
 

OS/390 IBM

 

TSO/E
Command Reference

 
 
 
 SC28-1969-02



 



OS/390 IBM

TSO/E
Command Reference

 
 
 
 SC28-1969-02



  
 

 Note 

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

Third Edition, March 1999

| This edition applies to Version 2 Release 7 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

This is a maintenance revision of SC28-1969-01.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

 IBM Corporation
| Department 55JA, Mail Station P384

522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States and Canada): 1+914+432-9405
| FAX (Other countries): Your International Access Code +1+914+432-9405

| IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

| Internet e-mail: mhvrcfs@us.ibm.com
| World Wide Web: http://www.ibm.com/s390/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1988, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



  
 

 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Who Should Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
How This Book Is Organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Where to Find More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Referenced Program Products . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Summary of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv
Changes to this Book for OS/390 Version 2 Release 4 . . . . . . . . . . . . . .  xv

Chapter 1. TSO/E Commands and Subcommands . . . . . . . . . . . . . .  1-1
Using a TSO/E Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
How to Read the TSO/E Command Syntax . . . . . . . . . . . . . . . . . . . .  1-11
Using the HELP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15
Using Commands for VSAM and Non-VSAM Data Sets . . . . . . . . . . . .  1-16
TSO/E Commands and Subcommands . . . . . . . . . . . . . . . . . . . . . .  1-16
Summary of TSO/E Commands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-17
ALLOCATE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
ALTLIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
ATTRIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-66
CALL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-74
CANCEL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78
DELETE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-80
EDIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-84
EDIT Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . . . . .  1-92
EDIT—ALLOCATE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—ATTRIB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—BOTTOM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—CHANGE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—CKPOINT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-98
EDIT—COPY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-100
EDIT—DELETE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107
EDIT—DOWN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-109
EDIT—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110
EDIT—EXEC Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110
EDIT—FIND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110
EDIT—FREE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112
EDIT—HELP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112
EDIT—INPUT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112
EDIT—INSERT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-114
EDIT—Insert/Replace/Delete Function  . . . . . . . . . . . . . . . . . . . . . 1-116
EDIT—LIST Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-117
EDIT—MOVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-119
EDIT—PROFILE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-125
EDIT—RENUM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-125
EDIT—RUN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-127
EDIT—SAVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-130
EDIT—SCAN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-132

 Copyright IBM Corp. 1988, 1999  iii



  
 

EDIT—SEND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133
EDIT—SUBMIT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133
EDIT—TABSET Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-136
EDIT—TOP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-138
EDIT—UNNUM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139
EDIT—UP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139
EDIT—VERIFY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-140
END Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141
EXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141
EXECUTIL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-154
FREE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-161
HELP Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-166
LINK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-171
LISTALC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-182
LISTBC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-186
LISTCAT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-188
LISTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-192
LOADGO Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-195
LOGOFF Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-202
LOGON Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-203
MVSSERV Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-208
OUTDES Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-209
OUTPUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-224
OUTPUT Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . .  1-230
OUTPUT—CONTINUE Subcommand  . . . . . . . . . . . . . . . . . . . . . . 1-230
OUTPUT—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-231
OUTPUT—HELP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-231
OUTPUT—SAVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-231
PRINTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-232
PROFILE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-247
PROTECT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-255
RECEIVE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-259
RENAME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-269
RUN Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-271
SEND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-274
SMCOPY Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-279
SMFIND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-282
SMPUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-284
STATUS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-285
SUBMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-286
TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-291
TEST Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-295
TEST Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . . . .  1-301
TEST—ALLOCATE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-303
TEST—AND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-303
Assignment of Values Function of TEST . . . . . . . . . . . . . . . . . . . .  1-306
TEST—AT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-310
TEST—ATTRIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-314
TEST—CALL Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-314
TEST—CANCEL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-316
TEST—COPY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-316
TEST—DELETE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-320
TEST—DROP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-320
TEST—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-321

iv OS/390 V2R7.0 TSO/E Command Reference  



  
 

TEST—EQUATE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-322
TEST—EXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-324
TEST—FREEMAIN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . 1-324
TEST—GETMAIN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-326
TEST—GO Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-327
TEST—HELP Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328
TEST—LINK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328
TEST—LIST Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328
TEST—LISTALC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTBC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTCAT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTDCB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTDEB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-337
TEST—LISTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-339
TEST—LISTMAP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-339
TEST—LISTPSW Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-340
TEST—LISTTCB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-341
TEST—LISTVP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-343
TEST—LISTVSR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-344
TEST—LOAD Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-345
TEST—OFF Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-346
TEST—OR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-347
TEST—PROFILE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-350
TEST—PROTECT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-350
TEST—QUALIFY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-350
TEST—RENAME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-353
TEST—RUN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-353
TEST—SEND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-354
TEST—SETVSR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-355
TEST—STATUS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-355
TEST—SUBMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—UNALLOC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—WHERE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TIME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-359
TRANSMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-359
TSOEXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-374
TSOLIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-376
VLFNOTE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-385
WHEN Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-388

Chapter 2. Session Manager Commands . . . . . . . . . . . . . . . . . . . .  2-1
Entering Session Manager Commands . . . . . . . . . . . . . . . . . . . . . . .  2-3
Command Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Session Manager Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
Defaults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Session Manager Command Summary . . . . . . . . . . . . . . . . . . . . . . .  2-5
CHANGE.CURSOR Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
CHANGE.FUNCTION Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
CHANGE.MODE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
CHANGE.PFK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
CHANGE.STREAM Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
CHANGE.TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

  Contents v



  
 

CHANGE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
DEFINE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
DELETE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
END Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
FIND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
PUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
QUERY Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
RESET Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
RESTORE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
SAVE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
SCROLL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
SNAPSHOT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
UNLOCK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-1

vi OS/390 V2R7.0 TSO/E Command Reference  



  
 

 Figures

1-1. Commands Preferred for VSAM/Non-VSAM Data Sets . . . . . . . .  1-16
1-2. Summary of the TSO/E Commands . . . . . . . . . . . . . . . . . . .  1-17
1-3. ALLOCATE Command Return Codes . . . . . . . . . . . . . . . . . .  1-50
1-4. Library Search Order . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-58
1-5. ALTLIB Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-65
1-6. ATTRIB Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-73
1-7. Allocating and Creating Input Data Sets in the Background . . . . .  1-75
1-8. CALL Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-77
1-9. CANCEL Command Return Codes . . . . . . . . . . . . . . . . . . .  1-80

1-10. DELETE Command Return Codes . . . . . . . . . . . . . . . . . . .  1-83
1-11. EDIT Command: Default Values for LINE or LRECL and BLOCK or

BLKSIZE Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-90
1-12. EDIT Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-90
1-13. Subcommands and Functions of the EDIT Command . . . . . . . .  1-92
1-14. Default Tab Settings . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-137
1-15. Library Search Order . . . . . . . . . . . . . . . . . . . . . . . . . .  1-148
1-16. EXEC Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-150
1-17. EXECUTIL Command Return Codes . . . . . . . . . . . . . . . . .  1-160
1-18. FREE Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-165
1-19. Information Available Through the HELP Command . . . . . . . .  1-168
1-20. HELP Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-170
1-21. LINK Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-181
1-22. LISTALC Command Return Codes . . . . . . . . . . . . . . . . . .  1-184
1-23. LISTBC Command Return Codes . . . . . . . . . . . . . . . . . . .  1-187
1-24. LISTBC Command Return Codes (Installation-Defined User Log

Data Set)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-187
1-25. LISTCAT Command Return Codes . . . . . . . . . . . . . . . . . .  1-192
1-26. LISTDS Command Return Codes . . . . . . . . . . . . . . . . . . .  1-194
1-27. LOADGO Command Return Codes . . . . . . . . . . . . . . . . . .  1-201
1-28. MVSSERV Command Return Codes . . . . . . . . . . . . . . . . .  1-209
1-29. OUTDES Command Return Codes . . . . . . . . . . . . . . . . . .  1-221
1-30. OUTPUT Command Return Codes . . . . . . . . . . . . . . . . . .  1-229
1-31. Subcommands and Functions of the OUTPUT Command . . . . .  1-230
1-32. Valid Machine Printer Carriage Control Characters . . . . . . . . .  1-236
1-33. Summary of Default Values for the PRINTDS Command . . . . .  1-244
1-34. Mutually Exclusive Operands on the PRINTDS Command . . . . .  1-245
1-35. PRINTDS Command Return Codes . . . . . . . . . . . . . . . . . .  1-246
1-36. System Defaults for Control Characters . . . . . . . . . . . . . . .  1-248
1-37. UPT/PSCB Initialization Table in the Background . . . . . . . . . .  1-253
1-38. PROFILE Command Return Codes . . . . . . . . . . . . . . . . . .  1-254
1-39. PROTECT Command Return Codes . . . . . . . . . . . . . . . . .  1-258
1-40. RECEIVE Command Return Codes . . . . . . . . . . . . . . . . . .  1-265
1-41. RENAME Command Return Codes . . . . . . . . . . . . . . . . . .  1-270
1-42. Source Statement/Program Product Relationship . . . . . . . . . .  1-271
1-43. RUN Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-274
1-44. SEND Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-278
1-45. SEND Command Return Codes (Installation-Defined User Log Data

Set)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-278
1-46. SMCOPY Command Return Codes . . . . . . . . . . . . . . . . . .  1-282
1-47. SMFIND Command Return Codes . . . . . . . . . . . . . . . . . .  1-284

 Copyright IBM Corp. 1988, 1999  vii



  
 

1-48. SMPUT Command Return Codes . . . . . . . . . . . . . . . . . . .  1-285
1-49. STATUS Command Return Codes . . . . . . . . . . . . . . . . . .  1-286
1-50. SUBMIT Command Return Codes . . . . . . . . . . . . . . . . . . .  1-290
1-51. TERMINAL Command Return Codes . . . . . . . . . . . . . . . . .  1-295
1-52. TEST Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-299
1-53. Subcommands and Functions of the TEST Command . . . . . . .  1-301
1-54. TRANSMIT Command Return Codes . . . . . . . . . . . . . . . . .  1-365
1-55. TSOEXEC Command Return Codes . . . . . . . . . . . . . . . . .  1-375
1-56. TSOLIB Command Return Codes . . . . . . . . . . . . . . . . . . .  1-381
1-57. VLFNOTE Command Return Codes . . . . . . . . . . . . . . . . .  1-388

2-1. Summary of the Session Manager Commands . . . . . . . . . . . . .  2-5
2-2. CHANGE.CURSOR Command Return Codes . . . . . . . . . . . . . .  2-7
2-3. CHANGE.FUNCTION Command Return Codes . . . . . . . . . . . .  2-10
2-4. CHANGE.MODE Command Return Codes . . . . . . . . . . . . . . .  2-11
2-5. CHANGE.PFK Command Return Codes . . . . . . . . . . . . . . . .  2-13
2-6. CHANGE.STREAM Command Return Codes . . . . . . . . . . . . .  2-14
2-7. CHANGE.TERMINAL Command Return Codes . . . . . . . . . . . .  2-15
2-8. CHANGE.WINDOW Command Return Codes . . . . . . . . . . . . .  2-18
2-9. DEFINE.WINDOW Command Return Codes . . . . . . . . . . . . . .  2-21

2-10. DELETE.WINDOW Command Return Codes . . . . . . . . . . . . .  2-22
2-11. FIND Command Return Codes . . . . . . . . . . . . . . . . . . . . .  2-24
2-12. PUT Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  2-26
2-13. QUERY Command Return Codes . . . . . . . . . . . . . . . . . . . .  2-28
2-14. RESET Command Return Codes . . . . . . . . . . . . . . . . . . . .  2-30
2-15. RESTORE Command Return Codes . . . . . . . . . . . . . . . . . .  2-32
2-16. SAVE Command Return Codes . . . . . . . . . . . . . . . . . . . . .  2-33
2-17. SCROLL Command Return Codes . . . . . . . . . . . . . . . . . . .  2-36
2-18. SHAPSHOT Command Return Codes . . . . . . . . . . . . . . . . .  2-37
2-19. UNLOCK Command Return Codes . . . . . . . . . . . . . . . . . . .  2-38

viii OS/390 V2R7.0 TSO/E Command Reference  



  
 

 Notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user's
responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

|  North Castle Drive
| Armonk, NY 10504-1785

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

|  IBM Corporation
| Mail Station P300
| 522 South Road
| Poughkeepsie, NY 12601-5400
|  USA
| Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

| Any pointers in this publication to non-IBM Web sites are provided for convenience
| only, and do not in any manner serve as an endorsement of these Web sites. IBM
| accepts no responsibility for the content or use of non-IBM Web sites specifically
| mentioned in this publication or accessed through an IBM Web site that is
| mentioned in this publication.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 � AD/Cycle
 � AFP
 � C/370
 � DFSMS/MVS
 � IBM

 Copyright IBM Corp. 1988, 1999  ix



  
 

|  � IBMLink
 � MVS/DFP
 � MVS/ESA
 � OS/390
� Print Services Facility

 � RACF
 � SP
 � System/370
 � VTAM

| UNIX is a registered trademark in the United States and other countries licensed
| exclusively through X/Open Company Limited.

Other company, product, or service names may be trademarks or service marks of
others.

x OS/390 V2R7.0 TSO/E Command Reference  



  
 

About This Book

This book describes the syntax and function of the commands and subcommands
of the TSO/E command language and Session Manager. It provides only reference
material and assumes you are experienced in the use of TSO/E and Session
Manager.

If you are not familiar with TSO/E, first read OS/390 TSO/E User's Guide. If you
have little or no knowledge of the use of TSO/E commands, OS/390 TSO/E User's
Guide, provides the prerequisite information for using this book. The guide explains
how to:

� Enter and execute commands
� Name and create specific types of data sets
� Edit, rename, list, copy, free, and delete data sets
� Send and receive data sets
� Print data sets on a JES printer
� Run programs in the foreground or background
� Use TSO/E through ISPF/PDF
� Use Session Manager.

Note:  System programming commands are described in OS/390 TSO/E System
Programming Command Reference.

Who Should Use This Book
Anyone who uses TSO/E and Session Manager commands.

How This Book Is Organized
The major chapters in this book are:

� Chapter 1, TSO/E Commands and Subcommands contains general information
needed to use TSO/E commands. It describes the syntax notation in diagrams
that accompany each command, positional and keyword operands, delimiters,
line continuation, comments, and subcommands.

This book presents commands in alphabetical order. The subcommands are
alphabetized under their commands. For example, all TEST subcommands are
alphabetized under the TEST command. Examples are included.

� Chapter 2, Session Manager Commands describes the syntax and function of
each Session Manager command. It presents the commands in alphabetical
order and includes examples.

Where to Find More Information
Please see the OS/390 Information Roadmap for an overview of the documentation
associated with OS/390.

The latest OS/390 documentation is available on CD ROM, which is IBM Online
Library Omnibus Edition OS/390 Collection, SK2T-6700.

 Copyright IBM Corp. 1988, 1999  xi



  
 

| The following OS/390 TSO/E documentation has been updated for Version 2
| Release 7 as a result of maintenance revisions and is available in printed form and
| on CD ROM.

| � OS/390 TSO/E CLISTs

| � OS/390 TSO/E Command Reference

| � OS/390 TSO/E Messages

| � OS/390 TSO/E Programming Services

| � OS/390 TSO/E REXX Reference

| � OS/390 TSO/E System Programming Command Reference

| The following OS/390 TSO/E documentation has been updated for Version 2
| Release 7 as a result of maintenance revisions and is available only on CD ROM .
| Printed versions of these documents for a prior OS/390 release can still be ordered:

| � OS/390 TSO/E REXX User's Guide

| � OS/390 TSO/E User's Guide

| The following OS/390 TSO/E documentation was updated for Version 2 Release 6
| as a result of maintenance revisions and is available only on CD ROM . A printed
| version of this document, for OS/390 Version 2 Release 4, can still be ordered:

| � OS/390 TSO/E Customization

| The following OS/390 TSO/E documentation was updated for Version 2 Release 4
| as a result of maintenance revisions and is available only on CD ROM . Printed
| versions of these documents for OS/390 Version 1 Release 2 can still be ordered:

| � OS/390 TSO/E Guide to SRPI

| � OS/390 TSO/E Primer

| � OS/390 TSO/E VM/PC User's Guide

| The following OS/390 TSO/E documentation was updated for Version 2 Release 4
| and is available only on CD ROM :

| � OS/390 TSO/E System Diagnosis: Data Areas

| The following OS/390 TSO/E documentation was updated for Version 2 Release 4
| and is available in a printed version (may not be the latest level) and on CD ROM:

� OS/390 TSO/E General Information

| The following OS/390 TSO/E documentation has not been updated for Version 2
| Release 4 or for a subsequent maintenance release and is still available in a
| printed version and on CD ROM:

| � OS/390 TSO/E Administration

| � OS/390 TSO/E Programming Guide

xii OS/390 V2R7.0 TSO/E Command Reference  



  
 

Referenced Program Products
This book refers to the following IBM products:

� Access Method Services Cryptographic Option, 5740-AM8

� Cryptographic Unit Support, 5740-XY6

� MVS/Data Facility Product (MVS/DFP), 5665-XA3

� Data Facility Hierarchical Storage Manager (DFHSM), 5665-329

� Programmed Cryptographic Facility, 5740-XY5

� TSO Assembler Prompter, 5734-CP2

� OS/VS COBOL Release 2.4, 5740-CB1

� TSO COBOL Prompter, 5734-CP1

� PL/I OS Optimizing Compiler, 5734-PL1

� PL/I OS Checkout Compiler, 5734-PL2

� VS FORTRAN, 5748-FO3

� TSO FORTRAN Prompter, 5734-CP3

 � VSBASIC, 5748-XX1

� Office Vision/MVS, 5685-106

  About This Book xiii



  
 

xiv OS/390 V2R7.0 TSO/E Command Reference  



  
 

Summary of Changes

| Summary of Changes
| for SC28-1969-02
| OS/390 Version 2 Release 7

| This revision reflects the deletion, addition, or modification of information to support
| miscellaneous maintenance items and the following APARs:

|  � OW30933

|  � OW32350

|  � OW31126

|  � OW33746.

| This book includes terminology, maintenance, and editorial changes. Technical
| changes or additions to the text and illustrations are indicated by a vertical line to
| the left of the change.

Changes to this Book for OS/390 Version 2 Release 4
The following commands have been changed:

� “CALL Command Syntax” on page 1-75

� “TEST Command Syntax” on page 1-297

� “TEST—LOAD Subcommand Syntax” on page 1-345

Changes to the PRINTDS command are because of the following APAR:

� APAR OW27107 see on page 1-232 

This revision also reflects the changes on the following commands caused by
miscellaneous maintenance items:

� “ALLOCATE Command” on page 1-18

� “ATTRIB Command” on page 1-66

� “CALL Command” on page 1-74

� “LINK Command” on page 1-171

� “LOADGO Command” on page 1-195

� “OUTDES Command” on page 1-209

� “SEND Command” on page 1-274

� “TEST—SUBMIT Command” on page 1-356

� “TSOLIB Command” on page 1-376

 Copyright IBM Corp. 1988, 1999  xv



  
 

xvi OS/390 V2R7.0 TSO/E Command Reference  



  
 

Chapter 1. TSO/E Commands and Subcommands

Using a TSO/E Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
Positional Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Keyword Operands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

How to Read the TSO/E Command Syntax . . . . . . . . . . . . . . . . . . . .  1-11
Abbreviating Keyword Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-13
Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
Line Continuation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Delimiters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

Using the HELP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15
Explanations of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15
Syntax Interpretation of HELP Information . . . . . . . . . . . . . . . . . . .  1-15
Explanations of Subcommands . . . . . . . . . . . . . . . . . . . . . . . . .  1-15

Using Commands for VSAM and Non-VSAM Data Sets . . . . . . . . . . . .  1-16
TSO/E Commands and Subcommands . . . . . . . . . . . . . . . . . . . . . .  1-16
Summary of TSO/E Commands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-17
ALLOCATE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18

Data Sets with SMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-19
Allocating Non-SMS-Managed Data Sets . . . . . . . . . . . . . . . . . . .  1-20
Allocating OpenMVS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . .  1-20
ALLOCATE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-20
ALLOCATE Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-23
ALLOCATE Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-50
ALLOCATE Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-50

ALTLIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-58
Search Order for Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-58
Using ALTLIB with Most Applications . . . . . . . . . . . . . . . . . . . . . .  1-59
Using ALTLIB with Concurrent Applications . . . . . . . . . . . . . . . . . .  1-59
Using ALTLIB in ISPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-59
Using ALTLIB in the IPCS Dialog . . . . . . . . . . . . . . . . . . . . . . . .  1-60
Stacking Application-Level Library Requests . . . . . . . . . . . . . . . . .  1-60
ALTLIB Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-61
ALTLIB Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-62
ALTLIB Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-65
ALTLIB Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-65

ATTRIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-66
ATTRIB Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-66
ATTRIB Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-68
ATTRIB Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-73
ATTRIB Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-73

CALL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-74
CALL Command in the Background . . . . . . . . . . . . . . . . . . . . . .  1-74
CALL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-75
CALL Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-75
CALL Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . . .  1-77
CALL Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-77

CANCEL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-78
CANCEL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-79
CANCEL Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-79
CANCEL Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-80
CANCEL Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-80

 Copyright IBM Corp. 1988, 1999  1-1



  
 

DELETE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-80
DELETE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-81
DELETE Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-81
DELETE Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-83
DELETE Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-83

EDIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-84
EDIT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-84
EDIT Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-85
EDIT Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . . .  1-90
EDIT Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-90

EDIT Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . . . . .  1-92
EDIT—ALLOCATE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—ATTRIB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93
EDIT—BOTTOM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93

EDIT—BOTTOM Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-93
EDIT—CHANGE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-93

EDIT—CHANGE Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-94
EDIT—CHANGE Subcommand Operands . . . . . . . . . . . . . . . . . . .  1-94
Quoted-String Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-95
Combinations of Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-96
EDIT—CHANGE Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-96

EDIT—CKPOINT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-98
EDIT—CKPOINT Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-98
EDIT—CKPOINT Subcommand Operand . . . . . . . . . . . . . . . . . . .  1-99
EDIT—CKPOINT Subcommand Examples . . . . . . . . . . . . . . . . . .  1-99

EDIT—COPY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-100
EDIT—COPY Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-100
EDIT—COPY Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-100
EDIT—COPY Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-102

EDIT—DELETE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-107
EDIT—DELETE Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-107
EDIT—DELETE Subcommand Operands . . . . . . . . . . . . . . . . . .  1-108
EDIT—DELETE Subcommand Examples . . . . . . . . . . . . . . . . . .  1-108

EDIT—DOWN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-109
EDIT—DOWN Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-109
EDIT—DOWN Subcommand Operand . . . . . . . . . . . . . . . . . . . .  1-109
EDIT—DOWN Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-109

EDIT—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110
EDIT—END Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-110
EDIT—END Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-110

EDIT—EXEC Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110
EDIT—FIND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-110

EDIT—FIND Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-111
EDIT—FIND Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-111
EDIT—FIND Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-111

EDIT—FREE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112
EDIT—HELP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112
EDIT—INPUT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-112

EDIT—INPUT Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-112
EDIT—INPUT Subcommand Operands . . . . . . . . . . . . . . . . . . .  1-112
EDIT—INPUT Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-113

EDIT—INSERT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-114
EDIT—INSERT Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-114
EDIT—INSERT Subcommand Operand . . . . . . . . . . . . . . . . . . .  1-114

1-2 OS/390 V2R7.0 TSO/E Command Reference  



  
 

EDIT—INSERT Subcommand Examples . . . . . . . . . . . . . . . . . .  1-114
EDIT—Insert/Replace/Delete Function  . . . . . . . . . . . . . . . . . . . . . 1-116

EDIT—Insert/Replace/Delete Function Syntax . . . . . . . . . . . . . . .  1-116
EDIT—Insert/Replace/Delete Function Operands . . . . . . . . . . . . . .  1-116
How the System Interprets the Operands . . . . . . . . . . . . . . . . . .  1-116
EDIT—Insert/Replace/Delete Function Examples . . . . . . . . . . . . . .  1-116

EDIT—LIST Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-117
EDIT—LIST Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-117
EDIT—LIST Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-117
EDIT—LIST Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-118

EDIT—MOVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-119
EDIT—MOVE Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-119
EDIT—MOVE Subcommand Operands . . . . . . . . . . . . . . . . . . .  1-119
EDIT—MOVE Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-121

EDIT—PROFILE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-125
EDIT—RENUM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-125

EDIT—RENUM Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-126
EDIT—RENUM Subcommand Operands . . . . . . . . . . . . . . . . . .  1-126
EDIT—RENUM Subcommand Examples . . . . . . . . . . . . . . . . . .  1-126

EDIT—RUN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-127
EDIT—RUN Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-127
EDIT—RUN Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-128
EDIT—RUN Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-129

EDIT—SAVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-130
EDIT—SAVE Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-130
EDIT—SAVE Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-130
EDIT—SAVE Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-131

EDIT—SCAN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-132
EDIT—SCAN Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-132
EDIT—SCAN Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-132
EDIT—SCAN Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-132

EDIT—SEND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133
EDIT—SUBMIT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-133

EDIT—SUBMIT Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-134
EDIT—SUBMIT Subcommand Operands . . . . . . . . . . . . . . . . . .  1-134
EDIT—SUBMIT Subcommand Examples . . . . . . . . . . . . . . . . . .  1-136

EDIT—TABSET Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-136
EDIT—TABSET Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-137
EDIT—TABSET Subcommand Operands . . . . . . . . . . . . . . . . . .  1-138
EDIT—TABSET Subcommand Examples . . . . . . . . . . . . . . . . . .  1-138

EDIT—TOP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-138
EDIT—TOP Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-139
EDIT—TOP Subcommand Examples . . . . . . . . . . . . . . . . . . . . .  1-139

EDIT—UNNUM Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139
EDIT—UNNUM Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-139
EDIT—UNNUM Subcommand Examples . . . . . . . . . . . . . . . . . .  1-139

EDIT—UP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-139
EDIT—UP Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . . .  1-139
EDIT—UP Subcommand Operands . . . . . . . . . . . . . . . . . . . . .  1-140
EDIT—UP Subcommand Examples . . . . . . . . . . . . . . . . . . . . .  1-140

EDIT—VERIFY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-140
EDIT—VERIFY Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-140
EDIT—VERIFY Subcommand Operands . . . . . . . . . . . . . . . . . .  1-140
EDIT—VERIFY Subcommand Examples . . . . . . . . . . . . . . . . . .  1-141

  Chapter 1. TSO/E Commands and Subcommands 1-3



  
 

END Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141
END Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-141
END Command Return Code . . . . . . . . . . . . . . . . . . . . . . . . .  1-141

EXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-141
Using EXEC as a Subcommand . . . . . . . . . . . . . . . . . . . . . . .  1-142
EXEC Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-142
EXEC Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-143
Using the Explicit Form of the EXEC Command . . . . . . . . . . . . . .  1-146
Using the (Extended) Implicit Form of the EXEC Command . . . . . . .  1-148
Considerations for Passing Quotes . . . . . . . . . . . . . . . . . . . . . .  1-149
EXEC Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-150
EXEC Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-150

EXECUTIL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-154
Additional Considerations for Using EXECUTIL . . . . . . . . . . . . . . .  1-155
EXECUTIL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-155
EXECUTIL Command Operands . . . . . . . . . . . . . . . . . . . . . . .  1-155
EXECUTIL Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-160
EXECUTIL Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-160

FREE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-161
FREE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-162
FREE Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-162
FREE Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-165
FREE Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-165

HELP Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-166
Information available through HELP . . . . . . . . . . . . . . . . . . . . .  1-167
HELP Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-169
HELP Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-169
HELP Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-170
HELP Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-170

LINK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-171
LINK Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-171
LINK Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-173
LINK Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-181
LINK Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-181

LISTALC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-182
LISTALC Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-182
LISTALC Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-183
LISTALC Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-184
LISTALC Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-184

LISTBC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-186
LISTBC Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-187
LISTBC Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-187
LISTBC Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-187
LISTBC Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-188

LISTCAT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-188
LISTCAT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-189
LISTCAT Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-189
LISTCAT Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-192

LISTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-192
LISTDS Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-193
LISTDS Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-193
LISTDS Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-194
LISTDS Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-194

LOADGO Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-195

1-4 OS/390 V2R7.0 TSO/E Command Reference  



  
 

LOADGO Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-195
LOADGO Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-197
LOADGO Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-201
LOADGO Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-201

LOGOFF Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-202
LOGOFF Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-202
LOGOFF Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-202
LOGOFF Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-203

LOGON Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-203
Full-Screen LOGON versus Line Mode LOGON . . . . . . . . . . . . . .  1-203
Full-Screen LOGON Processing . . . . . . . . . . . . . . . . . . . . . . .  1-204
LOGON Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-205
LOGON Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-205
LOGON Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-207

MVSSERV Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-208
MVSSERV Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-208
MVSSERV Command Operands . . . . . . . . . . . . . . . . . . . . . . .  1-208
MVSSERV Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-209
MVSSERV Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-209

OUTDES Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-209
OUTDES Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-210
OUTDES Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-211
Coding Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-221
OUTDES Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-221
OUTDES Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-221

OUTPUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-224
OUTPUT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-225
OUTPUT Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-225
Output Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-227
Subcommands for the OUTPUT Command . . . . . . . . . . . . . . . . .  1-228
Checkpointed Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-228
OUTPUT Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-229
OUTPUT Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-229

OUTPUT Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . .  1-230
OUTPUT—CONTINUE Subcommand  . . . . . . . . . . . . . . . . . . . . . . 1-230

OUTPUT—CONTINUE Subcommand Syntax . . . . . . . . . . . . . . . .  1-230
OUTPUT—CONTINUE Subcommand Operands . . . . . . . . . . . . . .  1-230
OUTPUT—CONTINUE Subcommand Examples . . . . . . . . . . . . . .  1-231

OUTPUT—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-231
OUTPUT—END Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-231

OUTPUT—HELP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-231
OUTPUT—SAVE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-231

OUTPUT—SAVE Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-232
OUTPUT—SAVE Subcommand Operand . . . . . . . . . . . . . . . . . .  1-232
OUTPUT—SAVE Subcommand Examples . . . . . . . . . . . . . . . . .  1-232

PRINTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-232
Process for the Input Data Set or File . . . . . . . . . . . . . . . . . . . .  1-233
Output for a Data Set or File . . . . . . . . . . . . . . . . . . . . . . . . .  1-233
PRINTDS Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-233
PRINTDS Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-235
Default Values for PRINTDS . . . . . . . . . . . . . . . . . . . . . . . . . .  1-244
Mutually Exclusive Operands on PRINTDS . . . . . . . . . . . . . . . . .  1-245
PRINTDS Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-246
PRINTDS Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-246

  Chapter 1. TSO/E Commands and Subcommands 1-5



  
 

PROFILE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-247
PROFILE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-248
PROFILE Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-249
PROFILE Language Setting Notes . . . . . . . . . . . . . . . . . . . . . .  1-252
PROFILE Foreground/Background Processing Differences . . . . . . . .  1-252
PROFILE Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-254
PROFILE Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-254

PROTECT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-255
PROTECT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-255
PROTECT Command Operands . . . . . . . . . . . . . . . . . . . . . . .  1-256
Passwords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-257
Types of Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-257
Password Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-258
PROTECT Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-258
PROTECT Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-258

RECEIVE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-259
RECEIVE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-259
RECEIVE Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-260
RECEIVE Command Prompt Parameters . . . . . . . . . . . . . . . . . .  1-261
RECEIVE Command Prompt Parameter Syntax . . . . . . . . . . . . . .  1-261
RECEIVE Command Prompt Parameters . . . . . . . . . . . . . . . . . .  1-262
RECEIVE Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-265
Receiving Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-265
Data Set Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-265
Receiving Protected Data Sets . . . . . . . . . . . . . . . . . . . . . . . .  1-266
Receiving Enciphered Data . . . . . . . . . . . . . . . . . . . . . . . . . .  1-266
Receiving Data Sets and Messages with Security Labels . . . . . . . . .  1-266
RECEIVE Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-266

RENAME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-269
RENAME Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-270
RENAME Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-270
RENAME Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-270
RENAME Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-270

RUN Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-271
RUN Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-271
RUN Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-272
Determining Compiler Type . . . . . . . . . . . . . . . . . . . . . . . . . .  1-274
RUN Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-274
RUN Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-274

SEND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-274
SEND Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-276
SEND Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-276
SEND Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-278
SEND Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-278

SMCOPY Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-279
SMCOPY Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-280
SMCOPY Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  1-280
SMCOPY Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-282
SMCOPY Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  1-282

SMFIND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-282
SMFIND Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-283
SMFIND Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-283
SMFIND Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-284
SMFIND Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-284

1-6 OS/390 V2R7.0 TSO/E Command Reference  



  
 

SMPUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-284
SMPUT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-284
SMPUT Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-284
SMPUT Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-285
SMPUT Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-285

STATUS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-285
STATUS Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-286
STATUS Command Operand . . . . . . . . . . . . . . . . . . . . . . . . .  1-286
STATUS Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-286

SUBMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-286
SUBMIT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  1-287
SUBMIT Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-287
SUBMIT Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  1-290
SUBMIT Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-290

TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-291
TERMINAL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-291
TERMINAL Command Operands . . . . . . . . . . . . . . . . . . . . . . .  1-292
TERMINAL Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-295
TERMINAL Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-295

TEST Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-295
TEST Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-297
TEST Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-297
TEST Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  1-299
TEST Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-299

TEST Subcommands (Overview) . . . . . . . . . . . . . . . . . . . . . . . . .  1-301
TEST—ALLOCATE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-303
TEST—AND Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-303

TEST—AND Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-303
TEST—AND Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-304
TEST—AND Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-305

Assignment of Values Function of TEST . . . . . . . . . . . . . . . . . . . .  1-306
Syntax of Values Function of TEST . . . . . . . . . . . . . . . . . . . . . .  1-306
Operands of Values Function of TEST . . . . . . . . . . . . . . . . . . . .  1-306
Examples of Values Function of TEST . . . . . . . . . . . . . . . . . . . .  1-309

TEST—AT Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-310
TEST—AT Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . . .  1-311
TEST—AT Subcommand Operands . . . . . . . . . . . . . . . . . . . . .  1-311
TEST—AT Subcommand Examples . . . . . . . . . . . . . . . . . . . . .  1-313

TEST—ATTRIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-314
TEST—CALL Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-314

TEST—CALL Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-315
TEST—CALL Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-315
TEST—CALL Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-316

TEST—CANCEL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-316
TEST—COPY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-316

TEST—COPY Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-317
TEST—COPY Subcommand Operands . . . . . . . . . . . . . . . . . . .  1-317
TEST—COPY Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-318

TEST—DELETE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-320
TEST—DELETE Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-320
TEST—DELETE Subcommand Operand . . . . . . . . . . . . . . . . . .  1-320
TEST—DELETE Subcommand Examples . . . . . . . . . . . . . . . . . .  1-320

TEST—DROP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-320
TEST—DROP Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-321

  Chapter 1. TSO/E Commands and Subcommands 1-7



  
 

TEST—DROP Subcommand Operand . . . . . . . . . . . . . . . . . . . .  1-321
TEST—DROP Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-321

TEST—END Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-321
TEST—END Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-321

TEST—EQUATE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-322
TEST—EQUATE Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-322
TEST—EQUATE Subcommand Operands . . . . . . . . . . . . . . . . .  1-322
TEST—EQUATE Subcommand Examples . . . . . . . . . . . . . . . . .  1-323

TEST—EXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-324
TEST—FREEMAIN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . 1-324

TEST—FREEMAIN Subcommand Syntax . . . . . . . . . . . . . . . . . .  1-324
TEST—FREEMAIN Subcommand Operands . . . . . . . . . . . . . . . .  1-325
TEST—FREEMAIN Subcommand Examples . . . . . . . . . . . . . . . .  1-325

TEST—GETMAIN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-326
TEST—GETMAIN Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-326
TEST—GETMAIN Subcommand Operands . . . . . . . . . . . . . . . . .  1-326
TEST—GETMAIN Subcommand Examples . . . . . . . . . . . . . . . . .  1-327

TEST—GO Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-327
TEST—GO Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . . .  1-327
TEST—GO Subcommand Operands . . . . . . . . . . . . . . . . . . . . .  1-327
TEST—GO Subcommand Examples . . . . . . . . . . . . . . . . . . . . .  1-328

TEST—HELP Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328
TEST—LINK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328
TEST—LIST Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-328

TEST—LIST Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-329
TEST—LIST Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-329
TEST—LIST Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-332

TEST—LISTALC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTBC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTCAT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-335
TEST—LISTDCB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-335

TEST—LISTDCB Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-335
TEST—LISTDCB Subcommand Operands . . . . . . . . . . . . . . . . .  1-336
TEST—LISTDCB Subcommand Examples . . . . . . . . . . . . . . . . .  1-336

TEST—LISTDEB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-337
TEST—LISTDEB Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-337
TEST—LISTDEB Subcommand Operands . . . . . . . . . . . . . . . . .  1-337
TEST—LISTDEB Subcommand Examples . . . . . . . . . . . . . . . . .  1-338

TEST—LISTDS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-339
TEST—LISTMAP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-339

TEST—LISTMAP Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-339
TEST—LISTMAP Subcommand Operands . . . . . . . . . . . . . . . . .  1-339
TEST—LISTMAP Subcommand Examples . . . . . . . . . . . . . . . . .  1-340

TEST—LISTPSW Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-340
TEST—LISTPSW Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-340
TEST—LISTPSW Subcommand Operands . . . . . . . . . . . . . . . . .  1-340
TEST—LISTPSW Subcommand Examples . . . . . . . . . . . . . . . . .  1-341

TEST—LISTTCB Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-341
TEST—LISTTCB Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-341
TEST—LISTTCB Subcommand Operands . . . . . . . . . . . . . . . . .  1-342
TEST—LISTTCB Subcommand Examples . . . . . . . . . . . . . . . . .  1-342

TEST—LISTVP Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-343
TEST—LISTVP Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-343
TEST—LISTVP Subcommand Examples . . . . . . . . . . . . . . . . . .  1-343

1-8 OS/390 V2R7.0 TSO/E Command Reference  



  
 

TEST—LISTVSR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-344
TEST—LISTVSR Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-344
TEST—LISTVSR Subcommand Operands . . . . . . . . . . . . . . . . .  1-344
TEST—LISTVSR Subcommand Examples . . . . . . . . . . . . . . . . .  1-345

TEST—LOAD Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-345
TEST—LOAD Subcommand Syntax . . . . . . . . . . . . . . . . . . . . .  1-345
TEST—LOAD Subcommand Operands . . . . . . . . . . . . . . . . . . .  1-345
TEST—LOAD Subcommand Examples . . . . . . . . . . . . . . . . . . .  1-346

TEST—OFF Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-346
TEST—OFF Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-346
TEST—OFF Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-346
TEST—OFF Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-347

TEST—OR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-347
TEST—OR Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . . .  1-348
TEST—OR Subcommand Operands . . . . . . . . . . . . . . . . . . . . .  1-348
TEST—OR Subcommand Examples . . . . . . . . . . . . . . . . . . . . .  1-349

TEST—PROFILE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-350
TEST—PROTECT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-350
TEST—QUALIFY Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-350

TEST—QUALIFY Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-351
TEST—QUALIFY Subcommand Operands . . . . . . . . . . . . . . . . .  1-351
TEST—QUALIFY Subcommand Examples . . . . . . . . . . . . . . . . .  1-351

TEST—RENAME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-353
TEST—RUN Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-353

TEST—RUN Subcommand Syntax . . . . . . . . . . . . . . . . . . . . . .  1-353
TEST—RUN Subcommand Operands . . . . . . . . . . . . . . . . . . . .  1-353
TEST—RUN Subcommand Examples . . . . . . . . . . . . . . . . . . . .  1-354

TEST—SEND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-354
TEST—SETVSR Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . 1-355

TEST—SETVSR Subcommand Syntax . . . . . . . . . . . . . . . . . . .  1-355
TEST—SETVSR Subcommand Operands . . . . . . . . . . . . . . . . . .  1-355
TEST—SETVSR Subcommand Examples . . . . . . . . . . . . . . . . . .  1-355

TEST—STATUS Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-355
TEST—SUBMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—UNALLOC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356
TEST—WHERE Subcommand  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-356

TEST—WHERE Subcommand Syntax . . . . . . . . . . . . . . . . . . . .  1-356
TEST—WHERE Subcommand Operands . . . . . . . . . . . . . . . . . .  1-357
TEST—WHERE Subcommand Examples . . . . . . . . . . . . . . . . . .  1-357

TIME Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-359
TIME Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-359
TIME Command Return Code . . . . . . . . . . . . . . . . . . . . . . . . .  1-359

TRANSMIT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-359
TRANSMIT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-359
TRANSMIT Command Operands . . . . . . . . . . . . . . . . . . . . . . .  1-360
TRANSMIT Command Return Codes . . . . . . . . . . . . . . . . . . . .  1-365
Transmitting Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-365
Transmitting Data Sets as Messages . . . . . . . . . . . . . . . . . . . . .  1-365
Transmitting Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-365
Transmitting Enciphered Data . . . . . . . . . . . . . . . . . . . . . . . . .  1-366
Transmitting Data Sets and Messages with Security Labels . . . . . . .  1-366
Logging Function of TRANSMIT and RECEIVE . . . . . . . . . . . . . . .  1-367
NAMES Data Set Function . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-368

  Chapter 1. TSO/E Commands and Subcommands 1-9



 Using a TSO/E Command  
 

Control Section Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-369
Nicknames Section Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-370
TRANSMIT Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-371

TSOEXEC Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-374
TSOEXEC Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  1-375
TSOEXEC Command Operand . . . . . . . . . . . . . . . . . . . . . . . .  1-375
TSOEXEC Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-375
TSOEXEC Command Examples . . . . . . . . . . . . . . . . . . . . . . .  1-375

TSOLIB Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-376
Search Order for Load Modules . . . . . . . . . . . . . . . . . . . . . . . .  1-376
Further Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-377
Command Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-378
Stacking Load Module Library Requests . . . . . . . . . . . . . . . . . . .  1-378
TSOLIB Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-378
TSOLIB Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  1-379
TSOLIB Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  1-381
TSOLIB Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  1-382

VLFNOTE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-385
Changing Data Associated with a Partitioned Data Set . . . . . . . . . .  1-386
VLFNOTE Command Syntax (Partitioned Data Set) . . . . . . . . . . . .  1-386
VLFNOTE Command Operands (Partitioned Data Set) . . . . . . . . . .  1-386
VLFNOTE Command Examples (Partitioned Data Set) . . . . . . . . . .  1-387
Changing Non-PDS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-387
VLFNOTE Command Syntax (Non-PDS) . . . . . . . . . . . . . . . . . .  1-387
VLFNOTE Command Operands (Non-PDS) . . . . . . . . . . . . . . . . .  1-387
VLFNOTE Command Examples (Non-PDS) . . . . . . . . . . . . . . . . .  1-388
VLFNOTE Command Return Codes . . . . . . . . . . . . . . . . . . . . .  1-388

WHEN Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-388
WHEN Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-388
WHEN Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  1-388
WHEN Command Return Code . . . . . . . . . . . . . . . . . . . . . . . .  1-389
WHEN Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  1-389

This section describes the functions and syntax of TSO/E commands and their
subcommands. It includes:

� The general format and syntax rules for the commands

� A description of each command. The commands are described in alphabetical
order.

� Examples of how to use commands and subcommands.

The commands are presented in alphabetical order. Subcommands are also
presented in alphabetical order following the command to which they apply.

Introductory information about how to use TSO/E is described in OS/390 TSO/E
User's Guide.

Using a TSO/E Command
A command consists of a command name usually followed by one or more
operands. Operands provide the specific information required to perform the
requested operation. For example, operands for the RENAME command identify
the data set you want to rename:

1-10 OS/390 V2R7.0 TSO/E Command Reference  



  How to Read the TSO/E Command Syntax
 

You can use two types of operands with the commands: positional and keyword.

RENAME OLDNAME NEWNAME

command name operand_1
(old data set name)

operand_2
(new data set name)

 Positional Operands
Positional operands follow the command name in a certain order. In the command
descriptions within this book, the positional operands are shown in lowercase
characters. For example,

EDIT reports.data

where reports.data is the data_set_name positional operand with the EDIT
command.

When you enter a positional operand that is a list of several names or values, you
must enclose the list within parentheses. For example,

LISTDS (PARTS.DATA TEST.DATA)

 Keyword Operands
Keyword operands (keywords) are specific names or symbols that have a particular
meaning to the system. You can include keywords in any order following the
positional operands. In the command descriptions within this book, keywords are
shown in uppercase characters.

You can specify values with some keywords. Enclose the value with parentheses
following the keyword. For example, a typical keyword operand with a value is:

LINESIZE(integer)

Continuing this example, you would select the number of characters that you want
to appear in a line and substitute that number for integer when you enter the
operand:

LINESIZE(8ð)

However, if you enter conflicting, mutually exclusive keywords, the last keyword you
enter overrides the previous ones.

“How to Read the TSO/E Command Syntax” describes the syntax notation for the
TSO/E commands and subcommands.

How to Read the TSO/E Command Syntax
Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

Double arrows indicate the beginning and ending of a statement. 

55──STATEMENT────────────────────────────────────────────────────────────5%

  Chapter 1. TSO/E Commands and Subcommands 1-11



 How to Read the TSO/E Command Syntax  
 

If a statement syntax requires more than one line to be shown, single arrows
indicate their continuation. 

55──STATEMENT──............──............──............──............─────5

5──............──............──............──............──.........─────5%

Required items appear on the horizontal line (the main path). 

55──STATEMENT──required_item─────────────────────────────────────────────5%

Optional items appear below the main path. 

55─ ─STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────────────5%
 └ ┘─optional_item─

If you can choose from two or more items, they are stacked vertically.

� If you must choose one of the items, an item of the stack appears on the main
path. 

55─ ─STATEMENT─ ──┬ ┬─required_choice_1─ ────────────────────────────────────────5%
 └ ┘─required_choice_2─

� If choosing one of the items is optional, the entire stack appears below the
main path. 

55─ ─STATEMENT─ ──┬ ┬─────────────────── ────────────────────────────────────────5%
 ├ ┤─optional_choice_1─
 └ ┘─optional_choice_2─

An arrow returning to the left above the main line indicates an item that can be
repeated. 

 ┌ ┐───────────────────
55─ ─STATEMENT─ ───6 ┴─repeatable_item─ ──────────────────────────────────────5%

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice. 

 ┌ ┐─────────────────────────
55─ ─STATEMENT─ ───6 ┴──┬ ┬─repeatable_item_1─ ────────────────────────────────5%
 └ ┘─repeatable_item_2─

Default values appear above the main path. For example, if you choose neither
choice_2 nor choice_3, choice_1 is assumed. (Defaults can be coded for clarity
reasons.) 

 ┌ ┐─choice_1─
55─ ─STATEMENT─ ──┼ ┼────────── ─────────────────────────────────────────────5%
 ├ ┤─choice_2─
 └ ┘─choice_3─

If a syntax diagram becomes too large or too complex to be printed or shown,
fragments of it are shown below the main diagram as details. 

55─ ─── ──STATEMENT─ ─required_variable─ ──┬ ┬────────────────────── ───────────5
└ ┘──'optional_parameter'

5──┤ FRAGMENT ├──────────────────────────────────────────────────────────5%

FRAGMENT:
├─ ─OPERAND─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ───────────────5
 ├ ┤─optional_choice_1a─ ├ ┤─optional_choice_2a─
 └ ┘─optional_choice_1b─ └ ┘─optional_choice_2b─

1-12 OS/390 V2R7.0 TSO/E Command Reference  



  How to Read the TSO/E Command Syntax
 

5─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ────────────────────────┤
 ├ ┤─optional_choice_3a─ ├ ┤─optional_choice_4a─
 └ ┘─optional_choice_3b─ └ ┘─optional_choice_4b─

The previous syntax diagram is equivalent to the following diagram: 

55─ ─── ──STATEMENT─ ─required_variable─ ──┬ ┬────────────────────── ─OPERAND───5
└ ┘──'optional_parameter'

5─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ────────────────────────5
 ├ ┤─optional_choice_1a─ ├ ┤─optional_choice_2a─
 └ ┘─optional_choice_1b─ └ ┘─optional_choice_2b─

5─ ──┬ ┬──────────────────── ──┬ ┬──────────────────── ───────────────────────5%
 ├ ┤─optional_choice_3a─ ├ ┤─optional_choice_4a─
 └ ┘─optional_choice_3b─ └ ┘─optional_choice_4b─

Keywords appear in uppercase (for example, PARM1). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

Abbreviating Keyword Operands
You can enter keywords spelled exactly as they are shown or you can use an
acceptable abbreviation. You can abbreviate any keyword by entering only the
significant characters; that is, you must type as much of the keyword as is
necessary to distinguish it from the other keywords of the command or
subcommand. For example, the LISTBC command has four keywords:

 MAIL
 NOMAIL
 NOTICES
 NONOTICES

The abbreviations are:

M for MAIL (also MA and MAI)

NOM for NOMAIL (also NOMA and NOMAI)

NOT for NOTICES (also NOTI, NOTIC, and NOTICE)

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC, and
NONOTICE)

Also, the DELETE and LISTCAT commands allow unique abbreviations for some of
their keywords. The abbreviations are shown with the syntax and operand
descriptions of DELETE and LISTCAT.

 Comments
You can include comments in a TSO/E command anywhere a blank might appear.
To include a comment, start with delimiter /\. If you want to continue the command
after the comment, close the comment with delimiter \/.

listd (data_set_list) /\ my data sets

or

listd /\ my data sets \/ (data_set_list)

  Chapter 1. TSO/E Commands and Subcommands 1-13



 How to Read the TSO/E Command Syntax  
 

You do not need to end a comment with \/ if the comment is the last thing on the
line. Ending a comment with \/ is a convention, not a requirement here. Comments
are most useful in CLISTs.

 Line Continuation
CAUTION:
A plus sign causes leading delimiters to be removed from the continuation
line.

When it is necessary to continue to the next line, use a plus or minus sign as the
last character of the line you wish to continue.

list (data_set_list) /\ this is a list of my -
active data sets \/

or

alloc dataset(out.data) file(output) new +  
space(1ð,2) tracks release

Note:  If you are using REXX commands and want to continue to the next line, the
plus or minus sign does not work. You must use the comma.

The following example shows how to use the comma with the REXX command
(PUSH), to continue to the next line. The comma must be outside the quotation
marks.

/\ REXX \ test ACCOUNT \/
x = Outtrap("var.")
PUSH 'END'
PUSH 'ADD (NEWUSER \ \ TPROC)',
 'UNIT(SYSTS)',
 'SIZE(4ððð)'
Address TSO "ACCOUNT"
x = Outtrap("OFF")
Say 'RC from account was:' rc
Do i=1 to var.ð /\ loop through all messages \/
Say var.i /\ display each message \/

End

To continue a line that contains a comment, use a continuation character after the
comment:

allocate dataset(my.text) /\ data set name \/ + 
 new volume(tsomar2)

 Delimiters
When you type a command, you must separate the command name from the first
operand by one or more blanks. You must separate operands by one or more
blanks or a comma. Do not use a semicolon as a delimiter because any character
you enter after a semicolon is ignored. For example, if you use a blank or a comma
as a delimiter, you can type the LISTBC command as follows:

LISTBC NOMAIL NONOTICES
LISTBC NOMAIL,NONOTICES
LISTBC NOMAIL NONOTICES

When creating (or updating) a CLIST, do not use any of the following as a
delimiter:

1-14 OS/390 V2R7.0 TSO/E Command Reference  



  
 

� The special characters @, $, or #
� A single quote

 � A number
 � A blank
 � A tab
 � A comma
 � A semicolon
 � A parenthesis
 � An asterisk.

Note:  When entering commands under ISPF or Program Control Facility (PCF),
do not use the ISPF or PCF command delimiter character that your
installation has set for these facilities. The default delimiter character for
each ISPF and PCF command is the semicolon (;), but your installation can
specify a different delimiter character.

Using the HELP Command
Use the HELP command to receive all the information on the system on how to use
any TSO/E command. The requested information is displayed on your terminal.

Explanations of Commands
To receive a list of all the TSO/E commands in the SYS1.HELP data set along with
a description of each, enter the HELP command as follows:

help

You can place information about installation-written commands in the SYS1.HELP
data set. You can also get all the information available about a specific command in
SYS1.HELP by entering the specific command name as an operand on the HELP
command, as follows:

help ALLOCATE

where ALLOCATE is the command name.

Syntax Interpretation of HELP Information
The syntax notation for the HELP information is different from the syntax notation
presented in this book because it is restricted to characters that are displayed on
your terminal. You can get the syntax interpretation by entering the HELP
command as follows:

help help

Explanations of Subcommands
When HELP exists as a subcommand, you can use it to obtain a list of
subcommands or additional information about a particular subcommand. The syntax
of HELP as a subcommand is the same as the HELP command.

  Chapter 1. TSO/E Commands and Subcommands 1-15



  
 

Using Commands for VSAM and Non-VSAM Data Sets
Access Method Services is a multi-function service program that primarily
establishes and maintains Virtual Storage Access Method (VSAM) data sets.

Figure 1-1 on page 1-16 shows recommended commands, by function, for VSAM
and non-VSAM data sets. Numbers indicate order of preference. Program product
commands are identified with an asterisk (*). For commands not covered in this
book, see DFSMS/MVS Access Method Services for VSAM.

Figure 1-1. Commands Preferred for VSAM/Non-VSAM Data Sets

Function Non-VSAM VSAM

Build lists of attributes ATTRIB (None)

Allocate new DASD space ALLOCATE DEFINE or
ALLOCATE

Connect data set to terminal ALLOCATE ALLOCATE

List names of allocated (connected) data sets LISTALC LISTALC

Modify passwords PROTECT DEFINE,
ALTER

List attributes of one or more objects 1. LISTDS,
2. LISTCAT

1. LISTCAT,
2. LISTDS

List names of cataloged data sets (limit by type) LISTCAT LISTCAT

List names of cataloged data sets (limit by naming
convention)

LISTDS LISTDS

Catalog data sets 1. DEFINE,
2. ALLOCATE

DEFINE

List contents of data set EDIT, LIST* PRINT

Rename data set RENAME ALTER

Delete data set DELETE DELETE

Copy data set COPY* REPRO

TSO/E Commands and Subcommands
TSO/E commands which require a data set name (for example, Edit, DELete, XMIT
etc.) first search the current allocations to see if the data set is already allocated to
the TSO/E session. If the data set name is already allocated, it will be used by the
command. If the data set name is not allocated, it will be allocated based on the
standard catalog search order. Therefore, if a data set is desired that is not
cataloged, you must use the ALLOCATE command to allocate it to the TSO/E
session (see “ALLOCATE Command” on page 1-18). This data set will then be
used by all subsequent commands that use this data set name as one of the
parameters. Conversely, if an uncataloged data set is allocated to the TSO/E
session with the same name as a cataloged data set, and the cataloged data set is
desired, the uncataloged data set must first be FREEd so that the standard catalog
search order will be used to find the cataloged data set.

1-16 OS/390 V2R7.0 TSO/E Command Reference  



  Summary of TSO/E Commands
 

Summary of TSO/E Commands

Figure 1-2 (Page 1 of 2). Summary of the TSO/E Commands

Command Function

ALLOCATE Dynamically allocates data sets.

ALTLIB Defines alternative application-level libraries of REXX EXECs or CLISTs.

ATTRIB Builds a list of attributes for non-VSAM data sets.

CALL Loads and executes a program.

CANCEL Ends the processing of batch jobs submitted at your terminal.

DELETE Deletes data set entries or members of a partitioned data set.

EDIT Creates, modifies, stores, submits, retrieves, and deletes data sets. See
command definitions for definitions of EDIT subcommands.

END Ends a CLIST.

EXEC Executes a CLIST or REXX exec.

EXECUTIL Changes various characteristics that control how REXX execs run in the
TSO/E address space only.

FREE Releases previously allocated data sets, changes the output of a
SYSOUT data set, deletes attribute lists, or changes data set disposition.

HELP Gets information about the function, syntax, and operands of commands
and subcommands and information about certain messages.

LINK Invokes the linkage editor service program.

LISTALC Lists data sets that are currently allocated to the TSO/E session.

LISTBC Displays messages of general interest.

LISTCAT Lists entries from a catalog by name or entry type.

LISTDS Displays attributes of data sets.

LOADGO Loads a compiled or assembled program into real storage and begins
execution.

LOGOFF Ends your terminal session.

LOGON Starts your terminal session.

MVSSERV Starts a TSO/E Enhanced Connectivity Facility session between an IBM
Personal Computer and a host computer running TSO/E MVS. After you
have invoked MVSSERV and you are in a VM/PC session, you can also
use the DSNMAP and TSO/E commands.

OUTDES Creates or reuses dynamic output descriptors.

OUTPUT Directs output from a job to your terminal or to a specific data set;
deletes the output, changes output class, routes output to a remote
workstation, or releases the output for a job for printing by the
subsystem.

PRINTDS Formats and prints data sets on any printer defined to JES.

PROFILE Changes or lists your user profile.

PROTECT Prevents unauthorized access to your non-VSAM data sets.

RECEIVE Retrieves transmitted files and restore them to their original format.

RENAME Changes the name of a non-VSAM cataloged data set, changes the
member name of a partitioned data set, or creates an alias for a
partitioned data set member.

  Chapter 1. TSO/E Commands and Subcommands 1-17



 ALLOCATE Command  
 

Note:  Except for the DELETE and LISTCAT commands, TSO/E does not support
generation data group (GDG) data sets.

Figure 1-2 (Page 2 of 2). Summary of the TSO/E Commands

Command Function

RUN Compiles, loads, and executes the source statements in a data set.

SEND Sends a message to another terminal user or to the system operator.

SMCOPY Copies all or part of a stream or data set to another stream or data set.

SMFIND Locates a string of characters in a stream.

SMPUT Places a string of characters in a stream.

STATUS Displays the status of a job.

SUBMIT Submits one or more batch jobs for processing.

TERMINAL Lists or changes operating characteristics of your terminal.

TEST Tests a program or command processor written in Assembler language.

TRANSMIT Sends information, such as a message or a copy of information in a data
set, to another user in the network.

TSOEXEC Invokes an authorized command from an unauthorized environment.

TSOLIB Dynamically links to different versions of load module libraries from within
a user's TSO/E session.

VLFNOTE Notifies VLF that a change has been made to a partitioned data set or a
non-partitioned data set.

WHEN Tests return codes from programs invoked from an immediately
preceding CALL or LOADGO command, and to take prescribed action if
the return code meets a specified condition.

 ALLOCATE Command
Use the ALLOCATE command or the ALLOCATE subcommand of EDIT (the
subcommand's function and syntax are identical to the ALLOCATE command) to
dynamically allocate the VSAM, non-VSAM, and hierarchical file system (HFS) data
sets required by a program that you intend to execute.

You can specify data set attributes for non-VSAM data sets that you intend to
allocate dynamically in several ways:

� Use the LIKE operand to obtain the attributes from an existing model data set
(a data set that must be cataloged) whose data set attributes you want to use.
You can override model data set attributes by explicitly specifying the desired
attributes on the ALLOCATE command.

� Identify a data set and describe its attributes explicitly on the ALLOCATE
command.

� Use the ATTRIB command to build a list of attributes. During the remainder of
your terminal session, you can have the system refer to this list for data set
attributes by specifying the USING operand when you enter the ALLOCATE
command. The ALLOCATE command converts the attributes into the data
control block (DCB) operands for data sets being allocated. If you code DCB
attributes in an attribute-list and you refer to the attribute-list using the USING

1-18 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

operand on the ALLOCATE command, any DCB attribute you code on the
ALLOCATE command is ignored.

� With the Storage Management Subsystem (SMS) installed and active, use the
DATACLAS operand. Your storage administrator might provide default data set
attributes through the automatic class selection (ACS) routine. Using
DATACLAS to define the data class for the data set makes specifying all the
attributes unnecessary.

In this book, “with SMS” indicates that SMS is installed and is active. “Without
SMS” indicates that SMS is not installed. Requesting space, in terms of a quantity
of logical records, is device-independent and is particularly useful in conjunction
with a system-determined BLKSIZE. This space can be obtained by omitting the
BLKSIZE operand and coding LRECL, RECFM, and DSORG, or acquiring these
from SMS DATACLAS.

Data Sets with SMS
If your installation has the Storage Management Subsystem (SMS), and it is active,
SMS allows you to more easily define new data sets by managing storage
requirements for you. The storage administrator at your installation determines the
data sets that are to be managed by SMS. The administrator writes the automatic
class selection (ACS) routine that SMS uses to assign definitions or classes to a
new data set. See SMS Classes.

SMS can manage the following types of data sets:

� Physical sequential data sets
� Partitioned data sets
� VSAM data sets
� Generation data group (GDG) data sets
� Temporary data sets
� Virtual input output (VIO) data sets.

SMS does not manage the following types of data sets:

� Tape data sets
� ISAM data sets
� Sysout data sets
� Subsystem data sets
� TSO/E data sets coming from or going to a terminal
� In-stream data sets.

 SMS Classes
With SMS, a new data set can have one or more of the following three classes:

� Data class contains the data set attributes related to the allocation of the data
set, such as LRECL, RECFM, SPACE, and TRACKS.

� Storage class contains performance and availability attributes related to the
storage occupied by the data set. A data set that has a storage class assigned
to it is defined as an “SMS-managed” data set.

� Management class contains the data set attributes related to the migration and
backup of the data set, such as performed by the Data Facility Hierarchical
Storage Manager (DFHSM), and the expiration date of the data set. A
management class can be assigned only to a data set that also has a storage
class assigned.

  Chapter 1. TSO/E Commands and Subcommands 1-19



 ALLOCATE Command  
 

All of the above classes are defined by the storage administrator at your
installation. The administrator writes the automatic class selection (ACS) routines
that SMS uses to assign the classes to a new data set.

The DATACLAS, MGMTCLAS, and STORCLAS operands of the ALLOCATE
command simplify the process of allocating a new data set. For example, assigning
the DATACLAS operand to a data set keeps you from having to specify all the
attributes of the data set on the ALLOCATE command. If you assign a storage
class (STORCLAS) to a data set, you do not have to specify a volume serial
number (VOLUME) or a unit type (UNIT).

If you do not specify DATACLAS, MGMTCLAS, and STORCLAS or the overriding
attributes (DSORG, RECFM, LRECL, and so forth), the system assumes the
defaults that the storage administrator defined through the ACS routines. The ACS
routines can either change or retain the specified data set attributes. You can
specify both a class attribute and an overriding attribute, such as DATACLAS and
SPACE, respectively. The system uses SPACE as the storage value and the
allocation attributes associated with the name specified on DATACLAS.

Note:  You must explicitly allocate a new SMS-managed data set with a disposition
of NEW.

Allocating Non-SMS-Managed Data Sets
With SMS, you can specify DATACLAS to allocate non-SMS-managed data sets.
You cannot, however, use the STORCLAS and MGMTCLAS operands. STORCLAS
and MGMTCLAS determine whether a data set is managed by SMS.

Allocating OpenMVS Data Sets
For OpenMVS, you can specify the following operands: PATH, PATHDISP,
PATHMODE, PATHOPTS, DSNTYPE(HFS), and DSNTYPE(PIPE). For more
information, see OS/390 TSO/E User's Guide.

ALLOCATE Command Syntax 

55─ ──┬ ┬─ALLOCATE─ ─────────────────────────────────────────────────────────5
 └ ┘─ALLOC────

5─ ──┬ ┬ ──┬ ┬── ──┬ ┬─DATASET─ ( ──┬ ┬─\────────── ) ──┬ ┬──────────────────── ───────5
│ ││ │└ ┘─DSNAME── │ │┌ ┐────────── └ ┘── ──┬ ┬─FILE─── (name)

 │ ││ │└ ┘───6 ┴─dsname─ └ ┘─DDNAME─
 │ │└ ┘─DUMMY───────────────────────────
 └ ┘── ──┬ ┬─FILE─── (name) ──┬ ┬───────────────────────────────── ────
 └ ┘─DDNAME─ ├ ┤── ──┬ ┬─DATASET─ ( ──┬ ┬─\────────── )
 │ │└ ┘─DSNAME── │ │┌ ┐──────────
 │ │└ ┘───6 ┴─dsname─
 └ ┘─DUMMY───────────────────────────
 

5─ ──┬ ┬───────────────────── ──┬ ┬─────────────────────────── ────────────────5
├ ┤─OLD───────────────── └ ┘──DATACLAS(data_class_name)

 ├ ┤─SHR─────────────────
 ├ ┤─MOD─────────────────
 ├ ┤─NEW─────────────────
 └ ┘ ─SYSOUT─ ──┬ ┬─────────

└ ┘──(class)

1-20 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 

5─ ──┬ ┬───────────────────────────────── ───────────────────────────────────5
└ ┘──MGMTCLAS(management_class_name)

5─ ──┬ ┬────────────────────────────── ──┬ ┬───────────────────── ─────────────5
└ ┘──STORCLAS(storage_class_name) └ ┘──VOLUME(serial_list)

5─ ──┬ ┬───────────────────────────────────────────────────── ───────────────5
└ ┘──SPACE(quantity ──┬ ┬──────────── ) ──┬ ┬──BLOCK(value) ──

└ ┘──,increment ├ ┤──AVBLOCK(value)
 ├ ┤─TRACKS─────────
 └ ┘─CYLINDERS──────
 

5─ ──┬ ┬───────────────── ──┬ ┬──────────────── ──┬ ┬────────────── ─────────────5
└ ┘──AVGREC( ──┬ ┬─U─ ) └ ┘──BLKSIZE(value) └ ┘──DIR(integer)

 ├ ┤─K─
 └ ┘─M─

5─ ──┬ ┬─────────────── ──┬ ┬───────────────────────────────── ──┬ ┬─────── ─────5
└ ┘──ALTFILE(name) └ ┘──DEST( ──┬ ┬─destination───────── ) └ ┘─REUSE─

└ ┘──destination.user_id

 ┌ ┐─NOHOLD─
5─ ──┼ ┼──────── ──┬ ┬──────────── ──┬ ┬─────────────── ──┬ ┬───────────── ────────5

└ ┘─HOLD─── └ ┘──UNIT(type) ├ ┤──UCOUNT(count) └ ┘──LABEL(type)
 └ ┘─PARALLEL──────
 

5─ ──┬ ┬───────────────────── ──┬ ┬──────────────────────── ───────────────────5
└ ┘──ACCODE(access_code) └ ┘──POSITION(sequence_no.)

5─ ──┬ ┬─────────────── ──┬ ┬───────── ──┬ ┬─────────────────── ─────────────────5
└ ┘──MAXVOL(count) └ ┘─PRIVATE─ └ ┘──VSEQ(vol_seq_no.)

5─ ──┬ ┬─────────────────────── ──┬ ┬────────────────── ───────────────────────5
├ ┤──LIKE(model_dsname) ─── └ ┘──REFDD(file_name)
└ ┘──USING(attr_list_name)

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬───────── ─────────────────5
└ ┘──SECMODEL(profile_name ──┬ ┬────────── ) └ ┘─RELEASE─

└ ┘──,GENERIC
 

5─ ──┬ ┬─────── ──┬ ┬─────────── ──┬ ┬────────────────────────── ────────────────5
└ ┘─ROUND─ ├ ┤─KEEP────── ├ ┤──BUFL(buffer_length) ─────

├ ┤─DELETE──── └ ┘──BUFNO(number_of_buffers)
 ├ ┤─CATALOG───
 └ ┘─UNCATALOG─

5─ ──┬ ┬──────────────────────────────────── ────────────────────────────────5
└ ┘──LRECL( ──┬ ┬─logical_record_length─ )

 ├ ┤─x─────────────────────
└ ┘──nnnnnK ───────────────

┌ ┐──NCP(1) ──────────────────────
5─ ──┼ ┼────────────────────────────── ──────────────────────────────────────5

└ ┘──NCP(no._of_channel_programs)

  Chapter 1. TSO/E Commands and Subcommands 1-21



 ALLOCATE Command  
 

 

 ┌ ┐────────────────────────
5─ ──┬ ┬──────── ───6 ┴┬ ┬──────────────────── ──┬ ┬──────────────── ──────────────5

├ ┤─INPUT── ├ ┤──EXPDT(year_day) ─── └ ┘──BFALN( ──┬ ┬─F─ )
└ ┘─OUTPUT─ └ ┘──RETPD(no._of_days) └ ┘─D─

5─ ──┬ ┬────────────────── ──┬ ┬────────────────── ──┬ ┬──────────────── ────────5
│ │┌ ┐─,─── └ ┘──EROPT( ──┬ ┬─ACC─ ) └ ┘──BFTEK( ──┬ ┬─S─ )
└ ┘──OPTCD( ───6 ┴┬ ┬─A─ ) ├ ┤─SKP─ ├ ┤─E─

 ├ ┤─B─ └ ┘─ABE─ ├ ┤─A─
 ├ ┤─C─ └ ┘─R─
 ├ ┤─E─
 ├ ┤─F─
 ├ ┤─H─
 ├ ┤─J─
 ├ ┤─Q─
 ├ ┤─R─
 ├ ┤─T─
 ├ ┤─W─
 └ ┘─Z─
 

5─ ──┬ ┬────────────────── ──┬ ┬─────────────── ──┬ ┬────────────────────── ─────5
│ │┌ ┐─,─── └ ┘──DIAGNS(TRACE) └ ┘──LIMCT(search_number)
└ ┘──RECFM( ───6 ┴┬ ┬─A─ )

 ├ ┤─B─
 ├ ┤─D─
 ├ ┤─F─
 ├ ┤─M─
 ├ ┤─S─
 ├ ┤─T─
 ├ ┤─U─
 └ ┘─V─

5─ ──┬ ┬─────────────────────────────────── ──┬ ┬────────────────── ───────────5
└ ┘──BUFOFF( ──┬ ┬─block_prefix_length─ ) └ ┘──DSORG( ──┬ ┬─DA── )

 └ ┘─L─────────────────── ├ ┤─DAU─
 ├ ┤─PO──
 ├ ┤─POU─
 ├ ┤─PS──
 └ ┘─PSU─
 

5─ ──┬ ┬────────────── ──┬ ┬───────────────────────────── ─────────────────────5
└ ┘──DEN( ──┬ ┬─ð─ ) │ │┌ ┐─NOCOMP─

├ ┤─1─ ├ ┤──TRTCH( ──┬ ┬─C── ──┼ ┼──────── )
 ├ ┤─2─ │ │├ ┤─E── └ ┘─COMP───
 ├ ┤─3─ │ │├ ┤─T──
 └ ┘─4─ │ │└ ┘─ET─

└ ┘──KEYLEN(bytes) ──────────────

5─ ──┬ ┬──────────────── ──┬ ┬────────────────── ──┬ ┬───────── ─────────────────5
└ ┘──KEYOFF(offset) └ ┘──RECORG( ──┬ ┬─ES─ ) └ ┘─PROTECT─

 ├ ┤─KS─
 ├ ┤─LS─
 └ ┘─RR─
 

5─ ──┬ ┬─────────────────────────────────────── ──┬ ┬───────── ────────────────5
└ ┘──COPIES(nnn ──┬ ┬────────────────────── ) ├ ┤─BURST───

 │ │┌ ┐─,─────────── └ ┘─NOBURST─
 └ ┘──, ( ───6 ┴─group_value─ )

5─ ──┬ ┬───────────────────────── ──┬ ┬────────────────────────────────── ─────5
│ │┌ ┐────────────── └ ┘──FLASH(overlay_name, ──┬ ┬──────── )
└ ┘──CHARS( ───6 ┴─table_name─ ) └ ┘─copies─

1-22 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 

5─ ──┬ ┬─────────────────────────────── ──┬ ┬──────────────────────────── ─────5
└ ┘──MODIFY(module_name ──┬ ┬────── ) └ ┘──FCB(image_id ──┬ ┬───────── )

└ ┘──,trc ├ ┤──,ALIGN ─
└ ┘──,VERIFY

5─ ──┬ ┬─────────────────── ──┬ ┬────────────────────────────────────── ───────5
└ ┘──FORMS(forms_name) │ │┌ ┐──────────────────────────

└ ┘──OUTDES( ───6 ┴─output_descriptor_name─ )
 

5─ ──┬ ┬───────────────────── ──┬ ┬───────────────────── ──────────────────────5
└ ┘──SPIN( ──┬ ┬─UNALLOC─ ) └ ┘──SEGMENT(page_count)

 └ ┘─NO──────

5─ ──┬ ┬──────────────────────── ──┬ ┬─────────────────────────────────── ─────5
└ ┘──DSNTYPE( ──┬ ┬─LIBRARY─ ) └ ┘──UCS(universal_character_set_name)

 ├ ┤─PDS─────
 ├ ┤─HFS─────
 └ ┘─PIPE────
 

5─ ──┬ ┬────────────────────────────── ──┬ ┬───────────────────── ─────────────5
└ ┘──WRITER(external_writer_name) │ │┌ ┐───────────

└ ┘──PATH( ───6 ┴/pathname )

5─ ──┬ ┬───────────────────────────────────── ───────────────────────────────5
│ │┌ ┐─KEEP─── ┌ ┐──,KEEP ──
└ ┘──PATHDISP( ──┼ ┼──────── ──┼ ┼───────── )

└ ┘─DELETE─ └ ┘──,DELETE
 

5─ ──┬ ┬─────────────────────────────────────── ─────────────────────────────5
 │ │┌ ┐─────────────────────────

└ ┘──PATHMODE( ───6 ┴─file_access_attribute─ )

5─ ──┬ ┬───────────────────────────── ──┬ ┬──────────────────────── ───────────5
 │ │┌ ┐─────────────── │ │┌ ┐─BINARY─

└ ┘──PATHOPTS( ───6 ┴─file_option─ ) └ ┘──FILEDATA( ──┴ ┴─TEXT─── )

5─ ──┬ ┬──────────────── ───────────────────────────────────────────────────5%
└ ┘──RLS( ──┬ ┬─NRI─ )

 └ ┘─CR──

ALLOCATE Command Operands
DATASET(dsname | *) | DSNAME(dsname | *)

specifies the name or a list of names of the data sets that are to be allocated. If
a list of data set names is entered, ALLOCATE allocates and concatenates
non-VSAM data sets. The data set name must include the descriptive
(rightmost) qualifier and can contain a member name in parentheses.

If you specify a password, you are not prompted for it when you open a
non-VSAM data set.

If you want to allocate a file to the terminal for input or output, only the
following operands are processed:

ALLOCATE DA(\) FILE, DDNAME, BLOCK, BLKSIZE, USING

If you allocate more than one data set to your terminal, the block size and other
data set characteristics, which default on the first usage, are also used for all
other data sets. This happens for input or output. Use the ATTRIB command
and the USING operand of ALLOCATE to control the data set characteristics.

� Data sets residing on the same physical tape volume cannot be allocated
concurrently.

  Chapter 1. TSO/E Commands and Subcommands 1-23



 ALLOCATE Command  
 

� The following items should be noted when using the concatenate function:

– The data sets specified in the list must be cataloged. You can use the
CATALOG operand of either the ALLOCATE or FREE commands to
catalog a data set.

– The maximum number of data sets that you can concatenate is 255.
This maximum applies to sequential data sets. For more information on
the maximum number of partitioned data sets that you can
concatenate, see DFSMS/MVS Using Data Sets. The data sets to be
concatenated must all have the same record format (RECFM). If you
omit the BLKSIZE operand from the concatenation statement, the
system uses the block size of the first data set. If the data sets have
different block sizes, you must specify the data set with the largest
block size first. In most situations the access method automatically
handles block size differences. For more information see DFSMS/MVS
Using Data Sets.

– The data set group is concatenated. You must free it to deconcatenate
it. The file name specified for the FILE or DDNAME operand on the
ALLOCATE command must be the same as that specified for the FILE
or DDNAME operand on the FREE command.

– The system ignores all operands except for DATASET/DSNAME,
FILE/DDNAME, and status operands. The following DCB attribute
operands are allowed when concatenating data sets:

BLKSIZE INPUT EROPT BUFOFF USING
BUFL OUTPUT BFTEK DEN
BUFNO BFALN DIAGNS TRTCH
NCP OPTCD LIMCT KEYLEN

� To allocate a member of a generation data group, specify the fully-qualified
data set name, including the generation number.

� The ALLOCATE command verifies the existence of a data set on the
specified volume(s) only when the VOLUME operand is also specified.

� When you invoke ALLOCATE to perform dsname dynamic allocation, an
“allocation environment” already exists for your request. It consists of the
allocation requests, made via your JCL or internal dynamic allocation, that
have not yet been deallocated. These resources are considered to be
existing allocations, and are considered first in the attempt to fill your
ALLOCATE requests.

If possible, ALLOCATE will use an existing allocation to satisfy your
dsname allocation request. Although some parameters can be changed if
necessary, the request and the existing allocation must match according to
several criteria before the allocation can be selected to satisfy your request.

For more information about this criteria and using an existing allocation,
see OS/390 MVS Programming: Authorized Assembler Services Guide.

DUMMY
specifies that no devices or external storage space are to be allocated to the
data set, and no disposition processing is to be performed on the data set.
Entering the DUMMY operand has the same effect as specifying NULLFILE as
the data set name on the DATASET or DSNAME operand.

1-24 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

If you want to allocate a DUMMY data set, only the following operands are
processed:

ALLOCATE DUMMY, FILE, DDNAME, BLOCK, BLKSIZE, USING

The following operands are not valid when you specify a DUMMY data set:

COPIES, DEST

FILE(name) | DDNAME(name)
specifies the name to be associated with the data set. It can contain up to eight
characters. (This name corresponds to the name on the data definition (DD)
statement in job control language and must match the ddname in the data
control block (DCB) that is associated with the data set.) For PL/I, this name is
the file name in a DECLARE statement and has the form DCL file name FILE;
for example, DCL MASTER FILE. For COBOL, this name is the external name
used in the ASSIGN TO clause. For FORTRAN, this name is the data set
reference number that identifies a data set and has the form FTxxFyyy, for
instance, FT06F002.

If you omit this operand, the system assigns an available file name (ddname)
from a data definition statement in the procedure that is invoked when you
enter the LOGON command.

Do not use special ddnames unless you want to use the facilities those names
represent to the system.

For more information on the special ddnames SYSMDUMP, SYSUDUMP,
SYSCHK, SYSCKEOV, and SYSABEND see OS/390 MVS JCL Reference.

For more information on the special ddnames JOBCAT, JOBLIB, STEPCAT,
and STEPLIB see OS/390 MVS Using the Subsystem Interface.

OLD | SHR | MOD | NEW | SYSOUT( class)

OLD indicates the data set currently exists and you require exclusive use of the
data set. The data set should be cataloged. If it is not, you must specify the
VOLUME operand. OLD data sets are retained by the system when you
free them from allocation. The DATASET or DSNAME operand is required.

SHR indicates the data set currently exists, but you do not require exclusive
use of the data set. Others can use it concurrently. ALLOCATE assumes
the data set is cataloged if the VOLUME operand is not entered. SHR data
sets are retained by the system when you free them. The DATASET or
DSNAME operand is required.

MOD indicates you want to append data to the end of the sequential data set.
Do not catalog the data set or specify VOLUME=SER when you use
DISP=MOD to create a new data set. After creation, the system changes
the disposition of the data set to NEW. If the data set does not exist, a new
data set is created and the disposition is changed to NEW. MOD data sets
are retained by the system when you free them. The DATASET or
DSNAME operand is required.

NEW (non-VSAM only, unless SMS is running) indicates the data set does not
exist and it is to be created. For new partitioned data sets, you must
specify the DIR operand. If you specify a data set name, a NEW data set is
kept and cataloged. If you do not specify a data set name, it is deleted
when you free it or log off.

  Chapter 1. TSO/E Commands and Subcommands 1-25



 ALLOCATE Command  
 

SMS will only manage data sets that were allocated with a disposition of
NEW while SMS was active.

SYSOUT[(class)] indicates the data set is to be a system output data set. An
optional subfield can be defined giving the output class of the data set.
Output data is initially directed to the job entry subsystem (JES) and can
later be transcribed to a final output device. The final output device is
associated with output class by the installation. After transcription by the job
entry subsystem, SYSOUT data sets are deleted.

The system generates names for SYSOUT data sets; therefore, you should
not specify a data set name when you allocate a SYSOUT data set. If you
do, the system ignores it.

You can specify the OUTDES operand of the ALLOCATE command or the
PRINTDS command to supply the name or names of the output descriptors
that were created by the OUTPUT JCL statements in the LOGON
procedure. Specifying OUTDES eliminates the need to supply information
related to the printer or the type of printing to be done. For more
information about establishing OUTPUT JCL statements in the LOGON
procedure, see OS/390 TSO/E Customization.

If you do not specify an output class value, the ALLOCATE command uses
the default output class, which was determined during logon for your user
ID. If no default class was set for your user ID, JES assigns an output class
according to its assignment procedures, using any referenced or default
output descriptors.

If you want to allocate a SYSOUT data set, the following operands are
used exclusively with SYSOUT:

ALLOCATE DDNAME, SYSOUT, DEST, HOLD, NOHOLD, COPIES, BURST/NOBURST,
CHARS, FLASH, MODIFY, FCB, FORMS, OUTDES, UCS, WRITER, SPIN, SEGMENT

If you do not specify OLD, SHR, MOD, NEW, or SYSOUT, a default value is
assigned or a value is prompted for, depending on the other operands
specified:

� If the LIKE operand or any space operands (SPACE, DIR, BLOCK,
BLKSIZE, AVBLOCK, TRACKS, or CYLINDERS) are specified, then the
status defaults to NEW.

� If the COPIES operand is specified, then the status defaults to SYSOUT.

� If the DATASET/DSNAME operand is entered without the LIKE operand or
any space operands, then the status defaults to OLD.

� If the LIKE operand, the DATASET/DSNAME operand, and the space
operands are all omitted, you are prompted to enter a status value.

VOLUME(serial_list)
specifies the serial number(s) of an eligible direct access volume(s) on which a
new data set is to reside or on which an old data set is located. If you specify
VOLUME for an old data set, the data set must be on the specified volume(s)
for allocation to take place. If you do not specify VOLUME, new data sets are
allocated to any eligible direct access volume. Eligibility is determined by the
UNIT information in your procedure entry in the user attribute data set (UADS).
You can specify up to 255 volume serial numbers.

1-26 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

With SMS, the VOLUME operand is not recommended. The system determines
the UNIT and VOLUME from the storage class (STORCLAS operand)
associated with the data set. If SMS does not manage the data set and you
want to allocate a data set to a specific volume, explicitly specify VOLUME.

DATACLAS( data_class_name)
with SMS, specifies the name, 1 to 8 characters, of the data class for the data
set.

Using the DATACLAS operand to define the data class makes specifying all the
attributes for a data set unnecessary. For example, the storage administrator
might provide RECFM, LRECL, RECORG, KEYLEN, and KEYOFF as part of
the data class definition. However, you can override the DATACLAS operand
by explicitly specifying the appropriate operands on the ALLOCATE command.
If you specify DATACLAS for an existing data set, SMS ignores it.

The data class defines the following data set allocation attributes:

� Data set organization (record organization or record format):
– Record organization (RECORG)
– Record format (RECFM)

� Record length (LRECL)
� Key length (KEYLEN)
� Key offset (KEYOFF)

 � Space allocation
 – AVGREC
 – SPACE

� Expiration date (EXPDT) or retention period (RETPD)
� Volume number (VOLUME)
� For VSAM data sets, the following:

– IMBED or REPLACE
 – CISIZE
 – FREESPACE
 – SHAREOPTIONS.

Note:  Without SMS, the system syntax checks and then ignores the
DATACLAS operand.

MGMTCLAS(management_class_name)
with SMS, specifies the name, 1 to 8 characters, of the management class for
a new data set. When possible, do not specify MGMTCLAS. Instead, use the
default your storage administrator provides through the ACS routines.

After the data set is allocated, attributes in the management class control the
following:

� The migration of the data set, which includes migration from primary
storage to Data Facility Hierarchical Storage Manager (DFHSM) owned
storage to archival storage.

� The backup of the data set, which includes frequency of backup, number of
versions, and retention criteria for backup versions.

Note:  Without SMS, the system syntax checks and then ignores the
MGMTCLAS operand.

STORCLAS(storage_class_name)
with SMS, specifies the name, 1 to 8 characters, of the storage class. If you
have no specific storage class requirements, do not specify STORCLAS.

  Chapter 1. TSO/E Commands and Subcommands 1-27



 ALLOCATE Command  
 

Instead, use the default your storage administrator provides through the ACS
routines.

The storage class replaces the storage attributes that are specified on the UNIT
and VOLUME operand for non-SMS-managed data sets.

An “SMS-managed data set” is defined as a data set that has a storage class
assigned. A storage class is assigned when the installation-written ACS routine
selects a storage class for the new data set.

Note:  Without SMS, the system syntax checks and then ignores the
STORCLAS operand.

SPACE(quantity,increment)
specifies the amount of space to be allocated for a new data set.

quantity specifies the number of units of space to be allocated initially for a
data set.

increment specifies the number of units of space to be added to the data set
each time the previously allocated space has been filled. You must specify
the primary quantity along with the increment value.

If you omit this operand, the system uses the IBM-supplied default value
SPACE(4,24) AVBLOCK (8192). However, your installation might have
changed the default; see OS/390 MVS Programming: Authorized Assembler
Services Guide.

With SMS, the system does not prompt you for the space. To have the system
obtain the amount of space, specify both the AVGREC and AVBLOCK
operand.

Specifying AVGREC requires you to also specify an average record length.
You can use the AVBLOCK keyword. If you do not specify BLOCK or
BLKSIZE, the system determines the optimized value. The amount of space
requested is determined as follows:

� BLOCK(value) or BLKSIZE(value): Multiply the value of the
BLOCK/BLKSIZE operand by the quantity value of the SPACE operand.
With SMS, if you do not specify BLKSIZE, the system determines an
optimum DCB block size for the new data set.

� AVBLOCK(value): Multiply the value of the AVBLOCK operand by the
quantity value of the SPACE operand. The AVBLOCK is the average
logical record length and should be coded with the AVGREC(U, K, or M)
operand.

� TRACKS: The quantity value of the SPACE operand is the number of
tracks you are requesting.

� CYLINDERS: The quantity value of the SPACE operand is the number of
cylinders you are requesting. When you specify SPACE, you must specify a
unit of space. SPACE can be specified for SYSOUT, NEW, and MOD data
sets. The SPACE parameter has no effect, if SYSOUT is coded also.

To indicate the unit of space for allocation, you must specify one of the
following:

 � BLOCK(value)
 � BLKSIZE(value)
 � AVBLOCK(value)

1-28 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 � TRACKS
 � CYLINDERS

See the information above concerning the AVGREC operand about how the
amount of space is determined for each of these keywords.

BLOCK( value)
specifies the average length of the blocks written to the data set. The maximum
block value used to determine space to be allocated is 65,535. The block value
is the unit of space used by the SPACE operand. A track or a cylinder on one
device can represent a different amount of storage (number of bytes) than a
track or a cylinder on another device. The unit of space value is determined in
one of the following ways:

� From the default value, which is SPACE (4,24) AVBLOCK (8192), when no
space operands (that is, SPACE, BLOCK, TRACKS, AVBLOCK, or
CYLINDERS) are specified.

� From the BLOCK operand, if specified.

� From the model data set, if the LIKE operand is specified and BLOCK,
TRACKS, AVBLOCK, or CYLINDERS are not specified on ALLOCATE.

� From the BLKSIZE operand, if BLOCK is not specified.

Note that the default value for space is installation dependent. Your installation
might have changed the default value.

If you do not specify BLKSIZE, the system attempts to determine an optimum
DCB block size for the new data set.

AVBLOCK( value)
specifies the average length (in bytes) of the records that are written to the
data set.

With SMS, to allocate space in a quantity of records instead of blocks, tracks,
or cylinders, use both the AVBLOCK and AVGREC operands. Do not code the
BLOCK, TRACKS, or CYLINDERS operands.

TRACKS
specifies the unit of space is to be a track.

With SMS, if you do not want to explicitly specify TRACKS, specify both the
AVGREC and AVBLOCK operands instead of the TRACKS operand.

CYLINDERS
specifies the unit of space is to be a cylinder.

With SMS, if you do not want to explicitly specify CYLINDERS, specify both the
AVGREC and AVBLOCK operands instead of the CYLINDERS operand.

AVGREC(U | K | M)
together with AVBLOCK in SMS, determines the size of the average record
length. Following are the values for AVGREC:

U Use the primary and secondary space quantities specified on the SPACE
operand.

K Multiply primary space quantity and secondary space quantity specified on
the SPACE operand by 1024 (1 K).

