infrastructure.

There may be a point-to-point connection between the sending and the receiving queue manager. Alternatively, there
can be multiple intermediate queue managers between the queue manager to which an application is connected and
the final destination.

The queue manager to which the application is connected must have knowledge of how to route messages to that
remote queue manager. It must have a local queue designated to temporarily store messages travelling to that
destination, called a transmission queue.

Each queue manager on route makes an independent decision regarding the next destination for a message on route
to its final destination. This is based on the queue manager’s own knowledge of the infrastructure. This knowledge is
contained in the WebSphere MQ objects defined on that queue manager and can be supplemented with knowledge
received from other queue managers in a queue manager cluster.

The process of resolving destination information, as provided by an application, into the next destination for
messages on route to their final destination is called queue name resolution. Queue name resolution occurs within a
queue manager each time a message is received from an application or another queue manager. Every time an
MQOPEN call is performed to open a queue before putting messages on it, queue name resolution is performed by
the queue manager. This takes the information provided in a parameter (the MQOD structure) on the MQOPEN call,
the object name, and object queue manager name, and attempts to resolve this information into a valid destination
queue name and queue manager name for the message.

After queue name resolution has been performed, an application can put messages to the resolved destination using
MQPUT calls. This results in one of the following actions being performed by the queue manager:

• If queue name resolution has identified that the destination queue is local to the queue manager, the message
are put directly into that queue.

• If queue name resolution has identified that the destination is on another queue manager, known to the current

queue manager, the message is put on a transmission queue to be sent to that queue manager. This step
requires that information is added to the message so that queue name resolution can be performed again when
the message reaches the remote queue manager. This information is called a transmission queue header.

Transmission queues

The USAGE attribute of a local queue object can be used to designate a local queue as a transmission queue.
The transmission of messages from a transmission queue to a remote queue manager is performed by a message
channel.

Defining a transmission queue provides a queue manager with knowledge of how to route messages to a single
destination queue manager. Any messages sent with an object queue manager name the same as the name of the
transmission queue are placed on that transmission queue. For this reason, the name of the transmission queue and
the name of the remote queue manager should generally match.

Remote queue objects

Remote queue objects are used to define routes to other queue managers within the WebSphere MQ message
queuing infrastructure. This involves mapping queue manager names to transmission queues, and mapping queue
names to different queue names on remote queue managers.

A remote queue object can be used as a local definition of a remote queue. This enables an application to open a
remote queue object to put messages without specifying an explicit remote queue manager name in the same way as
though it was a local queue. It can be used to place a queue on a remote queue manager without making any changes
to an application that was originally written to access a local queue. To create a local definition of a remote queue,
create a remote queue object with attributes as follows:

• The name of the remote queue object: The name of the queue to which applications connected to the queue
manager put messages.

• Remote name (): The name of the queue on the destination queue manager. It can be the same as the name of
the remote queue object. Queue name resolution is performed on the remote machine using this queue name.

• Remote queue manager name (): The name of the destination queue manager. This is not necessarily the next
queue manager on route, if the message has to transvers multiple queue manages to reach its destination.
Queue name resolution is performed on the remote machine using this queue manager name.

• Transmission queue (): This attribute specifies the name of the transmission queue that takes the message to
the next queue manager on route to the destination. If the remote queue manager name is the same as the
transmission queue name, this attribute can be left blank.

The figure below shows an application sending a message through a local definition of a remote queue. The object
name specified by the application is the name of the remote queue object. Queue name resolution places this
message on the transmission queue specified in the remote queue object definition. A transmission queue header is
added to the message, which contains the remote name and remote queue manager name attributes from the remote
queue object definition. When the message reaches its destination, the information in the transmission queue header
is used to perform queue name resolution on that remote queue manager.

Distributed message channels

A distributed message channel is a channel that takes messages from a particular transmission queue on one queue
manager and delivers those messages to a queue (or queues) on a specific remote queue manager.

A distributed message channel must be manually configured for all transmission queues defined on a queue
manager. A queue manager places a message on a transmission queue as the result of queue name resolution.
During this process, it adds enough information to that message in a transmission queue header for queue name
resolution to occur when that message reaches the destination queue manager.