  Chapter 1. TSO/E Commands and Subcommands 1-29



 ALLOCATE Command  
 

M Multiply primary space quantity and secondary space quantity specified on
the SPACE operand by 1,048,576 (1 M).

For example, if you want to allocate 12 mega units of space, you can specify
SPACE(12) AVGREC(M), which results in 12 * 1,048,576 = 12,582,912.

To get a secondary space quantity, you would specify SPACE(12,1)
AVGREC(M). This specification provides 12 mega units of primary space and
1 mega unit of secondary space. The unit of space is determined by either
BLOCK, BLKSIZE, or AVBLOCK.

If AVGREC(K), AVBLOCK(128), and SPACE(5,2) are specified, the average
record length is 128, the primary quantity of records is 5K, and the second
quantity of records is 2K.

BLKSIZE( blocksize)

specifies the block size for the data set. The maximum allowable decimal value
for block size recorded in the DCB is 32,760.

With DASH, labelled tape or spooled data set, or a TSO terminal, if you do not
specify BLKSIZE, the system determines the optimum DCB block size for the
new data set unless you have undefined length records. For more information
see DFSMS/MVS Using Data Sets.

The DCB block size is determined in one of the following ways:

� If USING is specified, from the attribute list. You cannot use the BLKSIZE
operand on ALLOCATE for the block size.

� If you specify BLKSIZE on ALLOCATE, from the BLKSIZE operand.

� If LIKE is specified and BLKSIZE is not specified on ALLOCATE, from the
model data set.

With SMS, BLKSIZE is not copied from the model data set. Without SMS,
BLKSIZE is copied from the model data set.

� If neither USING, BLKSIZE, nor LIKE is specified, from the BLOCK
operand.

The block size that you specify to be recorded in the data control block (DCB)
must be consistent with the requirements of the RECFM operand. If you
specify:

� RECFM(F), then the block size must be equal to or greater than the logical
record length.

� RECFM(F,B), then the block size must be an integral multiple of the logical
record length.

� RECFM(V), then the block size must be equal to or greater than the largest
block in the data set. (Note: For unblocked variable-length records, the size
of the largest block must allow space for the four-byte block descriptor word
in addition to the largest logical record length. The logical record length
must allow space for a four-byte record descriptor word.)

� RECFM(V,B), then the block size must be equal to or greater than the
largest block in the data set. For block variable-length records, the size of
the largest block must allow space for the four-byte block descriptor word in
addition to the sum of the logical record lengths that will go into the block.

1-30 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

Each logical record length must allow space for a four-byte record
descriptor word. Because the number of logical records can vary, you must
estimate the optimum block size and the average number of records for
each block based on your knowledge of the application that requires the
I/O.

� For files allocated to the TSO/E terminal with RECFM(U) and BLKSIZE(80),
one character is truncated from the line. That character (the last byte) is
reserved for an attribute character.

� Specify BLKSIZE with the ALLOCATE command when using the LIKE
operand, because optimal BLKSIZE is not determined by the system for a
RECFM(U) data set.

The operands BLOCK, BLKSIZE, AVBLOCK, TRACKS, and CYLINDERS can
be specified for SYSOUT, NEW, or MOD data sets. The operands BLOCK or
BLKSIZE can also be specified for dummy or terminal data sets.

DIR(integer)
specifies the number of 256 byte records that are to be allocated for the
directory of a new partitioned data set. This operand must be specified if you
are allocating a new partitioned data set.

ALTFILE( name)
specifies the name associated with the SYSIN subsystem data set that is to be
allocated. It can contain up to 8 characters. This operand is used primarily in
the background.

DEST({destination | destination.user_id})
specifies a specific remote workstation or a user at a specific remote
workstation to which SYSOUT data sets are directed upon deallocation. Specify
1 to 8 characters for either the destination or the user ID.

REUSE
specifies the file name being allocated is to be freed and reallocated if it is
currently in use.

When you allocate a data set with file name or ddname, give it a disposition of
SHR or OLD. You cannot use the REUSE operand to reallocate a file from a
disposition of OLD to a disposition of SHR. However, you can first free the file
with a disposition of OLD, then reallocate it with a disposition of SHR.

HOLD | NOHOLD

HOLD specifies the data set is to be placed on a HOLD queue upon
deallocation.

NOHOLD specifies processing of the output should be determined by the
HOLD/NOHOLD specification associated with the particular SYSOUT class
specified. However, the specification associated with the SYSOUT class
can be overridden by using the NOHOLD operand on the FREE command.

UNIT(type)
specifies the type of the unit to which a file or data set is to be allocated. You
can specify an installation-defined group name, a generic device type, or a
specific device number.

  Chapter 1. TSO/E Commands and Subcommands 1-31



 ALLOCATE Command  
 

Since MVS/ESA SP 5.1 device numbers can be up to four digits long for
increased addressability of I/O devices. If the string representing a device
number is longer than three hexadecimal characters (for example, X'1ABC' or
X'3390'), it must be preceded by a slash (/). A device number may be
preceded by a slash even if it less than four characters long.

This distinguishes numeric-only device numbers from generic device types that
contain only four-character numerics.

If volume information is not supplied (volume and unit information is retrieved
from a catalog), the unit type that is coded overrides the unit type from the
catalog.

With SMS, the UNIT operand is not recommended. The system determines the
UNIT and VOLUME from the storage class associated with the data set. If the
storage administrator has set up a default unit type under SMS regardless of
whether the data set is SMS-managed, you do not have to specify UNIT.

Without SMS, if you do not specify UNIT, the default UNIT is obtained from the
user attribute data set (SYS1.UADS) or the security system being used (if
SYS1.UADS is not being used).

The default specification for the UNIT operand relates to the LOGON procedure
selected in the foreground. If the ALLOCATE command is to be executed in the
background, and the UNIT operand is not specified, the default operand value
is not obtained from the user attribute data set (SYS1.UADS) or the security
system. See the OS/390 TSO/E User's Guide, for a description of command
processing differences when executing foreground commands from a
background job.

UCOUNT(count)
specifies the maximum number of devices to be allocated, where count is a
value from 1-59.

PARALLEL
specifies one device is to be mounted for each volume specified on the
VOLUME operand or in the catalog.

LABEL( type)
specifies the kind of label processing to be done. Type can be one of the
following: SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types correspond
to the present JCL label-type values.

ACCODE(access_code)
specifies or changes the accessibility code for an ANSI output tape data set.
The purpose of the code is to protect the ANSI data set from unauthorized use.
Up to 8 characters (A-Z) are permitted in the access code, but only the first
character is validated by ANSI. The first character must be an uppercase
alphabetic character. Password protection is supported for ANSI tape data sets
under the PASSWORD/NOPWREAD options on the LABEL operand. Password
access overrides any ACCODE value if both options are specified.

POSITION(sequence_no.)
specifies the relative position (1-9999) of the data set on a multiple data set
tape. The sequence number corresponds to the data set sequence number
field of the label operand in JCL.

1-32 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

MAXVOL(count)
specifies the maximum number (1-255) of volumes a data set can reside upon.
This number corresponds to the count field on the VOLUME operand in JCL.

PRIVATE
specifies the private volume use attribute be assigned to a volume that is not
reserved or permanently in resident. This operand corresponds to the PRIVATE
keyword of the VOLUME operand in JCL.

If VOLUME and PRIVATE operands are not specified and the value specified
for MAXVOL exceeds the value specified for UCOUNT, the system does not
demount any volumes when all of the mounted volumes have been used,
causing abnormal termination of your job. If PRIVATE is specified, the system
demounts one of the volumes and mounts another volume in its place so that
processing can continue.

VSEQ(vol_seq_no.)
specifies at which volume (1-255) of a multi-volume data set processing is to
begin. This operand corresponds to the volume sequence number on the
VOLUME operand in JCL. VSEQ should only be specified when the data set is
cataloged.

LIKE(model_dsname)
specifies the name of an existing model data set whose attributes are to be
used as the attributes of the new data set being allocated. This data set must
be cataloged and must reside on a direct access device. The volume must be
mounted when you issue the ALLOCATE command.

With SMS, ALLOCATE assigns attributes to a new data set by copying all of
the following attributes from the model data set:

� Primary space quantity (SPACE)
� Secondary space quantity (SPACE)
� Space unit (BLOCK, AVBLOCK, TRACKS, CYLINDERS)
� AVGREC unit (kilobyte, megabyte)
� Directory space quantity (DIR)
� Data set organization:

– RECORG for a VSAM data set
– DSORG for a non-VSAM data set

� Logical record length (LRECL)
� Key length (KEYLEN)
� Record format (RECFM)
� Key offset (KEYOFF).

Note, however, that if SMS is active, the following attributes are not copied:

Optional services code (OPTCD) - for ISAM data sets only
Block size (BLKSIZE)
Volume sequence number (VSEQ)
Data set expiration date (EXPDT).

You can use the LIKE operand even if none of your existing data sets have the
exact attribute values you want to use for a new data set. You can override
attributes copied from a model data set by specifying the LIKE operand and the
operands corresponding to the attributes you want to override on the
ALLOCATE command.

The following items should be considered when using the LIKE operand:

  Chapter 1. TSO/E Commands and Subcommands 1-33



 ALLOCATE Command  
 

� NEW is the only valid data set status that can be specified with the LIKE
operand.

� The LIKE operand must be specified with the DATASET operand.

� Only one data set name can be specified on the DATASET/DSNAME
operand.

� With SMS, block size is not copied from the model data set. If you do not
specify the block size, the system determines the optimal block size for the
data set. However, for a RECFM(U) data set, specify the block size with
the ALLOCATE command when using the LIKE operand, because optimal
block size is not determined by the system.

The attributes copied from the model data set override attributes from the
data class.

� If the new data set to be allocated is specified with a member name,
indicating a partitioned data set (PDS), then you are prompted for directory
blocks unless that quantity is explicitly specified on the ALLOCATE
command or defaulted from the LIKE data set.

If the new data set name is specified with a member name, but the model
data set is sequential and you have not explicitly specified the quantity for
directory blocks, then you are prompted for directory blocks.

� If you specify the directory value as zero and the model data set is a
partitioned data set, then the new data set is allocated as a sequential data
set.

� Unless you explicitly code the SPACE operand for the new data set, the
system determines the space to be allocated for the new data set by
adding up the space allocated in the first three extents of the model data
set. Therefore, the space allocated for the new data set will generally not
match the space that was specified for the model data set. Also, the
system allocates the space for the new data set in tracks.

Note that the LIKE, REFDD, and USING operands are mutually exclusive.

USING(attr_list_name)
specifies the name of a list of attributes that you want to have assigned to the
data set you are allocating. The attributes in the list correspond to, and are
used for, data control block (DCB) operands. (Note to users familiar with batch
processing: These DCB operands are the same as those normally specified by
using JCL and data management macro instructions.)

An attribute list must be stored in the system before you use this operand. You
can build and name an attribute list by using the ATTRIB command. The
ATTRIB command allocates a file with the name being the (attr_list_name)
specified in the ATTRIB command. The name that you specify for the list when
you use the ATTRIB command is the name that you must specify for this
USING(attr_list_name) operand.

USING, LIKE, and REFDD are mutually exclusive.

Note:  You cannot specify the DCB operands (operands that are also on the
ATTRIB command) with the USING operand.

1-34 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

REFDD(file_name)
with SMS, specifies the ddname (in the DCB) of an existing data set whose
attributes are copied to the new data set. The following attributes are copied to
the new data set:

� Data set organization (record organization or record format):
– Record organization (RECORG)
– Record format (RECFM)

� Directory space quantity (DIR)
� Record length (LRECL)
� Key length (KEYLEN)
� Key offset (KEYOFF)

 � Space allocation:
 – AVGREC
 – SPACE

When you allocate a data set with REFDD, specify a disposition of NEW. For
example,

alloc da('user1.my.text') fi(dd1) shr reu
alloc f(dd2) da('user2.your.data') new refdd(dd1)

USER1.MY.TEXT is an existing and cataloged data set. Note that the block
size (BLKSIZE) is not copied to the new data set USER2.YOUR.DATA.

The retention period (RETPD) or expiration date (EXPDT) is not copied to the
new data set.

The LIKE, REFDD, and USING operands are mutually exclusive.

Note:  Without SMS, the system syntax checks and ignores the REFDD
operand.

SECMODEL(profile_name[,GENERIC])
specifies the name of an existing RACF data set profile that is to be copied to
the discrete profile. Use SECMODEL when you want a different RACF data set
profile than the default profile selected by RACF, or when there is no default
profile. The model profile can be a:

� RACF model profile
� RACF discrete data set profile
� RACF generic data set profile.

GENERIC identifies that the profile name is a generic data set profile. For
example, if you want to create a generic data set profile, specify
SECMODEL(profile_name,GENERIC).

The following information from the RACF data set profile is copied to the
discrete data set profile of the new data set:

� OWNER indicates the user or group assigned as the owner of the data set
profile.

� ID indicates the access list of users or groups authorized to access the
data set.

� UACC indicates the universal access authority associated with the data set.

� AUDIT/GLOBALAUDIT indicates which access attempts are logged.

� ERASE indicates that the data set is to be erased when it is deleted
(scratched).

  Chapter 1. TSO/E Commands and Subcommands 1-35



 ALLOCATE Command  
 

� LEVEL indicates the installation-defined level indicator.

� DATA indicates installation-defined information.

� WARNING indicates that an unauthorized access causes RACF to issue a
warning message, but allows access to the data set.

� SECLEVEL indicates the name of an installation-defined security level.

Note:  Without SMS, the system syntax checks and ignores the SECMODEL
operand.

For more information about RACF, see OS/390 Security Server (RACF)
Command Language Reference.

RELEASE
specifies unused space is to be deleted when the data set is closed.

If you use RELEASE for a new data set with the BLOCK or BLKSIZE operand,
then you must also use the SPACE operand.

ROUND
specifies the allocated space be equal to one or more cylinders. This operand
should be specified only when space is requested in units of blocks. This
operand corresponds to the ROUND operand on the SPACE parameter in JCL.

KEEP | DELETE | CATALOG | UNCATALOG

KEEP 1 specifies the data set is to be retained by the system after it is freed.

DELETE 1 specifies the data set is to be deleted after it is freed.

CATALOG 1 specifies the data set is to be retained by the system in a catalog
after it is freed.

UNCATALOG 1 specifies the data set is to be removed from the catalog after it
is freed. If you do not want the system to retain the data set, you must also
specify the DELETE operand.

BUFL(buffer_length)
specifies the length, in bytes, of each buffer in the buffer pool. Substitute a
decimal number for buffer_length. The number must not exceed 32,760.

If you omit this operand and the system acquires buffers automatically, the
BLKSIZE and KEYLEN operands are used to supply the information needed to
establish buffer length.

BUFNO(number_of_buffers)
specifies the number of buffers to be assigned for data control blocks.
Substitute a decimal number for number_of_buffers. The number must never
exceed 255, and you can be limited to a smaller number of buffers depending
on the limit established when the operating system was generated. The
following table shows the condition that requires you to include this operand.

When you use one of the following methods of obtaining the buffer pool, then:

1 A command processor can modify the final disposition of this operand.

1-36 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

LRECL({ logical_record_length,  x, nnnnnK})
specifies the length, in bytes, of the largest logical record in the data set. You
must specify this operand for data sets that consist of either fixed-length or
variable-length records.

With SMS, you can use the DATACLAS operand in place of LRECL to specify
the logical record length. If you specify LRECL, the system determines the
block size.

If the data set contains undefined-length records, omit LRECL.

The logical record length must be consistent with the requirements of the
RECFM operand and must not exceed the block size (BLKSIZE operand)
except for variable-length spanned records. If you specify:

� RECFM(V) or RECFM(V B), then the logical record length is the sum of the
length of the actual data fields plus four bytes for a record descriptor word.

� RECFM(F) or RECFM(F B), then the logical record length is the length of
the actual data fields.

� RECFM(U), then you should omit the LRECL operand.

LRECL(nnnnnK) allows users of ANSI extended logical records and QSAM
“locate mode” users to specify a K multiplier on the LRECL operand. nnnnn
can be a number within 1-16,384. The K indicates that the value can be
multiplied by one thousand and twenty-four (1024).

For variable-length spanned records (VS or VBS) processed by QSAM (locate
mode) or BSAM, specify LRECL (X) when the logical record exceeds 32756
bytes.

NCP(number_of_channel_programs)
specifies the maximum number of READ or WRITE macro instructions allowed
before a CHECK macro instruction is issued. The maximum number must not
exceed 255 and must be less than 255 if a lower limit was established when
the operating system was generated. If you are using chained scheduling, you
must specify an NCP value greater than 1. If you omit the NCP operand, the
default value is 1.

INPUT
specifies a BSAM data set opened for INOUT or a BDAM data set opened for
UPDAT is to be processed for input only. This operand overrides the INOUT
(BSAM) option or UPDAT (BDAM) option in the OPEN macro instruction to
INPUT.

OUTPUT
specifies a BSAM data set opened for OUTIN or OUTINX is to be processed
for output only. This operand overrides the OUTIN option in the OPEN macro
instruction to OUTPUT or the OUTINX option in the OPEN macro instruction to
EXTEND.

(1) BUILD macro instruction (1) You must specify BUFNO.
(2) GETPOOL macro instruction (2) The system uses the number that you

specify for GETPOOL.
(3) Automatically with BPAM or BSAM (3) You must specify BUFNO.
(4) Automatically with QSAM (4) You may omit BUFNO and accept two

buffers.

  Chapter 1. TSO/E Commands and Subcommands 1-37



 ALLOCATE Command  
 

EXPDT(year_day)
specifies the data set expiration date. Specify the year and day in one of two
forms:

1. yyddd, where yy is the last two-digit number for the year and ddd is the
three-digit number for the day of the year. The maximum value for the year
is 99 (for 1999). The minimum value for the day is 000 and the maximum
value is 366.

2. yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the
three-digit number for the day of the year. The slash is required. The
maximum value for the year is 2155. The minimum value for the day is 001
and the maximum value is 366.

If you specify 1999/365 or 1999/366, the system retains your data sets
permanently. Do not use those dates as an expiration date. Use them as
“no scratch” dates only.

EXPDT is mutually exclusive with RETPD.

With SMS, the expiration date might have been defined by the DATACLAS
operand.

RETPD(number_of_days)
specifies the data set retention period in days. The value can be a one- to
four-digit decimal number.

RETPD is mutually exclusive with EXPDT.

BFALN({F | D })
specifies the boundary alignment of each buffer as follows:

F Each buffer starts on a fullword boundary that might not be a doubleword
boundary.

D Each buffer starts on a doubleword boundary.

If you do not specify this operand, the system defaults to a doubleword
boundary.

OPTCD(A, B, C, E, F, H, J, Q, R, T, W and/or Z)
specifies the following optional services that you want the system to perform.
For a detailed discussion of these services, see the OPTCD subparameter of
the DCB parameter in OS/390 MVS JCL Reference.

A specifies the actual device addresses be presented in READ and WRITE
macro instructions.

B specifies the end-of-file (EOF) recognition be disregarded for tapes.

C specifies the use of chained scheduling.

E requests an extended search for block or available space.

F specifies feedback from a READ or WRITE macro instruction should return
the device address in the form it is presented to the control program.

H requests the system to check for and bypass.

1-38 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

J specifies the character after the carriage control character is the table
reference character for that line. The table reference character tells TSO/E
which character arrangement table to select when printing the line.

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or
from EBCDIC to ASCII.

R requests the use of relative block addressing.

T requests the use of the user totaling facility.

W requests the system to perform a validity check when data is written on a
direct access device.

Z requests the control program to shorten its normal error recovery procedure
for input on magnetic tape.

You can request any or all of the services by combining the values for this
operand. You can combine the characters in any sequence, being sure to
separate them with blanks or commas.

EROPT({ACC | SKP | ABE})
specifies the option you want to execute if an error occurs when a record is
read or written. The options are:

ACC to accept the block of records in which the error was found.

SKP to skip the block of records in which the error was found.

ABE  to end the task abnormally.

BFTEK({S | E | A | R})
specifies the type of buffering that you want the system to use. The types that
you can specify are:

S Simple buffering
E Exchange buffering
A Automatic record area buffering
R Record buffering.

RECFM(A, B, D, F, M, S, T, U, and/or V)
specifies the format and characteristics of the records in the data set. The
format and characteristics must be completely described by one source only. If
they are not available from any source, the default is an undefined-length
record. For a discussion of the formats and characteristics of the RECFM
subparameter of the DCB parameter, see OS/390 MVS JCL Reference.

Use the following values with the RECFM operand:

A indicates the record contains ASCII printer control characters.

B indicates the records are blocked.

D indicates variable-length ASCII records.

F indicates the records are of fixed-length.

M indicates the records contain machine code control characters.

  Chapter 1. TSO/E Commands and Subcommands 1-39



 ALLOCATE Command  
 

S indicates, for fixed-length records, the records are written as standard
blocks (there must be no truncated blocks or unfilled tracks except for the
last block or track). For variable-length records, a record might span more
than one block. Exchange buffering, BFTEK(E), must not be used.

T indicates the records can be written onto overflow tracks, if required.
Exchange buffering, BFTEK(E), or chained scheduling, OPTCD(C), cannot
be used.

U indicates the records are of undefined-length.

V indicates the records are of variable-length.

You can specify one or more values for this operand; at least one is required. If
you use more than one value, you must separate each value with a comma or
a space.

| With SMS, the record format for a new data set might have been defined by
| the DATACLAS operand.

| RECFM is mutually exclusive with RECORG.

DIAGNS(TRACE)
specifies the Open/Close/EOV trace option that gives a module-by-module
trace of the Open/Close/EOV work area and your DCB.

LIMCT(search_number)
specifies the number of blocks or tracks to be searched for a block or available
space. The number must not exceed 32,760.

BUFOFF({block_prefix_length | L})
specifies the buffer offset. The block prefix length must not exceed 99. L
specifies the block prefix field is four bytes long and contains the block length.

DSORG({DA | DAU | PO | POU | PS | PSU})
specifies the data set organization as follows:

DA Direct access
DAU Direct access unmovable
PO Partitioned organization
POU Partitioned organization unmovable
PS Physical sequential
PSU Physical sequential unmovable

When you allocate a new data set and you do not specify the DSORG
operand, DSORG defaults to partitioned organization (PO) if you specify a
non-zero value for the DIR operand. If you do not specify a value in the DIR
operand, the system assumes you want a physical sequential (PS) data set.
Note that the system does not store this default DSORG information into the
data set until a program opens and writes to the data set. For more information
about data set organization, see OS/390 MVS Programming: Authorized
Assembler Services Guide.

DEN({0 | 1 | 2 | 3 | 4})
specifies the magnetic tape density as follows:

0 200 bpi/7 track
1 556 bpi/7 track
2 800 bpi/7 and 9 track
3 1600 bpi/9 track

1-40 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

4 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent)

TRTCH({C | E | T | ET}, {COMP | NOCOMP })
specifies the recording technique for 7 track tape as follows:

C Data conversion with odd parity (the default) and no translation (the
default).

E Even parity with no translation (the default) and no conversion (the default).

T Odd parity (the default) and no conversion (the default). BCD to EBCDIC
translation when reading and EBCDIC to BCD translation when writing.

ET Even parity, and no conversion (the default). BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing.

COMP | NOCOMP specifies whether data sets are to be compressed to save
space.

This operand is mutually exclusive with KEYLEN.

KEYLEN(bytes)
specifies the length in bytes of each of the keys used to locate blocks of
records in the data set when the data set resides on a direct access device.
The key length must not exceed 255 bytes for a record organization of physical
sequential (PS) or partitioned (PO).

If an existing data set has standard labels, you can omit this operand and let
the system retrieve the key length from the standard label. If a key length is not
supplied by any source before you issue an OPEN macro instruction, a length
of zero (no keys) is assumed. This operand is mutually exclusive with TRTCH.

With SMS, the key length might have been defined by the DATACLAS
operand. If you want to override it, explicitly specify KEYLEN. The number of
bytes is as follows:

1 to 255 for a record organization of key-sequenced (RECORG(KS)).
0 to 255 for a record organization of physical sequential (PS) or partitioned
(PO).

KEYOFF(offset)
with SMS, specifies the key position (offset) of the first byte of the key in each
record. If you want to specify key offset or override the key offset defined in the
data class (DATACLAS) of the data set, use KEYOFF. Specify KEYOFF only
for a VSAM key-sequenced data set (RECORG(KS)).

Note:  Without SMS, the system syntax checks and then ignores the KEYOFF
operand.

RECORG({ES | KS | LS | RR})
with SMS, specifies the organization of the records in a new VSAM data set. If
you want to override the record organization defined in the data class
(DATACLAS) of the data set, use RECORG. The types that you can specify
are:

ES specifies a VSAM entry-sequenced data set.
KS specifies a VSAM key-sequenced data set.
LS specifies a VSAM linear space data set.

  Chapter 1. TSO/E Commands and Subcommands 1-41



 ALLOCATE Command  
 

RR specifies a VSAM relative record data set.

If you are using DATACLAS in place of RECORG, explicitly specify valid
LRECL and KEYLEN values for a VSAM key-sequenced data set
(RECORG(KS)).

If you do not specify RECORG, SMS assumes a physical sequential (PS) or
partitioned (PO) data set.

RECORG is mutually exclusive with RECFM.

Note:  Without SMS, the system syntax checks and then ignores the RECORG
operand.

PROTECT
specifies the DASD data set or the first data set on a tape volume is to be
RACF protected.

� For a new permanent DASD data set, the specified status must be NEW or
MOD, treated as NEW, and the disposition must be either KEEP,
CATALOG, or UNCATALOG. With SMS, SECMODEL overrides PROTECT.

� For a tape volume, the tape must have an SL, SUL, AL, AUL, or NSL label.
The file sequence number and volume sequence number must be one
(except for NSL), and PRIVATE must be assigned as the tape volume use
attribute.

The PROTECT operand is not valid if a data set name is not specified or if the
FCB operand or status other than NEW or MOD is specified.

COPIES((number)[,group_value])
specifies the total number of copies of the data set to be printed, with an
optional specification on the IBM 3800 printer as to how those copies can be
grouped. Number is a required operand. The number of copies which can be
requested is subject to an installation limit. You can specify up to 8 group
values. For more information, see OS/390 MVS JCL Reference.

� Do not specify the COPIES operand with the DATASET operand.

� SYSOUT is the only valid data set status that you can specify with the
COPIES operand.

BURST | NOBURST
specifies a request for the burster-trimmer-stacker on 3800 output. SYSOUT is
the only valid data set status that you can specify with the BURST operand.

CHARS(table_name)
specifies a request for name or names of character arrangement tables (fonts)
for printing a data set with the 3800 printer. You can specify up to 4 table
names. The choice of fonts available is determined by your installation at
system generation time. SYSOUT is the only valid data set status that you can
specify with the CHARS operand.

FLASH(overlay_name[,copies])
specifies the name of a forms overlay, which can be used by the 3800 Printing
Subsystem. The overlay is “flashed” on a form or other printed information over
each page of output. The forms overlay_name must be 1 to 4 alphabetic,
numeric, or special characters (#, $, or @). Optionally, you can specify the
number of copies on which the overlay is to be printed. The count can range

1-42 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

from 0 to 255. To flash no copies, specify a count of zero. SYSOUT is the only
valid data set status that you can specify with the FLASH operand.

MODIFY(module_name[,trc])
specifies the name of a copy modification module, which is loaded into the
3800 Printing Subsystem. This module contains predefined data such as
legends, column headers, or blanks, and specifies where and on which copies
the data is to be printed. TSO/E defines and stores the module in
SYS1.IMAGELIB. The module_name can contain 1 to 4 alphanumeric or
special characters (#, $, or @).

MODIFY is used with FLASH so that individual pages can be tailored with the
MODIFY operand from the basic form of pages created by the FLASH operand.

TRC corresponds to the character set(s) specified on CHARS (0-3). If TRC is
not specified, a default character set is used. If TRC is used, CHARS must also
be specified.

SYSOUT is the only valid data set status that you can specify with the MODIFY
operand.

FCB(image_id [ | VERIFY | ALIGN])
specifies a forms control buffer (FCB) that is used to store vertical formatting
information for printing, each position corresponding to a line on the form. The
buffer determines the operations of the printer. It specifies the forms control
image to be used to print an output data set on an IBM 3800 printer or 3211
printer. The FCB also specifies the data protection image to be used for the
IBM 3525 card punch. The FCB operand is ignored for SYSOUT data sets on
the 3525 card punch.

For further information on the forms control buffer, see OS/390 MVS
Programming: Authorized Assembler Services Guide, Programming Support for
the IBM 3505 Card Reader and IBM 3525 Card Punch or IBM 3800 Printing
Subsystem Programmer's Guide.

image_id specifies 1-to-4 alphanumeric or special characters (#, $, or @) that
identify the image to be loaded into the forms control buffer (FCB).

� For a 3211 printer, IBM provides two standard FCB images, STD1 and
STD2. STD1 specifies that 6 lines per inch are to be printed on an 8.5
inch form. STD2 specifies that 6 lines per inch are to be printed on a
11 inch form.

� For a 3800 Printing Subsystem, IBM provides another standard FCB
image, STD3, which specifies output of 80 lines per page at 8 lines per
inch on 11 inch long paper.

STD1 and STD2 (standard FCB images) should not be used as image_ids
for the SYSOUT data set unless established by your installation at system
generation time.

If the image_id information is incorrectly coded, the default for the 3211
printer is the image currently in the buffer. If there is no image in the buffer,
the operator is requested to specify an image. For the 3800 printer, the
machine default is 6 lines per inch for any size form that is on the printer.

ALIGN  specifies the operator should check the alignment of the printer forms
before the data set is printed. The ALIGN subparameter is ignored for
SYSOUT data sets and is not used by the 3800 printer.

  Chapter 1. TSO/E Commands and Subcommands 1-43



 ALLOCATE Command  
 

VERIFY specifies the operator should verify that the image displayed on the
printer is the desired one. The VERIFY subparameter is ignored for
SYSOUT data sets.

FORMS(forms_name)
specifies the name of the form on which the output from the SYSOUT data set
is to be printed. Specify 1-to-4 alphanumeric or special characters (#, $, or @)
for the forms name. SYSOUT is the only valid data set status that you can
specify with the FORMS operand.

OUTDES(output_descriptor_name{,...})
specifies a list of installation-defined output descriptors that were created by
OUTPUT JCL statements in the LOGON procedure or by the TSO/E OUTDES
command. Specifying the OUTDES operand eliminates the need to supply
information related to the printer or the type of printing to be done.

You can specify up to 128 output descriptors associated with the SYSOUT data
set. Specify 1-to-8 alphanumeric characters for the output descriptor name. The
first character must be alphabetic or one of the special characters (#, $, or @).
SYSOUT is the only valid data set status that you can specify with the
OUTDES operand.

For information about how to create output descriptors using OUTPUT JCL
statements in the LOGON procedure, see OS/390 TSO/E Customization. See
“OUTDES Command” on page 1-209 for information about using the TSO/E
OUTDES command to dynamically create output descriptors.

SPIN(UNALLOC | NO )
specifies when the system should make the SYSOUT data set available for
printing.

UNALLOC  specifies that the system should make the SYSOUT data set
available for printing immediately after deallocation.

NO specifies that the system should make the SYSOUT data set available for
printing at the end of the step.

If the SPIN keyword is not specified, ALLOCATE assumes SPIN=NO.

When the SPIN keyword is specified, you must also specify UNALLOC or NO.
If you specify a parameter that is not UNALLOC or NO, or the parameter is
missing, ALLOCATE will prompt you to specify the parameter.

The SPIN keyword specified on the FREE command overrides the SPIN
keyword specified on the ALLOCATE command.

If the SEGMENT keyword is specified on the ALLOCATE command, the system
prints the SYSOUT data set regardless of the SPIN specification on either the
ALLOCATE command or FREE command.

SEGMENT(page_count)
specifies the number of pages written to the SYSOUT data set before spinoff
processing begins. SEGMENT can be a number, 1-99999. You can use
SEGMENT to allow part of a job's output to be printed while the job is still
running, or to allow multiple segments of a job's output to print simultaneously
on multiple printers. See OS/390 MVS JCL Reference, for more information on
the SEGMENT keyword.

1-44 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

DSNTYPE(LIBRARY | PDS | HFS | PIPE)
specifies a new partitioned data set (PDS) or a new partitioned data set
extended (PDSE). A PDSE is similar to a PDS; however, a PDSE can contain
only data. A PDSE cannot contain load modules, and it must be an
SMS-managed data set.

LIBRARY  specifies a partitioned data set extended (PDSE). A PDSE can
contain data-only members.

PDS specifies a partitioned data set (PDS). A PDS can contain data and load
module members.

HFS specifies a hierarchical file system (HFS).

PIPE specifies a first-in first-out (FIFO) special file, which is also called a
named pipe.

If you omit DSNTYPE, the type of data set is determined by other data set
attributes, the data class for the data set, or an installation default.

When you specify DSNTYPE, you must also specify LIBRARY or PDS. If you
specify another value or omit LIBRARY or PDS, ALLOCATE prompts you to
specify the parameter.

If SMS is not installed or is not active, the system checks the DSNTYPE syntax
and then ignores the parameter.

Before you define a PDSE, check with your storage administrator to ensure that
SMS is able to manage the data set and assign the PDSE to a storage class.

UCS(universal_character_set_name)
specifies the universal character set name or font name to be used when
printing SYSOUT data sets. The UCS name can contain up to 4 alphanumeric
characters. If you do not specify the CHARS operand, the system uses the
UCS operand as the default. SYSOUT is the only valid data set status that you
can specify with the UCS operand.

WRITER(external_writer_name)
| specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the system uses it instead of JES2 or JES3.
The writer name can contain 1 to 8 alphanumeric or special characters #, $, or
@. SYSOUT is the only valid data set status that you can specify with the
WRITER operand.

PATH(pathname)
identifies a hierarchical file system (HFS) file.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is
/name1/name2/.../namen. 

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash. The pathname can be 2 to 250 characters, including the
initial slash.

Consists of printable characters from X'40' to X'FE'. A filename can contain
characters outside this range but these characters cannot be specified in the
JCL. Enclose the pathname in apostrophes if it contains a character other
than: 

  Chapter 1. TSO/E Commands and Subcommands 1-45



 ALLOCATE Command  
 

Uppercase letters Numbers
Special characters (#,$, or @) Slash (/)
Asterisk (\) Plus (+)
Hyphen (-) Period (.)
Ampersand (&) 

| A pathname is case sensitive. Thus, '/usr/joe' and /usr/JOE define two different
files.

If you specify either OCREAT alone, or OCREAT and OEXCL, on the
PATHOPTS operand, and if the file does not exist, then MVS performs an
open() function. The options from PATHOPTS, the pathname from the PATH
operand, and the options from PATHMODE (if specified) are used in the
open(). MVS uses the close() function to close the file before the application
program receives control.

For status group options other than OCREAT and OEXCL, the description in
this book assumes that the application passes the operands to the open()
function without modification. That is, this application uses dynamic allocation
information retrieval (the DYNALLOC macro) to retrieve the subparameters
specified for PATHOPTS and passes the subparameters to the open()
function. The application program can ignore or modify the information specified
in the JCL or on the ALLOCATE command.

On the ALLOCATE command, you can code the following operands with the
PATH operand: DSNTYPE, DUMMY, FILEDATA, PATHDISP, PATHMODE,
PATHOPTS.

Note:  The DFP OPEN macro is not supported for DD statements which
specify the PATH keyword. Programs designed to use such DD
statements must either:

� Use dynamic allocation information retrieval to obtain the
information specified for PATH, PATHOPTS and PATHMODE, and
pass it to the open() callable service. See OS/390 UNIX System
Services Programming: Assembler Callable Services Reference, for
details for using open().

� Use the C/370 fopen(//dd: ) function. fopen() handles the
differences between DD statements with PATH and DSN specified.
See AD/Cycle C/370 Library Reference for details on using fopen().

PATHDISP(normal_disposition,abnormal_disposition)
specifies the disposition of an HFS file upon normal and abnormal (conditional)
TSO/E session termination.

normal_disposition
indicates the disposition of the HFS file upon normal TSO/E session
termination. Valid values are:

KEEP specifies that the file should be kept.
DELETE specifies that the file should be deleted.

abnormal_disposition
indicates the disposition of the OpenEdition file upon abnormal (conditional)
TSO/E session termination. Valid values are:

KEEP specifies that the file should be kept.

1-46 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

DELETE specifies that the file should be deleted.

PATHMODE(file_access_attribute)
specifies the file access attributes when the PATHOPTS operand also specifies
OCREAT.

If you specify either OCREAT alone, or OCREAT and OEXCL, on the
PATHOPTS operand, and if the file does not exist, then MVS performs an
open() function. The options from PATHOPTS, the pathname from the PATH
operand, and the options from PATHMODE (if specified) are used in the
open(). MVS uses the close() function to close the file before the application
program receives control.

For status group options other than OCREAT and OEXCL, the description in
this book assumes that the application passes the operands to the open()
function without modification. That is, this application uses dynamic allocation
information retrieval (the DYNALLOC macro) to retrieve the subparameters
specified for PATHOPTS and passes the subparameters to the open()
function. The application program can ignore or modify the information specified
in the JCL or on the ALLOCATE command.

You can specify up to 14 file access attributes; separate each with a comma.
The system treats duplicate specifications as a single specification.

Subparameter Definition:

SIRUSR specifies permission for the file owner to read the file.

SIWUSR specifies permission for the file owner to write the file.

SIXUSR specifies permission for the file owner to search, if the file is a
directory, or to execute, for any other file.

SIRWXU specifies permission for the file owner to read, write, and search, if
the file is a directory, or to read, write, and execute, for any other file.

This value is the bit inclusive OR of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP specifies permission for users in the file group class to read the file.

SIWGRP specifies permission for users in the file group class to write the file.

SIXGRP specifies permission for users in the file group class to search, if the
file is a directory, or to execute, for any other file.

SIRWXG specifies permission for users in the file group class to read, write,
and search, if the file is a directory, or to read, write, and execute, for any
other file.

This value is the bit inclusive OR of SIRGRP, SIWGRP, and SIXGRP.

SIROTH specifies permission for the users in the file other class to read the
file.

SIWOTH specifies permission for users in the file other class to write the file.

SIXOTH specifies permission for users in the file other class to search, if the
file is a directory, or to execute, for any other file.

SIRWXO specifies permission for users in the file other class to read, write, and
search, if the file is a directory, or to read, write, and execute, for any other
file.

  Chapter 1. TSO/E Commands and Subcommands 1-47



 ALLOCATE Command  
 

This value is the bit inclusive OR of SIROTH, SIWOTH, and SIXOTH.

SISUID specifies that the system set the user ID of the process to be the same
as the user ID of the file owner when the file is run as a program.

SISGID specifies that the system set the group ID of the process to be the
same as the group ID of the file owner when the file is run as a program.
The group ID is taken from the directory in which the file resides.

When creating a new HFS file, if you do not code a PATHMODE operand on a
DD statement with a PATH operand, the system sets the permissions to zero,
which prevents access by all users. If the HFS file already exists, PATHMODE
is checked for syntax but ignored. The permission bits are left as they are set.

PATHOPTS(file_options)
specifies the file access and status used when accessing a file specified on the
PATH operand. You can specify up to 7 file options; separate each with a
comma. The system treats duplicate specifications as a single specification.

Access Group: Status Group:
------------ ------------
(choose only 1) (choose up to 6)
ORDONLY OAPPEND
OWRONLY OCREAT
ORDWR OEXCL
 ONOCTTY
 ONONBLOCK
 OTRUNC

Note:  If you specify more than one Access Group, the system ignores them
and uses ORDWR.

If you specify either OCREAT alone, or OCREAT and OEXCL, on the
PATHOPTS operand, and if the file does not exist, then MVS performs an
open() function. The options from PATHOPTS, the pathname from the PATH
operand, and the options from PATHMODE (if specified) are used in the
open(). MVS uses the close() function to close the file before the application
program receives control.

For status group options other than OCREAT and OEXCL, the description in
this book assumes that the application passes the operands to the open()
function without modification. That is, this application uses dynamic allocation
information retrieval (the DYNALLOC macro) to retrieve the subparameters
specified for PATHOPTS and passes the subparameters to the open()
function. The application program can ignore or modify the information specified
in the JCL or on the ALLOCATE command.

Sub-parameter definition:

ORDONLY specifies this access group so that the program can open the file
for reading.

OWRONLY specifies that the program can open the file for writing.

ORDWR specifies that the program can open the file for reading and writing.
Do not use this option for a FIFO special file.

OAPPEND specifies that the system sets the file offset to the end of the file
before each write, so that data is written at the end of the existing file.

1-48 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

OCREAT specifies that the system is to create the file. If the file already exists,
the operation fails if OEXCL is specified, and opens the existing file if
OEXCL is not specified.

OEXCL specifies that, if the file does not exist, the system is to create it. If the
file already exists, open() fails. Note that the system ignores OEXCL if
OCREAT is not also specified.

ONOCTTY specifies that, if the PATH operand identifies a terminal device,
open() does not also make the terminal device the controlling terminal of
the process and the session.

ONONBLOCK  specifies the following, depending on the type of file:

� For a FIFO special file with ORDONLY option set:

ONONBLOCK specifies read-only opening of the file. If ONONBLOCK
is not specified, the read-only open() blocks until a process opens the
file for writing.

� For a FIFO special file with OWRONLY option set:

ONONBLOCK specifies that the system immediately process a request
for a write-only open() of the file, if a process has already opened the
file for reading. If the file is not open for reading, the system returns an
error. If ONONBLOCK is not specified, the write-only open() blocks
until a process opens the file for reading.

� For a character special file that supports a nonblocking open():

ONONBLOCK specifies that the system immediately returns if it cannot
open a file because the device is not ready or available. If
ONONBLOCK is not specified, the open() blocks until the device is
ready or available.

Specifications of ONONBLOCK has no effect on other file types.

OSYNC specifies that the system is to move data from buffer storage to
permanent storage before returning control from a callable service that
performs a write.

OTRUNC specifies that the system is to truncate the file to zero length if all of
the following are true:

� The file specified on the PATH operand exists.
� The file is a regular file.
� The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect
on FIFO special files or directories.

FILEDATA(BINARY  | TEXT)
controls the data conversion method, performed by the DFSMS/MVS Network
File System server, when accessing MVS HFS files from workstations on a
network. The FILEDATA operand on the ALLOCATE command does not
specify the type of data, but rather the conversion between EBCDIC and ASCII
when exchanging the data between an MVS host and a client workstation.

  Chapter 1. TSO/E Commands and Subcommands 1-49



 ALLOCATE Command  
 

BINARY  specifies that data is to be processed as is, except possibly for
conversion between record-oriented and byte-stream-oriented.

If you do not code the FILEDATA operand, the system assigns a default
value of BINARY to the HFS file.

TEXT specifies that data is to be EBCDIC on MVS and ASCII on the
workstation.

See the appropriate DFSMS/MVS publications for more details about the
Network File System server and its conversion methods.

You need to code the PATH operand together with the FILEDATA operand.

You can code the FILEDATA operand together with the following ALLOCATE
operands: BLKSIZE, BUFNO, DSNTYPE, DUMMY, LRECL, NCP, PATHDISP,
PATHMODE, PATHOPTS, RECFM. If the open() callable service or the C/370
fopen(//dd: ) function (as described under the PATH operand) is later used,
the open fails.

RLS(NRI | CR)
specifies the level of record sharing, or sharing protocol, for a VSAM data set in
a sysplex. See DFSMS/MVS Using Data Sets, for a description of sharing
protocols and to determine whether your application can run in a sharing
environment without modification.

NRI specifies no read integrity (NRI). An application can read uncommitted
changes to a data set made by another application.

CR specifies consistent read (CR). An application can read only committed
changes to a data set made by another application. An application might
require changes if it attempts to read changes to a data set that was
allocated with a specification of CR.

Do not use any of the following ALLOCATE operands with RLS: BURST,
CHARS, COPIES, DDNAME, DSNTYPE, FLASH, MODIFY, OUTPUT, PATH,
PATHOPTS, PATHMODE, PATHDISP, SEGMENT, SPIN, SYSOUT, UCS.

ALLOCATE Command Return Codes
Figure 1-3. ALLOCATE Command Return Codes

0 Allocation successful.

12 Allocation unsuccessful. An error message has been issued.

ALLOCATE Command Examples

 Example 1
Operation:  Allocate your terminal as a temporary input data set.

allocate da(\) file(ftð1fðð1)

1-50 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 Example 2
Operation:  Allocate an existing cataloged data set.

Known:

� The name of the data set: MOSER7.INPUT.DATA.

allocate da(input.data) old

Note that you do not have to specify the user ID, MOSER7, as an explicit qualifier.

 Example 3
Operation:  Allocate an existing data set that is not cataloged.

Known:

� The data set name: SYS1.PTIMAC.AM
� The volume serial number: B99RS2
� The ddname: SYSLIB

alloc dataset('sys1.ptimac.am') file(syslib) +
volume(b99rs2) shr

 Example 4
Operation:  Allocate a new data set with the attributes of an existing model data
set.

Known:

� The name that you want to give the new data set: MOSER7.NEW.DATA
� The name of the model data set: MOSER7.MODEL.DATA

alloc da(new.data) like(model.data)

 Example 5
Operation:  Allocate a new data set that differs from an existing model data set only
in its space allocation.

Known:

� The name that you want to give the new data set: MOSER7.NEW2.DATA
� The name of the model data set: MOSER7.MODEL.DATA
� The desired space attributes for the new data set: primary 10 tracks, secondary

5 tracks

alloc da(new2.data) space(1ð,5) tracks like(model.data)

 Example 6
Operation:  Allocate a new sequential data set with space allocated in tracks.

Known:

� The new data set name: MOSER7.EX1.DATA
� The number of tracks: 2
� The logical record length: 80
� The DCB block size: 8000
� The record format: fixed block

alloc da(ex1.data) dsorg(ps) space(2,ð) tracks lrecl(8ð) +  
blksize(8ððð) recfm(f,b) new

  Chapter 1. TSO/E Commands and Subcommands 1-51



 ALLOCATE Command  
 

 Example 7
Operation:  Allocate a new partitioned data set with space allocated in blocks.

Known:

� The new data set name: MOSER7.EX2.DATA
� The block length: 200 bytes
� The logical record length: 100
� The DCB block size: 200
� The number of directory blocks: 2
� The record format: fixed block

alloc da(ex2.data) dsorg(po) block(2ðð) space(1ð,1ð) +
lrecl(1ðð) blksize(2ðð) dir(2) recfm(f,b) new

 Example 8
Operation:  Allocate a new sequential data set with default space quantities.

Known:

� The new data set name: MOSER7.EX3.DATA
� The block length: 800 bytes
� The logical record length: 80
� The record format: fixed block

alloc da(ex3.data) block(8ðð) lrecl(8ð) dsorg(ps) +  
recfm(f,b) new

 Example 9
Operation:  Allocate a new sequential data set using an attribute list.

Known:

� The name that you want to give the new data set: MOSER7.EX4.DATA
� The number of tracks expected to be used: 10
� DCB operands are in an attribute list named: ATRLST1

attrib atrlst1 dsorg(ps) lrecl(8ð) blksize(32ðð)

alloc da(ex4.data) new space(1ð,2) tracks using(atrlst1)

 Example 10
Operation:  Allocate a new sequential data set with space allocated in blocks and
using an attribute list.

Known:

� The new data set name: MOSER7.EX5.DATA
� The block length: 1000 bytes
� The DCB attributes taken from attribute list: ATRLST3

attrib atrlst3 dsorg(ps) lrecl(8ð) blksize(32ðð)

alloc da(ex5.data) using(atrlst3) block(1ððð) +  
space(2ð,1ð) new

1-52 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 Example 11
Operation:  Allocate a new sequential data set with default space quantities and
using an attribute list.

Known:

� The new data set name: MOSER7.EX6.DATA
� The DCB attributes taken from attribute list: ATRLST5

attrib atrlst5 dsorg(ps) lrecl(8ð) blksize(32ðð)

alloc da(ex6.data) using(atrlst5) new

 Example 12
Operation:  Allocate a new data set to contain the output from a program.

Known:

� The data set name: MOSER7.OUT.DATA
� The ddname: OUTPUT
� You do not want to hold unused space.

alloc dataset(out.data) file(output) new space(1ð,2) +  
tracks release

 Example 13
Operation:  Allocate an existing multi-volume data set to SYSDA, with one device
mounted for each volume.

Known:

� The data set name: MOSER7.MULTIVOL.DATA
� Volumes: D95VL1, D95VL2, D95VL3
� The ddname: SYSLIB

alloc dataset('moser7.multivol.data') old parallel +  
file(syslib) volume(d95vl1,d95vl2,d95vl3) +  
unit(sysda)

 Example 14
Operation:  Allocate an existing data set as the second file of a standard-label tape.

Known:

� The data set name: MOSER7.TAPE1.DATA
� The volume: TAPEVL
� The unit: 2400

alloc dataset('moser7.tape1.data') label(sl) +  
unit(24ðð) volume(tapevl) position(2)

 Example 15
Operation:  Allocate an output data set using the FCB and COPIES operands to
request formatted copies of an output data set.

Known:

� The ddname: OUTPUT
� The FCB image desired: STD1

  Chapter 1. TSO/E Commands and Subcommands 1-53



 ALLOCATE Command  
 

� The number of copies: 10

alloc file(output) sysout fcb(std1) copies(1ð)

 Example 16
Operation:  Allocate a new tape data set using the PROTECT operand to request
RACF protection.

Known:

� The data set name: MOSER7.TAPE2.DATA
� The volume: TAPEV2
� The unit: 2400

alloc da(tape2.data) unit(24ðð) label(sl) position(1) +  
volume(tapev2) protect new

 Example 17
Operation:  Allocate a new DASD data set using the PROTECT operand to request
RACF protection.

Known:

� The data set name: MOSER7.DISK.DATA
� The logical record length: 80
� The DCB block size: 8000
� The record format: fixed block
� The number of tracks: 2

alloc da(disk.data) dsorg(ps) space(2,ð) tracks +  
lrecl(8ð) blksize(8ððð) recfm(f,b) protect new

 Example 18
Operation:  Concatenate some data sets.

Known:

� The data set names: A.CLIST, B.CLIST, C.CLIST
� The ddname: SYSPROC

alloc file(sysproc) dataset(a.clist,b.clist,c.clist) +  
shr reuse

You cannot directly add another data set to a concatenation. There are two ways to
add another data set to a data set concatenation:

1. Use the FREE command to deallocate or free the data sets in the
concatenation. Then reallocate the entire concatenation, including the data set
to be added, using the ALLOCATE command.

2. Specify the REUSE operand with the ALLOCATE command when you
concatenate. The REUSE operand specifies the file name being allocated is to
be freed and reallocated if it is currently in use.

1-54 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

 Example 19
Operation:  Allocate a data set, defined by a DD statement, as a SYSOUT data set
with output descriptors to be printed on a specific print form.

Known:

� The ddname: PAYROLL
� The output descriptor: PRINTER1
� The print form name: CHEK

alloc f(payroll) sysout forms(chek) outdes(printer1)

 Example 20
Operation:  Allocate a SYSOUT data set specifying the member name of an
installation-written program that is to write the data set.

Known:

� The ddname: REPORTA
� The writer name: OURWRIT
� The output descriptor: DESCRIPT

alloc f(reporta) sysout writer(ourwrit) outdes(descript)

 Example 21
Operation:  Allocate a SYSOUT data set to be printed in a specific character set or
print font.

Known:

� The ddname: REPORTB
� The character set: GOTH
� The output descriptor: DESCRIPT

alloc f(reportb) sysout ucs(goth) outdes(descript)

 Example 22
Operation:  Allocate a SYSOUT data set to make it available for printing
immediately after deallocation.

Known:

� The name of the file: SYSPRINT

alloc f(sysprint) sysout spin(unalloc)

 Example 23
Operation:  Allocate a SYSOUT data set specifying the number of pages to print.

Known:

� The name of the file: SYSPRINT
� Desired segment size: 500

alloc f(sysprint) sysout da(\) segment(5ðð)

  Chapter 1. TSO/E Commands and Subcommands 1-55



 ALLOCATE Command  
 

 Example 24
Operation:  Allocate a SYSOUT data set to be routed to a user at a remote
destination.

Known:

� The ddname: FREEDOM
� The destination: NEWYORK
� The user ID: LIBERTY

alloc f(freedom) sysout dest(newyork.liberty)

 Example 25
The following example assumes that the Storage Management Subsystem (SMS) is
installed and is active.

Operation:  Allocate an OBJECT PDS with a data class of OBJ.

Known:

� The data set name: SMS.PDS.OBJ
� The data class: OBJ
� The storage class: STANDARD
� The management class: TSO
� The data class attributes: LRECL (80), RECFM (FB), primary quantity (10),

secondary quantity (10), directory blocks (5), AVGSIZE (800)

alloc da('sms.pds.obj') new dataclas(obj) storclas(standard)+ 
mgmtclas(tso)

 Example 26
The following example assumes that SMS is installed and is active.

Operation:  Override the data class, storage class, management class operands by
explicitly specifying them on the ALLOCATE command.

Known:

� The data set name: SMS.NEW.OBJ
� The data class attributes: LRECL (80), RECFM (FB), primary quantity (10),

secondary quantity (10), directory blocks (5), AVGREC (U), AVGSIZE (6160)

alloc da('sms.new.obj') dataclas(pds) storclas(general) + 
mgmtclas(temp) new

 Example 27
Operation:  Allocate three data sets using the REUSE operand. Two data sets are
used for the allocation example. Both data sets have the same name but are on
different volumes.

Known:

� Data set name: MY.DATA.SET
� MY.DATA.SET on volume STOR03 is cataloged
� MY.DATA.SET on volume STOR99 is uncataloged

1. Allocate MY.DATA.SET on volume STOR03:

alloc file(x) da(my.data.set') reuse shr

1-56 OS/390 V2R7.0 TSO/E Command Reference  



  ALLOCATE Command
 

2. Allocate MY.DATA.SET on volume STOR99. The REUSE operand frees the file
x allocation for MY.DATA.SET on volume STOR03 and reallocates file x to
MY.DATA.SET on volume STOR99.

alloc file(x) da('my.data.set') reuse shr vol(stor99)

3. Allocate MY.DATA.SET on volume STOR99:

alloc file(x) da('my.data.set') reuse shr

This is satisfied by the current allocation which is MY.DATA.SET on volume
STOR99.

Note:  REUSE does not free file x and then reallocate file x with MY.DATA.SET on
volume STOR03 because it is satisfied by an existing allocation.

If you wish to allocate MY.DATA.SET on volume STOR03, you can either free file
x and then issue the same allocate command or specify volume STOR03 on the
allocation.

 Example 28
The following example assumes that Storage Management Subsystem is installed
and active.

Operation:  Allocate a new DASD data set using a system-determined block size
and request space in a quantity of logical records.

Release overallocated space down to a track boundary when the data set is closed.

Known:

� The data set name: K9345P.REPORT2
� The logical record length: 133
� The record format: Fixed block ANSI
� The number of logical records: Primary quantity 5000, secondary quantity 500

alloc ds('k9345p.report2') new dsorg(ps) recfm(f,b,a) +
lrecl(133) avblock(133) avgrec(u) space(5ððð,5ðð) release

 Example 29
Operation:  Allocate an output file, creating it if it does not exist.

Known:

� The ddname: OUTPUT
� The pathname: /u/userid/file.dbp
� The disposition: Keep under all circumstances.
� Permissions: Read, write, and execute for the user; no other permissions.

alloc path('/u/userid/file.dbp') +
 pathdisp(keep,keep) +
 pathopts(owronly,ocreat) +
 pathmode(sirwxu) +
 file(output)

  Chapter 1. TSO/E Commands and Subcommands 1-57



 ALTLIB Command  
 

 ALTLIB Command
Use the ALTLIB command to:

� Define alternative application-level libraries of REXX execs or CLISTs.

� Indicate that user-, application-, and system-level libraries of REXX execs and
CLISTs are being searched.

� Exclude one or more library levels (user, application, system) from being
searched.

� Reset the search order to the system level.

� Obtain a display of the search order that is in effect.

TSO/E searches the user-, application-, and system-level libraries for REXX execs
or CLISTs that are executed implicitly or when searching for REXX external
functions or subroutines. For more information about implicitly executing execs and
CLISTs, see “EXEC Command” on page 1-141. For more information about REXX
external functions, see OS/390 TSO/E REXX Reference.

Search Order for Libraries
The following table lists the search order of the user-, application-, and system-level
libraries. Also shown are the ddnames associated with each library level. These
ddnames can be allocated either dynamically by the ALLOCATE command or
included as part of a logon procedure.

With the defaults that TSO/E provides, and before an ALTLIB command is invoked,
TSO/E searches the system EXEC library (default ddname SYSEXEC) first,
followed by the system CLIST library (ddname SYSPROC). Note that your system
programmer can change this by

� Defining an alternate ddname of SYSEXEC

� Indicating that TSO/E is not to search the system-level exec ddname of
SYSEXEC. Then only the system-level CLIST (SYSPROC) is searched.

You can alter the default library search order by using either the ALTLIB command
or the EXECUTIL command.

Use EXECUTIL to indicate that the system-level exec ddname is to be
searched for the duration of the current REXX language processor
environment.

Figure 1-4. Library Search Order

Search
order Library level Associated ddname

1. User REXX exec SYSEXEC

2. User CLIST SYSUPROC

3. Application REXX exec Define with FILE or DATASET operand

4. Application CLIST Define with FILE or DATASET operand

5. System REXX exec SYSEXEC (installation can define this
ddname)

6. System CLIST SYSPROC

1-58 OS/390 V2R7.0 TSO/E Command Reference  



  ALTLIB Command
 

Use ALTLIB to indicate that the system-level exec ddname is to be searched
for the duration of the current application. ALTLIB always overrides EXECUTIL
within an application.

Use ALTLIB DISPLAY to see which libraries are being searched for.

Using ALTLIB with Most Applications
With most applications, the ALTLIB command is in effect from the time that the
command is entered until either another ALTLIB command is entered or the TSO/E
session is ended.

Examples of applications where the ALTLIB command remains in effect for the
duration of the session include TSO/E line mode, TMP READY mode, and TSO/E
commands that accept subcommands, such as IPCS. This does not, however,
apply to ISPF, ISPF dialogs, and similar programs.

Using ALTLIB with Concurrent Applications
TSO/E permits applications that allow users to perform multiple tasks to distinguish
between the set of procedure libraries required to support one task and the set of
procedure libraries required to support a different task.

For example, a user can edit a memo using the ISPF/PDF editor from one logical
screen and interleave that task with the browsing of a dump using the IPCS dialog
from a different logical screen.

Using ALTLIB in ISPF
When you use ALTLIB when ISPF is active, you can define the libraries (user,
application, and system) that are active for each application. Libraries that you
define while running an application are in effect only while that application has
control. When the application completes, the previous libraries (user, application,
and system) are automatically reactivated.

If you are in split-screen mode in ISPF and you issue the ALTLIB command from a
one-screen session, the changes affect only that screen session. The ALTLIB
search order is not valid across split screens.

The libraries that are originally used when an application gets control are
determined through the NEWAPPL and PASSLIB parameters on the ISPF SELECT
service. For more information about the SELECT service, see OS/390 ISPF
Services Guide.

When NEWAPPL is specified and PASSLIB is not specified (that is, you want to
isolate the selected function from the application currently in control, but you do not
want to pass library definitions specified with the ALTLIB command and ISPF
LIBDEF service on to the new application), the current set of libraries, if any exist,
are not used by the application being selected. The deactivation of these libraries
takes place BEFORE the application is selected. The current library definitions are
automatically reactivated when the application being selected terminates.

When both NEWAPPL and PASSLIB are specified (that is, you want to isolate the
selected function from the application currently in control and you want to pass
library definitions specified with the ALTLIB command and ISPF LIBDEF service on
to the new application), the current set of libraries, if any exist, are made available

  Chapter 1. TSO/E Commands and Subcommands 1-59



 ALTLIB Command  
 

to the selected application. Any changes you make to this set of libraries while this
application is running are in effect only while this application has control. After the
selected application terminates, the original set of libraries is reactivated.

When NEWAPPL and PASSLIB are not specified (that is, you do not want to
isolate the selected function), the current set of libraries remains in effect because
the selected function does not represent a new application. If the selected function
changes any of the library definitions, the changes apply through all select levels of
the application of which the selected function is a part.

ALTLIB within line mode TSO/E works just like an ISPF application. However, if you
use ALTLIB from within line mode TSO/E and start ISPF, the libraries you specified
in line mode TSO/E will not be available until ISPF is terminated.

Using ALTLIB in the IPCS Dialog
When you activate the IPCS dialog for a logical screen, the IPCS dialog establishes
an ALTLIB environment with the same search order that is in effect before the first
ALTLIB command is invoked. See “Search Order for Libraries” on page 1-58 for
the order in which TSO/E searches the libraries. This environment is used solely for
IPCS dialog processing for the logical screen.

Although the initial environments are similar, the IPCS environment maintains a
separate ALTLIB environment from that of ISPF. IPCS controls separate ALTLIB
environments for each ISPF logical screen in which the IPCS is invoked.

When you direct commands to the IPCS dialog, the EXEC command uses the
ALTLIB environment associated with the ISPF logical screen in which the IPCS
dialog is invoked. When you direct the ALTLIB command to the IPCS dialog,
defining or excluding one or more libraries, only the ALTLIB environment
associated with that IPCS dialog for that logical screen will change.

When you direct commands to ISPF within the IPCS dialog, the EXEC command
uses the ALTLIB environment associated with the particular ISPF application that
IPCS is running. When you direct the ALTLIB command to ISPF, only the ALTLIB
environment associated with that ISPF application will change.

Only the IPCS dialog maintains a separate ALTLIB environment. Native IPCS does
not maintain a separate ALTLIB environment.

Note:  Do not use the QUIET option of ALTLIB in the IPCS dialog. IPCS does not
make ISPF services available to TSO/E commands that IPCS invokes.

For more information about using the ALTLIB command when the IPCS dialog is
active, refer to OS/390 MVS IPCS User's Guide, and OS/390 MVS IPCS
Commands.

Stacking Application-Level Library Requests
Application-level REXX exec and CLIST requests can be stacked up to eight
requests each. Because the application-level requests are stacked, you can
activate a REXX exec or CLIST and then reissue the request for the same REXX
exec or CLIST and the first request will still exist. When you stack application-level
library requests for REXX execs or CLISTs, the last application level you activate
becomes the current one. Only the top, or current application-level request is
active.

1-60 OS/390 V2R7.0 TSO/E Command Reference  



  ALTLIB Command
 

For example, if you activate an application-level CLIST,

altlib activate application(clist) dataset('userid.ds1')

and then unconditionally activate another application-level CLIST,

altlib activate application(clist) dataset('otherid.ds5') uncond

the second request becomes current and the first request is stacked under it.

If you entered the command, ALTLIB DISPLAY, to display the search order, the
display at your terminal would look similar to the following:

à ð
IKJ79322I Current search order (by DDNAME) is:
IKJ79326I Application-level CLIST DDNAME=SYSððð27
IKJ79321I Stacked DDNAME=SYSððð26
IKJ79327I System-level EXEC DDNAME=SYSEXEC
IKJ79328I System-level CLIST DDNAME=SYSPROC

Deactivate the application-level for CLIST to remove the second request and make
the first request current. Or, you can clear all requests and reset the original library
search order. For example, to clear only the current request issue:

altlib deactivate application(clist)

To clear all stacked application-level requests and leave the user and system levels
as they are, issue:

altlib deactivate application(\)

ALTLIB Command Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-61



 ALTLIB Command  
 

 

┌ ┐─┤ Application ├───────────
55─ ─ALTLIB─ ──┬ ┬──┬ ┬─ACTIVATE─ ──┼ ┼─────────────────────────── ─────── ───────5
 │ │└ ┘─ACT────── └ ┘── ──┬ ┬─USER─── ( ──┬ ┬─*───── )
 │ │└ ┘─SYSTEM─ ├ ┤─EXEC──
 │ │└ ┘─CLIST─
 ├ ┤ ──┬ ┬─DEACTIVATE─ ──┬ ┬────────────────────────────────
 │ │└ ┘─DEACT────── │ │┌ ┐─APPLICATION─
 │ │├ ┤── ──┼ ┼─USER──────── ( ──┬ ┬─*───── )
 │ ││ │└ ┘─SYSTEM────── ├ ┤─EXEC──
 │ ││ │└ ┘─CLIST─
 │ │└ ┘─ALL────────────────────────────
 ├ ┤──┬ ┬─DISPLAY─ ───────────────────────────────────────
 │ │├ ┤─DISP────
 │ │└ ┘─DIS─────
 └ ┘──┬ ┬─RESET─ ─────────────────────────────────────────
 └ ┘─RES───

5─ ──┬ ┬────── ─────────────────────────────────────────────────────────────5%
 └ ┘─QUIT─

Application:
 ┌ ┐─UNCOND─
├─ ──APPLICATION( ──┬ ┬─EXEC── ) ──┬ ┬───────────── ──┼ ┼──────── ─────────────────┤

└ ┘─CLIST─ ├ ┤─┤ Dataset ├─ └ ┘─COND───
└ ┘─┤ File ├────

Dataset:
 ┌ ┐─DATASET─ ┌ ┐──────────
├─ ── ──┴ ┴─DSNAME── ( ───6 ┴─dsname─ ) ───────────────────────────────────────────┤

File:
├─ ── ──┬ ┬─FILE──── (ddname) ─────────────────────────────────────────────────┤
 ├ ┤─DDNAME──
 └ ┘─LIBRARY─

ALTLIB Command Operands
ACTIVATE | ACT

indicates that you want to include the specified library level when searching for
a REXX exec or CLIST.

DEACTIVATE | DEACT | DEA
indicates that you want to exclude the specified library level when searching for
a REXX exec or CLIST.

DISPLAY | DISP | DIS
requests information about the search order the EXEC command processor
currently uses to find a REXX exec or CLIST.

RESET | RES
resets the libraries searched to system-level REXX execs and CLISTs only.

USER
indicates that the user-level REXX execs and CLISTs are to be activated or
deactivated. User-level REXX execs and CLISTs are those data sets
concatenated to the ddname SYSUPROC for both CLISTs and REXX execs
and the data sets concatenated to ddname SYSUEXEC for REXX execs only.

APPLICATION
indicates that the application-level REXX execs and CLISTs are to be activated
or deactivated. Application-level execs and CLISTs are those data sets defined
with the DATASET or FILE operands.

1-62 OS/390 V2R7.0 TSO/E Command Reference  



  ALTLIB Command
 

SYSTEM
indicates that the system-level REXX execs and CLISTs are to be activated or
deactivated. System-level execs and CLISTs are the data sets that are
concatenated to the ddname SYSPROC for both REXX execs and CLISTs or
those data sets that are concatenated to the ddname SYSEXEC for REXX
execs only.

ALL
indicates that you want to deactivate all library levels, user, application, and
system, of REXX execs and CLISTs.

(EXEC)
indicates that you want to activate or deactivate REXX execs at the level you
specify (user, application, or system).

(CLIST)
indicates that you want to activate or deactivate CLISTs at the level that you
specify (user, application, or system).

(*) indicates that you want to activate or deactivate REXX execs and CLISTs at
the level you specify (user, application, or system).

DATASET(dsname) | DSNAME(dsname)
specifies a data set list to define an application-level library of REXX execs or
CLISTs. When specifying DATASET or DSNAME:

� The data sets must be cataloged partitioned data sets when you issue the
ALTLIB command.

� The maximum number of data sets you can list is fifteen. Use the FILE
operand if you want to specify more than fifteen.

� The data sets must all have the same record format (RECFM).

� If the data sets have different block sizes, you can specify them in any
order of block sizes.

� Member names cannot be specified in the list of data sets.

FILE(ddname) | DDNAME(ddname) | LIBRARY( ddname)
specifies a ddname that defines an application-level library.

� The ddname must be allocated before issuing the ALTLIB command.

� The ddname must be allocated with the permanently allocated attribute to
ensure that the system does not automatically deallocate the ddname when
the allocation control limit is exceeded. Note that the ALLOCATE command
and data sets allocated in a LOGON procedure are automatically allocated
with this attribute, however, if you access dynamic allocation directly, using
SVC 99, you need to specify this attribute. For more information about the
permanently allocated attribute, see OS/390 MVS Programming: Authorized
Assembler Services Guide.

� To avoid errors when the EXEC command runs, specify only cataloged
partitioned data sets.

UNCOND | COND

  Chapter 1. TSO/E Commands and Subcommands 1-63



 ALTLIB Command  
 

UNCOND activates the specified application-level library even if another
application-level library of the same type, CLIST or REXX exec, is active
within the current application. Up to eight application-level CLIST and
REXX exec requests can be stacked. (See Stacking Application-Level
Library Requests for an explanation of stacking.)

COND activates the specified application-level library only if another
application-level library of the same type, CLIST or REXX exec, is not
active within the current application. If you issue the ALTLIB command with
the COND keyword and there is already an application-level library in
effect, a message is displayed and a non-zero return code is set.

QUIET
indicates that you want messages saved and not displayed at the terminal.
Messages can be saved in the ISPF shared pool when QUIET is used and
ISPF is active. Variable IKJADM1 contains the first message, variable IKJADM2
contains the second message, and so on. Variable IKJADM contains the
number of messages returned for the invocation of ALTLIB according to these
rules:

� If you specify ALTLIB with QUIET, IKJADM is reset to the number of
messages returned for that invocation of ALTLIB.

� If you do not specify the QUIET operand, IKJADM is not reset. It equals the
number of messages returned for the last invocation of ALTLIB with QUIET.

� QUIET takes effect after TSO/E determines that the ALTLIB command is
syntactically correct. If the command is not syntactically correct, then
IKJADM equals 0 and a return code of 20 is returned indicating a syntax
error.

QUIET saves up to 99 messages.

IKJADM1 echoes the command entered in IKJADM1. For example,

IKJADM = 4
IKJADM1= ALTLIB DISPLAY QUIET
IKJADM2= IKJ79322I Current search order (by DDNAME) is:
IKJADM3= IKJ79327I System-level EXEC DDNAME=SYSEXEC
IKJADM4= IKJ79328I System-level CLIST DDNAME=SYSPROC

REXX execs and CLISTs may use the variables IKJADM and IKJADM1 -
IKJADM99 as in this example:

/\ REXX \/
ADDRESS TSO "ALTLIB DISPLAY QUIET"
ADDRESS ISPEXEC "VGET (IKJADM IKJADM1 IKJADM2 IKJADM3 IKJADM4) SHARED"
SAY 'IKJADM ='IKJADM
SAY 'IKJADM1='IKJADM1
SAY 'IKJADM2='IKJADM2
SAY 'IKJADM3='IKJADM3
SAY 'IKJADM4='IKJADM4

If you use a program that invokes ALTLIB with the QUIET operand, you must
take the following into consideration: ALTLIB declares IKJADM as a fixed
binary integer, four bytes long. IKJADM1 - 99 are character format, 251 bytes
long. If QUIET is in effect and you invoke ALTLIB from a program, messages
are not displayed, but they are available to the program.

1-64 OS/390 V2R7.0 TSO/E Command Reference  



  ALTLIB Command
 

Note:  Do not use the QUIET option of ALTLIB in the IPCS dialog. IPCS does not
make ISPF services available to TSO/E commands that IPCS invokes.

ALTLIB Command Return Codes
Figure 1-5. ALTLIB Command Return Codes

0 Processing successful. Informational messages might have been
issued.

4 An alternative library does not exist for this type (REXX exec or
CLIST); none deactivated.

8 An application-level library already exists for this type (REXX exec or
CLIST). The new application-level library was not activated. Issued
only when you specify the COND parameter.

10 User- or system-level CLIST activated; User- or system-level exec
cannot be activated because a REXX language processor
environment has not been established. Contact your system
programmer to diagnose problems with TSO/E programs IRXECUSP
and IRXINIT.

16 A required ddname was not previously allocated.

20 Severe error. More information is contained in messages.

ALTLIB Command Examples

 Example 1
Operation:  Search for CLISTs in a user-level library before application- or
system-level libraries. First allocate a user-level ddname, then activate the
user-level CLISTs.

allocate fi(sysuproc) da('id.clist') shr reu

altlib activate user(clist)

 Example 2
Operation:  Display the search order currently used to find a REXX exec or CLIST.

altlib display

The output at your terminal might be similar to the following:

à ð
IKJ79322I Current search order (by DDNAME) is:
IKJ79327I System-level EXEC DDNAME=SYSEXEC
IKJ79328I System-level CLIST DDNAME=SYSPROC

 Example 3
Operation:  Define an application-level CLIST library even if another
application-level CLIST library exists, and request that messages are not to be
displayed.

altlib activate application(clist) dataset(clist.name) uncond quiet

  Chapter 1. TSO/E Commands and Subcommands 1-65



 ATTRIB Command  
 

 ATTRIB Command
Use the ATTRIB command to build a list of attributes for non-VSAM data sets that
you intend to allocate dynamically. During the remainder of your terminal session,
you can have the system refer to this list for data set attributes when you enter the
ALLOCATE command. The ALLOCATE command converts the attributes into DCB
operands and LABEL operands for data sets being allocated. Refer to the
subparameters of the DCB parameter in OS/390 MVS JCL Reference.

The ATTRIB command allocates a file with the same name as your attr_list_name.
You can use the LISTALC command with the STATUS operand to list your active
attribute lists. The data set name is NULLFILE, which is also the data set name for
files allocated with the DUMMY operand of the ALLOCATE command. Because this
is a NULLFILE allocation, it is subject to use and modification by other commands.
Therefore, it is advisable to allocate those data sets for which the attribute list was
built before you issue any commands that might cause NULLFILE allocation, such
as LINK or RUN.

With the LIKE operand and the DCB operands on the ALLOCATE command, you
do not have to use the ATTRIB command.

ATTRIB Command Syntax

1-66 OS/390 V2R7.0 TSO/E Command Reference  



  ATTRIB Command
 

 

55─ ──┬ ┬─ATTRIB─ ─attr_list_name─ ──┬ ┬──────────────────── ───────────────────5
└ ┘─ATTR─── └ ┘──BLKSIZE(blocksize)

5─ ──┬ ┬───────────────────── ──┬ ┬────────────────────────── ─────────────────5
└ ┘──BUFL(buffer_length) └ ┘──BUFNO(number_of_buffers)

5─ ──┬ ┬──────────────────────────────────── ────────────────────────────────5
└ ┘──LRECL( ──┬ ┬─logical_record_length─ )

 ├ ┤─x─────────────────────
└ ┘──nnnnnK ───────────────

5─ ──┬ ┬────────────────────────────── ──┬ ┬──────── ──────────────────────────5
└ ┘──NCP(no._of_channel_programs) ├ ┤─INPUT──

 └ ┘─OUTPUT─

5─ ──┬ ┬──────────────────── ──┬ ┬──────────────── ──┬ ┬────────────────── ──────5
├ ┤──EXPDT(year_day) ─── └ ┘──BFALN( ──┬ ┬─F─ ) │ │┌ ┐─,───
└ ┘──RETPD(no._of_days) └ ┘─D─ └ ┘──OPTCD( ───6 ┴┬ ┬─A─ )

 ├ ┤─B─
 ├ ┤─C─
 ├ ┤─E─
 ├ ┤─F─
 ├ ┤─H─
 ├ ┤─J─
 ├ ┤─Q─
 ├ ┤─R─
 ├ ┤─T─
 ├ ┤─W─
 └ ┘─Z─

5─ ──┬ ┬────────────────── ──┬ ┬──────────────── ──┬ ┬────────────────── ────────5
└ ┘──EROPT( ──┬ ┬─ACC─ ) └ ┘──BFTEK( ──┬ ┬─S─ ) │ │┌ ┐─,───

├ ┤─SKP─ ├ ┤─E─ └ ┘──RECFM( ───6 ┴┬ ┬─A─ )
 └ ┘─ABE─ ├ ┤─A─ ├ ┤─B─
 └ ┘─R─ ├ ┤─D─
 ├ ┤─F─
 ├ ┤─M─
 ├ ┤─S─
 ├ ┤─T─
 ├ ┤─U─
 └ ┘─V─

5─ ──┬ ┬─────────────── ──┬ ┬────────────────────── ───────────────────────────5
└ ┘──DIAGNS(TRACE) └ ┘──LIMCT(search_number)

5─ ──┬ ┬─────────────────────────────────── ──┬ ┬────────────────── ───────────5
└ ┘──BUFOFF( ──┬ ┬─block_prefix_length─ ) └ ┘──DSORG( ──┬ ┬─DA── )

 └ ┘─L─────────────────── ├ ┤─DAU─
 ├ ┤─PO──
 ├ ┤─POU─
 ├ ┤─PS──
 └ ┘─PSU─

5─ ──┬ ┬────────────── ──┬ ┬───────────────────────────── ────────────────────5%
└ ┘──DEN( ──┬ ┬─ð─ ) │ │┌ ┐─NOCOMP─

├ ┤─1─ ├ ┤──TRTCH( ──┬ ┬─C── ──┼ ┼──────── )
 ├ ┤─2─ │ │├ ┤─E── └ ┘─COMP───
 ├ ┤─3─ │ │├ ┤─T──
 └ ┘─4─ │ │└ ┘─ET─

└ ┘──KEYLEN(key_length) ─────────

  Chapter 1. TSO/E Commands and Subcommands 1-67



 ATTRIB Command  
 

ATTRIB Command Operands
attr_list_name

specifies the name for the attribute list. You can specify this name later as an
operand of the ALLOCATE command. The name must consist of 1 to 8
alphanumeric and/or special characters (#, $, or @), must begin with an
alphabetic or special character, and must be different from all other attribute list
names and ddnames that exist during your terminal session.

BLKSIZE( blocksize)
specifies the block size for the data sets. The block size must be a decimal
number and must not exceed 32760 bytes.

The block size you specify must be consistent with the requirements of the
RECFM operand. If you specify:

� RECFM(F), then the block size must be equal to or greater than the logical
record length.

� RECFM(F B), then the block size must be an integral multiple of the logical
record length.

� RECFM(V), then the block size must be equal to or greater than the largest
block in the data set. For unblocked variable-length records, the size of the
largest block must allow space for the four-byte block descriptor word in
addition to the largest logical record length. The logical record length must
allow space for a four-byte record descriptor word.

� RECFM(V B), then the block size must be equal to or greater than the
largest block in the data set. For block variable-length records, the size of
the largest block must allow space for the four-byte block descriptor word in
addition to the sum of the logical record lengths that will go into the block.
Each logical record length must allow space for a four-byte record
descriptor word. Because the number of logical records can vary, you must
estimate the optimum block size and the average number of records for
each block based on your knowledge of the application that requires the
I/O.

� RECFM(U), then the block size can be any value up to what is supported
by the device or 32760, whichever is smaller. If allocated to a TSO/E
terminal and BLKSIZE(80) is coded, then one character (the last byte) is
reserved for an attribute character.

BUFL(buffer_length)
specifies the length, in bytes, of each buffer in the buffer pool. Specify a
decimal number for buffer_length. The number must not exceed 32760.

If you omit this operand and the system acquires buffers automatically, the
BLKSIZE and KEYLEN operands are used to supply the information needed to
establish buffer length.

BUFNO(number_of_buffers)
specifies the number of buffers to be assigned for data control blocks. Specify
a decimal number for number_of_buffers. The number must not exceed 255.
You might be limited to a smaller number of buffers depending on the limit
established at your installation. The following table shows the condition that
requires you to include this operand.

When you use one of the following methods of obtaining the buffer pool, then:

1-68 OS/390 V2R7.0 TSO/E Command Reference  



  ATTRIB Command
 

LRECL( logical_record_length)
specifies the length, in bytes, of the largest logical record in the data set. You
must specify this operand for data sets that consist of either fixed-length or
variable-length records.

If the data set contains undefined-length records, omit this operand.

The logical record length must be consistent with the requirements of the
RECFM operand and must not exceed the block size (BLKSIZE operand),
except for variable-length-spanned records. If you specify:

� RECFM(V) or RECFM(V B), then the logical record length is the sum of the
length of the actual data fields plus four bytes for a record descriptor word.

� RECFM(F) or RECFM(F B), then the logical record length is the length of
the actual data fields.

� RECFM(U), then you should omit the LRECL operand.

LRECL(NNNNNK) allows users of ANSI extended logical records and QSAM
“locate mode” users to specify a K multiplier on the LRECL operand. NNNNN
can be within 1-16,384. The K indicates that the value can be multiplied by
1024.

For variable-length spanned records (VS or VBS) processed by QSAM (locate
mode) or BSAM, specify LRECL (X) when the logical record exceeds 32756
bytes.

NCP(number_of_channel_programs)
specifies the maximum number of READ or WRITE macro instructions allowed
before a CHECK macro instruction is issued. The maximum number must not
exceed 255 and must be less than 255 if a lower limit was established when
the operating system was generated. If you wish to use chained scheduling,
you must specify an NCP value greater than 1. If you omit the NCP operand
and the application program does not specify the MULTSDN parameter on the
DCBE macro, the default value is 1. Note that the MULTSDN has nor effect
while running DFSMS/MVS on earlier releases than release 1.

INPUT | OUTPUT

INPUT specifies a BSAM data set opened for INOUT or a BDAM data set
opened for UPDAT is to be processed for input only. This operand
overrides the INOUT (BSAM) option or UPDAT (BDAM) option in the OPEN
macro instruction to INPUT.

OUTPUT specifies a BSAM data set opened for OUTIN or OUTINX is to be
processed for output only. This operand overrides the OUTIN option in the
OPEN macro instruction to OUTPUT or the OUTINX option in the OPEN
macro instruction to EXTEND.

(1) BUILD macro instruction (1) You must specify BUFNO.
(2) GETPOOL macro instruction (2) The system uses the number that you

specify for GETPOOL.
(3) Automatically with BPAM or BSAM (3) You must specify BUFNO.
(4) Automatically with QSAM (4) You may omit BUFNO and accept five

buffers.

  Chapter 1. TSO/E Commands and Subcommands 1-69



 ATTRIB Command  
 

EXPDT(year_day)
| specifies the data set expiration date. Specify the year and day in one of two
| forms:

| 1. yyddd, where yy is the last two-digit number for the year and ddd is the
| three-digit number for the day of the year. The maximum value for the year
| is 99 (for 1999). The minimum value for the day is 000 and the maximum
| value is 366.

| 2. yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the
| three-digit number for the day of the year. The slash is required. The
| maximum value for the year is 2155. The minimum value for the day is 000
| and the maximum value is 366.

| If you specify 1999/365 or 1999/366, the system retains your data sets
| permanently. Do not use those dates as an expiration date. Use them as
| "no scratch" dates only.

| With SMS, the expiration date might have been defined by the DATACLAS
| operand.

RETPD(number_of_days)
specifies the data set retention period in days. The value can be a one- to
four-digit decimal number.

BFALN({F | D})
specifies the boundary alignment of each buffer as follows:

D Each buffer starts on a doubleword boundary.
F Each buffer starts on a fullword boundary that might not be a doubleword

boundary.

If you do not specify this operand and it is not available from any other source,
then data management routines assign a doubleword boundary.

OPTCD(A,B,C,E,F,H,J,Q,R,T,W and/or Z)
specifies the following optional services that you want the system to perform.
See the OPTCD subparameter of the DCB parameter in OS/390 MVS JCL
Reference.

A specifies actual device addresses be presented in READ and WRITE
macro instructions.

B specifies the end-of-file (EOF) recognition be disregarded for tapes.
C specifies the use of chained scheduling.
E requests an extended search for block or available space.
F specifies feedback from a READ or WRITE macro instruction should return

the device address in the form it is presented to the control program.
H requests the system to check for and bypass.
J specifies the character after the carriage control character is the table

reference character for that line. The table reference character tells TSO/E
which character arrangement table to select when printing the line.

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or
from EBCDIC to ASCII.

R requests the use of relative block addressing.
T requests the use of the user totaling facility.
W requests the system to perform a validity check when data is written on a

direct access device.

1-70 OS/390 V2R7.0 TSO/E Command Reference  



  ATTRIB Command
 

Z requests the control program to shorten its normal error recovery procedure
for input on magnetic tape.

You can request any or all of the services by combining the values for this
operand. You may combine the characters in any sequence, being sure to
separate them with blanks or commas.

EROPT({ACC, SKP, ABE})
specifies the option that you want to execute if an error occurs when a record
is read or written. The options are:

ACC to accept the block of records in which the error was found.
SKP to skip the block of records in which the error was found.
ABE  to end the task abnormally.

BFTEK({S, E, A, R})
specifies the type of buffering that you want the system to use. The types that
you can specify are:

S Simple buffering
E Exchange buffering
A Automatic record area buffering
R Record buffering

RECFM(A, B, D, F, M, S, T, U, and/or V)
specifies the format and characteristics of the records in the data set. The
format and characteristics must be completely described by one source only. If
they are not available from any source, the default is an undefined-length
record. For a discussion of the formats and characteristics of the RECFM
subparameter of the DCB parameter, see OS/390 MVS JCL Reference.

Use the following values with the RECFM operand:

A indicates the record contains ASCII printer control characters.

B indicates the records are blocked.

D indicates variable-length ASCII records.

F indicates the records are of fixed-length.

M indicates the records contain machine code control characters.

S indicates, for fixed-length records, the records are written as standard
blocks (there must be no truncated blocks or unfilled tracks except for the
last block or track). For variable-length records, a record might span more
than one block. Exchange buffering, BFTEK(E), must not be used.

T indicates the records can be written onto overflow tracks, if required.
Exchange buffering, BFTEK(E), or chained scheduling, OPTCD(C), cannot
be used.

U indicates the records are of undefined-length.

V indicates the records are of variable-length.

You can specify one or more values for this operand; at least one is required. If
you use more than one value, you must separate each value with a comma or
a space.

  Chapter 1. TSO/E Commands and Subcommands 1-71



 ATTRIB Command  
 

| With SMS, the record format for a new data set might have been defined by
| the DATACLAS operand.

| RECFM is mutually exclusive with RECORG.

DIAGNS(TRACE)
specifies the Open/Close/EOV trace option that gives a module-by-module
trace of the Open/Close/EOV work area your DCB.

LIMCT(search_number)
specifies the number of blocks or tracks to be searched for a block or available
space. The number must not exceed 32,760.

BUFOFF({block_prefix_length | L})
specifies the buffer offset. The block prefix length must not exceed 99. L is
specified if the block prefix field is four bytes long and contains the block
length.

DSORG({DA, DAU, PO, POU, PS, PSU})
specifies the data set organization as follows:

DA Direct access
DAU Direct access unmovable
PO Partitioned organization
POU Partitioned organization unmovable
PS Physical sequential
PSU Physical sequential unmovable

DEN({0 | 1 | 2 | 3 | 4})
specifies the magnetic tape density as follows:

0 200 bpi/7 track
1 556 bpi/7 track
2 800 bpi/7 and 9 track
3 1600 bpi/9 track
4 6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent)

TRTCH({C | E | T | ET}, {COMP | NOCOMP })
specifies the recording technique for 7 track tape as follows:

C Data conversion with odd parity (the default) and no translation (the
default).

E Even parity with no translation (the default) and no conversion (the default).

T Odd parity (the default) and no conversion (the default). BCD to EBCDIC
translation when reading and EBCDIC to BCD translation when writing.

ET Even parity, and no conversion (the default). BCD to EBCDIC translation
when reading and EBCDIC to BCD translation when writing.

COMP | NOCOMP specifies whether data sets are to be compressed to save
space.

This operand is mutually exclusive with KEYLEN.

KEYLEN(bytes)
specifies the length, in bytes, of each of the keys used to locate blocks of
records in the data set when the data set resides on a direct access device.
The key length must not exceed 255 bytes. If an existing data set has standard

1-72 OS/390 V2R7.0 TSO/E Command Reference  



  ATTRIB Command
 

labels, you can omit this operand and let the system retrieve the key length
from the standard label. If a key length is not supplied by any source before
you issue an OPEN macro instruction, a length of zero (no keys) is assumed.
This operand is mutually exclusive with TRTCH.

ATTRIB Command Return Codes
Figure 1-6. ATTRIB Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

ATTRIB Command Examples

 Example 1
Operation:  Create a list of attributes to be assigned to a data set when the data
set is allocated.

Known:

The following attributes correspond to the DCB operands that you want assigned to
a data set.

� Optional services: Chained-scheduling, user totaling
� Expiration date: Dec. 31, 1985
� Record format: Variable-length spanned records
� Error option: Abend when READ or WRITE error occurs
� Buffering: Simple buffering
� Boundary alignment: Doubleword boundary
� Logical record length: Records may be larger than 32756 bytes
� Name of the attribute list: DCBPARMS

attr dcbparms optcd(c t) expdt(85365) recfm(v s) -
eropt(abe) bftek(s) bfaln(d) lrecl(x)

 Example 2
Operation:  This example shows how to create an attribute list, how to use the list
when allocating two data sets, and how to free the list so that it cannot be used
again.

Known:

� The name of the attribute list: DSATTRS
� The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A)
� The name of the first data set: FORMAT.INPUT
� The name of the second data set: TRAJECT.INPUT

  Chapter 1. TSO/E Commands and Subcommands 1-73



 CALL Command  
 

attrib dsattrs expdt(99365) blksize(24ððð) -
bftek(a)

allocate dataset(format.input) new block(8ð) -
space(1,1) volume(111111) using(dsattrs)

alloc da(traject.input) old bl(8ð) volume(111111) -
using(dsattrs)

free attrlist(dsattrs)

 CALL Command
Use the CALL command to load and execute a program that exists in executable
(load module) form. The program can be user-written, or it can be a system module
such as a compiler, sort, or utility program.

You must specify the name of the program (load module) to be processed, except
in those situations where the CALL command assumes module “TEMPNAME”. The
program specified must be a member of a partitioned data set (PDS) or an
extended partitioned data set (PDSE).

You can specify a list of parameters to be passed to the specified program. The
system formats this data so that when the program receives control, register 1
contains the address of a fullword. The three low-order bytes of this fullword
contain the address of a halfword field. This halfword field is the count of the
number of bytes of information contained in the parameter list. The parameters
immediately follow the halfword field.

When you pass parameters to a PL/I program, precede them with a slash (/). PL/I
assumes that any value prior to the slash is a run-time option.

When you pass parameters to a C program, precede them with a slash (/) only if
you have specified the EXECOPS run-time option; otherwise, the slash character
will be included in the characters passed as parameters.

If the program terminates abnormally, you are notified of the condition and may
enter a TEST command to examine the failing program.

CALL Command in the Background
Service aids, utilities, and other programs obtaining their input from an allocated file
such as SYSIN must have the input in a data set or a job stream data set (one
which contains the JCL to run the job and the data itself). After the data set is
created, you can use the CALL command to execute the program that accesses
the SYSIN data. Figure 1-7 illustrates the allocation and creation of input data sets.
Information about command processing in the foreground and background is
described in OS/390 TSO/E User's Guide.

1-74 OS/390 V2R7.0 TSO/E Command Reference  



  CALL Command
 

//examp1 exec pgm=ikjeftð1,dynamnbr=2ð
//systsprt dd sysout=a
//systsin dd \
 profile prefix(user1)
allocate file (sysprint) dataset(\)
allocate file(sysin) altfile(inputdd)

 call (prog1)
allocate file(sysin) altfile(inputdd2) reuse

 call (prog2)
 free all
//inputdd dd \
\\input to prog1\\

//inputdd2 dd \
\\input to prog2\\

/\

Figure 1-7. Allocating and Creating Input Data Sets in the Background

Note:  Allocating the input file to a terminal results in an I/O error message.
Abnormal termination occurs when the program tries to get input from the
terminal.

CALL Command Syntax 

 ┌ ┐─CAPS─
55─ ─CALL─ ──┬ ┬─dsname────────────── ──┬ ┬──────────────────── ──┼ ┼────── ──────5

├ ┤──dsname(member_name) └ ┘──'parameter_string' └ ┘─ASIS─
└ ┘──(member_name) ──────

 ┌ ┐─NOENVB───
5─ ──┼ ┼────────── ─────────────────────────────────────────────────────────5%
 └ ┘─PASSENVB─

CALL Command Operands
dsname

specifies the name of a PDS or a PDSE from which the program is to be
executed. If dsname is not fully qualified, it is assumed to be
'prefix.dsname.LOAD'.

| * specifies that CALL should use the standard load module search sequence for
| the member name.

(member_name)
specifies the program name to be executed. When you specify only a
member_name, the fully—qualified dsname and member_name, it is assumed
to be 'prefix.LOAD(member_name)'. If member_name, it not specified, the
member 'TEMPNAME' is assumed.

 

Note:  CALL command processing allocates the data set you specify and then
accesses the member:

1. When allocating the data set, it is possible that the cataloged
version of the data set will not be used, but rather a different copy
that has already been allocated in your TSO/E session. For
information about how MVS dynamic allocation may convert an

  Chapter 1. TSO/E Commands and Subcommands 1-75



 CALL Command  
 

existing allocation, refer to OS/390 MVS Programming: Authorized
Assembler Services Guide.

2. When giving control to the program, the data set you specify on the
CALL command is established as a task library. The tasklib is
effective for the execution of the CALL command.

parameter_string
specifies up to 100 characters of information that you want to pass to the
program as a parameter string. The character string can contain DBCS
characters that you delimit with shift-out (X'0E') and shift-in (X'0F')
characters.

The program to be executed must receive parameters according to the
standard linkage conventions. These are the same conventions that would
apply if the program was executed by batch job control language (JCL) and a
parameter string was passed by the EXEC statement with the PARM keyword.

Some utilities accept multiple entry parameter lists; for example, to pass a list
of alternate ddnames, TSO/E commands require a special multiple entry
parameter list known as a command processor parameter list (CPPL). Neither
of these options are supported by the CALL command, whose primary purpose
is to support the execution of programs written for a batch processing
environment rather than a TSO/E environment.

ASIS | CAPS

ASIS prevents translation of a parameter list to uppercase characters. Use
ASIS for programs that accept mixed case characters in a parameter list;
the CALL command will not alter the parameters in any way when the ASIS
option is specified.

CAPS translates the parameter list to uppercase characters. CAPS is the
default.

PASSENVB | NOENVB

PASSENVB  passes the currently active REXX environment block (ENVBLOCK)
address to the invoked program in register 0. The currently active REXX
ENVBLOCK is obtained from the environment to which the CALL command
is directed. See “Example 6” on page 1-78 and “Example 7” on page 1-78
for uses of PASSENVB in REXX execs. This operand is:

� recognized for unauthorized programs and non-isolated environments
� ignored for authorized programs and isolated environments.

For a description of isolated environments, refer to OS/390 TSO/E
Programming Services. For further information about the REXX
environment block refer to OS/390 TSO/E REXX Reference.

NOENVB does not pass a REXX environment block (ENVBLOCK) address.
The contents of register 0 on entry to the invoked program are
unpredictable. NOENVB is the default.

1-76 OS/390 V2R7.0 TSO/E Command Reference  



  CALL Command
 

CALL Command Return Codes
Figure 1-8. CALL Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

Other Return code is from the called program.

CALL Command Examples

 Example 1
Operation:  Execute a load module.

Known:

� The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME)
 � Parameters: 10,18,23

call pearl '1ð,18,23'

 Example 2
Operation:  Execute a load module.

Known:

� The name of the load module: JUDAL.MYLIB.LOAD(COS1)

call mylib(cos1)

 Example 3
Operation:  Execute a PL/I load module passing a parameter.

Known:

� The name of the load module: D58ABC.PCP.LOAD(MOD1)
� The parameter to be passed: The character string ABC

call 'd58abc.pcp.load(mod1)' '/abc'

 Example 4
Operation:  Execute a C load module passing a parameter list in mixed case. The
called program will accept the parameters as passed.

Known:

� The name of the load module: C58ABC.C.LOAD(MOD1)
� The parameter to be passed: The character string ‘a BcD’
� The NOEXECOPS option is specified so there is no need to precede the

parameter list with a slash character.

call 'C58abc.c.load(mod1)' 'a BcD' asis

  Chapter 1. TSO/E Commands and Subcommands 1-77



 CANCEL Command  
 

 Example 5
Operation:  Execute a C load module passing a parameter list with run-time
options. The EXECOPS run-time option must be specified.

Known:

� The name of the load module: C58ABC.C.LOAD(MOD1)
� The parameter to be passed: The character string ‘a bcd’

call 'C58abc.c.load(mod1)' 'NOTEST /a bcd'

 Example 6
Operation:  Execute an ASM load module from a REXX exec passing the REXX
environment block address to the ASM program in register 0.

Known:

� The name of the load module: STEVE.LOAD(PGM)

/\ REXX \/
address tso "CALL 'STEVE.LOAD(PGM)' PASSENVB"

 Example 7
Operation:  Execute an ASM load module from a REXX exec invoked under IPCS.

Known:

� The name of the load module: STEVE.LOAD(PGM)
� The name of the REXX exec: STEVE.EXEC(RUNIT)

/\ REXX \/
address tso "ISPSTART PGM(BLSG) PARM(CMD(RUNIT))"

/\ REXX exec RUNIT \/
address ipcs "CALL 'STEVE.LOAD(PGM)' PASSENVB"

For further information concerning IPCS, refer to OS/390 MVS IPCS User's Guide.

 CANCEL Command
Use the CANCEL command to halt processing of batch jobs that you have
submitted from your terminal. A READY message is displayed at your terminal if
the job has been cancelled successfully. A message is also displayed at the system
operator's console when a job is cancelled.

CANCEL is a foreground-initiated-background (FIB) command. You must have
authorization from installation management to use CANCEL. This command is
generally used with the SUBMIT, STATUS, and OUTPUT commands.

Requesting an attention interrupt after issuing a CANCEL command might
terminate that command's processing. In this case, you cannot resume CANCEL
processing by pressing the Enter key as you can after most attention interrupts.

1-78 OS/390 V2R7.0 TSO/E Command Reference  



  CANCEL Command
 

CANCEL Command Syntax 

 ┌ ┐──┬ ┬─── ─────────────────
 │ │└ ┘─,─ ┌ ┐─NOPURGE─
55─ ─CANCEL─ ──( ───6 ┴─jobname─ ──┬ ┬─────────── ) ──┼ ┼───────── ─────────────────5%

└ ┘──(jobname) └ ┘─PURGE───

CANCEL Command Operands
(jobname (jobid))

specifies the names of the jobs that you want to cancel. The job names must
consist of your user identification plus 1 to 8 alphanumeric characters.
However, if your installation has replaced the default IBM-supplied CANCEL
exit, you may be allowed to specify different job names.

The optional job ID subfield can consist of 1 to 8 alphanumeric characters. The
first character must be alphabetic or one of the special characters (#, $, or @).
The job ID is a unique job identifier assigned by the job entry subsystem (JES)
at the time the job was submitted to the batch system. Currently the only valid
forms of job identifiers (jobid) assigned by JES are:

JOBnnnnn or Jnnnnnnn – Jobs
STCnnnnn or Snnnnnnn – Started Tasks
TSUnnnnn or Tnnnnnnn – TSO Users

The job ID is needed if you have submitted two jobs with the same name.

Note the following:

� When you specify a list of several job names, you must separate the job
names with standard delimiters and you must enclose the entire list within
parentheses.

� Jobs controlled by the subsystems are considered started tasks and cannot
be cancelled by the CANCEL command.

� If your installation uses security labels and security checking, each job has
a security label associated with it. You may submit a job at a greater
security label than you are currently logged on with provided that you are
defined to that security label. However, to cancel a job, the security label
you are logged on with must be equal to or greater than the security label
that the job was submitted at.

NOPURGE | PURGE

NOPURGE specifies jobs are to be cancelled if they are in execution, but
output generated by the jobs remains available. If the jobs have executed,
the output remains available.

PURGE specifies the job and its output (on the output queue) are to be purged
from the system.

  Chapter 1. TSO/E Commands and Subcommands 1-79



 DELETE Command  
 

CANCEL Command Return Codes
Figure 1-9. CANCEL Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

CANCEL Command Examples

 Example 1
Operation:  Cancel a batch job.

Known:

� The name of the job: JE024A1

cancel jeð24a1

 Example 2
Operation:  Cancel several batch jobs.

Known:

� The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC

cancel (d58bobta d58bobtb(j51) d58bobtc)

 DELETE Command
Use the DELETE command to delete one or more data set entries or one or more
members of a partitioned data set. The catalog entry for a partitioned data set is
removed only when the entire partitioned data set is deleted. The system deletes a
member of a partitioned data set by removing the member name from the directory
of the partitioned data set.

When you specify one of your data set names to be deleted the system adds your
user ID and, if possible, a descriptive qualifier. Because this can change your
intended request, be careful when deleting data sets that you do not delete data
sets you want to keep. For example, if you want to delete data set Z, you would
specify DELETE Z. But if data set Z did not exist and there were a data set Z.Y,
data set Z.Y would be deleted. The system derives the descriptive qualifier Y from
the catalog and deletes that data set.

If more than one descriptive qualifier exists for a data set, the system will prompt
you for the additional information. For example, if you have data sets Z.X and Z.Y
and you issue the command DELETE Z, the system will ask you to specify qualifier
X or Y.

Members of a partitioned data set and aliases for any members must each be
deleted explicitly. That is, when you delete a member, the system does not remove
any alias names of the member. Also, when you delete an alias name, the member
itself is not deleted.

If a generation_data_group entry is to be deleted, any generation data sets that
belong to it must have been deleted.

1-80 OS/390 V2R7.0 TSO/E Command Reference  



  DELETE Command
 

For MVS, the original TSO/E DELETE command has been replaced by the Access
Method Services command with the same name. Note that when you delete a data
set, you must also free the allocated ddnames. If you want to modify VSAM objects
or use the other Access Method Services from a terminal, see DFSMS/MVS
Access Method Services for VSAM. For error message information, see the
MVS/ESA System Messages library.

The DELETE command supports unique operand abbreviations in addition to the
usual abbreviations produced by truncation. The syntax and operand explanations
show these unique cases.

Before you delete a protected non-VSAM data set, you should use the PROTECT
command to delete the password from the password data set. This prevents you
from having insufficient space for future entries.

DELETE Command Syntax 

 ┌ ┐─────────────────────────────
55─ ── ──┬ ┬─DELETE─ ( ───6 ┴─entry_name─ ──┬ ┬─────────── ) ────────────────────────5

└ ┘─DEL──── └ ┘──/password

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬────────────── ────────────5
└ ┘──CATALOG(catalog_name ──┬ ┬─────────── ) └ ┘──FILE(ddname)

└ ┘──/password

 ┌ ┐ ──┬ ┬─NOPURGE─
 │ │└ ┘─NPRG──── ┌ ┐─SCRATCH───────
5─ ──┼ ┼───────────── ──┬ ┬───────────── ──┼ ┼─────────────── ───────────────────5
 └ ┘ ──┬ ┬─PURGE─ ── ├ ┤─ERASE─────── └ ┘──┬ ┬─NOSCRATCH─
 └ ┘─PRG─── └ ┘──┬ ┬─NOERASE─ └ ┘─NSCR──────
 └ ┘─NERAS───

5─ ──┬ ┬───────────────────────── ──────────────────────────────────────────5%
 ├ ┤─CLUSTER─────────────────
 ├ ┤──┬ ┬─USERCATALOG─ ────────
 │ │└ ┘─UCAT────────
 ├ ┤──┬ ┬─SPACE─ ──────────────
 │ │└ ┘─SPC───
 ├ ┤──┬ ┬─NONVSAM─ ────────────
 │ │└ ┘─NVSAM───
 ├ ┤─ALIAS───────────────────
 ├ ┤──┬ ┬─GENERATIONDATAGROUP─
 │ │└ ┘─GDG─────────────────
 └ ┘──┬ ┬─PAGESPACE─ ──────────
 └ ┘─PGSPC─────

DELETE Command Operands
entry_name/password

is a required operand that names the entries in the designated catalogs to be
deleted. When more than one entry is to be deleted, the list of entry_names
must be enclosed in parentheses. This operand must be the first parameter
following DELETE.

If you want to delete several data set entries having similar names, you can
insert an asterisk into the data set name at the point of dissimilarity. That is, all
data set entries whose names match except at the position where the asterisk
is placed are deleted. However, you can use only one asterisk per data set
name. It cannot appear in the first position.

For example, assume that you have several data set entries named:

  Chapter 1. TSO/E Commands and Subcommands 1-81



 DELETE Command  
 

VACOT.SOURCE.PLI
VACOT.SOURCE2.PLI
VACOT.SOURCE2.TEXT
VACOT.SOURCE2.DATA

If you specify

delete source2.\

the only data set entry remaining is:

VACOT.SOURCE.PLI

password
specifies a password for a password-protected entry. Passwords can be
specified for each entry_name or the catalog's password can be specified
through the CATALOG operand for the catalog that contains the entries to
be deleted.

CATALOG( catalog_name[/password])
specifies the name of the catalog that contains the entries to be deleted.

catalog_name identifies the catalog that contains the entry to be deleted.

password specifies the master password of the catalog that contains the entries
to be deleted.

FILE(ddname)
specifies the name of the DD statement that identifies the volume that contains
the data set to be deleted or identifies the entry to be deleted.

PURGE | PRG | NOPURGE | NPRG

PURGE | PRG specifies the entry is to be deleted even if the retention period,
specified in the TO or FOR operand, has not expired.

NOPURGE | NPRG specifies the entry is not to be deleted if the retention
period has not expired. When NOPURGE is coded and the retention period
has not expired, the entry is not deleted. NOPURGE is the default.

ERASE | NOERASE | NERAS

ERASE specifies the data component of a cluster (VSAM only) is to be
overwritten with binary zeros when the cluster is deleted. If ERASE is
specified, the volume that contains the data component must be mounted.

NOERASE | NERAS  specifies the data component of a cluster (VSAM only) is
not to be overwritten with binary zeros when the cluster is deleted.

SCRATCH | NOSCRATCH | NSCR

SCRATCH specifies a non-VSAM data set is to be scratched (removed) from
the volume table of contents (VTOC) of the volume on which it resides.
SCRATCH is the default.

NOSCRATCH | NSCR specifies a non-VSAM data set is not to be scratched
(removed) from the VTOC of the volume on which it resides.

1-82 OS/390 V2R7.0 TSO/E Command Reference  



  DELETE Command
 

CLUSTER
specifies the entry to be deleted is a cluster entry for a VSAM data set.

USERCATALOG | UCAT
specifies the entry to be deleted is a user-catalog entry. This operand must be
specified if a user catalog is to be deleted. A user catalog can be deleted only
if it is empty.

SPACE | SPC
specifies the entry to be deleted is a data-space entry. This operand is required
if a data space is to be deleted. A data space can be deleted only if it is empty.

NONVSAM | NVSAM
specifies the entry to be deleted is a non-VSAM data set entry.

ALIAS
specifies the entry to be deleted is an alias entry.

GENERATIONDATAGROUP | GDG
specifies the entry to be deleted is a generation-data-group entry. A
generation-data-group base can be deleted only if it is empty.

PAGESPACE | PGSPC
specifies a page space is to be deleted. A page space can be deleted only if it
is inactive.

If the FILE operand is omitted, the entry_name is dynamically allocated in the
following cases:

� A non-VSAM entry is to be deleted and scratched.
� An entry is to be deleted and erased.
� An entry that resides in a data space of its own is to be deleted.

DELETE Command Return Codes
Figure 1-10. DELETE Command Return Codes

0 Processing successful. Informational messages might have been
issued.

4 Processing successful, but a warning message has been issued.

8 Processing was completed, but specific details were bypassed.

12 Processing unsuccessful.

16 Severe error or problem encountered.

DELETE Command Examples

 Example 1
Operation:  Delete an entry. In this example, a non-VSAM data set is deleted.

Known:

� The name of the data set to be deleted is EXAMPLE.NONVSAM.
� The prefix in the profile is D27UCAT.
� Your user ID is D27UCAT.

delete example.nonvsam scratch nonvsam

  Chapter 1. TSO/E Commands and Subcommands 1-83



 EDIT Command  
 

The DELETE command deletes the non-VSAM data set
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the entry resides
is assumed not to be password protected, the CATALOG operand is not required to
delete the non-VSAM entry.

SCRATCH removes the VTOC entry of the non-VSAM data set. Because FILE is
not coded, the volume that contains D27UCAT.EXAMPLE.NONVSAM is
dynamically allocated.

NONVSAM ensures the entry being deleted is a non-VSAM data set. However,
DELETE can still find and delete a non-VSAM data set if NONVSAM is omitted.

 EDIT Command
Use the EDIT command to enter data into the system. With EDIT and its
subcommands, you can create, modify, store, submit, retrieve, and delete data sets
with sequential or partitioned data set organization. You cannot, however, edit an
SMS-managed partitioned data set extended (PDSE). The data sets might contain:

� Source programs composed of program language statements such as PL/I,
COBOL, FORTRAN, and so on.

� Data used as input to a program.

� Text used for information storage and retrieval.

� Commands, subcommands, CLIST statements and/or data.

� Job control language (JCL) statements for background jobs.

The EDIT command supports only data sets that have one of the following formats:

� Fixed-blocked, unblocked, or standard block; with or without ASCII and
machine record formats.

� Variable-blocked or unblocked; without ASCII or machine control characters.

EDIT support of print control data sets is read-only. Whenever a SAVE
subcommand is entered for an EDIT data set originally containing print control
characters, the ability to print the data set on the printer with appropriate spaces
and ejects is lost. If you enter SAVE without operands for a data set containing
control characters, you are warned that the data set will be saved without control
characters, and you can choose to either save into the original data set or enter a
new data set name. If the data set specified on the EDIT command is partitioned
and contains print control characters, you cannot enter SAVE.

After you edit a data set with a variable-blocked record format, each record (line) is
padded with blanks to the end of the record. When you save the data set, the
blanks are eliminated and the length adjusted accordingly.

EDIT Command Syntax

1-84 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT Command
 

 

55─ ──┬ ┬─EDIT─ ─data_set_name─ ──┬ ┬─────────── ──┬ ┬─────── ──┬ ┬─────────── ─────5
└ ┘─E──── └ ┘──/password ├ ┤─EMODE─ ├ ┤─RECOVER───

 └ ┘─IMODE─ └ ┘─NORECOVER─

5─ ──┬ ┬───── ───────────────────────────────────────────────────────────────5
 ├ ┤─NEW─
 └ ┘─OLD─

5─ ──┬ ┬──────────────────────────────────────────────────────────────── ────5
 ├ ┤ ──┬ ┬─PLI── ──┬ ┬──────────────────────────────────────────────────
 │ │└ ┘─PLIF─ │ │┌ ┐─CHAR6ð─
 │ │└ ┘──( ──┬ ┬────────────────────────────── ──┼ ┼──────── )
 │ ││ │┌ ┐─2───────── ┌ ┐─72──────── └ ┘─CHAR48─
 │ │└ ┘ ──┴ ┴─integer_1─ ──┼ ┼───────────
 │ │└ ┘─integer_2─
 ├ ┤─ASM────────────────────────────────────────────────────────────
 ├ ┤─COBOL──────────────────────────────────────────────────────────

│ │┌ ┐──(FREE) ─
 ├ ┤ ─GOFORT─ ──┼ ┼───────── ───────────────────────────────────────────

│ │└ ┘──(FIXED)
 ├ ┤─FORTE──────────────────────────────────────────────────────────
 ├ ┤─FORTG──────────────────────────────────────────────────────────
 ├ ┤─FORTGI─────────────────────────────────────────────────────────
 ├ ┤─FORTH──────────────────────────────────────────────────────────
 ├ ┤─TEXT───────────────────────────────────────────────────────────
 ├ ┤─DATA───────────────────────────────────────────────────────────
 ├ ┤─CLIST──────────────────────────────────────────────────────────
 ├ ┤─CNTL───────────────────────────────────────────────────────────
 └ ┘─VSBASIC────────────────────────────────────────────────────────

┌ ┐──NUM( ──┬ ┬────────────────────────── )
 │ │└ ┘ ─integer_1─ ──┬ ┬───────────
 ┌ ┐─NOSCAN─ │ │└ ┘─integer_2─
5─ ──┼ ┼──────── ──┼ ┼───────────────────────────────────── ───────────────────5
 └ ┘─SCAN─── └ ┘─NONUM───────────────────────────────

5─ ──┬ ┬──────────────────────── ──┬ ┬────────────────────── ──┬ ┬────── ───────5%
└ ┘── ──┬ ┬─BLOCK─── (integer) └ ┘── ──┬ ┬─LINE── (integer) ├ ┤─CAPS─

 └ ┘─BLKSIZE─ └ ┘─LRECL─ └ ┘─ASIS─

EDIT Command Operands
data_set_name

specifies the name of the data set that you want to create or edit.

If you enter the name of a sequential data set, but the data set is actually found
to be a partitioned data set, the member name TEMPNAME is assumed. See
also the description of the OLD operand below.

password
specifies the password associated with the data_set_name. If the password is
omitted and the data set is password protected, you are prompted for the data
set's password. Read protected partitioned data sets prompt for the password
twice, provided it is not entered on the EDIT command, or is not the same
password as your LOGON user ID password.

EMODE | IMODE

EMODE specifies the initial mode of entry is edit mode. This is the default for
OLD data sets. See OS/390 TSO/E User's Guide, for more information
about using edit mode.

  Chapter 1. TSO/E Commands and Subcommands 1-85



 EDIT Command  
 

IMODE specifies the initial mode of entry is input mode. This is the default for
NEW or empty data sets. See OS/390 TSO/E User's Guide, for more
information about using input mode.

RECOVER | NORECOVER

RECOVER specifies that you intend to recover an EDIT work file containing the
data set named on the EDIT command as the data set to be edited. You
are placed in edit mode. This operand is valid only when your profile has
the RECOVER attribute. See OS/390 TSO/E User's Guide, for more
information.

NORECOVER specifies that you do not want to recover a work file, even if a
recoverable work file exists.

NEW | OLD

NEW specifies the data set named by the first operand does not exist. If an
existing cataloged data set already has the data set name that you
specified, the system notifies you when you try to save it. Otherwise, the
system allocates your data set when you save it. If you specify NEW
without specifying a member name, a sequential data set is allocated for
you when you save it. If you specify NEW and include a member name, the
system allocates a partitioned data set and creates the indicated member
when you try to save it.

OLD specifies the data set named on the EDIT command already exists. When
you specify OLD and the system is unable to locate the data set, you are
notified and you have to reenter the EDIT command. If you specify OLD
without specifying a member name, the system assumes that your data set
is sequential. If the data set is, in fact, a partitioned data set, the system
assumes that the member name is TEMPNAME. If you specify OLD and
include a member name, the system notifies you if your data set is not
partitioned.

If you do not specify OLD or NEW, the system uses a tentative default of OLD.
If the data set name or member name that you specified cannot be located, the
system defaults to NEW.

Any user-defined data set type is also a valid data set type operand and can
have subfield parameters defined by your installation (see Figure 1-11, note 4).

PLI
specifies the data identified by the first operand is for PL/I statements that are
to be held as V-format records with a maximum length of 104 bytes. The
statements can be for the PL/I Optimizing compiler or the PL/I Checkout
compiler.

PLIF
specifies the data set identified by the first operand is for PL/I statements that
are to be held as fixed format records 80 bytes long. The statements can be for
the PL/I Optimizing compiler or the PL/I Checkout compiler.

integer_1 and integer_2
specify the column boundaries for your input statements. These values are
applicable only when you request syntax checking of a data set for which the

1-86 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT Command
 

PLIF operand has been specified. The position of the first character of a line,
as determined by the left margin adjustment on your terminal, is column 1. The
value for integer_1 specifies the column where each input statement is to
begin. The statement can extend from the column specified by integer_1 up to
and including the column specified as a value for integer_2. If you omit
integer_1, you must omit integer_2. The default values are columns 2 and 72.
However, you can omit integer_2 without omitting integer_1.

CHAR48 | CHAR60

CHAR48 specifies the PL/I source statements are written using the character
set that consists of 48 characters.

CHAR60 specifies the source statements are written using the character set
that consists of 60 characters.

If no value is entered, the default value is CHAR60.

ASM
specifies the data set identified by the first operand is for assembler language
statements.

COBOL
specifies the data set identified by the first operand is for COBOL statements.

CLIST
specifies the data set identified by the first operand is for a CLIST and contains
TSO/E commands, subcommands, and CLIST statements as statements or
records in the data set. The data set is assigned line numbers.

CNTL
specifies the data set identified by the first operand is for job control language
(JCL) statements and SYSIN data to be used with the SUBMIT command or
subcommand.

TEXT
specifies the data set identified by the first operand is for text that can consist
of both uppercase and lowercase characters.

DATA
specifies the data set identified by the first operand is for data that can be
subsequently retrieved or used as input data for processing by an application
program.

FORTGE
specifies the data set identified by the first operand is for FORTRAN IV (E)
statements.

FORTG
specifies the data set identified by the first operand is for FORTRAN IV (G)
statements.

FORTGI
specifies the data set identified by the first operand is for FORTRAN IV (G1)
statements.

  Chapter 1. TSO/E Commands and Subcommands 1-87



 EDIT Command  
 

FORTH
specifies the data set identified by the first operand is for FORTRAN IV (H)
EXTCOMP statements.

GOFORT(FREE | FIXED)
specifies the data set identified by the first operand is for statements that are
suitable for processing by the Code and Go FORTRAN program product. If
you enter the descriptive qualifier without a data set type, the data set type
default is GOFORT(FREE). If you do not specify a FORTRAN language level,
GOFORT is the default value. FREE specifies the statements are of
variable-lengths and do not conform to set column requirements. If you do not
specify FREE or FIXED, FREE is the default. FIXED specifies statements
adhere to standard FORTRAN column requirements and are 80 bytes long.

VSBASIC
specifies the data set identified by the first operand is for VSBASIC statements.

The ASM, CLIST, CNTL, COBOL, DATA, FORTGI, FORTH, GOFORT, PLI,
PLIF, TEXT, and VSBASIC operands specify the type of data set you want to
edit or create. You must specify one of these whenever:

� The data_set_name operand does not follow data set naming conventions
(that is, it is enclosed in quotes).

� The data_set_name operand is a member name only (that is, it is enclosed
in parentheses).

� The data_set_name operand does not include a descriptive qualifier or the
descriptive qualifier is such that EDIT cannot determine the data set type.

The system prompts you for data set type whenever the type cannot be
determined from the descriptive qualifier (as in the 3 cases above), or
whenever you forget to specify a descriptive qualifier on the EDIT command.

Note:  If PLI is the descriptive qualifier, the data set type default is PLI. To use
data set types GOFORT, FORTGI, or FORTH, you must enter the data
set type operand to save it.

SCAN | NOSCAN

SCAN specifies each line of data you enter in input mode is to be checked,
statement by statement, for proper syntax. Syntax checking is available
only for statements written in FORTGI or FORTH.

If your installation specified a syntax checker after system generation,
user-defined data set types can also use the SCAN operand.

NOSCAN specifies syntax checking is not to be performed. NOSCAN is the
default.

NUM(integer_1 integer_2)  | NONUM

NUM(integer_1 integer_2) specifies lines of the data set records are numbered.
You can specify integer_1 and integer_2 for ASM type data sets only.
integer_1 specifies, in decimal, the starting column (73-80) of the line
number. integer_2 specifies, in decimal, the length (8 or less) of the line
number. integer_1 plus integer_2 cannot exceed 81. If integer_1 and

1-88 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT Command
 

integer_2 are not specified, the line numbers assume appropriate default
values.

NUM is the default.

NONUM specifies your data set records do not contain line numbers. Do not
specify this operand for the VSBASIC and CLIST data set types because
they must always have line numbers.

BLOCK( integer) | BLKSIZE( integer)
specifies the maximum length, in bytes, for blocks of records of a new data set.
Specify this operand only when creating a new data set or editing an empty old
data set. You cannot change the block size of an existing data set except if the
data set is empty. If you omit this operand, it defaults according to the type of
data set being created. The IBM-supplied default values for the block sizes are
described in Figure 1-11. To modify those default values, see OS/390 TSO/E
Customization. The block size (BLOCK or BLKSIZE), for data sets that contain
fixed-length records must be a multiple of the record length (LINE or LRECL).
For variable-length records, the block size must be a multiple of the record
length plus 4.

If BLKSIZE (80) is coded with RECFM(U), then the line is truncated by 1
character. This byte (the last one) is reserved for an attribute character.

LINE(integer) | LRECL( integer)
specifies the length of the records to be created for a new data set. Specify
this operand only when creating a new data set or editing an empty old data
set. The new data set is composed of fixed-length records with a logical record
length equal to the specified integer. You cannot change the logical record size
of an existing data set unless the data set is empty. If you specify this operand
and the data set type is ASM, FORTGI, FORTH, COBOL, or CNTL, the integer
must be 80. If this operand is omitted, the length defaults according to the type
of data set being created. The IBM-supplied default values are described in
Figure 1-11. To modify those default values, see OS/390 TSO/E
Customization. Use this operand with the BLOCK or BLKSIZE operand.

CAPS | ASIS

CAPS specifies all input data and data on modified lines is to be converted to
uppercase characters. If you omit both CAPS and ASIS, CAPS is the
default unless the data set type is TEXT.

ASIS specifies input and output data are to retain the same form (uppercase
and lowercase) as entered. ASIS is the default for TEXT only.

  Chapter 1. TSO/E Commands and Subcommands 1-89



 EDIT Command  
 

Figure 1-11. EDIT Command: Default Values for LINE or LRECL and BLOCK or BLKSIZE Operands

Data
Set
Type

DSORG LRECL Block Size Line Numbers

LINE(n) BLOCK(n) NUM(n,m) CAPS/ASIS

Default Specif. Default Specif.
(Note 1)

Default(n,m) Specif. Default CAPS
Required

ASM PS/PO 80 =80 3120 <=default Last 8 73<=n<=80 CAPS Yes
CLIST PS/PO 255 (Note 2) 3120 <=default (Note 3) CAPS Yes
CNTL PS/PO 80 =80 3120 <=default Last 8 CAPS Yes
COBOL PS/PO 80 =80 400 <=default First 6 CAPS Yes
DATA PS/PO 80 <=255 3120 <=default Last 8 CAPS No
FORTE PS/PO 80 <=255 3120 <=default Last 8 CAPS Yes
FORTG PS/PO 80 <=255 3120 <=default Last 8 CAPS Yes
FORTGI PS/PO 255 =80 400 <=default Last 8 CAPS Yes
FORTH PS/PO 255 =80 400 <=default Last 8 CAPS Yes
GOFORT PS/PO 255  3120 <=default First 8 CAPS Yes
(Or user supplied data set type - see Note 4)
PLI PS/PO 104 <=100 400 <=default (Note 3) CAPS No
PLIF PS/PO 80 <=100 400 <=default Last 8 CAPS Yes
TEXT PS/PO 255 (Note 2) 3120 <=default (Note 3) ASIS No
VSBASIC PS/PO 255 =80 3120 <=32,760 First 5 CAPS Yes
 
Notes

1. IBM supplies the default values. For information about how to modify the default values, see OS/390 TSO/E Customization.

2. Specifying a LINE value results in fixed-length records with a LRECL equal to the specified value. The specified value must
always be equal to or less than the default. If the LINE operand is omitted, variable-length records are created.

3. The line numbers are contained in the last eight bytes of all fixed-length records and in the first eight bytes of all
variable-length records.

4. A user can have additional data set types recognized by the EDIT command processor. You can modify the user-defined
data set types along with any of the data sets shown above after system generation time by using the EDIT macro. The
EDIT macro causes a table of constants to be built, which describes the data set attributes. For more information about how
to modify the EDIT macro, see OS/390 TSO/E Customization.

When you edit a data set type you defined yourself, the system uses the data set type as the descriptor (right-most)
qualifier. You cannot override any data set types that have been defined by IBM. The EDIT command processor supports
data sets that have the following attributes:

Data Set Organization: Must be either sequential or partitioned
Record Format: Fixed or variable
Logical Record Size: Less than or equal to 255 characters
Block Size: User specified-must be less than or equal to track length
Sequence Number: V type--First 8 characters

F type--Last 8 characters
 

EDIT Command Return Codes
Figure 1-12. EDIT Command Return Codes

0 Processing successful.

12 Processing unsuccessful.

EDIT Command Examples

1-90 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT Command
 

 Example 1
Operation:  Create a data set to contain a COBOL program.

Known:

� The user-supplied name for the new data set: PARTS
� The fully-qualified name (where WRR05 is the user ID) will be:

WRR05.PARTS.COBOL
� Line numbers are to be assigned.

edit parts new cobol

 Example 2
Operation:  Create a data set to contain a program written in FORTRAN to be
processed by the FORTRAN (G1) compiler.

Known:

� The user-supplied name for the new data set: HYDRLICS
� The fully-qualified name (where WRR05 is the user ID) will be:

WRR05.HYDRLICS.FORT
� The input statements are not to be numbered.
� Syntax checking is desired.
� Block size: 400
� Line length must be: 80
� The data is to be changed to all uppercase.

edit hydrlics new fortgi nonum scan

 Example 3
Operation:  Add data to an existing data set containing input data for a program.

Known:

� The name of the data set: WRR05.MANHRS.DATA
� Block size: 3120
� Line length: 80
� Line numbers are desired.
� The data is to be upper case.
� Syntax checking is not applicable.

e manhrs.data

 Example 4
Operation:  Create a data set for a CLIST.

Known:

� The user supplied name for the data set: CMDPROC

e cmdproc new clist

  Chapter 1. TSO/E Commands and Subcommands 1-91



 EDIT Subcommands (Overview)  
 

EDIT Subcommands (Overview)
Use the subcommands while in edit mode to edit and modify data and to
communicate with the system operator and with other terminal users. The format of
each subcommand is similar to the format of all the commands. Each
subcommand, therefore, is presented and explained like that for a command.
Figure 1-13 contains a summary of each subcommand's function.

For a complete description of the syntax and function of the ALLOCATE, ATTRIB,
EXEC, FREE, HELP, PROFILE, SEND, and SUBMIT subcommands, refer to the
description of the TSO/E command with the same name.

Note:  Invocation of subcommands FORMAT, MERGE, RUN, and SUBMIT,
without specifying data set name(s), causes the EDIT command to allocate
a new and cataloged data set with the name of
'PREFIX.SUBCOMMAND.DATE.TIME'. The data set is deleted when the
subcommand completes. If you are running with profile NOPREFIX, you
might want to set PREFIX to the user ID. 

Figure 1-13 (Page 1 of 2). Subcommands and Functions of the EDIT Command

ALLOCATE Allocates data sets and file names.

ATTRIB Builds a list of attributes for non-VSAM data sets.

BOTTOM Moves the pointer to the last record in the data set.

CHANGE Alters the contents of a data set.

CKPT Protects input or modifications to a data set.

COPY Copies records within the data set.

DELETE Removes records.

DOWN Moves the pointer toward the end of the data.

END Terminates the EDIT command.

EXEC Executes a CLIST or REXX exec.

FIND Locates a character string.

FORMAT 2 Formats and lists data.

FREE Releases previously allocated data sets.

HELP Explains available subcommands.

INPUT Prepares the system for data input.

INSERT Inserts records.

Insert/ Replace/
Delete

Inserts, replaces, or deletes a line.

LIST Prints out specific lines of data.

MERGE 2 Combines all or parts of data sets.

MOVE Moves records within a data set.

PROFILE Specifies characteristics of your user profile.

RENUM Numbers or renumbers lines of data.

2 Available as an optional program product.

1-92 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—CHANGE Subcommand
 

Figure 1-13 (Page 2 of 2). Subcommands and Functions of the EDIT Command

RUN Causes compilation and execution of data set.

SAVE Retains the data set.

SCAN Controls syntax checking.

SEND Allows you to communicate with the system operator and with
other terminal users.

SUBMIT Submits a job for execution in the background.

TABSET Sets the tabs.

TOP Sets the pointer to zero value.

UNNUM Removes line numbers from records.

UP Moves the pointer toward the start of data set.

VERIFY Causes current line to be listed whenever the current line
pointer changes or the text of the current line is modified.

 EDIT—ALLOCATE Subcommand
Use the ALLOCATE subcommand to dynamically allocate the data sets required by
a program that you intend to execute. For a description of the ALLOCATE
command syntax and function, see the “ALLOCATE Command” on page 1-18.

 EDIT—ATTRIB Subcommand
The ATTRIB subcommand of EDIT performs the same function as the ATTRIB
command without leaving edit mode. For a description of the ATTRIB command
syntax and function, see the “ATTRIB Command” on page 1-66.

 EDIT—BOTTOM Subcommand
Use the BOTTOM subcommand to change the current line pointer to the last line of
the data set you are editing or to contain a zero value (if the data set is empty).
This subcommand can be useful when following subcommands such as INPUT or
MERGE must be at the end of the data set.

EDIT—BOTTOM Subcommand Syntax 

55─ ──┬ ┬─BOTTOM─ ──────────────────────────────────────────────────────────5%
 └ ┘─B──────

 EDIT—CHANGE Subcommand
Use the CHANGE subcommand to modify a sequence of characters in a line or in
a range of lines. Either the first occurrence or all occurrences of the sequence can
be modified.

  Chapter 1. TSO/E Commands and Subcommands 1-93



 EDIT—CHANGE Subcommand  
 

EDIT—CHANGE Subcommand Syntax 

 ┌ ┐ ─*─ ──┬ ┬───────── ──────────────────
 │ │└ ┘─count_1─
55─ ──┬ ┬─CHANGE─ ──┼ ┼────────────────────────────────── ──┬ ┬─string_1─ ───────5
 └ ┘─C────── └ ┘ ─line_number_1─ ──┬ ┬─────────────── └ ┘─count_2──
 └ ┘─line_number_2─

5─ ──┬ ┬─────────────────── ────────────────────────────────────────────────5%
 └ ┘ ─string_2─ ──┬ ┬─────
 └ ┘─ALL─

EDIT—CHANGE Subcommand Operands
line_number_1

specifies the number of a line you want to change. When used with
line_number_2, it specifies the first line of a range of lines.

line_number_2
specifies the last line of a range of lines that you want to change. The specified
lines are scanned for first occurrence of the sequence of characters specified
for string_1.

* specifies the line pointed to by the line pointer in the system to be used. If you
do not specify a line number or an asterisk (*), the current line is the default.

count_1
specifies the number of lines that you want to change, starting at the position
indicated by the asterisk (*).

string_1
specifies a sequence of characters that you want to change. The sequence
must be (1) enclosed within single quotes, or (2) preceded by an extra
character which serves as a special delimiter. The extra character may be any
printable character other than a single quote (apostrophe), number, blank, tab,
comma, semicolon, parenthesis, or asterisk. The hyphen (-) and plus (+) signs
can be used, but should be avoided because of possible confusion with their
use in continuation. If the first character in the character string is an asterisk
(*), do not use a slash (/) as the extra character. (TSO/E interprets the /\ as
the beginning of a comment.) The extra character must not appear in the
character string. Do not put a standard delimiter between the extra character
and the string of characters unless you intend the delimiter to be treated as a
character in the character string.

If string_1 is specified and string_2 is not, the specified characters are
displayed at your terminal up to (but not including) the sequence of characters
that you specified for string_1. You can then complete the line.

Note:  If you are changing a string to a string of larger size, EDIT inserts the
larger string and attempts to preserve the rest of the line, including
spaces.

string_2
specifies a sequence of characters that you want to use as a replacement for
string_1. Like string_1, string_2 must be (1) enclosed within single quotes, or
(2) preceded by a special delimiter. This delimiter must be the same as the
extra character used for string_1. Optionally, this delimiter can also immediately
follow string_2.

1-94 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—CHANGE Subcommand
 

Note:  If you are changing a string to a string of larger size, EDIT inserts the
larger string and attempts to preserve the rest of the line, including
spaces.

ALL
specifies every occurrence of string_1 within the specified line or range of lines
are replaced by string_2. If this operand is omitted, only the first occurrence of
string_1 is replaced with string_2.

If you cause an attention interruption during the CHANGE subcommand when
using the ALL operand, your data set might be partially changed. It is good
practice to list the affected area of your data set before continuing.

If the special delimiter form is used, string_2 must be followed by the delimiter
before typing the ALL operand.

count_2
specifies a number of characters to be displayed at your terminal, starting at
the beginning of each specified line.

 Quoted-String Notation
As indicated above, instead of using special delimiters to indicate a character
string, you can use paired single quotes (apostrophes) to accomplish the same
function with the CHANGE subcommand. The use of single quotes as delimiters for
a character string is called quoted-string notation. Following are the rules for
quoted-string notation for the string_1 and string_2 operands:

� Do not use both special-delimiter and quoted-string notation in the same
subcommand.

� Enclose each string with single quotes; for example,
‘This is string 1’ ‘This is string 2’. Quoted strings must be separated
with a blank.

� Use two single quotes to represent a single quote within a character string; for
example, ‘pilgrim's progress’.

� Use two single quotes to represent a null string; for example,".

You can specify quoted-string notation in place of special-delimiter notation to
accomplish any of the functions of the CHANGE subcommand as follows:

Note the following:

1. Choose the form that best suits you (either special-delimiter or quoted-string)
and use it consistently. It will help you use the subcommand.

2. If you cause an attention interruption during the CHANGE subcommand, your
data set might not be completely changed. You should list the affected parts of
your data set before entering other subcommands.

Function *Special-Delimiter
Notation

Quoted-String Notation

Replace !ab!cde! ‘ab’‘cde’
Delete !ab!!or!ab! ‘ab’ "
Print up to !ab ‘ab’
Place in front of !!cde! " ‘cde’
* - using the exclamation point (!) as the delimiter.

  Chapter 1. TSO/E Commands and Subcommands 1-95



 EDIT—CHANGE Subcommand  
 

Combinations of Operands
You can enter several different combinations of these operands. The system
interprets the operands that you enter according to the following rules:

� When you enter a single number and no other operands, the system assumes
that you are accepting the default value of the asterisk (*) and that the number
is a value for the count_2 operand.

� When you enter two numbers and no other operands, the system assumes that
they are line_number_1 and count_2 respectively.

� When you enter two operands and the first is a number and the second begins
with a character that is not a number, the system assumes that they are
line_number_1 and string_1.

� When you enter three operands and they are all numbers, the system assumes
that they are line_number_1, line_number_2, and count_2.

� When you enter three operands and the first two are numbers, but the last
begins with a character that is not a number, the system assumes that they are
line_number_1, line_number_2, and string_1.

EDIT—CHANGE Subcommand Examples

 Example 1
Operation:  Change a sequence of characters in a particular line of a
line-numbered data set.

Known:

� The line number: 57
� The old sequence of characters: parameter
� The new sequence of characters: operand

change 57 XparameterXoperand

 Example 1A
Operation:  Change a sequence of characters in a particular line of a
line-numbered data set.

Known:

� The line number: 57
� The old sequence of characters: parameter
� The new sequence of characters: operand

change 57 'parameter' 'operand'

 Example 2
Operation:  Change a sequence of characters wherever it appears in several lines
of a line-numbered data set.

change 24 82 !i.e. !e.g. ! all

The blanks following the string_1 and string_2 examples (i.e.  and e.g. ) are
treated as characters.

1-96 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—CHANGE Subcommand
 

 Example 3
Operation:  Change part of a line in a line-numbered data set.

Known:

� The line number: 143
� The number of characters in the line preceding the characters to be changed:

18

change 143 18

This form of the subcommand causes the first 18 characters of line number 143 to
be displayed at your terminal. You complete the line by typing the new information
and enter the line by pressing the Enter key. All of your changes are incorporated
into the data set.

 Example 4
Operation:  Change part of a particular line of a line-numbered data set.

Known:

� The line number: 103
� A string of characters to be changed: 315 h.p. at 2400

change 1ð3 m315 h.p. at 24ðð

This form of the subcommand causes line number 103 to be searched until the
characters 315 h.p. at 2400 are found. The line is displayed at your terminal up to
the string of characters. You can then complete the line and enter the new version
into the data set.

 Example 5
Operation:  Change the values in a table.

Known:

� The line number of the first line in the table: 387
� The line number of the last line in the table: 406
� The number of the column containing the values: 53

change 387 4ð6 52

Each line in the table is displayed at your terminal up to the column containing the
value. As each line is displayed, you can type in the new value. The next line is not
displayed until you complete the current line and enter it into the data set.

 Example 6
Operation:  Add a sequence of characters to the front of the line that is currently
referred to by the pointer within the system.

Known:

� The sequence of characters: in the beginning

change \ //in the beginning

  Chapter 1. TSO/E Commands and Subcommands 1-97



 EDIT—CKPOINT Subcommand  
 

 Example 6A
Operation:  Add a sequence of characters to the front of the line that is currently
referred to by the pointer within the system.

Known:

� The sequence of characters: in the beginning

change \ '' 'in the beginning'

 Example 7
Operation:  Delete a sequence of characters from a line-numbered data set.

Known:

� The line number containing the string of characters: 15
� The sequence of characters to be deleted: weekly

change 15 /weekly//

or

change 15 /weekly/

 Example 7A
Operation:  Delete a sequence of characters from a line-numbered data set.

Known:

� The line number containing the string of characters: 15
� The sequence of characters to be deleted: weekly

change 15 'weekly' '

 Example 8
Operation:  Delete a sequence of characters wherever it appears in a
line-numbered data set containing line numbers 10 to 150.

Known:

� The sequence of characters to be deleted: weekly

change 1ð 999/ weekly// all

 EDIT—CKPOINT Subcommand
Use the CKPOINT subcommand to protect input or modifications to a data set
during an EDIT session. All changes are placed in a work file (utility data set)
created by EDIT and are accessible to you if an abnormal termination occurs. The
purpose of this subcommand is to eliminate the need for specifying the SAVE
subcommand of EDIT to preserve changes.

EDIT—CKPOINT Subcommand Syntax 

55─ ──┬ ┬─CKPOINT─ ──┬ ┬─────── ──────────────────────────────────────────────5%
 └ ┘─CKP───── └ ┘─value─

1-98 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—CKPOINT Subcommand
 

EDIT—CKPOINT Subcommand Operand
value

specifies the intervals (number of line modifications or input lines) at which a
checkpoint is taken. You can use the value operand in one of three ways:

1. By specifying a decimal value from 1 to 9999 to be used as the checkpoint
intervals.

2. By specifying a decimal value of zero to terminate interval checkpointing.

3. By not specifying a value, causing a checkpoint to be taken. This can be
done even though you have already requested interval checkpointing.
Checkpointing does not stop in this case, but continues after reaching the
previously set interval value.

A line is considered modified if it is inserted, deleted, or changed. Issuing the
CHANGE subcommand repeatedly and specifying the same line is equivalent
to modifying the line once the CHANGE subcommand is executed.

EDIT—CKPOINT Subcommand Examples

 Example 1
When the CKPOINT subcommand is issued without operands, EDIT ensures that
all changes or modifications made up to this point are reflected in the work file. To
do this, enter:

CKPOINT

or

CKP

 Example 2
When the CKPOINT subcommand is issued with an operand value of 1 to 9999, a
checkpoint is taken immediately and at requested intervals specified by the operand
value until termination. To do this, enter:

CKPOINT value

or

CKP value

 Example 3
When interval checkpointing is in effect and you want to alter the active value,
reissue the CKPOINT subcommand inserting the new value like this:

CKPOINT new_value

or

CKP new_value

 Example 4
To terminate interval checkpoint, issue the CKPOINT subcommand with a zero
value. The entry is:

CKPOINT ð

or

  Chapter 1. TSO/E Commands and Subcommands 1-99



 EDIT—COPY Subcommand  
 

CKP ð

 EDIT—COPY Subcommand
Use the COPY subcommand of EDIT to copy one or more records that exist in the
data set you are editing. The copy operation copies data from a source location to
a target location within the same data set and leaves the source data intact.
Existing lines in the target area are shifted toward the end of the data set as
required to make room for the incoming data. No lines are lost.

The target line cannot be within the source area, with the exception that the target
line (the first line of the target area) can overlap the last line of the source area.

On completion of the copy operation, the current line pointer points to the last
copied-to line, not to the last line shifted to make room in the target area.

If you cause an attention interruption during the copy operation, the data set may
be only partially changed. As a check, list the affected part of the data set before
continuing.

If COPY is entered without operands, the line pointed to by the current line pointer
is copied into the current-line EDIT-default-increment location.

EDIT—COPY Subcommand Syntax 

 ┌ ┐─*──────
55─ ──┬ ┬─COPY─ ──┬ ┬ ─line_1─ ──┬ ┬──────── ──┼ ┼──────── ───── ──┬ ┬───────────── ──5%

└ ┘─CO─── │ │└ ┘─line_2─ └ ┘─line_3─ └ ┘──INCR(lines)
 │ │┌ ┐─*──────── ┌ ┐─1───── ┌ ┐─*──────
 └ ┘──┴ ┴──'string' ──┼ ┼─────── ──┼ ┼────────
 └ ┘─count─ └ ┘─line_4─

EDIT—COPY Subcommand Operands
line_1

specifies the first line or the lower limit of the range to be copied. If the
specified line number does not exist in this data set, the range begins with the
next higher line number.

line_2
specifies the last line or the upper limit of the range to be copied. If the
specified line number does not exist in this data set, the range ends with the
highest line number that is less than line_2. If line_2 is not entered, the value
defaults to the value of line_1; that is, the source becomes one line. Do not
enter an asterisk for line_2.

If COPY is followed by two line number operands, the system assumes them to
represent line_1 and line_3, and defaults line_2 to the value of line_1.

line_3
specifies the target line number; that is, the line at which the copied-to data
area starts. If the line_3 value corresponds to an existing line, the target line is
changed to line_3 + INCR(lines) and either becomes a new line or displaces an
existing line at that location. When the copy operation begins, existing lines
encountered in the target area are renumbered to make room for the incoming
data. The increment for renumbered lines is one (1). Specifying zero (0) for

1-100 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—COPY Subcommand
 

line_3 puts the copied data at the top of the data set, only if line 0 is empty. If
line 0 has data, enter TOP followed by COPY with line_3 set to *. Note that
line_3 defaults to *.

The value of line_3 should not fall in the range from line_1 to line_2. The target
line must not be in the range being copied. Exception: Line_3 can be equal to
line_2.

* represents the value of the current line pointer.

INCR(lines)
specifies the line number increment to be used for this copy operation. The
default is the value in effect for this data before the copy operation. When the
copy operation is complete, the increment reverts to the value in effect before
COPY was issued. Range: 1-8 decimal digits, but not zero.

The increment for any renumbered lines is one (1).

‘string’
specifies a sequence of alphanumeric characters with a maximum length equal
to or less than the logical record length of the data set you are editing. When a
character string is specified, a search starting at the current line is done for the
line containing the string. When found, that line is the start of the range to be
copied for either numbered or unnumbered data sets.

count
specifies the total number of lines (the range) to be copied. Enter 1-8 decimal
digits, but not zero (0) or asterisk (*). The default for count depends on what is
specified for ‘string’ (‘string’ or *). If ‘string’ is specified and count is left blank,
the default for count is one (1). For example, if you specify:

COPY 'xyz' 99

the count default is one (1).

However, if you specify an asterisk (*) for the ‘string’, the next operand is
treated as the count operand. For example, if you specify:

COPY \ 99

the count is 99.

line_4
applies to both numbered and unnumbered data sets. For unnumbered data
sets, line_4 specifies the target line (the line at which the copied-to data area
starts) as a relative line number (the nth line in the data set). For numbered
data sets, line_4 is specified the same as line_3. Specifying zero (0) for line_4
puts the copied data at the top of the data set, only if line (0) is empty. If line
(0) has data, enter TOP followed by COPY with line_4 set to *. The default for
line_4 is *. However, if ‘string’ is specified and count is left blank, the operand
following ‘string’ is treated as the count operand and the line_4 default (*) is
used.

For example, if you specify :

COPY 'xyz' 99

the count is 99 and line_4 is *.

  Chapter 1. TSO/E Commands and Subcommands 1-101



 EDIT—COPY Subcommand  
 

EDIT—COPY Subcommand Examples
In the following examples, CLP refers to the current line pointer.

 Example 1
Operation:  Copy the current line right after itself in a line-numbered data set.

Known:

� Data set contains lines 10 through 120.
� Current line pointer is at 50.
� EDIT provides an increment of 10.

Before: Enter: After:

ðð1ð A copy 5ð 5ð 5ð ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC or ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE copy 5ð 5ð ðð5ð EEEEE
ðð6ð FFFFFF CLP ðð6ð EEEEE
ðð7ð GGGGGGG or ðð61 FFFFFF
ðð8ð HHHHHHHH ðð7ð GGGGGGG
ðð9ð IIIIIIIII copy 5ð ðð8ð HHHHHHHH
ð1ðð JJJJJJJJJJ ðð9ð IIIIIIIII
ð11ð KKKKKKKKKKK or ð1ðð JJJJJJJJJJ
ð12ð LLLLLLLLLLLL ð11ð KKKKKKKKKKK
 copy ð12ð LLLLLLLLLLLL
 
 or
 
 copy 'ee'

 Example 2
Operation:  Copy the current line right after itself in an unnumbered data set.

Known:

� Data set contains 12 lines of sequential alphabetic characters.
� Current line pointer is at the seventh line.

1-102 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—COPY Subcommand
 

Before: Enter: After:

A copy \ 1 \ A
BB BB
CCC or CCC
DDDD DDDD
EEEEE copy \ 1 EEEEE
FFFFFF FFFFFF
GGGGGGG or GGGGGGG
HHHHHHHH CLP GGGGGGG
IIIIIIIII copy \ HHHHHHHH
JJJJJJJJJJ IIIIIIIII
KKKKKKKKKKK or JJJJJJJJJJ
LLLLLLLLLLLL KKKKKKKKKKK
 copy LLLLLLLLLLLL
 
 or
 
 copy 'gg'

 Example 3
Operation:  Copy a line to a line before it.

Known:

� Data set contains lines 10 through 120.
� Source line is 60.
� Target line is 50.
� EDIT supplies an increment of 10.

Before: Enter: After:

ðð1ð A copy 6ð 5ð ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE ðð5ð EEEEE
ðð6ð FFFFFF CLP ðð6ð FFFFFF
ðð7ð GGGGGGG ðð61 FFFFFF
ðð8ð HHHHHHHH ðð7ð GGGGGGG
ðð9ð IIIIIIIII ðð8ð HHHHHHHH
ð1ðð JJJJJJJJJJ ðð9ð IIIIIIIII
ð11ð KKKKKKKKKKK ð1ðð JJJJJJJJJJ
ð12ð LLLLLLLLLLLL ð11ð KKKKKKKKKKK

 Example 4
Operation:  Find the line containing a specific word and copy it to the bottom of the
data set.

Known:

� Data set contains nine lines of text.
� Word to be found is men.
� Data set is unnumbered.

  Chapter 1. TSO/E Commands and Subcommands 1-103



 EDIT—COPY Subcommand  
 

Before: Enter: After:

NOW IS top NOW IS
THE TIME copy 'men' 1 99999999 THE TIME
FOR ALL FOR ALL
GOOD MEN GOOD MEN
TO COME TO COME
TO THE TO THE
AID OF AID OF
THEIR THEIR
COUNTRY COUNTRY
 CLP GOOD MEN

 Example 5
Operation:  Copy lines 10, 20, and 30 into a target area starting at line 100, using
an increment of 5.

Known:

� Data set contains lines 10 through 120.

Before: Enter: After:

ðð1ð A copy 1ð 3ð 1ðð incr(5) ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC or ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE copy 9 31 1ðð incr(5) ðð5ð EEEEE
ðð6ð FFFFFF ðð6ð FFFFFF
ðð7ð GGGGGGG or ðð7ð GGGGGGG
ðð8ð HHHHHHHH ðð8ð HHHHHHHH
ðð9ð IIIIIIIII copy 1 39 1ðð incr(5) ðð9ð IIIIIIIII
ð1ðð JJJJJJJJJJ ð1ðð JJJJJJJJJJ
ð11ð KKKKKKKKKKK ð1ð5 A
ð12ð LLLLLLLLLLLL ð11ð BB
 CLP ð115 CCC
 ð116 KKKKKKKKKKK
 ð12ð LLLLLLLLLLLL

 Example 6
Operation:  Copy four lines from a source area to a target area that overlaps the
last line of the source, using the default increment.

Known:

� Data set contains lines 10 through 120.
� Source lines are 20 through 50.
� Target area starts at line 50.
� EDIT provides an increment of 10.

1-104 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—COPY Subcommand
 

Before: Enter: After:

ðð1ð A copy 2ð 5ð 5ð ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE ðð5ð EEEEE
ðð6ð FFFFFF ðð6ð BB
ðð7ð GGGGGGG ðð7ð CCC
ðð8ð HHHHHHHH ðð8ð DDDD
ðð9ð IIIIIIIII CLP ðð9ð EEEEE
ð1ðð JJJJJJJJJJ ðð91 FFFFFF
ð1ðð KKKKKKKKKKK ðð92 GGGGGGG
ð12ð LLLLLLLLLLLL ðð93 HHHHHHHH
 ðð94 IIIIIIIII
 ð1ðð JJJJJJJJJJ
 ð11ð KKKKKKKKKKK
 ð12ð LLLLLLLLLLLL

 Example 7
Operation:  Copy five lines into a target area that starts before but overlaps into the
source area.

Known:

� Data set contains lines 10-120.
� Source range is line 70-110.
� Target location is line 50.
� Increment is 10.

Before: Enter: After:

ðð1ð A copy 7ð 11ð 5ð incr(1ð) ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE ðð5ð EEEEE
ðð6ð FFFFFF ðð6ð GGGGGG
ðð7ð GGGGGGG ðð7ð HHHHHHH
ðð8ð HHHHHHHH ðð8ð IIIIIIII
ðð9ð IIIIIIIII ðð9ð JJJJJJJJJ
ð1ðð JJJJJJJJJJ CLP ð1ðð KKKKKKKKKK
ð11ð KKKKKKKKKKK ð1ð1 FFFFFF
ð12ð LLLLLLLLLLLL ð1ð2 GGGGGGG
 ð1ð3 HHHHHHHH
 ð1ð4 IIIIIIIII
 ð1ð5 JJJJJJJJJJ
 ð11ð KKKKKKKKKKK
 ð12ð LLLLLLLLLLLL

 Example 8
Operation:  Copy three lines to the top of the data set at line 0.

Known:

� Data set contains lines 10 through 120.
� Line 0 does not exist.
� Source lines are 80, 90, and 100.

  Chapter 1. TSO/E Commands and Subcommands 1-105



 EDIT—COPY Subcommand  
 

� Target area starts at line 0.

Before: Enter: After:

ðð1ð A top ðððð HHHHHHHH
ðð2ð BB copy 8ð 1ðð \ incr(5ð) ðð5ð IIIIIIIII
ðð3ð CCC CLP ð1ðð JJJJJJJJJJ
ðð4ð DDDD or ð1ð1 A
ðð5ð EEEEE ð1ð2 BB
ðð6ð FFFFFF copy 8ð 1ðð ð incr(5ð) ð1ð3 CCC
ðð7ð GGGGGGG ð1ð4 DDDD
ðð8ð HHHHHHHH ð1ð5 EEEEE
ðð9ð IIIIIIIII ð1ð6 FFFFFF
ð1ðð JJJJJJJJJJ ð1ð7 GGGGGGG
ð11ð KKKKKKKKKKK ð1ð8 HHHHHHHH
ð12ð LLLLLLLLLLLL ð1ð9 IIIIIIIII
 ð11ð JJJJJJJJJJ
 ð111 KKKKKKKKKKK
 ð12ð LLLLLLLLLLLL

 Example 9
Operation:  Copy three lines to the top of the data set at line 0, using an increment
of 50.

Known:

� Data set contains lines 0 through 120.
� Line 0 contains data.
� Source lines are 80, 90, and 100.
� Target area starts at line 0.

1-106 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—DELETE Subcommand
 

Before: Enter: After:

ðððð ZIP top ðð5ð HHHHHHHH
ðð1ð A copy 8ð 1ðð \ incr(5ð) ð1ðð IIIIIIIII
ðð2ð BB CLP ð15ð JJJJJJJJJJ
ðð3ð CCC The attempt to copy into ð151 ZIP
ðð4ð DDDD line ð gets the target data ð152 A
ðð5ð EEEEE to the top of the data set, ð153 BB
ðð6ð FFFFFF but shifts the target line ð154 CCC
ðð7ð GGGGGGG by the increment value. ð155 DDDD
ðð8ð HHHHHHHH ð156 EEEEE
ðð9ð IIIIIIIII ð157 FFFFFF
ð1ðð JJJJJJJJJJ ð158 GGGGGGG
ð11ð KKKKKKKKKKK ð159 HHHHHHHH
ð12ð LLLLLLLLLLLL ð16ð IIIIIIIII
 ð161 JJJJJJJJJJ
 ð162 KKKKKKKKKKK
 ð163 LLLLLLLLLLLL

Note: An entry of
copy 8ð 1ðð ð incr(5ð)
produces the results
shown at right. The target ðððð ZIP
data is inserted between ðð5ð HHHHHHHH
line ð and the remainder ð1ðð IIIIIIIII
of the data set. CLP ð15ð JJJJJJJJJJ

 ð151 A
 ð152 BB
 ð153 CCC
 ð154 DDDD
 ð155 EEEEE
 ð156 FFFFFF
 ð157 GGGGGGG
 ð158 HHHHHHHH
 ð159 IIIIIIIII
 ð16ð JJJJJJJJJJ
 ð161 KKKKKKKKKKK
 ð162 LLLLLLLLLLLL

 EDIT—DELETE Subcommand
Use the DELETE subcommand to remove one or more records from the data set
you are editing.

Upon completion of the delete operation, the current line pointer points to the line
that preceded the deleted line. If the first line of the data has been deleted, the
current line pointer is set to zero.

EDIT—DELETE Subcommand Syntax 

 ┌ ┐ ─*─ ──┬ ┬─────── ────────────────────
 │ │└ ┘─count─
55─ ──┬ ┬─DELETE─ ──┼ ┼────────────────────────────────── ────────────────────5%
 └ ┘─DEL──── └ ┘ ─line_number_1─ ──┬ ┬───────────────
 └ ┘─line_number_2─

  Chapter 1. TSO/E Commands and Subcommands 1-107



 EDIT—DELETE Subcommand  
 

EDIT—DELETE Subcommand Operands
line_number_1

specifies the line to be deleted or the first line of a range of lines to be deleted.

line_number_2
specifies the last line of a range of lines to be deleted.

* specifies the first line to be deleted is the line indicated by the current line
pointer in the system. If no line is specified, then this is the default.

count
specifies the number of lines to be deleted starting at the location indicated by
the preceding operand.

EDIT—DELETE Subcommand Examples

 Example 1
Operation:  Delete the line being referred to by the current line pointer.

delete \

or

delete

or

del \

or

del

or

\

Any of the preceding command combinations or abbreviations cause the deletion of
the line referred to currently. The last instance is actually a use of the
insert/replace/delete function, not the DELETE subcommand.

 Example 2
Operation:  Delete a particular line from the data set.

Known:

� The line number: 00004

delete 4

Leading zeros are not required.

 Example 3
Operation:  Delete several consecutive lines from the data set.

Known:

� The number of the first line: 18
� The number of the last line: 36

delete 18 36

1-108 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—DOWN Subcommand
 

 Example 4
Operation:  Delete several lines from a data set with no line numbers. The current
line pointer in the system points to the first line to be deleted.

Known:

� The number of lines to be deleted: 18

delete \ 18

 Example 5
Operation:  Delete all the lines in a data set.

Known:

� The data set contains less than 100 lines and is not line-numbered.

top
delete \ 1ðð

 EDIT—DOWN Subcommand
Use the DOWN subcommand to change the current line pointer so that it points to
a line that is closer to the end of the data set.

EDIT—DOWN Subcommand Syntax 

 ┌ ┐─1─────
55─ ──┬ ┬─DOWN─ ──┼ ┼─────── ─────────────────────────────────────────────────5%
 └ ┘─D──── └ ┘─count─

EDIT—DOWN Subcommand Operand
count

specifies the number of lines toward the end of the data set that you want to
move the current line pointer. If you omit this operand, the default is one.

EDIT—DOWN Subcommand Examples

 Example 1
Operation:  Change the pointer so that it points to the next line.

down

or

d

 Example 2
Operation:  Change the pointer so that you can refer to a line that is located closer
to the end of the data set than the line currently pointed to.

Known:

� The number of lines from the present position to the new position: 18

down 18

or

  Chapter 1. TSO/E Commands and Subcommands 1-109



 EDIT—FIND Subcommand  
 

d 18

 EDIT—END Subcommand
Use the END subcommand to terminate the EDIT command. You can use this
subcommand with or without the optional operands SAVE or NOSAVE. In either
case, the EDIT command terminates processing. If you have modified your data set
and have not entered the SAVE subcommand or the SAVE/NOSAVE operand on
END, the system asks you if you want to save the data set. If you want to save the
data set, reply SAVE. If you do not want to save the data set, reply END.

EDIT—END Subcommand Syntax 

55─ ─END─ ──┬ ┬──────── ─────────────────────────────────────────────────────5%
 ├ ┤─SAVE───
 └ ┘─NOSAVE─

There are no defaults. If you do not specify an operand or SAVE after the last
modification, you are prompted by the system.

Regardless of the PROMPT/NOPROMPT option, when END (with no operands) is
found in a CLIST, edit mode is terminated. (There is no SAVE processing done for
this portion of the session.) If END (with no operands) is found outside a CLIST,
you are prompted to enter END or SAVE, regardless of the PROMPT/NOPROMPT
option.

EDIT—END Subcommand Operands
SAVE

specifies that the modified data set is to be saved.

NOSAVE
specifies that the modified data set is not to be saved.

 EDIT—EXEC Subcommand
Use the EXEC subcommand to execute a CLIST or REXX exec. For a description
of the EXEC command syntax and function, see the “EXEC Command” on
page 1-141.

Specify only REXX instructions in the REXX exec. Specify only EDIT
subcommands and CLIST statements in the CLIST. You cannot specify TSO/E
commands in the CLIST or REXX exec until you specify END to terminate EDIT.

 EDIT—FIND Subcommand
Use the FIND subcommand to locate a specified sequence of characters. The
system begins the search at the line referred to by the current line pointer in the
system, and continues until the character string is found or the end of the data set
is reached.

1-110 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—FIND Subcommand
 

EDIT—FIND Subcommand Syntax 

55─ ──┬ ┬─FIND─ ──┬ ┬────────────────────── ──────────────────────────────────5%
 └ ┘─F──── └ ┘ ─string─ ──┬ ┬──────────
 └ ┘─position─

EDIT—FIND Subcommand Operands
If you do not specify any operands, the operands you specified last with FIND are
used. The search for the specified string begins at the line following the current
line. If you issue the TOP subcommand, the search for the specified string begins
with the second line of the data set. Successive use of the FIND subcommand
without operands allows you to search a data set, line by line.

string
specifies the sequence of characters (the character string) that you want to
locate. You must precede this sequence of characters with an extra character
that serves as a special delimiter. The extra character can be any printable
character other than a number, apostrophe, semicolon, blank, tab, comma,
parenthesis, or asterisk. Do not use the extra character in the character string
or put a delimiter between the extra character and the string of characters.

Instead of using special delimiters to indicate a character string, you can use
paired single quotes (apostrophes) to accomplish the same function with the
FIND subcommand. The use of single quotes as delimiters for a character
string is called quoted-string notation. Following are the rules for quoted-string
notation for the string operand:

1. Enclose a string within single quotes; for example, ‘string character’.

2. Use two single quotes to represent a single quote within a character string;
for example, ‘pilgrims's progress’.

3. Use two single quotes to represent a null string; for example, ".

position
specifies the column within each line at which you want the comparison for the
string to be made. This operand specifies the starting column of the field to
which the string is compared in each line. If you want to consider a string
starting in column 6, you must specify the digit 6 for the position operand. For
COBOL data sets, the starting column is calculated from the end of the six-digit
line number. If you want to consider a string starting in column 8, you must
specify the digit 2 for this operand. When you use this operand with the
special-delimiter form of notation for string, you must separate it from the string
operand with the same special delimiter as the one preceding the string
operand.

EDIT—FIND Subcommand Examples

 Example 1
Operation:  Locate a sequence of characters in a data set.

Known:

� The sequence of characters: ELSE GO TO COUNTER

find xelse go to counter

  Chapter 1. TSO/E Commands and Subcommands 1-111



 EDIT—INPUT Subcommand  
 

 Example 2
Operation:  Locate a particular instruction in a data set containing an assembler
language program.

Known:

� The sequence of characters: LA 3,BREAK
� The instruction begins in column 10.

find 'la 3,break ' 1ð

 EDIT—FREE Subcommand
Use the FREE subcommand of EDIT to release (deallocate) previously allocated
data sets that you no longer need. For a description of the FREE command syntax
and function, see the “FREE Command” on page 1-161.

 EDIT—HELP Subcommand
Use the HELP subcommand to obtain the syntax and function of EDIT
subcommands. For a description of the HELP command syntax and function, see
the “HELP Command” on page 1-166.

 EDIT—INPUT Subcommand
Use the INPUT subcommand to put the system in input mode so that you can add
or replace data in the data set you are editing.

EDIT—INPUT Subcommand Syntax 

 ┌ ┐─I─
55─ ──┬ ┬─INPUT─ ──┬ ┬──────────────────────────── ──┼ ┼─── ──┬ ┬────────── ──────5%

└ ┘─I───── ├ ┤─*────────────────────────── └ ┘─R─ ├ ┤─PROMPT───
 └ ┘ ─line_number─ ──┬ ┬─────────── └ ┘─NOPROMPT─
 └ ┘─increment─

EDIT—INPUT Subcommand Operands
line_number

specifies the line number and location for the first new line of input. If no
operands are specified, input data is added to the end of the data set.

increment
specifies the amount that you want each succeeding line number to be
increased. If you omit this operand, the default is the last increment specified
with the INPUT or RENUM subcommand. If neither of these subcommands has
been specified with an increment operand, an increment of 10 is used.

* specifies the next new line of input either replaces or follows the line pointed to
by the current line pointer, depending on whether you specify the R or I
operand. If an increment is specified with this operand, it is ignored.

R specifies that you want to replace existing lines of data and insert new lines
into the data set. If you fail to specify either a line number or an asterisk, this
operand is ignored. If the specified line already exists, the old line is replaced

1-112 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—INPUT Subcommand
 

by the new line. If the specified line is vacant, the new line is inserted at that
location. If the increment is greater than 1, all lines between the replacement
lines are deleted.

I specifies that you want to insert new lines into the data set without altering
existing lines of data. If you fail to specify either a line number or an asterisk,
this operand is ignored.

PROMPT | NOPROMPT

PROMPT specifies that you want the system to display either a line number or,
if the data set is not line numbered, a prompting character before each new
input line. If you omit this operand, the default is:

� The value (either PROMPT or NOPROMPT) that was established the
last time you used input mode.

� PROMPT, if this is the first use of input mode and the data set has line
numbers.

� NOPROMPT, if this is the first use of input mode and the data set does
not have line numbers.

NOPROMPT specifies that you do not want to be prompted.

EDIT—INPUT Subcommand Examples

 Example 1
Operation:  Add and replace data in an existing data set.

Known:

� The data set is to contain line numbers.
� Prompting is specified.
� The ability to replace lines is specified.
� The first line number: 2
� The increment value for line numbers: 2

input 2 2 r prompt

The display at your terminal will resemble the following with your input in lowercase
and the system's response in uppercase.

edit quer cobol old
EDIT
input 2 2 r prompt
INPUT
ðððð2 identification division
ðððð4 program-id.query
ðððð6

  Chapter 1. TSO/E Commands and Subcommands 1-113



 EDIT—INSERT Subcommand  
 

 Example 2
Operation:  Insert data in an existing data set.

Known:

� The data set contains text for a report.
� The data set does not have line numbers.
� The ability to replace lines is not necessary.
� The first input data is “New research and development activities will”, which is

to be placed at the end of the data set.
� The display at your terminal will resemble the following:

edit forecast.text old nonum asis
EDIT
input
INPUT
New research and development activities will

 EDIT—INSERT Subcommand
Use the INSERT subcommand to insert one or more new lines of data into the data
set. Input data is inserted following the location pointed to by the current line
pointer in the system. If no operands are specified, input data is placed in the data
set line following the current line. You can change the position pointed to by the
line pointer by using the BOTTOM, DOWN, TOP, UP, and FIND subcommands.

EDIT—INSERT Subcommand Syntax 

55─ ──┬ ┬─INSERT─ ──┬ ┬───────────── ─────────────────────────────────────────5%
 └ ┘─IN───── └ ┘─insert_data─

EDIT—INSERT Subcommand Operand
insert_data

specifies the complete sequence of characters that you want to insert into the
data set at the location indicated by the current line pointer. When the first
character of the inserted data is a tab, no delimiter is required between the
command and the data. Only a single delimiter is recognized by the system. If
you enter more than one delimiter, all except the first are considered to be
input data.

EDIT—INSERT Subcommand Examples

 Example 1
Operation:  Insert a single line into a data set.

Known:

� The line to be inserted is:

UCBFLG DS AL1 CONTROL FLAGS

� The data set is not line-numbered.
� The location for the insertion follows the 71st line in the data set.
� The current line pointer points to the 74th line in the data set.
� You are operating in edit mode.

1-114 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—INSERT Subcommand
 

Before entering the INSERT subcommand, the current line pointer must be moved
up 3 lines to the location where the new data is inserted:

up 3

The INSERT subcommand is now entered:

INSERT UCBFLG DS AL1 CONTROL FLAGS

The display at your terminal shows the following:

up 3
insert ucbflg ds al1 control flags

 Example 2
Operation:  Insert several lines into a data set.

Known:

� The data set contains line numbers.
� The inserted lines are to follow line number 00280.
� The current line pointer points to line number 00040.
� You are operating in EDIT mode.
� The lines to be inserted are:

J.W. HOUSE 13-244831 24.73

T.N. HOWARD 24-782095 3.05

B.H. IRELAND 40-007830 104.56

Before entering the INSERT subcommand, the current line pointer must be moved
down 24 lines to the location where the new data is inserted:

down 24

The INSERT subcommand is now entered:

insert

The system responds with:

INPUT

The lines to be inserted are now entered.

The display at your terminal shows the following:

down 24
insert
INPUT
ðð281 j.w.house 13-244831 24.73
ðð282 t.n.howard 24-782ð95 3.ð5
ðð283 b.h.ireland 4ð-ðð783ð 1ð4.56

New line numbers are generated in sequence beginning with the number one
greater than the one pointed to by the current line pointer. When no line can be
inserted, you are notified. No re-sequencing is done by the system.

  Chapter 1. TSO/E Commands and Subcommands 1-115



 EDIT—Insert/Replace/Delete Function  
 

 EDIT—Insert/Replace/Delete Function
The insert/replace/delete function lets you insert, replace, or delete a line of data
without specifying a subcommand name. To insert or replace a line, indicate the
location and the new data. To delete a line, indicate the location. You can indicate
the location by specifying a line number or an asterisk. The asterisk means that the
location to be used is pointed to by the line pointer within the system. You can
change the line pointer by using the UP, DOWN, TOP, BOTTOM, and FIND
subcommands so that the proper line is referred to.

EDIT—Insert/Replace/Delete Function Syntax 

55─ ──┬ ┬─*─────────── ──┬ ┬──────── ─────────────────────────────────────────5%
 └ ┘─line_number─ └ ┘─string─

EDIT—Insert/Replace/Delete Function Operands
line_number

specifies the number of the line you want to insert, replace, or delete.

* specifies you want to replace or delete the line at the location pointed to by the
line pointer in the system. You can use the TOP, BOTTOM, UP, DOWN, and
FIND subcommands to change the line pointer without modifying the data set
you are editing.

string
specifies the sequence of characters you want to either insert into the data set
or to replace an existing line. If this operand is omitted and a line exists at the
specified location, the existing line is deleted. When the first character of string
is a tab, no delimiter is required between this operand and the preceding
operand. Only a single delimiter is recognized by the system. If you enter more
than one delimiter, all except the first are considered to be input data.

How the System Interprets the Operands
When you specify only a line number or an asterisk, the system deletes a line of
data. When you specify a line number or asterisk followed by a sequence of
characters, the system replaces the existing line with the specified sequence of
characters or, if there is no existing data at the location, the system inserts the
sequence of characters into the data set at the specified location.

EDIT—Insert/Replace/Delete Function Examples

 Example 1
Operation:  Insert a line into a data set.

Known:

� The number to be assigned to the new line: 62
� The data: (OPEN INPUT PARTS-FILE)

62 open input parts-file

1-116 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—LIST Subcommand
 

 Example 2
Operation:  Replace an existing line in a data set.

Known:

� The number of the line that is to be replaced: 287
� The replacement data: GO TO HOURCOUNT

287 go to hourcount

 Example 3
Operation:  Replace an existing line in a data set that does not have line numbers.

Known:

� The line pointer in the system points to the line that is to be replaced.
� The replacement data is: 58 PRINT USING 120,S

\ 58 print using 12ð,s

 Example 4
Operation:  Delete an entire line.

Known:

� The number of the line: 98
� The current line pointer in the system points to line 98.

98

or

\

 EDIT—LIST Subcommand
Use the LIST subcommand to display one or more lines of your data set at your
terminal.

If you do not specify any operands with LIST, the entire data set is displayed.

EDIT—LIST Subcommand Syntax 

 ┌ ┐─NUM──
55─ ──┬ ┬─LIST─ ──┬ ┬────────────────────────────────── ──┼ ┼────── ────────────5%
 └ ┘─L──── ├ ┤ ─line_number_1─ ──┬ ┬─────────────── └ ┘─SNUM─
 │ │└ ┘─line_number_2─
 └ ┘ ─*─ ──┬ ┬─────── ────────────────────
 └ ┘─count─

EDIT—LIST Subcommand Operands
line_number_1

specifies the number of the line that you want to be displayed at your terminal.

line_number_2
specifies the number of the last line that you want displayed. When you specify
this operand, all the lines from line_number_1 through line_number_2 are
displayed.

  Chapter 1. TSO/E Commands and Subcommands 1-117



 EDIT—LIST Subcommand  
 

* specifies the line referred to by the current line pointer is to be displayed at
your terminal. You can change the line pointer by using the UP, DOWN, TOP,
BOTTOM, and FIND subcommands without modifying the data set you are
editing.

If the current line pointer is at zero (for example, as a result of a TOP
command), and line zero is not already in the data set, the current line pointer
moves to the first existing line.

count
specifies the number of lines that you want displayed, starting at the location
referred to by the line pointer.

NUM | SNUM

NUM specifies line numbers are to be displayed with the text. If both NUM and
SNUM are omitted, NUM is the default. If your data set does not have line
numbers, this operand is ignored by the system.

SNUM specifies line numbers are to be suppressed; that is, not displayed at
the terminal.

EDIT—LIST Subcommand Examples

 Example 1
Operation:  List an entire data set.

list

 Example 2
Operation:  List part of a data set that has line numbers.

Known:

� The line number of the first line to be displayed: 27
� The line number of the last line to be displayed: 44
� Line numbers are to be included in the list.

list 27 44

 Example 3
Operation:  List part of a data set that does not have line numbers.

Known:

� The line pointer in the system points to the first line to be listed.
� The section to be listed consists of 17 lines.

list \ 17

1-118 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—MOVE Subcommand
 

 EDIT—MOVE Subcommand
Use the MOVE subcommand of EDIT to move one or more records that exist in the
data set you are editing. The move operation moves data from a source location to
a target location within the same data set and deletes the source data. Existing
lines in the target area are shifted toward the end of the data set as required to
make room for the incoming data. No lines are lost in the shift.

The target line cannot be within the source area, with the exception that the target
line (the first line of the target area) can overlap the last line of the source area.

Upon completion of the move operation, the current line pointer points to the last
moved-to line, not to the last line shifted to make room in the target area.

If you do not specify any operands with MOVE, the MOVE subcommand is ignored.

If you cause an attention interruption during the move operation, the data set might
be partially changed. As a check, list the affected part of the data set before
continuing.

EDIT—MOVE Subcommand Syntax 

 ┌ ┐─*──────
55─ ──┬ ┬─MOVE─ ──┬ ┬ ─line─ ──┬ ┬──────── ──┼ ┼──────── ─────── ──┬ ┬───────────── ──5%

└ ┘─M──── │ │└ ┘─line_2─ └ ┘─line_3─ └ ┘──INCR(lines)
 │ │┌ ┐─1───── ┌ ┐─*──────
 └ ┘ ──┬ ┬─*──────── ──┼ ┼─────── ──┼ ┼────────

└ ┘──'string' └ ┘─count─ └ ┘─line_4─

EDIT—MOVE Subcommand Operands
line_1

specifies the first line or the lower limit of the range to be moved. If the
specified line number does not exist in this data set, the range begins at the
next higher line number.

line_2
specifies the last line or the upper limit of the range to be moved. If the
specified line number does not exist in this data set, the range ends with the
highest line number that is less than line_2. If line_2 is not entered, the value
defaults to the value of line_1; that is, the source becomes one line. Do not
enter an asterisk for line_2.

If MOVE is followed by two line number operands, the system assumes them to
represent line_1 and line_3, and defaults line_2 to the value of line_1.

line_3
specifies the target line number; that is, the line at which the moved_to data
area will start. If the line_3 value corresponds to an existing line, the target line
is changed to line_3 + INCR(lines) and either becomes a new line or displaces
an existing line at that location. When the move operation begins, existing lines
encountered in the target area are renumbered to make room for the incoming
data. The increment for renumbered lines is one (1). Specifying zero (0) for
line_3 puts the moved data at the top of the data set, only if line 0 is empty. If
line 0 has data, enter TOP followed by MOVE with line_3 set to *. Note that
line_3 defaults to *.

  Chapter 1. TSO/E Commands and Subcommands 1-119



 EDIT—MOVE Subcommand  
 

The value of line_3 should not fall in the range from line_1 to line_2; that is, the
target line must not be in the range being moved. Exception: Line_3 can be
equal to line_2.

* represents the value of the current line pointer.

INCR(lines)
specifies the line number increment to be used for this move operation. The
default is the value in effect for this data before the move operation. When the
move operation is complete, the increment reverts to the value in effect before
MOVE was issued. Range: 1-8 decimal digits, but not zero.

The increment for any renumbered line is one (1).

‘string’
specifies a string of alphanumeric characters with a maximum length equal to
or less than the logical record length of the data set you are editing. When a
character string is specified, a search starting at the current line is done for the
line containing the string. When found, that line is the start of the range to be
moved for either numbered or unnumbered data sets.

count
specifies the total number of lines (the range) to be moved. Enter 1-8 decimal
digits, but not zero (0) or asterisk (*). The default for count depends on what is
specified for ‘string’ (‘string’ or *).

If ‘string’ is specified and count is left blank, the default for count is one (1). For
example, if you specify:

MOVE 'xyz' 99

the count default is one (1).

However, if you specify an asterisk (*) for the ‘string’, the next operand is
treated as the count entry. For example, if you specify:

MOVE \ 99

the 99 is treated as the count.

line_4
applies to both numbered and unnumbered data sets. For unnumbered data
sets, line_4 specifies the target line (the line at which the moved-to data area
starts) as a relative line number (the 4th line in the data set). For numbered
data sets, line_4 is specified the same as line_3. Specifying zero (0) for line_4
puts the moved data at the top of the data set only if line 0 is empty. If line 0
has data, enter TOP followed by MOVE with line_4 set to *. The default for
line_4 is *. However, if ‘string’ is specified and count is left blank, the operand
following ‘string’ is treated as the count operand and the default for line_4 (*) is
used.

For example, if you specify :

MOVE 'xyz' 99

the count is 99 and line_4 is *.

1-120 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—MOVE Subcommand
 

EDIT—MOVE Subcommand Examples
In the following examples, CLP refers to the current line pointer.

 Example 1
Operation:  Move the current line right after itself in a line-numbered data set.

Known:

� Data set contains lines 10 through 120.
� Current line pointer is at 50.
� EDIT provides an increment of 10.