How does message transmission occur ?

Each distributed message channel consists of two MCAs, thus two channel objects, one on each queue manager.
Each MCA assumes one of the following roles based on the type of message channel object defined on the queue
manager:

• The sending MCA opens a particular transmission queue, specified in the attributes of the channel object, for
exclusive input. This means that no two channels can be configured to flow messages from the same
transmission queue. It gets messages from that transmission queue and sends them to the partner MCA.

• The receiving MCA receives messages from the sending MCA. For each message, it removes the transmission

queue header from the message and reads its contents. It opens the queue specified in the transmission queue
header for that message and then puts the message to the queue. These open and put actions are performed
using standard MQI calls. This means that queue name resolution happens on the queue manager in the same
way as though an application had connected to that queue manager and put the message using the details in
the transmission queue header. If a valid destination cannot be determined for the message during the queue
name resolution on that queue manager, the message cannot be delivered. We discuss this in 7.4.11, “Message
delivery failures” on page 175.

The transmission queue header is generated during queue name resolution on the queue manager where the sending
MCA is running and used to put the message to a queue on the queue manager where the receiving MCA is running.
The header contains the following information:

• Remote queue name:

The name of the destination queue for the message, which was resolved by the queue manager during queue
name resolution. When the MCA at the remote queue manager attempts to put the message to a queue on the
remote queue manager, it specifies this queue name in MQOD when opening the queue.

• Remote queue manager name:

The name of the destination queue manager that hosts the destination queue. This is also resolved during
queue name resolution and might not match the name of the queue manager to which the message is delivered,
for example, if the next queue manager to receive the message is not the final destination for the message.

• The original message descriptor of the message:

In order to add the transmission queue header to a message, the message becomes altered. The message
queue header is added to the beginning of the message body, and the message descriptor is altered to describe
the transmission queue header, rather than the data contained in the message. However, when the message
arrives on the destination queue, the message must reflect the original message correctly, including the
message descriptor. The original message descriptor of the message is stored in the transmission queue
header and used when the MCA puts the message to the remote queue manager with the transmission queue
header removed.

Channel Initiator

The channel initiator provides and manages resources that enable WebSphere MQ distributed queuing. WebSphere
MQ uses Message Channel Agents (MCAs) to send messages from one queue manager to another.

To send messages from queue manager A to queue manager B, a sending MCA on queue manager A must set up a
communications link to queue manager B. A receiving MCA must be started on queue manager B to receive
messages from the communications link. This one-way path consisting of the sending MCA, the communications
link, and the receiving MCA is known as a channel. The sending MCA takes messages from a transmission queue and
sends them down a channel to the receiving MCA. The receiving MCA receives the messages and puts them on to the
destination queue (target queue).

In WebSphere MQ for z/OS, the sending and receiving MCAs all run inside the channel initiator (the channel initiator
is also known as the mover). The channel initiator runs as a z/OS address space under the control of the queue
manager. There can be only a single channel initiator connected to a queue manager and it is run inside the same
z/OS address space as the queue manager. It hosts all message channel agents (MCAs) for a queue manager, There
can be thousands of MCA processes running inside the channel initiator concurrently.

You can use the channel initiator to start channels.

zOS Address space #1 #2 #3

 Channel initiator
 address space

 Queue Manager

 Listener

 MCA MCA MCA

Channel Initiator

The channel initiator provides and manages resources that enable WebSphere MQ distributed queuing. WebSphere
MQ uses Message Channel Agents (MCAs) to send messages from one queue manager to another.

To send messages from queue manager A to queue manager B, a sending MCA on queue manager A must set up a
communications link to queue manager B. A receiving MCA must be started on queue manager B to receive
messages from the communications link. This one-way path consisting of the sending MCA, the communications
link, and the receiving MCA is known as a channel. The sending MCA takes messages from a transmission queue and
sends them down a channel to the receiving MCA. The receiving MCA receives the messages and puts them on to the
destination queue (target queue).