Before: Enter: After:

ðð1ð A move 5ð 5ð 5ð ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC or ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE move 5ð 5ð CLP ðð6ð EEEEE
ðð6ð FFFFFF ðð61 FFFFFF
ðð7ð GGGGGGG or ðð7ð GGGGGGG
ðð8ð HHHHHHHH ðð8ð HHHHHHHH
ðð9ð IIIIIIIII move 5ð ðð9ð IIIIIIIII
ð1ðð JJJJJJJJJJ ð1ðð JJJJJJJJJJ
ð11ð KKKKKKKKKKK or ð11ð KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLLL
 move 'ee'

Note:  MOVE is ignored without operands.

 Example 2
Operation:  Move the current line right after itself in an unnumbered data set.

Known:

� Data set contains 12 lines of sequential alphabetic characters.
� Current line pointer is at the seventh line.

Before: Enter: After:

A move \ 1 \ A
BB BB
CCC or CCC
DDDD DDDD
EEEEE move \ 1 EEEEE
FFFFFF FFFFFF
GGGGGGG or CLP GGGGGGG
HHHHHHHH HHHHHHHH
IIIIIIIII move \ IIIIIIIII
JJJJJJJJJJ JJJJJJJJJJ
KKKKKKKKKKK or KKKKKKKKKKK
LLLLLLLLLLLL LLLLLLLLLLLL
 move 'gg'

Note:  The effect of the operation is an unchanged data set.

  Chapter 1. TSO/E Commands and Subcommands 1-121



 EDIT—MOVE Subcommand  
 

 Example 3
Operation:  Illustrate an attempt to move a line to a line before it.

Known:

� Data set contains lines 10 through 120.
� Source line is 60.
� Target line is 40.
� EDIT supplies an increment of 10.

Before: Enter: After:

ðð1ð A move 6ð 6ð 4ð ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE CLP ðð5ð FFFFFF
ðð6ð FFFFFF ðð51 EEEEE
ðð7ð GGGGGGG ðð7ð GGGGGGG
ðð8ð HHHHHHHH ðð8ð HHHHHHHH
ðð9ð IIIIIIIII ðð9ð IIIIIIIII
ð1ðð JJJJJJJJJJ ð1ðð JJJJJJJJJJ
ð11ð KKKKKKKKKKK ð11ð KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLLL

 Example 4
Operation:  Find the line containing a specific word and move it to the bottom of the
data set.

Known:

� Data set contains nine lines of text.
� Word to be found is men.
� Data set is unnumbered.

Before: Enter: After:

NOW IS top NOW IS
THE TIME move 'men' 1 99999999 THE TIME
FOR ALL FOR ALL
GOOD MEN TO COME
TO COME TO THE
TO THE AID OF
AID OF THEIR
THEIR COUNTRY
COUNTRY CLP GOOD MEN

 Example 5
Operation:  Move lines 10, 20, and 30 into a target area starting at line 100, using
an increment of 5.

Known:

� Data set contains line 10 through 120.

1-122 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—MOVE Subcommand
 

Before: Enter: After:

ðð1ð A move 1ð 3ð 1ðð incr(5) ðð4ð DDDD
ðð2ð BB ðð5ð EEEEE
ðð3ð CCC or ðð6ð FFFFFF
ðð4ð DDDD ðð7ð GGGGGGG
ðð5ð EEEEE move 9 31 1ðð incr(5) ðð8ð HHHHHHHH
ðð6ð FFFFFF ðð9ð IIIIIIIII
ðð7ð GGGGGGG or ð1ðð JJJJJJJJJJ
ðð8ð HHHHHHHH ð1ð5 A
ðð9ð IIIIIIIII move 1 39 1ðð incr(5) ð11ð BB
ð1ðð JJJJJJJJJJ CLP ð115 CCC
ð11ð KKKKKKKKKKK ð116 KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLLL

 Example 6
Operation:  Move four lines from a source area to a target area that overlaps the
last line of the source, using the default increment.

Known:

� Data set contains lines 10 through 120.
� Source lines are 20 through 50.
� Target area starts at line 50.
� EDIT provides an increment of 10.

Before: Enter: After:

ðð1ð A move 2ð 5ð 5ð ðð1ð A
ðð2ð BB ðð6ð BB
ðð3ð CCC ðð7ð CCC
ðð4ð DDDD ðð8ð DDDD
ðð5ð EEEEE CLP ðð9ð EEEEE
ðð6ð FFFFFF ðð91 FFFFFF
ðð7ð GGGGGGG ðð92 GGGGGGG
ðð8ð HHHHHHHH ðð93 HHHHHHHH
ðð9ð IIIIIIIII ðð94 IIIIIIIII
ð1ðð JJJJJJJJJJ ð1ðð JJJJJJJJJJ
ð11ð KKKKKKKKKKK ð11ð KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLLL

 Example 7
Operation:  Move five lines into a target area that starts before but overlaps into the
source area.

Known:

� Data set contains lines 10-120.
� Source range is line 70-110.
� Target location is line 50.
� Increment is to be 10.

  Chapter 1. TSO/E Commands and Subcommands 1-123



 EDIT—MOVE Subcommand  
 

Before: Enter: After:

ðð1ð A move 7ð 11ð 5ð incr(1ð) ðð1ð A
ðð2ð BB ðð2ð BB
ðð3ð CCC ðð3ð CCC
ðð4ð DDDD ðð4ð DDDD
ðð5ð EEEEE ðð5ð EEEEE
ðð6ð FFFFFF ðð6ð GGGGGG
ðð7ð GGGGGGG ðð7ð HHHHHHH
ðð8ð HHHHHHHH ðð8ð IIIIIIII
ðð9ð IIIIIIIII ðð9ð JJJJJJJJJ
ð1ðð JJJJJJJJJJ CLP ð1ðð KKKKKKKKKK
ð11ð KKKKKKKKKKK ð1ð1 FFFFFF
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLL

 Example 8
Operation:  Move three lines to the top of the data set at line 0.

Known:

� Data set contains lines 10 through 120.
� Line 0 doesn't exist.
� Source lines are 80, 90, and 100.
� Target area starts at line 0.

Before: Enter: After:

ðð1ð A top ðððð HHHHHHHH
ðð2ð BB move 8ð 1ðð \ incr(5ð) ðð5ð IIIIIIIII
ðð3ð CCC CLP ð1ðð JJJJJJJJJJ
ðð4ð DDDD or ð1ð1 A
ðð5ð EEEEE ð1ð2 BB
ðð6ð FFFFFF move 8ð 1ðð ð incr(5ð) ð1ð3 CCC
ðð7ð GGGGGGG ð1ð4 DDDD
ðð8ð HHHHHHHH ð1ð5 EEEEE
ðð9ð IIIIIIIII ð1ð6 FFFFFF
ð1ðð JJJJJJJJJJ ð1ð7 GGGGGGG
ð11ð KKKKKKKKKKK ð11ð KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð12ð LLLLLLLLLLLL

 Example 9
Operation:  Move three lines to the top of the data set at line 0, using an increment
of 50.

Known:

� Data set contains lines 0 through 120.
� Line 0 contains data.
� Source lines are 80, 90, and 100.
� Target area starts at line 0.

1-124 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—RENUM Subcommand
 

Before: Enter: After:

ðððð ZIP top ðð5ð HHHHHHHH
ðð1ð A move 8ð 1ðð \ incr(5ð) ð1ðð IIIIIIIII
ðð2ð BB CLP ð15ð JJJJJJJJJJ
ðð3ð CCC The attempt to move into ð151 ZIP
ðð4ð DDDD line ð gets the target data ð152 A
ðð5ð EEEEE to the top of the data set ð153 BB
ðð6ð FFFFFF but shifts the target line ð154 CCC
ðð7ð GGGGGGG by the increment value. ð155 DDDD
ðð8ð HHHHHHHH ð156 EEEEE
ðð9ð IIIIIIIII ð157 FFFFFF
ð1ðð JJJJJJJJJJ ð158 GGGGGGG
ð11ð KKKKKKKKKKK ð159 KKKKKKKKKKK
ð12ð LLLLLLLLLLLL ð16ð LLLLLLLLLLLL

Note: An entry of
move 8ð 1ðð ð incr(5ð)
produces the results
shown at right. The ðððð ZIP
target data is inserted ðð5ð HHHHHHHH
between line ð and the ð1ðð IIIIIIIII
remainder of the data CLP ð15ð JJJJJJJJJJ

 set. ð151 A
 ð152 BB
 ð153 CCC
 ð154 DDDD
 ð155 EEEEE
 ð156 FFFFFF
 ð157 GGGGGGG
 ð158 KKKKKKKKKKK
 ð159 LLLLLLLLLLLL

 EDIT—PROFILE Subcommand
Use the PROFILE subcommand to change the characteristics of your user profile.
For a description of the PROFILE command syntax and function, see the
“PROFILE Command” on page 1-247.

 EDIT—RENUM Subcommand
Use the RENUM subcommand to:

� Assign a line number to each record of a data set that does not have a line
number.

� Renumber each record in a data set that has line numbers.

If the data set you are editing contains fixed-length records, new line numbers are
placed in the last 8 character positions. There are three exceptions to this general
rule:

� Data set type COBOL - first six positions

� Data set type VSBASIC - first five positions

� Data set type ASM and NUM operand specified on EDIT command - positions
indicated in NUM operand subfield.

  Chapter 1. TSO/E Commands and Subcommands 1-125



 EDIT—RENUM Subcommand  
 

If fixed-length record data sets are being numbered for the first time, any data in
the positions indicated above is overlaid.

If you are editing variable-length records without sequence numbers, the records
are lengthened so that an eight-digit sequence field (five digits if VSBASIC) is
prefixed to each record. You are notified if any records have been truncated in the
process. Records are truncated when the data length plus the sequence length
exceeds the maximum record length of the data set you are editing.

In all cases, the specified (or default) increment value becomes the line increment
for the data set.

EDIT—RENUM Subcommand Syntax 

55─ ──┬ ┬─RENUM─ ────────────────────────────────────────────────────────────5
 └ ┘─REN───

5─ ──┬ ┬───────────────────────────────────────────────────────────────── ──5%
 └ ┘ ─new_line_no.─ ──┬ ┬───────────────────────────────────────────────
 └ ┘ ─increment─ ──┬ ┬────────────────────────────────
 └ ┘ ─old_line_no.─ ──┬ ┬──────────────
 └ ┘─end_line_no.─

EDIT—RENUM Subcommand Operands
new_line_number

specifies the new line number to be assigned to the first line renumbered. If
this operand is omitted, the first line number is 10.

increment
specifies the amount by which each succeeding line number is to be
incremented. The default value is 10. You cannot use this operand unless you
specify a new line number.

old_line_number
specifies the location within the data set where renumbering begins. If this
operand is omitted, renumbering starts at the beginning of the data set. You
cannot use this operand unless you specify a value for the increment operand
or when you are initially numbering a NONUM data set.

end_line_number
specifies the line number at which renumbering is to end. If this operand is
omitted, renumbering continues to the end of the data set. You cannot use this
operand without specifying all the other operands.

EDIT—RENUM Subcommand Examples

 Example 1
Operation:  Renumber an entire data set using the default values for each operand.

renum

1-126 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—RUN Subcommand
 

 Example 2
Operation:  Renumber part of a data set with an increment of 1.

Known:

� The old line number: 17
� The new line number: 21
� The increment: 1

ren 21 1 17

 Example 3
Operation:  Renumber part of a data set from which lines have been deleted.

Known:

� Before deletion of the lines, the data set contained lines 10, 20, 30, 40, and 50.
� Lines 20 and 30 were deleted.
� Lines 40 and 50 are to be renumbered with an increment of 10.

ren 2ð 1ð 4ð

Note:  The lowest acceptable value for a new line number in this example is 11.

 Example 4
Operation:  Renumber a range of lines so that new lines may be inserted.

Known:

� Before renumbering, the data set lines are numbered 10, 20, 23, 26, 29, 30,
40, and 50.

� Two lines are to be inserted after line 29.
� Lines 23-29 are to be renumbered with an increment of 2.
� The first new number to be assigned is 22.

ren 22 2 23 29

 EDIT—RUN Subcommand
Use the RUN subcommand to compile, load, and execute the source statements in
the data set that you are editing. The RUN subcommand is designed specifically for
use with certain program products. The RUN subcommand selects and invokes the
particular program product needed to process your source statements.

Any data sets required by your problem program can be allocated before you enter
EDIT mode or can be allocated using the ALLOCATE subcommand.

If you want to enter a value for parameters, you should enter this prior to any of the
other keyword operands.

EDIT—RUN Subcommand Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-127



 EDIT—RUN Subcommand  
 

 

 ┌ ┐─NOTEST─ ┌ ┐─SMSG─ ┌ ┐─SPREC─
55─ ──┬ ┬─RUN─ ──┬ ┬────────────── ──┼ ┼──────── ──┼ ┼────── ──┼ ┼─────── ───────────5

└ ┘─R─── └ ┘──'parameters' └ ┘─TEST─── └ ┘─LMSG─ └ ┘─LPREC─

 ┌ ┐─OPT─── ┌ ┐─NOSTORE─ ┌ ┐─GO───
5─ ──┼ ┼─────── ──┬ ┬───────────────────── ──┼ ┼───────── ──┼ ┼────── ─────────────5
 └ ┘─CHECK─ │ │┌ ┐──────────── └ ┘─STORE─── └ ┘─NOGO─

└ ┘──LIB( ───6 ┴─data_set─ )

 ┌ ┐─NOPAUSE─
5─ ──┬ ┬───────────── ──┼ ┼───────── ─────────────────────────────────────────5%

└ ┘──SIZE(value) └ ┘─PAUSE───

EDIT—RUN Subcommand Operands
‘parameters’

specifies a string of up to 100 characters that is passed to the program that is
to be executed. You can specify this operand only for programs that accept
parameters.

TEST | NOTEST

TEST specifies testing is to be performed during execution. This operand is
valid for the VSBASIC program product only.

NOTEST specifies no testing is to be done.

If you omit both TEST and NOTEST, the default value is NOTEST.

LMSG | SMSG

LMSG specifies that you want to receive the longer form of a diagnostic
message. This operand is valid for GOFORT statements only.

SMSG specifies that you want to receive the shorter form of a diagnostic
message, if there is one. SMSG is the default.

LPREC | SPREC

LPREC specifies long precision arithmetic calculations are to be used. This
operand is valid for VSBASIC statements only.

SPREC specifies short precision arithmetic calculations are to be used. SPREC
is the default.

CHECK | OPT

CHECK specifies the PL/I Checkout compiler. This operand is valid for the PL/I
program product only. If you omit this operand, the OPT operand is the
default value for data sets having the PLI descriptive qualifier.

OPT specifies the PL/I Optimizing compiler. This operand is valid for the PL/I
program product only.

If both CHECK and OPT are omitted, OPT is the default value for data sets
having the PLI descriptive qualifier.

1-128 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—RUN Subcommand
 

LIB(data_set)
specifies the library or libraries that contain subroutines needed by the program
you are running. These libraries are concatenated to the default system
libraries and passed to the loader for resolution of external references. This
operand is valid only for the following data set types: ASM, COBOL, FORTGI,
and PLI(Optimizer).

STORE | NOSTORE

STORE specifies a permanent OBJ data set is to be created. The dsname of
the OBJ data set is based on the data set name entered on the EDIT
command. This operand is valid only for VSBASIC statements.

NOSTORE specifies a permanent OBJ data set is not to be created. This
operand is valid only for VSBASIC statements. NOSTORE is the default.

GO | NOGO

GO specifies the compiled program is to be executed. This operand is valid
only for VSBASIC statements. GO is the default.

NOGO specifies the compiled program is not to be executed. This operand is
valid only for VSBASIC statements.

SIZE(value)
specifies the size (1-999) of the area for VSBASIC.

PAUSE | NOPAUSE

PAUSE specifies that you are given the chance to add or change certain
compiler options before proceeding to the next chain program. This
operand is valid only for VSBASIC statements.

NOPAUSE specifies that you are not to be given the chance to add or change
certain compiler options before proceeding to the next chain program. This
operand is valid only for VSBASIC statements. NOPAUSE is the default.

EDIT—RUN Subcommand Examples

 Example 1
Operation:  Execute an assembler language program contained in the data set
referred to by the EDIT command.

Known:

� The parameters to be passed to the program are: ‘1024,PAYROLL’

run '1ð24,payroll'

 Example 2
Operation:  Run a FORTRAN IV (GI) program that calls an assembler language
output program to maintain bit patterns.

Known:

  Chapter 1. TSO/E Commands and Subcommands 1-129



 EDIT—SAVE Subcommand  
 

� The assembler language subroutine in load module form resides in a library
called USERID.MYLIB.LOAD.

run lib(mylib.load)

 EDIT—SAVE Subcommand
Use the SAVE subcommand to have your data set retained as a permanent data
set. If you use SAVE without an operand, the updated version of your data set
replaces the original version. When you specify a new data set name as an
operand, both the original version and the updated version of the data set are
available for further use.

When you edit a data set with a variable or variable-blocked record format, each
record (line) is padded with blanks to the end of the record. When you save the
data set, the blanks are eliminated and the length adjusted accordingly.

EDIT—SAVE Subcommand Syntax 

55─ ──┬ ┬─SAVE─ ──┬ ┬─────────────────────────────────────── ─────────────────5%
 └ ┘─S──── └ ┘ ──┬ ┬─*────── ──┬ ┬───────────────────────

└ ┘─dsname─ ├ ┤──RENUM(─┤ Operands ├─)
 ├ ┤─UNNUM─────────────────
 └ ┘─REUSE─────────────────

Operands:
├─ ──┬ ┬──────────────────────────────────────────────────────────────── ────┤
 └ ┘ ─new_line_no.─ ──┬ ┬──────────────────────────────────────────────
 │ │┌ ┐─1ð───
 └ ┘ ──┴ ┴─incr─ ──┬ ┬────────────────────────────────
 └ ┘ ─old_line_no.─ ──┬ ┬──────────────
 └ ┘─end_line_no.─

EDIT—SAVE Subcommand Operands
* specifies the edited version of your data set is to replace the original version. If

there are no operands entered on the subcommand, the * is the default.

dsname
specifies a data set name assigned to your edited data set. The new name
might be different from the current name. If this operand or an asterisk is
omitted, the name entered with the EDIT command is used.

If you specify the name of an existing data set or member of a partitioned data
set, that data set or member is replaced by the edited data set. (Before
replacement occurs, you are given the option of specifying a new data set
name or member name.)

If you do not specify the name of an existing data set or partitioned data set
member, a new data set (the edited data set) is created with the name you
specified. If you specified a member name for a sequentially organized data
set, no replacement of the data set takes place. If you do not specify a member
name for an existing partitioned data set, the edited data set is assigned a
member name of TEMPNAME.

REUSE | RENUM | UNNUM
These operands cannot be included unless a data set name or an * is
specified.

1-130 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—SAVE Subcommand
 

REUSE specifies the data set specified in the dsname operand is to be reused,
if it already exists. You are not prompted for it.

RENUM specifies the data set is to be renumbered before it is saved.

new_line_number specifies the first line number to be assigned to the data
set. If this operand is omitted, the first line number is 10.

incr specifies the amount by which each succeeding line number is to be
incremented. The default is 10. This operand cannot be included unless
the new_line_number is specified.

old_line_number specifies the line location within the data set where the
renumber process begins. If this operand is omitted, renumbering starts
at the beginning of the data set. The old_line_number must be equal to
or less than the new_line_number. If you specify this operand, then you
must also specify INCR.

end_Line_number specifies the line location within the data set where
renumbering is to end. If this operand is omitted, renumbering stops at
the end of the data set. The end_line_number must be greater than
the old_line_number. This operand cannot be included unless the
old_line_number is specified.

UNNUM specifies the data set is to be unnumbered before it is saved.

If the data set you are editing originally contained control characters (ASCII or
machine), and you enter SAVE without operands, the following actions apply:

� For Sequential Data Set:  You are warned that the data set is saved without
control characters, that is, the record format is changed. Then you are
prompted to enter another data set name for SAVE or a null line to reuse the
EDIT data set.

� For Partitioned Data Set:  Saving into the EDIT data set with a control
character attribute is not allowed when it is partitioned. You must save into
another data set by specifying a data set name on a subsequent SAVE
subcommand entry.

EDIT—SAVE Subcommand Examples

 Example 1
Operation:  Save the data set that has just been edited by the EDIT command.

Known:

� The system is in edit mode. The user-supplied name that you want to give the
data set is INDEX.

save index

 Example 2
Operation:  Save the data set that has just been edited, renumbering it first.

Known:

 � new_line_number 100
 � increment(INCR) 50

  Chapter 1. TSO/E Commands and Subcommands 1-131



 EDIT—SCAN Subcommand  
 

save \ renum(1ðð 5ð)

 EDIT—SCAN Subcommand
Use the SCAN subcommand to request syntax checking services for statements
that are processed by the FORTRAN(H) compiler. You can have each statement
checked as you enter it in input mode, or any or all existing statements checked.
You must explicitly request a check of the syntax of statements you are adding,
replacing, or modifying, using the CHANGE subcommand, the INSERT
subcommand with the insert data operand, or the insert/replace/delete function.

EDIT—SCAN Subcommand Syntax 

55─ ──┬ ┬─SCAN─ ──┬ ┬────────────────────────────────── ──┬ ┬───── ─────────────5%
 └ ┘─SC─── ├ ┤─line_number_1─ ──┬ ┬─────────────── ├ ┤─ON──

│ │└ ┘─line_number_2─ └ ┘─OFF─
 └ ┘ ─*─ ──┬ ┬─────── ────────────────────
 └ ┘─count─

EDIT—SCAN Subcommand Operands
line_number_1

specifies the number of a line to be checked for proper syntax.

line_number_2
specifies all lines between line_number_1 and line_number_2 are to be
checked for proper syntax.

* specifies the line at the location indicated by the line pointer in the system is to
be checked for proper syntax. The line pointer can be changed by the TOP,
BOTTOM, UP, DOWN, and FIND subcommands.

count
specifies the number of lines, beginning with the current line, that you want
checked for proper syntax.

ON | OFF

ON specifies each line is to be checked for proper syntax as it is entered in
input mode.

OFF specifies each line is not to be checked as it is entered in input mode.

If no operands are specified, all existing statements are checked for proper syntax.

EDIT—SCAN Subcommand Examples

 Example 1
Operation:  Have each line of a FORTRAN program checked for proper syntax as it
is entered.

scan on

1-132 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—SUBMIT Subcommand
 

 Example 2
Operation:  Have all the statements in a data set checked for proper syntax.

scan

 Example 3
Operation:  Have several statements checked for proper syntax.

Known:

� The number of the first line to be checked: 62
� The number of the last line to be checked: 69

scan 62 69

 Example 4
Operation:  Check several statements for proper syntax.

Known:

� The line pointer points to the first line to be checked.
� The number of lines to be checked: 7

scan \ 7

 EDIT—SEND Subcommand
Use the SEND subcommand to send a message to another terminal user or to the
system operator. For a description of the SEND command syntax and function, see
the “SEND Command” on page 1-274.

 EDIT—SUBMIT Subcommand
Use the SUBMIT subcommand of EDIT to submit one or more batch jobs for
processing. Each job submitted must reside in either a sequential data set, a
direct-access data set, or in a member of a partitioned data set. Submitted data
sets must be fixed-blocked, 80 byte records. Using the EDIT command to create a
CNTL data set provides the correct format.

Any of these data sets can contain part of a job, one job, or more than one job that
can be executed by a single entry of SUBMIT. Each job must comprise an input job
stream (JCL plus data). If the characters in these data sets are lowercase, do not
submit data sets with descriptive qualifiers TEXT or PLI.

Job cards are optional. The generated jobname is your user ID plus an identifying
character. SUBMIT prompts you for the character and inserts the job accounting
information from the user's LOGON command on any generated job card. The
system or installation default MSGCLASS and CLASS are used for submitted jobs
unless MSGCLASS and CLASS are specified on the job card(s) being submitted.

You must be authorized by installation management to use SUBMIT.

  Chapter 1. TSO/E Commands and Subcommands 1-133



 EDIT—SUBMIT Subcommand  
 

EDIT—SUBMIT Subcommand Syntax 

 ┌ ┐─NOHOLD─
55─ ──┬ ┬─SUBMIT─ ──┬ ┬─*──────────────── ──┼ ┼──────── ─────────────────────────5
 └ ┘─SUB──── │ │┌ ┐──────────── └ ┘─HOLD───
 └ ┘──( ───6 ┴─data_set─ )

┌ ┐─NOJOBCHAR─────────── ┌ ┐──USER(user_id)
5─ ──┼ ┼───────────────────── ──┬ ┬──────────── ──┼ ┼─────────────── ────────────5

└ ┘──JOBCHAR(characters) ├ ┤─PASSWORD─── └ ┘─NOUSER────────
 └ ┘─NOPASSWORD─

 ┌ ┐─NOTIFY───
5─ ──┼ ┼────────── ─────────────────────────────────────────────────────────5%
 └ ┘─NONOTIFY─

EDIT—SUBMIT Subcommand Operands
(data_set)

specifies one or more data set name or names of members of partitioned data
sets that define an input stream (JCL plus data). If you specify more than one
data set name, enclose them in parentheses.

* specifies the data set you are editing defines the input stream to be submitted.
Only the current data set is selected as the input stream. If no operands are
entered on the subcommand, the * is the default.

HOLD | NOHOLD

HOLD specifies SUBMIT has job output held for use with the OUTPUT
command by defaulting to the held MSGCLASS supplied by the installation
manager for the user. If SYSOUT=* or HOLD=YES is specified on the DD
statement, then output directed to DD statements is held.

NOHOLD specifies the job output is not to be held. The default is NOHOLD.

JOBCHAR( characters) | NOJOBCHAR

JOBCHAR( characters) specifies characters to be appended to the job name on
every JOB statement in the data set being submitted. If you plan to use the
STATUS command and your job name is your user ID, use 1 character.

NOJOBCHAR  specifies SUBMIT prompts for job name characters whenever
the job name is the user ID. If prompting is not possible, the job name
character defaults to the letter X. The default is NOJOBCHAR.

PASSWORD | NOPASSWORD

PASSWORD indicates a PASSWORD operand is to be inserted on the
generated JOB statement by SUBMIT, if RACF is installed. SUBMIT
prompts you to enter the password value (in print inhibit mode, if the
terminal supports the feature). This operand is not required if a generated
JOB statement or RACF is not installed. If RACF is installed, then
PASSWORD is the default. The password used is:

� The password (if executing in the foreground) entered on the LOGON
command initiating the foreground session. The current password is

1-134 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—SUBMIT Subcommand
 

used for RACF-defined users. If you have updated your password using
the LOGON command, you must enter the PASSWORD operand with
the new password on the SUBMIT command.

� The password on the LOGON command (if executing in the
background) in the data set being submitted. If a LOGON command is
not in the data set, the USER and PASSWORD operands are not to be
included on the generated JOB statement.

NOPASSWORD specifies PASSWORD and USER operands are not included
on the generated JOB statement. If RACF is not installed, NOPASSWORD
is the default.

USER(user_id) | NOUSER

USER(user_id) specifies a USER operand is to be inserted on the generated
JOB statement, if RACF is installed. The user ID specified is also used as
the job name for the generated JOB statement and for job name or user ID
comparison for NOJOBCHAR processing (see NOJOBCHAR operand
description).

If neither USER or NOUSER is entered and RACF is installed, then USER
is the default. The default user ID value used is determined by the following
rules. The rules are ordered. If the first rule is met, then the user ID is
used.

1. The user ID specified on a LOGON command in the data set being
submitted.

2. The user ID specified on the LOGON command (if executing in the
foreground) initiating the foreground session; the user ID specified on
the USER operand (if executing in the background - RACF defined
users only) on the JOB statement initiating the background session.

3. The default user ID SUBMITJB is used.

NOUSER specifies generated JOB statements do not include USER and
PASSWORD operands. If USER is not specified and RACF is not installed,
then NOUSER is the default.

NOTIFY | NONOTIFY

NOTIFY specifies you are to be notified when your job terminates in the
background, if a JOB statement has not been provided. If you do not want
to receive messages, the message is placed in the broadcast data set. You
must then enter LISTBC to receive the message. If a JOB statement is
generated, then NOTIFY is the default.

When you supply your own JOB statement, use the NOTIFY=user_id
operand on the JOB statement if you want to be notified when the job
terminates. SUBMIT ignores the NOTIFY operand unless it is generating a
JOB statement.

NONOTIFY specifies a termination message is not to be issued or placed in the
broadcast data set. The NONOTIFY operand is only recognized when a
JOB statement has not been provided with the job that you are processing.

  Chapter 1. TSO/E Commands and Subcommands 1-135



 EDIT—TABSET Subcommand  
 

If any of the above types of data sets containing two or more jobs is submitted for
processing, certain conditions apply:

� The SUBMIT processor builds a job card for the first job in the first data set, if
none is supplied, but does not build job cards for any other jobs in the data
set(s).

� If the SUBMIT processor determines that the first job contains an error, none of
the jobs are submitted.

� After the SUBMIT processor submits a job for processing, errors occurring in
the execution of that job have no effect on the submission of any remaining
job(s) in that data set.

Any job card you supply should have a job name consisting of your user ID and a
single identifying character. If the job name is not in this format, you cannot refer to
it with the CANCEL command. You are required to specify the job name in the
STATUS command if the IBM-supplied exit has not been replaced by your
installation and your job name is not your user ID plus a single identifying
character.

If you want to provide a job card, but you also want to be prompted for a unique job
name character, put your user ID in the job name field and follow it with blanks so
that there is room for SUBMIT to insert the prompted-for character. This allows you
to change job names without re-editing the JCL data set.

After SUBMIT has successfully submitted a job for batch processing, it issues a
‘jobname(jobid) submitted’ message. The job ID is a unique job identifier assigned
by the job entry subsystem (JES).

EDIT—SUBMIT Subcommand Examples

 Example 1
Operation:  Submit the data set you are editing for batch processing.

Known:

� The data set has no job card and you do not want to be notified when the job
is completed.

submit \ nonotify

 EDIT—TABSET Subcommand
Use the TABSET subcommand to:

� Establish or change the logical tabulation settings.
� Cancel any existing tabulation settings.

Note:  The TABSET subcommand is supported only on terminals that support tab
setting.

The basic form of the TABSET subcommand causes each strike of the tab key to
be translated into blanks corresponding to the column requirements for the data set
type. For example, if the name of the data set you are editing has FORT as a
descriptive qualifier, the first tabulation setting is in column 7. The values in
Figure 1-14 are in effect when you first enter the EDIT command.

1-136 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—TABSET Subcommand
 

You might find it convenient to have the mechanical tab settings coincide with the
logical tab settings. Note that, except for line-numbered COBOL or VSBASIC data
sets, the logical tab columns apply only to the data that you actually enter. Because
a printed line number prompt is not logically part of the data you are entering, the
logical tab positions are calculated beginning at the next position after the prompt.
Thus, if you are receiving five-digit line number prompts and have set a logical tab
in column 10, the mechanical tab should be set 15 columns to the right of the
margin. If you are not receiving line number prompts, the mechanical tab should be
set 10 columns to the right of the margin.

In COBOL and VSBASIC data sets, the sequence number (line number) is
considered to be a logical (as well as physical) part of each record that you enter.
For example, if you specify the NONUM operand on the EDIT command while
editing a COBOL or VSBASIC data set, the system assumes that column 1 is at
the left margin and that you are entering the required sequence numbers in the first
six columns for COBOL or the first five columns for VSBASIC. Thus, logical tabs
are calculated from the left margin (column 1). In line-numbered COBOL data sets
(the NONUM operand was not specified), the column following a line number
prompt is considered to be column 7 of your data; the first six columns are
occupied by the system-supplied sequence number (line number). In line-numbered
VSBASIC data sets, the column following a line number prompt is considered to be
column 6 of your data; the first five columns are occupied by the system-supplied
sequence number.

Figure 1-14. Default Tab Settings

Data Set Name Descriptive Qualifier Default Tab Settings Columns

ASM 10,16,31,72
CLIST 10,20,30,40,50,60
CNTL 10,20,30,40,50,60
COBOL 8,12,72
DATA 10,20,30,40,50,60
FORT FORTRAN(H) compilers,
FORTRAN IV (G1)

product data set types.

7,72

PLI PL/I Checkout and
Optimizing compiler data set types.

5,10,15,20,25,30,35,40,45,50

TEXT 5,10,15,20,30,40
VSBASIC 10,15,20,25,30,35,40,45,50,55
User-defined 10,20,30,40,50,60

 

EDIT—TABSET Subcommand Syntax 

 ┌ ┐─────────────
┌ ┐──ON( ───6 ┴┬ ┬───────── )

 │ │└ ┘ ─integer─
55─ ──┬ ┬─TABSET─ ──┼ ┼───────────────────── ─────────────────────────────────5%
 └ ┘─TAB──── ├ ┤─OFF─────────────────
 └ ┘─IMAGE───────────────

  Chapter 1. TSO/E Commands and Subcommands 1-137



 EDIT—TOP Subcommand  
 

EDIT—TABSET Subcommand Operands
ON(integer_list)

specifies tab settings are to be translated into blanks by the system. If you
specify ON without an integer list, the existing or default tab settings are used.
You can establish new values for tab settings by specifying the numbers of the
tab columns as values for the integer list. A maximum of ten values is allowed.
ON is the default.

OFF
specifies there is to be no translation of tabulation characters. Each strike of
the tab key produces a single blank in the data.

IMAGE
specifies the next input line defines new tabulation settings. The next line that
you type should consist of t's, indicating the column positions of the tab
settings, and blanks or any other characters except t. Ten is the maximum
number of tab settings allowable. Do not use the tab key to produce the new
image line. A good practice is to use a sequence of digits between the t's so
you can easily determine which columns the tabs are set to (see “Example 3”).

EDIT—TABSET Subcommand Examples

 Example 1
Operation:  Re-establish standard tab settings for your data set.

Known:

� Tab settings are not in effect.

tab

 Example 2
Operation:  Establish tabs for columns 2, 18, and 72.

tab on(2 18 72)

 Example 3
Operation:  Establish tabs at every 10th column.

tab image
123456789t123456789t123...

 EDIT—TOP Subcommand
Use the TOP subcommand to change the line pointer in the system to zero, that is,
the pointer points to the position preceding the first line of an unnumbered data set
or of a numbered data set, which does not have a line number of zero. The pointer
points to line number zero of a data set that has one.

This subcommand is useful in setting the line pointer to the proper position for
subsequent subcommands that need to start their operations at the beginning of
the data set.

If the data set is empty, you are notified. However, the current line pointer still takes
on a zero value.

1-138 OS/390 V2R7.0 TSO/E Command Reference  



  EDIT—UP Subcommand
 

EDIT—TOP Subcommand Syntax 

55──TOP──────────────────────────────────────────────────────────────────5%

EDIT—TOP Subcommand Examples

 Example 1
Operation:  Move the line pointer to the beginning of your data set.

Known:

� The data set is not line-numbered.

top

 EDIT—UNNUM Subcommand
Use the UNNUM subcommand to remove existing line numbers from the records in
the data set.

EDIT—UNNUM Subcommand Syntax 

55─ ──┬ ┬─UNNUM─ ───────────────────────────────────────────────────────────5%
 └ ┘─UNN───

EDIT—UNNUM Subcommand Examples

 Example 1
Operation:  Remove the line numbers from an ASM-type data set.

Known:

� The data set has line numbers.

unnum

 EDIT—UP Subcommand
Use the UP subcommand to change the line pointer in the system so that it points
to a record nearer the beginning of your data set. If the use of this subcommand
causes the line pointer to point to the first record of your data set, you are notified.

EDIT—UP Subcommand Syntax 

 ┌ ┐─1─────
55─ ─UP─ ──┼ ┼─────── ───────────────────────────────────────────────────────5%
 └ ┘─count─

  Chapter 1. TSO/E Commands and Subcommands 1-139



 EDIT—VERIFY Subcommand  
 

EDIT—UP Subcommand Operands
count

specifies the number of lines toward the beginning of the data set that you want
to move the current line pointer. If count is omitted, the pointer is moved only
one line.

EDIT—UP Subcommand Examples

 Example 1
Operation:  Change the pointer so that it refers to the preceding line.

up

 Example 2
Operation:  Change the pointer so that it refers to a line located 17 lines before the
location currently referred to.

up 17

 EDIT—VERIFY Subcommand
Use the VERIFY subcommand to display the line that is currently pointed to by the
line pointer in the system whenever the current line pointer has been moved, or
whenever a line has been modified by use of the CHANGE subcommand. Until
you enter VERIFY, you do not have verification of changes in the position of the
current line pointer.

EDIT—VERIFY Subcommand Syntax 

 ┌ ┐─ON──
55─ ──┬ ┬─VERIFY─ ──┼ ┼───── ─────────────────────────────────────────────────5%
 └ ┘─V────── └ ┘─OFF─

EDIT—VERIFY Subcommand Operands
ON

specifies you want to have the line that is referred to by the line pointer
displayed at your terminal each time the line pointer changes or each time the
line is changed by the CHANGE subcommand. If you omit both ON and OFF,
then ON is the default.

OFF
specifies you want to discontinue this service.

If the VERIFY subcommand is activated by BOTTOM, CHANGE, COPY,
DELETE, DOWN, FIND, MOVE, RENUM, UNNUM and UP, then subcommands
change the current line pointer and cause it to be displayed.

1-140 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

EDIT—VERIFY Subcommand Examples

 Example 1
Operation:  Have the line that is referred to by the line pointer displayed at your
terminal each time the line pointer changes.

verify

or

verify on

 Example 2
Operation:  Terminate the operations of the VERIFY subcommand.

verify off

 END Command
Use the END command to end a CLIST. When the system encounters an END
command in a CLIST, and the CONTROL MAIN option is not in effect, CLIST
execution halts. If the CONTROL MAIN option is in effect, use the EXIT statement
to halt the execution of the CLIST. This function is better performed by the EXIT
statement.

END Command Syntax 

55──END──────────────────────────────────────────────────────────────────5%

END Command Return Code
The return code is from the command that executed last.

 EXEC Command
Use the EXEC command to execute a CLIST or REXX exec.

You can specify the EXEC command or the EXEC subcommand of EDIT and TEST
in three ways:

� Explicit form:  Enter EXEC or EX followed by the name of the data set that
contains the CLIST or REXX exec. If you need prompting you should invoke
EXEC explicitly with the PROMPT option.

� Implicit form:  Do not enter EXEC or EX; enter only the name of the member
to be found in a procedure library such as SYSEXEC or SYSPROC. A
procedure library consists of partitioned data sets allocated to the specific file
(SYSPROC or SYSEXEC) either dynamically by the ALLOCATE command or
as part of the LOGON procedure. TSO/E determines if the member name is a
system command before it searches the libraries.

� Extended implicit form:  Enter a percent sign followed by the member name.
TSO/E only searches the procedure library for the specified name. This form is
faster because the system doesn't search for commands.

  Chapter 1. TSO/E Commands and Subcommands 1-141



 EXEC Command  
 

Some of the commands in a CLIST might have symbolic variables for operands.
When you specify the EXEC command, you can supply actual values for the
system to use in place of the symbolic variables. In addition, when you invoke a
REXX exec you can pass arguments on the EXEC command. Specify the
arguments in single quotes.

Using EXEC as a Subcommand
The EXEC subcommand of EDIT and TEST performs the same basic functions as
the EXEC command. However, a CLIST that is executed with an EXEC
subcommand can execute only CLIST statements and other subcommands of the
EDIT or TEST commands. A REXX exec executed with an EXEC subcommand can
execute only REXX statements. When used to execute a REXX exec, the EXEC
subcommand can use the data stack to provide information to EDIT or TEST. For
information on writing CLISTs, see OS/390 TSO/E CLISTs. For information on
writing REXX execs, see OS/390 TSO/E REXX User's Guide and OS/390 TSO/E
REXX Reference.

EXEC Command Syntax 

55─ ──┬ ┬──(1)──┬ ┬─EXEC─ ──┬ ┬──data_set_name(member_name) ── ─┤ Oper1 ├─ ──────────5
│ │└ ┘─EX─── ├ ┤──(member_name) ───────────────

 │ │├ ┤─data_set_name────────────────
│ │├ ┤──'data_set_name' ─────────────
│ │└ ┘──'data_set_name(member_name)'

 └ ┘──┬ ┬───── ─member_name──┤ Oper2 ├─────────────────────────
 └ ┘─%───(2)

 ┌ ┐─NOLIST─ ┌ ┐─NOPROMPT─
5─ ──┼ ┼──────── ──┼ ┼────────── ──┬ ┬─────── ──────────────────────────────────5%
 └ ┘─LIST─── └ ┘─PROMPT─── ├ ┤─CLIST─
 └ ┘─EXEC──

Oper1:
├─ ──┬ ┬──────────────────────────────────────────────── ────────────────────┤
 │ │┌ ┐─────────── ┌ ┐─────────────────────────────────
 ├ ┤───6 ┴'p_value' ───6 ┴┬ ┬─────────────────────────────
 │ ││ │┌ ┐─────────────────

│ │└ ┘──'k_word ───6 ┴┬ ┬───────────── '
 │ │├ ┤──('k_value')

│ │└ ┘──(k_value) ──
 └ ┘─argument───────────────────────────────────────

Oper2:
 ┌ ┐───────────────────────────────────────────────────────────────
├─ ───6 ┴┬ ┬─────────────────────────────────────────────────────────── ───────┤
 │ │┌ ┐───────────
 ├ ┤ ───6 ┴─p_value─ ──┬ ┬──────────────────────────────────────────
 │ ││ │┌ ┐──────────
 │ │└ ┘ ──┬ ┬───6 ┴─k_word─ ───── ──┬ ┬─────────────────
 │ ││ │┌ ┐─────────── │ │┌ ┐───────────

│ │└ ┘──( ───6 ┴─k_value─ ) └ ┘──( ───6 ┴'k_value' )
 └ ┘─argument──────────────────────────────────────────────────

Notes:
1 The explicit form of the EXEC command.
2 The implicit (without percent sign) and extended implicit form (with percent sign).

1-142 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

EXEC Command Operands
data_set_name(member_name)

specifies the unqualified name of a partitioned data set whose type is CLIST or
exec. The data_set_name is the library name such as the name SESSION in
the data set PREFIX.SESSION.CLIST.(member_name) is the name of the
CLIST or exec. For example, to execute prefix.session.clist(first), specify:

exec session (first)

(member_name)
specifies a member of a partitioned data set whose type is CLIST or exec.
(member_name) is the name of the CLIST or exec. For example, to execute an
exec named prefix.exec(two), specify:

exec (two) exec

data_set_name
specifies the unqualified name of a sequential data set whose type is CLIST or
exec. Data_set_name is the name of the CLIST or exec. For example, to
execute a CLIST named prefix.test.clist, specify:

exec test.clist

'data_set_name'
specifies the fully-qualified name of a sequential data set. For example, to
execute an exec named project.num.one, specify:

exec 'project.num.one' exec

If the data set is not a sequential, but a partitioned one, a member TEMPNAME
is assumed. If such member does not exist, the system will notify you,
otherwise it will be executed.

'data_set_name(member_name)'
specifies the fully-qualified name of a partitioned data set. (member_name) is
the name of the CLIST or exec. For example, to execute a CLIST named
PROJECT.SPECIAL.$1993(MARCH), specify:

exec 'PROJECT.SPECIAL.$1993(MARCH)'

A CLIST or REXX exec data set may contain line numbers according to the
following format:

� Variable blocked — First 8 characters in each record. If the data in columns
1-8 is not numeric, the CLIST or exec treats it as data.

� Fixed blocked — Last 8 characters in each record

Variable blocked records are recommended, although fixed blocked can be
used.

p_value
For use with CLISTs only.  A p_value is the actual value a user specifies for
each positional parameter on the PROC statement. Lowercase values are
changed to uppercase.

The user must specify a p_value for each positional parameter in the same
sequence as each appears on the PROC statement (for example, p_value1
p_value2 ... p_valuen).

  Chapter 1. TSO/E Commands and Subcommands 1-143



 EXEC Command  
 

If a user does not specify a p_value for a positional parameter, the CLIST
prompts for the value. See “Considerations for Passing Quotes” on page 1-149
for more information.

argument
For use with execs only.  Specifies a parameter passed to an exec.

k_word
For use with CLISTs only.  k_word is the actual keyword a user specifies. It
can be an abbreviation if it is different from all other k_word parameters in the
EXEC command.

The specification of k_word must follow all p_value specifications; but k_words
may be specified in any order.

k_value
A value associated with a k_word.

'k_value'
k_value is a quoted string. Lowercase values are changed to uppercase.

Specification on the PROC statement: keyword()

� If the user specifies k_word without a k_value, the CLIST prompts for the
value.

� If the user does not specify k_word, the associated keyword has a null
value.

Specification on the PROC statement: keyword(default value)

� If the user specifies k_word without a k_value, the CLIST prompts for the
value.

� If the user does not specify k_word, the CLIST uses the default value.

� If the user specifies k_word with a k_value, the CLIST uses k_value.

See “Considerations for Passing Quotes” on page 1-149 for more information.

NOLIST | LIST
specifies whether commands and subcommands are to be listed at the terminal
as they are executed.

NOLIST specifies commands and subcommands are not to be listed. The
system assumes NOLIST for implicit and explicit EXEC commands.
NOLIST is the default.

LIST specifies commands and subcommands are to be listed. This operand is
valid only for the explicit form of EXEC.

NOPROMPT | PROMPT

NOPROMPT specifies no prompting during the execution of a CLIST or REXX
exec. NOPROMPT is the default.

No prompting is allowed during the execution of a program if the
NOPROMPT keyword operand of PROFILE has been specified, even if the
PROMPT option of EXEC has been specified.

1-144 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

PROMPT specifies prompting to the terminal is allowed during the execution of
a CLIST or REXX exec. The PROMPT keyword implies LIST, unless
NOLIST has been explicitly specified. Therefore, all commands and
subcommands are listed at the terminal as they are executed. This operand
is valid only for the explicit form of EXEC.

The PROMPT keyword is not propagated to nested EXEC commands. If
you want to be prompted during execution of the program it invokes,
PROMPT must be specified on a nested EXEC command.

The following is a list of options resulting from specific keyword entries:

CLIST | EXEC
specifies whether a CLIST or an exec is to be run. To fully qualify the data set
name, the EXEC command adds the suffix CLIST or EXEC to the data set name.
For more information about these operands, including what happens when you
omit the parameter, see “Using the Explicit Form of the EXEC Command” on
page 1-146.

CLIST specifies that a CLIST is to be run.

EXEC specifies that an exec is to be run.

%member_name
specifies the name of a CLIST or exec. If the percent sign (%) is entered,
TSO/E searches its procedure libraries for a CLIST or exec only. It does not
search for a command. For example, to execute an exec named
prefix.myrexx.exec(new) that is allocated to a procedure library, specify:

%new

Suppose the following CLIST exists as a data set named ANZAL:

PROC 3 INPUT OUTPUT LIST LINES( )
allocate dataset(&input) file(indata) old
allocate dataset(&output) block(1ðð) space(3ðð,1ðð)
allocate dataset(&list) file(print)
call proc2 '&lines'
end

The PROC statement indicates that the three symbolic values, &INPUT,; &OUTPUT
and &LIST, are positional (required) and that the symbolic value &LINES is a
keyword (optional).

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST, and 20 for
LINES, you would specify the implicit form:

Keyword specified Resulting options

PROMPT 
NOPROMPT 
LIST 
NOLIST 
PROMPT LIST
PROMPT NOLIST
NOPROMPT LIST
NOPROMPT NOLIST
No keywords

PROMPT LIST
NOPROMPT NOLIST
LIST NOPROMPT
NOLIST NOPROMPT
PROMPT LIST
PROMPT NOLIST
NOPROMPT LIST
NOPROMPT NOLIST
NOPROMPT NOLIST

  Chapter 1. TSO/E Commands and Subcommands 1-145



 EXEC Command  
 

anzal alpha beta comment lines(2ð)

Note:  If the value of a operand is not entered on the EXEC statement, that value
is nullified.

Using the Explicit Form of the EXEC Command
Using the explicit form of the EXEC command involves naming the data set that
contains the REXX exec or CLIST. You can create the fully-qualified data set name
and determine whether it will run as a REXX exec or a CLIST. You can specify
either the CLIST or EXEC operand to denote that the data set be run as a REXX
exec or CLIST, respectively. If you specify neither operand, the data set is run
based on the following specifications or defaults:

If you know that the procedure being run is a CLIST, you can code the CLIST
operand. If you know that the procedure being run is a REXX exec, you can code
the EXEC operand. If you do not code the CLIST or EXEC operand on the EXEC
command, the EXEC command processor examines line 1 of the procedure for the
characters “REXX” within a comment. (The characters “REXX” can be in
uppercase, lowercase, or mixed-case.) This is known as the REXX exec identifier.
If the EXEC command finds the REXX exec identifier, the EXEC command runs the
procedure as a REXX exec. Otherwise, it runs the procedure as a CLIST.

In addition to determining if a procedure is run as a REXX exec or a CLIST, the
CLIST and EXEC operands of the EXEC command determine how to name a
non-fully-qualified data set. If you specify EXEC, a non-fully-qualified data set name
is suffixed with the “exec” qualifier. If you specify CLIST, or if you omit either EXEC
or CLIST, a non-fully-qualified name is suffixed with the qualifier “clist”.

The tables that follow show the decision process for a data set that is fully qualified
and a data set that is not fully qualified. The outcome of the decision is that the
data set will run as either:

� A REXX exec
 � A CLIST

The following examples use the explicit form of the EXEC command and show how
the procedure runs in each case.

Data Set is Fully Qualified

If you specify: The procedure runs as a:
EXEC REXX exec
CLIST CLIST
Neither and REXX ID is present REXX exec
Neither and REXX ID is not present CLIST

Data Set Name is Not Fully Qualified

If you specify: Then TSO/E adds: The procedure runs as a:
EXEC TSO/E prefix and EXEC suffix REXX exec
CLIST TSO/E prefix and CLIST suffix CLIST
Neither TSO/E prefix and CLIST suffix

and the REXX ID is present
REXX exec

Neither TSO/E prefix and CLIST suffix
and the REXX ID not present

CLIST

1-146 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

 Example 1
Operation:  Name is not fully qualified, EXEC or CLIST keyword is specified.

Result:

� The fully-qualified name is prefixed by the PREFIX and is suffixed by “exec” or
“clist”, unless the non-fully-qualified name already has the appropriate suffix.

� Procedure is run as the keyword specifies.

ex tools(mem1) exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’.

ex tools(mem2) clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

ex tools.exec(mem1) exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’.

No need to add the “exec” suffix because the name already has the appropriate
suffix.

ex tools.clist(mem2) clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

No need to add the “clist” suffix because the name already has the appropriate
suffix.

 Example 2
Operation:  Name is fully qualified, EXEC or CLIST keyword is specified.

Result:

� Fully-qualified name is as specified

� Procedure is run as the keyword specifies.

ex ‘sk127.tools.exec(mem1)’ exec

runs REXX exec “mem1” from: ‘slk27.tools.exec(mem1)’

ex ‘sk127.tools.clist(mem2)’ clist

runs CLIST “mem2” from: ‘slk27.tools.clist(mem2)’.

 Example 3
Operation:  Name is not fully qualified, EXEC or CLIST keyword is not specified.

Result:

� Fully-qualified name is prefixed by the PREFIX, and is suffixed by “clist”, unless
the non-fully-qualified name already has the appropriate suffix.

� Procedure is run as a REXX exec if the REXX string is found within a comment
in line 1 of the procedure. Otherwise, it is run as a CLIST.

ex tools(mem3)

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of
procedure “mem3”. Whether or not “mem3” is run as a REXX exec or a CLIST, it is
read from: ‘slk27.tools.clist(mem3)’.

  Chapter 1. TSO/E Commands and Subcommands 1-147



 EXEC Command  
 

ex tools.clist(mem3)

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of
procedure “mem3”. Whether or not “mem3” is run as a REXX exec or a CLIST, it is
read from: ‘slk27.tools.clist(mem3)’.

No need to add the “clist” suffix because the name already has the appropriate
suffix.

 Example 4
Operation:  Name is fully qualified, EXEC or CLIST keyword is not specified.

Result:

� Fully-qualified name is as specified.

� Procedure is run as a REXX exec if the string REXX is found within a comment
in line 1 of the procedure. Otherwise, it is run as a CLIST.

ex ‘slk27.tools exec(mem3)’

runs “mem3” as REXX exec or CLIST depending on what is found in line 1 of
procedure “mem3”.

Using the (Extended) Implicit Form of the EXEC Command
When using the implicit form of the EXEC command, TSO/E finds the REXX exec
or CLIST as follows.

The following table lists the search order of the user-, application-, and system-level
libraries. Also shown are the ddnames associated with each library level. These
ddnames can be allocated either dynamically by the ALLOCATE command or
included as part of a logon procedure.

With the defaults that TSO/E provides, and before an ALTLIB command is invoked,
TSO/E searches the system EXEC library (default ddname SYSEXEC) first,
followed by the system CLIST library (ddname SYSPROC). Note that your system
programmer can change this by

� Defining an alternate ddname of SYSEXEC

� Indicating that TSO/E is not to search the system-level exec ddname of
SYSEXEC. Then only the system-level CLIST (SYSPROC) is searched.

Figure 1-15. Library Search Order

Search
order Library level Associated ddname

1. User REXX exec SYSEXEC

2. User CLIST SYSUPROC

3. Application REXX exec Define with FILE or DATASET operand

4. Application CLIST Define with FILE or DATASET operand

5. System REXX exec SYSEXEC (installation can define this
ddname)

6. System CLIST SYSPROC

1-148 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

You can alter the default library search order by using either the ALTLIB command
or the EXECUTIL command.

Use EXECUTIL to indicate that the system-level exec ddname is to be
searched for the duration of the current REXX language processor
environment.
Use ALTLIB to indicate that the system-level exec ddname is to be searched
for the duration of the current application. ALTLIB always overrides EXECUTIL
within an application.

Use ALTLIB DISPLAY to see which libraries are being searched for.

The following example uses the implicit form of the EXEC command. It shows how
the procedure is run. In this example, assume that the TSO/E prefix is ‘slk27’.

 Example 1
Operation:  Run an implicit procedure.

Result:

� If the implicit procedure was found in the data set allocated to the SYSEXEC
file, it is run as a REXX exec.

� If the implicit procedure was found in the data set allocated to the SYSPROC
file, it is run as a REXX exec if the string REXX appears in a comment on line
1 of the procedure. Otherwise, it is run as a CLIST.

%mem4

runs “mem4” as REXX exec, if “mem4” was found in SYSEXEC or runs “mem4” as
REXX exec or CLIST, depending on what is found in line 1 of procedure “mem4”, if
“mem4” was found in SYSPROC.

Considerations for Passing Quotes
Considerations for specifying parameters that contain single quotes (apostrophes):

� implicit invocation - specify the exact string.

� explicit invocation - specify two apostrophes for each apostrophe within the
string. For example, to pass the string “It's” specify:

It''s

To pass the three-parameter string “It's 2 o'clock” specify:

It''s 2 o''clock

Considerations for specifying parameters that are quoted strings:

 � implicit invocation:

– p_value - specify the exact string. For example, to pass the fully-qualified
data set name 'USER33.MASTER.BACKUP' specify:

'user33.master.backup'

– k_word('k_value') - to pass the same fully-qualified data set name as
shown in the previous example as a k_value, specify:

dsn('''user33.master.backup''')

 � explicit invocation:

  Chapter 1. TSO/E Commands and Subcommands 1-149



 EXEC Command  
 

– p_value - specify two quotes for each enclosing quote. For example, to
pass the fully-qualified data set name 'USER33.MASTER.BACKUP' specify:

'''user33.master.backup'''

The outermost set of quotes is required as part of the syntax.

– k_word('k_value') - to pass the same fully-qualified data set name as
shown in the previous example as a k_value, specify

'dsn(''''''user33.master.backup'''''')'

The number of enclosing quotes must be doubled because the entire
specification is itself a quoted string.

EXEC Command Return Codes

If your installation uses EXEC command exit routines and those routines indicate
that the reason code is used as the return code from EXEC, you may receive
return codes other than those listed. For more information about reason and return
codes from EXEC, see OS/390 TSO/E Customization.

Figure 1-16. EXEC Command Return Codes

0 Processing successful.

12 Processing unsuccessful.

Other Return code is from the EXEC command exit routines or from the
REXX exec that was executed.

EXEC Command Examples

 Example 1
Operation:  Execute a CLIST using the explicit form of EXEC.

Known:

� The name of the data set that contains the CLIST is
SLK27.USER.CLIST(MEMBER)

� The user's TSO/E prefix is SLK27.

ex 'slk27.user.clist(member)'

 Example 2
Operation:  Execute a CLIST to invoke the assembler.

Known:

� The name of the data set that contains the CLIST is RBJ21.FASM.CLIST.
� The CLIST consists of:

1-150 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

PROC 1 NAME
 free file(sysin,sysprint)
 delete (&name..list,&name..obj)
 allocate dataset(&name...asm) file(sysin) old keep
 allocate dataset(&name..list) file(sysprint) -
 block(132) space(3ðð,1ðð)
 allocate dataset(&name..obj) file(syspunch) block(8ð) -
 space(1ðð,5ð)
 allocate file(sysut1) space(3,1) cylinders new delete
 allocate file(sysut2) space(3,1) cylinders new delete
 allocate file(sysut3) space(3,1) cylinders new delete
 allocate file(syslib) da('d82ljp1.tso.macro',
 'sys1.maclib') shr
 call 'sys1.linklib(ifoxðð)' 'deck,noobj,rent'
 free file(sysut1,sysut2,sysut3,sysin,sysprint, -
 syspunch,syslib)
 allocate file(sysin) da(\)
 allocate file(sysprint) da(\)

Note:  You can use a period to delimit a symbolic variable. However, follow the
first period with another period. The first period is the delimiter that is
removed during symbolic substitution of the variable. The second period
remains unchanged.

� The module to be assembled is TGETASIS.
� You want to have the names of the commands in the CLIST displayed at your

terminal as they are executed.

To execute the CLIST, enter:

exec fasm 'tgetasis' list

The display at your terminal would be similar to:

à ð
 EX FASM 'TGETASIS' LIST
 FREE FILE(SYSIN,SYSPRINT)
 DELETE (TGETASIS.LIST,TGETASIS.OBJ)
 IDCð55ðI ENTRY (A) D82LJP1.TGETASIS.LIST DELETED
 IDCð55ðI ENTRY (A) D82LJP1.TGETASIS.OBJ DELETED
 ALLOCATE DATASET(TGETASIS.ASM) FILE(SYSIN) OLD KEEP
 ALLOCATE DATASET(TGETASIS.LIST) FILE(SYSPRINT)
 BLOCK(132) SPACE(3ðð,1ðð)
 ALLOCATE DATASET(TGETASIS.OBJ) FILE(SYSPUNCH)
 BLOCK(8ð) SPACE(1ðð,5ð)
 ALLOCATE FILE(SYSUT1) SPACE(3,1) CYLINDERS NEW DELETE
 ALLOCATE FILE(SYSUT2) SPACE(3,1) CYLINDERS NEW DELETE
 ALLOCATE FILE(SYSUT3) SPACE(3,1) CYLINDERS NEW DELETE
 ALLOCATE FILE(SYSLIB) DA('D82LJP1.TSO.MACRO',
 'SYS1.MACLIB') SHR
 CALL 'SYS1.LINKLIB(IFOXðð)' 'DECK,NOOBJ,RENT'
 FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSIN,SYSPRINT,
 SYSPUNCH,SYSLIB)
 ALLOCATE FILE(SYSIN) DA(\)
 ALLOCATE FILE(SYSPRINT) DA(\)
 READY

  Chapter 1. TSO/E Commands and Subcommands 1-151



 EXEC Command  
 

 Example 3
Operation:  Assume that the CLIST in Example 2 has been stored in a CLIST
library, which was allocated to the SYSPROC file ID. Execute the CLIST using the
implicit form of EXEC.

Known:

� The name of the member of the partitioned data set
� that contains the CLIST is FASM2.

fasm2 tgetasis

 Example 4
Operation:  Enter a fully-qualified data set name as a keyword value in an EXEC
command value list.

Known:

� The CLIST named SWITCH is contained in a CLIST library named
MASTER.CLIST which is allocated as SYSPROC.

� The CLIST consists of:

PROC ð DSN1() DSN2()
RENAME &DSN1 TEMPSAVE
RENAME &DSN2 &DSN1
RENAME TEMPSAVE &DSN2

If you have a user ID of USER33 and you want to switch the names of two data
sets MASTER.BACKUP and USER33.GOODCOPY, you could invoke the CLIST as
follows:

Explicit form:

exec 'master.clist(switch)' +  
'dsn1(''''''master.backup'''''') +  

 dsn2(goodcopy)'

Extended implicit form:

%switch dsn1('''master.backup''') dsn2(goodcopy)

Note that when you use the implicit form, the specification of quoted strings in the
value list is made simpler because the value list itself is not a quoted string.

 Example 5
Operation:  Execute a REXX exec using the explicit form of EXEC.

Known:

� The name of the data set that contains the REXX exec is
LMW18.USER.EXEC(MEMBER)

� The user's TSO/E prefix is LMW18.

ex 'lmw18.user.exec(member)' exec

Note that the exec operand used in this example is optional. When a fully quoted
data set name is specified, the exec operand (or CLIST operand when executing a
CLIST) is not required.

1-152 OS/390 V2R7.0 TSO/E Command Reference  



  EXEC Command
 

 Example 6
Operation:  Assume that the REXX exec in Example 5 has been stored in a REXX
library, which was allocated to the SYSEXEC file ID. Execute the REXX exec
using the implicit form of EXEC.

Known:

� The name of the member of the partitioned data set that contains the REXX
exec is MEMBER.

member

 Example 7
Operation:  Enter a fully-qualified data set name as an argument in an explicitly
executed REXX exec.

Known:

� The REXX exec named SWITCH is contained in a REXX library named
MASTER.EXEC which is allocated to SYSPROC.

� The REXX exec consists of:

PARSE ARG dsn1 dsn2
'RENAME' dsn1 'TEMPSAVE'
'RENAME' dsn2 dsn1
'RENAME TEMPSAVE' dsn2

If you have a user ID of USER33 and you want to switch the names of two data
sets MASTER.BACKUP and USER33.GOODCOPY, you could invoke the REXX
exec as follows:

Explicit form:

exec 'master.exec(switch)' '''master.backup'' goodcopy' exec

Extended implicit form:

%switch 'master.backup' goodcopy

Note that when you use the implicit form, the specification of quoted strings in the
value list is made simpler because the value list itself is not a quoted string.

 Example 8
Operation:  Pass an argument string containing values separated by commas to a
REXX exec.

Known:

� The REXX exec named GETARG is contained in a REXX library named
REXX.EXEC, which is allocated to file SYSEXEC.

� The REXX exec consists of:

PARSE ARG A ',' B
SAY 'Value of A is:' A
SAY 'Value of B is:' B

Implicit form:

GETARG 1,2

  Chapter 1. TSO/E Commands and Subcommands 1-153



 EXECUTIL Command  
 

Extended implicit form:

%GETARG 1,2

Explicit form:

ex 'REXX.EXEC(GETARG)' '1,2'

Note:  If you wish to pass an argument string that contains values separated by
commas and the first value is null (that is, the argument string begins with a
comma), then the explicit form must be used.

For example, to pass the argument string “,3” to the GETARG exec, you must
specify:

ex 'REXX.EXEC(GETARG)' ',3'

In this case, GETARG is passed the two character argument string ",3". The
PARSE ARG A ',' B instruction parses the argument string to obtain a null value for
A, and a value of 3 for B.

If an implicit invocation is used, the leading comma is stripped from the argument
string passed to the exec. That is,

GETARG ,3

results in the 1 character string "3" being passed to the exec.

 EXECUTIL Command
The EXECUTIL command is a TSO/E REXX command that lets you change
various characteristics that control how an exec executes in the TSO/E address
space. You can use EXECUTIL:

� In an exec

� From TSO/E READY mode

� From ISPF - the ISPF command line or ISPF option 6 (enter a TSO/E
command or CLIST)

� In a CLIST. You can use EXECUTIL in a CLIST to affect exec processing.
However, it has no effect on CLIST processing.

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a
program that is written in a high-level programming language by using the TSO/E
service facility. From READY mode or ISPF, the HI, HT, and RT operands are not
applicable because an exec is not currently executing.

Use EXECUTIL to:

� Specify whether the system exec library, whose default name is SYSEXEC, is
to be closed upon completion of the exec or is to remain open

� Start and stop tracing of an exec

� Stop the execution of an exec

� Suppress and resume terminal output from an exec

� Change entries in a function package directory

1-154 OS/390 V2R7.0 TSO/E Command Reference  



  EXECUTIL Command
 

� Specify whether the system exec library (the default is SYSEXEC) is to be
searched in addition to SYSPROC.

Additional Considerations for Using EXECUTIL
� All of the EXECUTIL operands are mutually exclusive, that is, you can only

specify one of the operands on the command.

� The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also,
by themselves, immediate commands. Immediate commands are commands
that can be issued from the terminal if an exec is executing and you press the
attention interrupt key and enter attention mode. These commands are
processed immediately. OS/390 TSO/E REXX Reference, describes the
immediate commands.

� In general, EXECUTIL works on a language processor environment basis. That
is, EXECUTIL only affects the current environment in which EXECUTIL is
issued. For example, if you are in split screen in ISPF and issue EXECUTIL
TS from the second ISPF screen to start tracing, only execs that are invoked
from that ISPF screen are traced. If you invoke an exec from the first ISPF
screen, the exec is not traced.

Using the EXECDD and SEARCHDD operands may affect subsequent
language processor environments that are created. OS/390 TSO/E REXX
Reference, describes the concept of language processor environments and
how EXECUTIL EXECDD and EXECUTIL SEARCHDD may affect more than
one environment.

EXECUTIL Command Syntax 

55──EXECUTIL─ ──┬ ┬──EXECDD( ──┬ ┬─CLOSE─── ) ─────────────────────────────────5%
 │ │└ ┘─NOCLOSE─
 ├ ┤─TS────────────────────
 ├ ┤─TE────────────────────
 ├ ┤─HT────────────────────
 ├ ┤─RT────────────────────
 ├ ┤─HI────────────────────

├ ┤─┤ RENAME ├────────────
└ ┘──SEARCHDD( ──┬ ┬─NO── ) ──

 └ ┘─YES─

RENAME:
├──RENAME─ ──NAME(function_name) ──┬ ┬─────────────────── ──┬ ┬──────────── ────┤

└ ┘──SYSNAME(sys_name) └ ┘──DD(sys_dd)

EXECUTIL Command Operands
EXECDD(CLOSE | NOCLOSE)

Specifies whether the system exec library is to be closed upon completion of
the exec.

CLOSE causes the system exec library, whose default name is SYSEXEC, to
be closed upon completion of the exec. This condition can be changed by
issuing the EXECUTIL EXECDD(NOCLOSE) command.

NOCLOSE causes the system exec library to remain open upon completion of
the exec. This is the default condition and can be changed by issuing the
EXECUTIL EXECDD(CLOSE) command. The selected option remains in

  Chapter 1. TSO/E Commands and Subcommands 1-155



 EXECUTIL Command  
 

effect until it is changed by the appropriate EXECUTIL command, or until
the current environment is terminated.

The EXECDD operand affects the ddname specified in the LOADDD field in the
module name table. The default is SYSEXEC. OS/390 TSO/E REXX
Reference, describes the module name table in detail.

Any libraries defined using the ALTLIB command are not affected by the
EXECDD operand. SYSPROC is also not affected.

Note:  Specify EXECDD(CLOSE) or EXECDD(NOCLOSE) before running any
execs out of the SYSEXEC file. If you attempt to use EXECDD(CLOSE)
or EXECDD(NOCLOSE) after SYSEXEC has been opened, you might
not get the desired result because the SYSEXEC file must be closed at
the same MVS task level at which it was opened.

TS Use TS (Trace Start) to start tracing execs. Tracing lets you interactively control
the execution of an exec and debug problems. For more information about the
interactive debug facility, see OS/390 TSO/E REXX Reference.

If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for
the next exec you invoke. Tracing is then in effect for that exec and any other
execs it calls. Tracing stops:

� When the original exec completes
� If one of the invoked execs specifies EXECUTIL TE
� If one of the invoked execs calls a CLIST, which specifies EXECUTIL TE
� If you enter attention mode while an exec is executing and issue the TE

immediate command.

If you use EXECUTIL TS in an exec, tracing is started for all execs that are
executing. This includes the current exec that contains EXECUTIL TS, any
execs it invokes, and any execs that were executing when the current exec
was invoked. Tracing remains active until all currently executing execs
complete or an exec or CLIST contains EXECUTIL TE.

For example, suppose exec A calls exec B, which then calls exec C. If exec B
contains the EXECUTIL TS command, tracing is started for exec B and remains
in effect for both exec C and exec A. Tracing stops when exec A completes.
However, if one of the execs contains EXECUTIL TE, tracing stops for all of the
execs.

If you use EXECUTIL TS in a CLIST, tracing is started for all execs that are
executing, that is, for any exec the CLIST invokes or execs that were executing
when the CLIST was invoked. Tracing stops when the CLIST and all currently
executing execs complete or if an exec or CLIST contains EXECUTIL TE. For
example, suppose an exec calls a CLIST and the CLIST contains the
EXECUTIL TS command. When control returns to the exec that invoked the
CLIST, that exec is traced.

You can use EXECUTIL TS from a program by using the TSO/E service facility.
For example, suppose an exec calls a program and the program encounters an
error. The program can invoke EXECUTIL TS using the TSO/E service facility
to start tracing all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TS to start tracing or TE to stop tracing. OS/390 TSO/E REXX Reference,
describes the TS and TE immediate commands.

1-156 OS/390 V2R7.0 TSO/E Command Reference  



  EXECUTIL Command
 

TE Use TE (Trace End) to end tracing execs. The TE operand is not applicable in
READY mode because an exec is not currently running. However, if you issued
EXECUTIL TS to trace the next exec you invoke and then issued EXECUTIL
TE, the next exec you invoke is not traced.

If you use EXECUTIL TE in an exec or CLIST, tracing is ended for all execs
that are currently running. This includes execs that were executing when the
exec or CLIST was invoked and execs that the exec or CLIST calls. For
example, suppose exec A calls CLIST B, which then calls exec C. If tracing
was on and CLIST B contains EXECUTIL TE, tracing is stopped and execs C
and A are not traced.

You can use EXECUTIL TE from a program by using the TSO/E service facility.
For example, suppose tracing has been started and an exec calls a program.
The program can invoke EXECUTIL TE using the TSO/E service facility to stop
tracing of all execs that are currently executing.

You can also press the attention interrupt key, enter attention mode, and then
enter TE to stop tracing. OS/390 TSO/E REXX Reference, describes the TE
immediate command.

HT
Use HT (Halt Typing) to suppress terminal output generated by an exec. The
exec continues executing. HT suppresses any output generated by REXX
instructions or functions (for example, the SAY instruction) and REXX
informational messages. REXX error messages are still displayed. Normal
terminal output resumes when the exec completes. You can also use
EXECUTIL RT to resume terminal output.

HT has no effect on CLISTs or commands. If an exec invokes a CLIST and the
CLIST generates terminal output, the output is displayed. If an exec invokes a
command, the command displays messages.

Use the HT operand in either an exec or CLIST. You can also use EXECUTIL
HT from a program by using the TSO/E service facility. If the program invokes
EXECUTIL HT, terminal output from all execs that are currently executing is
suppressed. EXECUTIL HT is not applicable from READY mode or ISPF
because no execs are currently executing.

If you use EXECUTIL HT in an exec, output is suppressed for all execs that are
executing. This includes the current exec that contains EXECUTIL HT, any
execs the exec invokes, and any execs that were executing when the current
exec was invoked. Output is suppressed until all currently executing execs
complete or an exec or CLIST contains EXECUTIL RT.

If you use EXECUTIL HT in a CLIST, output is suppressed for all execs that
are executing, that is, for any exec the CLIST invokes or execs that were
executing when the CLIST was invoked. Terminal output resumes when the
CLIST and all currently executing execs complete or if an exec or CLIST
contains EXECUTIL RT.

For example, suppose exec A calls CLIST B, which then calls exec C. If the
CLIST contains EXECUTIL HT, output is suppressed for both exec A and exec
C.

If you use EXECUTIL HT and want to display terminal output using the SAY
instruction, you must use EXECUTIL RT before the SAY instruction to resume
terminal output.

  Chapter 1. TSO/E Commands and Subcommands 1-157



 EXECUTIL Command  
 

RT
Use RT (Resume Typing) to resume terminal output that was previously
suppressed. Use the RT operand in either an exec or CLIST. You can also use
EXECUTIL RT from a program by using the TSO/E service facility. If the
program invokes EXECUTIL RT, terminal output from all execs that are
currently executing is resumed. EXECUTIL RT is not applicable from READY
mode or ISPF because no execs are currently executing.

If you use EXECUTIL RT in an exec or CLIST, typing is resumed for all execs
that are executing.

HI Use HI (Halt Interpretation) to halt the interpretation of all execs that are
currently running in the language processor environment. From either an exec
or a CLIST, EXECUTIL HI halts the interpretation of all execs that are currently
running. If an exec calls a CLIST and the CLIST contains EXECUTIL HI, the
exec that invoked the CLIST stops processing.

EXECUTIL HI is not applicable from READY mode or ISPF because no execs
are currently executing.

You can use EXECUTIL HI from a program by using the TSO/E service facility.
If the program invokes EXECUTIL HI, the interpretation of all execs that are
currently running is halted.

If an exec enables the halt condition trap and the exec includes the EXECUTIL
HI command, the interpretation of the current exec and all execs the current
exec invokes is halted. However, any execs that were executing when the
current exec was invoked are not halted. These execs continue executing. For
example, suppose exec A calls exec B, exec B specifies EXECUTIL HI and
also contains a SIGNAL ON HALT instruction (with a HALT: label). When
EXECUTIL HI is processed, control is given to the HALT subroutine. When the
subroutine completes, exec A continues executing at the statement that follows
the call to exec B. For more information about the SIGNAL instruction, see
OS/390 TSO/E REXX Reference.

RENAME
Use EXECUTIL RENAME to change entries in a function package directory. A
function package directory contains information about the functions and
subroutines that make up a function package. OS/390 TSO/E REXX Reference,
describes function packages and a function package directory.

A function package directory contains the following fields for each function and
subroutine:

� Function_name -- the name of the external function or subroutine that is
used in an exec.

� Addr -- the address, in storage, of the entry point of the function or
subroutine code.

� Sys_name -- the name of the entry point in a load module that corresponds
to the code that is called for the function or subroutine.

� Sys_dd -- the name of the DD from which the function or subroutine code
is loaded.

You can use EXECUTIL RENAME with the SYSNAME and DD operands to
change an entry in a function package directory as follows:

1-158 OS/390 V2R7.0 TSO/E Command Reference  



  EXECUTIL Command
 

� Use the SYSNAME operand to change the sys_name of the function or
subroutine in the function package directory. When an exec invokes the
function or subroutine, the routine with the new sys_name is invoked.

� Use EXECUTIL RENAME NAME(function_name) without the SYSNAME
and DD operands to flag the directory entry as null. This causes the search
for the function or subroutine to continue because a null entry is bypassed.
The system will then search for a load module and/or an exec. OS/390
TSO/E REXX Reference, describes the complete search order.

EXECUTIL RENAME clears the addr field in the function package directory to
X'00'. When you change an entry, the name of the external function or
subroutine is not changed, but the code that the function or subroutine invokes
is replaced.

You can use EXECUTIL RENAME to change an entry so that different code is
used.

NAME(function_name) specifies the name of the external function or subroutine
that is used in an exec. This is also the name in the function_name field in
the directory entry.

SYSNAME(sys_name) specifies the name of the entry point in a load module
that corresponds to the package code that is called for the function or
subroutine. If SYSNAME is omitted, the sys_name field in the package
directory is set to blanks.

DD(sys_dd) specifies the name of the DD from which the package code is
loaded. If DD is omitted, the sys_dd field in the package directory is set to
blanks.

SEARCHDD(YES | NO)
specifies whether the system exec library (the default is SYSEXEC) should be
searched when execs are implicitly invoked.

YES indicates that the system exec library (SYSEXEC) is searched, and if the
exec is not found, SYSPROC is then searched.

NO indicates that SYSPROC only is searched.

EXECUTIL SEARCHDD lets you dynamically change the search order.

Note:  EXECUTIL SEARCHDD generally affects the current language
processor environment in which it is invoked. If you use EXECUTIL
SEARCHDD from TSO/E READY mode, when you invoke ISPF, the
new search order may also be in effect for ISPF. This depends on the
values your installation uses for the initialization of a language
processor environment. For more information about how the search
order is defined and how it can be changed, see OS/390 TSO/E REXX
Reference.

ALTLIB affects how EXECUTIL operates to determine the search order. If you
use ALTLIB to indicate that user-level, application-level, or system-level libraries
are to be searched, ALTLIB operates on an application basis. For more
information, see “ALTLIB Command” on page 1-58.

If you use EXECUTIL SEARCHDD, the new search order remains in effect until
you issue EXECUTIL SEARCHDD again, the language processor environment
terminates, or you use ALTLIB.

  Chapter 1. TSO/E Commands and Subcommands 1-159



 EXECUTIL Command  
 

EXECUTIL Command Return Codes
Figure 1-17. EXECUTIL Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

EXECUTIL Command Examples

 Example 1
Operation:  Your installation uses both SYSEXEC and SYSPROC to store execs
and CLISTs. All of the execs you work with are stored in SYSEXEC and your
CLISTs are stored in SYSPROC. Currently, your system searches SYSEXEC and
SYSPROC and you do not use ALTLIB.

You want to work with CLISTs only and do not need to search SYSEXEC. To
change the search order and have the system search SYSPROC only, use the
following command:

EXECUTIL SEARCHDD(NO)

 Example 2
Operation:  You are updating an exec and including a new internal subroutine. You
want to trace the subroutine to test for any problems. In your exec, include
EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when the
subroutine returns control to the main program. For example:

/\ REXX program \/
MAINRTN:
...
CALL SUBRTN
EXECUTIL TE
...
EXIT
/\ Subroutine follows \/
SUBRTN:
EXECUTIL TS
...
RETURN

 Example 3
Operation:  You want to invoke an exec and trace it. The exec does not contain
EXECUTIL TS or the TRACE instruction. Instead of editing the exec and including
EXECUTIL TS or a TRACE instruction, you can enter the following from READY
mode:

EXECUTIL TS

When you invoke the exec, the exec is traced. When the exec completes
executing, tracing is off.

1-160 OS/390 V2R7.0 TSO/E Command Reference  



  FREE Command
 

 Example 4
Operation:  Suppose an external function called PARTIAL is part of a function
package. You have written your own function called PARTIAL or a new version of
the external function PARTIAL and want to execute your new PARTIAL function
instead of the one in the function package. Your new PARTIAL function may be an
exec or may be stored in a load module. You must flag the entry for the PARTIAL
function in the function package directory as null in order for the search to continue
to execute your new PARTIAL function. To flag the PARTIAL entry in the function
package directory as null, use the following command:

EXECUTIL RENAME NAME(PARTIAL)

When you execute the function PARTIAL, the null entry for PARTIAL in the function
package directory is bypassed. The system will continue to search for a load
module and/or exec that is called PARTIAL.

 FREE Command
Use the FREE command to release (deallocate) previously allocated data sets or
hierarchical file system (HFS) files that you no longer need. You can also use this
command to change the output class of SYSOUT data sets, to delete attribute lists,
and to change the data set disposition specified with the ALLOCATE command.

There is a maximum number of data sets that can be allocated to you at any one
time. The allowable number must be large enough to accommodate:

� Data sets allocated by the LOGON and ALLOCATE commands
� Data sets allocated dynamically by the system's command processors

The data sets allocated by the LOGON and ALLOCATE commands are not freed
automatically. To avoid the possibility of reaching your limit and being denied
necessary resources, you should use the FREE command to release these data
sets when they are no longer needed.

When a SYSOUT data set is freed, it is immediately available for output
processing, either by the job entry subsystem (not-held data sets) or by the
OUTPUT command (held data sets).

When you free SYSOUT data sets, you can change their output class to make
them available for processing by an output writer, or route them to another user.

When you enter the LOGOFF command, all data sets allocated to you and attribute
lists created during the terminal session are freed by the system.

UNALLOC is the alias of FREE and is intended for use under TEST because FREE
is an alias for the FREEMAIN subcommand.

Note:  Data sets that are dynamically allocated by a command processor are not
automatically freed when the command processor terminates. You must
explicitly free dynamically allocated data sets.

  Chapter 1. TSO/E Commands and Subcommands 1-161



 FREE Command  
 

FREE Command Syntax 

55─ ─FREE─ ──┬ ┬─ALL──────────────────────────────────────── ─────────────────5
 │ │┌ ┐──────────────────────────────────────────
 │ ││ │┌ ┐──────────────────

└ ┘───6 ┴┬ ┬──ATTRLIST( ───6 ┴─attr_list_name─ ) ──────
 │ │┌ ┐─────────────────
 ├ ┤── ──┬ ┬─DSNAME── ( ───6 ┴─data_set_name─ ) ──
 │ │└ ┘─DATASET─
 │ │┌ ┐─────────────
 ├ ┤── ──┬ ┬─DDNAME─ ( ───6 ┴─file_name─ ) ───────
 │ │└ ┘─FILE───
 │ │┌ ┐──────────────────────────

└ ┘──OUTDES( ───6 ┴─output_descriptor_name─ )

 ┌ ┐─KEEP──────────
5─ ──┬ ┬────────────────── ──┬ ┬──────── ──┼ ┼─────────────── ───────────────────5

└ ┘──DEST(station_id) ├ ┤─HOLD─── ├ ┤─DELETE────────
 └ ┘─NOHOLD─ ├ ┤─CATALOG───────
 ├ ┤─UNCATALOG─────

└ ┘──SYSOUT(class)

5─ ──┬ ┬───────────────────── ──┬ ┬───────────────────── ──────────────────────5
└ ┘──SPIN( ──┬ ┬─UNALLOC─ ) │ │┌ ┐───────────

└ ┘─NO────── └ ┘──PATH( ───6 ┴/pathname )

5─ ──┬ ┬──────────────────────── ───────────────────────────────────────────5%
 │ │┌ ┐─KEEP───

└ ┘──PATHDISP( ──┴ ┴─DELETE─ )

Note:  DELETE is the only disposition that is valid for SYSOUT data sets.

FREE Command Operands
ALL

requests deallocation of all dynamically allocated data sets, files, and attribute
lists that are not marked in-use.

DSNAME(data_set_name) | DATASET( data_set_name)
specifies one or more data set names that identify the data sets that you want
to free. The data set name must include the descriptive (rightmost) qualifier and
can contain a member name in parentheses. If you omit this operand, you must
specify either FILE, DDNAME, or the ATTRLIST operand.

DDNAME(file_name) | FILE(file_name)
specifies one or more file names that identify the data sets to be freed. If you
omit this operand, you must specify either the DATASET or DSNAME or the
ATTRLIST operand.

ATTRLIST(attr_list_names)
specifies the names of one or more attribute lists that you want to delete. If you
omit this operand, you must specify either the DATASET or DSNAME or the
FILE or DDNAME operand.

DEST(station_id)
specifies a name of a remote workstation to which the SYSOUT data sets are
directed when ready for deallocation. The station ID is a 1 to 8 character name.
If this operand is omitted on the FREE command for SYSOUT data sets, the
data sets are directed to the workstation specified at the time of allocation.

1-162 OS/390 V2R7.0 TSO/E Command Reference  



  FREE Command
 

HOLD | NOHOLD

HOLD specifies the data set is to be placed on the HOLD queue. HOLD
overrides any HOLD/NOHOLD specification made when the data set was
originally allocated and it also overrides the default HOLD/NOHOLD
specification associated with the particular SYSOUT class specified.

NOHOLD specifies the data set is not to be placed on the HOLD queue.
NOHOLD overrides any HOLD/NOHOLD specification made when the data
set was originally allocated and it also overrides the default
HOLD/NOHOLD specification associated with the particular SYSOUT class
specified.

KEEP | DELETE | CATALOG |  UNCATALOG | SYSOUT( class)

KEEP specifies the data set is to be retained by the system after it is freed.

DELETE specifies the data set is to be deleted by the system after it is freed.
DELETE is not valid for data sets allocated with SHR or for members of a
partitioned data set. Only DELETE is valid for SYSOUT data sets.

CATALOG  specifies the data set is to be retained by the system in a catalog
after it is freed.

UNCATALOG  specifies the data set is to be removed from the catalog after it
is freed. The data set is still retained by the system.

SYSOUT(class) specifies an output class which is represented by a single
character. All of the system output (SYSOUT) data sets specified in the
DATASET or DSNAME and FILE or DDNAME operands are assigned to
this class and placed in the output queue for processing by an output
writer. To free a file to SYSOUT, the file must have previously been
allocated to SYSOUT.

The changed SYSOUT class characteristics are used in processing the
output with the exception of the spool space allocation attribute. The spool
space allocation for the SYSOUT data set is unchanged from what was
specified at data set allocation time, either through SYSOUT class definition
in JES or through the dynamic allocation parameters.

A concatenated data set that was allocated in a LOGON procedure or by
the ALLOCATE command can be freed only by entering the ddname on the
FILE or DDNAME operand. It can also be freed by entering FREE ALL.

If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and UNCATALOG are not
specified, the specification indicated at the time of allocation remains in effect.

OUTDES(output_descriptor_name)
specifies a list of output descriptor names, previously defined by the OUTDES
command, that are to be freed. Only output descriptors defined by the
OUTDES command are freed. You cannot free output descriptors defined in the
LOGON procedure.

For more information about the OUTDES command, see the “OUTDES
Command” on page 1-209.

  Chapter 1. TSO/E Commands and Subcommands 1-163



 FREE Command  
 

SPIN(UNALLOC | NO)
specifies when the system should make the SYSOUT data set available for
printing.

UNALLOC  specifies that the system should make the SYSOUT data set
available for printing immediately after deallocation.

NO specifies that the system should make the SYSOUT data set available for
printing at the end of the step.

Notes:

1. If the SPIN keyword is not specified, FREE does not change the SPIN
value of the SYSOUT data set.

2. When the SPIN keyword is specified, you must also specify UNALLOC or
NO. If you specify a parameter that is not UNALLOC or NO, or the
parameter is missing, FREE will prompt you to specify the parameter.

3. The SPIN keyword specified on the FREE command overrides the SPIN
keyword specified on the ALLOCATE command.

4. If the SEGMENT keyword is specified on the ALLOCATE command, the
system prints the SYSOUT data set regardless of the SPIN specification on
either the ALLOCATE command or FREE command.

PATH(/pathname)
identifies a hierarchical file system (HFS) file.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is
/name1/name2/.../namen.

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash. The pathname can be 2 to 250 characters, including the
slash.

Consists of printable characters from X'40' to X'FE'. Enclose the pathname
in apostrophes if it contains a character other than:

Upper case letters Numbers
Special characters (#,$, or @) Slash (/)
Asterisk (\) Plus (+)
Hyphen (-) Period (.)
Ampersand (&) 

| A pathname is case sensitive. Thus, '/usr/joe' and /usr/JOE define two
different files.

PATHDISP(KEEP | DELETE)
modifies the disposition of an HFS file as part of DEALLOCATION or FREE
processing.

KEEP specifies that the file should be kept after processing.

DELETE specifies that the file should be deleted after processing.

1-164 OS/390 V2R7.0 TSO/E Command Reference  



  FREE Command
 

FREE Command Return Codes
Figure 1-18. FREE Command Return Codes

0 Processing successful.

12 One of the following occurred:

� Processing unsuccessful. An error message was issued.

� The file or data set was deallocated, but the disposition specified
on the FREE command was overridden by the disposition of the
file or data set. An informational message was issued.

FREE Command Examples

 Example 1
Operation:  Free a data set by specifying its data set name.

Known:

� The data set name: TOC903.PROGA.LOAD

free dataset(proga.load)

 Example 2
Operation:  Free three data sets by specifying their data set names.