In WebSphere MQ for z/OS, the sending and receiving MCAs all run inside the channel initiator (the channel initiator
is also known as the mover). The channel initiator runs as a z/OS address space under the control of the queue
manager. There can be only a single channel initiator connected to a queue manager and it is run inside the same
z/OS address space as the queue manager. It hosts all message channel agents (MCAs) for a queue manager, There
can be thousands of MCA processes running inside the channel initiator concurrently.

You can use the channel initiator to start channels.

Listener

The listener process listens for connections to arrive on a port and then creates a message channel agent (MCA) to
process that connection, whether it is a distributed message channel, cluster message channel, or client connection.

With WebSphere MQ for z/OS, listening on TCP/IP is performed within the WebSphere MQ for z/OS channel initiator.

Multiple TCP/IP listeners can be started within the channel initiator. Each listener listens on a particular TCP/IP port. A
listener is started using the START LISTENER command against the subsystem of the queue manager.

WebSphere MQ for z/OS also supports LU 6.2 listeners.

 Application Program Application Program
 using using
 MQSeries API Calls MQSeries API Calls
 e.g. MQPut e.g. MQGet

 MQI MQI

 Channel
 Initiator

 Sender Receiver

 MCA MCA

 Queue Manager A Queue Manager B

 Client Server
 MQSeries System A MQSeries System B
 e.g. Windows XP e.g. z/OS

MQSeries Operation

Queue A is called the transmission queue, and queue B is called the target queue or request queue.

Message
Queue Interface

Queue B MQ
ChannelQueue A

Listener

Triggering

Messages arriving on queues represent events within the system. In most cases, processing of that message is
required.

WebSphere MQ provides triggering to allow this processing to automatically be initiated by a queue manager. This
processing can represent starting a channel to move messages from a transmission queue to a remote queue
manager, or starting an application instance to perform an action on a message or a batch of messages.

Depending on the use of a queue, a message arriving on that queue might, or might not, represent an event for which
processing must be performed. The queue can be configured to generate trigger events that match the usage of that
queue.

Generation of trigger events

A queue can be configured in the following ways to generate trigger events:

• Every: A trigger message is generated for every message that arrives on the queue.
• First: After a queue becomes empty, the first message that arrives on that queue generates a trigger event. A

trigger event is usually generated if any application has the queue open for input to retrieve messages.
However, if a message arrives after a specified trigger interval, and no application has the queue open for input,
another trigger event occurs.

• Trigger interval, which is a queue manager-wide attribute on the queue manager object, to the required number
of milliseconds

• Depth: A message arriving on a queue, which brings the total number of messages on a queue above a certain
threshold, generates a trigger event. A trigger event is not generated if any application has the queue open for
input to retrieve messages.

Initiation queues and trigger messages

When a trigger event occurs, a message is placed on an initiation queue. This message is called a trigger message.
The name of this queue onto which the trigger message is place is specified in the initiation queue attribute of a local
queue object.

Any local queue can be designated as an initiation queue. No special configuration needs to be performed on a local
queue in order for it to be designated as an initiation queue, but it should not be configured as a transmission queue.

Each trigger message contains information about the action that needs to be performed in response to the trigger
event. The message contains the following information:

• A queue name: This is the name of the queue from which the event was generated.
• Details of an application to execute: Details of how to execute an application are platform specific. WebSphere

MQ provides the PROCESS object type. This has attributes that provide enough information to execute a
particular application in the operating system. If the PROCESS attribute of the queue that generated the event
contains the name of a valid PROCESS object, the trigger message contains all attributes from that object.

• Trigger data: This is custom data from the trigger data () attribute of the queue that generated the event.

Trigger monitor

An application that waits for messages to arrive on a local queue designated as an initiation queue is referred to as a
trigger monitor.

The queue manager defines certain conditions as constituting trigger events. If triggering is enabled for a queue and
a trigger event occurs, the queue manager sends a trigger message to a queue called an initiation queue. The
presence of the trigger message on the initiation queue indicates that a trigger event has occurred.

The program which processes the initiation queue is called a trigger-monitor application, and its function is to read
the trigger message and take appropriate action, based on the information contained in the trigger message.

Normally this action would be to start some other application, to process the queue which caused the trigger
message to be generated. From the point of view of the queue manager, there is nothing special about the trigger-
monitor application--it is simply another application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you have the option to create a process-definition object associated with it. This
object contains information about the application that processes the message which caused the trigger event. If the
process definition object is created, the queue manager extracts this information and places it in the trigger message,
for use by the trigger-monitor application.

If you want a trigger to start a channel, you do not need to define a process definition object.

Application queue
An application queue is a local queue, which, when it has triggering set on and when the conditions are met, requires
that trigger messages are written.

Trigger event
A trigger event is an event that causes a trigger message to be generated by the queue manager. This is usually a
message arriving on an application queue.

Trigger message
The queue manager creates a trigger message when it recognizes a trigger event. It copies into the trigger message
information about the application to be started. This information comes from the application queue and the process
definition object associated with the application queue.

Initiation queue
An initiation queue is a local queue on which the queue manager puts trigger messages. A queue manager can own
more than one initiation queue, and each one is associated with one or more application queues. A shared queue, a
local queue accessible by queue managers in a queue-sharing group, can be an initiation queue on WebSphere MQ
for z/OS.

Trigger monitor
A trigger monitor is a continuously-running program that serves one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger monitor automatically retrieves the message. The trigger monitor
uses the information in the trigger message. It issues a command to start the application that is to retrieve the
messages arriving on the application queue, passing it information contained in the trigger message header, which
includes the name of the application queue.

On all platforms, a special trigger monitor known as the channel initiator is responsible for starting channels. On
z/OS, the channel initiator is usually started manually.

http://middleware.its.state.nc.us/middleware/Documentation/en_US/htm/csqzal06/csqzal0637.htm

The sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts a message on the application
queue. Note that no application has this queue open for input. However, this fact is relevant only to trigger type
FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger event. They
are, and a trigger event is generated. Information held within the associated process definition object is used
when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with this
application queue, but only if an application (trigger monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.

5. The trigger monitor issues a command to start application B (the server application).

6. Application B opens the application queue and retrieves the message.

How MQSeries Works

The application program uses the Message Queue Interface (MQI) to communicate with the queue manager. The
queuing system consists of the following parts:

• Queue Manager (MQM) • Listener
• Trigger Monitor
• Channel Initiator
• Message Channel Agent (MCA) or mover

When the application program wants to put a message on a queue it issues an MQPUT API call. This invokes the MQI.
The queue manager checks whether the queue referenced in the MQPUT is local or remote. If it is a remote queue, the
message is placed into the transmission (xmit) queue. The queue manager adds a header that contains information
from the remote queue definition, such as destination queue manager name and destination queue name.

Note: Each remote queue must be associated with an xmit queue. Usually, all messages destined for one remote
machine use the same xmit queue.

Transmission is done via channels. Channels can be started manually or automatically. To start a channel
automatically, the xmit queue must be associated with a channel initiation queue. The figure above shows that the
queue manager puts a message into the xmit queue and another message into the channel initiation queue. This
queue is monitored by the channel initiator.

The channel initiator is an MQSeries program that must be running in order to monitor initiation queues. When the
channel initiator detects a message in the initiation queue, it starts the message channel agent (MCA) for the
particular channel. This program moves the message over the network to the other machine, using the sender part of
the unidirectional message channel pair.

On the receiving end, a listener program must have been started. The listener, also supplied with MQSeries, monitors
a specified port, by default, the port dedicated to MQSeries, 1414. When a message arrives, it starts the message
channel agent. The MCA moves the message into the specified local queue using the receiver part of the message
channel pair.

Note: Both channel definitions, sender and receiver, must have the same name. For the reply, you need another
message channel pair.

The program that processes the incoming message can be started manually or automatically. To start the program
automatically, an initiation queue and a process must be associated with the local queue, and the trigger monitor
must be running.

When the program starts automatically, the MCA puts the incoming message into the local queue and a trigger
message into the initiation queue. This queue is monitored by the trigger monitor. This program invokes the
application program specified in the process definition. The application issues an MQGET API call to retrieve the
message from the local queue.