Known:

� The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.DATA,
MAY.DESK.MSG

free dataset(pb99cy.asm,firstqtr.data,'may.desk.msg')

 Example 3
Operation:  Free five data sets by specifying data set names or data definition
names. Change the output class for any SYSOUT data sets being freed.

Known:

� The name of a data set: WIND.MARCH.FORT
� The file names (data definition names) of 4 data sets: SYSUT1 SYSUT3 SYSIN

SYSPRINT
� The new output class: B

free dataset(march.fort) file(sysut1,sysut3,sysin,+
 sysprint) sysout(b)

 Example 4
Operation:  Delete two attribute lists.

Known:

� The names of the lists: DCBPARMS ATTRIBUT

free attrlist(dsbparms attribut)

  Chapter 1. TSO/E Commands and Subcommands 1-165



 HELP Command  
 

 Example 5
Operation:  Free all dynamically allocated data sets, files, and attribute lists.

free all

 Example 6
Operation:  Free a file and the dynamic output descriptor.

Known:

� The name of the file: SYSPRINT
� The name of the output descriptor: MULTCOPY

free file(sysprint) outdes(multcopy)

 Example 7
Operation:  Free a file and make the data set available for printing immediately
after deallocation.

Known:

� The name of the file: SYSPRINT

free file(sysprint) spin(unalloc)

 Example 8
Operation:  Release an HFS file.

Known:

� The ddname: OUTPUT
� The pathname: /u/userid/file.dbp
� The disposition: DELETE

free path('/u/userid/file.dbp') +
 pathdisp(delete)

 HELP Command
Use the HELP command or subcommand to obtain information about the function,
syntax, and operands of commands and subcommands, and information about
certain messages. This reference information is contained within the system and is
displayed at your terminal in response to your request for help. By entering the
HELP command or subcommand with no operands, you can obtain a list of all the
TSO/E commands grouped by function or subcommands of the command you are
using.

You cannot use the HELP command to get additional information about CLIST
statements.

Note:  The HELP command is valid only in READY mode.

1-166 OS/390 V2R7.0 TSO/E Command Reference  



  HELP Command
 

Information available through HELP
The scope of available information ranges from general to specific. The HELP
command or subcommand with no operands produces a list of valid commands or
subcommand and their basic functions. From the list you can select the command
or subcommand most applicable to your needs. If you need more information about
the selected command or subcommand, you can use HELP again, specifying the
selected command or subcommand name as an operand. You then receive:

� A brief description of the function of the command or subcommand
� The format and syntax for the command or subcommand
� A description of each operand

You can obtain information about a command or subcommand only when the
system is ready to accept a command or subcommand.

If you do not want to have all of the detailed information, you can request only the
portion that you need.

The information about the commands is contained in a cataloged partitioned data
set named SYS1.HELP. Information for each command or subcommand is kept in a
member of the partitioned data set. The HELP command or subcommand causes
the system to select the appropriate member and display its contents at your
terminal.

Figure 1-19 shows the hierarchy of the sets of information available with the HELP
command or subcommand. It also shows the form of the command or subcommand
necessary to produce any particular set.

  Chapter 1. TSO/E Commands and Subcommands 1-167



 HELP Command  
 

When the system is ready
to accept a command, you
can request:

When the system is ready to accept
a subcommand, you can request:

4                  Command syntax

5                  List of operands

6                  Each operand

7                  Positional operand

13                  MSGID(list)

2                  List of subcommands

8                  Subcommand function

9                  Subcommand syntax

10                  List of operands

11                  Each operand

12                  Positional operand

14                  MSGID(list)

R
EA

D
Y 

m
od

e
E

D
IT

,O
U

T
P

U
T

,a
n

d
 T

E
S

T
 m

o
d

e
s

HELP

HELP commandname

HELP commandname ALL

HELP commandname FUNCTION

HELP commandname SYNTAX

HELP commandname OPERANDS

HELP commandname OPERANDS (list of keyword operands)

HELP commandname POSITIONAL (positional operand number)

HELP commandname MSGID (list of message IDs)

1

3 4 5

3 4 5

3

4

5

6

7

13

8 9 10

8 9 10

8

9

10

11

12

14

This form of the command...............................................................produces:

or:

or:

2
HELP

HELP subcommandname

HELP subcommandname ALL

HELP subcommandname FUNCTION

HELP subcommandname SYNTAX

HELP subcommandname OPERANDS

HELP subcommandname OPERANDS (list of keyword operands)

HELP subcommandname POSITIONAL (positional operand number)

HELP subcommandname MSGID (list of message IDs)

3                  Command function

1                  List of commands

Figure 1-19. Information Available Through the HELP Command

1-168 OS/390 V2R7.0 TSO/E Command Reference  



  HELP Command
 

HELP Command Syntax 

55─ ──┬ ┬─HELP─ ─────────────────────────────────────────────────────────────5
 └ ┘─H────

5─ ──┬ ┬──────────────────────────────────────────────────────── ───────────5%
 │ │┌ ┐─ALL───────────────────────────
 └ ┘ ──┬ ┬─command_name──── ──┼ ┼───────────────────────────────
 └ ┘─subcommand_name─ ├ ┤─FUNCTION──────────────────────
 ├ ┤─SYNTAX────────────────────────
 ├ ┤──OPERANDS ──┬ ┬─────────────────
 │ ││ │┌ ┐───────────
 │ │└ ┘──( ───6 ┴─operand─ )

├ ┤──POSITIONAL(nn) ───────────────
 │ │┌ ┐──────────────

└ ┘──MSGID( ───6 ┴─identifier─ ) ──────

HELP Command Operands
command_name | subcommand_name

specifies the name of the command or subcommand that you want to know
more about.

FUNCTION
specifies that you want to know more about the purpose and operation of the
command or subcommand.

SYNTAX
specifies you want to know more about the syntax required to use the
command or subcommand properly.

OPERANDS(operand)
specifies you want to see explanations of the operands for the command or
subcommand. When you specify the keyword OPERANDS and omit any
values, all operands are described. You can specify particular keyword
operands that you want to have described by including them as values within
parentheses following the keyword. If you specify a list of more than one
operand, the operands in the list must be separated by commas or blanks.

For best results, do not enter abbreviations as operand. HELP does not use
aliases, as opposed to TSO/E commands. For example, DA is a valid alias for
the DATASET operand of the ALLOCATE command, but is ambiguous if used
as HELP ALLOCATE OPERANDS(DA). Therefore, specify the full operand as
in HELP ALLOCATE OPERANDS(DATASET).

POSITIONAL(nn)
specifies that you want to obtain information on a particular positional operand
of the command or subcommand. You can specify the positional operand that
you want described by the number (nn) of the operand in the sequence of
positional operands. The first positional operand would be identified as ‘1’, the
second as ‘2’, and so on. You can obtain information on the positional
operands of the following commands and any of their subcommands:

 � ACCOUNT
 � ATTRIB
 � CALL
 � CANCEL
 � EDIT
 � EXEC

  Chapter 1. TSO/E Commands and Subcommands 1-169



 HELP Command  
 

 � HELP
 � LOGON
 � MVSSERV
 � OUTPUT
 � RUN
 � SEND
 � TEST
 � TRANSMIT.

ALL
specifies you want to see all information available concerning the command or
subcommand. If no other keyword operand is specified, then ALL is the default.

MSGID(list)
specifies you want to get additional information about MVSSERV, VSBASIC,
TRANSMIT, or RECEIVE messages whose message identifiers are given in the
list. Information includes what caused the error and how to prevent a
recurrence. You cannot specify the FUNCTION, SYNTAX, OPERANDS, or
ALL operands with MSGID.

HELP Command Return Codes
Figure 1-20. HELP Command Return Codes

0 Processing successful.

12 Processing unsuccessful.

HELP Command Examples

 Example 1
Operation:  Obtain a list of all available commands.

help

 Example 2
Operation:  Obtain all the information available for the ALLOCATE command.

help allocate

 Example 3
Operation:  Have a description of the XREF, MAP, COBLIB, and OVLY operands
for the LINK command displayed at your terminal.

h link operands(xref,map,coblib,ovly)

 Example 4
Operation:  Have a description of the function and syntax of the LISTBC command
displayed at your terminal.

h listbc function syntax

1-170 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

 Example 5
Operation:  Obtain information on the ATTRIB command positional operand.

help attrib positional(1)

 Example 6
Operation:  Obtain information on the third positional operand of the RENUM
subcommand of EDIT.

help renum positional(3)

 LINK Command
Use the LINK command to invoke the binder or linkage editor service programs.
The binder and linkage editor convert one or more object modules (the output
modules from compilers) into a load module or program object suitable for
execution. In doing this, the binder and linkage editor change all symbolic
addresses in the object modules into relative addresses.

The binder and linkage editor provide a great deal of information to help you test
and debug a program. This information includes a cross-reference table and a map
of the module that identifies the location of control sections, entry points, and
addresses. You can have this information listed at your terminal or saved in a data
set.

You can change binder defaults. The changes replace the defaults for the LINK
command. For more information on changing binder defaults, see DFSMS/MVS
Program Management.

You might want to use the LOADGO command as an alternative to the LINK
command, if:

� The module that you want to process has a simple structure; that is, it is
self-contained and does not pass control to other modules.

� You do not require the extensive listings produced by the binder or linkage
editor.

� You do not want a load module or program object saved in a library.

LINK Command Syntax 

 ┌ ┐───────────
55─ ──LINK( ───6 ┴─dataset─ ) ──┬ ┬─────────────────────────── ───────────────────5
 └ ┘ ─LOAD─ ──┬ ┬─────────────────

└ ┘──(data_set_name)

  Chapter 1. TSO/E Commands and Subcommands 1-171



 LINK Command  
 

 

 ┌ ┐─NOPRINT──────────────────── ┌ ┐─BINDER───
5─ ──┼ ┼──────────────────────────── ──┬ ┬────────────────── ──┼ ┼────────── ────5

└ ┘──PRINT( ──┬ ┬─*───────────── ) │ │┌ ┐─24── └ ┘─NOBINDER─
└ ┘─data_set_name─ └ ┘──AMODE( ──┼ ┼───── )

 ├ ┤─31──
 ├ ┤─ANY─
 └ ┘─MIN─

 ┌ ┐─CALL───
5─ ──┼ ┼──────── ──┬ ┬─────────────────── ──┬ ┬─────────────────────── ──────────5
 ├ ┤─NCAL─── │ │┌ ┐─UPPER─ │ │┌ ┐─PM3─────

└ ┘─NONCAL─ └ ┘──CASE( ──┼ ┼─────── ) └ ┘──COMPAT( ──┼ ┼───────── )
 └ ┘─MIXED─ ├ ┤─PM2─────
 ├ ┤─PM1─────
 ├ ┤─LKED────
 ├ ┤─CURRENT─
 └ ┘─CURR────
 

5─ ──┬ ┬───────────────── ──┬ ┬─────────────────── ────────────────────────────5
└ ┘──FILL(fill_byte) │ │┌ ┐─NO──

└ ┘──HOBSET( ──┼ ┼───── )
 └ ┘─YES─

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬──────────────────── ──────5
│ │┌ ┐─NOPACK─ ┌ ┐──,NOPRIME │ │┌ ┐─24────
└ ┘──FETCHOPT( ──┼ ┼──────── ──┼ ┼────────── ) └ ┘──RMODE( ──┼ ┼─────── )

└ ┘─PACK─── └ ┘──,PRIME ── ├ ┤─ANY───
 └ ┘─SPLIT─
 

 ┌ ┐───────────── ┌ ┐─NOMAP─
5─ ──┬ ┬───────────────────── ───6 ┴┬ ┬───────── ──┼ ┼─────── ─────────────────────5
 │ │┌ ┐──────────── ├ ┤─PLILIB── └ ┘─MAP───

└ ┘──LIB( ───6 ┴─data_set─ ) ├ ┤─PLICMIX─
 ├ ┤─PLIBASE─
 ├ ┤─FORTLIB─
 └ ┘─COBLIB──
 

 ┌ ┐─NOLET───────── ┌ ┐─NOXCAL─ ┌ ┐─NOXREF─ ┌ ┐─NOREUS─
5─ ──┼ ┼─────────────── ──┼ ┼──────── ──┼ ┼──────── ──┼ ┼──────── ─────────────────5
 ├ ┤─LET─────────── └ ┘─XCAL─── └ ┘─XREF─── └ ┘─REUS───

└ ┘──LET( ──┬ ┬──── )
 ├ ┤─ð──
 ├ ┤─4──
 ├ ┤─8──
 └ ┘─12─
 

┌ ┐──LIST(SUMMARY) ───
5─ ──┬ ┬────────────────────────── ──┼ ┼────────────────── ────────────────────5

│ │┌ ┐─6ð───────── ├ ┤──LIST( ──┬ ┬─OFF── )
└ ┘──LINECT( ──┼ ┼──────────── ) │ │├ ┤─STMT─

 └ ┘─line_count─ │ │└ ┘─ALL──
 └ ┘─NOLIST───────────

1-172 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

 

5─ ──┬ ┬──────────────────── ──┬ ┬───────────────── ───────────────────────────5
│ │┌ ┐─ð── └ ┘──MAXBLK(integer)
└ ┘──MSGLEVEL( ──┼ ┼──── )

 ├ ┤─4──
 ├ ┤─8──
 └ ┘─12─

5─ ──┬ ┬──────────────────────────────────── ──┬ ┬─────────────── ─────────────5
└ ┘──WKSPACE( ──┬ ┬──────── ──┬ ┬───────── ) └ ┘──SSI(ssi_word)

└ ┘─value1─ └ ┘──,value2
 

 ┌ ┐ ──┬ ┬─NOSTORENX───
│ │└ ┘──STORENX(NO) ┌ ┐─NOREFR─ ┌ ┐─NOSCTR─ ┌ ┐─NOOVLY─ ┌ ┐─NORENT─

5─ ──┼ ┼───────────────── ──┼ ┼──────── ──┼ ┼──────── ──┼ ┼──────── ──┼ ┼──────── ───5
 └ ┘─STORENX───────── └ ┘─REFR─── └ ┘─SCTR─── └ ┘─OVLY─── └ ┘─RENT───

 ┌ ┐─NONE─ ┌ ┐─NOOL─ ┌ ┐─NODC─
5─ ──┬ ┬─────────────────────────── ──┼ ┼────── ──┼ ┼────── ──┼ ┼────── ───────────5

└ ┘──SIZE(integer_1 integer_2) └ ┘─NE─── └ ┘─OL─── └ ┘─DC───

 ┌ ┐─NOTEST─ ┌ ┐─NOHIAR─ ┌ ┐─NOTERM─
5─ ──┼ ┼──────── ──┼ ┼──────── ──┼ ┼──────── ──┬ ┬────────────────── ──────────────5

└ ┘─TEST─── └ ┘─HIAR─── └ ┘─TERM─── └ ┘──DCBS(block_size)

5─ ──┬ ┬──────────────────────── ───────────────────────────────────────────5%
└ ┘──AC(authorization_code)

LINK Command Operands
data_set

specifies the names of one or more data sets containing your object modules.
The specified data sets are concatenated within the output load module in the
sequence that they are included in this operand. If there is only a single name
in the data_set list, parentheses are not required unless the single name is a
member name of a partitioned data set; then, two pairs of parentheses are
required, as in:

link((parts))

You can substitute an asterisk (*) for a data set name to indicate that you can
enter control statements from your terminal. The system prompts you to enter
the control statements. A null line indicates the end of your control statements.

LOAD(data_set_name)
specifies the name of the partitioned data set that contains or will contain the
load module after processing by the linkage editor. If you omit this operand, the
system generates a name according to the data set naming conventions.

PRINT(data_set_name | *)
specifies linkage editor listings are to be produced and placed in the specified
data set. When you omit the data set name, the data set that is generated is
named according to the data set naming conventions. If you specify LIST,
MAP, or XREF operand, then PRINT is the default. If you want to have the
listings displayed at your terminal, you can substitute an asterisk (*) for the
data set name.

NOPRINT
specifies no linkage editor listings are to be produced. This operand causes the
MAP, XREF, and LIST options to become incorrect. If both PRINT and
NOPRINT are omitted and you do not use the LIST, MAP, or XREF operand,
then NOPRINT is the default.

  Chapter 1. TSO/E Commands and Subcommands 1-173



 LINK Command  
 

AMODE(24 | 31 | ANY | MIN)
specifies the addressing mode for all entry points for the module to be
link-edited or bound. For more information on defaulting AMODE see
DFSMS/MVS Program Management.

Valid AMODE values are:

24 to indicate the module is to be invoked in 24-bit addressing mode

31 to indicate the module is to be invoked in 31-bit addressing mode

ANY to indicate the module is to be invoked in the addressing mode of the
caller

MIN causes the binder to set the AMODE to the most restrictive AMODE of all
control sections in the module. In this respect, 24 is more restrictive than
31, which is more restrictive than ANY.

The MIN keyword is used only to control binder processing. It assists the
binder in determining the resultant AMODE of the module. However, MIN is
never used as an AMODE itself and will not appear in the directory entry of
the resultant load module or program object. MIN only has meaning when
specified for PDSEs on a system with DFSMS/MVS V1R1 or later installed.

BINDER | NOBINDER

BINDER specifies that MVS use binder services for this load module or object
module rather than the linkage editor service program. The binder can be
used for load modules stored in a PDS as well as program objects in a
PDSE. BINDER is the default.

NOBINDER specifies that MVS not use binder services for this object module;
the linkage editor service program is used to convert the object module(s)
into load module(s). NOBINDER only has meaning when specified on a
system with DFSMS/MVS V1R1 or later installed and is ignored by the
LINK command on earlier releases of DFP.

CALL  | NCAL | NONCAL

CALL  specifies that the automatic call mechanism is to be used to bring in
additional modules for unresolved external references. CALL is the default.

NCAL | NONCAL  specifies that the automatic call mechanism is not to be used
for unresolved external references.

CASE(UPPER | MIXED)

UPPER specifies that the binder translates to uppercase all lowercase names
found in input modules, control statements, and LINK parameters. UPPER
is the default.

MIXED specifies that the binder respect uppercase and lowercase names found
in input modules, control statements, and LINK parameters, and treat two
strings differently if a character in one string is a different case than the
corresponding character in the second string. Binder keywords are always
translated to uppercase.

1-174 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

COMPAT(PM3 | PM2 | PM1 | LKED| CURR | CURRENT )
specifies binder compatibility level.

PM3 specifies that the binder create a PM3-level program object. PM3 is the
default.

PM2 specifies that the binder create a PM2-level program object.

PM1 specifies that the binder create a PM1-level program object or load
module.

LKED  specifies that the binder process certain options, such as
AMODE/RMODE and REUSability, in a manner compatible with the linkage
editor.

CURRENT will instruct the binder to set COMPAT on the currently highest
value. For DFSMS 1.4.0 PM3 is the highest level.

CURR is the abbreviation of CURRENT and has the same specification.

FILL (fill_byte)
specifies to the binder the byte value to be used to initialize storage areas in
the program object. The (fill_byte) must be a two hexadecimal digit in the range
of 0 — F.

HOBSET(NO | YES)

NO specifies that the binder NOT set the high-order bit (HOB) in V-type adcons
according to the AMODE of the target entry point. NO is the default.

YES specifies that the binder set the high-order bit (HOB) in V-type adcons
according to the AMODE of the target entry point.

FETCHOPT(PACK | NOPACK ,  PRIME | NOPRIME)
allows control over how the module is loaded. The PACK and PRIME
suboperands indicate whether the load module:

� is page-mapped into virtual storage at load time
� is moved into virtual storage at load time
� converts all addresses from symbolic addresses to relative addresses

before the program receives control.

Both suboperands are required for PDSEs; however, (PACK,NOPRIME) is a
non-supported combination. FETCHOPT only has meaning when specified for
PDSEs on a system with DFSMS/MVS V1R1 or later installed.
(NOPACK,NOPRIME) is the default.

PACK  specifies that the program object will be page-mapped into temporary
storage, then moved into the appropriate MVS subpool. If PACK is
specified, PRIME must also be specified.

A PACKed module requires a smaller amount of the user's virtual storage,
but it might require more time to load. PACKed modules are aligned on
doubleword boundaries.

NOPACK  specifies that the module is page-mapped directly into the
appropriate MVS subpool. It permits the loading and relocation of only a
subset of program pages, before passing control to the loaded program.
The remainder of the program is loaded incrementally as page faults occur.

  Chapter 1. TSO/E Commands and Subcommands 1-175



 LINK Command  
 

PRIME specifies that all module address constants are converted from relative
addresses to virtual addresses before program execution. The loader loads
the module into storage and converts all addresses before passing control
to the loaded program.

NOPRIME specifies that addresses are not converted until they are needed,
and conversion is only performed during page fault processing on text
pages. NOPRIME is the default.

RMODE(24 | ANY | SPLIT)
specifies the residence mode for the module to be bound. If all control sections
are not specified as RMODE(ANY), RMODE defaults to 24. If any section of the
load module has an RMODE of 24, RMODE defaults to RMODE(24). If the
RMODE operand is given without an operand, you are prompted for it. Valid
RMODE values are:

24 to indicate the module must reside below the 16 MB line

ANY to indicate the module can reside anywhere in virtual storage

SPLIT to indicate that the program object is to be split into two segments
according to the RMODE of the CSECTs. SPLIT is supported only for PM2
or PM3 format program objects.

LIB(data_set)
specifies one or more names of library data sets to be searched by the linkage
editor or binders to locate object modules referred to by the module being
processed; that is, to resolve external references. When you specify more than
one name, the names must be separated by a valid delimiter. If you specify
more than name, the data sets are concatenated to the file name of the first
data set in the list. For control statements, the first data set in the list must be
pre-allocated with the ddname or file name SYSLIB prior to the LINK command.
If you specify more than one name, the data sets are concatenated to the file
name of the first data set and lose their individual identity. For details on
dynamic concatenation, see OS/390 MVS Programming: Authorized Assembler
Services Guide.

PLILIB | PLIBASE | PLICMIX | FORTLIB | COBLIB

PLILIB  specifies the partitioned data set named SYS1.PL1LIB is to be
searched by the LINK command to locate load modules that are referred to
by the module being processed.

PLIBASE  specifies the partitioned data set named SYS1.PLIBASE is to be
searched to locate load modules referred to by the module being
processed.

PLICMIX specifies the partitioned data set named SYS1.PLICMIX is to be
searched to locate load modules referred to by the module being
processed.

FORTLIB  specifies the partitioned data set named SYS1.FORTLIB is to be
searched by the LINK command to locate load modules referred to by the
module being processed.

1-176 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

COBLIB  specifies the partitioned data set named SYS1.COBLIB is to be
searched by the LINK command to locate load modules referred to by the
module being processed.

MAP | NOMAP

MAP specifies the PRINT data set is to contain a map of the output module
consisting of the control sections, the entry names, and (for overlay
structures) the segment number.

NOMAP specifies a map of the output module is not to be listed. NOMAP is the
default.

LET | LET( sev_code) | NOLET
specifies a severity code, which if exceeded, causes the module to be marked
non-executable. The severity code is the aggregate error level of all calls to the
binder. Valid values for severity code are 0, 4, 8, and 12. If LET is specified, it
defaults to LET(8); if LET is not specified or NOLET is specified, it defaults to
LET(4).

XCAL | NOXCAL

XCAL  specifies the output module is permitted to be marked as executable
even though an exclusive call has been made between segments of an
overlay structure. Because the segment issuing an exclusive call is
overlaid, a return from the requested segment can be made only by
another exclusive call or a branch.

NOXCAL  specifies both valid and not valid exclusive calls are marked as
errors. NOXCAL is the default.

XREF | NOXREF

XREF specifies a cross-reference table is to be placed on the PRINT data set.
The table includes the module map and a list of all address constants
referring to other control sections.

NOXREF specifies a cross-reference listing is not to be produced. NOXREF is
the default.

REUS | NOREUS

REUS specifies the output is to be marked serially reusable if the input load
modules and program objects was re-enterable or serially reusable. The
RENT and REUS operand are mutually exclusive. If the OVLY or TEST
operands are specified, the REUS operand must not be specified.

NOREUS specifies the load module is not be marked reusable. NOREUS is the
default.

LINECT(60 | line_count)
specifies the number of lines (including heading and blank lines) contained on
each page of the binder listing. The valid range is 24-200 and 0. Zero
indicates a single, indefinitely long page, and values of 1-23 are forced to 24;
however, there are always page ejects at the beginning of the binder listing and

  Chapter 1. TSO/E Commands and Subcommands 1-177



 LINK Command  
 

the start of the map, cross reference (XREF), and summary reports. LINECT
defaults to 60 lines.

LIST(SUMMARY | OFF | STMT | ALL)  | NOLIST
allows you to control the type of information included in the SYSPRINT data.
LIST specifies a list of all linkage editor control statements is to be produced.
LIST is valid for both the linkage editor and the binder. The default for LIST is
SUMMARY. This is ignored if NOPRINT is specified or NOPRINT is the default.

SUMMARY indicates that messages, control statements and a save summary
report (including processing options and module attributes) are to be
printed.

OFF specifies a listing of the linkage editor control statements is not to be
produced. Only messages will be printed. In a batch environment,
LIST(OFF) is equivalent to NOLIST.

STMT indicates that messages and control statements are to be printed. In a
batch environment, LIST(STMT) is equivalent to LIST.

ALL  indicates that all input activity (whether initiated by binder service calls or
control statements) and the load or save summary are to be logged.

NOLIST is equivalent to LIST(OFF)

MSGLEVEL(0 | 4 | 8 | 12)
specifies the severity level below which messages are not displayed. Valid
severity levels are 0, 4, 8, and 12. If a message has a severity lower than the
level indicated here, it is not printed, written to either print or terminal files, or
passed to the messages exit.

MAXBLK( integer)
specifies the maximum text block size (in bytes) for load modules that are
saved in an output library by the binder. The value range is 256-32760. If you
specify a value outside this range, you receive a warning message, and the
value is set to the device-dependent default value.

MAXBLK defaults to ½ of SIZE(,integer_2) but not less than 4096 nor more
than the minimum of 32760 or the track size. This value is also compatible with
that used by the linkage editor.

If neither MAXBLK nor SIZE are specified, the maximum block size defaults to
the blocksize of the data set. However, if DC is also specified, the maximum
block size is always set to 1024.

WKSPACE(value_1[,value_2])
specifies the maximum amount of user's virtual storage available to the binder
below and above 16 MB, respectively. You typically do not need to include this
operand unless you have special virtual storage considerations such as the
balancing of virtual storage between two concurrent applications. If coded, a
minimum of WKSPACE(96,1024) is recommended for all binder operations.

value_1 indicates the maximum amount (in kilobytes) of user's virtual storage
available to the binder below 16 MB in virtual storage. This value is
optional; however, be certain to code a comma ( , ) if only value_2 is
specified.

1-178 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

value_2 indicates the maximum amount (in kilobytes) of user's virtual storage
available to the binder above 16 MB in virtual storage. This value is
optional; however, be certain to code a comma ( , ) if value_1 is not also
specified.

SSI(ssi_word)
specifies that the system status index (SSI) is used as a binder option. If
specified, the SETSSI control statement overrides this specification. Refer to
the SETSSI control statement of AMASPZAP in OS/390 MVS Diagnosis: Tools
and Service Aids, for a description of the system status index (SSI).

STORENX | NOSTORENX | STORENX(NO)

STORENX replaces the existing module of the same name in a program library
with a new module, regardless of the executable status of either module. If
the NAME statement is provided, the replace option (R) must be provided.
STORENX is supported only by the binder.

NOSTORENX | STORENX(NO) is the default value, and can be specified as
STORENX(NO).

REFR | NOREFR

REFR specifies the load module is to be marked refreshable if the input load
modules and program objects was refreshable and the OVLY operand was
not specified.

NOREFR specifies the output is not to be marked refreshable. NOREFR is the
default.

SCTR | NOSCTR

SCTR specifies the load module created by the linkage editor or binder can be
either scatter loaded or block loaded. If you specify SCTR, do not specify
OVLY. This is meaningful only for the system nucleus.

NOSCTR specifies scatter loading is not permitted. NOSCTR is the default.

OVLY | NOOVLY

OVLY specifies the output module is an overlay structure and is therefore
suitable for block loading only. If you specify OVLY, do not specify SCTR.
OVLY is supported for load modules and PM1–level program objects.

NOOVLY specifies the load module is not an overlay structure. NOOVLY is the
default.

RENT | NORENT

RENT specifies the output module is marked re-enterable provided the input
load modules and program objects was re-enterable and the OVLY
operand was not specified.

  Chapter 1. TSO/E Commands and Subcommands 1-179



 LINK Command  
 

NORENT specifies the load module is not marked re-enterable. NORENT is the
default.

SIZE(integer_1,integer_2)
specifies the amount of virtual storage to be used by the linkage editor. The
first integer (integer_1) indicates the maximum allowable number of bytes. If
integer_1 is omitted, the binder does not limit its use of storage that is below
the 16 MB line. integer_2 indicates the number of bytes to be used by the
linkage editor buffer as the load module buffer, which is the virtual storage area
used to contain input and output data. If this operand is omitted, SIZE defaults
to the size specified by your system programmer. For more information on the
use of integer_2 by the binder see the description of MAXBLK on page 1-178.

NE | NONE

NE specifies the output load module cannot be processed again by the linkage
editor, loader or binder. The linkage editor does not create an external
symbol dictionary. If you specify either MAP or XREF, then the NE operand
is not valid for the linkage editor.

NONE specifies the output load module can be processed again by the linkage
editor, loader or binder and that an external symbol dictionary is present.
NONE is the default.

OL | NOOL

OL specifies the output load module can be brought into real storage only by
the LOAD macro instruction.

NOOL specifies the load module is not restricted to the use of the LOAD macro
instruction for loading into real storage. NOOL is the default.

DC | NODC

DC specifies that no block in the load module is to be longer than 1024 bytes
and no text block is to contain more than one control section.

NODC specifies the DC limits do not apply. NODC is the default. For more
information see DFSMS/MVS Program Management

TEST | NOTEST

TEST specifies the symbol tables created by the assembler and contained in
the input modules are to be placed into the output module. This is useful
only if the assembler also used the TEST option.

NOTEST specifies no symbol table is to be retained in the output load module.
NOTEST is the default.

HIAR | NOHIAR

HIAR specifies that hierarchy assignments for CSECTs are to be done. HIAR is
not supported by the binder.

1-180 OS/390 V2R7.0 TSO/E Command Reference  



  LINK Command
 

NOHIAR specifies that hierarchy assignments for CSECTs are not to be done.
NOHIAR is the default.

TERM | NOTERM

TERM specifies you want error messages directed to your terminal as well as
to the PRINT data set. TERM is the default.

NOTERM specifies you want error messages directed only to the PRINT data
set and not to your terminal.

DCBS(block_size)
specifies the block size of the records contained in the output data set.

Note:  DCBS is applicable only for load modules, not for program objects.

AC(authorization_code)
specifies an authorization code (0-255) to maintain data security. Any non-zero
value causes the program to have APF authorization if the data set is APF
authorized (APF = authorized program facility).

LINK Command Return Codes
Figure 1-21. LINK Command Return Codes

0 Processing successful.

8 Processing incomplete; system prompts you for additional information.

12 Processing unsuccessful.

LINK Command Examples

 Example 1
Operation:  Combine three object modules into a single load module.

Known:

� The names of the object modules in the sequence that the modules must be in:
TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ TPB05.NSALES.OBJ

� You want all of the linkage editor listings to be produced and directed to your
terminal.

� The name for the output load module: TPB05.SALESRPT.LOAD(TEMPNAME)

link (gsalesa,gsalesb,nsales) load(salesrpt) print(\) -
xref list

 Example 2
Operation:  Create a load module from an object module, an existing load module,
and a standard processor library.

Known:

� The name of the object module: VACID.M33THRUS.OBJ
� The name of the existing load module: VACID.M33PAYLD.LOAD(MOD1)
� The name of the standard processor library used for resolving external

references in the object module: SYS1.PLILIB
� The entry name of the load module is MOD2.

  Chapter 1. TSO/E Commands and Subcommands 1-181



 LISTALC Command  
 

� The alias name of the load module is MOD3.
� The name of the output load module: VACID.M33PERFO.LOAD(MOD2)

link(m33thrus,\) load(m33perfo(mod2)) print(\) -
plilib map list

Choosing ld2 as a file name to be associated with the existing load module, the
display at your terminal will be:

allocate dataset(m33payld.load) file(ld2)
link (m33thrus,\) load(m33perfo(mod2)) print(\) -
 plilib map list
IKJ76ð8ðA ENTER CONTROL STATEMENTS
 include ld2(mod1)
 entry mod2
 alias mod3
 (null line)
IKJ76111I END OF CONTROL STATEMENTS

 Example 3
Operation:  Re-specify the mode of an object module from 24-bit addressing and
residence mode to 31-bit addressing and residence mode ANY.

Known:

� The name of the object module: ACCOUNT.MON.OBJ which has an
addressing mode of 24-bit

� The name of the output load module: ACCOUNT.MINE.LOAD(NEWMOD)

link mon load(mine(newmod))amode(31) rmode(any)

 LISTALC Command
Use the LISTALC command to obtain a list of the currently allocated data sets. The
LISTALC command without operands displays a list of all (partitioned and not
partitioned) data set names the user has dynamically allocated and those allocated
by previous TSO/E commands (issued while in the current TSO/E session). This list
includes terminal data sets, indicated by the word TERMFILE, and also
attr_list_names created by the ATTRIB command, indicated by the word NULLFILE.

If the list should include also temporary data sets, which are created and deleted in
the same job, use the SYSNAMES keyword operand to display these data sets.
See OS/390 MVS JCL User's Guide, for a detailed description of permanent and
temporary data sets.

If an asterisk precedes a data set name, it indicates that the data set is allocated,
but marked not-in-use.

LISTALC Command Syntax 

55─ ──┬ ┬─LISTALC─ ──┬ ┬──────── ──┬ ┬───────── ──┬ ┬───────── ──┬ ┬────────── ─────5%
 └ ┘─LISTA─── └ ┘─STATUS─ └ ┘─HISTORY─ └ ┘─MEMBERS─ └ ┘─SYSNAMES─

1-182 OS/390 V2R7.0 TSO/E Command Reference  



  LISTALC Command
 

LISTALC Command Operands
STATUS

specifies that you want information about the status of each data set. This
operand provides you with:

� The data definition name (ddname) for the data set allocated and the
attr_list_names created by the ATTRIB command.

� The normal termination disposition of the data set, and when listed,
separated by a comma, the abnormal termination disposition. The abnormal
termination disposition takes effect if an abnormal termination occurs.

The dispositions are CATLG, DELETE, KEEP and UNCATLG. CATLG
means the data set is retained and its name is in the system catalog.
DELETE means references to the data set are to be removed from the
system and the space occupied by the data set is to be released. KEEP
means the data set is to be retained. UNCATLG means the data set name
is removed from the catalog, but the data set is retained.

HISTORY
specifies that you want to obtain information about the history of each data set.
This operand provides you with:

� The creation date

� The expiration date

� An indication whether the data set has password protection (non-VSAM
only) or if the data set is RACF protected.

Note:  LISTALC HISTORY output may indicate NONE for security on a
data set and LISTDS HISTORY output may indicate RACF security
for the same data set. The LISTDS module is an authorized
program that calls two RACF macros RACSTAT and RACHECK.
LISTALC is not an authorized program and does not use the RACF
macros.

� The data set organization (DSORG). The listing contains:

PS for sequential
PO for partitioned
IS for indexed sequential
DA for direct access
VSAM for VSAM data entries

| DIR for any OS/390 UNIX directory
| CSPEC for any OS/390 UNIX character special file
| FILE for any OS/390 UNIX regular file
| FIFO for any OS/390 UNIX FIFO special file
| SYMLK for any OS/390 UNIX symbolic link

** for unspecified
?? for any other specification

Note:  Use the LISTCAT command for further information about VSAM data
entries.

MEMBERS
specifies that you want to obtain the library member names of each partitioned
data set having your user ID as the leftmost qualifier of the data set name.
Aliases are included.

  Chapter 1. TSO/E Commands and Subcommands 1-183



 LISTALC Command  
 

If another application is exclusively using the partitioned data set, the system
displays a message and an abend code.

SYSNAMES
specifies that you want to obtain a list of all allocated data sets, including
temporary data sets. For temporary data sets the system generates qualified
names that start with SYS, followed by other qualifiers. See OS/390 MVS JCL
User's Guide, about temporary data sets and the naming conventions applied
to them.

LISTALC Command Return Codes
Figure 1-22. LISTALC Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

LISTALC Command Examples

 Example 1
Operation:  Obtain a list of the names of the data sets allocated to you (not
including the names of temporary data sets).

listalc

 Example 2
Operation:  Obtain a list of the names of the data sets allocated to you (not
including the names of temporary data sets). At the same time obtain the creation
date, the expiration date, password protection, and the data set organization for
each data set allocated to you.

lista history

 Example 3
Operation:  Obtain all available information about the data sets allocated to you
(including the names of temporary data sets).

lista members history status sysnames

The output at your terminal might be similar to the following listing:

| à| ð
| listalc mem status sysnames history
| --DSORG--CREATED-----EXPIRES-----SECURITY---DDNAME---DISP
| MICHELLE.ASM
|  PS ð6/ð6/1991 ðð/ðð/ðððð WRITE DAUGHTER KEEP
| NEAL.EXAMPLE
|  PO ð7/ð3/1998 ðð/ðð/ðððð PROTECTED MYSON KEEP,KEEP
| --MEMBERS--
|  MEMBER1
|  MEMBER2
| SYS7ð14ð.T1748ð3.RVððð.TSOSPEDT.Rðððððð1
|  \\ ðð/ðð/ðððð ðð/ðð/ðððð NONE SYSUT1 DELETE
| ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE
| RE-USED
|  EDTDUMY3
|  SYSIN
|  SYSPRINT
| READY

1-184 OS/390 V2R7.0 TSO/E Command Reference  



  LISTALC Command
 

 Example 4
Operation:  List the names of all your active attribute lists allocated with the
ATTRIB command.

lista status

The output at your terminal might be similar to the following listing:

à ð
lista status
--DDNAME---DISP--
SYS1.LPALIB2
 STEPLIB KEEP
SYS1.UADS
 SYSUADS KEEP
SYS1.BRODCAST
 SYSLBC KEEP
TERMFILE SYSIN
TERMFILE SYSPRINT
\SYS1.HELP
 SYSðððð5 KEEP,KEEP
D95BAB1.SEPT3ð.ASM
 SYSðððð6 KEEP,KEEP
NULLFILE A
NULLFILE B
READY

 Example 5
Operation:  Excerpt from a job protocol showing the output from the LISTALC
command with different operands, especially how LISTALC treats the temporary
data sets.

  Chapter 1. TSO/E Commands and Subcommands 1-185



 LISTBC Command  
 

...
1 //jobname JOB job card data ...
 //\
2 // EXEC PGM=IKJEFTð1,DYNAMNBR=1ðð,REGION=8M
3 //NORBERT1 DD DSN=JDC.NORBERT,DISP=(OLD,KEEP,DELETE)
4 //NORBERT2 DD DISP=(NEW,DELETE),SPACE=(TRK,(1,1))
5 //NORBERT3 DD DSN=&&DSNAME,DISP=(NEW,DELETE),
 // SPACE=(TRK,(1,1))
 . . .
 IGD1ð4I JDC.NORBERT RETAINED, DDNAME=NORBERT1
 IGD1ð5I SYS95ð69.T122631.RAððð.JDC#.Rð2ð1ð39 DELETED, DDNAME=NORBERT2
 IGD1ð5I SYS95ð69.T122631.RAððð.JDC#.DSNAME.Hð2 DELETED, DDNAME=NORBERT3
...

 READY
 LISTA
 JDC.NORBERT
...

 READY
 LISTA STATUS
 --DDNAME---DISP--
 JDC.NORBERT
 NORBERT1 KEEP,DELETE
...

 READY
 LISTA SYSNAMES
 JDC.NORBERT
 SYS95ð69.T122631.RAððð.JDC#.Rð2ð1ð39
 SYS95ð69.T122631.RAððð.JDC#.DSNAME.Hð2
...

 READY
 END

Note the three JCL DD statements identifying:

1. A permanent data set named JDC.NORBERT
2. A temporary data set without DSN parameter at all (the system will specify a

data set name)
3. A temporary data set with a name of DSNAME.

At the bottom you see that only LISTALC with the SYSNAMES operand lists the
permanent and temporary data sets.

 LISTBC Command
Use the LISTBC command to display notices and mail. Notices are messages from
the operator intended for all users to view. Mail is messages from another user or
program to a particular user. By default, notices and mail are stored in the
broadcast data set, SYS1.BRODCAST. However, your installation may use user
logs. If so, mail is stored in and retrieved from individual user logs. Notices are still
stored in and retrieved from the broadcast data set.

If your installation uses security labels and security checking and for SEND and
LISTBC processing, MAIL messages are handled differently. When you enter the
LISTBC command, LISTBC checks the security label on each MAIL message in
your user log and compares it to your current security label (the security label you
are logged on with). If your current security label is equal to or greater than the

1-186 OS/390 V2R7.0 TSO/E Command Reference  



  LISTBC Command
 

message's security label, the message is displayed. If your current security label is
less than the message's security label, one of the following occurs:

� If you are authorized to log on with a security label that is equal to or greater
than the message's security label, you receive a message stating that there is a
message in your user log that you cannot view at your current security label.
Log off and log on at a greater security label and issue LISTBC again.

� If you are not authorized to log on with a security label that is equal to or
greater than the message's security label, the message is deleted and you do
not receive notification that it was sent.

Note:  For a list of the security labels you are allowed to log on with, use the
RACF command SEARCH CLASS(SECLABEL).

LISTBC Command Syntax 

 ┌ ┐─MAIL─── ┌ ┐─NOTICES───
55─ ──┬ ┬─LISTBC─ ──┼ ┼──────── ──┼ ┼─────────── ───────────────────────────────5%
 └ ┘─LISTB── └ ┘─NOMAIL─ └ ┘─NONOTICES─

LISTBC Command Operands
MAIL | NOMAIL

MAIL  specifies that you want to receive the messages from the broadcast data
set or the user log data set that are intended specifically for you. MAIL is
the default.

NOMAIL  specifies that you do not want to receive messages intended
specifically for you.

NOTICES | NONOTICES

NOTICES specifies that you want to receive the messages from the broadcast
data set that are intended for all users. NOTICES is the default.

NONOTICES specifies that you do not want to receive the messages that are
intended for all users.

LISTBC Command Return Codes

The following return codes are valid only if you have an installation-defined user log
data set:

Figure 1-23. LISTBC Command Return Codes

0 Processing successful.

12 Processing unsuccessful.

Figure 1-24 (Page 1 of 2). LISTBC Command Return Codes (Installation-Defined
User Log Data Set)

0 Messages and notices are displayed.

4 Only messages are displayed.

  Chapter 1. TSO/E Commands and Subcommands 1-187



 LISTCAT Command  
 

Figure 1-24 (Page 2 of 2). LISTBC Command Return Codes (Installation-Defined
User Log Data Set)

6 One or more messages were deleted from the user log. The receiver
is not authorized at a security label at which the message can be
viewed.

8 Only notices are displayed.

10 User log contains messages that cannot be viewed at user's current
security label.

12 No notices or messages are displayed.

16 Messages and notices are not displayed, user denied access.

20 Messages and notices are not displayed, command not authorized.

92 Messages and notices are not displayed, system error.

LISTBC Command Examples

 Example 1
Operation:  Specify that you want to receive all messages.

listbc

 Example 2
Operation:  Specify that you want to receive only the messages intended for all
terminal users.

listbc nomail

 LISTCAT Command
Use the LISTCAT command to list entries from a catalog. The entries listed can be
selected by name or entry type, and the fields to be listed for each entry can
additionally be selected.

In this book, “with SMS” indicates that SMS is installed and is active.

With Storage Management Subsystem, LISTCAT also lists the following Storage
Management Subsystem class names:

� Data class contains the data set attributes related to the allocation of the data
set, such as LRECL, RECFM, SPACE, and TRACKS.

� Storage class contains performance and availability attributes related to the
storage occupied by the data set.

� Management class contains the data set attributes related to the migration and
backup of the data set, such as performed by the Data Facility Hierarchical
Storage Manager (DFHSM). A management class can be assigned only to a
data set that also has a storage class assigned.

For information about these classes, see “SMS Classes” on page 1-19.

For MVS, the original TSO LISTCAT command has been replaced by an Access
Method Services command of the same name. The operand descriptions that follow
provide the information required to use these services for normal TSO/E operations.

1-188 OS/390 V2R7.0 TSO/E Command Reference  



  LISTCAT Command
 

The TSO/E user who wants to manipulate VSAM data sets or use the other Access
Method Services from the terminal should see DFSMS/MVS Access Method
Services for VSAM. For error message information, see the MVS/ESA System
Messages library.

The LISTCAT command supports unique operand abbreviations in addition to the
usual abbreviations produced by truncation. The syntax and operand explanations
show these unique cases.

When LISTCAT is invoked and no operands are specified, the user ID or the prefix
specified by the PROFILE command becomes the highest level of entry name
qualification. Only those entries associated with the user ID are listed.

LISTCAT Command Syntax 

55─ ──┬ ┬─LISTCAT─ ──┬ ┬────────────────────────────────────── ────────────────5
└ ┘─LISTC─── └ ┘──CATALOG(catalog_name ──┬ ┬─────────── )

└ ┘──/password

5─ ──┬ ┬─────────────────────── ─────────────────────────────────────────────5
└ ┘── ──┬ ┬─OUTFILE─ (ddname)

 └ ┘─OFILE───

5─ ──┬ ┬────────────────────────────────────────── ──┬ ┬───────── ──┬ ┬────── ───5
 │ │┌ ┐───────────────────────────── └ ┘─CLUSTER─ └ ┘─DATA─

├ ┤──ENTRIES( ───6 ┴─entry_name─ ──┬ ┬─────────── )
│ │└ ┘──/password
└ ┘── ──┬ ┬─LEVEL─ (level) ──────────────────────

 └ ┘─LVL───

5─ ──┬ ┬─────── ──┬ ┬─────── ──┬ ┬───────── ──┬ ┬───────────── ────────────────────5
 ├ ┤─INDEX─ ├ ┤─SPACE─ ├ ┤─NONVSAM─ ├ ┤─USERCATALOG─
 └ ┘─IX──── └ ┘─SPC─── └ ┘─NVSAM─── └ ┘─UCAT────────

5─ ──┬ ┬───────────────────── ──┬ ┬─────────── ──┬ ┬─────── ─────────────────────5
 ├ ┤─GENERATIONDATAGROUP─ ├ ┤─PAGESPACE─ └ ┘─ALIAS─
 └ ┘─GDG───────────────── └ ┘─PGSPC─────

 ┌ ┐─NAME───────
5─ ──┬ ┬──────────────── ──┬ ┬────────────────── ──┼ ┼──────────── ──────────────5

└ ┘──CREATION(days) └ ┘──EXPIRATION(days) ├ ┤─ALL────────
 ├ ┤─VOLUME─────
 ├ ┤─ALLOCATION─
 └ ┘─HISTORY────

5─ ──┬ ┬────────── ──┬ ┬────────── ──┬ ┬────────── ─────────────────────────────5%
 └ ┘─DATACLAS─ └ ┘─MGMTCLAS─ └ ┘─STORCLAS─

LISTCAT Command Operands
CATALOG( catalog_name[/password])

specifies the name of the catalog that contains the entries to be listed. When
CATALOG is coded, only entries from that catalog are listed.

catalog_name is the name of the catalog.

password specifies the read level or higher-level password of the catalog that
contains entries to be listed. When the entries to be listed contain
information about password-protected data sets, a password must be
supplied either through this operand or through the ENTRIES operand. If
passwords are to be listed, you must specify the master password.

  Chapter 1. TSO/E Commands and Subcommands 1-189



 LISTCAT Command  
 

OUTFILE(ddname) | OFILE(ddname)
specifies a data set other than the terminal to be used as an output data set.
The ddname can correspond to the name specified for the FILE operand of the
ALLOCATE command. The data can be listed when the file is freed. The
ddname identifies a DD statement that, in turn, identifies the alternate output
data set. If OUTFILE is not specified, the entries are displayed at the terminal.

The normal output data set for listing is SYSPRINT. The default operands of
this data set are:

� Record format: VBA
� Logical record length: 125, that is, 121+4
� Block size: 629, that is, 5 x (121+4)+4

Print lines are 121 bytes in length. The first byte is the ANSI control character.
The minimum specifiable LRECL is 121 (U-format records only). If a smaller
size is specified, it is overridden to 121.

It is possible to alter the above defaults through specification of the desired
values in the DCB operand of the SYSPRINT statement. The record format,
however, cannot be specified as F or FB. If you do specify either one, it is
changed to VBA.

In several commands, you have the option of specifying an alternate output
data set for listing. If you do specify an alternate, you must specify DCB
operands in the referenced DD statement. When specifying an alternate output
data set, you should not specify F or FB record formats.

ENTRIES(entry_name/password)
specifies the names of the entries to be listed. If neither ENTRIES nor LEVEL
is coded, only the entries associated with the user ID are listed. For more
information about the ENTRIES operand, see DFSMS/MVS Access Method
Services for VSAM.

entry_name specifies the names or generic names of entries to be listed.
Entries that contain information about catalogs can be listed only by
specifying the name of the master or user catalog as the entry_name. The
name of a data space can be specified only when SPACE is the only type
specified. If a volume serial number is specified, SPACE must be specified.

Note:  You can change a qualified name into a generic name by
substituting an asterisk (*) for only one qualifier. For example, A.\
specifies all two-qualifier names that have A as first qualifier; A.\.C
specifies all three-qualifier names that have A for first qualifier and C
for third qualifier. However, LISTCAT does not accept \.B as a valid
generic name. The \ is not a valid user ID for the first qualifier.

password specifies a password when the entry to be listed is password
protected and a password was not specified through the CATALOG
operand. The password must be the read or higher-level password. If
protection attributes are to be listed, you must supply the master password.
If no password is supplied, the operator is prompted for each entry's
password. Passwords cannot be specified for non-VSAM data sets, aliases,
generation data groups, or data spaces.

LEVEL( level) | LVL( level)
specifies the level of entry_names to be listed. If neither LEVEL nor ENTRIES
is coded, only the entries associated with the user ID are listed.

1-190 OS/390 V2R7.0 TSO/E Command Reference  



  LISTCAT Command
 

CLUSTER
specifies cluster entries are to be listed. When the only entry type specified is
CLUSTER, entries for data and index components associated with the clusters
are not listed.

DATA
specifies entries for data components, excluding the data component of the
catalog, are to be listed. If a cluster's name is specified on the ENTRIES
operand and DATA is coded, only the data component entry is listed.

INDEX | IX
specifies entries for index components, excluding the index component of the
catalog, are to be listed. When a cluster's name is specified on the ENTRIES
operand and INDEX is coded, only the index component entry is listed.

SPACE | SPC
specifies entries for volumes containing data spaces defined in this catalog are
to be listed. Candidate volumes are included. If entries are identified by
entry_name or level, SPACE can be coded only when no other entry_type
restriction is coded.

NONVSAM | NVSAM
specifies entries for non-VSAM data sets are to be listed. When a generation
data group's name and NONVSAM are specified, the generation data sets
associated with the generation data group are listed.

USERCATALOG | UCAT
specifies entries for user catalogs are to be listed. USERCATALOG is
applicable only when the catalog that contains the entries to be listed is the
master catalog.

Note:  When listing user catalogs, PROFILE NOPREFIX must be issued to
ensure that all user catalogs will be found.

GENERATIONDATAGROUP | GDG
specifies entries for generation data groups are to be listed.

PAGESPACE | PGSPC
specifies entries for page spaces are to be listed.

ALIAS
specifies entries for alias entries are to be listed.

CREATION(days)
specifies entries are to be listed only if they were created no later than that
number of days ago.

EXPIRATION(days)
specifies entries are to be listed only if they expire no later than the number of
days from now.

ALL | NAME  | VOLUME |  ALLOCATION | HISTORY
specifies the fields to be included for each entry listed. If no value is coded,
NAME is the default.

With Storage Management Subsystem, the operands also list Storage
Management Subsystem class names and the last backup data set.

ALL  specifies all fields are to be listed.

  Chapter 1. TSO/E Commands and Subcommands 1-191



 LISTDS Command  
 

NAME specifies names of the entries are to be listed. The default is NAME.

VOLUME specifies the name, owner identification, creation date, expiration
date, entry type, volume serial numbers and device types allocated to the
entries are to be listed. Volume information is not listed for cluster entries
(although it is for the cluster's data and index entries), aliases, or
generation data groups.

ALLOCATION  specifies the information provided by specifying VOLUME and
detailed information about the allocation are to be listed. The information
about allocation is listed only for data and index component entries.

HISTORY specifies the name, owner identification, creation date, and expiration
date of the entries are to be listed.

DATACLAS
with Storage Management Subsystem, indicates that the data class of the
catalog is to be listed.

MGMTCLAS
with Storage Management Subsystem, indicates that the management class of
the catalog is to be listed.

STORCLAS
with Storage Management Subsystem, indicates that the storage class of the
catalog is to be listed.

LISTCAT Command Return Codes
Figure 1-25. LISTCAT Command Return Codes

0 Processing successful. Informational messages might have been
issued.

4 Processing successful, but a warning message has been issued.

8 Processing was completed, but specific details were bypassed.

12 Processing unsuccessful.

16 Severe error or problem encountered.

 LISTDS Command
Use the LISTDS command to have the attributes of specific data sets displayed at
your terminal. The LISTDS command works differently, depending upon whether
the data set is VSAM or non-VSAM. If you are unsure as to whether the data set is
VSAM or not, enter the LISTDS command with no operands.

A VSAM data set causes the LISTDS command to display only the data set
organization (DSORG), which is VSAM. Use the LISTCAT command to obtain more
information about a VSAM data set.

For non-VSAM data sets, you can obtain:

� The volume identification (VOLID) of the volume on which the data set resides.
A volume can be a disk pack or a drum.

� The logical record length (LRECL)

� The block size (BLKSIZE)

1-192 OS/390 V2R7.0 TSO/E Command Reference  



  LISTDS Command
 

� The record format (RECFM)

� The data set organization (DSORG). The data set organization is indicated as
follows:

– PS for sequential
– PO for partitioned
– IS for indexed sequential
– DA for direct access
– VSAM for VSAM data entries
– ** for unspecified
– ?? for any other specification

� Directory information for members of partitioned data sets, if you specify the
data set name in the form data_set_name(member_name).

� Creation date, expiration date, and, for non-VSAM only, security attributes.

� File name and disposition

� Data set control blocks (DSCB).

Note:  Data sets that are dynamically allocated by the LISTDS command are
automatically freed when the command terminates, unless the data set
previously was allocated with the permanent attribute. You must explicitly
free dynamically allocated data sets.

LISTDS Command Syntax 

 ┌ ┐────────────
55─ ──LISTDS ─(─ ───6 ┴─data_set─ ─)─ ──┬ ┬──────── ──┬ ┬───────── ──┬ ┬───────── ─────5
 └ ┘─STATUS─ └ ┘─HISTORY─ └ ┘─MEMBERS─

5─ ──┬ ┬─────── ──┬ ┬─────────────────────── ──┬ ┬─────── ──────────────────────5%
└ ┘─LABEL─ └ ┘──CATALOG(catalog_name) └ ┘─LEVEL─

LISTDS Command Operands
(data_set)

specifies one or more data set names. This operand identifies the data sets
that you want to know more about. Each data set specified must be currently
allocated or available from the catalog, and must reside on a currently active
volume. The names in the data set list can contain a single asterisk in place of
any level except the first. When this is done, all cataloged data sets whose
names begin with the specified qualifiers are listed. For example, A.\.C
specifies all three-qualifier names that have A for the first qualifier and C for the
third qualifier.

Note:  Do not use alias data set names with this command.

STATUS
specifies that you want the following additional information:

� The ddname currently associated with the data set.

� The normal termination disposition of the data set, and when listed,
separated by a comma, the abnormal termination disposition. The abnormal
termination disposition takes effect if an abnormal termination occurs.

The keywords denoting the dispositions are CATLG, DELETE, KEEP, and
UNCATLG. CATLG means the data set is cataloged. DELETE means the

  Chapter 1. TSO/E Commands and Subcommands 1-193



 LISTDS Command  
 

data set is to be removed. KEEP means the data set is to be retained.
UNCATLG means the name is removed from the catalog, but the data set
is retained.

HISTORY
specifies that you want to obtain the creation and expiration dates for the
specified data sets and find out whether the non-VSAM data sets are
password-protected or if the data set is RACF protected.

Note:  LISTALC HISTORY output may indicate NONE for security on a data
set and LISTDS HISTORY output may indicate RACF security for the
same data set. The LISTDS module is an authorized program that calls
two RACF macros RACSTAT and RACHECK. LISTALC is not an
authorized program and does not use the RACF macros.

MEMBERS
specifies that you want a list of all the members of a partitioned data set,
including aliases.

LABEL
specifies that you want to have the entire data set control block (DSCB) listed
at your terminal. This operand is applicable only for non-VSAM data sets on
direct access devices. The list is in hexadecimal notation.

CATALOG( catalog_name)
specifies the user catalog that contains the names in the data set list.
CATALOG is required only if the names are in a catalog other than STEPCAT
or the catalog implied by the first-level qualifier of the name.

LEVEL
specifies names in the data set list are to be high-level qualifiers. All cataloged
data sets whose names begin with the specified qualifiers are listed. If LEVEL
is specified, the names cannot contain asterisks.

Specify only one data set list with the LEVEL option.

LISTDS Command Return Codes
Figure 1-26. LISTDS Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

LISTDS Command Examples

 Example 1
Operation:  List the basic attributes of a particular data set.

Known:

� The data set name: ZALD58.CIR.OBJ

listds cir

The display at your terminal might be similar to the following:

1-194 OS/390 V2R7.0 TSO/E Command Reference  



  LOADGO Command
 

à ð
listds cir
ZALD58.CIR.OBJ
--RECFM-LRECL-BLKSIZE-DSORG
FB 8ð 8ð PS

--VOLUMES--
 D95LIB
READY

 LOADGO Command
Use the LOADGO command to load a compiled or assembled program into virtual
storage and begin execution.

The LOADGO command loads object modules produced by a compiler or
assembler, and load modules produced by the linkage editor or binder. If you want
to load and execute a single load module, the CALL command is more efficient.
The LOADGO command also searches a call library (SYSLIB) or a resident link
pack area, or both, to resolve external references.

The LOADGO command invokes the binder or the batch loader to accomplish this
function, and combines basic editing and loading services of the binder or linkage
editor and program fetch in one job step. Therefore, the load function is equivalent
to the link-edit and go function.

The LOADGO command does not produce load modules or program objects for
program libraries. If NOBINDER is specified, LOADGO does not process linkage
editor control statements such as INCLUDE, NAME, OVERLAY, and so on.

LOADGO Command Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-195



 LOADGO Command  
 

 

 ┌ ┐────────────
55─ ── ──┬ ┬─LOADGO─ ─(─ ───6 ┴─data_set─ ─)─ ──┬ ┬────────────── ───────────────────5

└ ┘─LOAD─── └ ┘──'parameters'

5─ ──┬ ┬──────────────────────────── ──┬ ┬────────────────── ──────────────────5
├ ┤──PRINT( ──┬ ┬─*───────────── ) │ │┌ ┐─24──
│ │└ ┘─data_set_name─ └ ┘──AMODE( ──┼ ┼───── )

 └ ┘─NOPRINT──────────────────── ├ ┤─31──
 ├ ┤─ANY─
 └ ┘─MIN─

 ┌ ┐─BINDER───
5─ ──┬ ┬──────────────────── ──┬ ┬───────────────────── ──┼ ┼────────── ─────────5
 │ │┌ ┐─24──── │ │┌ ┐──────────── └ ┘─NOBINDER─

└ ┘──RMODE( ──┼ ┼─────── ) └ ┘──LIB( ───6 ┴─data_set─ )
 ├ ┤─ANY───
 └ ┘─SPLIT─

5─ ──┬ ┬─────────────────── ──┬ ┬─────────────────────── ──────────────────────5
 │ │┌ ┐─UPPER─ │ │┌ ┐─PM3─────

└ ┘──CASE( ──┼ ┼─────── ) └ ┘──COMPAT( ──┼ ┼───────── )
 └ ┘─MIXED─ ├ ┤─PM2─────
 ├ ┤─PM1─────
 ├ ┤─LKED────
 ├ ┤─CURRENT─
 └ ┘─CURR────

5─ ──┬ ┬───────────────── ──┬ ┬─────────────────── ────────────────────────────5
└ ┘──FILL(fill_byte) │ │┌ ┐─NO──

└ ┘──HOBSET( ──┼ ┼───── )
 └ ┘─YES─

 ┌ ┐─────────────
5─ ──┬ ┬────────────────────────── ──┬ ┬────────────────── ───6 ┴┬ ┬───────── ─────5
 │ │┌ ┐─6ð───────── │ │┌ ┐─OFF── ├ ┤─PLILIB──

└ ┘──LINECT( ──┼ ┼──────────── ) ├ ┤──LIST( ──┼ ┼────── ) ├ ┤─PLIBASE─
 └ ┘─line_count─ │ │├ ┤─STMT─ ├ ┤─PLICMIX─
 │ │└ ┘─ALL── ├ ┤─FORTLIB─
 └ ┘─NOLIST─────────── └ ┘─COBLIB──

 ┌ ┐─TERM─── ┌ ┐─RES─── ┌ ┐─NOMAP─ ┌ ┐─CALL─── ┌ ┐─NOLET─────────
5─ ──┼ ┼──────── ──┼ ┼─────── ──┼ ┼─────── ──┼ ┼──────── ──┼ ┼─────────────── ───────5
 └ ┘─NOTERM─ └ ┘─NORES─ └ ┘─MAP─── └ ┘─NOCALL─ ├ ┤─LET───────────

└ ┘──LET( ──┬ ┬──── )
 ├ ┤─ð──
 ├ ┤─4──
 ├ ┤─8──
 └ ┘─12─

5─ ──┬ ┬──────────────────── ──┬ ┬────────────────────────────────────── ──────5
│ │┌ ┐─ð── └ ┘──WKSPACE( ──┬ ┬───────── ──┬ ┬────────── )
└ ┘──MSGLEVEL( ──┼ ┼──── ) └ ┘─value_1─ └ ┘──,value_2

 ├ ┤─4──
 ├ ┤─8──
 └ ┘─12─

5─ ──┬ ┬─────────────── ──┬ ┬──────────────── ──┬ ┬──────────────────── ────────5%
└ ┘──SIZE(integer) └ ┘──EP(entry_name) └ ┘──NAME(program_name)

1-196 OS/390 V2R7.0 TSO/E Command Reference  



  LOADGO Command
 

LOADGO Command Operands
(data_set)

specifies the names of one or more object modules, load modules and /or
program objects to be loaded and executed. The names can be data set
names, names of members of partitioned data sets, or both (see the data set
naming conventions). When you specify more than one name, the names must
be enclosed within parentheses and separated from each other by a standard
delimiter (blank or comma).

‘parameters’
specifies any parameters that you want to pass to the program to be executed.

PRINT(data_set_name | *) | NOPRINT

PRINT(data_set_name | *) specifies the name of the data set that is to contain
the listings produced by the LOADGO command. If you omit the data set
name, the generated data set is named according to the data set naming
conventions. You can substitute an asterisk (*) for the data set name, if you
want to have the listings displayed at your terminal. If you specify the MAP
operand, then PRINT is the default.

NOPRINT specifies no listings are to be produced. This operand suppresses
the MAP operand. If both PRINT and NOPRINT are omitted and you do not
use the MAP operand, then NOPRINT is the default.

AMODE(24 | 31 | ANY | MIN)
specifies the addressing mode for the module to be loaded. If the AMODE
operand is not specified, the AMODE defaults to the AMODE of the main entry
point. Valid AMODE values are:

24 to indicate the module is invoked in 24-bit addressing mode

31 or ANY  to indicate the module is invoked in 31-bit addressing mode

MIN causes the binder to set the AMODE to the most restrictive AMODE of all
control sections in the module. In this respect, 24 is more restrictive than
31, which is more restrictive than ANY.

The MIN keyword is used only to control binder processing. It assists the
binder in determining the resultant AMODE of the module. However, MIN is
never used as an AMODE itself and will not appear in the directory entry of
the resultant load module or program object.

For more information see DFSMS/MVS Program Management.

RMODE(24 | ANY | SPLIT)
specifies the residence mode for the module to be loaded. If all control sections
are not specified as RMODE(ANY), RMODE defaults to 24. If any section of the
load module has an RMODE(24), RMODE defaults to 24. Valid RMODE values
are:

24 to indicate the module must reside below the 16 MB line

ANY to indicate the module can reside anywhere in virtual storage

SPLIT to indicate that the program object is to be split into two segments
according to the RMODE of the CSECTs. SPLIT is supported only for PM2
or PM3 format program objects.

  Chapter 1. TSO/E Commands and Subcommands 1-197



 LOADGO Command  
 

LIB(data_set)
specifies names of one or more library data sets that are to be searched to find
modules referred to by the module being processed (that is, to resolve external
references).

BINDER | NOBINDER

BINDER specifies that MVS use binder services for this load module or object
module rather than the loader service program. The binder can be used for
to read modules stored in a PDS as well as program objects in a PDSE. If
DFSMS/MVS V1R1 or later is installed, BINDER is the default.

NOBINDER specifies that MVS not use binder services for this object module;
the loader service program is used to process the object module(s) into
load module(s).

CASE(UPPER | MIXED)

UPPER specifies that the binder translates to uppercase all lowercase names
found in input modules, binder control statements, and LOADGO
parameters. UPPER is the default.

MIXED specifies that the binder respect uppercase and lowercase names found
in input modules, control statements, call parameters, and LOADGO
parameters. If MIXED is specified, the binder treats two strings differently if
any character in one string is a different case than the corresponding
character in the second string. binder keywords are always translated to
uppercase.

COMPAT(PM3 | PM2| PM1 | LKED | CURR | CURRENT)
specifies binder compatibility level.

PM3 specifies that the binder create a PM3-level program object. PM3 is the
default.

PM2 specifies that the binder create a PM2-level program object.

PM1 specifies that the binder create a PM1-level program object or load
module.

LKED  specifies that the binder process certain options, such as
AMODE/RMODE and REUSability, in a manner compatible with the linkage
editor.

CURRENT will instruct the binder to set COMPAT on the currently highest
value. For DFSMS 1.4.0 PM3 is the highest level.

CURR is the abbreviation of CURRENT and has the same specification.

Note:  Although LOADGO accepts all COMPAT values, they produce
equivalent results (except COMPAT(LKED)).

FILL (fill_byte)
specifies to the binder the next byte value to be used to initialize uninitilalized
storage areas in the loaded program.

1-198 OS/390 V2R7.0 TSO/E Command Reference  



  LOADGO Command
 

HOBSET(NO | YES)

NO specifies that the binder NOT set the high-order bit (HOB) in V-type adcons
according to the AMODE of the target entry point. NO is the default.

YES specifies that the binder set the high-order bit (HOB) in V-type adcons
according to the AMODE of the target entry point.

LINECT
specifies the number of lines (including heading and blank lines) contained on
each page of the binder listing. The valid range is 24-200 and 0. Zero
indicates a single, indefinitely long page, and values of 1-23 are forced to 24;
however, there are always page ejects at the beginning of the binder listing and
the start of the map, cross reference (XREF), and summary reports. LINECT
defaults to 60 lines.

LIST(SUMMARY | OFF | STMT | ALL) | NOLIST
allows you to control the type of information included in the SYSPRINT data.
LIST is valid for both the linkage editor and the binder.

SUMMARY indicates that messages, control statements and a load summary
report (including processing options and module attributes) are to be
printed.

OFF indicates that only messages will be printed. In a batch environment,
LIST(OFF) is equivalent to NOLIST.

STMT indicates that messages and control statements to be printed. In a batch
environment, LIST(STMT) is equivalent to LIST.

ALL  indicates that all input activity (whether initiated by binder service calls or
control statements) and the load or save summary be logged.

NOLIST is equivalent to LIST(OFF)

PLILIB
specifies the partitioned data set named SYS1.PL1LIB is to be searched to
locate load modules referred to by the module being processed.

PLIBASE
specifies the partitioned data set named SYS1.PLIBASE is to be searched to
locate load modules referred to by the module being processed.

PLICMIX
specifies the partitioned data set named SYS1.PLICMIX is to be searched to
locate load modules referred to by the module being processed.

FORTLIB
specifies the partitioned data set named SYS1.FORTLIB is to be searched to
locate load modules referred to by the module being processed.

COBLIB
specifies the partitioned data set named SYS1.COBLIB is to be searched to
locate load modules referred to by the module being processed.

TERM | NOTERM

  Chapter 1. TSO/E Commands and Subcommands 1-199



 LOADGO Command  
 

TERM specifies that you want any error messages directed to your terminal as
well as the PRINT data set. If both TERM and NOTERM are omitted, then
TERM is the default.

NOTERM specifies that you want any error messages directed only to the
PRINT data set.

RES | NORES

RES specifies the link pack area is to be searched for load modules (referred
to by the module being processed) before the specified libraries are
searched. If both RES and NORES are omitted, then RES is the default. If
you specify the NOCALL operand, the RES operand is not valid.

NORES specifies the link pack area is not to be searched to locate modules
referred to by the module being processed.

MAP | NOMAP

MAP specifies a list of external names and their real storage addresses are to
be placed on the PRINT data set. This operand is ignored when NOPRINT
is specified.

NOMAP specifies external names and addresses are not to be contained in the
PRINT data set. If both MAP and NOMAP are omitted, then NOMAP is the
default.

CALL  | NOCALL

CALL  specifies the data set specified in the LIB operand is to be searched to
locate load modules referred to by the module being processed. If both
CALL and NOCALL are omitted, then CALL is the default.

NOCALL  specifies the data set specified by the LIB operand is not to be
searched to locate modules that are referred to by the module being
processed. The RES operand is not valid when you specify NOCALL.

LET(sev_code)
specifies a severity code, which if exceeded, causes the module to be marked
non-executable. The severity code is the aggregate error level of all calls to the
binder. Valid values for severity code are 0, 4, 8, and 12. If LET is specified, it
defaults to LET(8); if LET is not specified or NOLET is specified, it defaults to
LET(4).

MSGLEVEL
specifies the severity level below which messages are not displayed. Valid
severity levels are 0, 4, 8, and 12. If a message has a severity lower than the
level indicated here, it is not printed, written to either print or terminal files, or
passed to the messages exit.

WKSPACE(value_1[,value_2])
specifies the maximum amount of user's virtual storage available to the binder
below and above 16 MB, respectively. You typically do not need to include this
operand unless you have special virtual storage considerations such as the
balancing of virtual storage between two concurrent applications. If coded, a
minimum of WKSPACE(96,1024) is recommended for all binder operations.

1-200 OS/390 V2R7.0 TSO/E Command Reference  



  LOADGO Command
 

value_1 indicates the maximum amount (in kilobytes) of user's virtual storage
available to the binder below 16 MB in virtual storage. This value is
optional; however, be certain to code a comma ( , ) if only value_2 is
specified.

value_2 indicates the maximum amount (in kilobytes) of user's virtual storage
available to the binder above 16 MB in virtual storage. This value is
optional; however, be certain to code a comma ( , ) if value_1 is not also
specified.

SIZE(integer)
specifies the size, in bytes, of dynamic real storage that can be used by the
loader. If this operand is not specified, then the size defaults to the size
specified by your system programmer.

EP(entry_name)
specifies the external name for the entry point to the loaded program. If the
entry point of the loaded program is in a load module, you must specify the EP
operand.

NAME(program_name)
specifies the name that you want assigned to the loaded program.

LOADGO Command Return Codes
Figure 1-27. LOADGO Command Return Codes

0 Processing successful.

8 Processing incomplete, system prompts you for additional information.

12 Processing unsuccessful.

LOADGO Command Examples

 Example 1
Operation:  Load and execute an object module.

Known:

� The name of the data set: SHEPD58.CSINE.OBJ

load csine print(\)

 Example 2
Operation:  Combine an object module and a load module, and then load and
execute them.

Known:

� The name of the data set containing the object module: LARK.HINDSITE.OBJ
� The name of the data set containing the load module:

LARK.THERMOS.LOAD(COLD)

load (hindsite thermos(cold)) print(\) +  
lib('sys1.sortlib') +  
nores map size (44k) ep (start23) name(thermsit)

  Chapter 1. TSO/E Commands and Subcommands 1-201



 LOGOFF Command  
 

 Example 3
Operation:  Combine and execute several object and load modules with differing
AMODE and RMODE attributes. The new load module should execute in 31-bit
addressing mode and be loaded anywhere in storage.

Known:

� The name of the main routine, a load module in 24-bit addressing mode:
MY.PROG.LOAD(MAIN)

� The names of two subroutines, which are updated with changes before loading;
both are AMODE(31) and RMODE(ANY): MY.SUB1.OBJ, MY.SUB2.OBJ

load (sub1 sub2 'my.prog.load(main)') print (\) amode(31)
rmode(any)

 LOGOFF Command
Use the LOGOFF command to terminate your terminal session. When you enter
the LOGOFF command, the system frees all the data sets allocated to you. Data
remaining in storage is lost.

If you intend to enter the LOGON command immediately to begin a new session
using different attributes, you are not required to LOGOFF. Instead, you can just
enter the LOGON command as you would enter any other command.

If your terminal is a Systems Network Architecture (SNA) terminal that uses VTAM,
you might be required to use a format different from the one described here. Your
system programmer should provide you with this information.

When the LOGOFF command is executed in the background, your TSO/E session
is terminated normally. Any remaining commands in the input stream are ignored.

LOGOFF Command Syntax 

 ┌ ┐─DISCONNECT─
55─ ─LOGOFF─ ──┼ ┼──────────── ──────────────────────────────────────────────5%
 └ ┘─HOLD───────

LOGOFF Command Operands
DISCONNECT

specifies the line is to be disconnected following logoff. If no operand is
specified, then DISCONNECT is the default.

HOLD 3

specifies the line is not to be disconnected following logoff.

3 Not supported with terminals that use VTAM.

1-202 OS/390 V2R7.0 TSO/E Command Reference  



  LOGON Command
 

LOGOFF Command Examples

 Example 1
Operation:  Terminate your terminal session.

logoff

 LOGON Command
Use the LOGON command to start a terminal session. If you are not familiar with
the logon process, see OS/390 TSO/E User's Guide.

Before you can use the LOGON command, your installation must provide you with
certain basic information:

� Your user identification (1-7 characters)

� A password (1-8 alphanumeric characters), if required by your installation. For a
RACF-defined user, your installation assigns a RACF password for you.

� An account number, if required by your installation

� A procedure name, if required by your installation

� For a RACF-defined user, a GROUP name, if required by your installation.

The information you enter with the LOGON command and its operands is used by
the system to start and control your time sharing session. At least, you are required
to identify yourself to the system with the user_id operand. Mostly, you are required
to enter a password. Other operands are optional, or provide default values, and
allow you to control the way your session is to work. For example, you can specify
whether you want to receive messages from the system or from other users while
your session is active.

Full-Screen LOGON versus Line Mode LOGON
There are two types of LOGON command processing: full-screen LOGON
command processing and line mode LOGON command processing.

� If you are an IBM 3270 terminal user, using a display format of 24 x 80 (24
lines of data by 80 characters on a line) or larger, you must use full-screen
logon. Full-screen logon users need only enter logon user_id. TSO/E then
displays a full-screen logon menu with appropriate entry fields for both RACF
and non-RACF defined users.

If you enter more parameters than user_id on the LOGON command, TSO/E
accepts and processes them with the exception of the password fields. TSO/E
requires the password entries to be entered on the logon menu for full-screen
logon processing.

� If your terminal is such that full-screen LOGON command processing cannot be
used, then all of the logon information must be specified in line mode and you
might be prompted by the system to enter values for certain operands that are
required by your installation.

  Chapter 1. TSO/E Commands and Subcommands 1-203



 LOGON Command  
 

Full-Screen LOGON Processing
After you have issued a LOGON command the full-screen logon command
processing performs the following:

� It displays a menu with the previous session's logon parameter values. Logon
command parameters entered on the LOGON command override any default
values from the previous session.

� It requests that you enter a password. If you enter a not valid password, the
system will prompt you to re-enter it after you pressed the Enter key.

� If your user ID is defined to RACF, it allows you to enter a new password on
the logon panel.

If you have entered a new password, and after pressing the Enter key, logon
processing prompts you to re-enter the new password in the same field a
second time to verify the password. If both entries of the new password match,
logon processing proceeds. Otherwise, logon processing displays a message
that the password verification failed. If this occurs, do one of the following:

– If you want to change your password, or if the system requires you to
change it because the old password is expired, enter again a new
password. The system will prompt you to enter the new password again for
verification.

– If you do not want to change your password, press Enter without entering a
new password.

Note:  Full-screen logon processing allows you to enter parameter values in
any of the menu fields before pressing the Enter key. Actual field
verification takes place after the Enter key is pressed. If you have
entered a invalid password, the system responds with message
Password not authorized for user ID after you press Enter, awaiting
the correct password. Should you have entered an invalid password
and a new password, the system responds with message Password not
authorized for user ID. New password ignored after you press Enter,
and ignores any entry you did in the new password field. This behavior
is somewhat different from pre-OS/390 V1R2.0 releases; you need to
re-enter the new password after you have corrected the original
“Password not authorized ...” problem.

� Further, full-screen logon allows for modification and entry of logon parameter
values. You can type over existing values on the menu displayed. Existing
values are either from a previous session logon or from the current LOGON
command parameters.

� It displays RACF entry fields, if RACF is installed and active and the user ID is
RACF-defined.

� Full-screen logon allows you to enter a single TSO/E command up to 80
characters long on the logon menu. This command is executed after any
command entered in the PARM field on the EXEC statement of the LOGON
procedure. This command is also remembered from session to session.

� It displays help information for all logon parameters whenever you can enter
USERID, PASSWORD, or RACF password. Help information is displayed for
the entry being prompted for and in all cases, except for the PASSWORD entry
fields, displays the user entered data as well.

1-204 OS/390 V2R7.0 TSO/E Command Reference  



  LOGON Command
 

Note:  If your terminal uses VTAM, you might be required to use a format different
from the one described here. Your system programmer should provide you
with this information.

When the LOGON command is executed in the background, the system ignores
any remaining commands in the input stream. Your foreground TSO/E session
does not end. You are still logged on.

LOGON Command Syntax 

55─ ─LOGON─ ─user_identity─ ──┬ ┬────────────────────────────── ───────────────5
└ ┘──/password ──┬ ┬───────────────

└ ┘──/new_password

5─ ──┬ ┬─────────────── ──┬ ┬────────────────────── ──┬ ┬─────────────── ────────5
└ ┘──ACCT(account) └ ┘──PROC(procedure_name) └ ┘──SIZE(integer)

 ┌ ┐─NOTICES─── ┌ ┐─MAIL───
5─ ──┼ ┼─────────── ──┼ ┼──────── ──┬ ┬──────────────── ──┬ ┬───────────── ────────5

└ ┘─NONOTICES─ └ ┘─NOMAIL─ └ ┘──PERFORM(value) ├ ┤─RECONNECT───
 └ ┘─NORECONNECT─

5─ ──┬ ┬────────────────────────── ──┬ ┬───────────── ──┬ ┬───────── ───────────5%
└ ┘──SECLABEL(security_label) └ ┘──GROUP(name) └ ┘─OIDCARD─

LOGON Command Operands
user_identity/password/new_password

specifies your user identification and, if required, a valid password or new
password. Your user identification must be separated from the password by a
slash (/) and, optionally, one or more standard delimiters (tab, blank, or
comma). Your identification and password must match the identification
contained in the system's user attribute data set (UADS), if you are not
RACF-defined. If you are RACF-defined, you must enter the password defined
in the RACF data set as the value for password. The new password specifies
the password that is to replace the current password. new_password must be
separated from password by a slash(/) and, optionally, one or more standard
delimiters (tab, blank, or comma). new_password is 1 to 8 alphanumeric
characters long. This operand is ignored for non-RACF defined users. (Printing
is suppressed for some types of terminals when you respond to a prompt for a
password.)

ACCT(account)
specifies the account number required by your installation. If the UADS
contains only one account number for the password that you specify, this
operand is not required. If the account number is required and you omit it, the
system prompts you for it.

For TSO/E, an account number must not exceed 40 characters, and must not
contain a blank, tab, quotation mark, apostrophe, semicolon, comma, or line
control character. Right parentheses are permissible only when left parentheses
balance them somewhere in the account number.

PROC(procedure_name)
specifies the name of a cataloged procedure containing the job control
language (JCL) needed to initiate your session.

  Chapter 1. TSO/E Commands and Subcommands 1-205



 LOGON Command  
 

SIZE(integer)
specifies the maximum region size allowed for a conditional GETMAIN during
the terminal session. If you omit this operand, the UADS contains a default
value for your region size. The UADS also contains a value for the maximum
region size that you are allowed. If you specify a region size exceeding the
maximum region size allowed by the UADS (in this case, the UADS value
MAXSIZE is used), then this operand is rejected.

NOTICES | NONOTICES
specifies whether messages intended for all terminal users are to be listed at
your terminal during logon processing.

NOTICES specifies messages are to be listed. NOTICES is the default.

NONOTICES specifies no messages are to be listed.

MAIL | NOMAIL
specifies whether you want messages intended specifically for you to be
displayed at your terminal during logon processing.

MAIL  specifies that you want messages to be displayed. MAIL is the default.

NOMAIL  specifies that you do not want messages to be displayed.

PERFORM(value)
specifies the performance group to be used for the terminal session. The value
must be an integer from 1-999. However, the line mode LOGON limit is 255.
The default value is determined by the individual installation.

RECONNECT | NORECONNECT

RECONNECT specifies that you want to reconnect your session when you
re-logon after your session is disconnected. If you are RACF-defined,
RECONNECT remains in effect across sessions until you specify
NORECONNECT. However, if the UADS contains your user information,
then RECONNECT does not remain in effect across sessions. If you
specified a password in the disconnected session, you must specify the
same password with the RECONNECT option. If RECONNECT is specified,
then any operands other than user ID and password are ignored.

NORECONNECT specifies that you do not want automatic reconnect to be in
effect for the session you are logging onto.

SECLABEL( security_label)
specifies a security label for your TSO/E session. The SECLABEL (security
label) may be 1 to 8 alphanumeric characters. The first character must be
alphabetic or one of the special characters (#, $, or @). SECLABEL is
recognized only if your installation is using security labels and security checking
and you are RACF-defined. If you specify a SECLABEL for which you are not
authorized, you receive an error message and are prompted for another
SECLABEL. If you do not specify SECLABEL on the LOGON command, RACF
uses the default set by your administrator.

If you log on to TSO/E in line mode and you want to use a SECLABEL other
than the default, you must include it each time you log on.

1-206 OS/390 V2R7.0 TSO/E Command Reference  



  LOGON Command
 

GROUP(name)
specifies a 1 to 8 character ID composed of alphanumeric characters. The first
character must be alphabetic or one of the special characters (#, $, or @). This
operand is valid only for RACF-defined users. It will be ignored for users not
defined to RACF.

OIDCARD
specifies the operator identification card is to be prompted for after the LOGON
command has been entered. This operand is valid only for RACF-defined
users.

If you are not defined to RACF and enter this keyword, you are prompted for
an operator identification card. However, any data you enter is ignored. You
can also enter a null line in response to the prompt.

LOGON Command Examples

 Example 1
Operation:  Start a terminal session.

Known:

� Your user identification and password: WRRID/23XA$MBT
� Your installation does not require an account number or procedure name for

logon.

logon wrrid/23xa$mbt

 Example 2
Operation:  Start a terminal session.

Known:

� Your user identification and password: WRRID/MO@
� Your account number: 288104
� The name of a cataloged procedure: TS951
� You do not want to receive any broadcast messages.
� Your real storage space requirement: 90K bytes

logon wrrid/mo@ acct(2881ð4) proc(ts951)-
 size(9ð) nonotices nomail

 Example 3
Operation:  Start a terminal session.

Known:

� Your user identification and password: WRRID/XTD18
� Your account number: 347971
� The name of a cataloged procedure: RS832
� Your real storage space requirement: 90K bytes
� The security label for the session: CONFDNTL

logon wrrid/xtd18 acct(347971) proc(rs832)-
 size(9ð) seclabel(confdntl)

  Chapter 1. TSO/E Commands and Subcommands 1-207



 MVSSERV Command  
 

 MVSSERV Command
Use the MVSSERV command to start an TSO/E Enhanced Connectivity Facility
session between an IBM Personal Computer (PC) and an IBM host computer
running TSO/E on MVS. The TSO/E Enhanced Connectivity Facility is a set of
programs that allows a PC user to request services from a host program. The PC
requesting program is referred to as the requester. The host program that executes
the corresponding service is referred to as the server. For more information about
IBM-supplied servers that you can use with the TSO/E Enhanced Connectivity
Facility, see Introduction to IBM System/370 to IBM Personal Computer Enhanced
Connectivity Facilities.

If you are a VM/PC user and you have issued MVSSERV, you can also issue the
two PC commands, DSNMAP and TSO, in your local PC session. The DSNMAP
command lets you access MVS sequential and partitioned data sets using the
corresponding CMS file names. The TSO command allows you to issue TSO/E
commands from your local PC session. The remote MVS system executes the
TSO/E commands. See OS/390 TSO/E VM/PC User's Guide, for information about
the DSNMAP and TSO commands and their syntax.

By using the operands on the MVSSERV command, you can accumulate all, some,
or no diagnostic information in a trace data set. The diagnostic information includes
the following:

� Informational and error messages
� An execution path table that tracks module calls
� Requests and replies sent between the PC and the host.

However, before using MVSSERV, you must have certain pre-allocated data sets.
Your installation may have already pre-allocated those data sets for you. They are
described in OS/390 TSO/E Guide to SRPI. The guide also describes how to write
and install servers.

MVSSERV Command Syntax 

 ┌ ┐─NOTRACE─
55─ ─MVSSERV─ ──┼ ┼───────── ────────────────────────────────────────────────5%
 ├ ┤─TRACE───
 └ ┘─IOTRACE─

MVSSERV Command Operands
NOTRACE

runs MVSSERV without sending messages to a trace data set. Use NOTRACE
for production work. When testing or debugging a program, use TRACE or,
preferably, IOTRACE, to obtain complete diagnostic information about the
MVSSERV session. NOTRACE is the default.

TRACE
records all terminal messages as well as most diagnostic messages in a trace
data set. The TRACE operand requires a pre-allocated trace data set in which
to store the messages. Your system programmer may have allocated the data
set for you. See OS/390 TSO/E Guide to SRPI, for information about how to
allocate the trace data set.

1-208 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

IOTRACE
records all terminal messages and all diagnostic messages in a trace data set.
In addition to the messages recorded with the TRACE operand, the IOTRACE
operand records communication information about data flow and data sent
between the host and the PC.

MVSSERV Command Return Codes
Figure 1-28. MVSSERV Command Return Codes

0 Processing successful.

4 Processing unsuccessful.

MVSSERV Command Examples

 Example 1
Operation:  Start an TSO/E Enhanced Connectivity Facility session program for
production.

MVSSERV

or

MVSSERV NOTRACE

 Example 2
Operation:  Start a TSO/E Enhanced Connectivity Facility session and record all
terminal messages and all diagnostic messages in the trace data set.

MVSSERV IOTRACE

 Example 3
Operation:  Start a TSO/E Enhanced Connectivity Facility session and record all
terminal messages and some diagnostic messages in the trace data set.

 OUTDES Command
Use the OUTDES command to create or reuse a dynamic output descriptor. An
output descriptor defines output characteristics that will be referenced by a
SYSOUT data set. OUTPUT JCL statements in the LOGON procedure can also be
used to define output descriptors.

The OUTDES operand of the ALLOCATE command and the PRINTDS command
allow you to specify a list of installation-defined output descriptors that were created
by OUTPUT JCL statements in the LOGON procedure and by the OUTDES
command. You can specify up to 128 output descriptors associated with a SYSOUT
data set. See the “ALLOCATE Command” on page 1-18 or the “PRINTDS
Command” on page 1-232 for more information.