Überblick

Queues and Channels

Trigger

MQ – CICS Bridge

Message Segmenting and Grouping

In MQSeries messages can be segmented or grouped. Message segmenting can be transparent to the application
programmer. If permitted, the queue manager segments a large message when it does not fit in a queue. On the
receiving end, the application has the option to either receive the entire message in one piece or each segment
separately. This may depend on the buffer size available for the application.

A second method of segmenting leaves the programmer in control so that he or she can split a message according to
logical boundaries or buffer size available for the program. The programmer puts each segment as a separate
physical message; thus several physical messages build one logical message. The queue manager ensures that the
order of the segments is maintained.

To reduce traffic over the network, you can also group several small messages together and build one larger physical
message. This message is then sent to the destination and is there disassembled. Message grouping also guarantees
that the order the messages are sent in is preserved.

Distribution Lists

Using MQSeries, you can send a message to more than one destination queue with one MQPUT call. This is done with
a dynamic distribution list. A distribution list can be a file that is read at the time an application starts. It can be
modified any time. It contains a list of queue names and the queue managers that own them. A message sent to
multiple queues belonging to the same queue manager is sent over the network only once and so reduces network
traffic. The receiving queue manager replicates the messages and puts them into the destination queues. This
function is called late fan-out.

Normal distributed processing

MQPUT to a Remote Queue

In normal distributed processing, we send messages to a specific queue owned by a specific queue manager. All
messages destined for that queue manager are placed in a transmission queue on the sender’s side. This
transmission queue has the same name as the destination queue manager. The remote queue on the sender’s side is
a queue object. Its attributes contain definitions of the target queue.

The message channel agents move the messages across the network and place them into the destination queues.
The figure above shows the relationship between a transmission (Xmit) queue and the target queue manager.

Queue Manager Cluster

Queue manager clusters allow multiple instances of the same service (multiple instances of a queue with the same
name) to be hosted through multiple queue managers.This allows for workload distribution. That is, the queue
manager can send messages to different instances of an application.

Applications requesting a particular service can connect to any queue manager within the queue manager cluster.
When applications make requests for the service, the queue manager to which they are connected automatically
workload balances these requests across all available queue managers that host an instance of that service. This
allows a pool of machines to exist within the queue manager cluster, each hosting a queue manager and the
applications required to provide the service. Queue managers can dynamically join or leave the queue manager
cluster to cope with varying loads placed on a particular service provided by a system.

Usually, two of those “cluster queue managers” maintain a repository that contains information about all queue
managers and queues in the cluster. This is called a full repository. The other queue managers maintain only a
repository of objects they are interested in, a partial repository. The repository allows any queue manager in the
cluster to find out about any cluster queue and who owns it. The queue managers use special cluster channels to
exchange information.

MQPUT to a Cluster Queue

With clustering, you send a message to a queue with a specific name somewhere in the cluster. In the above figure
this is represented by a cloud. You specify the name of a target queue. You can also specify a queue manager and
direct the message to a specific queue, but very often it is left to the queue manager to determine where the queue is
(or the queues are) and to which one to send the message.

The vision of an MQSeries cluster is as the place where multiple instances of a queue can exist. They come and go as
an administrator requires in order to satisfy changing availability and throughput requirements. This has to be
achieved completely dynamically and without placing the administrator under a great burden to configure and
control. In addition, the programmer does not have to think about multiple queues; he or she just treats them as if
writing to a single queue.

This is not to say that there is no burden on the programmer or administrator. Enhanced levels of availability and
exploitation of parallelism do require some planning. The administrator or system designer must ensure that there is
enough redundancy in the configuration to meet their needs. The application designer must ensure that messages
are capable of being processed in multiple places.

Accessing Cluster Queues

You create multiple instances of a queue by defining a queue with the same name on multiple queue managers that
belong to the cluster. You must also name the cluster when you define the queue. When the application specifies only
the queue name, where is the message sent?

This is shown above. MQSeries distributes the messages round-robin. You can change this default action by writing
your own workload balancing routine.

The figure shows messages put in one of the three cluster queues named A. Each of the three queue managers on
the right owns a queue with this name. By default, the first message is placed in queue A on queue manager 1, the
next in queue A on queue manager 2, the third goes to queue manager 3 and the fourth message to the queue on
queue manager 1 again.

If in the figure above queue A is available in system 3, but queue B is unavailable. System 3 is automatically excluded
from receiving messages for its queue B.

Multiple queue managers on multiple MVS images within the same queue-sharing group can MQPUT messages to
and MQGET messages from the same shared queue. This is achieved by storing all the messages in a shared queue
in the same coupling facility list structure.

Queue-sharing group

The group of queue managers that can access the same shared queues is called a queue-sharing group. Each
member of the queue-sharing group has access to the same set of shared queues.

Queue-sharing groups have a name of up to four characters. The name must be unique in your network, and must be
different from any queue manager names.

The figure above illustrates a queue-sharing group that contains two queue managers. Each queue manager has a
channel initiator and its own local page sets and log data sets.

The CICS bridge

The WebSphere MQ-CICS bridge is the component of WebSphere MQ for z/OS that allows direct access from
WebSphere MQ applications to applications on your CICS system. In bridge applications there are no WebSphere MQ
calls within the CICS application (the bridge enables implicit MQI support). This means that you can re-engineer
legacy applications that were controlled by 3270-connected terminals to be controlled by WebSphere MQ messages,
without having to rewrite, recompile, or re-link them.

The bridge enables an application that is not running in a CICS environment to run a program or transaction on CICS
and get a response back. This non-CICS application can be run from any environment that has access to a
WebSphere MQ network that encompasses WebSphere MQ for z/OS.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It must conform to the DPL
subset of the CICS API, that is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can use BMS commands. It
can be conversational or part of a pseudoconversation. It is permitted to issue syncpoints.

Queue Manager

 WebSphere MQ CICS
 virtual virtueller
 Addres Space Adressenraum

MQ MQSeries

 Channel CICS CICS
 Receiver Bridge Application,
 Monitor e,g. NACT

 CICS Nucleus

 z/OS Kernel

MQSeries Server
Accessing CICS

Target
Queue

System configuration for the CICS bridge:

When you are setting your system up, you should ensure that:

• Both WebSphere MQ and CICS are running in the same z/OS image.
• The WebSphere MQ request queue is local to the CICS bridge, however the response queue can be local or

remote.
• The CICS bridge tasks normally run in the same CICS as the bridge monitor. The user programs can be in the

same or a different CICS system. CICS transaction routing can be used.
• The WebSphere MQ-CICS adapter is enabled.
• A specific CICS system is referenced in the Message header.

When using shared queues, it is possible to use multiple bridge monitors on the CICS bridge in multiple CICS
regions. However all bridge monitors must be associated with WebSphere MQ queue managers.

Running CICS DPL programs

Running CICS DPL programs

Data necessary to run the program is provided in the WebSphere MQ message. The bridge builds a COMMAREA from
this data, and runs the program using EXEC CICS LINK. The figure below shows the sequence of actions taken to
process a single message to run a CICS DPL program:

The following takes each step in turn, and explains what takes place:

1. A message, with a request to run a CICS program, is put on the request queue.
2. The CICS bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start unit of work’

message is waiting.
3. Relevant authentication checks are made, and a CICS DPL bridge task is started with the appropriate authority,

with a particular userid (depending on the options used to start the bridge monitor).
4. The CICS DPL bridge task removes the message from the request queue.
5. The CICS DPL bridge task builds a COMMAREA from the data in the message and issues an EXEC CICS LINK

for the program requested in the message.
6. The program returns the response in the COMMAREA used by the request.
7. The CICS DPL bridge task reads the COMMAREA, creates a message, and puts it on the reply-to queue

(transmission queue) specified in the request message. All response messages (normal and error, requests and
replies) are put to the reply-to queue with default context.

8. The CICS DPL bridge task ends. If this is the last flow in the transaction then the transaction ends, if it is not the
last message, the transaction waits until the next message is received or the specified timeout interval expires.

A unit of work can be just a single user program, or it can be multiple user programs. There is no limit to the number
of messages you can send to make up a unit of work.

In this scenario, a unit of work made up of many messages works in the same way, with the exception that the CICS
bridge task waits for the next request message in the final step unless it is the last message in the unit of work.