Use operands on the OUTDES command to specify the following information:

� The name of the output descriptor to be created

� The NEW operand to create the output descriptor. The REUSE operand to
replace an existing output descriptor.

  Chapter 1. TSO/E Commands and Subcommands 1-209



 OUTDES Command  
 

� Output characteristics. The format and meanings of the output characteristics
are described in OS/390 MVS JCL Reference.

For information about special considerations when using OUTDES, see OS/390
MVS Programming: Authorized Assembler Services Guide.

OUTDES Command Syntax 

 ┌ ┐─NEW─── ┌ ┐─NOBURST─
55─ ─OUTDES─ ─output_descriptor_name─ ──┼ ┼─────── ──┼ ┼───────── ───────────────5
 └ ┘─REUSE─ └ ┘─BURST───

5─ ──┬ ┬─────────────────────── ──┬ ┬───────────────────────────────────── ────5
 │ │┌ ┐─,──────── │ │┌ ┐─,────────────────────

└ ┘──CHARS( ───6 ┴─charname─ ) └ ┘──ADDRESS( ───6 ┴┬ ┬─delivery_address─── )
└ ┘──'delivery_address'

5─ ──┬ ┬─────────────────────────────────────────── ──┬ ┬───────────────── ────5
└ ┘──BUILDING( ──┬ ┬─building_identification─── ) └ ┘──CKPTLINE(nnnnn)

└ ┘──'building_identification'

5─ ──┬ ┬───────────────── ──┬ ┬──────────────── ──┬ ┬───────────────────── ──────5
└ ┘──CKPTPAGE(nnnnn) └ ┘──CKPTSEC(nnnnn) └ ┘──CLASS(output_class)

5─ ──┬ ┬──────────────────────────────── ──┬ ┬──────────────────────── ────────5
└ ┘──COMPACT(compaction_table_name) └ ┘──CONTROL( ──┬ ┬─PROGRAM─ )

 ├ ┤─SINGLE──
 ├ ┤─DOUBLE──
 └ ┘─TRIPLE──
 

5─ ──┬ ┬─────────────────────────────────────── ─────────────────────────────5
└ ┘──COPIES(nnn ──┬ ┬────────────────────── )

 │ │┌ ┐─,───────────
└ ┘──,( ───6 ┴─group_value─ )

5─ ──┬ ┬─────────────────────── ──┬ ┬─────────── ──────────────────────────────5
└ ┘──DATACK( ──┬ ┬─BLKCHAR─ ) ├ ┤─DEFAULT───

 ├ ┤─BLKPOS── └ ┘─NODEFAULT─
 ├ ┤─BLOCK───
 └ ┘─UNBLOCK─
 

5─ ──┬ ┬───────────────────────────────────────── ───────────────────────────5
└ ┘──DEPT( ──┬ ┬─department_identification─── )

└ ┘──'department_identification'

5─ ──┬ ┬───────────────────────────────── ──┬ ┬──────────── ───────────────────5
└ ┘──DEST( ──┬ ┬─destination───────── ) ├ ┤─DPAGELBL───

└ ┘──destination.user_id └ ┘─NODPAGELBL─

5─ ──┬ ┬─────────────── ──┬ ┬────────────────────────────────── ───────────────5
└ ┘──FCB(fcb_name) └ ┘──FLASH(overlay_name, ──┬ ┬──────── )

 └ ┘─copies─

1-210 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

 

5─ ──┬ ┬────────────────────── ──┬ ┬─────────────────── ───────────────────────5
└ ┘──FORMDEF(member_name) └ ┘──FORMS(forms_name)

5─ ──┬ ┬──────────────────────────── ──┬ ┬───────────────── ───────────────────5
└ ┘──GROUPID(output_group_name) │ │┌ ┐─1──

└ ┘──INDEX( ──┴ ┴─nn─ )

5─ ──┬ ┬────────────────── ──┬ ┬───────────── ─────────────────────────────────5
│ │┌ ┐─1── └ ┘──LINECT(nnn)
└ ┘──LINDEX( ──┴ ┴─nn─ )

5─ ──┬ ┬─────────────────────────────── ──┬ ┬────────────────────── ───────────5
└ ┘──MODIFY(module_name ──┬ ┬────── ) └ ┘──PAGEDEF(member_name)

└ ┘──,trc

5─ ──┬ ┬────────────────────────────── ──────────────────────────────────────5
└ ┘──NAME( ──┬ ┬─preferred_name─── )

└ ┘──'preferred_name'
 

5─ ──┬ ┬──────────────────────────────── ────────────────────────────────────5
 │ │┌ ┐─,────────────────

└ ┘──NOTIFY( ───6 ┴┬ ┬─user_id──────── )
└ ┘──'node.user_id'

5─ ──┬ ┬────────────────────────────────────────────────── ──────────────────5
└ ┘──OUTDISP(normal_output_disp,abnormal_output_disp)

5─ ──┬ ┬────────────────────────────────── ──┬ ┬────────────────────── ────────5
└ ┘──PIMSG( ──┬ ┬───────────────────── ) └ ┘──PRMODE(process_mode)

 │ │┌ ┐─16──
 └ ┘── ──┬ ┬─YES─ , ──┴ ┴─nnn─
 └ ┘─NO──

5─ ──┬ ┬─────────── ──┬ ┬─────────── ──┬ ┬─────────────────────────────────── ───5
└ ┘──PRTY(nnn) ├ ┤─SYSAREA─── └ ┘──ROOM( ──┬ ┬─room_identification─── )

└ ┘─NOSYSAREA─ └ ┘──'room_identification'

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬──────────────────── ──────5
└ ┘──TITLE( ──┬ ┬─description_of_output─── ) └ ┘──THRESHLD(nnnnnnnn)

└ ┘──'description_of_output'

 ┌ ┐─NOTRC─
5─ ──┼ ┼─────── ──┬ ┬─────────────── ──┬ ┬────────────────────────────── ────────5

└ ┘─TRC─── └ ┘──UCS(ucs_name) └ ┘──WRITER(external_writer_name)
 

5─ ──┬ ┬───────────────────────────────── ───────────────────────────────────5
 │ │┌ ┐─,────────────────

└ ┘──USERLIB( ───6 ┴┬ ┬─library_name─── )
└ ┘──'library_name'

5─ ──┬ ┬───────────────────────────── ──┬ ┬─────────────────────── ───────────5%
│ │┌ ┐─,─────────── └ ┘──OUTBIN(output_bin_id)
└ ┘──USERDATA( ───6 ┴┬ ┬─value───── )

 └ ┘──'value n'

OUTDES Command Operands
output_descriptor_name

specifies the name of the output descriptor to be created or reused. This
operand is required. Specify 1 to 8 alphanumeric characters for the name. The
first character must be alphabetic or one of the special characters #, $, or @.

The OUTDES operand of the ALLOCATE, PRINTDS, and FREE commands
refers to the output_descriptor_name specified.

  Chapter 1. TSO/E Commands and Subcommands 1-211



 OUTDES Command  
 

NEW | REUSE

NEW specifies that a new output descriptor is to be created. If an output
descriptor with the same name exists, the system ends your request
unsuccessfully. NEW is the default.

REUSE specifies that if an output descriptor with the same name is found, the
new definition replaces the old one. If an output descriptor with the same
name does not exist, OUTDES creates a new output descriptor name.

BURST | NOBURST

BURST specifies that 3800 output is to be burst into separate sheets.

NOBURST specifies that the printed 3800 output is to be in continuous fanfold
pages. NOBURST is the default.

The following parameters are passed on to the scheduler facility, for more
information about these parameters see the OUTDES command in OS/390
MVS JCL Reference.

CHARS(charname{,...})
specifies one or more font (character arrangement) tables for printing the
SYSOUT data set on a 3800 printer. You can specify up to four table names.
Specify 1 to 4 alphabetic, numeric, or special characters #, $, or @ for the
character name.

For more information about font (character arrangement) tables, see IBM 3800
Printing Subsystem Programmer's Guide.

ADDRESS(delivery_address)
specifies the delivery address for system output (SYSOUT). This address prints
on the separator pages. You can specify from 1 to 4 delivery addresses. For
each delivery address, you can specify from 1 to 60 EBCDIC characters. Refer
to “Coding Rules” on page 1-221 for the valid characters allowed with and
without quotes.

BUILDING(building_identification)
specifies the building location associated with the SYSOUT. The building
location prints on the separator pages. You can specify from 1 to 60 EBCDIC
characters. Refer to “Coding Rules” on page 1-221 for the valid characters
allowed with and without quotes.

CKPTLINE(nnnnn)
specifies the maximum number of lines contained in a logical page. Specify a
value from 0 to 32767. The system uses this value either for JES checkpointing
of printed output or for SNA transmission checkpoints. Use CKPTLINE in
combination with the CKPTPAGE operand.

If you do not specify CKPTLINE, JES uses an installation default specified at
initialization.

CKPTPAGE(nnnnn)
specifies the maximum number of pages to be printed or transmitted before the
next SYSOUT data set checkpoint occurs. Specify a value from 1 to 32767.
This value represents the number of pages to be transmitted as a single SNA

1-212 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

chain when data is transmitted to a SNA workstation. Use CKPTPAGE in
combination with the CKPTLINE operand.

If you do not specify CKPTPAGE, JES uses the installation default specified at
initialization. The default may also indicate whether checkpoints are to be
based on page count or time.

CKPTSEC(nnnnn)
specifies the number of seconds that are to elapse between checkpoints of the
SYSOUT data set that is printing. Specify a value from 1 to 32767.

If you do not specify CKPTSEC, JES uses the installation default specified at
initialization. The default may also indicate whether checkpoints are to be
based on page count or time.

CLASS(output_class)
specifies the output class JES is to use for processing the specified SYSOUT
data set. Valid output classes are characters A–Z, 0–9, or *. The CLASS
parameter is equivalent to the CLASS parameter of the OUTPUT JCL
statement. The attributes of each output class, including the default, are defined
during JES initialization. Specifying an * requests the output class defined in
the MSGCLASS parameter in the JCL for the LOGON procedure that is
running. For information about the OUTPUT JCL statement, see OS/390 MVS
JCL Reference.

Note:  When you allocate a SYSOUT data set, JES selects the output CLASS
value using the following search order:

1. Output class specified on your user ID at logon
2. Output class specified on the ALLOCATE command
3. Output class specified on a referenced or default output descriptor.

COMPACT(compaction_table_name)
specifies the name of the compaction table to be used when the data set is
transmitted to a workstation. Specify a 1 to 8 alphanumeric character symbolic
name. If you do not specify COMPACT, compaction is suppressed for the data
set.

CONTROL({PROGRAM  | SINGLE |  DOUBLE | TRIPLE})
specifies the type of forms control to be used.

PROGRAM indicates that the carriage control character of each data record is
to control line spacing on the form. PROGRAM is the default. The carriage
control characters are given in MVS/DFP Managing Non-VSAM Data Sets.

SINGLE indicates forced single spacing.

DOUBLE  indicates forced double spacing.

TRIPLE indicates forced triple spacing.

COPIES(nnn,(group_value))
specifies the number of copies to be printed for the data set. The number of
copies, nnn, can range from 1 to 255, subject to an installation limit. The
default is 1.

If you use COPIES on a referenced FORMDEF operand (described later), the
system ignores the COPIES value.

  Chapter 1. TSO/E Commands and Subcommands 1-213



 OUTDES Command  
 

If you specify group values, the system ignores the individual value, nnn, for
the 3800 printer. The group values describe how the printed copies are to be
grouped (3800 printer only). Each group value specifies the number of copies
of each page that are to be grouped together. You can specify up to 8 group
values. For example, a group value of 3 causes the first page of a data set to
be printed three times before printing is started for the second page, which
might also be printed three times, and so forth.

DATACK({BLKCHAR | BLKPOS |  BLOCK  | UNBLOCK})
specifies whether “print positioning” and “invalid character” data check errors
are to be blocked or unblocked for printers accessing through the functional
subsystem Print Services Facility (PSF).

BLKCHAR  specifies character errors that are not valid are to be blocked. The
errors are not reported to PSF. Print positioning errors are reported
normally.

BLKPOS  specifies print positioning errors are to be blocked, and not reported
to PSF.

BLOCK  specifies neither print positioning errors nor character errors that are
not valid are reported to PSF.

UNBLOCK  specifies both print positioning errors and character errors that are
not valid are reported to PSF.

If you do not specify DATACK, the DATACK specification from the PSF
PRINTDEV statement is used. If it is not specified in the PRINTDEV statement,
the default is BLOCK.

DEFAULT | NODEFAULT

DEFAULT  specifies that the output descriptor defined by this OUTDES
command is the default output descriptor. SYSOUT data sets that do not
explicitly refer to an output descriptor use the output characteristics
specified in this OUTDES command.

NODEFAULT  specifies that an ALLOCATE or PRINTDS command must
explicitly reference the output descriptor to use the defined output
characteristics specified in this OUTDES command.

Note:  When a default output descriptor is defined with a CLASS value, TSO/E
commands such as ALLOCATE, PRINTDS, and SMCOPY may use
their own default output class instead.

DEPT(department_identification)
specifies the department identification associated with the SYSOUT. This
department identification prints on the separator pages. You can specify from 1
to 60 EBCDIC characters. Refer to “Coding Rules” on page 1-221 for the valid
characters allowed with and without quotes.

DEST(destination | destination.user_id)
specifies the destination of a remote workstation, a user at a specific remote

| workstation, or an ip-network-address to which the output is routed for
processing. You can specify from 1 to 8 characters for either destination or
user_id.

1-214 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

For information about what you can specify for destination or
destination.user_id, see OS/390 MVS JCL Reference.

DPAGELBL | NODPAGELBL
specify whether the system is to print a security-related character string on
each page of output.

DPAGELBL  specifies that the system is to print the character string. The
character string is associated with a security label (usually the security label
of the user's current session). Your installation determines the character
string used.

NODPAGELBL  specifies that the character string is to be suppressed. You
must have the appropriate RACF access authority to override page
labeling. If you need to override DPAGELBL but are unable to, check your
installation security procedures or see your RACF security administrator.

FCB(fcb_name)
specifies the name of the forms control buffer (FCB) or image to be used for
the 3211, 3203-5, or 3800 printers. The name of the FCB is a 1 to 4
alphanumeric character string consisting of the last 1 to 4 characters of the
following:

� FCB2xxxx member for the 3211 or 3203-5 printer or printers supported by
System Network Architecture (SNA)

� FCB3xxxx member for the 3800 printer.

For more information about the forms control buffer, see:

� MVS/DFP Managing Non-VSAM Data Sets
� IBM 3800 Printing Subsystem Programmer's Guide

FLASH(overlay_name[,copies])
specifies the name of a forms overlay, which can be used by the 3800 Printing
Subsystem. The overlay is “flashed” on a form or other printed information over
each page of output. The forms overlay_name must be 1 to 4 alphabetic,
numeric, or special characters #, $, or @. Optionally, you can specify the
number of copies on which the overlay is to be printed. The count can range
from 0 to 255. To flash no copies, specify a count of zero.

FORMDEF(member_name)
specifies the member name of a partitioned data set containing information that
the Advanced Function Printer (AFP 3800-3 or 3800-8) uses to print a data set.
The member can contain the following information:

� The overlays that are to be invoked during output processing
� The location on the page where the overlays are to be placed
� The suppressions that can be activated for specified page formats.

The member name contains a maximum of 6 characters, of which the first 2 are
predefined by your installation. For the last 4 characters, specify alphabetic,
numeric, or special characters #, $, or @.

FORMS(forms_name)
specifies the name of the form on which the output is to be printed. Specify 1
to 8 alphabetic, numeric, or special characters #, $, or @ for the forms name.

  Chapter 1. TSO/E Commands and Subcommands 1-215



 OUTDES Command  
 

If you do not specify FORMS, JES uses the installation default specified at
initialization.

GROUPID(output_group_name)
specifies the name to be used by JES to identify which of a job's SYSOUT data
sets are to form an output group. The output group name consists of 1 to 8
alphanumeric characters and is selected by the system programmer to define
an output group for the job.

INDEX(nn)
specifies a value indicating the data set indexing print offset (to the right) for
the 3211 printer with the indexing feature. The width of the print line is reduced
by the value of INDEX. Specify a value from 1 to 31. The value 1 indicates
flush left. The values 2 to 31 indent the print line by nn-1 positions.

The default is 1, which indicates flush left.

LINDEX(nn)
specifies a value indicating the data set indexing print offset (to the left) for the
3211 printer with the indexing feature. The width of the print line is reduced by
the value of LINDEX. Specify a value from 1 to 31. The value 1 indicates flush
right. The values 2 to 31 move the right margin over by nn-1 positions.

The default is 1, which indicates flush right. LINDEX is ignored on printers other
than the 3211 printer.

LINECT(nnn)
specifies the number of lines that are to be printed before overflow processing.
Specify a value from 0 to 255. If you specify zero, no overflow processing is
done.

If you do not specify LINECT, JES obtains the value from one of the following:

1. The LINECT field of the accounting information parameter on the JCL JOB
statement.

2. The installation default specified at JES initialization.

MODIFY(module_name[,trc])
specifies the name of a copy modification module, which is loaded into the
3800 printing subsystem. This module contains predefined data such as
legends, column headings, or blanks. The module specifies where and on
which copies the data is to be printed. TSO/E defines and stores the module in
the SYS1.IMAGELIB system data set. Specify 1 to 4 alphabetic, numeric, or
special characters #, $, or @ for the module_name.

The table reference character (TRC) corresponds to the character set(s)
specified on the CHARS operand. Values are 1 to 4 alphabetic, numeric, or
special characters #, $, or @.

NAME(preferred_name)
specifies the preferred name to be associated with the SYSOUT. The name
prints on the separator pages to identify the owner of the SYSOUT. You can
specify from 1 to 60 EBCDIC characters. Refer to “Coding Rules” on
page 1-221 for the valid characters allowed with and without quotes.

NOTIFY(user_id,node.user_id)
specifies the user ID that is to receive a print completion message. The
message identifies the output that has completed printing and indicates whether

1-216 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

the printing was successful. You can specify 1 to 4 user IDs to which to send
the print completion message.

A JES2 system issues the print complete message when all the SYSOUT data
sets for an output group have printed. An output group consists of the SYSOUT
data sets printed between the output header page and the output trailer page of
a job. A JES3 system issues the print complete message when the SYSOUT
data sets for the same printer and the same job have printed.

If you do not specify node, NOTIFY defaults to the node where the job was
submitted.

OUTDISP(normal_output_disp,abnormal_output_disp)
specifies the disposition(s) for the output data set for normal and abnormal
program terminations.

normal_output_disp is the disposition for the output data set when the job
completes normally. The default for this parameter is WRITE, unless the
installation has chosen a different default disposition.

abnormal_output_disp is the disposition for the output data set when the job
completes abnormally. This parameter defaults to the disposition specified
in normal-output-disposition, if one was specified. Otherwise, it defaults to
the installation default (WRITE).

You can specify one of the following for either or both of the positional
parameters:

WRITE specifies that the output file is to be deleted immediately after
processing.

HOLD specifies that the output data is to be held until released by the TSO/E
user or operator. Releasing the output changes its disposition to WRITE.

KEEP specifies that the output file is to be processed. After processing, the
data set disposition changes to LEAVE.

LEAVE  specifies that the output data is to be held until released by the TSO/E
user or operator. Releasing the output changes its disposition to KEEP.

PURGE specifies that the output data set should be deleted before processing.

PAGEDEF(member_name)
specifies the member of a partitioned data set containing information that the
Advanced Function Printer (AFP) uses to print the data set. The member can
contain the following information:

� Logical page size and width
 � Fonts
 � Page segments
� Multiple page types or formats
� Lines within a page; for example, line origin, carriage controls, and spacing
� Multiple logical pages on a physical page.

The member name contains a maximum of 6 characters, of which the first 2 are
predefined by your installation. For the last 4 characters, specify alphabetic,
numeric, or special characters #, $, or @.

  Chapter 1. TSO/E Commands and Subcommands 1-217



 OUTDES Command  
 

PIMSG[(YES,nnn) | (NO,nnn)]
specifies whether messages are to be printed. Values are 0 through 999. The
value specifies that the system is to cancel the printing of the current data set
after the specified number of errors have been either:

� Detected by the functional subsystem (FSS), or
� Reported to FSS by the printer.

PIMSG(YES) specifies that messages generated by FSS are to be printed.
PIMSG(YES,16) is the default.

PIMSG(NO) specifies that messages are to be suppressed.

If you specify nnn as zero, the system does not cancel the printing of the
current data set.

PRMODE(process_mode)
specifies the process mode to be used to schedule output data sets either to
output devices running under a functional subsystem (FSS) or to an output
device managed by JES. For a list of valid process modes, contact your system
programmer. If you do not specify PRMODE, JES might determine the process
mode based on the content of the data. Specify 1 to 8 alphabetic or numeric
characters for the process mode.

Use PRMODE to indicate the type of processing you want for a data set. You
can use it to direct JES scheduling of this data set to a particular output FSS or
JES writer. You can also use PRMODE to request specific processing of a
Network Job Entry (NJE) transmitted data set at the destination node without
knowing the device name or a SYSOUT class.

PRTY(nnn)
specifies the initial selection priority for the data set. Specify a value from 0 to
255, where 0 is the lowest output processing priority and 255 is the highest
output processing priority.

ROOM(room_identification)
specifies the room identification to be associated with the output data set. This
room identification prints on the separator pages. You can specify from 1 to 60
EBCDIC characters. Refer to “Coding Rules” on page 1-221 for the valid
characters allowed with and without quotes.

SYSAREA | NOSYSAREA

SYSAREA  specifies that the system printable area is to be reserved for printing
a character string associated with a security label. SYSAREA is the default.

NOSYSAREA  specifies that you want to print on the entire page of output
(including the system printable area) for the current printing. Here, the
system area is not reserved for printing a security character string. You
must have the appropriate RACF access authority to override page
labeling. If you need to override the system area but are unable to, check
your installation security procedures or see your RACF security
administrator.

THRESHLD(nnnnnnnn)
specifies the maximum number of records for the sysout data set. For more
information see OUTDES command in the OS/390 MVS JCL Reference. This
applies to JES3 only.

1-218 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

TITLE(description_of_output)
specifies the report title to be associated with the output file. This title prints on
the separator pages. You can specify from 1 to 60 EBCDIC characters. Refer
to “Coding Rules” on page 1-221 for the valid characters allowed with and
without quotes.

TRC | NOTRC

TRC specifies whether the data records contain table reference character
(TRC) codes. The codes identify the font to be used to print each record.

A TRC code immediately follows the carriage control character, if any. Its
value corresponds to either one of the four fonts specified by CHARS or
one of the fonts in the PAGEDEF font list. PAGEDEF allows more than four
fonts to be specified.

NOTRC specifies that the data set does not contain TRC codes. NOTRC is the
default.

UCS(universal_character_set_name)
specifies the name for the universal character set. Specify up to 4 alphabetic,
numeric, or special characters #, $, or @. If you process the print data set
through PSF and do not specify CHARS, the system uses the UCS as the font
name.

For more information about universal character sets, see MVS/DFP Managing
Non-VSAM Data Sets.

WRITER(external_writer_name)
| specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the output data set is written under the control
of that external writer rather than the control of JES2 or JES3. The writer name
can contain 1 to 8 alphabetic, numeric, or special characters #, $, or @.

For more information about external writers, see OS/390 MVS Using the
Subsystem Interface.

USERDATA(value)
specifies the installation-defined values for the installation's prescribed
processing. If your installation has defined further keywords through installation
exits, that optional processing can be requested on the output descriptor with
this keyword. Refer to your installation's definition for the intended use of this
keyword operand.

You can code up to 16 installation-defined values for this keyword as previously
specified by your installation. Each value can be 1 to 60 EBCDIC text
characters. Apostrophes around each value are required if the string contains a
blank, comma, tab, or semicolon; apostrophes are optional for all other
EBCDIC characters. However, if the string contains an apostrophe, code two
apostrophes and enclose the entire string in single apostrophes such as
USERDATA('USERKEY1=User's value'). Null positions such as
USERDATA(value_1,,value_3) or USERDATA(,value_2,value_3) are not allowed.

USERLIB( library_name {,library_name ...})
specifies the data set name(s) of the libraries that contain the Advanced
Function Printer (AFP) resources that the Print Services Facility (PSF) uses
when processing the SYSOUT data set. The AFP resources that specify how
the PSF is to print the SYSOUT data set are:

  Chapter 1. TSO/E Commands and Subcommands 1-219



 OUTDES Command  
 

 � Fonts
 � Page Segments
 � Overlays
 � Pagedefs
 � Formdefs

Note:  This parameter is not supported for PSF/MVS direct-attached printing.

You can use user libraries to maintain secure resources (such as signatures in
private data sets), keep resources that are being tested in a private data set
during the test period, or personalize and maintain your own library.

PSF searches for resources first in the resource libraries specified by
USERLIB, then in the system-defined resources.

library_name specifies the data set name of a library containing the Advanced
Function Printer (AFP) resources. The specified library can contain any AFP
resources.

The data set name must follow the rules for MVS data set names. See OS/390
MVS JCL Reference, for the rules regarding data set names. If the application
supports the specification of unqualified data set names and you specify the
USERLIB parameter without quotes, the specified data set name is
concatenated to the system-defined high-level qualifier.

If you do not specify the USERLIB parameter, only the system and installation
print resources are available for use.

A library is a partitioned data set (PDS). Member names are the same as the
requested resource. When you create a member, the member name should be
unique to all libraries in the search concatenation.

When you use the USERLIB keyword:

� You must have read access (for example, via RACF) to libraries specified
by USERLIB.

� Libraries must be cataloged in a catalog that is available to PSF/MVS.

� Libraries must be accessible to PSF while processing the SYSOUT data
set.

� Library data sets are dynamically deallocated after PSF has processed the
SYSOUT data set.

Refer to PSF/MVS Application Programming Guide for more information on the
USERLIB keyword. 

OUTBIN(output_bin_id) 4

specifies the media destination for the SYSOUT data set to be processed by
JES2 or by JES3. output_bin_id specifies the identifier of the printer output bin
on the IBM family of Advanced Function Printers supporting multiple output
bins.

The valid range for output_bin_id is 1 to 65,535. No default value is provided.

If no OUTBIN operand is given, the Print Services Facility (PSF) will stack the
output in the default output bin.

4 The OUTBIN operand on the TSO/E OUTDES command is the equivalent to the OUTBIN keyword of the JCL OUTPUT statement.

1-220 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

If no output_bin_id value is provided with the OUTBIN operand (for example,
OUTDES OUT1 OUTBIN is entered), the system will prompt you for the required
value by issuing the following message:

à ð
ENTER PRINTER OUTPUT BIN ID

If a value for output_bin_id is specified that is not one of the supported ones,
PSF will stack the output in the printer's default output bin and issue a
message indicating that the requested bin is not available.

For more information on multiple media destinations and OUTBIN processing
see PSF/MVS Application Programming Guide.

 Coding Rules
� The following characters are valid in strings with quotes:

– Any valid EBCDIC character

– Two consecutive single quotes to specify a single quote in a quoted string

– Enclose values that contain blanks in quotes.

– A semicolon (;) is allowed within a quoted string unless you are issuing the
command under ISPF or PCF. When under ISPF or PCF, the semicolon or
the alternate character your installation may have specified as the
command delimiter, still functions as a command delimiter and may cause
a syntax error.

� The following characters are valid in strings without quotes:

 – Alphanumeric
 – Special Characters:

- @ is represented as X'7C'
- $ is represented as X'5B'
- # is represented as X'7B'.

Character sets that use hexadecimal representations other than those listed
above may cause an error.

OUTDES Command Return Codes
Figure 1-29. OUTDES Command Return Codes

0 Processing successful.

12 The installation exit requested termination.

16 Processing unsuccessful.

OUTDES Command Examples

 Example 1
This example shows how the OUTDES, ALLOCATE, and FREE commands work
together to define, reference, and free the dynamic output descriptor.

Operation:  Specify the OUTDES command to define the dynamic output
descriptor.

  Chapter 1. TSO/E Commands and Subcommands 1-221



 OUTDES Command  
 

Known:

� Name of the new output descriptor: MULTCOPY
� Number of copies: 3
� Pages are to be burst
� Output class: I

outdes multcopy copies(3) burst class(i) new

Operation:  Specify the ALLOCATE command to reference the dynamic output
descriptor.

Known:

� Name of the file: SYSPRINT
� Name of the output descriptor: MULTCOPY

allocate file(sysprint) new outdes(multcopy)

Operation:  Specify the FREE command to free the file and the dynamic output
descriptor.

Known:

� Name of the file: SYSPRINT
� Name of the output descriptor: MULTCOPY

free file(sysprint) outdes(multcopy)

 Example 2
Operation:  Specify the OUTDES command to define the dynamic output
descriptor.

Known:

� Name of the output descriptor: ONECOPY
� Number of copies: 1
� No security labels are to be printed on pages.
� Pages are to be burst.

outdes onecopy copies(1) nodpagelbl burst new

 Example 3
Operation:  Specify the OUTDES command to reuse the dynamic output descriptor.

Known:

� Name of the output descriptor: MULTCOPY
� Number of copies: 3
� The output will fill the whole page including the system printable area.
� Replace the existing MULTCOPY output descriptor.

outdes multcopy copies(3) nosysarea reuse

1-222 OS/390 V2R7.0 TSO/E Command Reference  



  OUTDES Command
 

 Example 4
Operation:  Specify the OUTDES command to print routing information on the
separator pages.

Known:

� Name of the new output descriptor: NEWDEST
� Address for delivery is:

  IBM Corporation
P.O. Box 950

  Poughkeepsie, NY
  12602
� Building to use for distribution: 510
� Data set disposition if the job completes normally: KEEP
� Data set disposition if the job completes abnormally: PURGE
� DEPT to be placed on the report: Payroll
� NAME to be placed on the report: J. Plant
� Room to be placed on the report: Conference Room 'A'
� Title to be placed on the report: OVER-TIME

outdes newdest
address('IBM Corporation','P.O. Box 95ð','Poughkeepsie, NY,
126ð2') building(51ð) outdisp(keep,purge) dept(Payroll)
name('J. Plant') room('Conference Room 'A'')
title(OVER-TIME)

 Example 5
Operation:  Specify the OUTDES command with a default normal disposition and a
specified abnormal disposition.

Known:

� Name of the new output descriptor: DESTA
� Default data set disposition if the job completes normally: WRITE
� Data set disposition if the job completes abnormally: PURGE

outdes desta outdisp(,purge)

 Example 6
Operation:  Specify the OUTDES command with a specified normal disposition and
default abnormal disposition.

Known:

� Name of the new output descriptor: DESTB
� Data set disposition if the job completes normally: PURGE
� Default data set disposition if the job completes abnormally: PURGE

outdes destb outdisp(purge)

 Example 7
Operation:  Specify the OUTDES command with specified normal and abnormal
dispositions.

Known:

� Name of the new output descriptor: DESTC
� Data set disposition if the job completes normally: PURGE

  Chapter 1. TSO/E Commands and Subcommands 1-223



 OUTPUT Command  
 

� Data set disposition if the job completes abnormally: HOLD

outdes destc outdisp(purge,hold)

 Example 8
Operation:  Specify the OUTDES command to define a user library for PSF
resources.

Known:

� Name of the new output descriptor: NEWDESC
� Page definition name to be used: STNDRD
� Libraries to be searched: USER.PRIVATE.RESOURCE and then

GROUP.PRIVATE.RESOURCE

outdes newdesc new pagedef(stndrd)
userlib('user.private.resource','group.private.resource')

 OUTPUT Command
Use the OUTPUT command to:

� Direct the output from a job to your terminal. The output includes the job's job
control language statements (JCL), system messages (MSGCLASS), and
system output (SYSOUT) data sets.

� Direct the output from a job to a specific data set.

� Delete the output for jobs.

� Change the output class(es) for a job.

� Route the output for a job to a remote workstation.

� Release the output for a job for printing by the subsystem.

OUTPUT is a foreground-initiated-background (FIB) command. This command is
generally used in conjunction with SUBMIT, STATUS, and CANCEL commands.

The OUTPUT command applies to all jobs whose job names begin with your user
identification. Access to jobs whose job names do not begin with a valid user
identification must be provided by an installation-written exit routine. The SUBMIT,
STATUS, and CANCEL commands apply to batch jobs. You must have special
permission to use these commands.

You can simplify the use of the OUTPUT command by including the NOTIFY
keyword either on the JOB card or on the SUBMIT command when you submit a
job for batch processing. The system notifies you when the job terminates, giving
you the opportunity to use the OUTPUT command. MSGCLASS and SYSOUT data
sets should be assigned to reserved classes or explicitly held to be available at the
terminal.

If your installation uses security labels and security checking, the output for a job
has a security label associated with it. To use the OUTPUT command to process
job output, the security label you are logged on with must be equal to or greater
than the security label at which the job ran.

Note:  You cannot specify both the KEEP and DEST keywords while using the
OUTPUT command. These two keywords, when specified together with the

1-224 OS/390 V2R7.0 TSO/E Command Reference  



  OUTPUT Command
 

OUTPUT command, cause a message to appear stating that the
specification is not valid because of conflicting keywords.

OUTPUT Command Syntax 

 ┌ ┐──┬ ┬─── ───────────────
 │ │└ ┘─,─
55─ ──┬ ┬─OUTPUT─ ──( ───6 ┴─jobname─ ──┬ ┬───────── ) ─────────────────────────────5

└ ┘─OUT──── └ ┘──(jobid)

 ┌ ┐─HERE──
5─ ──┬ ┬───────────────────────── ──┬ ┬───────────────────── ──┼ ┼─────── ───────5

│ │┌ ┐────────────── │ │┌ ┐─*────── ├ ┤─BEGIN─
└ ┘──CLASS( ───6 ┴─class_name─ ) └ ┘──PRINT( ──┴ ┴─dsname─ ) └ ┘─NEXT──

 ┌ ┐─NOPAUSE─ ┌ ┐─NOKEEP─ ┌ ┐─NOHOLD─
5─ ──┼ ┼───────── ──┼ ┼──────── ──┼ ┼──────── ──┬ ┬──────── ───────────────────────5
 └ ┘─PAUSE─── └ ┘─KEEP─── └ ┘─HOLD─── └ ┘─DELETE─

5─ ──┬ ┬────────────────────── ──┬ ┬───────────────────────── ────────────────5%
└ ┘──NEWCLASS(class_name) └ ┘──DEST(remote_station_id)

OUTPUT Command Operands
(jobname (jobid))

specifies one or more names of batch or foreground jobs. The job name for
foreground session is user ID. Each job name must begin with your user
identification and, optionally, can include one or more additional characters
unless the default IBM-supplied installation exit that scans and checks the job
name and user identification is replaced by a user-written routine. The system
processes the held output from the jobs identified by the job name list.

To avoid duplicate job names, you should include the optional job ID for
uniqueness. The job ID is a unique job identifier assigned by the job entry
subsystem (JES) at the time the job was submitted to the batch system.
Currently the only valid forms of job identifiers (jobid) assigned by JES are:

JOBnnnnn or Jnnnnnnn – Jobs
STCnnnnn or Snnnnnnn – Started Tasks
TSUnnnnn or Tnnnnnnn – TSO Users

CLASS(class_name)
specifies the name or names of the output classes to be searched for output
from the jobs identified in the job name list. If you do not specify the name of a
class, all held output for the jobs are available. A class name is a single
character or digit (A-Z or 0-9).

PRINT(dsname | *)
specifies the name of the data set to which the output is to be directed. If
unqualified, the prefix is added to and the qualifier OUTLIST is appended to the
data set name. You can substitute an asterisk for the data set name to indicate
that the output is to be directed to your terminal. If you omit both the data set
name and the asterisk, the default value is the asterisk. PRINT is the default
value if you omit PRINT, DELETE, NEWCLASS, DEST, and HOLD/NOHOLD.

If the PRINT data set is not pre-allocated, RECFM defaults to FBS, LRECL
defaults to 132, and the BLKSIZE defaults to 3036.

  Chapter 1. TSO/E Commands and Subcommands 1-225



 OUTPUT Command  
 

BEGIN | HERE | NEXT

BEGIN indicates output operations for a data set are to start from the beginning
of the data set regardless of whether it has been checkpointed.

HERE indicates output operations for a data set that has been checkpointed
are to be resumed at the approximate point of interruption. If the data set is
not checkpointed, it is processed from the beginning. If you omit HERE,
BEGIN, and NEXT, then HERE is the default.

NEXT indicates output operations for a data set that has been previously
checkpointed are to be skipped. Processing resumes at the beginning of
non-checkpointed data sets.

CAUTION:
The checkpointed data sets that are skipped are deleted unless the KEEP
operand is specified.

PAUSE | NOPAUSE

PAUSE indicates output operations are to pause after each SYSOUT data set
is listed to allow you to enter a SAVE or CONTINUE subcommand.
Pressing the Enter key after the pause causes normal processing to
continue. This operand can be overridden by the NOPAUSE operand of the
CONTINUE subcommand. If PAUSE is not specified, then NOPAUSE is the
default.

NOPAUSE indicates output operations are not to be interrupted. This operand
can be overridden by the PAUSE operand of the CONTINUE subcommand.

KEEP | NOKEEP

KEEP specifies the SYSOUT data set is to remain enqueued after printing (see
also HOLD and NOHOLD).

NOKEEP specifies the SYSOUT data set is to be deleted after it is printed. If
neither KEEP nor NOKEEP is specified, then NOKEEP is the default.

HOLD | NOHOLD

HOLD specifies the kept SYSOUT data set is to be held for later access from
the terminal.

Note:  HOLD may be overridden if DEST(remote_station_id) specifies a
network job entry (NJE) node. For example,

TSO OUTPUT job DEST(DETROIT) HOLD

issued on a node in TAMPA will not hold the output.

For JES3 users, HOLD may also be overridden if NEWCLASS(class_name)
specifies a class defined on a JES3 SYSOUT initialization statement with a
default NJE networking node DEST. For example,

SYSOUT,CLASS=D,TYPE=PRINT,DEST=DETROIT

is included in the JES3 initialization stream.

1-226 OS/390 V2R7.0 TSO/E Command Reference  



  OUTPUT Command
 

TSO OUTPUT job NEWCLASS(D) HOLD

issued on a node in TAMPA will not hold the output.

Note to JES3 Users:  To view the output, you must specify an output
class that has been defined as HOLD (for TSO/E) or RSVD
(reserved) on the DD statement. If you specify RSVD class, then
MSGCLASS and SYSOUT class must be the same as the RSVD
class. For more information, see OS/390 JES3 Initialization and
Tuning Guide.

NOHOLD specifies the kept SYSOUT data set be released for printing by the
subsystem. NOHOLD is the default.

DELETE
specifies classes of output specified with the CLASS operand are to be deleted.

NEWCLASS(class_name)
is used to change one or more SYSOUT classes to the class specified by the
class_name subfield.

DEST(remote_station_id)
routes SYSOUT classes to a remote workstation specified by the station ID
subfield. The station ID is 1 to 8 characters in length.

 Output Sequence
Output is produced according to the sequence of the jobs that are specified, then
by the sequence of classes that are specified for the CLASS operand. For example,
assume that you want to retrieve the output of the following jobs:

//JWSD581 JOB 91435,MSGCLASS=X
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=Y
//SYSUT1 DD DSNAME=PDS,UNIT=333ð,
// VOL=SER=11112,LABEL=(,SUL),
// DIsp=(OLD,KEEP),
// DCB=(RECFM=U,BLKSIZE=3ð36)
//SYSUT2 DD SYSOUT=Z
//SYSIN DD \
 PRINT TYPORG=PS,TOTCONV=XE
 LABELS DATA=NO
/\
//JWSD582 JOB 91435,MSGCLASS=X
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=Y
//DD2 DD UNIT=333ð,VOL=SER=333ððð,
// DISP=OLD
//SYSIN DD \
 SCRATCH VTOC,VOL=333ð=333ððð
/\

To retrieve the output, you enter:

output (jwsd581 jwsd582) class (x y z)

Your output is displayed in the following order:

1. Output of job JWSD581

a. class X (JCL and messages)

  Chapter 1. TSO/E Commands and Subcommands 1-227



 OUTPUT Command  
 

b. class Y (SYSPRINT data)
c. class Z (SYSUT2 data)

2. Output of job JWSD582

a. class X (JCL and messages)
b. class Y (SYSPRINT data)
c. message (NO CLASS Z OUTPUT FOR JOB JWSD582)

If no classes are specified, the jobs are processed as entered. Class sequence is
not predictable.

Subcommands for the OUTPUT Command
Subcommands for the OUTPUT command are: CONTINUE, END, HELP, and
SAVE. When output has been interrupted, you can use the CONTINUE
subcommand to resume output operations.

Interruptions causing subcommand mode occur when:

� Processing of a SYSOUT data set completes and the PAUSE operand was
specified with the OUTPUT command.

� You press the attention key.

Pressing the attention key purges the input/output buffers for the terminal. Data and
system messages in the buffers at this time may be lost.

Although the OUTPUT command attempts to back up 10 records to recover the lost
information, results are unpredictable due to record length and buffer size. You
might see records repeated or notice records missing if you attempt to resume
processing of a data set at the point of interruption (using the HERE operand of
CONTINUE, or in the next session, using HERE on the command).

You can use the SAVE subcommand to copy a SYSOUT data set to another data
set for retrieval by a different method. Use the END subcommand to terminate
OUTPUT. The remaining portion of a job that has been interrupted is kept for later
retrieval at the terminal.

Checkpointed Data Set
A data set is checkpointed if it is interrupted during printing and never processed to
end-of-data during a terminal session.

Interruptions which cause a data set to be checkpointed occur when:

� Processing terminates in the middle of printing a data set because of an error
or abend condition.

� The attention key is pressed during the printing of a data set and the
CONTINUE NEXT subcommand is entered. The KEEP operand must be
present or the data set is deleted.

� The attention key is pressed during the printing of a data set and the END
subcommand is entered.

1-228 OS/390 V2R7.0 TSO/E Command Reference  



  OUTPUT Command
 

OUTPUT Command Return Codes
Figure 1-30. OUTPUT Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

OUTPUT Command Examples

 Example 1
Operation:  Direct the held output from a job to your terminal. Skip any
checkpointed data sets.

Known:

� The name of the job: SMITH2
� The job is in the system output class: SYSOUT=X
� Output operations are to be resumed with the next SYSOUT data set or group

of system messages that have never been interrupted. You want the system to
pause after processing each output data set.

output smith2 class(x) print(\) next pause

 Example 2
Operation:  Direct the held output from two jobs to a data set so that it can be
saved and processed at a later date.

Known:

� The name of the jobs: JANA JANB
� The name for the output data set: JAN.AUGPP.OUTLIST

output (jana,janb) class(r,s,t) print(augpp)

 Example 3
Operation:  Change an output class.

Known:

� The name of the job: KEAN1
� The existing output class: SYSOUT=S
� The new output class: T

output kean1 class(s) newclass(t)

 Example 4
Operation:  Delete the held output instead of changing the class (see “Example 3”).

out kean1 class(s) delete

 Example 5
Operation:  Retrieve SYSOUT data from your session at your terminal.

Known:

� The TSO/E user ID: SMITH
� A JES held SYSOUT class: X
� The filename of the SYSOUT data set: SYSUT2

  Chapter 1. TSO/E Commands and Subcommands 1-229



 OUTPUT—CONTINUE Subcommand  
 

free file(sysut2) sysout(x)
status smith
SMITH(TSUððð1) EXECUTING
output smith(tsuððð1)

OUTPUT Subcommands (Overview)
The subcommands of the OUTPUT command are:

Figure 1-31. Subcommands and Functions of the OUTPUT Command

CONTINUE Resumes output operations that have been interrupted.

END Ends the OUTPUT command.

HELP Obtains the syntax and function of the OUTPUT subcommands.

SAVE Copies the SYSOUT data set from the spool to the named data
set.

 OUTPUT—CONTINUE Subcommand
Use the CONTINUE subcommand to resume output operations that have been
interrupted.

Interruptions occur when:

� An output operation completes and the PAUSE operand was specified with the
OUTPUT command.

� You press the attention key.

OUTPUT—CONTINUE Subcommand Syntax 

 ┌ ┐─NEXT──
55─ ──┬ ┬─CONTINUE─ ──┼ ┼─────── ──┬ ┬───────── ────────────────────────────────5%
 └ ┘─C──────── ├ ┤─BEGIN─ ├ ┤─PAUSE───
 └ ┘─HERE── └ ┘─NOPAUSE─

OUTPUT—CONTINUE Subcommand Operands
BEGIN

indicates output operations are to be resumed from the beginning of the data
set being processed at the time of interruption.

HERE
indicates output operations are to be resumed at a point of interruption. If the
attention key is pressed, processing resumes at the approximate point of
interruption in the current data set. If end- of-data is reached and PAUSE is
specified, processing resumes at the beginning of the next data set (even if it is
checkpointed and HERE is specified on the command).

NEXT
halts all processing of the current data set and specifies that output operations
are to be resumed with the next data set.

The next data set is determined by the BEGIN, HERE, or NEXT operand on
the OUTPUT command. If BEGIN is specified on the command, processing

1-230 OS/390 V2R7.0 TSO/E Command Reference  



  OUTPUT—SAVE Subcommand
 

starts at the beginning of the next data set. If HERE is specified, processing
starts at the checkpoint of the next data set or at its beginning, if no checkpoint
exists. If NEXT is specified, processing starts at the beginning of the next
non-checkpointed data set. If BEGIN, HERE, and NEXT are omitted, then
NEXT is the default.

Note:  The interrupted and/or skipped data set is deleted unless you specified
KEEP on the OUTPUT command.

PAUSE
indicates output operations are to pause after each data set is processed to
allow you to enter a SAVE subcommand. Pressing the Enter key after the
pause causes normal processing to continue. You can use this operand to
override a previous NOPAUSE condition for output.

NOPAUSE
indicates output operations are not to be interrupted. You can use this operand
to override a previous condition for output.

OUTPUT—CONTINUE Subcommand Examples

 Example 1
Operation:  Continue output operation with the next SYSOUT data set.

continue

 Example 2
Operation:  Start output operations over again with the current data set being
processed.

continue begin

 OUTPUT—END Subcommand
Use the END subcommand to terminate the operation of the OUTPUT command.

OUTPUT—END Subcommand Syntax 

55──END──────────────────────────────────────────────────────────────────5%

 OUTPUT—HELP Subcommand
Use the HELP subcommand to obtain the syntax and function of the OUTPUT
subcommands. For a description of the HELP command syntax and function, see
the “HELP Command” on page 1-166.

 OUTPUT—SAVE Subcommand
Use the SAVE subcommand to copy the SYSOUT data set from the spool data set
to the named data set. If you use the data set with the PRINT operand, then it must
be a valid data set. There is no restriction against saving JCL. To use SAVE, you
should specify the PAUSE operand on the OUTPUT command. SAVE does not
save the entire SYSOUT output of the job, only the data set currently being
processed.

  Chapter 1. TSO/E Commands and Subcommands 1-231



 PRINTDS Command  
 

OUTPUT—SAVE Subcommand Syntax 

55─ ──┬ ┬─SAVE─ ─data_set_name──────────────────────────────────────────────5%
 └ ┘─S────

OUTPUT—SAVE Subcommand Operand
data_set_name

specifies the new data set name to which the SYSOUT data set is to be
copied.

OUTPUT—SAVE Subcommand Examples

 Example 1
Operation:  Save an output data set.

Known:

� The name of the data set: ADT023.NEWOUT.OUTLIST

save newout

 Example 2
Operation:  Save an output data set.

Known:

� The name of the data set: BXZ037A.OLDPART.OUTLIST
� The data set member name: MEM5
� The data set password: ZIP

save oldpart(mem5)/zip

 PRINTDS Command
Use the PRINTDS command to format and print data sets on any printer defined to
the Job Entry System (JES). PRINTDS allows you to:

� Print data sets that have the following characteristics:

– Sequential or partitioned (print the entire data set or selected members)
Different types of control characters cannot be mixed within a sequential
data set or in a PDS. However, different members of a PDS can contain
different types of control characters. For more information about control
characters, see cchar on page 1-236.

– Movable or unmovable
– Fixed or variable record format
– Logical record length not greater than 32,760.
– Resides on DASD

� Reference output descriptors.

� Format the data and either print it or copy it to a data set.

� Print data sets that contain Document Composition Facility (DCF) data.

Note:  Generation data group (GDG) data sets are not supported by PRINTDS.

1-232 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

There are three types of operands you can specify on the PRINTDS command:

� The name and characteristics of the data set(s) or file to be printed
� The formatting and output characteristic operands
� The OUTDES operand referring to a previous output descriptor.

Process for the Input Data Set or File
Each data set you specify is processed as follows:

� If you specify a file, the data sets within the file concatenation are allocated and
printed separately. They are treated as if you had specified a list of data sets to
be printed. After the system prints the file, it does not deallocate the file.

� If you formatted the data set that contains Document Composition Facility
(DCF) output, PRINTDS examines the first line of the data set and extracts the
device and font information from that line, such as:

SCRIPT/VS Rx.x.x; DEVICE device CHARS font1 (... font4)

If PRINTDS finds page mode data in the data set, the device and font
information will not be extracted.

PRINTDS associates the specified font information with the SYSOUT data set.
If you specify the CHARS operand on the PRINTDS command, the system
uses the values specified on the CHARS operand when it allocates the
SYSOUT data set rather than the values from the DCF data set.

Output for a Data Set or File
The system prints a data set or file using the formatting operands you specified. It
prints a title that contains the name of the data set and the page number on every
page, unless the NOTITLE operand is specified or defaulted.

If the output attributes of a member are different from the previous member, such
as a Document Composition Facility file, then the system prints it separately. If you
specify multiple input data sets or members with unlike attributes, then the system
creates more than one SYSOUT data set. If you specify more than one output
descriptor using the OUTDES operand, then the system also creates more than
one SYSOUT data set.

If you direct the output to a data set, the system does not allocate SYSOUT data
sets. The formatted output is placed in the data set specified on the TODATASET
operand. If the member or data set does not exist, PRINTDS creates it.

Introductory information about how to use the PRINTDS command is described in
OS/390 TSO/E User's Guide.

PRINTDS Command Syntax 

 ┌ ┐──────────
55─ ──┬ ┬─PRINTDS─ ──┬ ┬── ──┬ ┬─DATASET─ ( ───6 ┴─dsname─ ) ─────────────────────────5
 └ ┘─PR────── │ │└ ┘─DSNAME──

└ ┘── ──┬ ┬─FILE─── (file_name) ────
 └ ┘─DDNAME─

5─ ──┬ ┬──────────────────────── ──┬ ┬──────────────── ──┬ ┬───────── ───────────5
└ ┘── ──┬ ┬─BIND──── (columns) └ ┘──BMARGIN(lines) ├ ┤─BURST───

 └ ┘─LMARGIN─ └ ┘─NOBURST─

  Chapter 1. TSO/E Commands and Subcommands 1-233



 PRINTDS Command  
 

 

5─ ──┬ ┬──────── ──┬ ┬───────────────────────────── ───────────────────────────5
 ├ ┤─CCHAR── │ │┌ ┐──┬ ┬─── ─────────
 ├ ┤─SINGLE─ │ ││ │└ ┘─,─

├ ┤─DOUBLE─ └ ┘──CHARS( ───6 ┴─character_name─ )
 └ ┘─TRIPLE─

5─ ──┬ ┬──────────────────────────── ────────────────────────────────────────5
└ ┘── ──┬ ┬─CLASS── (output_class)

 └ ┘─SYSOUT─
 

5─ ──┬ ┬──────────────────────────────────────────────────── ────────────────5
└ ┘──COLUMNS(start_1 ──┬ ┬────────────────────────────── )

 │ │┌ ┐────────────────────
└ ┘──:end_1 ───6 ┴┬ ┬────────────────

└ ┘──,start_2:end_2

5─ ──┬ ┬─────────────────────────────────────── ──┬ ┬─────── ──────────────────5
└ ┘──COPIES(nnn ──┬ ┬────────────────────── ) ├ ┤─DCF───

 │ │┌ ┐─,─────────── └ ┘─NODCF─
 └ ┘──, ( ───6 ┴─group_value─ )

5─ ──┬ ┬───────────────────────────────── ──┬ ┬─────────────── ────────────────5
└ ┘──DEST( ──┬ ┬─destination───────── ) └ ┘──FCB(fcb_name)

└ ┘──destination.user_id
 

5─ ──┬ ┬────────────────────────────────── ──┬ ┬─────────────────────── ───────5
└ ┘──FLASH(overlay_name, ──┬ ┬──────── ) └ ┘── ──┬ ┬─FOLD───── (width)

└ ┘─copies─ └ ┘─TRUNCATE─

 ┌ ┐─NOHOLD─
5─ ──┬ ┬─────────────────── ──┼ ┼──────── ──┬ ┬──────────────────────────── ─────5

└ ┘──FORMS(forms_name) └ ┘─HOLD─── └ ┘──LINES(line_1 ──┬ ┬───────── )
└ ┘──:line_2

 

 ┌ ┐─ALL───────
5─ ──┼ ┼─────────── ──┬ ┬─────────────────────────────── ──────────────────────5

├ ┤─MEMBERS─── └ ┘──MODIFY(module_name ──┬ ┬────── )
└ ┘─DIRECTORY─ └ ┘──,trc

 ┌ ┐─NONUM───────────────────────
5─ ──┼ ┼───────────────────────────── ───────────────────────────────────────5

└ ┘── ──┬ ┬─NUM── (location,length)
 └ ┘─SNUM─
 

5─ ──┬ ┬────────────────────────────────────── ──┬ ┬──────────────── ──────────5
│ │┌ ┐─,────────────────────── └ ┘──PAGELEN(lines)
└ ┘──OUTDES( ───6 ┴─output_descriptor_name─ )

5─ ──┬ ┬───────── ──┬ ┬──────────────── ──┬ ┬───────────────────────── ──────────5
├ ┤─TITLE─── └ ┘──TMARGIN(lines) └ ┘── ──┬ ┬─TODATASET─ (dsname)

 └ ┘─NOTITLE─ └ ┘─TODSNAME──
 

5─ ──┬ ┬─────── ──┬ ┬─────────────── ──┬ ┬────────────────────────────── ───────5%
├ ┤─TRC─── └ ┘──UCS(ucs_name) └ ┘──WRITER(external_writer_name)

 └ ┘─NOTRC─

1-234 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

PRINTDS Command Operands
DATASET(dsname) | DSNAME(dsname)

specifies either one or more data sets or members to be printed. If you do not
specify DATASET, DSNAME, FILE, or DDNAME, the system prompts you to
enter the name. The data set name must include the descriptive (rightmost)
qualifier and can contain a member name in parentheses.

If the data set is password protected, suffix the data set name with a slash (/)
and the password.

The data set must have a data set organization of PO or POU for partitioned or
partitioned unmovable, PS or PSU for sequential or sequential unmovable,
record formats of fixed or variable, and logical record length not greater than
32,760.

Spanned records or records with track overflow are not supported. You can
specify up to 255 data sets.

Either DATASET, or DSNAME, or FILE, or DDNAME is required. If you do not
specify FILE, DDNAME, DATASET, or DSNAME, the system prompts you to
enter the name.

FILE(file_name) | DDNAME(file_name)
specifies the name of the file to be printed. The data sets within the
concatenation are printed as if you had specified the DATASET operand
followed by the list of the data set names that make up the file.

You cannot use the FILE operand to print a data set that is protected by a
READ password. Use the DATASET or DSNAME operand.

Either FILE, or DDNAME, or DATASET, or DSNAME is required. If you do not
specify FILE, DDNAME, DATASET, or DSNAME, the system prompts you to
enter the name.

BIND(columns) | LMARGIN( columns)
specifies the number of columns that the output is to be shifted to the right.
LMARGIN is an alias for BIND. You can specify between 0 to 255 columns. If
you print a partitioned data set, the BIND or LMARGIN value applies only when
members are printed. The system ignores the BIND value when the directory
portion of the partitioned data set is printed.

Do not use LMARGIN with page mode data. An error occurs if LMARGIN is
specified with page mode data.

BIND(0) is the default. A non-zero BIND value is mutually exclusive with the
DIRECTORY operand.

BMARGIN( lines)
specifies the number of blank lines to be left at the bottom of each printed
page. You can specify a minimum of 0 lines, and a maximum of 6 lines less
than the value specified or defaulted for the PAGELEN operand.

BMARGIN(0) is the default. A non-zero BMARGIN value is mutually exclusive
with the CCHAR or DIRECTORY operand.

BURST | NOBURST
specifies whether 3800 output is to be bursted into separate sheets. BURST or
NOBURST is allowed only when you print data to a SYSOUT data set.
Therefore, you cannot specify BURST or NOBURST when you specify the
TODATASET operand.

  Chapter 1. TSO/E Commands and Subcommands 1-235



 PRINTDS Command  
 

NOBURST specifies that the printed output is to be in continuous fanfold
pages.

NOBURST is the default for a SYSOUT data set.

CCHAR | SINGLE | DOUBLE | TRIPLE

CCHAR specifies that ANSI or machine code spacing control characters
existing in the data set are to be used for inter-record spacing. If you
specify CCHAR, the system assumes the default of NOTITLE.

SINGLE specifies that all non-blank lines from the input data set are to be
printed with single spacing.

DOUBLE  specifies that all non-blank lines from the input data set are to be
printed with double spacing.

TRIPLE specifies that all non-blank lines from the input data set are to be
printed with triple spacing. If you specify SINGLE, DOUBLE, or TRIPLE, the
system ignores blank lines from the input data set.

If you specify CCHAR, SINGLE, DOUBLE, or TRIPLE, the record format
recorded in the data set's DSCB is not used to determine the carriage control
type in the input. Instead, the first character in the first record of each input
data set or member is examined to determine the type of carriage control. If it
is a valid machine carriage control character, then the entire data set or
member is assumed to have machine carriage control spacing. Otherwise,
ANSI carriage control spacing is assumed.

If you do not specify CCHAR, SINGLE, DOUBLE, or TRIPLE, the record format
recorded in the data set's DSCB indicates whether the data set contains
carriage control characters, and if so, the type.

If you do not specify CCHAR, PRINTDS determines the type of data set (ANSI
or MCC) from the DSCB.

If you specify CCHAR, PRINTDS checks if the data set contains a valid MCC
code. If it does not find a valid MCC, PRINTDS treats the data set as an ANSI
type data set.

Do not specify SINGLE, DOUBLE, or TRIPLE for an input data set that
contains ANSI or machine carriage control characters because the inter-record
spacing for such a data set is under control of the carriage control characters
within the data set.

If you use the COLUMNS, NUM, or SNUM operands with CCHAR, column 1
refers to the first character after the carriage control character. If you specify
the TRC operand, then column 1 is the first character after the table reference
character.

Figure 1-32 contains the valid machine printer carriage control characters.

Figure 1-32 (Page 1 of 2). Valid Machine Printer Carriage Control Characters

Print Line and
Then Act

Action Act Immediately and Then
Print

-- NOOP (Comment line, no
print)

X'03'

1-236 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

CHARS(character_name{,...})
specifies the name of the character arrangement table (font). You can specify
up to four fonts. Specify 1 to 4 alphabetic, numeric, or special characters #, $,
or @ for the font. If you specify CHARS, the system assumes the TRC
operand, not the default of NOTRC.

Note:  To define a single font to be used to print a data set that contains no
TRC codes, specify CHARS. To prevent the system from interpreting
the first character of each printed line as a TRC code, also specify
NOTRC.

CLASS(output_class) | SYSOUT(output_class)
specifies the output class JES is to use for processing the specified data set.
Valid output classes are characters A-Z or 0-9. The default output class is A.
SYSOUT is an alias for CLASS.

COLUMNS(start_1[:end_1[,start_2:end_2,...]]
specifies the columns of the data set to printed. You can specify the columns
as pairs of numbers in the format start:end. If you do not specify end, the
system assumes the last column of the input as end. You can specify up to 32
column pairs.

If your input data set contains a carriage control character or a table reference
character (TRC), column 1 refers to the first character position after the
carriage control character or the table reference character.

COPIES(nnn[,(group_value,...)])
specifies the number of copies to be printed for the data set. The number of
copies, nnn, can range from 1 to 255, subject to an installation limit.

Figure 1-32 (Page 2 of 2). Valid Machine Printer Carriage Control Characters

Print Line and
Then Act

Action Act Immediately and Then
Print

X'01' Print only (no space) --

X'09' Space 1 line X'0B'

X'11' Space 2 lines X'13'

X'19' Space 3 lines X'1B'

X'89' Skip to channel 1 X'8B'

X'91' Skip to channel 2 X'93'

X'99' Skip to channel 3 X'9B'

X'A1' Skip to channel 4 X'A3'

X'A9' Skip to channel 5 X'AB'

X'B1' Skip to channel 6 X'B3'

X'B9' Skip to channel 7 X'BB'

X'C1' Skip to channel 8 X'C3'

X'C9' Skip to channel 9 X'CB'

X'D1' Skip to channel 10 X'D3'

X'D9' Skip to channel 11 X'DB'

X'E1' Skip to channel 12 X'E3'

X'5A' Defines page mode line of data --

  Chapter 1. TSO/E Commands and Subcommands 1-237



 PRINTDS Command  
 

If you specify group values, the system ignores the individual value, nnn, for
the 3800 printer. The group values describe how the printed copies are to be
grouped (3800 printer only). Each group value specifies the number of copies
of each page that are to be grouped together. You can specify up to 8 group
values. For example, a group value of 3 causes the first page of a data set to
be printed three times before printing is started for the second page, which
might also be printed three times, and so forth.

COPIES(1) is the default value for a SYSOUT data set.

DCF | NODCF
specifies whether the font information is to be extracted from the first line of a
DCF formatted data set. For example,

SCRIPT/VS Rx.x.x; DEVICE device CHARS font1 (... font4)

The system finds and uses the font information when the data set is printed. If
it is page mode data, the device and font information will not be extracted.

NODCF specifies that the font information is not to be extracted from the data
set.

If you specify DCF, the system assumes NOTITLE. If you specify DCF and the
data set is found to have been formatted by DCF, then machine carriage
control spacing is also assumed. However, if you specify DCF and the data set
is not formatted by DCF, the system ignores the DCF operand. DCF is the
default for a SYSOUT data set.

If you specify DCF and the FILE operand, the first line of each data set within
the file concatenation is examined for the DCF information. The data sets
making up the file are processed as if you had specified a list of separate data
sets.

If DCF is specified or defaulted and the first record of the data set indicates
that the data has been formatted by DCF for a 1403 printer, the system
assumes NOTRC unless you specified TRC. In all other cases, DCF data sets
are assumed to have been formatted with TRC characters unless you had
explicitly specified NOTRC.

Note:  If you specify DCF, the input data set might not have been formatted by
the Document Composition Facility. PRINTDS checks only the first
record to determine whether the data set should be processed as a
DCF data set. If you specify NODCF, PRINTDS does not check the
data set.

DEST{destination | destination.user_id}
specifies the destination of a remote workstation or a user at a specific remote
workstation to which the output is routed for processing. You can specify from 1
to 8 characters for either destination or user_id.

For information on the destination format systemname.printername, see OS/390
JES2 Initialization and Tuning Guide.

Or, if you specified a default destination in the SYS1.UADS data set, the DEST
output descriptor overrides the destination in SYS1.UADS. OS/390 JES3
Initialization and Tuning Guide.

1-238 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

FCB(fcb_name)
specifies the name of the forms control buffer (FCB) or image to be used for
the 3211, 3203-5, or 3800 printers. The name of the FCB is a 1 to 4
alphanumeric character string consisting of the last characters of the following:

� FCB2xxxx member for the channel attached line printers (3203, 3211,
3262, 4245. 4248, 6262) or printers supported by System Network
Architecture (SNA)

� FCB3xxxx member for the 3800 printer.

� FCB4xxx member for the 3262, 4248 or 6262 printer

Your installation supplies a default for the SYSOUT class or for the printers.

FLASH(overlay_name[,copies])
specifies the name of a forms overlay, which can be used by the 3800 Printing
Subsystem. The overlay is “flashed” on a form or other printed information over
each page of output. The forms overlay_name must be 1 to 4 alphabetic,
numeric, or special characters #, $, or @. Optionally, you can specify the
number of copies on which the overlay is to be printed. The count can range
from 0 to 255. To flash no copies, specify a count of zero.

FOLD(width) | TRUNCATE(width)
specifies the length of the printed line if the input line is longer than the output
line.

FOLD specifies that width is the maximum length of the output line. Records
that are too long to be printed within that length are wrapped around onto
subsequent lines.

TRUNCATE specifies that width is the maximum length of the output line.
Records that are too long to be printed within that length are truncated to fit
on one line.

If the input data set contains carriage control characters, the data being folded
or truncated begins after the carriage control character. If the input data set has
a table reference character, or a carriage control character and table reference
character, the data being folded or truncated begins after the table reference
character.

FORMS(forms_name)
specifies the name of the form on which the output is to be printed. Specify 1
to 4 alphabetic, numeric, or special characters #, $, or @ for the forms name.

HOLD | NOHOLD

HOLD specifies whether the output is to be held in the JES held output queue.
NOHOLD specifies that the output be made available for printing
immediately.

NOHOLD is the default for a SYSOUT data set.

LINES(line_number_1[: line_number_2])
specifies the range of lines to be printed, either in:

� Embedded line number fields using the NUM or SNUM operand, or
� Relative records using the NONUM operand.

  Chapter 1. TSO/E Commands and Subcommands 1-239



 PRINTDS Command  
 

If you specify the first line number value only, printing continues from that line
to the last line of the data set. Only lines with line number values within the
specified range are printed. For example, LINES(1ð:2ð) causes the 10th
through 20th lines of the data set to be printed. However, if the data set has at
least 10 lines, but fewer than 20 lines, all lines from the 10th to the end of the
data set are printed. If the data set has fewer than 10 lines, no lines are
printed.

The line number values you specify for LINES are used for each printed data
set. For example, LINES(1:1ð) prints the first 10 lines of every sequential data
set and member specified. It also prints the first 10 lines of each member for
every partitioned data set specified.

MEMBERS | DIRECTORY | ALL
specifies which portion of a partitioned data set is to be printed.

MEMBERS specifies that the system is to print only the data contained in the
members of the indicated partitioned data set, without the directory. The
system prints the members in alphabetical order.

DIRECTORY specifies that the system is to print only the directory.

ALL  specifies that the system is to print both the data contained in the
members and the directory. The members are printed first followed by the
directory. ALL is the default.

If you specify MEMBERS, DIRECTORY, or ALL when printing a sequential data
set or a specific member of a partitioned data set, the system ignores these
operands. If you print a partitioned data set with the ALL operand, you can
specify certain operands that are normally not allowed when you specify
DIRECTORY. The following operands affect the formatting and printing of
members of partitioned data sets, but not the directory:

  BIND
  COLUMNS

DCF or NODCF
FOLD or TRUNCATE

  LINES
NUM or SNUM or NONUM
SINGLE or DOUBLE or TRIPLE

  BMARGIN
  TMARGIN
  NOTITLE

The output of each page of a partitioned data set directory contains the
following:

� Two directory lines
� A blank line
� A directory header line
� Another blank line
� One or more lines of directory information.

Each directory page has at least 6 lines, unless the partitioned data set has no
members. If the partitioned data set has no members, only the directory title
lines and header line are printed.

1-240 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

If you specify NOTITLE with the ALL operand, the members of the partitioned
data set and other sequential data sets are printed without title lines. However,
the directory portion of the partitioned data set is printed with the directory title
lines on each page.

MODIFY(module_name[,trc])
specifies the name of a copy modification module, which is loaded into the
3800 printing subsystem. This module contains predefined data such as
legends, column headings, or blanks. The module specifies where and on
which copies the data is to be printed. The system defines and stores the
module in the SYS1.IMAGELIB system data set. Specify 1 to 4 alphanumeric
characters for the module_name.

The table reference character (TRC) corresponds to the character set(s)
specified on the CHARS operand. Values are from 0 to 3.

NUM(location,length) | SNUM(location,length) | NONUM
specifies where line numbers are located in the data set and whether PRINTDS
is to print the line numbers.

NUM indicates that the data set contains a line number field to be printed. The
location value is the column location of the beginning of the line number
field. The length value is the number of columns that the line number field
occupies. You can specify up to 8 for the length value. Both the location
value and the length value are required.

SNUM indicates the data set contains a line number, but the line number is not
to be printed. The location value is the column location of the beginning of
the line number field. The length value is the number of columns that the
line number field occupies. You can specify up to 8 for the length value.
Both the location value and the length value are required.

If you specify either NUM or SNUM, the line number field in each record of
the input data set must contain only valid decimal digits, 0 to 9. If the line
number field contains characters other than 0 to 9, printing of the data set
ends. If you are printing a list of data sets, printing continues with the next
data set. If you are printing members of a partitioned data set, printing
continues with the next member.

NONUM indicates that PRINTDS is to treat records as though there are no
embedded line numbers. NONUM is the default.

If the input data set records contain a carriage control character or table
reference character, the column location refers to the first character after
the carriage control character or table reference character.

OUTDES(output_descriptor_name[, ...])
specifies a list of installation-defined output descriptors that were created by
OUTPUT JCL statements in the LOGON procedure or by the TSO/E OUTDES
command. The characteristics of each output descriptor are associated with a
SYSOUT data set. Specifying OUTDES eliminates the need to supply
information related to the printer or the type of printing to be done. You can
specify up to 128 output descriptors. Specify 1 to 8 alphanumeric characters for
the name. The first character must be alphabetic or one of the special
characters #, $, or @.

  Chapter 1. TSO/E Commands and Subcommands 1-241



 PRINTDS Command  
 

If you specify operands with an output descriptor, such as BURST, CHARS,
COPIES, and DEST, you can override them by specifying the corresponding
operand with PRINTDS. For example, specify the following command:

PRINTDS DA(ABC) OUTDES(OUTPR1) NOBURST COPIES(1) DEST(NODEB.USR)

The COPIES, NOBURST, and DEST operands override the values specified on
the output descriptor.

If you specified a default destination in the SYS1.UADS data set, the DEST
output descriptor overrides the destination in SYS1.UADS.

PAGELEN( lines)
specifies the number of lines to be printed on a page. The lines value must be
from 6 to 4095. The default value is 60. The PAGELEN value less the
TMARGIN and BMARGIN must be greater than or equal to 6:

 TMARGIN value
 à
 |
 |
PAGELEN value must be greater Must have 6 or more lines
than or equal to 6 |
 |
 |
 á
 BMARGIN value

Note:  PAGELEN specifies the length of a printed page in terms of the number
of lines per logical page. The specified value does not override the
maximum lines per physical page that the printing program is using.
However, if the value specified is greater than the maximum lines per
physical page that the printing program is using, then any remainder
from the specified value will be printed on the next physical page until
the specified value is reached, which will end a physical page.

If you are printing a directory of a partitioned data set, the system uses the
number of lines specified in PAGELEN for each page of the directory. It ignores
the values specified for TMARGIN or BMARGIN. For more information about
printing a directory of a partitioned data set, see the description for the
DIRECTORY/MEMBERS/ALL operand.

TITLE | NOTITLE
specifies that a title, including the name of the data set is to be printed and the
page number is to appear on every page of the printed output. NOTITLE
specifies that the title is to be suppressed.

TITLE is the default for data sets with no carriage control characters. NOTITLE
is the default for data sets with carriage control characters. If you specify the
CCHAR, TRC, and DCF operands, the default is also NOTITLE.

You cannot specify NOTITLE with the DIRECTORY operand because directory
title lines are always printed on directory pages. If you specify NOTITLE to print
a partitioned data set with the ALL operand, no title lines appear when the
system prints each member. However, the directory pages continue to be
formatted with directory title lines to distinguish the directory from the members
of the data set.

If you specify TITLE and the input data set contains carriage control characters,
the system ignores TITLE and uses NOTITLE to print the data set. However, if

1-242 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

a list of input data sets is being printed, the system uses TITLE to print
subsequent data sets that do not contain carriage control characters. For
example, suppose the data set SEPT87.REPORT is a pre-formatted report that
contains carriage control characters. The data set SEPT85.DATA does not
contain carriage control characters. If you specify the following command:

PRINTDS DA('SEPT87.REPORT' 'SEPT85.DATA') TITLE

The system uses NOTITLE for the first data set because it assumes that any
title information has already been added to the formatted data set. However,
the system uses TITLE for the second data set.

TMARGIN(lines)
specifies the number of blank lines to be left at the top of each printed page.
You can specify a minimum of 0 lines, and a maximum of 6 lines less than the
value specified or defaulted for the PAGELEN operand.

TMARGIN(0) is the default. A non-zero TMARGIN value is mutually exclusive
with the CCHAR or DIRECTORY operand.

TODATASET(dsname) | TODSNAME(dsname)
specifies the name of the data set into which the formatted input data is to be
copied. If you specify TODATASET or TODSNAME, a SYSOUT data set is not
created.

If the specified data set does not exist, PRINTDS creates the data set.
Otherwise, PRINTDS uses the existing data set. If the specified output data set
already exists, the output from the PRINTDS command replaces any existing
data.

If you specify TODATASET that already exists and the data set is not large
enough to hold all of the output, the system issues an error message to inform
you to preallocate the data set with more space and to reissue the PRINTDS
command.

TRC | NOTRC
specifies whether the data records contain table reference character (TRC)
codes. The codes identify the font to be used to print each record. A TRC code
immediately follows the carriage control character, if any. Its value corresponds
to one of the four fonts specified by CHARS. If you specify TRC, the system
assumes NOTITLE.

NOTRC specifies that the data set does not contain TRC codes. NOTRC is the
default unless you specify CHARS or DCF. If you specify CHARS or DCF or
use the default of DCF and the data set is not formatted for the 1403 printer,
the system assumes TRC. On a 1403 printer, the system uses NOTRC.

If you specify COLUMNS, NUM, or SNUM operands with TRC, column 1 refers
to the first character after the table reference character.

UCS(universal_character_set_name)
specifies the alphanumeric value for the universal character set name. Specify
up to 4 characters. If you do not specify the CHARS operand, the system uses
the UCS as the default.

WRITER(external_writer_name)
| specifies a name for use in processing or selecting a SYSOUT data set. If you

specify the external writer name, the output data set is written under the control
of that external writer rather than the control of JES2 or JES3. The writer name
can contain 1 to 8 alphabetic, numeric, or special characters #, $, or @.

  Chapter 1. TSO/E Commands and Subcommands 1-243



 PRINTDS Command  
 

For JES3, you can code the DEST=NODENAME parameter in the output
descriptor with the WRITER=NAME parameter. However, do not code
DEST=NODENAME.USERID in the output descriptor with WRITER=NAME,
because WRITER=NAME will override the specification of
DEST=NODENAME.USERID.

Default Values for PRINTDS
The following figure shows a summary of default values for the PRINTDS
command. SYSOUT operand defaults apply only when printing to a SYSOUT data
set.

Changing these default values for the PRINTDS command is discussed in OS/390
TSO/E Customization.

Note:  If you did not specify the CCHAR, DCF, or TRC operands and the data set
does not contain carriage control characters, the default is TITLE.
Otherwise, PRINTDS assumes NOTITLE. If NOTITLE is the default,
PRINTDS does not print title lines when printing a sequential data set or
members of a partitioned data set. However, the directory of the partitioned
data set is always printed with title lines, even when you specify NOTITLE.

The destination value used for a SYSOUT data set can be defined by the following
statements:

� PRINTDS DEST keyword

� OUTDES DEST keyword (or output JCL in a TSO/E proc)

Figure 1-33. Summary of Default Values for the PRINTDS Command

Operand SYSOUT
only

Default Value Allowed Values

BIND No 0 0 - 255

TMARGIN No 0 0 - 4094

BMARGIN No 0 0 - 4094

PAGELEN No 60 6 - 4095

CLASS or
SYSOUT

Yes A A - Z, 0 - 9

BURST or
NOBURST

Yes NOBURST BURST or NOBURST

COPIES Yes 1 1 - 255

HOLD or
NOHOLD

Yes NOHOLD HOLD or NOHOLD

MEMBERS or
DIRECTORY or
ALL

No ALL MEMBERS or
DIRECTORY or ALL

NUM or SNUM or
NONUM

No NONUM NUM or SNUM or
NONUM

TITLE or
NOTITLE

No If possible, TITLE,
Otherwise, NOTITLE.
(See note below.)

TITLE or NOTITLE

1-244 OS/390 V2R7.0 TSO/E Command Reference  



  PRINTDS Command
 

– OUTDES statement referenced is specified by the PRINTDS OUTDES
keyword

– Output JCL statements in a TSO/E proc could be used for a PRINTDS
SYSOUT data set if output JCL is an applicable default type

� Default destination (as specified by ACCOUNT DEST keyword) for the user in
SYS1.UADS

� For JES3 only, the SYSOUT initialization statement DEST keyword.

When JES processes the SYSOUT, it incorporates the information in the order
listed below.

1. PRINTDS DEST keyword is used if it is given. If no PRINTDS DEST keyword is
given, then check if the output statement is applicable. The OUTDES keyword
on PRINTDS provides the OUTPUT statement.

2. DEST keyword in the OUTPUT statement is used if it is given. If no OUTPUT
DEST keyword is given, then check if SYS1.UADS has a default destination
defined (DEST keyword).

3. Default destination (DEST keyword) in SYS1.UADS is used if it is given. If there
is no default destination (DEST keyword) in SYS1.UADS then check the
SYSOUT CLASS for JES3 installation.

4. DEST keyword in SYSOUT CLASS is used for JES3 installation if the SYSOUT
CLASS for the PRINTDS contains the DEST keyword.

5. If none of the above applied, use JES defaults.

Mutually Exclusive Operands on PRINTDS
The following table shows the mutually exclusive operands on the PRINTDS
command:

BMARGIN, TMARGIN, and BIND allow a minimum value of 0. Because specifying
a value of 0 for any of these operands is the same as not specifying them,
BMARGIN(0) and TMARGIN(0) are not considered to be mutually exclusive with
CCHAR or DIRECTORY. Likewise, BIND(0) is not mutually exclusive with
DIRECTORY. The system ignores the operands.

Figure 1-34. Mutually Exclusive Operands on the PRINTDS Command

You cannot
specify this
operand with these operands:

CCHAR BMARGIN, DIRECTORY, PAGELEN, TITLE, TMARGIN

DCF DIRECTORY, SINGLE or DOUBLE or TRIPLE, TITLE,
TODATASET or TODSNAME

DIRECTORY BIND, BMARGIN, CCHAR or SINGLE or DOUBLE or TRIPLE,
COLUMNS, DCF or NODCF, FOLD or TRUNCATE, LINES, NUM
or SNUM or NONUM, NOTITLE, TMARGIN

TRC TITLE, TODATASET or TODSNAME

TODATASET or
TODSNAME

BURST or NOBURST, CHARS, CLASS, COPIES, DCF or
NODCF, DEST, FCB, FLASH, FORMS, HOLD or NOHOLD,
MODIFY, OUTDES, TRC or NOTRC, UCS, WRITER

SNUM COLUMNS

  Chapter 1. TSO/E Commands and Subcommands 1-245



 PRINTDS Command  
 

PRINTDS Command Return Codes
Figure 1-35. PRINTDS Command Return Codes

0 Processing successful.

4 Processing completed, but a warning message has been issued.

8 The input, output, or SYSOUT data set could not be used.

12 An error occurred during the processing of the PRINTDS command.

16 The installation exit requested termination of the PRINTDS
command.

PRINTDS Command Examples

 Example 1
Operation:  Print all the members of a partitioned data set, but not the directory.
Lines longer than 72 characters are to be folded onto more than one line.

Known:

� The name of the data set: JCL.CNTL

printds dsname(jcl.cntl) members fold(72)

 Example 2
Operation:  Send the first 250 lines of a sequential data set to a JES held output
queue.

Known:

� The name of the data set: NAMES.TEXT

printds dataset(names.text) lines(1:25ð) hold

 Example 3
Operation:  Print a member of a partitioned data set using an output descriptor that
is installation-defined.

Known:

� The name of the data set: FOIL.TEXT
� The name of the member: STATUS
� The name of the output descriptor: FOILOUT

printds da(foil.text(status)) outdes(foilout)

 Example 4
Operation:  Print a member of a partitioned data set that is also a Document
Composition Facility file using the fonts GT10 and GB10.

Known:

� The name of the data set: MEMO.TEXT
� The name of the member: NOTICE
� The first line in the member reads: SCRIPT/VS R2.0: DEVICE 3800N6 CHARS

GT10 GB10

printds ds(memo.text(notice))

1-246 OS/390 V2R7.0 TSO/E Command Reference  



  PROFILE Command
 

 Example 5
Operation:  Print a member of a partitioned data set that is also a Document
Composition Facility file using the character arrangement tables GT12 and GT15.

Known:

� The name of the data set: DOCUMENT.TEXT
� The name of the member: APPROVAL
� The first line in the member reads: SCRIPT/VS R2.ð: DEVICE 38ððN6 CHARS ST1ð

ST12

printds da(document.text(approval)) chars(gt12,gt15)

In the above example, the fonts GT12 and GT15 for the CHARS operand override
the DCF font names ST10 and ST12.

 Example 6
Operation:  Print the data sets concatenated to a file.

Known:

� The name of the file: SYSPROC

printds fi(sysproc)

The members of each of the three partitioned data sets are printed followed by the
data set directory. By using the FILE operand, you do not have to know the names
of the data sets. The system prints them as if you had specified something like the
following:

printds da('sys1.tso.clist','tools.clist','my.clist')

 PROFILE Command
Use the PROFILE command or the PROFILE subcommand of EDIT to establish,
change, or list your user profile. The information in your profile tells the system how
you want to use your terminal. You can:

� Define a character-deletion or line-deletion control character (on some
terminals)

� Specify whether prompting is to occur

� Specify the frequency of prompting under the EDIT command

� Specify whether you want to accept messages from other terminal users

� Specify whether you want the opportunity to obtain additional information about
messages from a CLIST

� Specify whether you want message numbers for diagnostic messages
displayed at your terminal

� Specify primary and secondary languages to be used in displaying translated
information.

The syntax and function of the PROFILE subcommand of EDIT is the same as that
of the PROFILE command.

  Chapter 1. TSO/E Commands and Subcommands 1-247



 PROFILE Command  
 

Initially, a user profile is prepared for you when arrangements are made for you to
use the system. The authorized system programmer creates your user ID and your
user profile. The system programmer is restricted to defining the same user profile
for every user ID that the programmer creates. This typical user profile is defined
when a user profile table (UPT) is initialized to hexadecimal zeroes for any new
user ID. Thus, your initial user profile is made up of the default values of the
operands discussed under this command. The system defaults, shown in
Figure 1-36, provide for the character-delete and the line-delete control characters,
depending upon what type of terminal is involved:

If deletion characters, prompting, and message activity are not what you expect,
check your profile by displaying it with the LIST operand.

Change your profile by using the PROFILE command with the appropriate
operands. Only the characteristics that you specify explicitly by operands are
changed. Other characteristics remain unchanged. The new characteristics remain
valid from session to session. If PROFILE changes do not remain from session to
session, your installation might have a LOGON pre-prompt exit that is preventing
the saving of any changes in the UPT. Verify this with your system programmer.

If no operands are entered on the PROFILE command, the current user profile is
displayed.

Figure 1-36. System Defaults for Control Characters

TSO/E Terminal
Character-Delete
Control Character

Line-Delete
Control Character

IBM 2741 Communication Terminal BS (backspace) ATTN (attention)

IBM 3270 Information Display System None None

IBM 3290 Information Panel None None

IBM 3767 Communication Terminal None None

IBM 3770 Data Communication System None None

PROFILE Command Syntax 

55─ ──┬ ┬─PROFILE─ ──┬ ┬─────────── ──┬ ┬─────────────────────── ────────────────5
└ ┘─PROF──── ├ ┤─RECOVER─── ├ ┤──CHAR( ──┬ ┬─character─ )

 └ ┘─NORECOVER─ │ │└ ┘─BS────────
 └ ┘─NOCHAR────────────────

5─ ──┬ ┬─────────────────────── ──┬ ┬────────── ──┬ ┬──────────── ───────────────5
├ ┤──LINE( ──┬ ┬─ATTN────── ) ├ ┤─PROMPT─── ├ ┤─INTERCOM───

 │ │├ ┤─character─ └ ┘─NOPROMPT─ └ ┘─NOINTERCOM─
 │ │└ ┘─CTLX──────
 └ ┘─NOLINE────────────────

5─ ──┬ ┬───────── ──┬ ┬───────── ──┬ ┬──────── ──┬ ┬────── ────────────────────────5
 ├ ┤─PAUSE─── ├ ┤─MSGID─── ├ ┤─MODE─── └ ┘─LIST─
 └ ┘─NOPAUSE─ └ ┘─NOMSGID─ └ ┘─NOMODE─

5─ ──┬ ┬─────────────────────── ──┬ ┬────────── ──┬ ┬───────────────────── ──────5
├ ┤──PREFIX(dsname_prefix) ├ ┤─WTPMSG─── └ ┘──PLANGUAGE(language)

 └ ┘─NOPREFIX────────────── └ ┘─NOWTPMSG─

5─ ──┬ ┬───────────────────── ──────────────────────────────────────────────5%
└ ┘──SLANGUAGE(language)

1-248 OS/390 V2R7.0 TSO/E Command Reference  



  PROFILE Command
 

PROFILE Command Operands
RECOVER | NORECOVER

RECOVER specifies that you can use the recover option of the EDIT
command.

NORECOVER specifies that you cannot use the recover option of the EDIT
command. This is the default value for your profile when the profile is
created.

CHAR(character | BS) | NOCHAR

CHAR(character) 5 specifies the EBCDIC character that you want to use to tell
the system to delete the previous character entered. You should not specify
a blank, tab, comma, asterisk, or parentheses because these characters
are used to enter commands. You should not specify terminal-dependent
characters, which do not translate to a valid EBCDIC character.

If you are running under Session Manager, the system ignores the EBCDIC
character.

Note:  Do not use an alphabetic character as either a character-delete or a
line-delete character. If you do, you run the risk of not being able to
enter certain commands without accidentally deleting characters or
lines of data. For instance, if you specify R as a character-delete
character, each time you try to enter a PROFILE command the R in
PROFILE would delete the P that precedes it. Thus it would be
impossible to enter the PROFILE command as long as R is the
character-delete control character.

CHAR(BS) 5 specifies a backspace signals that the previous character entered
should be deleted. This is the default value when your user profile is
created.

NOCHAR 5 specifies no control character is to be used for character deletion.

LINE(ATTN | character | CTLX) | NOLINE

LINE(ATTN) 5 specifies an attention interruption is to be interpreted as a
line-deletion control character. This is the default value when your user
profile is created.

Note:  If a not valid character- and/or line-delete control character is
entered on the PROFILE command, an error message informs you
of which specific control character is not valid. The character or line
delete field in the user profile table is not changed. You can
continue to use the old character- or line-delete control characters.

LINE(character) 5 specifies a control character that you want to use to tell the
system to delete the current line. If you are running under Session
Manager, the system ignores the control character.

5 Not supported with terminals that use VTAM.

  Chapter 1. TSO/E Commands and Subcommands 1-249



 PROFILE Command  
 

LINE(CTLX) 5 specifies the X and CCTRL keys (pressed together) on a
Teletype terminal are to be interpreted as a line-deletion control character.
If you are operating a Teletype terminal, LINE is the default value when
your user profile is created.

NOLINE 5 specifies no line-deletion control character (including ATTN) is
recognized.

PROMPT | NOPROMPT

PROMPT specifies that you want the system to prompt you for missing
information. This is the default value when your user profile is created.

NOPROMPT specifies no prompting is to occur.

INTERCOM | NOINTERCOM

INTERCOM specifies that you can receive messages from other terminal users.
This is the default value when your user profile is created.

NOINTERCOM specifies that you do not want to receive messages from other
users.