Running CICS 3270 transactions

Running CICS 3270 transactions

Data necessary to run the transaction is provided in the WebSphere MQ message. The CICS transaction runs as if it
has a real 3270 terminal, but instead uses one or more MQ messages to communicate between the CICS transaction
and the WebSphere MQ application

Unlike traditional 3270 emulators, the bridge does not work by replacing the VTAM flows with WebSphere MQ
messages. Instead, the message consists of a number of parts called vectors, each of which corresponds to an EXEC
CICS request. Therefore the application is talking directly to the CICS transaction, rather than through an emulator,
using the actual data used by the transaction (known as application data structures or ADSs).

The following explains what takes place in each step :

1. A message, with a request to run a CICS transaction, is put on the request queue.
2. The CICS bridge monitor task, which is constantly browsing the queue, recognizes that a ‘start unit of work’

message is waiting .
3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the appropriate authority,

with a particular userid (depending on the options used to start the bridge monitor).
4. The WebSphere MQ-CICS bridge removes the message from the queue and changes task to run a user

transaction
5. Vectors in the message provide data to answer all terminal-related input EXEC CICS requests in the transaction.
6. Terminal-related output EXEC CICS requests result in output vectors being built.
7. The WebSphere MQ-CICS bridge builds all the output vectors into a single message and puts this on the reply-to

queue.
8. The CICS 3270 bridge task ends. If this is the last flow in the transaction then the transaction ends, if it is not the

last message, the transaction waits until the next message is received or the specified timeout interval expires.

Note: The WebSphere MQ CICS bridge is a WebSphere MQ supplied CICS exit associated with the bridge transaction.
It uses the CICS Link3270 mechanism.

A traditional CICS application usually consists of one or more transactions linked together as a pseudoconversation.
In general, each transaction is started by the 3270 terminal user entering data onto the screen and pressing an AID
key. This model of application can be emulated by a WebSphere MQ application. A message is built for the first
transaction, containing information about the transaction, and input vectors. This is put on the queue. The reply
message consists of the output vectors, the name of the next transaction to be run, and a token that is used to
represent the pseudoconversation. The WebSphere MQ application builds a new input message, with the transaction
name set to the next transaction and the facility token and remote system id set to the value returned on the previous
message. Vectors for this second transaction are added to the message, and the message put on the queue. This
process is continued until the application ends.

It is possible to include all of the WebSphere MQ messages for multiple transactions within the same bridge session
which reduces monitoring overheads and improves performance.

An alternative approach to writing CICS applications is the conversational model. In this model, the original message
might not contain all the data to run the transaction. If the transaction issues a request that cannot be answered by
any of the vectors in the message, a message is put onto the reply-to queue requesting more data. The WebSphere
MQ application gets this message and puts a new message back to the queue with a vector to satisfy the request.

Server
Connection

Channel

Request
Data

Response
Data Remote Queue

Definition

Request
Message

Response
Message

Remote Queue
Definition

OS/390

MQSeries
v2.1

Queue Manager
MQA1

MQSeries CICS
bridge

monitor task

CICS
COBOL
Program

CICS Region
CICS TS

v1.3

CICS DPL
bridge task

MQGet
Browse request

EXEC
CICS START

Request data

MQGet
request

Response
data

MQPut
response

EXEC
CICS LINK

EXEC
CICS RETURN

Response message

JAVA Application

MQI

Windows 2000

MQSeries
v5.2.1

MQPut

Request
Message

MQPutMQGet

Reply-To Queue

Transmission Queue

Receiver

Transmission Queue
Request Queue

“MQSeries CICS
Bridge Queue”

1
2

5

67

8

9

10

11

14

Java 1.3.1

Sender 4a
Receiver

12

Response
Channel

Queue Manager
TBUSSE.NACT

Request
Channel

Sender

≈≈ ≈ MQIMQI

3

4b
13a

13b

≈

MQSeries accessing CICS

The figure on the left is an example of
program-to-program communication
involving two systems.

Java Presentation logic runs on a
workstation and accesses CICS
COMMAREA on a mainframe.

We will do a tutorial with a Java
presentation logic running on a client
using the CICS MQSeries Bridge to
access COMMAREA. The figure on
the left is taken from this tutorial.