PAUSE | NOPAUSE

PAUSE specifies that you want the opportunity to obtain additional information
when a message is issued at your terminal while a CLIST (see the EXEC
command) or an in-storage command list (created by using the STACK
macro) is executing. After a message that has additional levels of
information is issued, the system displays the word PAUSE and waits for
you to enter a question mark (?) or press the Enter key.

NOPAUSE specifies that you do not want to be prompted for a question mark
or Enter. This is the default value when your user profile is created.

MSGID | NOMSGID

MSGID specifies diagnostic messages are to include message identifiers.

NOMSGID specifies diagnostic messages are not to include message
identifiers. This is the default value when your user profile is created.

MODE | NOMODE

MODE specifies a mode message is requested at the completion of each
subcommand of EDIT.

NOMODE specifies, when this mode is in effect, the mode message (E or
EDIT) is to be issued after a SAVE, RENUM, or RUN subcommand is
issued and also when changing from input to edit mode. Specifying
PROFILE NOMODE eliminates some of the edit mode messages.
NOMODE has the same effect in the background as it does in the
foreground. Your profile can be changed by using the PROFILE command
with the appropriate operands. Only those characteristics specifically

1-250 OS/390 V2R7.0 TSO/E Command Reference  



  PROFILE Command
 

denoted by the operands specified are changed. All other characteristics
remain unchanged.

LIST
specifies the characteristics of the terminal user's profile be listed at the
terminal. If other operands are entered with LIST, the characteristics of the
user's profile are changed first, and then the new profile is listed.

After a new user ID is created and before the character-delete and/or
line-delete control character is changed, entering PROFILE LIST results in
CHAR(0) and LINE(0) being listed. This indicates the terminal defaults for
character-delete and line-delete control characters are used.

Although you receive RECOVER/NORECOVER as an option for this operand,
you must be authorized to use the RECOVER options.

PREFIX(dsname_prefix) | NOPREFIX

PREFIX(dsname_prefix) specifies a prefix that is to be appended to all
non-fully-qualified data set names. The prefix is composed of 1 to 7
alphanumeric characters and begins with an alphabetic character or one of
the special characters #, $, or @.

NOPREFIX specifies no prefixing of data set names by any qualifier is to be
performed.

Note:  For background processing, the default is the user ID.

WTPMSG | NOWTPMSG

WTPMSG specifies that you want to receive all write-to-programmer messages
at your terminal.

NOWTPMSG specifies that you do not want to receive write-to-programmer
messages. This is the default value when your user profile is created.

PLANGUAGE( language)
specifies the primary language to be used in displaying translated information
(messages, help information, and the TRANSMIT full-screen panel). You can
specify either a 3-character language code or a symbolic language name
defined by your installation. If the language name contains one or more blanks,
you must enclose the name in quotes. See your system administrator for a list
of valid language codes and installation-defined language names.

SLANGUAGE( language)
specifies the secondary language to be used in displaying translated
information should the primary language fail. You can specify either a
3-character language code or a symbolic language name defined by your
installation. If the language name contains one or more blanks, you must
enclose the name in quotes. See your system administrator for a list of valid
language codes and installation-defined language names.

  Chapter 1. TSO/E Commands and Subcommands 1-251



 PROFILE Command  
 

PROFILE Language Setting Notes
If you change your language and then log off, the new language specified may not
be saved from session to session. This depends on how your installation defines
languages. See your system administrator for assistance.

PROFILE Foreground/Background Processing Differences
The following differences should be noted for foreground/background processing:

� Changes made while processing in the foreground are saved from session to
session.

� Changes made while processing in the background remain in effect for the
duration of the background session, and are not saved after the background
session. Your foreground profile is not altered by background processing.

See Figure 1-37 for a guide to the initialization of the terminal monitor program
(TMP) in batch processing. The heading “RACF/Non-RACF Job Without User ID”
means RACF without user ID, without a UADS entry for the user ID, or without
RACF.

1-252 OS/390 V2R7.0 TSO/E Command Reference  



  PROFILE Command
 

Figure 1-37. UPT/PSCB Initialization Table in the Background

TMP Initialization in the Background

User Profile Table (UPT) Protected Step Control Block (PSCB)

RACF Job With
USER ID

RACF/Non-RACF
Job Without

USER ID

RACF Job With
USER ID

RACF/Non-RACF
Job Without

USER ID

USERFLD * ZERO PSCBUSER job user ID| NULL (blanks)
| (1) NO JCL

EDIT
RECOV

*$ NO RECOVER PSCBGPNM NULL NULL (blanks)

PROMPT *$ NO PROMPT OPERATOR * NOOPER

MSGID * MSGID ACCOUNT *| ACCOUNT
| (1) NO ACCOUNT

INTERCOM * NO INTERCOM JCL * JCL

PAUSE * NO PAUSE MOUNT * NO MOUNT

ATTN/LD * NOT ATTN ATTN/LD * NOT ATTN

MODEMSG * NO MODEMSG EDIT
RECOV

* NO RECOVER

WTPMSG * NO WTPMSG HOLDCLASS * NULL (zero)

CHAR DEL *$ ZERO SUBMIT
CLASS

* NULL (zero)

LINE DEL *$ ZERO SUBMIT
MSGCLASS

* NULL (zero)

PREFIX 1 *
2 job user ID

| NULL (blanks)
| (1) ***

SYSOUT
CLASS

* NULL (zero)

PLANGUAGE **| **
| (1) ENU (English)

SYSOUT
DEST

* NULL (blanks)

SLANGUAGE **| **
| (1) ENU (English)

CHAR DEL * NULL (zero)

LINE DEL * NULL (zero)

REGION
SIZE

*/2 NULL (zero)

* The value is taken from UADS entry profile. If the
UADS prefix is empty, the system uses the job user
ID.

*$ You can modify most of the above defaults in the
background by issuing the PROFILE command with
the appropriate operand/keyword. You cannot use
the PROFILE command to modify the attributes in
the background.

** This depends on how your installation defines
languages.

| *** The value is set equal to the userid associated with
| this address space unless that userid is greater
| than seven characters in length. In that case, there
| is no prefix. The search order for the userid is
| ACEEUSRI, ASXBUSER, no prefix.

* The value is taken from the UADS entry profile.

| (1) Setting as a result of using TSO/E Environment Service (IKJTSOEV)

  Chapter 1. TSO/E Commands and Subcommands 1-253



 PROFILE Command  
 

PROFILE Command Return Codes
Figure 1-38. PROFILE Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

PROFILE Command Examples

 Example 1
Operation:  Establish a complete user profile.

Known:

� The character that you want to use to tell the system to delete the previous
character: #

� The indicator that you want to use to tell the system to delete the current line:
ATTN.

� You want to be prompted.
� You do not want to receive messages from other terminals.
� You want to be able to get second-level messages while a CLIST is executing.
� You do not want diagnostic message identifiers.

profile char(#) line(attn) prompt nointercom pause
nomsgid

 Example 2
Operation:  Suppose that you have established the user profile in Example 1. The
terminal that you are using now does not have a key to cause an attention
interrupt. You want to change the line-delete control character from ATTN to @
without changing any other characteristics.

profile line(@)

 Example 3
Operation:  Establish and use a line-deletion character and a character-deletion
character.

Known:

� The line-deletion character: &
� The character-deletion character: !

profile line(&) char(!)

If you type:

now is the tiâ!bcg!;

and press the Enter key, you actually enter:

abc.

1-254 OS/390 V2R7.0 TSO/E Command Reference  



  PROTECT Command
 

 Example 4
Operation:  Suppose that you want to receive TSO/E information in Japanese
instead of U.S. English.

Known:

� The installation-defined name for Japanese: JAPAN

profile planguage(japan)

Note:  The Japanese language must be active on your system for this command to
work.

 Example 5
Operation:  Suppose that you want to receive TSO/E information in French should
the primary language fail.

Known:

� The 3-character language code for French: FRA

profile slanguage(fra)

Note:  The French language must be active on your system for this command to
work.

 PROTECT Command
Use the PROTECT command to prevent unauthorized access to your non-VSAM
data set. Use the Access Method Services ALTER and DEFINE commands to
protect your VSAM data set. These commands are described in DFSMS/MVS
Access Method Services for VSAM.

The PROTECT command establishes or changes:

� The passwords that must be specified to gain access to your data
� The type of access allowed.

Data sets that have been allocated (either during a LOGON procedure or by the
ALLOCATE command) cannot be protected by specifying the PROTECT command.
To password protect an allocated data set, you would deallocate it first using the
FREE command and then protect it using the PROTECT command.

Note that the PROTECT command does not support dynamic unit control blocks
(dynamic UCBs). If the device that holds the data set to be protected has been
dynamically reconfigured in your system, you will receive a message explaining that
the required volume is not mounted. Instead of using the PROTECT command to
control data set access the use of RACF should be considered.

PROTECT Command Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-255



 PROTECT Command  
 

 

55─ ──┬ ┬─PROTECT─ ──data_set_name/control_password ──────────────────────────5
 └ ┘─PROT────

┌ ┐ ─ ─ADD(password_2) ───────────────
5─ ──┼ ┼──────────────────────────────── ──┬ ┬────────── ──┬ ┬───────── ─────────5

├ ┤──REPLACE(password_1,password_2) ├ ┤─PWREAD─── ├ ┤─PWWRITE─
├ ┤──DELETE(password_1) ──────────── └ ┘─NOPWREAD─ └ ┘─NOWRITE─
└ ┘──LIST(password_1) ──────────────

5─ ──┬ ┬──────────────── ───────────────────────────────────────────────────5%
└ ┘──DATA('string')

PROTECT Command Operands
data_set_name

specifies the name of the data set you want to protect. If the data set is not
cataloged, you must specify the fully-qualified name. For example:

protect 'userid.dsn.qual' list(password)

control_password
Required on all operands except the LIST operand. It provides the control for
authorized personnel to alter the password structure on the PROTECT
command. See “Password Data Set” on page 1-258 for additional information.

ADD | REPLACE | DELETE | LIST

ADD(password_2) specifies a new password is to be required for access to the
named data set. ADD is the default.

If the data set exists and is not already protected by a password, its
security counter is set and the assigned password is flagged as the control
password for the data set. The security counter is not affected when
additional passwords are entered.

REPLACE(password_1, password_2) specifies that you want to replace an
existing password, access type, or optional security information. The first
value (password_1) is the existing password; the second value
(password_2) is the new password.

DELETE(password_1) specifies that you want to delete an existing password,
access type, or optional security information.

If the entry being removed is the control password (see the discussion
following these operand descriptions), all other entries for the data set are
also removed.

LIST(password_1) specifies that you want the security counter, the access
type, and any optional security information in the password data set entry
to be displayed at your terminal.

password_1 specifies the existing password that you want to replace, delete, or
have its security information listed.

password_2 specifies the new password that you want to add or to replace an
existing password.

PWREAD | NOPWREAD

1-256 OS/390 V2R7.0 TSO/E Command Reference  



  PROTECT Command
 

PWREAD specifies the password must be given before the data set can be
read.

NOPWREAD specifies the data set can be read without using a password.

PWWRITE | NOWRITE

PWWRITE specifies the password must be given before the data set can be
written to.

NOWRITE specifies the data set cannot be written to.

DATA(‘ string’)
specifies optional security information to be retained in the system. The value
that you supply for string specifies the optional security information that is to be
included in the password data set entry (up to 77 bytes).

 Passwords
You can assign one or more passwords to a data set. When assigned, the
password for a data set must be specified to access the data set. A password
consists of 1 to 8 alphanumeric characters. You are allowed two attempts to supply
a correct password.

Types of Access
Four operands determine the type of access allowed for your data set: PWREAD,
PWWRITE, NOPWREAD, NOWRITE.

Each operand, when used alone, defaults to one of the preceding types of access.
The default values for each operand used alone are:

A combination of NOPWREAD and NOWRITE is not supported and defaults to
NOPWREAD and PWWRITE.

If you specify a password, but do not specify a type of access, the default is:

� NOPWREAD PWWRITE, if the data set does not have any existing access
restrictions

� The existing type of access, if a type of access has already been established

When you specify the REPLACE function of the PROTECT command, the default
type of access is that of the entry being replaced.

OPERAND DEFAULT VALUE  

PWREAD PWREAD PWWRITE
NOPWREAD NOPWREAD PWWRITE
PWWRITE NOPWREAD PWWRITE
NOWRITE PWREAD NOWRITE

  Chapter 1. TSO/E Commands and Subcommands 1-257



 PROTECT Command  
 

Password Data Set
Before you can use the PROTECT command, a password data set must reside on
the system residence volume. The password data set contains passwords and
security information for protected data sets. You can use the PROTECT command
to display this information about your data sets at your terminal.

The password data set contains a security counter for each protected data set. This
counter keeps a record of the number of times an entry has been referred to. The
counter is set to zero at the time an entry is placed into the data set, and is
increased each time the entry is accessed.

Each password is stored as part of an entry in the password data set. The first
entry in the password data set for each protected data set is called the control
entry. The password from the control entry must be specified for each access of the
data set by using the PROTECT command. However, the LIST operand of the
PROTECT command does not require the password from the control entry.

If you omit a required password when using the PROTECT command, the system
prompts you for it. If your terminal is equipped with the print-inhibit feature, the
system disengages the printing mechanism at your terminal while you enter the
password in response. However, the print-inhibit feature is not used if the prompting
is for a new password.

PROTECT Command Return Codes
Figure 1-39. PROTECT Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

PROTECT Command Examples

 Example 1
Operation:  Establish a password for a new data set.

Known:

� The name of the data set: ROBID.SALES.DATA
� The password: L82GRIFN
� The type of access allowed: PWREAD PWWRITE
� The logon id was: ROBID

protect sales.data pwread add(l82grifn)

 Example 2
Operation:  Replace an existing password without changing the existing access
type.

Known:

� The name of the data set: ROBID.NETSALES.DATA
� The existing password: MTG@AOP
� The new password: PAO$TMG
� The control password: ELHAVJ
� The logon id was: ROBID

1-258 OS/390 V2R7.0 TSO/E Command Reference  



  RECEIVE Command
 

prot netsales.data/elhavj replace(mtg@aop,pao$tmg)

 Example 3
Operation:  Delete one of several passwords.

Known:

� The name of the data set: ROBID.NETGROSS.ASM
� The password: LETGO
� The control password: APPLE
� The logon id was: ROBID

prot netgross.asm/apple delete(letgo)

 Example 4
Operation:  Obtain a listing of the security information for a protected data set.

Known:

� The name of the data set: ROBID.BILLS.CNTRLA
� The password required: D#JPJAM

protect 'robid.bills.cntrla' list(d#jpjam)

 Example 5
Operation:  Change the type of access allowed for a data set.

Known:

� The name of the data set: ROBID.PROJCTN.LOAD
� The new type of access: NOPWREAD PWWRITE
� The existing password: DDAY6/6
� The control password: EEYORE
� The logon id was: ROBID

protect projctn.load/eeyore replace(dday6/6)-
nopwread pwwrite

 RECEIVE Command
Use the RECEIVE command to retrieve transmitted files and to restore them to
their original format.

RECEIVE Command Syntax 

55─ ─RECEIVE─ ──┬ ┬───────────────── ──┬ ┬───────────────────────── ────────────5
└ ┘──USERID(user_id) ├ ┤── ──┬ ┬─INDDNAME─ (ddname) ─

 │ │└ ┘─INFILE───
└ ┘── ──┬ ┬─INDSNAME── (dsname)

 └ ┘─INDATASET─

5─ ──┬ ┬──────────────────────── ──┬ ┬─────────────────────── ─────────────────5
└ ┘──PARM(parameter_string) └ ┘── ──┬ ┬─LOGDATASET─ (dsn)

 └ ┘─LOGDSNAME──

 ┌ ┐─DISPLAY─── ┌ ┐─NAMES───
5─ ──┼ ┼─────────── ──┼ ┼───────── ───────────────────────────────────────────5%
 └ ┘─NODISPLAY─ └ ┘─NONAMES─

  Chapter 1. TSO/E Commands and Subcommands 1-259



 RECEIVE Command  
 

RECEIVE Command Operands
USERID(user_id)

allows you to receive data for a user ID other than your own. The USERID
operand is limited to users with OPERATOR authority and to those who are
authorized through the RECEIVE initialization exit (INMRZ01). The user ID
might exist in SYS1.UADS at the target node or might be a non-existent user
ID.

INDDNAME(ddname) | INFILE(ddname)
specifies the use of a preallocated file as the input data set to receive the
transmitted data. Define the data set with RECFM=F, FB, V, VB, or U. For F
and FB, LRECL=80. The remaining DCB attributes are installation dependent.

Specify the data set as either sequential or partitioned, but it must be the same
as that specified for OUTDDNAME or OUTFILE of the TRANSMIT command.
INDDNAME and INFILE are primarily intended for system programmer use.

INDSNAME(dsname) | INDATASET( dsname)
specifies the use of a sequential data set as the input data set to receive the
transmitted data. Define the data set with RECFM=F, FB, V, VB, or U. For F
and FB, LRECL=80. The remaining DCB attributes are installation dependent.

If you specify INDATASET with RECEIVE, the transmitted data is not logged
and no acknowledgment is sent to the originator. If you do not specify
INDATASET, the transmitted data is logged into the log entry and an
acknowledgment is sent to the originator.

Use INDSNAME and INDATASET in combination with OUTDSNAME and
OUTDATASET operands of the TRANSMIT command. INDSNAME and
INDATASET are primarily intended for system programmer use.

PARM(parameter_string)
You can be instructed by your installation to use this operand to specify
installation dependent data.

LOGDATASET( dsname) | LOGDSNAME( dsname)
specifies an alternate name of a sequential data set used to log the transmitted
data. RECEIVE checks if the data set, specified by the
LOGDATASET/LOGDSNAME operand, is a sequential data set. However,
RECEIVE does not check whether the data set attributes are RECFM=VB,
LRECL=255, and BLKSIZE=3120. If the data set does not exist, the system
creates it.

If you specify NONAMES with LOGDATASET or LOGDSNAME, the system
does not search the NAMES data set.

DISPLAY | NODISPLAY

DISPLAY  specifies that the transmitted data or message is to be displayed at
the terminal. The system normally displays the data or messages that are
transmitted using one of the following operands of the TRANSMIT
command:

� MSGDATASET or MSGDSNAME
� MSGDDNAME or MSGFILE
� MESSAGE or MSG

 � TERMINAL

1-260 OS/390 V2R7.0 TSO/E Command Reference  



  RECEIVE Command
 

The system places the data or message in the log data set. DISPLAY is
the default.

NODISPLAY  specifies that the transmitted data or message is not to be
displayed at the terminal. The system normally displays the data or
messages that are transmitted using one of the following operands of the
TRANSMIT command:

� MSGDATASET or MSGDSNAME
� MSGDDNAME or MSGFILE
� MESSAGE or MSG

 � TERMINAL

The system places the data or message in the log data set.

NAMES | NONAMES

NAMES specifies that RECEIVE search and resolve the NAMES data set for a
matching node and user ID of the user who transmitted the data or
message. If the nickname and name of the user are found, RECEIVE
places the nickname, name, user ID, and node into the log data set.

If the nickname and name are not found, RECEIVE places only the user ID
and node into the log data set. All other NAMES data set processing
remains the same. For more information about the NAMES data set, see
“NAMES Data Set Function” on page 1-368 under the TRANSMIT
command. NAMES is the default.

NONAMES specifies that the nickname and name of the user who transmitted
the data or message are not to be resolved. RECEIVE places only the
node and user ID in the log data set. All other NAMES data set processing
remain the same. For more information about the NAMES data set, see
“NAMES Data Set Function” on page 1-368 under the TRANSMIT
command.

If you specify NONAMES with LOGDATASET or LOGDSNAME, the system
does not process the NAMES data set.

RECEIVE Command Prompt Parameters
After describing each file, the RECEIVE command prompts for overriding
parameters. These parameters are all optional and control the restoring of the data
set. Parameters not specified are allowed to default or are taken from information
transmitted with the data. The optional parameters are shown below.

RECEIVE Command Prompt Parameter Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-261



 RECEIVE Command  
 

 

55─ ──┬ ┬──────────────────── ──┬ ┬───────────────── ──┬ ┬──────────────── ──────5
└ ┘── ──┬ ┬─DATASET─ (dsn) └ ┘──UNIT(unit_name) └ ┘──VOLUME(volser)

 └ ┘─DSNAME──

 ┌ ┐─TRACKS───────
5─ ──┬ ┬──────────────────────────────── ──┼ ┼────────────── ──┬ ┬───────── ─────5

└ ┘──SPACE(primary ──┬ ┬──────────── ) ├ ┤─CYLINDERS──── └ ┘─RELEASE─
└ ┘──,secondary └ ┘──BLOCKS(size)

5─ ──┬ ┬─────────────────── ──┬ ┬─────────────── ──┬ ┬───── ─────────────────────5
└ ┘──DIRECTORY(blocks) └ ┘──BLKSIZE(size) ├ ┤─NEW─

 ├ ┤─OLD─
 ├ ┤─MOD─
 └ ┘─SHR─

5─ ──┬ ┬──────────────────────── ──┬ ┬──────────────────────────── ────────────5
└ ┘──PARM(parameter_string) └ ┘──SYSOUT( ──┬ ┬─*──────────── )

 └ ┘─sysout_class─

 ┌ ┐─NOPREVIEW─ ┌ ┐─RESTORE──────
5─ ──┼ ┼─────────── ──┼ ┼────────────── ──┬ ┬────── ─────────────────────────────5

└ ┘─PREVIEW─── ├ ┤──RESTORE(LOG) └ ┘─COPY─
 ├ ┤─DELETE───────
 └ ┘─END──────────

5─ ──┬ ┬───────────────────────────────── ───────────────────────────────────5
└ ┘──MGMTCLAS(management_class_name)

5─ ──┬ ┬────────────────────────────── ─────────────────────────────────────5%
└ ┘──STORCLAS(storage_class_name)

RECEIVE Command Prompt Parameters
Default values for other keywords are specified with the keyword below.

DATASET(dsname)/DSNAME(dsname)
specifies the name of the data set to be used to contain the received data set.
If it does not already, the system creates it.

If DATASET and DSNAME are omitted, then RECEIVE uses the name of the
transmitted data set, with the high-level qualifier changed to the user ID of the
receiving user. If this data set already exists, is a sequential data set, and
disposition (SHR/MOD/OLD/NEW) was not specified, RECEIVE prompts you for
permission to overwrite the data set. If the data set is partitioned, you are
prompted to replace duplicate members.

UNIT(unit_name)
specifies a unit name for a new output data set. The default value for UNIT is
your normal TSO/E unit name.

VOLUME(volser)
specifies a specific volume serial number for a new output data set. The default
value for VOLUME is no value, allowing the system to select a volume from
those defined by your unit name specified on the UNIT keyword.

SPACE(primary,secondary)
specifies primary and secondary space for the received data set. The default
value for SPACE is a primary size equal to the size of the incoming data and a
secondary size of approximately 25 percent of the primary. If the disposition
MOD is used, and the data set is not yet allocated, the system defaults are
used to obtain the SPACE parameter defaults.

1-262 OS/390 V2R7.0 TSO/E Command Reference  



  RECEIVE Command
 

TRACKS
specifies space to be allocated in tracks. TRACKS is the default when SPACE
is specified.

CYLINDERS
specifies space to be allocated in cylinders.

BLOCKS( size)
specifies space to be allocated in blocks of the specified size. BLOCKS is the
default when SPACE is not specified.

RELEASE
specifies unused space to be released when the receive operation is complete.

DIRECTORY(blocks)
specifies an override for the number of directory blocks in a partitioned data
set. The default value for DIRECTORY is the number of directory blocks
required for the received members.

If a sequential data set is being received into a new PDS by specifying
DA(X(MEM)) and DIRECTORY is not specified, the default value for directory
blocks is 27.

BLKSIZE( size)
specifies a value for the block size of the output data set. This value is used, if
it does not conflict with the received data set parameters or device
characteristics.

NEW | OLD | MOD | SHR
specifies the data set disposition. If you do not specify one of the disposition
keywords and the SPACE value is not present, RECEIVE first tries disposition
OLD and attempts to allocate an existing data set. If this fails, disposition NEW
is used, space values are added, and another attempt is made at allocation.

PARM(parameter string)
Your installation may instruct you to use this operand to specify installation
dependent data.

SYSOUT(sysout_class | *)
specifies a SYSOUT class to be used for messages from utility programs the
RECEIVE command invokes (such as IEBCOPY). If * is specified, these
messages are directed to the terminal. The default for SYSOUT is normally *,
but this might be changed by the installation.

PREVIEW | NOPREVIEW

PREVIEW specifies the received data should be displayed at the terminal as it
is stored. This is generally appropriate only for sequential data sets
because what is displayed is the result of the first pass at restoring the
data. For partitioned data sets, the IEBCOPY unloaded format is displayed.

NOPREVIEW specifies no previewing is to be done. NOPREVIEW is the
default.

RESTORE | RESTORE(LOG) | DELETE | END

  Chapter 1. TSO/E Commands and Subcommands 1-263



 RECEIVE Command  
 

RESTORE specifies the transmitted data should be restored to its original
format. RESTORE is the default.

RESTORE(LOG) specifies the transmitted data should be restored to its
original format and written to the appropriate log. It is also previewed to the
terminal, but it is not written to another data set. You cannot specify
RESTORE(LOG) with the DATASET or DSNAME operand. You would use
RESTORE(LOG) primarily to RECEIVE a message and log the message
text in the log entry.

DELETE specifies the file be deleted without restoring it.

END specifies the RECEIVE command terminate immediately, leaving the
current data set on the spool to be reprocessed at a later time.

COPY
specifies not to restore the transmitted data to its original format, but copy it ‘as
is’. At a later time you can specify RECEIVE INDATASET to restore the data.
COPY allows you to examine the data in its transmitted form so that you can
debug problems when RECEIVE cannot process the transmitted data. It is
primarily intended for system programmer use.

MGMTCLAS(management_class_name)
With Storage Management Subsystem (meaning Storage Management
Subsystem is installed and is active), specifies the name, 1 to 8 characters, of
the management class for a new data set. When possible, do not specify
MGMTCLAS. Instead, use the default your storage administrator provides
through the automatic class selection (ACS) routines.

After the data set is allocated, attributes in the management class control the
following:

� The migration of the data set, which includes migration from primary
storage to Data Facility Hierarchical Storage Manager (DFHSM) owned
storage to archival storage.

� The backup of the data set, which includes frequency of backup, number of
versions, and retention criteria for backup versions.

Note:  Without Storage Management Subsystem, the system syntax checks
and then ignores the MGMTCLAS operand.

STORCLAS(storage_class_name)
with Storage Management Subsystem, specifies the name, 1 to 8 characters, of
the storage class. When possible, do not specify STORCLAS. Instead, use the
default your storage administrator provides through the automatic class
selection (ACS) routines.

The storage class replaces the storage attributes that are specified on the UNIT
and VOLUME operand for non-Storage Management Subsystem managed data
sets.

A “Storage Management Subsystem-managed data set” is defined as a data
set that has a storage class assigned. A storage class is assigned when you
specify STORCLAS or an installation-written ACS routine selects a storage
class for the new data set.

Note:  Without Storage Management Subsystem, the system syntax checks
and then ignores the STORCLAS operand.

1-264 OS/390 V2R7.0 TSO/E Command Reference  



  RECEIVE Command
 

RECEIVE Command Return Codes
Figure 1-40. RECEIVE Command Return Codes

0 Processing successful.

4 Processing successful, but a warning message has been issued.

8 Processing incomplete. Some function failed.

12 Processing ends, but is not successful.

16 Processing abnormally terminates.

 Receiving Data
The RECEIVE command picks the first file that has been transmitted to you,
displays descriptive information about the file, and prompts you for information to
control the restore operation. You can choose to accept the default data set name
(the original data set name with the high-level qualifier changed to the receiving
user's TSO/E prefix) and space information or you can override any of these
defaults. RECEIVE creates the data set if it does not exist. You can specify a
disposition (OLD, SHR, MOD, or NEW) to force a particular mode of operation. If
the data set is successfully restored, RECEIVE continues with the next file. If
requested by the sender, RECEIVE generates a notification of receipt and transmits
it back to the sender. This return message contains routing and origin information,
the name of the data set transmitted, the original transmission sequence number,
and an indication of whether the receive was successful. If an error occurred, the
message number of the error is included.

You can also use RECEIVE to retrieve Office Vision notes. However, an
acknowledgment is not transmitted to the sender of the Office Vision note. Receipt
notification is the default for any addressee entered individually on the TRANSMIT
command, but not for addressees derived from distribution lists. If you want to be
notified for addressees on distribution lists, you must specify :NOTIFY on the
distribution list in the control data set or specify NOTIFY(ALL) on the TRANSMIT
command.

You can use the RECEIVE command to receive network data (data that was not
sent by the TRANSMIT command). The default LRECL for network data is 251
bytes. If you need to receive network data with an LRECL greater than 251 bytes,
you must use a data set with an LRECL greater than 251 bytes.

Data Set Organization
Generally, RECEIVE cannot reformat data sets. The data set into which received
data is to be written must have the same record format as the original data set. The
record length must be compatible. That is, equal for fixed-length records and equal
or longer for variable-length records. The block size of the received data set can be
any value that is compatible with the record length and record format. If a mismatch
is found in record length, block size, or record format, RECEIVE terminates with
appropriate error messages and return codes.

You can receive sequential or partitioned data sets with record formats of F, FS,
FB, FBS, V, VB, and U. The largest fixed-length record data set TSO/E can receive
from VM is 32,760. Data sets with machine and ASA print-control characters are
also supported. RECEIVE does not support data sets with keys, ISAM data sets,
VSAM data sets, or data sets with user labels.

  Chapter 1. TSO/E Commands and Subcommands 1-265



 RECEIVE Command  
 

Receiving Protected Data Sets
RECEIVE warns you if you are receiving a data set that was RACF or PASSWORD
protected. It takes no further action to protect newly restored data. If you are using
the automatic data set protection feature of RACF, then the data set is protected.
Otherwise, you should use the PROTECT command or the RACF ADDSD
command to protect the data.

Receiving Enciphered Data
If RECEIVE detects that TRANSMIT enciphered the incoming file, it automatically
attempts to decipher the data. To do this, it prompts you for decipher options and
then passes these to the Access Method Services REPRO command. See “Data
Encryption Function of TRANSMIT and RECEIVE” on page 1-366.

The RECEIVE command logs transmissions. See “Logging Function of TRANSMIT
and RECEIVE” on page 1-367.

Receiving Data Sets and Messages with Security Labels
If your installation uses security labels and security options, any data sets or
messages transmitted to you have a security label associated with them. In order
for you to receive the data, you must be logged on at a security label equal to or
greater than the security label with which the data was transmitted.

Some considerations for receiving data sets and messages with security labels are:

� You can only receive data sets and messages you are authorized to receive
based on the security label you are logged on with.

� To receive data sets and messages with a greater security label, you can log
on with a greater security label if your TSO/E user ID is authorized to do so.
Then you can use the RECEIVE command to view the messages and data
sets.

� If you cannot log on with a security label that allows you to receive the data set
or message, the system deletes the data, unless your installation uses a JES
installation exit to take some other action.

� You do not receive a notice that you have data sets or messages to receive if
they were transmitted with a security label that is greater than the security label
with which you are logged on.

RECEIVE Command Examples
In the following examples, the transmitting user is assumed to have user ID USER1
on node NODEA and the receiving user is assumed to have user ID USER2 on
node NODEB. The sending user has a NAMES data set as follows:

1-266 OS/390 V2R7.0 TSO/E Command Reference  



  RECEIVE Command
 

\ Control section
:altctl.DEPT.TRANSMIT.CNTL
:prolog.Greetings from John Doe.
:prolog.
:epilog.
:epilog.Yours,:epilog.John Doe :epilog.NODEA.USER1
\
\ Nicknames section.
\
:nick.alamo :list.Jim Davy :logname.alamo :notify.
:nick.addrchg :list.joe davy jim :nolog :nonotify
:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe
:nick.Me :node.nodea :userid.user1 :name.me
:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett
:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie

In the examples involving the RECEIVE command, data entered by the user
appears in lowercase and data displayed by the system is in uppercase.

 Example 1
Transmit a copy of the ‘SYS1.PARMLIB’ data set to Joe, identifying Joe by his
node and user ID.

transmit nodeb.user2 da('sys1.parmlib')

 Example 2
Joe receives the copy of ‘SYS1.PARMLIB’ transmitted above.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Enter restore parameters or 'DELETE' or 'END' +
<null line>
Restore successful to dataset 'USER2.PARMLIB'
-----------------------------------------------
No more files remain for the RECEIVE command to process.

In the above example, Joe has issued the RECEIVE command, seen the
identification of what arrived, and chosen to accept the default data set name for
the arriving file. The default name is the original data set name with the high-level
qualifier replaced by his user ID.

 Example 3
Transmit two members of ‘SYS1.PARMLIB’ to Joe, and add a message identifying
what was sent. Joe is identified by his NICKNAME, leaving it to TRANSMIT to
convert it into node and user ID by the nicknames section of the NAMES data set.

à ð
transmit joe da('sys1.parmlib') mem(ieasysðð,ieaipsðð) line
ENTER MESSAGE FOR NODEB.USER2
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
<null line>

The message text in this example was entered in line mode which would be
unusual for a user on a 3270 terminal, but which is easier to show in an example.

  Chapter 1. TSO/E Commands and Subcommands 1-267



 RECEIVE Command  
 

 Example 4
Joe begins the receive process for the members transmitted in Example 3 and
ends the receive without actually restoring the data onto the receiving system,
because Joe does not know where he wants to store the data.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Members: IEASYSðð, IEAIPSðð
Greetings from John Doe.
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
NODEA.USER1
Enter restore parameters or 'DELETE' or 'END' +
end

In the above example, notice that the PROLOG and EPILOG lines have been
appended to the message entered by the sender. In an actual RECEIVE operation,
the original message text would appear in both uppercase and lowercase just as
the sender had entered it (assuming the receiver's terminal supports lowercase.)

 Example 5
Joe receives the ‘SYS1.PARMLIB’ members transmitted in Example 3. Specify
space parameters for the data set that will be built by RECEIVE to leave space for
later additions.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Members: IEASYSðð, IEAIPSðð
Greetings from John Doe.
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
NODEA.USER1
Enter restore parameters or 'DELETE' or 'END' +
da('nodea.parmlib') space(1) cyl dir(1ð)
Restore successful to dataset 'NODEA.PARMLIB'
-----------------------------------------------
No more files remain for the RECEIVE command to process.

The received members IEASYS00 and IEAIPS00 are saved in the output data set
with their member names unchanged.

 Example 6
Send a message to a user on another system. For more information about the
TRANSMIT command, see the “TRANSMIT Command” on page 1-359.

transmit davy

The system displays the following screen for input:

1-268 OS/390 V2R7.0 TSO/E Command Reference  



  RENAME Command
 

à ð
DATA FOR ALAMO.CROCKETT

ððð1 Davy,
ððð2 Did you check the report I gave you last week?
ððð3 Joe
ððð4
ððð5

...

Press PF3 to send the message.

In this example, the target user is identified by his nickname and no data set is
specified, causing the terminal to be used as an input source. You can type your
data, scroll using program function (PF) keys PF7 or PF19 and PF8 or PF20, and
exit using PF3 or PF15, or cancel using the PA1 key.

 Example 7
Send a member of a partitioned data set as a message. In this example, the
member MEETINGS of the partitioned data set MEMO.TEXT is sent as a message
to JOE.

à ð
transmit nodeb.joe msgds(memo.text(meetings))
 INMXðððI ð message and 7 data records sent as 5 records to NODEB.JOE
 INMXðð1I Transmission occurred on ð7/27/87 at ð9:ðð:35.
READY

JOE receives the message in his data set MY.LOG, instead of the default log data
set, LOG.MISC:

à ð
receive logds(my.log)
 INMR9ð1I Dataset \\ MESSAGE \\ from MIKE on NODED
 THIS IS A SCHEDULE OF STATUS MEETINGS FROM AUGUST THROUGH NOVEMBER:

 AUGUST MONDAYS AT 9:ðð A.M. IN MY OFFICE
 SEPTEMBER TUESDAYS AT 1ð:ðð A.M. IN YOUR OFFICE
 OCTOBER WEDNESDAYS AT 1ð:ðð A.M. IN JACK'S OFFICE
 NOVEMBER MONDAYS AT 2:ðð P.M. IN JILL'S OFFICE

 RENAME Command
Use the RENAME command to:

� Change the name of a single-volume, non-VSAM cataloged, non-SMS
managed data set.

� Change the name of a single or multi-volume, non-VSAM cataloged, SMS
managed data set.

� Change the name of a member of a partitioned data set
� Create an alias for a member of a partitioned data set.

The Access Method Services ALTER command changes the name of VSAM data
sets and is described in DFSMS/MVS Access Method Services for VSAM.

When a password protected data set is renamed, the data set does not retain the
password. You must use the PROTECT command to assign a password to the
data set before you can access it.

  Chapter 1. TSO/E Commands and Subcommands 1-269



 RENAME Command  
 

RENAME Command Syntax 

55─ ──┬ ┬─RENAME─ ─old_name─ ─new_name─ ──┬ ┬─────── ───────────────────────────5%
 └ ┘─REN──── └ ┘─ALIAS─

RENAME Command Operands
old_name

specifies the name that you want to change. The name that you specify can be
the name of an existing data set or the name of an existing member of a
partitioned data set.

new_name
specifies the new name to be assigned to the existing data set or member. If
you are renaming or assigning an alias to a member, you can supply only the
member name and omit all other levels of qualification.

ALIAS
specifies the member name supplied for new_name operand is to become an
alias for the member identified by the old_name operand.

You can rename several data sets by substituting an asterisk for a qualifier in
the old_name and new_name operands. The system changes all data set
names that match the old name except for the qualifier corresponding to the
asterisk's position.

Note:  Do not use the RENAME command to create an alias for a linkage
editor created load module.

RENAME Command Return Codes
Figure 1-41. RENAME Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

RENAME Command Examples

 Example 1
Operation:  You have several non-VSAM data sets named:

userid.mydata.data
userid.yourdata.data
userid.workdata.data

that you want to rename:

userid.mydata.text
userid.yourdata.text
userid.workdata.text

You can specify either: or

rename \.data,\.text

1-270 OS/390 V2R7.0 TSO/E Command Reference  



  RUN Command
 

 Example 2
Operation:  Assign an alias SUZIE to the partitioned data set member named
ELIZBETH(LIZ).

REN 'ELIZBETH(LIZ)' (SUZIE) ALIAS

 RUN Command
Use the RUN command to compile, load, and execute the source statements in a
data set. The RUN command is designed specifically for use with certain program
products. It selects and invokes the particular program product needed to process
the source statements in the data set that you specify. Figure 1-42 shows which
program product is selected to process each type of source statement.

The RUN command and the RUN subcommand of EDIT perform the same basic
function.

Figure 1-42. Source Statement/Program Product Relationship

Source Program Product

Assembler Assembler (F) and TSO Assembler Prompter

COBOL OS/VS COBOL Release 2.4 and TSO COBOL Prompter

FORTRAN FORTRAN IV (G1) and TSO FORTRAN Prompter Code and Go
FORTRAN

PLI PL/I Checkout Compiler or PL/I Optimizing Compiler

VSBACIC VSBASIC

RUN Command Syntax 

55─ ──┬ ┬─RUN─ ─data_set_name─ ──┬ ┬────────────── ─────────────────────────────5
└ ┘─R─── └ ┘──'parameters'

5─ ──┬ ┬─ASM─ ──┬ ┬───────────────────── ─────────── ──────────────────────────5%
 │ ││ │┌ ┐────────────

│ │└ ┘──LIB( ───6 ┴─data_set─ )
 ├ ┤ ─COBOL─ ──┬ ┬───────────────────── ─────────
 │ ││ │┌ ┐────────────

│ │└ ┘──LIB( ───6 ┴─data_set─ )
 ├ ┤ ─GOFORT─ ──┬ ┬────── ──┬ ┬─────── ────────────
 │ │├ ┤─LMSG─ ├ ┤─FIXED─
 │ │└ ┘─SMSG─ └ ┘─FREE──
 ├ ┤ ─FORT─ ──┬ ┬───────────────────── ──────────
 │ ││ │┌ ┐────────────

│ │└ ┘──LIB( ───6 ┴─data_set─ )
 │ │┌ ┐─OPT───
 ├ ┤ ─PLI─ ──┼ ┼─────── ──┬ ┬─────────────────────
 │ │└ ┘─CHECK─ │ │┌ ┐────────────

│ │└ ┘──LIB( ───6 ┴─data_set─ )
└ ┘─┤ VSBASIC ├─────────────────────────────

VSBASIC:
 ┌ ┐─SPREC─ ┌ ┐─NOTEST─ ┌ ┐─GO─── ┌ ┐─NOSTORE─ ┌ ┐─NOPAUSE─
├─ ─VSBASIC─ ──┼ ┼─────── ──┼ ┼──────── ──┼ ┼────── ──┼ ┼───────── ──┼ ┼───────── ────5
 └ ┘─LPREC─ └ ┘─TEST─── └ ┘─NOGO─ └ ┘─STORE─── └ ┘─PAUSE───

 ┌ ┐─SOURCE─
5─ ──┼ ┼──────── ──┬ ┬───────────── ───────────────────────────────────────────┤

└ ┘─OBJECT─ └ ┘──SIZE(value)

  Chapter 1. TSO/E Commands and Subcommands 1-271



 RUN Command  
 

RUN Command Operands
data_set_name ‘parameters’

specifies the name of the data set containing the source program. A string of
up to 100 characters can be passed to the program by the parameters operand
(valid only for data sets which accept parameters).

ASM
specifies the TSO Assembler Prompter program product and the Assembler (F)
compiler are to be invoked to process source programs.

If the rightmost qualifier of the data set name is ASM, this operand is not
required.

LIB(data_set)
specifies the library or libraries that contain subroutines needed by the program
you are running. These libraries are concatenated to the default system
libraries and passed to the loader for resolution of external references. This
operand is valid only for the following data set types: ASM, COBOL, FORT,
and PLI (Optimizer).

COBOL
specifies the TSO COBOL Prompter and the OS/VS COBOL program product
are to be invoked to process the source program. If the rightmost qualifier of
the data set name is COBOL, this operand is not required.

GOFORT
specifies the Code and Go FORTRAN program product is to be invoked to
process the source program. If the right most qualifier of the data set name is
GOFORT, this operand is not required.

LMSG | SMSG 

LMSG specifies long form diagnostic messages are to be provided.

SMSG specifies short form diagnostic messages are to be provided.

FIXED | FREE 

FIXED specifies statements adhere to the standard FORTRAN column
requirements and are 80 bytes long.

FREE specifies statements are of variable lengths and do not conform to
set column requirements.

FORT
specifies the TSO FORTRAN Prompter and the FORTRAN IV (G1) program
products are to be invoked to process the source program.

PLI
specifies the PL/I Prompter and either the PL/I Optimizer compiler or the PL/I
Checkout compiler are to be invoked to process the source program. If the
rightmost qualifier of the data set name is PLI, this operand is not required.

CHECK | OPT

CHECK specifies the PL/I Checkout compiler. If you omit this operand, the
OPT operand is the default value.

1-272 OS/390 V2R7.0 TSO/E Command Reference  



  RUN Command
 

OPT specifies the PL/I Optimizing compiler. If both CHECK and OPT are
omitted, OPT is the default value.

VSBASIC
specifies the VSBASIC program product is to be invoked to process the source
program.

LPREC | SPREC

LPREC specifies long precision arithmetic calculations are required by the
program.

SPREC specifies short precision arithmetic calculations are adequate for
the program. SPREC is the default value.

TEST | NOTEST

TEST specifies testing of the program is to be performed.

NOTEST specifies the TEST function is not to be performed. NOTEST is
the default value.

GO | NOGO

GO specifies the program is to receive control after compilation. GO is the
default value.

NOGO specifies the program is not to receive control after compilation.

STORE | NOSTORE

STORE specifies the compiler is to store an object program.

NOSTORE specifies the compiler is not to store an object program.
NOSTORE is the default value.

PAUSE | NOPAUSE

PAUSE specifies the compiler is to prompt to the terminal between
program chains.

NOPAUSE specifies no prompting between program chains. NOPAUSE is
the default value.

SOURCE | OBJECT

SOURCE specifies the new source code is to be compiled. SOURCE is the
default value.

OBJECT  specifies the data set name entered is a fully-qualified name of an
object data set to be executed by the VSBASIC compiler.

SIZE(value)
specifies the number of 1000-byte blocks of user area where value is an
integer of one to three digits.

  Chapter 1. TSO/E Commands and Subcommands 1-273



 SEND Command  
 

Determining Compiler Type
The system uses two sources of information to determine which compiler is to be
used. The first source of information is the optional operand (ASM, COBOL, FORT,
PLI, or VSBASIC) that you can specify for the RUN command. If you omit this
operand, the system checks the descriptive qualifier of the data set name that is to
be executed. If the system cannot determine the compiler type from the descriptive
qualifier, you are prompted for it.

The RUN command uses standard library names, such as SYS1.FORTLIB and
SYS1.COBLIB, as the automatic call library. This is the library searched by the
linkage editor to locate load modules referred to by the module being processed for
resolution of external references.

RUN causes other commands to be executed from an in-storage list. If an error
occurs, one of these commands might issue a message that has additional levels
of information. This additional information is not available to the user unless the
PAUSE option is indicated in the user's profile. The PAUSE option is described in
the section under the PROFILE command.

RUN Command Return Codes
Figure 1-43. RUN Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

RUN Command Examples

 Example 1
Operation:  Compile, load, and execute a source program composed of VSBASIC
statements.

Known:

� The name of the data set containing the source program is
DDG39T.MNHRS.VSBASIC.

run mnhrs.vsbasic

 SEND Command
Use the SEND command or the SEND subcommand of EDIT to send a message
to:

� One or more users
� The master console operator
� A specific operator
� A specific operator console.

In parallel sysplex systems the users may be on any system in the sysplex.

In order for the recipient to receive and display the message, the recipient's profile
must include the INTERCOM operand. To change the profile, use the PROFILE
command.

1-274 OS/390 V2R7.0 TSO/E Command Reference  



  SEND Command
 

By default, when you issue the SEND command with the NOW operand, the
message is displayed on the recipient's screen if he or she is logged on and
receiving messages. If the receiver is not logged on or is not receiving, the
message is deleted and you receive a message stating why the message was not
displayed.

If you issue SEND with the LOGON operand and the recipient is logged on and
receiving, the message is also displayed. If the recipient is not logged on when you
send the message, the message is stored in the broadcast data set. (If your
installation uses individual user logs, SEND stores the message in the user log,
truncating trailing blanks. Otherwise, SEND stores the message in the broadcast
data set and does not truncate trailing blanks.)

When you issue SEND with the SAVE operand, the message is stored even if the
recipient is logged on. SEND stores the message in the broadcast data set unless
your installation uses individual user logs, in which case, the message is stored in
the recipient's user log.

Installations can use security enhancements to customize how the SEND command
works. For example, using RACF, an installation can control which users can send
messages to other users. If your installation uses these security features and you
send a message to a user that you are not authorized to send messages to, the
system cancels your message and displays an informational message on your
terminal.

SEND also works differently if your installation uses security labels and security
checking. Each time you send a message, the security label you are logged on with
is associated with the message. The security label is used to determine if the
recipient can view the message.

If you issue SEND NOW or SEND LOGON, the sender's current security label is
associated with the message. If the recipient is logged on at a security label that is
equal to or greater than the security label of the message, the message is
displayed immediately. If SEND NOW was specified and the recipient's security
label is less than the message's security label, the message is cancelled. If SEND
LOGON was specified and the recipient's security label is less than the message's
security label, the message is saved in the recipient's user log.

If the message you send is to be saved (when you issue SEND SAVE or SEND
LOGON and the recipient is not logged on), the message's security label is saved
along with the message in the recipient's user log. The recipient can view
messages saved in the user log by issuing the LISTBC command. All messages in
the recipient's user log that have a security label that is less than or equal to the
security label of the recipient are then displayed. Messages that have a security
label higher than the security label the recipient logged on with are not displayed.
See “LISTBC Command” on page 1-186 for more information on receiving
messages from a user log.

If your installation uses security labels and security checking, messages are stored
in user logs. If you try to send a message to another user who does not have a
user log and the message is to be saved, the message is not sent. You get a
message explaining why the message cannot be saved.

  Chapter 1. TSO/E Commands and Subcommands 1-275



 SEND Command  
 

The syntax and function of the SEND subcommand of EDIT is the same as that of
the SEND command.

SEND Command Syntax 

 ┌ ┐─2──────────
┌ ┐──OPERATOR( ──┴ ┴─route_code─ ) ┌ ┐─NOW───

55─ ──┬ ┬─SEND─ ──'text' ──┼ ┼──────────────────────────── ──┼ ┼─────── ──────────5
└ ┘─SE─── ├ ┤──USER( ──┬ ┬─*─────────── ) ─── ├ ┤─LOGON─

 │ ││ │┌ ┐─────────── └ ┘─SAVE──
 │ │└ ┘───6 ┴─user_id─

└ ┘──CN( ──┬ ┬─console_id─── ) ────
 └ ┘─console_name─

 ┌ ┐─NOWAIT─
5─ ──┼ ┼──────── ───────────────────────────────────────────────────────────5%
 └ ┘─WAIT───

SEND Command Operands
‘text’

specifies the message to be sent. You must enclose the text of the message
within apostrophes (single quotes). The message cannot exceed 115
characters, including blanks. If no other operands are used, the message goes
to the console operator. If you want apostrophes to be printed, you must enter
two apostrophes to get one.

USER(user_id | *)

user_id specifies the user identification of one or more terminal users who are
to receive the message. A maximum of 20 identifications can be used. The
message will be routed to any system within the sysplex to which the
recipient is on.

* specifies the message is sent to the user ID associated with the issuer of
the SEND command. If * is used with a SEND command in a CLIST, the
message is sent to the user executing the CLIST. If used with the SEND
command at a terminal, * causes the message to be sent to the same
terminal.

OPERATOR(2 | route_code)
specifies that you want the message sent to the operator indicated by the
route_code. If you omit the route_code, the default is two (2); that is, the
message goes to the master console operator. If both, USER and OPERATOR
operand are omitted, OPERATOR is the default value. The integer corresponds
to routing codes for the write-to-operator (WTO) macro.

If you send a message with a length of greater than 72 characters to
OPERATOR or CONSOLE using the SEND command, the message is issued
as two WTOs.

CN(console_id | console_name)
specifies the message is to be queued to the indicated operator console. You
can specify either a console ID or a console name.

console_id must be an integer from 0 to 99.

1-276 OS/390 V2R7.0 TSO/E Command Reference  



  SEND Command
 

console_name is 2 to 8 alphanumeric characters, the first of which must be
alphabetic or one of the special characters #, $, or @.

Note:  Except for extended MCS consoles, console names are defined by
your installation.

If you send a message with a length of greater than 72 characters to
OPERATOR or CONSOLE using the SEND command, the message is issued
as two WTOs.

NOW | LOGON | SAVE

NOW specifies that you want the message to be sent immediately. If the
recipient is not logged on or is not receiving messages, you are notified
and the message is deleted. If your installation uses security labels and
security checking and the recipient is logged on and is receiving messages,
but does not have an appropriate security label to view the message, you
are notified and the message is deleted. NOW is the default value.

LOGON specifies that you want the message retained in the
SYS1.BRODCAST data set or the user log data set, if the recipient is not
logged on, is not receiving messages, or cannot receive messages
because of SECLABEL checking. If the recipient is currently using the
system and receiving messages, the message is sent immediately. If your
installation uses security labels and security checking, and the recipient is
logged on, is receiving messages, and has an appropriate security label to
view the message, then the message is sent immediately. Otherwise, the
message is saved, and the recipient must issue LISTBC or LOGON
specifying MAIL to retrieve the message.

SAVE specifies the message text is to be stored in the mail section of
SYS1.BRODCAST or the user log data set without being sent to any user.
Messages stored in the broadcast data set or the user log data set can be
retrieved by using either LISTBC or LOGON commands.

NOWAIT | WAIT

NOWAIT specifies that you do not want to wait if system output buffers are not
immediately available for all specified logged-on terminals. You are notified
of all specified users who did not receive the message. If you specified
LOGON, mail is created in the SYS1.BRODCAST data set or the user log
data set for the specified users whose terminals are busy or who have not
logged on. NOWAIT is the default value.

WAIT specifies that you want to wait until system output buffers are available
for all specified logged on terminals. This ensures that the message is
received by all specified logged on users, but it also means that you might
be locked out until all such users have received the message.

  Chapter 1. TSO/E Commands and Subcommands 1-277



 SEND Command  
 

SEND Command Return Codes

The following return codes are valid only if you have an installation-defined user log
data set:

Figure 1-44. SEND Command Return Codes

0 Processing successful.

12 Processing unsuccessful.

Figure 1-45. SEND Command Return Codes (Installation-Defined User Log Data Set)

0 Message was successfully sent for display; all users received it.

4 Message was successfully stored. Either the user is not logged on, or
is not logged on with a security label that allows the user to view the
message.

8 Message was successfully stored; saved the message.

12 Message was not displayed; user is not logged on.

16 Message was not displayed; user's terminal is busy.

18 Sender not permitted to send messages to one or more specified
users.

20 Message was not displayed; user is not accepting messages.

22 Message cannot be viewed by one or more specified users; their
security label is lower than the sender's security label.

24 Message was not stored; saving is not allowed.

26 One or more users did not have an individual user log and the
message could not be saved in the broadcast data set.

28 Message was not stored; user log unavailable.

32 Message was not sent; user denied access.

36 Message was not sent; SEND is inactive.

40 Message was not sent; no such user ID.

44 Message was not sent; command is not authorized.

92 Message was not sent; system error.

SEND Command Examples

 Example 1
Operation:  Send a message to the master console operator.

Known:

� The message: What is the weekend schedule?

send 'what is the weekend schedule?'

1-278 OS/390 V2R7.0 TSO/E Command Reference  



  SMCOPY Command
 

 Example 2
Operation:  Send a message to two other terminal users.

Known:

� The message: If you have data set ‘mylib.load’ allocated, please free it. I need
it to run my program.

� The user identification for the terminal users: JANET5 and LYNN6
� The message is important and you want to wait until the recipients have

received the message.

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janet5,lynn6) wait

 Example 3
Operation:  Send a message that is to be delivered to ‘BETTY7’ when she begins
her terminal session or now if she is currently logged on.

Known:

� The recipient's user identification: BETTY7
� The message: Is your version of the simulator ready?
� If she is not logged on, you want to save the message until she logs on again.

There is no rush for her to get it and to respond to it.

send 'is your version of the simulator ready?' -
user(betty7) logon

 Example 4
Operation:  Send a message to the operator console ‘TAPELIB’.

Known:

� The console name: TAPELIB
� The message: Please mount tape number A021. I need it to run my program.

send 'Please mount tape number Að21. I need -
it to run my program.' CN(TAPELIB)

 SMCOPY Command
Use the SMCOPY command to copy all or part of a stream or data set to another
stream or data set (that is, stream to stream, stream to data set, data set to stream,
or data set to data set).

Notes:

1. When using SMCOPY under ISPF, you must be logged on to Session Manager
to copy TSOOUT and TSOIN streams. Also, be certain SESSMGR is set to
YES in ISPF. For information about setting SESSMGR to YES, see OS/390
ISPF Planning and Customizing.

2. If the source and target of the copy request are both data sets, (SYSOUT or
QSAM), you do not have to be logged on under the Session Manager to use
the SMCOPY command.

  Chapter 1. TSO/E Commands and Subcommands 1-279



 SMCOPY Command  
 

SMCOPY Command Syntax 

 ┌ ┐─FROMSTREAM─ ┌ ┐─TSOOUT──────
 ┌ ┐── ──┴ ┴─FS───────── ( ──┴ ┴─stream_name─ )
55─ ──┬ ┬─SMCOPY─ ──┼ ┼───────────────────────────────────── ──────────────────5

└ ┘─SMC──── └ ┘── ──┬ ┬─FROMDATASET─ (dsname) ──────────
 └ ┘─FDS─────────

 ┌ ┐─A────────────
┌ ┐──PRINT( ──┴ ┴─sysout_class─ ) ── ┌ ┐─CAPS────

5─ ──┼ ┼───────────────────────────── ──┼ ┼───────── ──┬ ┬─────────────── ───────5
├ ┤── ──┬ ┬─TODATASET─ (dsname) ──── ├ ┤─ASIS──── ├ ┤──┬ ┬─FORMAT─ ───

 │ │└ ┘─TDS─────── └ ┘─NOTRANS─ │ │└ ┘─FMT────
└ ┘── ──┬ ┬─TOSTREAM─ (stream_name) ├ ┤──┬ ┬─NOFORMAT─ ─

 └ ┘─TS─────── │ │└ ┘─NOFMT────
 └ ┘──┬ ┬─PREFORMAT─
 └ ┘─PREFMT────

5─ ──┬ ┬────────────────────────────────── ─────────────────────────────────5%
└ ┘──LINE(start_line ──┬ ┬──────────── )

└ ┘──:stop_line

SMCOPY Command Operands
FROMDATASET(dsname)

specifies the name of the data set that contains the information to be copied.
The data set must be a sequential data set or a member of a partitioned data
set with either fixed- or variable-length records. The data set must reside on a
volume that is mounted or on a device that is on-line.

FROMSTREAM(stream_name)
specifies the name of the input stream that contains the information to be
copied. If you do not specify a data set to be copied, the default is
FROMSTREAM.

PRINT(sysout_class)
specifies that the information is to be copied to a SYSOUT data set of the
specified SYSOUT class and printed on a system printer. You can print up to
132 characters per line.

TODATASET(dsname)
specifies the name of the data set into which the information is to be copied.
The data set must be sequential or a member of a partitioned data set with
either fixed-or variable-length records. The data set must reside on a volume
that is mounted or on a device that is on-line.

If the data set does not exist, the Session Manager allocates a new data set. If
the information is being copied from a data set (the FROMDATASET operand
is specified), the attributes from this data set are used except for the size which
defaults to 5 tracks primary and 5 tracks secondary space. If more space is
required for the data set than the default provides, you must preallocate the
data set. If the information is being copied from a stream (the FROMSTREAM
operand is specified), the new data set is allocated with the following attributes:

RECFM
VB or VBA if FORMAT or PREFORMAT is specified.

LRECL
<256

1-280 OS/390 V2R7.0 TSO/E Command Reference  



  SMCOPY Command
 

BLKSIZE
3120

TOSTREAM(stream_name)
specifies the name of the output stream for the copy operation.

ASIS | CAPS  | NOTRANS

ASIS specifies that the Session Manager is to leave lowercase letters as
lowercase letters and translate the unprintable characters to blanks
(X'40').

Use the ASIS operand if the information is to be printed on a printer with a
dual-case print train (TN or T11).

CAPS specifies that the Session Manager is to translate lowercase letters to
uppercase and translate the unprintable characters to blanks (X'40').

NOTRANS specifies that no translation is to occur.

FORMAT | NOFORMAT | PREFORMAT

FORMAT specifies that carriage control characters are to be placed in the
copied information. If the information is being placed in a stream, the
highlighted lines are highlighted in the stream.

If the information is being copied to a data set, the record format must be
FBA or VBA to indicate the presence of ASA control characters. If the data
set is new, the Session Manager allocates it with a VBA record format.

FORMAT is ignored if FROMSTREAM is not specified.

NOFORMAT specifies that no control characters are to be placed in the copied
information.

If the information is being copied from a data set, the data set must have a
FB or VB record format. If the information is being copied from a stream to
a data set, the data set must have a FB or VB record format. If the
information is being copied from a data set to a data set, both data sets
must have the same format (FB or VB). If the data set that the information
is going into is new, the Session Manager allocates it with a VB record
format (if it is being copied to a stream) or it is allocated with the same
record format as the data set it is coming from (for a data set to data set
copy operation).

PREFORMAT specifies that the source for the copy (stream or data set)
already contains carriage control characters. Use this operand when the
SNAPSHOT command was previously used to place information in a
stream or data set.

If the information is being copied from a data set, the data set must have a
FBA or VBA record format. If the information is being copied from a stream
to a data set, the data set must have a FBA or VBA record format. If the
information is being copied from a data set to a data set, both data sets
must have the same format (FBA or VBA). If the data set that the
information is going into is new, the Session Manager allocates it with a
VBA record format (if it is being copied to a stream) or it is allocated with

  Chapter 1. TSO/E Commands and Subcommands 1-281



 SMFIND Command  
 

the same record format as the data set it is coming from (for a data set to
data set copy operation).

LINE(start_line:stop_line)
specifies the range of lines to be copied. The default is the first line of the
information and the last line of the information.

If the information is being copied from a stream, you can find specific line
numbers by using the QUERY, SMFIND, or FIND.LINE commands. If the
information is being copied from a data set, ‘LINE’ represents records of the
data set, not the line numbers within a numbered data set.

SMCOPY Command Return Codes
Figure 1-46. SMCOPY Command Return Codes

0 Processing successful.

4 Processing successful. Copy operation ended at the end of file or at
the end of stream.

8 Processing unsuccessful. The copy was not performed.

12 Processing unsuccessful. Internal error, contact your system
programmer.

SMCOPY Command Examples

 Example 1
Copy the TSOOUT stream to the system printer, translating all lowercase letters to
uppercase.

smcopy

 Example 2
Copy the member ZLOGON of the data set ‘SYS1.CLIST’ to the member ZLOGON
of the data set TEST.CLIST.

smcopy fromdataset('sys1.clist(zlogon)')
 todataset(test.clist(zlogon))

 Example 3
Copy the data set containing TSO/E commands from the data set SAMPLE and
place these commands in the TSOIN stream where they will be executed.

smcopy fromdataset('sample.commands.data')
 tostream(tsoin)

 SMFIND Command
Use the SMFIND command to locate a string of characters in a stream. If the text
string is found, the Session Manager displays the line number of the text string in
the output stream for the TSO/E function (TSOOUT in the default environment) and
puts the line number in register 15. If operating from a CLIST, you can access the
line number from the CLIST variable ‘&LASTCC’.

Note:  SMFIND command processing assumes that the last line of the output
stream is the SMFIND command. Therefore, the SMFIND command does
not search the last line of the output stream.

1-282 OS/390 V2R7.0 TSO/E Command Reference  



  SMFIND Command
 

SMFIND Command Syntax 

55─ ──┬ ┬─SMFIND─ ─text_string─ ──┬ ┬─────────────────────────── ───────────────5
 └ ┘─SMF──── │ │┌ ┐─TSOOUT──────

└ ┘──STREAM( ──┴ ┴─stream_name─ )

 ┌ ┐─BACKWARD─
5─ ──┼ ┼────────── ──┬ ┬─────── ──┬ ┬────── ──┬ ┬─────────────────────────── ─────5%

└ ┘─FORWARD── ├ ┤─ALL─── ├ ┤─ANY── └ ┘──LINE(line_1 ──┬ ┬───────── )
└ ┘─FIRST─ └ ┘─ASIS─ └ ┘──:line_2

SMFIND Command Operands
text_string

specifies the string of characters to be found. The text_string can be up to 256
characters in length and must be enclosed in delimiters that are not present in
the text_string.

STREAM(stream_name)
specifies the name of the stream to be searched.

BACKWARD  | FORWARD

BACKWARD  specifies that the Session Manager is to search for the text_string
from the current location backward toward the top of the stream.

FORWARD specifies that the Session Manager is to search for the text_string
from the current location forward toward the bottom of the stream.

ALL | FIRST

ALL  specifies that the Session Manager is to find all occurrences of the
text_string. The line number of each found text_string is displayed in the
output stream for the TSO/E function. Register 15 (and the CLIST variable
&LASTCC) contains the line number of the last occurrence of the
text_string.

FIRST specifies that the Session Manager is to find only the first occurrence of
the text_string. The Session Manager displays the line number of the found
text_string in the output stream for the TSO/E function. It also places the
number in register 15 and the CLIST variable &LASTCC.

ANY | ASIS

ANY specifies that upper and lowercase differences are to be ignored when
finding the text_string.

ASIS specifies that the Session Manager is to find an exact match of the
entered text_string.

LINE(line_1:line_2)
specifies the range of lines to be searched.

If only line_1 is specified, the Session Manager searches from that line to the
top or bottom of the stream depending on whether BACKWARD or FORWARD
is specified.

  Chapter 1. TSO/E Commands and Subcommands 1-283



 SMPUT Command  
 

If you specify a value for line_1 or line_2 that is not in the stream, the Session
Manager uses the top or bottom line in the stream.

SMFIND Command Return Codes
Upon completion, SMFIND returns the following:

Figure 1-47. SMFIND Command Return Codes

0 Return code 0 means one of the following:

� The text_string was not found.
� The specified stream was not found.
� The command was incorrectly specified and SMFIND was unable

to prompt for correct information.

Other A positive integer specifying the line number of the found text_string.
The maximum value is 16,777,216.

SMFIND Command Examples

 Example 1
Find the next occurrence of ‘time’ in the TSOOUT stream.

smfind 'time' forward

 Example 2
Find the previous occurrence of ‘time’ in the TSOOUT stream.

smfind 'time'

 SMPUT Command
Use the SMPUT command to place a text string in a stream. If you place the text
string in the TSOIN stream, it is interpreted as a TSO/E command. If you place the
text string in the SMIN stream, it is interpreted as a Session Manager command.

SMPUT Command Syntax 

 ┌ ┐─SMIN────────
55─ ──┬ ┬─SMPUT─ ──'text_string' ──┼ ┼───────────── ────────────────────────────5
 └ ┘─SMP─── └ ┘─stream_name─

5─ ──┬ ┬──────────────────────────── ───────────────────────────────────────5%
 │ │┌ ┐─1─────────

└ ┘──INTENSITY( ──┴ ┴─intensity─ )

SMPUT Command Operands
text_string

specifies the string of characters to be placed in the stream. The text_string
must be enclosed in delimiters that are not in the text_string. It can be up to
32768 characters in length, excluding the delimiters. If the text_string is being
sent to the SMIN stream, it can be up to 512 characters in length.

stream_name
specifies the name of the stream where the text_string is to be placed.

1-284 OS/390 V2R7.0 TSO/E Command Reference  



  STATUS Command
 

INTENSITY(intensity | 1)
specifies the brightness at which the information in the stream is to be
displayed. The valid values are:

0 The information in the stream is not to be displayed. You can see the line
that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

Note:  You must specify stream_name if you specify a value for INTENSITY.

SMPUT Command Return Codes
Figure 1-48. SMPUT Command Return Codes

0 Processing successful.

Note:  If the text_string contained Session Manager or TSO/E
commands, the zero return code does not indicate successful
execution of those commands.

4 Syntax error.

8 The stream was not found.

12 Processing unsuccessful.

SMPUT Command Examples

 Example 1
Place the TSO/E TIME command highlighted in the TSOIN stream.

smput 'time' tsoin intensity(2)

 STATUS Command
Use the STATUS command to have the status of batch jobs displayed at your
terminal. You can obtain the status of all batch jobs, several specific batch jobs, or
a single batch job. The information you receive for each job tells you whether it is
awaiting execution, is currently executing, or has completed execution but is still on
an output queue. It also indicates whether the job is in hold status. An attention
interrupt during the processing of STATUS results in termination of the command,
but not the job.

STATUS is a foreground-initiated-background (FIB) command. You must be
authorized by installation management to use STATUS. This command is generally
used in conjunction with the CANCEL, SUBMIT, and OUTPUT commands.

Requesting an attention interrupt after issuing a STATUS command might terminate
that command's processing. In this case, you cannot resume STATUS processing
by pressing the Enter key as you can after most attention interrupts.

  Chapter 1. TSO/E Commands and Subcommands 1-285



 SUBMIT Command  
 

STATUS Command Syntax 

55─ ──┬ ┬─STATUS─ ──┬ ┬────────────────────────────── ────────────────────────5%
 └ ┘─ST───── │ │┌ ┐──┬ ┬─── ───────────────
 │ ││ │└ ┘─,─
 └ ┘──( ───6 ┴─jobname─ ──┬ ┬───────── )

└ ┘──(jobid)

STATUS Command Operand
(jobname (jobid))

specifies the name of the batch job for which you want to know the status. If
two or more jobs have the same job name, the system displays the status of all
the jobs encountered and supplies job IDs for identification. When more than
one job name is included in the list, the list must be enclosed within
parentheses. When you specify a list of job names, you must separate the job
names with standard delimiters. By default, if you do not specify any job
names, you receive the status of all batch jobs in the system whose job names
consist of your user ID and one identifying character (alphabetic, numeric, or
one of the special characters #, $, or @). The processing may be different if
your installation has replaced the default IBM-supplied installation exit.

The optional job ID subfield can consist of 1 to 8 alphanumeric characters. The
first character must be alphabetic or one of the special characters (#, $, or @).
The job ID is a unique job identifier assigned by the job entry subsystem (JES)
at the time the job was submitted to the batch system. Currently the only valid
forms of job identifiers (jobid) assigned by JES are:

JOBnnnnn or Jnnnnnnn – Jobs
STCnnnnn or Snnnnnnn – Started Tasks
TSUnnnnn or Tnnnnnnn – TSO Users

STATUS Command Return Codes
Figure 1-49. STATUS Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

 SUBMIT Command
Use the SUBMIT command to submit one or more batch jobs for background
processing. Background processing is explained in OS/390 TSO/E User's Guide.

SUBMIT is a foreground-initiated-background (FIB) command. You must be
authorized by installation management to use SUBMIT. This command is generally
used in conjunction with the CANCEL, STATUS, and OUTPUT commands.

Users can submit jobs containing only TSO/E commands to execute commands in
the background. If a job contains the LOGON command and SUBMIT finds it before
encountering a JOB statement, SUBMIT uses the LOGON command to build the
JOB and EXEC statements. If your installation uses security labels and security
checking, you can specify LOGON in the job stream and include the SECLABEL
operand. LOGON builds a JOB statement that contains the security label from the

1-286 OS/390 V2R7.0 TSO/E Command Reference  



  SUBMIT Command
 

LOGON command. Using the SECLABEL operand lets users submit a job with a
different security label than the security label they used to log on to TSO/E.

Users also can submit jobs to run at a different security label than the one they
logged on with by specifying the SECLABEL operand on the JOB statement. The
SECLABEL that is specified must be one that the user has access to.

If a job does not contain the LOGON command or JOB statement with a security
label, the job runs at the security label the user logged on with.

If users meet certain RACF requirements, they can define another user to submit
their jobs for them. When this method of submitting jobs, called surrogate job
submission, is used, jobs are submitted from the second (surrogate) user's TSO/E
ID. The jobs run as if submitted by the first user. For more information about
surrogate job submission, see OS/390 Security Server (RACF) General User's
Guide.

Requesting an attention interrupt after issuing a SUBMIT command might terminate
that command's processing. In this case, you cannot resume SUBMIT processing
by pressing the Enter key as you can after most attention interrupts.

SUBMIT Command Syntax 

 ┌ ┐─NOHOLD─
55─ ──┬ ┬─SUBMIT─ ──┬ ┬─*──────────────── ──┬ ┬───────── ──┼ ┼──────── ────────────5
 └ ┘─SUB──── │ │┌ ┐──────────── ├ ┤─PAUSE─── └ ┘─HOLD───

└ ┘──( ───6 ┴─data_set─ ) └ ┘──END(nn)

┌ ┐─NOJOBCHAR─────────── ┌ ┐──USER(user_id)
5─ ──┼ ┼───────────────────── ──┬ ┬──────────── ──┼ ┼─────────────── ────────────5

└ ┘──JOBCHAR(characters) ├ ┤─PASSWORD─── └ ┘─NOUSER────────
 └ ┘─NOPASSWORD─

 ┌ ┐─NOTIFY───
5─ ──┼ ┼────────── ─────────────────────────────────────────────────────────5%
 └ ┘─NONOTIFY─

SUBMIT Command Operands
(data_set) | *

(data_set) specifies one or more data set names or names of members of
partitioned data sets that define an input stream (JCL plus data). If you
specify more than one data set name, separate them with delimiters, and
enclose them in parentheses.

* An asterisk (*) specifies that the job stream is to be obtained from the
current source of input (for example, the terminal or currently executing
CLIST). TSO/E commands can be entered directly without creating and
editing a data set.

Note:  All characters in the job stream are converted to uppercase prior to
being processed.

This positional operand and the data_set positional operand are mutually
exclusive. Either of both operands is required.

  Chapter 1. TSO/E Commands and Subcommands 1-287



 SUBMIT Command  
 

The SUBMIT * function described here is not available in EDIT mode. Job
stream input received directly from the terminal or any other source will not
be saved after the job is submitted. The SUBMIT * subcommand of EDIT
continues to select the current data set as the input job stream. See the
SUBMIT subcommand of EDIT for more information.

If the submitted job contains a job statement, the SUBMIT operands that
generate job statements are ignored. The SUBMIT operands do not
override the job statement.

Note:  When TSO/E processes a job in a CLIST that uses the SUBMIT *
command, statements following the DD * statement are left
adjusted to column 1, thereby removing leading spaces. (This is
unique to CLIST processing only; it is not a batch concern.) Refer to
OS/390 TSO/E CLISTs, for a procedure that preserves the leading
spaces in a CLIST.

PAUSE | END(nn)

PAUSE specifies that you want to make a decision after the job stream has
been read in. This decision is to either continue the SUBMIT * process or
terminate. If this operand is omitted, the job stream is processed when the
end of the job stream is detected. The default is not to pause when the end
of the job stream is reached. If you have not specified PAUSE and you
subsequently make an error, the only way the submission can be aborted is
with an attention interrupt. This is an optional operand.

Pause is valid only when * (asterisk) is specified for the positional
parameter and you are not in EDIT mode.

END(nn) specifies a 1- or 2-character string to indicate the end of the job
stream. Only alphabetic, numeric, or special characters #, $, or @ are valid
END characters. If this operand is not specified, a null or blank line
indicates the end of the job stream. Specifying this operand allows blank
lines to be part of the job stream. To terminate the job stream, the END
character(s) must begin in column 1 and be the only data on the input line.
The END character string is not considered part of the job stream. END is
valid only when * (asterisk) is specified for the positional parameter and
when you are not in EDIT mode.

HOLD | NOHOLD

HOLD specifies SUBMIT is to have job output held for use with the OUTPUT
command by defaulting to the held MSGCLASS supplied by the installation
manager for the user. Output directed to DD statements is held if
SYSOUT=* or HOLD=YES is specified on the DD statement.

NOHOLD specifies job output is not to be held. NOHOLD is the default.

JOBCHAR( characters) | NOJOBCHAR

JOBCHAR( characters) specifies characters to be appended to the jobname on
every JOB statement in the data set being submitted. Use 1 character if
you plan to use the STATUS command and your job name is your user ID.

1-288 OS/390 V2R7.0 TSO/E Command Reference  



  SUBMIT Command
 

NOJOBCHAR  specifies SUBMIT is to prompt you for jobname characters
whenever the job name is the user ID. If prompting is not possible, the
jobname character defaults to the letter X. NOJOBCHAR is the default. The
user ID is determined by certain rules. See the USER operand for a list of
the rules.

PASSWORD | NOPASSWORD

PASSWORD specifies a PASSWORD operand is to be inserted on the
generated JOB statement by SUBMIT, if RACF is installed. SUBMIT
prompts you to enter the password value in print-inhibit mode, if the
terminal supports the feature. This operand is not required if a generated
JOB statement or RACF is not installed. If RACF is installed, PASSWORD
is the default. The password used is:

� The password (if executing in the foreground) entered on the LOGON
command initiating the foreground session. The current password is
used for RACF-defined users. If you have updated your password using
the LOGON command, you must enter the PASSWORD operand with
the new password on the SUBMIT command.

� The password on the LOGON command (if executing in the
background) specified in the submitted data set. If a LOGON command
is not in the data set, the USER and PASSWORD operands are not to
be included on the generated JOB statement.

NOPASSWORD specifies the PASSWORD and USER operands are not
included on the generated JOB statement. If RACF is not installed,
NOPASSWORD is the default.

USER(user_id) | NOUSER

USER(user_id) specifies a USER operand is to be inserted on the generated
JOB statement, if RACF is installed. The user ID specified is also used as
the jobname for the generated JOB statement. For job name or user ID
comparison for NOJOBCHAR processing, see the NOJOBCHAR operand
description.

If neither USER nor NOUSER is entered and RACF is installed, USER is
the default. The default user ID used is determined by the following rules.
The rules are ordered. If the first rule is met, then that user ID is used.

1. The user ID specified on a LOGON command in the data set being
submitted.

2. The user ID specified on the LOGON command (if executing in the
foreground) initiating the foreground session; the user ID specified on
the USER operand (if executing in the background, RACF-defined
users only) on the JOB statement initiating the background session.

3. The default user ID SUBMITJB is used.

Note:  If a password is not specified, the USER operand is not generated
on the job statement. You can specify a password:

� On the user's SUBMIT command
� On the LOGON command data set being submitted

  Chapter 1. TSO/E Commands and Subcommands 1-289



 SUBMIT Command  
 

� In the LOGON for the current session, when executing in the
foreground, by requesting that the password be stored in the
TSB via the LOGON exit.

NOUSER specifies generated JOB statements do not include USER and
PASSWORD operands. If USER is not specified and RACF is not installed,
NOUSER is the default.

NOTIFY | NONOTIFY

NOTIFY specifies that you are to be notified when your job terminates in the
background, if a JOB statement has not been provided. If you have elected
not to receive messages, the message is placed in the broadcast data set.
You must then enter LISTBC to receive the message. If a JOB statement is
generated, NOTIFY is the default.

When you supply your own JOB statement, use the NOTIFY=user_id
keyword on the JOB statement if you want to be notified when the job
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating a
JOB statement.

If NOTIFY or NONOTIFY is not specified, the default is:

� The NOTIFY operand (if executing in the foreground) is inserted on the
generated JOB statement.

� The NOTIFY operand (if executing in the background) is only inserted
on the generated JOB statement for RACF-defined users who have
specified the USER operand on the JOB statement initiating the
background session.

NONOTIFY specifies a termination message is not to be issued or placed in the
broadcast data set. The NONOTIFY keyword is only recognized when a
JOB statement has not been provided with the job that you are processing.

SUBMIT Command Return Codes
Figure 1-50. SUBMIT Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

SUBMIT Command Examples

 Example 1
Operation:  Submit two jobs for batch processing.

Known:

� The data sets that contain the jobs: ABTJQ.STRESS.CNTL and
ABTJQ.STRAIN.CNTL

submit (stress, strain)

1-290 OS/390 V2R7.0 TSO/E Command Reference  



  TERMINAL Command
 

 Example 2
Operation:  Concatenate and submit data sets as a single job.

Known:

� The data set that contains the JCL for the job is JCL.CNTL(ASMFCLG)
� The data set that contains the input data is MYDATA.DATA

submit (jcl(asmfclg) mydata)

This command causes a single background job to be submitted and simultaneously
concatenates a generated job card (if required), JCL, and the data. Each data set is
not submitted as a separate job.

 TERMINAL Command
Use the TERMINAL command to define operating characteristics that depend
primarily upon the type of terminal that you are using. You can specify the ways
that you want to request an attention interruption and you can identify hardware
features and capabilities. The TERMINAL command allows you to request an
attention interruption whether or not your terminal has a key for attention interrupt.

Note:  The TERMINAL command is only for line mode type devices that are not in
full-screen applications. Usually TERMINAL has no effect on full-screen
devices such as 3270, nor does TERMINAL work if the user is in a
full-screen application, such as ISPF.

Note:  The TERMINAL command is not allowed as a TSO/E command in the
background.

The terminal characteristics that you have defined remain in effect until you enter
the LOGOFF command. If you terminate a session and begin a new one by
entering a LOGON command (instead of a LOGOFF command followed by a
LOGON command), the terminal characteristics defined in the earlier session
remain in effect during the subsequent session.

If your session is interrupted by a line disconnection and you logon again using the
LOGON RECONNECT, you must redefine all previously defined terminal
characteristics. The reason for the redefinition is that all records for defined data
are lost as a result of the line disconnection.

Note:  If an invoked program issues the VTAM STTRAN macro that affects the
same hex value that the TERMINAL command changed, then the value set
by the TERMINAL command is no longer in effect.

TERMINAL Command Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-291



 TERMINAL Command  
 

 

 ┌ ┐─NOLINES──────── ┌ ┐─NOSECONDS────────
55─ ──┬ ┬─TERMINAL─ ──┼ ┼──────────────── ──┼ ┼────────────────── ───────────────5

└ ┘─TERM───── └ ┘──LINES(integer) └ ┘──SECONDS(integer)

 ┌ ┐─NOINPUT───────
5─ ──┼ ┼─────────────── ──┬ ┬───────── ──┬ ┬─────────── ─────────────────────────5

└ ┘──INPUT(string) ├ ┤─BREAK─── ├ ┤─TIMEOUT───
 └ ┘─NOBREAK─ └ ┘─NOTIMEOUT─

 ┌ ┐─NOCLEAR───────
5─ ──┬ ┬─────────────────── ──┼ ┼─────────────── ──┬ ┬────────────────────── ────5

└ ┘──LINESIZE(integer) └ ┘──CLEAR(string) └ ┘──SCRSIZE(rows,length)

5─ ──┬ ┬──────────── ──┬ ┬───────────────────────────────────────────────── ──5%
├ ┤──TRAN(name) ├ ┤─NOCHAR──────────────────────────────────────────

 └ ┘─NOTRAN───── │ │┌ ┐───────────────────────────────────────
└ ┘──CHAR( ───6 ┴( ──┬ ┬──X'hexchar' ),( ──┬ ┬──x'hexchar' ) )

└ ┘──C'char' ─── └ ┘──c'char' ───

TERMINAL Command Operands
LINES(integer) | NOLINES

LINES(integer) 6 specifies an integer from 1 to 255 that indicates you want the
opportunity to request an attention interruption after the specified number of
lines of continuous output has been directed to your terminal.

NOLINES 6 specifies output line count is not to be used for controlling an
attention interruption. This is the default condition.

SECONDS(integer) | NOSECONDS

SECONDS(integer) 6 specifies an integer from 10 to 2550 (in multiples of 10) to
indicate that you want the opportunity to request an attention interruption
after a number of seconds has elapsed during which the terminal has been
locked and inactive. If you specify an integer that is not a multiple of 10, it
is changed to the next largest multiple of 10.

NOSECONDS 6 specifies elapsed time is not to be used for controlling an
attention interruption. This is the default condition.

INPUT(string) | NOINPUT

INPUT(string) 6 specifies the character string, if entered as input, will cause an
attention interruption. The string must be the only input entered and cannot
exceed 4 characters in length.

NOINPUT 6 specifies no character string will cause an attention interruption.
This is the default condition.

BREAK | NOBREAK

6 Not supported with terminals that use VTAM.

1-292 OS/390 V2R7.0 TSO/E Command Reference  



  TERMINAL Command
 

BREAK  specifies, for IBM 3767 and IBM 3770 terminals, the system can
interrupt your input. For other terminals, it specifies that your terminal
keyboard is to be unlocked to allow you to enter input whenever you are
not receiving output from the system. The system can interrupt your input
with high-priority messages. Because use of BREAK with a terminal type
can result in loss of output or error, check with your installation system
manager before specifying this operand.

Note:  If a command processor for a display device is operating in
full-screen mode, VTAM treats the device as if it were operating in
NOBREAK mode. For a more detailed description, see OS/390
TSO/E Programming Services.

NOBREAK  specifies, for IBM 3767 and IBM 3770 terminals, the system is not
allowed to interrupt you (break in) with a message when you are entering
data. For other terminals, it specifies that your terminal keyboard is to be
unlocked only when your program or a command you have used requests
input.

The default for the BREAK/NOBREAK operand is determined when your
installation defines the terminal features.

TIMEOUT | NOTIMEOUT

TIMEOUT 6 specifies your terminal keyboard will lock automatically after
approximately 9 to 18 seconds of no input.

NOTIMEOUT 6 specifies your terminal keyboard will not lock automatically after
approximately 9 to 18 seconds of no input.

The default for the TIMEOUT/NOTIMEOUT operand is determined when
your installation defines the terminal features.

LINESIZE(integer)
specifies the length of the line (the number of characters) that can be printed at
your terminal. The integer must not exceed 255. LINESIZE is not applicable to
the IBM 3270 display stations. The default values are:

� Teletype 33/35: 72 characters
� IBM 2741 Communication Terminal: 120 characters
� IBM 3767 Communication Terminal: 132 characters
� IBM 3770 Communication System: 132 characters

If LINESIZE (80) is coded with a RECFM equal to U, then the line is truncated.
The byte truncated (the last byte) is reserved for an attribute character.

If you use LINESIZE to adjust the line length of an LU1 device, the line length
defaults to zero.

CLEAR(string) | NOCLEAR

CLEAR(string) 6 specifies a character string, if entered as input, causes the
screen of an IBM 3270 Display Station to be erased. The string must be
the only input entered and cannot exceed 4 characters in length.

NOCLEAR 6 specifies that you do not want to use a sequence of characters to
erase the screen of an IBM 3270 Display Station. This is the default
condition.

  Chapter 1. TSO/E Commands and Subcommands 1-293



 TERMINAL Command  
 

SCRSIZE(rows,length)
specifies the screen dimensions of an IBM 3270 Display Station, an LU2 device
with VTAM, and a Network Terminal Option (NTO) terminal. When you specify
the SCRSIZE operand, you must use the LINESIZE operand to get continuous
writing on a NTO terminal.

If you are running under Session Manager, the system ignores SCRSIZE.

rows specifies the maximum number of lines of data that can appear on the
screen.

length specifies the maximum number of characters in a line of data displayed
on the screen.

Standard screen sizes (in rows and length) are:

  6,40
  12,40
  12,80
  15,64
  24,80
  27,132
  32,80
  43,80

 The default values for the screen sizes are determined when your installation
defines the terminal features.

TRAN(name) | NOTRAN

TRAN(name) 7 specifies a load module that contains tables used to translate
specific characters you type at the terminal into different characters when
they are seen by TSO/E. Conversely, when these characters are sent by
TSO/E to the terminal, they are retranslated. Translation of numbers and
uppercase letters is not allowed.

Character translation is especially useful when you are using a
correspondence keyboard and would like to type the characters: <, >, │.

They are not available on a correspondence keyboard. For example,
translation tables make it possible for you to specify that when you type the
characters: [, ], !.

TSO/E interprets them as <, >, and |.

NOTRAN 7 specifies no character translation is to take place.

CHAR | NOCHAR

CHAR 7 specifies one or more pairs of characters, in either hexadecimal or
character notation, that replace characters in the translation tables specified
by TRAN(name) or in the default translation tables. When the default
translate is used, all unprintable characters are set to blanks. The first
character of the pair is the character typed, printed, or displayed at the

7 Not supported with terminals that use TCAM.

1-294 OS/390 V2R7.0 TSO/E Command Reference  



  TEST Command
 

terminal. The second character is the character seen by TSO. Translation
of numbers and uppercase letters is not allowed. Do not select characters
that might be device control characters.

NOCHAR 7 specifies all character translations previously specified by CHAR
are no longer in effect.

TERMINAL Command Return Codes
Figure 1-51. TERMINAL Command Return Codes

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

TERMINAL Command Examples

 Example 1
Operation:  Modify the characteristics of an IBM 2741 Communication Terminal to
allow operation in unlocked-keyboard mode.

Known:

� Your terminal supports the break facility. The installation has defined a default
of NOBREAK for your terminal.

terminal break

 Example 2
Operation:  Specify character translation for certain characters not available on an
IBM 3767 Communication Terminal with an EBCDIC keyboard.

Known:

� Your terminal supports the character translation facility, and you are using the
default translation table or a previously specified translation table (that you
specified with the TRAN operand). You now want [ to stand for <, ] to stand for
>, and ! to stand for P.

terminal char((C'[',X'4C'),(C']',X'6E'),(C'!',X'FA'))

 TEST Command
Use the TEST command to test a program, command processor, or APPC/MVS
transaction program for proper execution and to locate programming errors. For
APPC/MVS transaction programs, use this command to test standard transaction
programs. However, you can also use this command to partially test a multi-trans
type transaction program up to the point where it issues GETTRANS for the next
transaction. To use the TEST command and subcommands, you should be familiar
with the Assembler language and addressing conventions. Refer to the appropriate
publications for information about how to code assembler programs and definitions
of assembler language terminology. Also, refer to OS/390 TSO/E Programming
Guide, for more information about using the TEST command and the TEST tutorial.
For best results, the program to be tested should be written in basic Assembler
language. To use the symbolic names feature of TEST, your program should have
been assembled and link-edited with the TEST operands.

  Chapter 1. TSO/E Commands and Subcommands 1-295



 TEST Command  
 

If the tested program attempts to LOAD, LINK, XCTL, or ATTACH another module,
the module is being searched for in the following sequence: TASKLIB, STEPLIB,
JOBLIB, LPA, and then LNKLST. If the module is not in any of these areas, it will
not be found. To avoid this, bring the module into virtual storage by using the
LOAD subcommand of TEST.

If you enter the TEST command with operands, a pseudo or automatic breakpoint
is established at +0 for the problem program being invoked under TEST. Therefore,
do not use the AT subcommand of TEST (AT +0).

If you use the TEST command to test inbound APPC/MVS transaction programs,
the following restrictions apply:

� You should log on with a LOGON procedure that does not allocate APPC/MVS
conversations. If APPC/MVS conversations exist, TEST issues message
IKJ575ð1l TEST END DUE TO ERROR + with a second-level message that explains
the error and then TEST terminates. You must then perform cleanup for the
conversations. (To clean up the conversations, log off. When you log on again,
you should ensure that any LOGON procedure command that you specified on
the logon panel does not invoke a CLIST or REXX exec that allocates
APPC/MVS conversations. Note that allocation of DFM data sets may cause
APPC/MVS conversations to be allocated.)

� The user-level transaction program profile for the LUs that are to be used for
transaction program testing must be allowed. To allow user-level transaction
program profiles, the LUADD statement in PARMLIB member APPCPMxx must
include the TPLEVEL(USER) keyword. Use the LU or BASELU keyword to
specify the LU on which to test the transaction program. These keywords are
valid only when you use the TP keyword operand on inbound APPC/MVS
transaction programs. BASELU is the default. For information about transaction
program profiles, see OS/390 MVS Planning: APPC/MVS Management.

� If your installation uses RACF and security label checking has been activated,
transaction programs cannot be tested under LU=LOCAL environment. For
more information about the environment for testing transaction programs, see
OS/390 MVS Programming: Writing TPs for APPC/MVS.

See OS/390 TSO/E Programming Guide, for information about:

� Using the TEST command. It contains a step-by-step tutorial on how to use
TEST.

� Testing an APPC/MVS transaction program.

� Addressing conventions associated with TEST.

� Restrictions on the use of symbols.

� Programming considerations and restrictions for using TEST. These include:

 – 31-bit addressing
– Using virtual fetch services

 – Cross-memory environment
– The vector facility.

Note:  Requesting an attention interrupt while testing a password protected data
set might terminate the TEST command's processing.

1-296 OS/390 V2R7.0 TSO/E Command Reference  



  TEST Command
 

TEST Command Syntax 

 ┌ ┐─\───────────────
55──TEST─ ──┴ ┴──'data_set_name' ──┬ ┬────────── ──┬ ┬────────────── ────────────5

└ ┘──(member) └ ┘──'parameters'

 ┌ ┐─LOAD─── ┌ ┐─NOCP─────────────────────────────────────────
5─ ──┴ ┴─OBJECT─ ──┼ ┼────────────────────────────────────────────── ─────────5%
 │ │┌ ┐─BASELU────────
 ├ ┤──TP('tp_name') ──┼ ┼─────────────── ──┬ ┬────────

│ │└ ┘──LU('lu_name') └ ┘─KEEPTP─
 └ ┘─CP───────────────────────────────────────────

TEST Command Operands
‘data_set_name’

specifies the name of the data set containing the program to be tested. The
program must be a load module that is a member of a partitioned data set
(PDS), a member of an extended partitioned data set (PDSE), or it must be an
object module. A data set name must be specified to test a program that is not
currently active. A currently active program is one that has abnormally
terminated or has been terminated by an attention interruption.

When specifying the data set name for TEST, the name should be enclosed by
single quotes or the LOAD or OBJECT qualifier is added to the name specified.

* specifies that the program to be tested resides in the standard search libraries
(LPA and linklist).

(member)
if no member name for a partitioned data set or * is given, member
TEMPNAME is assumed.

If TEST is specified with a data set name, or *, registers 2 through 12 are
initialized to X'FFFFFFFF'. this allows you to determine which registers have
been changed by the tested program.

When TEST is specified for a load module in a PDS or a program object in a
PSDE, the program being tested can invoke other user programs, if they are
members of the same PDS or PDSE. The services by which one member can
invoke another in the same PDS or PDSE include LINK, LOAD, XCTL, and
ATTACH.

CAUTION: The program to be tested should not have the name TEST or
the name of any existing TSO/E service routine.

‘parameters’
specifies a list of parameters to be passed to the program being tested. The
‘parameters’ are valid only with the NOCP or TP keywords. If you specify the
CP operand, the system ignores the parameters. The list must not exceed 100
characters, including delimiters.

LOAD | OBJECT

LOAD  specifies the named program is either:

� a load module that has been processed by the linkage editor and is a
member of a partitioned data set (PDS)

  Chapter 1. TSO/E Commands and Subcommands 1-297



 TEST Command  
 

� a load module that has been processed by the DFSMS/MVS* binder
service and is a member of an extended partitioned data set (PDSE).

If both LOAD and OBJECT are omitted, LOAD is the default.

OBJECT  specifies the named program is an object module that has not been
processed by the linkage editor or the DFSMS/MVS binder service. The
program can be contained in a sequential data set or a member of a
partitioned data set.

If OBJECT is specified on the TEST command, the tested program will be
named TEMPNAME.

CP
specifies the named program is a command processor.

NOCP
specifies that the named program is not a command processor. If you do not
specify CP, TP, or NOCP, then NOCP is the default.

TP('tp_name')
specifies that the named program is an inbound APPC/MVS transaction
program. tp_name specifies the name of the transaction program you want to
test. It is case sensitive and required if you specify the TP keyword. The
tp_name can have a length of 1 to 64 characters consisting of uppercase and
lowercase letters A–Z, numerals 1–9, and 19 special characters:
.<(+&\);-/,%_>?:'=". If tp_name contains an apostrophe, you must enter two
successive apostrophes for each single apostrophe.

The TEST command does not recognize transaction program alias names. For
example, if you specify an alias of a transaction program name, it is considered
a new transaction program name.

LU(' lu_name') | BASELU

LU(' lu_name') specifies which LU is to be used. The LU keyword is valid only
when the TP keyword is specified. lu_name specifies the LU name. The
name is required if you specify LU. The name must be in uppercase and
enclosed in single quotation marks.

BASELU  specifies the base LU for the user address space to be used. The
BASELU keyword is valid only when the TP keyword is specified. The
default is BASELU if both LU and BASELU are omitted. For more
information about the base LU, see OS/390 MVS Programming: Writing
TPs for APPC/MVS.

KEEPTP
specifies that TEST should not clean up the transaction program and its
conversations when TEST terminates. If you do not specify this keyword, the
transaction program and its conversations are cleaned up when TEST
terminates. If you specify this keyword, TEST will not clean up the transaction
program and its remaining conversations.

1-298 OS/390 V2R7.0 TSO/E Command Reference  



  TEST Command
 

TEST Command Return Codes
Figure 1-52. TEST Command Return Codes

0 TEST is active.

4 TEST is inactive.

TEST Command Examples

 Example 1
Operation:  Enter TEST mode after experiencing either an abnormal termination of
your program or an attention interrupt.

Known:

� Either you have received a message saying that your foreground program has
terminated abnormally, or you have pressed the attention key while your
program was executing. In either case, you would like to begin debugging your
program.

test

 Example 2
Operation:  Invoke a program for testing.

Known:

� The name of the data set that contains the program:
TLC55.PAYER.LOAD(THRUST)

� The program is a load module and is not a command processor.
� The prefix in the user's profile is TLC55.
� The parameters to be passed: 2048, 80

test payer(thrust) '2ð48,8ð'

test payer.load(thrust) '2ð48,8ð'

 Example 3
Operation:  Invoke a program for testing.

Known:

� The name of the data set that contains the program: TLC55.PAYLOAD.OBJ
� The prefix in the user's profile is TLC55.
� The program is an object module and is not a command processor.

test payload object

 Example 4
Operation:  Test a command processor.

Known:

� The name of the data set containing the command processor:
TLC55.CMDS.LOAD(OUTPUT)

test cmds(output) cp

or

  Chapter 1. TSO/E Commands and Subcommands 1-299



 TEST Command  
 

test cmds.load(output) cp

Note:  You will be prompted to enter a command for the command processor.
TSO/E prompts you for the commands you want to test.

 Example 5
Operation:  Invoke a command processor for testing.

Known:

� The name of the data set containing the command processor is
TLC55.LOAD(OUTPUT).

� The prefix in the user's profile is TLC55.

test (output) cp

 Example 6
Operation:  Test an APPC/MVS transaction program.

Known:

� The TLC55.APPCTP.LOAD(myprog) data set contains the load module for the
transaction program to be tested.

� MAIL is the transaction program name that the inbound allocate request will try
to allocate.

test appctp.load(myprog) tp(’MAIL’) keeptp

Note:  Because the LU keyword is not specified, TEST uses the base LU for
testing. Also, the transaction program and its remaining conversations are
not cleaned up by TEST when TEST terminates because the KEEPTP word
is specified. See OS/390 TSO/E Programming Guide, for more information
on testing an APPC/MVS transaction program.

 Example 7
Operation:  Test an APPC/MVS transaction program with a specific LU.

Known:

� The TLC55.APPCTP.LOAD(myprog) data set contains the load module for the
transaction program to be tested.

� MAIL is the transaction program name that the inbound allocate request will try
to allocate.

� LUA is specified as the LU on which the transaction program is to be tested.

test appctp.load(myprog) tp('MAIL') lu('LUA')

Note:  LUA is the LU used for testing. Also, the transaction program and its
remaining conversations are cleaned up by TEST when TEST terminates
because the KEEPTP keyword is not specified. See OS/390 TSO/E
Programming Guide, for more information on testing an APPC/MVS
transaction program.

1-300 OS/390 V2R7.0 TSO/E Command Reference  



  TEST Subcommands (Overview)
 

TEST Subcommands (Overview)
The following are TSO/E commands you can use in the TEST environment:

ALLOCATE EXEC LISTALC LISTDS RENAME SUBMIT
ATTRIB HELP LISTBC PROFILE SEND TERMINAL
CANCEL LINK LISTCAT PROTECT STATUS UNALLOC (FREE)

The above commands are described with the TEST subcommands in alphabetical
order. For a complete description of the syntax and function of those TSO/E
commands that you can use in the TEST environment, see the corresponding
TSO/E command.

Use the various TEST subcommands to perform the following basic functions:

� Execute the program from its starting address or from any address within the
program.

� Display selected areas of the program as they currently appear in virtual
storage, or display the contents of any of the registers. With the exception that
access registers cannot be specified for indirect addressing or address
expressions, you can use access registers as you would general registers.

� Interrupt the program at specified locations. After you have interrupted the
program, you can display areas of the program or any of the registers, or you
can issue other subcommands of TEST to be executed before returning control
to the program being tested.

� Change the contents of specified program locations in virtual storage or the
contents of specific registers.

For a discussion on how to use these basic functions, see OS/390 TSO/E
Programming Guide. The subcommands of the TEST command and the TSO/E
commands you can use in the TEST environment are:

Figure 1-53 (Page 1 of 3). Subcommands and Functions of the TEST Command

ALLOCATE Dynamically allocates the data sets required by a program
intended for execution.

AND Performs a logical AND operation on data in two locations,
placing the results in the second location specified.

ASSIGNMENT OF
VALUES(=)

Modifies values in virtual storage and in registers.

AT Establishes breakpoints at specified locations.

ATTRIB Builds a list of attributes for non-VSAM data sets, which are to be
dynamically allocated.

CALL Initializes registers and initiates processing of the program at a
specified address using the standard subroutine linkage.

CANCEL Halts processing of batch jobs submitted for the terminal.

COPY Moves data.

DELETE Deletes a load module from virtual storage.

DROP Removes symbols established by the EQUATE command from
the symbol table of the module being tested.

  Chapter 1. TSO/E Commands and Subcommands 1-301



 TEST Subcommands (Overview)  
 

Figure 1-53 (Page 2 of 3). Subcommands and Functions of the TEST Command

END Terminates all operations of the TEST command and the
program being tested.

EQUATE Adds a symbol to the symbol table and assigns attributes and a
location to that symbol.

EXEC Executes a CLIST.

FREEMAIN Frees a specified number of bytes of virtual storage.

GETMAIN Acquires a specified number of bytes of virtual storage for use by
the program being processed.

GO Restarts the program at the point of interruption or at a specified
address.

HELP Lists the subcommands of TEST and explains their function,
syntax, and operands.

LINK Invokes the linkage editor service program.

LIST Displays the contents of a virtual storage area or registers.

LISTALC Displays a list of the names of data sets allocated during the
current TSO/E session.

LISTBC Displays a listing of the contents of the broadcast data set or a
user log data set, which contains messages of general interest
(NOTICES) and messages directed to a particular user (MAIL).

LISTCAT Lists catalog entries by name or entry type; lists selected fields
for each entry.

LISTDCB Lists the contents of a data control block (DCB). You must
specify the address of the DCB.

LISTDEB Lists the contents of a data extent block (DEB). You must specify
the address of the DEB.

LISTDS Displays attributes of specific data sets at the terminal.

LISTMAP Displays a map of the user's virtual storage.

LISTPSW Displays a program status word (PSW).

LISTTCB Lists the contents of the current task control block (TCB). You
can specify the address of another TCB.

LISTVP Displays the partial sum number and the vector section size of a
vector machine.

LISTVSR Displays the vector status register (VSR).

LOAD Loads a program into virtual storage for execution.

OFF Removes breakpoints.

OR Performs a logical OR operation on data in two locations, placing
the results in the second location specified.

PROFILE Establishes, changes, or lists the user profile.

PROTECT Prevents unauthorized access to a non-VSAM data set.

QUALIFY Establishes the starting or base location for resolving symbolic or
relative addresses; resolves identical external symbols within a
load module.

RENAME Changes the name of a non-VSAM cataloged data set or a
member of a PDS or creates an alias for a member of a PDS.

RUN Terminates TEST and completes execution of the program.

1-302 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—AND Subcommand
 

Figure 1-53 (Page 3 of 3). Subcommands and Functions of the TEST Command

SEND Sends a message to another terminal user or to the system
operator.

SETVSR Sets fields in the vector status register.

STATUS Displays status of batch jobs at terminal.

SUBMIT Submits one or more batch jobs for processing.

TERMINAL Defines the operating characteristics for the terminal being used.

UNALLOC Frees data sets under TSO/E TEST. Because FREE is an alias
for the FREEMAIN subcommand, use UNALLOC to free files
under TEST.

WHERE Displays the virtual address of a symbol or entry point, or the
address of the next executable instruction. WHERE can also be
used to display the module and CSECT name and the
displacement into the CSECT corresponding to an address.

 TEST—ALLOCATE Command
Use the ALLOCATE command to dynamically allocate the data sets required by a
program intended for execution. For a description of the ALLOCATE command
syntax and function, see the “ALLOCATE Command” on page 1-18.

 TEST—AND Subcommand
Use the AND subcommand to perform a logical AND operation on data or
addresses from:

� One virtual storage address to another
� One general register to another
� A general register to virtual storage
� Virtual storage to a general register
� An access register to virtual storage
� Virtual storage to an access register
� One access register to another.

The AND subcommand can be used to:

� Alter the contents of the general registers.
� AND an entire data field with another.

TEST—AND Subcommand Syntax 

 ┌ ┐─NOPOINTER─
55─ ─AND─ ─address_1─ ─address_2─ ──┬ ┬─────────────────────── ──┼ ┼─────────── ──5
 │ │┌ ┐─4─────── └ ┘─POINTER───

└ ┘──LENGTH( ──┼ ┼───────── )
 └ ┘─integer─

5─ ──┬ ┬───────────────────────── ──┬ ┬─────────────────────── ───────────────5%
├ ┤──ARFROM(register_number) ├ ┤──ARTO(register_number)
└ ┘──ALETFROM(alet_value) ─── └ ┘──ALETTO(alet_value) ───

  Chapter 1. TSO/E Commands and Subcommands 1-303



 TEST—AND Subcommand  
 

TEST—AND Subcommand Operands
address_1

specifies the location of data that is to be ANDed with data pointed to by
address_2.

If you do not specify POINTER and there is a breakpoint in the data pointed to
by address_1, the TSO/E TEST processor terminates the AND operation.

address_2
specifies the location of the data that is to be ANDed with data pointed to by
address_1. When the AND operation is complete, the result is stored at this
location.

You can specify address_1 and address_2 as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� A general register
� An entry name (preceded by a period)
� An access register.

ARTO(register_number)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space referred to by an access register. Valid access register
numbers are 0 through 15. The operands ARTO and ALETTO (or ALTO) are
mutually exclusive.

ARFROM(register_number)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space referred to by an access register. Valid access register
numbers are 0 through 15. The operands ARFROM, ALETFROM, and
POINTER are mutually exclusive.

ALETTO(alet_value) | ALTO( alet_value)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space. The ALETTO value may be from 1 to 8 hexadecimal
characters. The operands ALETTO and ARTO are mutually exclusive.

ALETFROM(alet_value) | ALFROM( alet_value)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space. The ALETFROM value may be from 1 to 8 hexadecimal
characters. The operands ALETFROM, ARFROM and POINTER are mutually
exclusive.

LENGTH(integer) | LENGTH(4)
specifies the length, in decimal, of the field to be copied. If an integer is not
specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes.

POINTER
specifies address_1 is to be validity checked to see that it does not exceed
maximum virtual storage size. address_1 is then treated as an immediate
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an
address converted to its hexadecimal equivalent). When using the POINTER

1-304 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—AND Subcommand
 

operand, do not specify a general register as address_1. The POINTER
operand and the operands ARFROM and ALETFROM are mutually exclusive.

NOPOINTER
specifies address_1 is to be treated as an address. If neither POINTER nor
NOPOINTER is specified, NOPOINTER is the default.

The AND subcommand treats the 16 general registers as contiguous fields. The
user can AND 10 bytes from general register 0 to another location as follows:

and ðR 8ðð6ð. length(1ð)

The AND subcommand ANDs the 4 bytes of register 0, the 4 bytes of register 1,
and the high-order 2 bytes of register 2 to virtual storage beginning at location
80060. When a register is specified as address_1, the maximum length of data that
is ANDed is the total length of the general registers or 64 bytes.

TEST—AND Subcommand Examples

 Example 1
Operation:  AND two full words of data each in a virtual storage location placing the
result in the second location.

Known:

� The starting address of the data to be used as the first operand: 80680
� The starting address of the data to be used as the second operand and the

location of the result: 80690

and 8ð68ð. 8ð69ð. length(8)

 Example 2
Operation:  AND the contents of two registers, placing the result in the second
register specified.

Known:

� The register which contains the data specified as the first operand: 10
� The register which contains data specified as the second operand and the

result: 5

and 1ðr 5r

 Example 3
Operation:  Turn off the high-order bit of a register.

Known:

� The AND value: X'7F'
� The register: 1

and 7F. 1r l(1) pointer

Note:  Specifying the pointer operand causes 7F to be treated as an immediate
operand and not as an address.

  Chapter 1. TSO/E Commands and Subcommands 1-305



 Assignment of Values Function of TEST  
 

 Example 4
Operation:  AND the contents of an area pointed to by a register into another area.

Known:

� The register which points to the area that contains the data to be ANDed: 14
� The virtual storage location which is to contain the second operand and result:

80680
� The length of the data to be ANDed: 8 bytes

and 14r% 8ð68ð. l(8) nopoint

 Example 5
Operation:  AND a fullword with X'7F' into the storage where general register 3
points in the alternate address/data space referred to by the ALET 00010004.

and 7f. 3r? pointer aletto(ððð1ððð4)

Assignment of Values Function of TEST
Use the assignment function to change:

� The contents of specified program locations in virtual storage
� The contents of specific registers
� The contents of storage in an alternate address/data space.

When processing is halted at a breakpoint or before execution is initiated, you can
modify values in virtual storage and in registers. This function is implicit; that is, you
do not enter a subcommand name. The system performs the function in response
to operands that you enter.

Syntax of Values Function of TEST 

 ┌ ┐─────────────────────────
55─ ──address=data_type ──'value' ───6 ┴┬ ┬───────────────────── ────────────────5
 └ ┘──,data_type ──'value'

5─ ──┬ ┬───────────────────── ──────────────────────────────────────────────5%
├ ┤──ALET(alet_value) ───
└ ┘──AR(register_number)

Operands of Values Function of TEST
address

specifies the location that you want to contain a new value. You can specify
address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period)
� A general register
� A floating point register
� A vector register

1-306 OS/390 V2R7.0 TSO/E Command Reference  



  Assignment of Values Function of TEST
 

� A vector register element
� An access register
� An alternate address/data space
� The vector mask register.

data_type ‘value’[,data_type ‘value’,...]
specifies the type of data and the value that you want to place in the specified
location. If you want to specify more than one data_type, enclose the list in
parentheses, for example, (data_type 'value',data_type 'value'). You
indicate the type of data by one of the following codes:

Following is a list of valid entries and syntax for data type:

C ‘character value’

X ‘hexadecimal value’

B ‘binary value’

H ‘[+] decimal value’

The minimum value for H-type is -32768 and the maximum value is 32767.

F ‘[+] decimal value’

The minimum value for F-type is -2147483648 and the maximum value is
2147483647.

E ‘[+] decimal value [E[+] decimal exponent]’

A maximum of eight digits is allowed for the decimal value and a maximum
of two digits is allowed for the decimal exponent.

D ‘[+] decimal value [E[+] decimal exponent]’

A maximum of 17 digits is allowed for the decimal value and a maximum of
two digits is allowed for the decimal exponent.

P ‘[+] decimal value’

A maximum of 31 digits is allowed.

Z ‘[+] decimal value’

A maximum of 16 digits is allowed.

Code Type of Data
Maximum
Length (Bytes) * Storage Boundary

Data types must begin
on specified boundary for
a virtual storage address

C Character One line of input,
continued lines
permitted

C-byte

X Hexadecimal 64 X-byte
B Binary 64 B-byte
H Fixed point binary (halfword) 6 H-halfword
F Fixed point binary (fullword) 11 F-fullword
E Floating point (single precision) 13 E-fullword
D Floating point (double precision) 22 D-doubleword
P Packed decimal 32 P-byte
Z Zoned decimal 17 Z-byte
A Address constant 11 A-fullword
S Address (base + displacement) 8 S-halfword
Y Address constant (halfword) 6 Y-halfword
* All characters within the quotes are included in the length.

  Chapter 1. TSO/E Commands and Subcommands 1-307



 Assignment of Values Function of TEST  
 

A ‘[+] decimal value’

The minimum decimal value is -2147483648 and the maximum decimal
value is 2147483647.

S ‘decimal value(register number)’

The decimal value can be from 0 to 4095 and the register number must be
from 0 to 15 (decimal form).

Y ‘[+] decimal value’

The decimal value may be from 0 to 32767.

You include your data following the code. Your data must be enclosed within
apostrophes. Any single apostrophes within your data must be coded as two single
apostrophes. Character data can be entered. If necessary, all other data types will
be translated into uppercase.

A list of data can be specified by enclosing the list in parentheses. The data in the
list is stored at the beginning of the location specified by the address operand.

Values assigned to general registers and access registers are placed in registers
right-justified and padded with binary zeroes.

When a virtual storage address is assigned a list of data_type values, the address
must reside on the appropriate boundary for the specified data_type of the first
value. Storage bytes for subsequent data_type values will be skipped to align data
on the appropriate boundary for the data type requested.

If the length of the value you assign to the vector mask register is greater than the
length of the vector mask register, an error message is issued. If the length of the
value is shorter than the vector mask register, the value is placed in the vector
mask register left-justified, and the remaining bits are unchanged.

The following restrictions apply to general registers, floating-point registers, vector
registers, access registers and the vector mask register.

1. Specify only one data_type for floating-point registers. Additional data_types
are ignored.

2. Assign only X or E data_types to single precision floating-point registers.

3. Assign only X, F, or E data_types to single precision vector registers.

4. Assign only X or D data_types to double precision floating-point registers.

5. Assign only X or D data_types to double precision vector registers.

6. With the exception of the D-type of data, general registers and access registers
can be assigned any data_type

7. Assign only X or B data_types to the vector mask register.

When a general register, floating point register, vector register, or vector register
element is assigned a list of data_type‘values’, the first value is assigned to the
specified register or register element. Subsequent data_type values are assigned to
contiguous higher-numbered registers or register elements. If register 15 is reached
and data_type values remain, the values are wrapped around to register 0 and
subsequent registers, if needed. For more information about programming

1-308 OS/390 V2R7.0 TSO/E Command Reference  



  Assignment of Values Function of TEST
 

considerations for using the vector registers, see OS/390 TSO/E Programming
Guide.

If data is assigned to a storage area that contains a breakpoint, the breakpoint is
removed and a warning message is displayed at the terminal.

ALET(alet_value)
specifies the alternate address/data space where you want to change storage.
You can specify from 1 to 8 hexadecimal characters to represent the
alet_value.

AR(register_number)
specifies the access register that contains the alet to be used to determine
where you want to change storage. Valid access register numbers are 0
through 15.

Examples of Values Function of TEST

 Example 1
Operation:  Insert a character string at a particular location in virtual storage.

Known:

� The address is a symbol: INPOINT
� The data: January 1, 1985

inpoint=c'january 1, 1985'

 Example 2
Operation:  Insert a binary number into a register.

Known:

� The number of the register: register 6
� The data: 0000 0001 0110 0011

6r=b'ððððððð1ð11ððð11'

 Example 3
Operation:  Initialize registers 0 through 3 to zeroes and register 15 to 4.

15R=(x'4',x'ð',x'ð',x'ð'x'ð')

Note:  The sixteen (16) general registers are treated as contiguous fields with
register 0 immediately following register 15.

 Example 4
Operation:  Assign a new base and displacement for an instruction that was found
to be in error.

Known:

� LA instruction at +30 is X'41309020'. In this instruction, the current base
register is 9 and the displacement is a decimal value of 32 (hexadecimal value
of 20). The base register should be 10 and the decimal displacement should be
98 (hexadecimal value of 62).

+32=S'98(1ð)'

  Chapter 1. TSO/E Commands and Subcommands 1-309



 TEST—AT Subcommand  
 

After this assignment, the instruction at +30 is X'4130A062'.

 Example 5
Operation:  Insert a number in packed format at a particular address in virtual
storage.

Known:

� Absolute address: C3D41, decimal value to be packed is -1038.

c3d41.=p'-1ð38'

 Example 6
Operation:  Set the entire contents of the vector register 1 to hexadecimal zeros.

1v(\)=X'ðððððððð'

 Example 7
Operation:  Set the tenth element in vector register 1 to decimal 33.

1v(1ð)=f'33'

 Example 8
Operation:  Set elements 3 and 4 of vector register 3 to X'00' and X'02',
respectively.

3v(3)=(X'ðð',X'ð2')

 Example 9
Operation:  Set the first element of vector registers 0 and 1 to the double precision
floating point value of +33E+2.

ðw(1)=d'+33E+2'

 Example 10
Operation:  Assign the value 100 to the four bytes at the address pointed to by
register 9. The storage for addressing is in the address space referred to by the
ALET value 9E00.

9r?=F'1ðð'ALET(9Eðð)

 Example 11
Operation:  Set the contents of access register 7 to zeros.

7a=x'ðððððððð'

 Example 12
Operation:  Set the vector mask register to the hexadecimal value 046C471F.

ðM=x'46C471F'

 TEST—AT Subcommand
Use the AT subcommand to establish breakpoints where processing is to be
temporarily halted so that you can examine the results of execution up to the point
of interruption. Processing is halted before the instruction at the breakpoint is
executed.

1-310 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—AT Subcommand
 

If you enter the TEST command with operands, a pseudo or automatic breakpoint
is established at +0 for the problem program being invoked under TEST. Therefore,
do not specify AT +0.

If you set a breakpoint following a fullscreen TPUT macro and preceding a TGET
macro, the fullscreen message is overlaid by the TEST line mode message
(IKJ57024I). For more information, see OS/390 TSO/E Programming Guide.

You can also use the AT subcommand to set breakpoints at the vector instructions
in the same way you use it to set breakpoints at other Assembler instructions.

You cannot establish a breakpoint at:

� The target of an execute instruction or the execute instruction itself.

� An instruction that is to be modified by the execution of other in-line code prior
to the execution of the breakpoint.

� A user-written SVC exit.

� An instruction that other code depends upon to be the same. See “Example 7”
on page 1-314.

Note:  The PC, SAC, SACF, SSAR, PT, and PR assembler instructions are not
supported by the AT subcommand of TEST.

TEST—AT Subcommand Syntax 

55─ ─AT─ ──┬ ┬──address ──┬ ┬────────── ──────── ──┬ ┬──────────────────── ────────5
│ │└ ┘──:address │ │┌ ┐──────────────

 │ │┌ ┐─,───────────────────── └ ┘──( ───6 ┴─subcommand─ )
 └ ┘──( ───6 ┴─address─ ──┬ ┬────────── )

└ ┘──:address

 ┌ ┐─NODEFER─ ┌ ┐─NOTIFY───
5─ ──┬ ┬──────────────── ──┼ ┼───────── ──┼ ┼────────── ──┬ ┬─────────────── ─────5%

└ ┘──COUNT(integer) └ ┘─DEFER─── └ ┘─NONOTIFY─ └ ┘──TITLE('text')

TEST—AT Subcommand Operands
address

specifies a location that is to contain a breakpoint. The address must be on a
halfword boundary and contain a valid op code.

address:address
specifies a range of addresses that are to contain breakpoints. Each address
must be on a halfword boundary. A breakpoint is established at each instruction
between the two addresses. When a range of addresses is specified,
assignment of breakpoints halts when a not valid instruction is encountered.

(address)
specifies several addresses that are to contain breakpoints. Each address must
be on a halfword boundary. The list must be enclosed within parentheses, and
the addresses in the list must be separated by standard delimiters (one or more
blanks or a comma). A breakpoint is established at each address.

For address, address:address, (address), specify address as:

� An absolute address
� A symbolic address

  Chapter 1. TSO/E Commands and Subcommands 1-311



 TEST—AT Subcommand  
 

� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

subcommands
specifies one or more subcommands to be executed when the program is
interrupted at the indicated location. If you specify more than one subcommand,
the subcommands must be separated by semicolons. The list cannot be longer
than 255 characters. If a CLIST is executed as part of the subcommand list
the results of the execution may not occur in the expected order.

Note:  If an OFF subcommand in the list removes the breakpoint for which a
list is specified, all remaining subcommands in that list are ignored.

COUNT(integer)
specifies that processing is not to be halted at the breakpoint until it has been
encountered the specified number of times. This operand is directly applicable
to program loop situations where an instruction is executed several times.
Processing is halted each time the breakpoint has been encountered the
number of times specified for the integer operand. The integer specified cannot
exceed 65,535.

NODEFER
specifies the breakpoint is to be inserted into the program now in virtual
storage. This is the default value if both DEFER and NODEFER are omitted.

DEFER
specifies the breakpoint is to be established in a program that is not yet in
virtual storage. The program to contain the breakpoint is brought in as a result
of a LINK, LOAD, ATTACH, or XCTL macro instruction by the program being
tested. When you specify this operand, you must qualify the address of the
breakpoint:

MODULENAME.ENTRYNAME.RELATIVE

or

MODULENAME.ENTRYNAME.SYMBOL

All breakpoint addresses listed in an AT subcommand with the DEFER operand
must refer to the same load module.

NOTIFY
specifies that if the breakpoint is encountered, it will be identified at the
terminal. NOTIFY is the default.

NONOTIFY
specifies that if the breakpoint is encountered, it will not be identified at the
terminal.

TITLE(‘ text’)
specifies from 1 to 50 characters of text displayed following the word AT
whenever the tested program stops at the breakpoint associated with that text.
The text is intended to serve as a meaningful identification of the instruction
address at which the program stops. It is used instead of an address. If
NONOTIFY is specified, nothing is displayed.

1-312 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—AT Subcommand
 

A list of addresses can be associated with the same text and the text is
displayed whenever the associated breakpoint is reached. If a range is
specified and TITLE (‘text’) is listed as an operand, the text is displayed in the
form: ‘text_string’ + displacement. Displacement is the hexadecimal offset at the
breakpoint encountered from the beginning of the range.

Note:  If your program is running in supervisor state or in a PSW protection
key less than 8, breakpoints are ignored.

TEST—AT Subcommand Examples

 Example 1
Operation:  Establish breakpoints at each instruction in a section of the program
that is being tested.

Known:

� The addresses of the first and last instructions of the section that you want to
test: LOOPA EXITA

� The subcommands to be executed are: LISTPSW, GO

at loopa:exita (listpsw;go)

 Example 2
Operation:  Establish breakpoints at several locations in a program.

Known:

� The addresses for the breakpoints: +8A LOOPB EXITB

at (+8A loopb exitb)

 Example 3
Operation:  Establish a breakpoint at a location in a loop. The address of the
location is contained in register 15. You only want to have an interruption every
tenth cycle through the loop. When the interruption occurs, you want a meaningful
identification at the breakpoint.

Known:

� The address for the breakpoint: 15R%

at 15r% count(1ð) title('entry after 1ð loops')

 Example 4
Operation:  Establish a breakpoint for a program that is not presently in virtual
storage.

Known:

� The name of the load module: CALCULAT
� The CSECT name: INTEREST
� The symbolic address for the breakpoint: TOTAL

at calculat.interest.total defer

  Chapter 1. TSO/E Commands and Subcommands 1-313



 TEST—CALL Subcommand  
 

 Example 5
Operation:  Have the following subcommands executed when the breakpoint at
TAC is reached: LISTTCB PRINT(TCBS), LISTPSW, and GO CALCULAT

at tac (listtcb print(tcbs);listpsw;go calculat)

 Example 6
Operation:  Request that the following subcommands be executed when the
breakpoint at symbol NOW is reached: LISTMAP, LISTTCB, OFF NOW, AT +32,
and GO.

at now (listmap;listtcb;off now;at +32;go)

The last two subcommands will not be executed because the breakpoint (NOW)
and its subcommand list will have been removed.

 Example 7
Operation:  Do not set a breakpoint at an instruction that other code depends upon
to be unchanged.

WAIT ECB=ECBX, LONG=YES
ðððð 411ð Cð2ð LA 1, ECBX load parameter reg. 1
ððð4 41ðð ððð1 LA ð, 1(ð,ð) count omitted, 1 used
ððð8 ð78ð BCR 8, ð gives an inline '8ð'
ðððA BFð8 Cðð9 ICM ð, 8, \-1 insert into hi-byte
ðððE ðAð1 SVC 1 link to wait routine
...

ðð2ð ECBX DS F

In this assembler coding example, the instruction at +A causes the high-order byte
of register 0 to contain an ‘80’. Inserting a breakpoint at +8 causes the instruction at
+8 to replace the inline ‘80’ produced by the WAIT macro with an SVC 97.

 TEST—ATTRIB Command
Use the ATTRIB command to build a list of attributes for non-VSAM data sets that
are to be dynamically allocated. For a description of the ATTRIB command syntax
and function, see the “ATTRIB Command” on page 1-66.

 TEST—CALL Subcommand
Use the CALL subcommand to initiate processing at a specified address and to
initialize registers 1, 14, and 15. You can pass parameters to the program that is to
be tested.

CAUTION:
The contents of registers 1, 14, and 15 are altered by the use of the CALL
subcommand. To save the contents of these registers, use the COPY
subcommand of TEST (see Example 2 and Example 3 under “TEST—COPY
Subcommand” on page 1-316).

The CALL subcommand of TEST places the return address of the tested program
in register 14. The high-order bit of register 14 is set to reflect the addressing mode
of the tested program.

1-314 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—CALL Subcommand
 

TEST—CALL Subcommand Syntax 

55─ ─CALL─ ─address─ ──┬ ┬───────────────────── ──┬ ┬──── ──┬ ┬───────────────── ──5
│ │┌ ┐─────────── └ ┘─VL─ └ ┘──RETURN(address)
└ ┘──PARM( ───6 ┴─address─ )

5─ ──┬ ┬──────── ──┬ ┬───────────────────── ──┬ ┬──────────────────────── ──────5%
 └ ┘─RESUME─ │ │┌ ┐─SWITCH─ └ ┘──ASCMODE ( ──┬ ┬─AR────── )

└ ┘──AMODE( ──┼ ┼──────── ) └ ┘─PRIMARY─
 ├ ┤─24─────
 └ ┘─31─────

TEST—CALL Subcommand Operands
address

specifies the address where processing is to begin. Register 15 contains this
address when the program under test begins execution. You can specify
address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

PARM(address)
specifies one or more addresses that point to data to be used by the program
being tested. The list of addresses is expanded to fullwords and placed into
contiguous storage. Register 1 contains the address of the start of the list. If
PARM is omitted, register 1 points to a fullword that contains the address of a
halfword of zeroes.

VL specifies the high-order bit of the last fullword of the list of addresses pointed to
by general register 1 is to be set to one.

RETURN(address)
specifies on completion of execution, the called program returns control to the
address in register 14. The high-order bit of register 14 reflects the addressing
mode of the tested program prior to the issuance of the CALL subcommand. If
RETURN is omitted, register 14 contains the address of a breakpoint
instruction.

RESUME
specifies upon completion of execution, the called program returns control to
the address of the last breakpoint prior to the CALL.

AMODE [(24 | 31 | SWITCH )]
specifies the addressing mode in which the called program begins execution. If
AMODE(SWITCH) is specified, the called program continues execution in the
addressing mode that is non-current when CALL is issued. You can determine
the current addressing mode by issuing the LISTPSW command. If AMODE is
not specified, there is no change in addressing mode.

ASCMODE(AR | PRIMARY)
specifies the PSW mode in which the called program executes. If you specify
ASCMODE(PRIMARY), the PSW mode is set to execute the program using the

  Chapter 1. TSO/E Commands and Subcommands 1-315



 TEST—COPY Subcommand  
 

primary address space control mode (in primary mode). When ASCMODE(AR)
is specified, the PSW is set to execute the program in AR mode.

TEST—CALL Subcommand Examples

 Example 1
Operation:  Initiate execution of the program being tested at a particular location.

Known:

� The starting address: +0A
� The addresses of data to be passed: CTCOUNTR LOOPCNT TAX

call +ða parm(ctcountr loopcnt tax)

Note:  The following message is issued after completion of the called routine:

'IKJ57ð23I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+'

This message is then issued because no return address was specified. If GO is
now specified without an address, the TEST session is terminated.

 Example 2
Operation:  Initiate execution at a particular location.

Known:

� The starting address: STARTBD
� The addresses of data to be passed: BDFLAGS PRFTTBL COSTTBL

ERREXIT
� Set the high-order bit of the last address parameter to 1 so that the program

can tell the end of the list. After execution, control is to be returned to: +24A

call startbd parm(bdflags prfttbl costtbl errexit)-
vl return(+24a)

 Example 3
Operation:  Initiate execution at label COMPUTE and have execution begin at label
NEXT when control is returned by register 14.

call compute return(next)

 TEST—CANCEL Command
Use the CANCEL command to halt processing of batch jobs submitted from the
terminal. For a description of the CANCEL command syntax and function, see the
“CANCEL Command” on page 1-78.

 TEST—COPY Subcommand
Use the COPY subcommand to transfer data or addresses from:

� One storage address to another
� One general register to another
� A general register to virtual storage
� Virtual storage to a general register

1-316 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—COPY Subcommand
 

� An access register to virtual storage
� Virtual storage to an access register
� One access register to another.

In addition, you can use the COPY subcommand to:

� Save or restore the contents of the general registers
� Propagate the value of a byte throughout a field
� Move an entire data field from one location to another

TEST—COPY Subcommand Syntax 

55─ ──┬ ┬─COPY─ ─address_1─ ─address_2─ ──┬ ┬─────────────────────── ────────────5
 └ ┘─C──── │ │┌ ┐─4───────

└ ┘──LENGTH( ──┴ ┴─integer─ )

 ┌ ┐─NOPOINTER─
5─ ──┼ ┼─────────── ──┬ ┬───────────────────────── ────────────────────────────5

└ ┘─POINTER─── ├ ┤──ARFROM(register_number)
└ ┘──ALETFROM(alet_value) ───

5─ ──┬ ┬─────────────────────── ────────────────────────────────────────────5%
├ ┤──ARTO(register_number)
└ ┘──ALETTO(alet_value) ───

TEST—COPY Subcommand Operands
address_1

specifies a location that contains data to be copied.

address_2
specifies a location that receives the data after it is copied.

You can specify address_1 and address_2 as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� A general register
� An access register.

ARFROM(register_number)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space referred to by the specified access register. Valid access
register numbers are 0 through 15. The operands ARFROM, ALETFROM, and
POINTER are mutually exclusive.

ALETFROM(alet_value) | ALFROM( alet_value)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space. The ALETFROM value may be from 1 to 8 hexadecimal
characters. The operands ALETFROM, ARFROM, and POINTER are mutually
exclusive.

ARTO(register_number)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space referred to by an access register. Valid access register

  Chapter 1. TSO/E Commands and Subcommands 1-317



 TEST—COPY Subcommand  
 

numbers are 0 through 15. The operands ARTO and ALETTO (or ALTO) are
mutually exclusive.

ALETTO(alet_value) | ALTO( alet_value)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space. The ALETTO value may be from 1 to 8 hexadecimal
characters. The operands ALETTO and ARTO are mutually exclusive.

LENGTH(integer) | LENGTH(4)
specifies the length, in decimal, of the field to be copied. If an integer is not
specified, LENGTH defaults to 4 bytes. The maximum length is 65,535 bytes in
a storage-to-storage copy operation and 64 bytes when a register is specified.

POINTER
specifies address_1 is to be validity checked to see that it does not exceed
maximum virtual storage size. address_1 is then treated as an immediate
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an
address will be converted to its hexadecimal equivalent) and transferred into
the location specified by address_2. When using the POINTER operand, do not
specify a general register as address_1. POINTER and the operands ARFROM
and ALETFROM are mutually exclusive.

NOPOINTER
specifies address_1 is to be treated as an address, not as an immediate
operand. NOPOINTER is the default.

The COPY subcommand treats the 16 general registers as contiguous fields. You
can specify that 10 bytes be moved from general register 0 to another location.

copy ðr 8ðð6ð. length(1ð)

The COPY subcommand moves the 4 bytes of register 0, the 4 bytes of register 1,
and the high-order 2 bytes of register 2 to virtual storage beginning at location
80060. When a register is specified as address_1, the maximum length of data
transferred is the total length of the general registers or 64 bytes.

When the value of address_2 is one greater than address_1, propagation of the
data in address_1 occurs. When the value of address_2 is more than one greater
than the value of address_1, no propagation occurs.

TEST—COPY Subcommand Examples

 Example 1
Operation:  Transfer two full words of data from one virtual storage location to
another.

Known:

� The starting address of the data: 80680
� The starting address of where the data is to be: 80685

copy 8ð68ð. 8ð685. length(8)

1-318 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—COPY Subcommand
 

 Example 2
Operation:  Copy the contents of one register into another register.

Known:

� The register which contains the data to be copied: 10
� The register which contains the data to be received: 5

copy 1ðr 5r

 Example 3
Operation:  Save the contents of the general registers.

Known:

� The first register to be saved: 0
� The starting address of the save area: A0200

c ðr að2ðð. l(64)

 Example 4
Operation:  Propagate the value in the first byte of a buffer throughout the buffer.

Known:

� The starting address of the buffer: 80680
� The length of the buffer: 80 bytes

c 8ð68ð. 8ð681. l(79)

 Example 5
Operation:  Insert a hexadecimal value into the high-order byte of a register.

Known:

� The desired value: X'80'
� The register: 1

copy 8ð. 1r l(1) pointer

Note:  Specifying the pointer operand causes 80 to be treated as an immediate
operand and not as an address.

 Example 6
Operation:  Insert the entry point of a routine into a virtual storage location.

Known:

� The module name and the entry_point name: IEFBR14.IEFBR14
� The desired virtual storage location: STARTPTR

c iefbr14.iefbr14 startptr p

 Example 7
Operation:  Copy the contents of an area pointed to by a register into another area.

Known:

� The register which points to the area that contains the data to be moved: 14
� The real storage location which is to contain the data: 80680
� The length of the data to be moved: 8 bytes

  Chapter 1. TSO/E Commands and Subcommands 1-319



 TEST—DROP Subcommand  
 

c 14r% 8ð68ð. l(8) nopoint

 Example 8
Operation:  Copy the 72 bytes where register 13 points in the primary address
space to location 1000 in the address space referred to by access register 5.

copy 13r? 1ððð. arto(5) length(72)

 TEST—DELETE Subcommand
Use the DELETE subcommand to delete, from virtual storage, a load module that
was loaded by the tested program, or by one of its subtasks.

Use the DELETE subcommand to delete a module that was loaded above or below
16MB by the tested program or by the LOAD subcommand of TEST.

TEST—DELETE Subcommand Syntax 

55─ ──┬ ┬─DELETE─ ─load_module_name─────────────────────────────────────────5%
 └ ┘─DEL────

TEST—DELETE Subcommand Operand
load_module_name

specifies the name of the load module to be deleted. The load name is the
name (which might be an alias) by which the program is known to the system
when it is in virtual storage. The name must not exceed 8 characters.

TEST—DELETE Subcommand Examples

 Example 1
Operation:  Delete a load module from virtual storage.

Known:

� The name of the load module: TOTAL

delete total

or

del total

 TEST—DROP Subcommand
Use the DROP subcommand to remove symbols from the symbol table of the
module being tested. You can only remove symbols that you established with the
EQUATE subcommand or the EQUATE operand of the GETMAIN subcommand.
You cannot remove symbols that were established by the linkage editor. If the
program being tested was assembled with the TEST option and the EQUATE
subcommand was used to override the location and type of the symbol within the
program, then when the DROP subcommand is used to delete that symbol from the
symbol table, the symbol will reflect the original location and type within the
program.

1-320 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—END Subcommand
 

TEST—DROP Subcommand Syntax 

55─ ─DROP─ ──┬ ┬──────────────── ────────────────────────────────────────────5%
 │ │┌ ┐──────────
 └ ┘──( ───6 ┴─symbol─ )

TEST—DROP Subcommand Operand
(symbol)

specifies one or more symbols that you want to remove from the symbol table
created by the EQUATE subcommand or the EQUATE operand of the
GETMAIN subcommand. When you specify only one symbol, you do not have
to enclose the symbol within parentheses. However, two or more symbols must
be enclosed by parentheses. If you do not specify any symbols, the entire table
of symbols is removed.

TEST—DROP Subcommand Examples

 Example 1
Operation:  Remove all symbols that you have established with the EQUATE
subcommand.

drop

 Example 2
Operation:  Remove a symbol from the symbol table.

Known:

� The name of the symbol: DATE

drop date

 Example 3
Operation:  Remove several symbols from the symbol table.

Known:

� The names of the symbols: STARTADD TOTAL WRITESUM

drop (startadd total writesum)

 TEST—END Subcommand
Use the END subcommand to terminate all functions of the TEST command and
the program being tested.

TEST—END Subcommand Syntax 

55──END──────────────────────────────────────────────────────────────────5%

The END subcommand does not close an opened data set. Use the GO
subcommand to close an opened data set. Normal exit cleanup procedures should
also be used.

  Chapter 1. TSO/E Commands and Subcommands 1-321



 TEST—EQUATE Subcommand  
 

 TEST—EQUATE Subcommand
Use the EQUATE subcommand to add a symbol to the symbol table of the module
being tested. This subcommand allows you to establish a new symbol that you can
use to refer to an address or override an existing symbol to reflect a new address
or new attributes. If no symbol table exists, one is created and the specified name
is added to it. A symbol within DSECT can be accessed if the DSECT name is
defined using the EQUATE subcommand. You can also modify the data attributes
(type, length, and multiplicity); use the EQUATE subcommand to modify attributes
of existing equated symbols. The DROP subcommand removes symbols added by
the EQUATE subcommand. Symbols established by the EQUATE subcommand are
defined for the duration of the TEST session only.

TEST—EQUATE Subcommand Syntax 

55─ ──┬ ┬─EQUATE─ ─symbol─ ─address─ ──┬ ┬─────────── ──┬ ┬───────────────────── ──5
└ ┘─EQ───── └ ┘─data_type─ ├ ┤──ALET(alet_value) ───

└ ┘──AR(register_number)

5─ ──┬ ┬───────────────── ──┬ ┬─────────────────── ───────────────────────────5%
└ ┘──LENGTH(integer) └ ┘──MULTIPLE(integer)

TEST—EQUATE Subcommand Operands
symbol

specifies the symbol (name) that you want to add to the symbol table so that
you can refer to an address symbolically. The symbol must consist of 1 to 8
alphanumeric characters, the first of which is an alphabetic character.

address
specifies the address is to equate to the symbol that you specified. You can
specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

data_type
specifies the characteristics you want to attribute to the data at the location
given by address. These might be the same as the original characteristics.
Indicate the type of data by one of the following codes:

1-322 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—EQUATE Subcommand
 

ALET(alet_value)
specifies the alternate address/data space that the EQUATEd variable can
reference. You can specify from 1 to 8 hexadecimal characters to represent the
alet_value.

AR(register_number)
specifies the access register that contains the alet used to determine the
alternate address/data space that the EQUATEd variable can reference. Valid
access register numbers are 0 through 15.

LENGTH(integer)
specifies the length of the data. The maximum value of the integer is 256. If
you do not specify the length, the following default values apply:

MULTIPLE( integer)
specifies a multiplicity factor. The multiplicity factor means that one element of
the data appears several times in succession. The number of repetitions is
indicated by the number specified for integer. The maximum value of the
integer is 256.

If you do not specify any operands, the defaults are:

type - X
multiplicity - 1
length - 4

If both multiplicity and length are specified for data_type I, the multiplicity is ignored.

Code Type of Data Maximum Length (Bytes)

C Character 256
X Hexadecimal 256
B Binary 256
I Assembler instruction 256
H Fixed point binary (halfword) 8
F Fixed point binary (fullword) 8
E Floating point (single precision) 8
D Floating point (double precision) 8
P Packed decimal 16
Z Zoned decimal 16
A Address constant 4
S Address (base + displacement) 2
Y Address constant (halfword) 2

Type of Data Default Length (Bytes)

C,B,P,Z 1
H,S,Y 2
F,E,A,X 4
D 8
I variable

TEST—EQUATE Subcommand Examples

 Example 1
Operation:  Add a symbolic address to the symbol table of the module that you are
testing.

Known:

� The symbol: EXITRTN

  Chapter 1. TSO/E Commands and Subcommands 1-323



 TEST—FREEMAIN Subcommand  
 

� The address: TOTAL+4

equate exitrtn total+4

 Example 2
Operation:  Change the address and attributes for an existing symbol.

Known:

� The symbol: CONSTANT
� The new address: 1FAA0
� The new attributes: type: C, length: L(8), multiplicity: M(2)

eq constant 1faað. c m(2) l(8)

 Example 3
Operation:  Add the symbol NAMES to the symbol table to access a list of 6
names. Each name is 8 characters long.

Known:

� The names are stored one after the other at relative address +12C.

equate names +12c 1(8) m(6) c

 Example 4
Operation:  Add SYMBOL1 to the symbol table. SYMBOL1 represents the location
3000 in the address/data space referred to via ALET 00010003.

equate symbol1 3ððð. alet(ððð1ððð3)

 TEST—EXEC Command
Use the EXEC command to execute a CLIST or REXX exec. For a description of
the EXEC command syntax and function, see the “EXEC Command” on
page 1-141.

Specify only REXX statements in the REXX exec. Specify only TEST
subcommands and CLIST statements in the CLIST. You cannot specify TSO/E
commands in the CLIST or REXX exec until you specify END or RUN to terminate
TEST.

 TEST—FREEMAIN Subcommand
Use the FREEMAIN subcommand to free a specified number of bytes of virtual
storage.

TEST—FREEMAIN Subcommand Syntax 

55─ ──┬ ┬─FREEMAIN─ ─integer─ ─address─ ──┬ ┬─────────────────── ───────────────5%
 └ ┘─FREE───── │ │┌ ┐─ð───────

└ ┘──SP( ──┴ ┴─integer─ )

1-324 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—FREEMAIN Subcommand
 

TEST—FREEMAIN Subcommand Operands
integer

specifies the number of decimal bytes of virtual storage to be released.

address
specifies the location of the space to be freed. It must be a multiple of 8 bytes.

Use the LISTMAP subcommand to help locate previously acquired virtual
storage.

You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

SP(integer) | SP(0)
specifies the number of the subpool that contains the space to be freed. If you
omit this operand, the default value is subpool zero. The integer must be in the
range 0 through 127.

TEST—FREEMAIN Subcommand Examples

 Example 1
Operation:  Free space in virtual storage that was previously acquired by a
GETMAIN macro instruction in the module being tested.

Known:

� The size of the space, in bytes: 500
� The absolute address of the space: 054A20
� The number of the subpool that the space was acquired from: 3

free 5ðð ð54a2ð. sp(3)

 Example 2
Operation:  Free space in virtual storage that was previously obtained by a
GETMAIN subcommand.

Known:

� The size of the space: 100 decimal bytes
� The address of the space to be freed: X'A4' past the address in register 3
� The space to be freed: in subpool 0

freemain 1ðð 3r%+A4

 Example 3
Operation:  Free subpool 127.

freemain ð ð. sp(127)

Attention:  Do not attempt to free all of subpool 78. If you want to free a portion of
subpool 78, be careful not to free the storage obtained by the TMP. This results in

  Chapter 1. TSO/E Commands and Subcommands 1-325



 TEST—GETMAIN Subcommand  
 

freeing the TMP's data areas because subpool 78 is shared. The deletion of the
TMP portion of subpool 78 causes your session to terminate.

You can release an entire subpool by specifying a length of 0, an absolute address
of 0, and a subpool in the range 1-127.

If you specify a non-zero address, the length must also be non-zero.

 TEST—GETMAIN Subcommand
Use the GETMAIN subcommand to obtain a specified number of bytes of virtual
storage. The GETMAIN subcommand displays the starting address of the virtual
storage obtained.

TEST—GETMAIN Subcommand Syntax 

55─ ──┬ ┬─GETMAIN─ ─integer─ ──┬ ┬─────────────────── ──┬ ┬────────────── ────────5
└ ┘─GET───── │ │┌ ┐─ð─────── └ ┘──EQUATE(name)

└ ┘──SP( ──┴ ┴─integer─ )

5─ ──┬ ┬──────────────────────── ───────────────────────────────────────────5%
 └ ┘──LOC ──┬ ┬───────────────
 │ │┌ ┐─RES───
 └ ┘──( ──┼ ┼─────── )
 ├ ┤─BELOW─
 └ ┘─ANY───

TEST—GETMAIN Subcommand Operands
integer

specifies the number of bytes, in decimal form, of virtual storage to be
obtained.

SP(integer) | SP(0)
specifies the number of a subpool from which the virtual storage is to be
obtained. If you omit this operand, the default value is subpool zero. The
integer must be in the range 0 through 127.

EQUATE(name)
specifies the address of acquired virtual storage is to be equated to the symbol
specified by name and placed in the TEST internal symbol table.

LOC(BELOW)
specifies the virtual and real storage area must be below 16 MB.

LOC(ANY)
specifies the virtual storage area can be anywhere in the virtual storage
addressing range. The actual location (above or below 16 MB) of the virtual
storage area depends on the subpool specified. If the requested subpool is
supported above 16 MB, GETMAIN allocates virtual storage above 16 MB, if
possible.

LOC(RES)
specifies the address of the virtual storage area depends upon the residence of
the next instruction to be executed. If the instruction address in the PSW for the
tested program is below 16 MB, the request is processed as LOC(BELOW). If

1-326 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—GO Subcommand
 

the instruction address is above 16 MB, the request is processed as
LOC(ANY). LOC(RES) is the default.

TEST—GETMAIN Subcommand Examples

 Example 1
Operation:  Obtain 240 decimal bytes of virtual storage from subpool 0.

getmain 24ð

 Example 2
Operation:  Obtain 500 bytes of virtual storage from subpool 3 and equate starting
address to symbolic name AREA.

get 5ðð sp(3) equate(area)

 TEST—GO Subcommand
Use the GO subcommand to start or restart program execution from a particular
address. If the program was interrupted for a breakpoint and you want to continue
from the breakpoint, there is no need to specify the address. However, you can
start execution at any point by specifying the address.

TEST—GO Subcommand Syntax 

55─ ─GO─ ──┬ ┬───────── ──┬ ┬─────────────────────────── ───────────────────────5
 └ ┘─address─ └ ┘──AMODE ──┬ ┬────────────────
 │ │┌ ┐─SWITCH─
 └ ┘──( ──┼ ┼──────── )
 ├ ┤─24─────
 └ ┘─31─────

5─ ──┬ ┬──────────────────────── ───────────────────────────────────────────5%
 └ ┘──ASCMODE ( ──┬ ┬─AR────── )
 └ ┘─PRIMARY─

TEST—GO Subcommand Operands
address

specifies the address where processing is to begin. You can specify address
as:

� A symbolic address
� A relative address
� An absolute address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

When the problem program completes processing, the following message is
displayed at the terminal:

à ð
IKJ57ð23I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+

If you now issue the GO subcommand without specifying an address, the TEST
session is terminated.

  Chapter 1. TSO/E Commands and Subcommands 1-327



 TEST—LIST Subcommand  
 

AMODE [(24 | 31 | SWITCH )]
specifies the addressing mode in which program execution resumes after the
GO subcommand has been issued. You can specify AMODE without specifying
an address. However, if the word AMODE or any abbreviation of the word
AMODE is defined as a symbolic address, GO AMODE executes as follows:
program execution starts at the last breakpoint and the SWITCH default is
taken.

If you do not specify AMODE, there is no change in addressing mode.

ASCMODE(AR | PRIMARY)
specifies the PSW mode in which the program executes after the GO command
is issued. If you specify ASCMODE(PRIMARY), the PSW is set to execute the
program using the primary address space control mode (in primary mode).
Specifying ASCMODE(AR) sets the PSW to execute the program in AR mode.

TEST—GO Subcommand Examples

 Example 1
Operation:  Begin execution of a program at the point where the last interruption
occurred or initiate execution of a program.

go

 Example 2
Operation:  Begin execution at a particular address.

go calculat

 TEST—HELP Command
Use the HELP command to obtain the syntax and function of the TEST
subcommands. For a description of the HELP command syntax and function, see
the “HELP Command” on page 1-166.

 TEST—LINK Command
Use the LINK command to invoke the linkage editor service program. For the
description of the LINK command syntax and function, see the “LINK Command” on
page 1-171.

 TEST—LIST Subcommand
Use the LIST subcommand to display at your terminal or place in a data set the
following:

� The contents of a specified area of virtual storage
� The contents of registers or vector registers
� The contents of access registers
� Data in alternate address/data spaces that is referred to via an access register
� The vector mask register.

1-328 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LIST Subcommand
 

TEST—LIST Subcommand Syntax 

55─ ──┬ ┬─LIST─ ──┬ ┬──address ──┬ ┬────────── ─────────────────────── ───────────5
└ ┘─L──── │ │└ ┘──:address

 │ │┌ ┐─,─────────────────────
 └ ┘ ──( ───6 ┴─address─ ──┬ ┬────────── ) ──┬ ┬───────────

└ ┘──:address └ ┘─data_type─

5─ ──┬ ┬───────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────────── ───5
├ ┤──ALET(alet_value) ─── └ ┘──LENGTH(integer) └ ┘──MULTIPLE(integer)
└ ┘──AR(register_number)

5─ ──┬ ┬────────────────────── ─────────────────────────────────────────────5%
└ ┘──PRINT(data_set_name)

TEST—LIST Subcommand Operands
address

specifies the location of data that you want displayed at your terminal or placed
into a data set.

address:address
specifies that you want the data located between the specified addresses
displayed at your terminal or placed into a data set.

(address)
specifies several addresses of data that you want displayed at your terminal or
placed into a data set. The data at each location is retrieved. If the first address
of a range is a register, the second address must also be the same type of
register (floating-point, general, or vector). The list of addresses must be
enclosed within parentheses, and the addresses must be separated by
standard delimiters (one or more blanks or a comma).

If a range of addresses is specified on LIST and the ending address is in fetch
protected storage, you are prompted (if in PROMPT mode) to reenter the
address. If you want a range of addresses, you must reenter the range, not just
the ending address.

You can create a load module that contains more than one DSECT or CSECT
within the same symbolic name. When you list an unqualified symbolic address
in a load module, the LIST command displays the area associated with the first
occurrence of the symbol. Use the fully-qualified name,
‘module_name.csect.symbol_name’, to display occurrences other than the first.

For address, address:address, (address), specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period)
� A general register
� A floating-point register
� A vector register
� A vector register element
� An access register
� The vector mask register.

  Chapter 1. TSO/E Commands and Subcommands 1-329



 TEST—LIST Subcommand  
 

data_type
specifies the type of data that is in the specified location. Indicate the type of
data using one of the following codes:

All accepted data_types allow the specified address to be aligned on a byte
boundary even though certain data_types cannot be assigned to a byte
boundary. The default for data_type is hexadecimal.

The XC data_type indicates that you want to display, side-by-side, the
hexadecimal and EBCDIC contents of storage. The contents are displayed in
hexadecimal first, followed by EBCDIC.

A general register is displayed in decimal format if the F data_type is used.
Otherwise, regardless of the type specified, a general register is displayed in
hexadecimal. Floating-point registers are listed in floating-point format if
data_type is not specified. However, floating-point registers can be listed in
hexadecimal format by using the X data_type. If any data_type other than D, E,
or X is specified for floating-point registers, data_type is ignored and the
register is listed in floating-point format.

For vector registers, if you do not specify the data_type, then LIST displays
them in floating-point format. You can display vector registers in hexadecimal
for both single (V) and double (W) precision registers. You can also display
single precision (V) registers in fixed-point binary. If you specify another data
type, LIST ignores it. For more information about programming considerations
for using the Vector facility, see OS/390 TSO/E Programming Guide.

Specify 0m to display the vector mask register. It can be displayed in
hexadecimal or binary format.

Access registers (A) are displayed in decimal if you specify the F data_type.
Otherwise, they are displayed in the default data_type, hexadecimal.

If an area is to be displayed using the I data_type and the area contains a not
valid op code, only the area up to that not valid op code is displayed.

ALET(alet_value)
specifies that the contents of storage in an alternate address/data space are to
be displayed. You can specify from 1 to 8 hexadecimal characters to represent
the alet_value.

The alet_value used to reference storage appears at the far right of the display
of storage. If you display storage in the primary address space, the alet_value
is zeros. If you display storage in an alternate address/data space, the

Code Type of Data Maximum Length (Bytes)

C Character 256
X Hexadecimal 256
B Binary 256
I Assembler instruction 256
H Fixed point binary (halfword) 8
F Fixed point binary (fullword) 8
E Floating point (single precision) 8
D Floating point (double precision) 8
P Packed decimal 16
Z Zoned decimal 16
A Address constant 4
S Address (base + displacement) 2
Y Address constant (halfword) 2
XC Hexadecimal and EBCDIC 256

1-330 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LIST Subcommand
 

alet_value is the hexadecimal value you specified. ALET and AR are mutually
exclusive.

Note:  The alet_value is displayed whenever storage is listed, not only when
you specify the ALET or AR keywords.

AR(register_number)
specifies the access register number used to reference data in an alternate
address/data space. Valid register numbers for AR are 0 through 15.

The alet_value in the access register used to reference storage appears at the
far right of the display of storage. If you display storage in the primary address
space, the alet_value is zeros. If you display storage in an alternate
address/data space, the alet_value is the hexadecimal value of the data in the
access register. AR and ALET are mutually exclusive.

Note:  The alet_value is displayed whenever storage is listed, not only when
you specify the AR or ALET keywords.

LENGTH(integer)
indicates the length, in bytes, of the data that is to be listed. If you use a
symbolic address and do not specify LENGTH, the value for the LENGTH
operand is retrieved from the internal TEST symbol table or from the length
associated with a symbol in a program. Otherwise, the following default values
apply:

When the data_type is I, either LENGTH or MULTIPLE can be specified, but
not both. If both are specified, the MULTIPLE operand is ignored, but no error
message is printed.

MULTIPLE( integer)
Use with the LENGTH operand. It gives you the following options:

� The ability to format the data to be listed (see “Example 7” on page 1-333).

� A way of printing more than 256 bytes at a time. The value you specify for
the integer determines how many lengths or multiples of data_type you
want listed. The value supplied for the integer cannot exceed 256.

For I type data, the value supplied for MULTIPLE defines the number of
instructions to be displayed. If you use a symbolic address and do not specify
either LENGTH or MULTIPLE, the length retrieved from the internal TEST
symbol table or from the program is used and multiplicity is ignored.

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

Type of Data Default Length (Bytes)

C,B,P,Z 1
H,S,Y 2
F,E,A,X 4
D 8
I variable
XC 4

  Chapter 1. TSO/E Commands and Subcommands 1-331



 TEST—LIST Subcommand  
 

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

Notice that “P” is not a valid truncation for the PRINT operand on the LIST
subcommand because the single letter “P” may be used as a data_type
specifying that the data to be listed is in packed decimal format. See also
“Example 5b” on page 1-333.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

TEST—LIST Subcommand Examples

 Example 1
Operation:  List the contents of floating-point register 2 in single precision.

list 2e

 Example 2
Operation:  List all of the general registers.

list ðr:15r

 Example 3
Operation:  List all of the floating-point registers in double precision.

list ðd:6d

 Example 4
Operation:  List 20 instructions starting with address +3A

list +3a i m(2ð)

 Example 5a
Operation:  List the contents of an area of virtual storage.

Known:

� The area to be displayed is between labels COUNTERA and DTABLE.
� The data is to be listed in character format for a length of 130 bytes.
� The name of the data set where the data is to be put: MYDATA.DCDUMP.

1-332 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LIST Subcommand
 

list countera:dtable
c l(13ð) m(1) print ('mydata.dcdump')

 Example 5b
Operation:  List the contents of two words of storage containing packed decimal
numbers, and place the output into a print data set.

Known:

� The area to be displayed starting at X'22FF4' contains two words in packed
decimal format. Each packed decimal number is of a length of four bytes.

� The name of the data set where the listed data is to be placed is
MYDATA.DCDUMP.

� Assume the hexadecimal contents at address X'22FF4' is X'0000135C', and
the hexadecimal contents at X'22FF8' is X'0032767D'.

list 22FF4. p m(2) len(4) print('mydata.dcdump')

The following two lines where written to the print data set MYDATA.DCDUMP:

ððð22FF4. +135
ððð22FF8. -32767

 Example 6
Operation:  List the contents of virtual storage at several addresses.

Known:

� The addresses: TOTAL1, TOTAL2, TOTAL3, and ALLTOTAL
� Each address is to be displayed in fixed-point binary format in three lines of 3

bytes each.

list (total1 total2 total3 alltotal) f l(3) m(3)

 Example 7
Operation:  List the first six fullwords in the communications vector table (CVT).

Known:

� The absolute address of the CVT: 10
� The user is operating in TEST mode.
� The data is to be listed in hexadecimal form in six lines of 4 bytes each.

Note:  First use the QUALIFY subcommand of TEST to establish the beginning
of the CVT as a base location for displacement values.

qualify 1ð.%

� TEST: The system response

list +ð l(4) m(6)

The display at your terminal might resemble the following:

  Chapter 1. TSO/E Commands and Subcommands 1-333



 TEST—LIST Subcommand  
 

à ð
+ð ðððððððð
+4 ððð12A34
+8 ðððððB2C
+C ðððððððð
+1ð ðð1Að4ð8
+14 ðððð443ð

 Example 8
Operation:  Display the entire contents of vector register 1 in hexadecimal.

list 1v(\) x

 Example 9
Operation:  Display the fourth element of vector register 1 in fullword fixed point
binary.

list 1v(4) f

 Example 10
Operation:  Display elements 3 through 20 of vector register 3 in single precision
floating point.

list 3v(3):3v(2ð)

 Example 11
Operation:  Display the entire contents of all 16 vector registers in single precision
floating point.

list ðv(\):15v(\)

 Example 12
Operation:  Display the entire contents of vector register 0 in double precision
floating point.

list ðw(\)

 Example 13
Operation:  Display elements 5 to 25 of vector register 2 in double precision floating
point.

list 2w(5):2w(25)

 Example 14
Operation:  List the contents of storage at address 4AD8 in the address/data space
referred to by access register 4.

list 4ad8. ar(4)

 Example 15
Operation:  List the contents of storage at the location pointed to by general
register 2 in the address/data space referred to by access register 8.

list 2r? ar(8)

1-334 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LISTDCB Subcommand
 

 Example 16
Operation:  List in decimal the contents of storage at the location pointed to by the
contents of the storage pointed to by register 5. The storage for all addressing is in
the address/data space referred to by access register 6.

list 5r?? ar(6) f

 Example 17
Operation:  List the contents of storage at location 100 in the address/data space
referred to by the ALET value 00010003.

list 1ðð. alet(ððð1ððð3)

 TEST—LISTALC Command
Use the LISTALC command to obtain a list of names of the data sets allocated
during the current user session. For a description of the LISTALC command syntax
and function, see the “LISTALC Command” on page 1-182.

 TEST—LISTBC Command
Use the LISTBC command to obtain a listing of the contents of the broadcast data
set or the user log data set. It contains messages of general interest (NOTICES)
and messages directed to particular users (MAIL).

For a description of the LISTBC command syntax and function, see the “LISTBC
Command” on page 1-186.

 TEST—LISTCAT Command
Use the LISTCAT command to list catalog entries by name of entry type and
selected fields for each entry. For a description of the LISTCAT command syntax
and function, see the “LISTCAT Command” on page 1-188.

 TEST—LISTDCB Subcommand
Use the LISTDCB subcommand to list the contents of a data control block (DCB).
You must provide the address of the beginning of the DCB.

You can display the selected fields. The field identification is based on the
sequential access method DCB for direct access. Fifty-two bytes of data are
displayed if the data set is closed. Forty-nine bytes of data are displayed if the data
set is opened.

TEST—LISTDCB Subcommand Syntax 

55─ ─LISTDCB──address──────────────────────────────────────────────────────5

 ┌ ┐───────────────────────────────────────────────────
5─ ───6 ┴──┬ ┬─────────────────── ──┬ ┬────────────────────── ──────────────────5%

│ │┌ ┐──────── └ ┘──PRINT(data_set_name)
└ ┘──FIELD( ───6 ┴─name─ )

  Chapter 1. TSO/E Commands and Subcommands 1-335



 TEST—LISTDCB Subcommand  
 

TEST—LISTDCB Subcommand Operands
address

specifies the address of the DCB that you want displayed. The address must
be on a fullword boundary. You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

FIELD(name)
specifies one or more names of the particular fields in the DCB that you want
to display at your terminal. The segment name is not printed when you use this
operand. If you omit this operand, the entire DCB is displayed.

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

TEST—LISTDCB Subcommand Examples

1-336 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LISTDEB Subcommand
 

 Example 1
Operation:  List the RECFM field of a DCB for the program that is being tested.

Known:

� The DCB begins at location: DCBIN

listdcb dcbin field(dcbrecfm)

 Example 2
Operation:  List an entire DCB.

Known:

� The absolute address of the DCB: A33B4

listdcb a33b4.

 TEST—LISTDEB Subcommand
Use the LISTDEB subcommand to list the contents of a data extent block (DEB).
You must provide the address of the DEB.

If a copy of the control block is in extended virtual storage, the LISTDEB
subcommand accepts addresses greater than 16 MB, even though the block itself
will always be in virtual storage below 16 MB. Even if an absolute address has
been specified, LISTDEB displays the virtual address before formatting the control
block.

In addition to the 32 byte basic section of the DEB, you can receive up to 16 direct
access device dependent sections of 16 bytes each, until the full length has been
displayed. If you want, you can have only selected fields displayed.

TEST—LISTDEB Subcommand Syntax 

55─ ─LISTDEB─ ─address─ ──┬ ┬─────────────────── ──┬ ┬────────────────────── ───5%
│ │┌ ┐──────── └ ┘──PRINT(data_set_name)
└ ┘──FIELD( ───6 ┴─name─ )

TEST—LISTDEB Subcommand Operands
address

specifies the address is the beginning of the DEB. It must be on a fullword
boundary. You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

FIELD(name)
specifies one or more names of the particular fields in the DEB that you want to
display at your terminal. If you omit this operand, the entire DEB is listed.

  Chapter 1. TSO/E Commands and Subcommands 1-337



 TEST—LISTDEB Subcommand  
 

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

TEST—LISTDEB Subcommand Examples

 Example 1
Operation:  List the entire DEB for the DCB that is named DCBIN.

Known:

� The address of the DEB is 44 decimal (2C hexadecimal) bytes past the
beginning of the DCB.

� The address of the DEB: DCBIN+2C%

listdeb dcbin+2c%

 Example 2
Operation:  List the following fields in the DEB: DEBDCBAD and DEBOFLGS

Known:

� The address of the DEB is 44 decimal (2C hexadecimal) bytes past the
beginning of the DCB. The address of the DCB is in register 8.

listdeb 8r%+2c% field(debdcbad,deboflgs)

1-338 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LISTMAP Subcommand
 

 TEST—LISTDS Command
Use the LISTDS command to display attributes of specific data sets at the terminal.
For a description of the LISTDS command syntax and function, see the “LISTDS
Command” on page 1-192.

 TEST—LISTMAP Subcommand
Use the LISTMAP subcommand to display a virtual storage map at the terminal.
The map identifies the location and assignment of any storage assigned to the
program.

All storage assigned to the problem program and its subtasks as a result of
GETMAIN requests is located and identified by subpool (0-127). All programs
assigned to the problem program and its subtasks are identified by name, size,
location, and attribute. Storage assignment and program assignment are displayed
by task.

TEST—LISTMAP Subcommand Syntax 

55─ ─LISTMAP─ ──┬ ┬────────────────────── ───────────────────────────────────5%
└ ┘──PRINT(data_set_name)

TEST—LISTMAP Subcommand Operands
PRINT(data_set_name)

specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

  Chapter 1. TSO/E Commands and Subcommands 1-339



 TEST—LISTPSW Subcommand  
 

TEST—LISTMAP Subcommand Examples

 Example 1
Operation:  Display a map of virtual storage at your terminal.

listmap

 Example 2
Operation:  Direct a map of virtual storage to a data set.

Known:

� The name of the data set: ACDQP.MAP.TESTLIST
� The prefix in the user's profile: ACDQP

listmap print(map)

 TEST—LISTPSW Subcommand
Use the LISTPSW subcommand to display a program status word (PSW) at your
terminal.

TEST—LISTPSW Subcommand Syntax 

55─ ─LISTPSW─ ──┬ ┬─────────────── ──┬ ┬────────────────────── ────────────────5%
└ ┘──ADDR(address) └ ┘──PRINT(data_set_name)

TEST—LISTPSW Subcommand Operands
ADDR(address)

specifies the address of a particular PSW. If you do not specify an address,
you receive the current PSW for the program that is executing. You can specify
address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

1-340 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LISTTCB Subcommand
 

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

TEST—LISTPSW Subcommand Examples

 Example 1
Operation:  Display the current PSW at your terminal.

listpsw

 Example 2
Operation:  Direct the input/output old PSW into a data set.

Known:

� The prefix in the user's profile: ANZAL2
� The address of the PSW (in hexadecimal): 38
� The name of the data set: ANZAL2.PSWS.TESTLIST

listpsw addr(38.) print(psws)

 TEST—LISTTCB Subcommand
Use the LISTTCB subcommand to display the contents of a task control block
(TCB). You can provide the address of the beginning of the TCB.

If a copy of the control block is in extended virtual storage, the LISTTCB
subcommand accepts addresses greater than 16MB, even though the block itself is
below 16MB in virtual storage. Even if an absolute address is specified, LISTTCB
displays the virtual address of the requested TCB before formatting the control
block.

If you want, you can have only selected fields displayed.

TEST—LISTTCB Subcommand Syntax 

55─ ─LISTTCB─ ──┬ ┬─────────────── ──┬ ┬─────────────────── ────────────────────5
└ ┘──ADDR(address) │ │┌ ┐────────

└ ┘──FIELD( ───6 ┴─name─ )

5─ ──┬ ┬────────────────────── ─────────────────────────────────────────────5%
└ ┘──PRINT(data_set_name)

  Chapter 1. TSO/E Commands and Subcommands 1-341



 TEST—LISTTCB Subcommand  
 

TEST—LISTTCB Subcommand Operands
ADDR(address)

specifies the address must be on a fullword boundary. The address identifies
the particular TCB that you want to display. If you omit an address, the TCB for
the current task is displayed. You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

FIELD(name)
specifies one or more names of the particular fields in the TCB that you want to
display. If you omit this operand, the entire TCB is displayed.

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

TEST—LISTTCB Subcommand Examples

1-342 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LISTVP Subcommand
 

 Example 1
Operation:  Direct a copy of the TCB for the current task into a data set.

Known:

� The prefix in the user's profile is NAN75.
� The name of the data set: NAN75.TCBS.TESTLIST

listtcb print(tcbs)

 Example 2
Operation:  Save a copy of some fields of a task's control block that is not active in
a data set for future information.

Known:

� The symbolic address of the TCB: MYTCB2
� The fields that are being requested: TCBTIO TCBCMP TCBGRS
� The name of the data set: SCOTT.TCBDATA

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)-
print('scott.tcbdata')

 Example 3
Operation:  List the entire TCB for the current task.

listtcb

 TEST—LISTVP Subcommand
Use the LISTVP subcommand to display the partial sum number and the vector
section size of a vector machine.

TEST—LISTVP Subcommand Syntax 

55──LISTVP───────────────────────────────────────────────────────────────5%

TEST—LISTVP Subcommand Examples

 Example 1
Operation:  Determine the vector section size and partial sum number of the vector
machine currently being used.

listvp

The output might look similar to the following: 

IKJ57ð26I VECTOR SYSTEM PARAMETERS
SECTION SIZE: ðð2568

PARTIAL SUM: ðððð48

8 This value will differ based on the machine currently used.

  Chapter 1. TSO/E Commands and Subcommands 1-343



 TEST—LISTVSR Subcommand  
 

 TEST—LISTVSR Subcommand
Use the LISTVSR subcommand to display the contents of the vector status register
(VSR).

TEST—LISTVSR Subcommand Syntax 

55─ ─LISTVSR─ ──┬ ┬─────────────── ──┬ ┬────────────────────── ────────────────5%
└ ┘──ADDR(address) └ ┘──PRINT(data_set_name)

TEST—LISTVSR Subcommand Operands
ADDR(address)

specifies the address of a particular vector status register. If you do not specify
an address, you receive the current vector status register for the program that
is executing. You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

PRINT(data_set_name)
specifies the name of a sequential data set to which the data is directed. If you
omit this operand, the data is directed to your terminal.

The data format is blocked variable-length records. Old data sets with the
standard format and block size are treated as NEW, if they are being opened
for the first time. Otherwise, they are treated as MOD data sets.

If PRINT(data_set_name) is specified, use the following table to determine the
format of the output.

If the data_set_name is not specified within quotes, the descriptive qualifier
TESTLIST is added.

Record and block sizes greater than those specified in the preceding table are
unchanged.

The specified data set is kept open until:

� The TEST session is ended by a RUN or END subcommand, or

� A LIST, LISTDCB, LISTDEB, LISTMAP, LISTPSW, LISTTCB, or LISTVSR
subcommand is entered specifying a different PRINT data set. In this case,
the previous data set is closed and the current one is opened.

If your record type was:
Fixed, Fixed Blocked, or

Undefined
Variable or

Variable-Blocked

Then it is changed to
variable-blocked with the
following attributes:

Recordsize
125

Blocksize
1629

Recordsize
125

Blocksize
129

1-344 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—LOAD Subcommand
 

TEST—LISTVSR Subcommand Examples

 Example 1
Operation:  Display the contents of a vector status register after issuing a
RESTORE VSR instruction (VSRRS):

listvsr

The output might look similar to the following:

à ð
VSR LOCATED AT 7FFF9EF8
 RESERVED VMM VCT VIX VIU VCH
 ðððððððð ðððððððð ð ðð127 ðð127 ðððððððð ðððððððð

 TEST—LOAD Subcommand
Use the LOAD subcommand to load a program into real storage for execution.

Use the LOAD subcommand to load a program above or below 16MB virtual
storage based on its RMODE characteristics. If the displayed entry address is
greater than X'7FFFFFFF', the addressing mode is 31-bit. In this case,
X'80000000' must be subtracted from the displayed number to obtain the actual
address.

TEST—LOAD Subcommand Syntax 

 ┌ ┐─\─────────────
55─ ─LOAD─ ──┴ ┴─data_set_name─ ──┬ ┬────────── ──┬ ┬─────────── ────────────────5%

└ ┘──(member) └ ┘──/password

TEST—LOAD Subcommand Operands
data_set_name

specifies the name of a member of a PDS or a PDSE from which the program
is to be executed.

* specifies that the program to be loaded resides in the LPA and the standard
libraries are to be searched (linklist).

(member)
specifies the name of a member of the partitioned data set containing the
module to be loaded. If the member name is not specified, TEMPNAME is
used. If the data_set_name is not specified within quotes, the LOAD qualifier is
added.

password
specifies the password for a password protected data set.

  Chapter 1. TSO/E Commands and Subcommands 1-345



 TEST—OFF Subcommand  
 

TEST—LOAD Subcommand Examples

 Example 1
Operation:  Load a program named GSCORES from the data set ATX03.LOAD.

Known:

� The prefix in the user's profile is ATX03.

load 'atxð3.load(gscores)'

or

load(gscores)

 Example 2
Operation:  Load a module named ATTEMPT from data set ATX03.TEST.LOAD.

Known:

� The prefix in the user's profile is ATX03.

load 'atxð3.test.load(attempt)'

or

load test(attempt)

However, do not specify the following because this results in a search for
ATX03.TEST.load.load:

load test.load(attempt)

 Example 3
Operation:  Load a module named PERFORM from data set ATX03.TRY.

load 'atxð3.try(perform)'

 TEST—OFF Subcommand
Use the OFF subcommand to remove breakpoints from a program.

TEST—OFF Subcommand Syntax 

55─ ─OFF─ ──┬ ┬─────────────────────────────── ──────────────────────────────5%
 ├ ┤ ─address─ ──┬ ┬────────── ────────

│ │└ ┘──:address
 │ │┌ ┐─,─────────────────────
 └ ┘──( ───6 ┴─address─ ──┬ ┬────────── )

└ ┘──:address

TEST—OFF Subcommand Operands
address

specifies the location of a breakpoint that you want to remove. The address
must be on a halfword boundary. If no address is specified, all breakpoints are
removed. You can specify address as:

� An absolute address
� A symbolic address

1-346 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—OR Subcommand
 

� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

address:address
specifies a range of addresses. All breakpoints in the range of addresses are
removed. See the description of address for a list of valid address types.

(address)
specifies the location of several breakpoints that you want to remove. See the
description of address for a list of valid address types.

Note:  The list must be in parentheses with each address separated by one or
more blanks or a comma.

TEST—OFF Subcommand Examples

 Example 1
Operation:  Remove all breakpoints in a section of a program.

Known:

� The beginning and ending addresses of the section: LOOPC EXITC

off loopc:exitc

 Example 2
Operation:  Remove several breakpoints located at different positions.

Known:

� The addresses of the breakpoints: COUNTRA +2c 3r%

off (countra +2c 3r%)

 Example 3
Operation:  Remove all breakpoints in a program.

off

 Example 4
Operation:  Remove one (1) breakpoint.

Known:

� The address of the breakpoint is in register 6.

off 6r%

 TEST—OR Subcommand
Use the OR subcommand to:

� Alter the contents of the general registers.
� OR an entire data field with another.

The OR subcommand performs logical OR data or addresses from:

  Chapter 1. TSO/E Commands and Subcommands 1-347



 TEST—OR Subcommand  
 

� One virtual storage address to another
� One general register to another
� A general register to virtual storage
� Virtual storage to a general register
� An access register to virtual storage
� Virtual storage to an access register
� One access register to another.

TEST—OR Subcommand Syntax 

 ┌ ┐─NOPOINTER─
55─ ─OR─ ─address_1─ ─address_2─ ──┬ ┬─────────────────────── ──┼ ┼─────────── ───5
 │ │┌ ┐─4─────── └ ┘─POINTER───

└ ┘──LENGTH( ──┴ ┴─integer─ )

5─ ──┬ ┬───────────────────────── ──┬ ┬─────────────────────── ───────────────5%
├ ┤──ARFROM(register_number) ├ ┤──ARTO(register_number)
└ ┘──ALETFROM(alet_value) ─── └ ┘──ALETTO(alet_value) ───

TEST—OR Subcommand Operands
address_1

specifies the location of data that is to be ORed with data pointed to by
address_2.

If you do not specify POINTER and there is a breakpoint in the data pointed to
by address_1, the TSO/E TEST command processor terminates the OR
operation.

address_2
specifies the location of the data that is to be ORed with data pointed to by
address_1. When the OR operation is complete, the result is stored at this
location.

You can specify address_1 and address_2 as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� A general register
� An entry name (preceded by a period)
� An access register.

ARTO(register_number)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space referred to by an access register. Valid access register
numbers are 0 through 15. The operands ARTO and ALETTO (ALTO) are
mutually exclusive.

ARFROM(register_number)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space referred to by an access register. Valid access register
numbers are 0 through 15. The operands ARFROM, ALETFROM, and
POINTER are mutually exclusive.

1-348 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—OR Subcommand
 

ALETTO(alet_value) | ALTO( alet_value)
specifies that the location of the data pointed to by address_2 is in an alternate
address/data space. The ALETTO value may be from 1 to 8 hexadecimal
characters. The operands ALETTO and ARTO are mutually exclusive.

ALETFROM(alet_value) | ALFROM( alet_value)
specifies that the location of the data pointed to by address_1 is in an alternate
address/data space. The ALETFROM value may be from 1 to 8 hexadecimal
characters. The operands ALETFROM, ARFROM, and POINTER are mutually
exclusive.

LENGTH(integer) | LENGTH(4)
specifies the length, in decimal, of the field to be copied. If an integer is not
specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes.

POINTER
specifies address_1 is to be validity checked to see that it does not exceed
maximum virtual storage size. address_1 is then treated as an immediate
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an
address will be converted to its hexadecimal equivalent). When using the
POINTER operand, do not specify a general register as address_1. The
operands ARFROM, ALETFROM, and POINTER are mutually exclusive.

NOPOINTER
specifies address_1 is to be treated as an address. If neither POINTER nor
NOPOINTER is specified, NOPOINTER is the default.

The OR subcommand treats the 16 general registers as contiguous fields. You can
OR 10 bytes from general register 0 to another location as follows:

or ðr 8ðð6ð. length(1ð)

The OR subcommand ORs the 4 bytes of register 0, the 4 bytes of register 1, and
the high-order 2 bytes of register 2 to virtual storage beginning at location 80060.
When a register is specified as address_1, the maximum length of data that is
ORed is the total length of the general registers or 64 bytes.

TEST—OR Subcommand Examples

 Example 1
Operation:  OR two fullwords of data, each in a virtual storage location, placing the
result in the second location.

Known:

� The starting address of the data: 80680
� The starting address of where the data is to be: 80690

or 8ð68ð. 8ð69ð. length(8)

 Example 2
Operation:  OR the contents of the two registers, placing the result in the second
register specified.

Known:

� The register which contains data specified as the first operand: 10

  Chapter 1. TSO/E Commands and Subcommands 1-349



 TEST—QUALIFY Subcommand  
 

� The register which contains data specified as the second operand and the
result: 5

or 1ðr 5r

 Example 3
Operation:  Turn on the high-order bit of a register.

Known:

� The OR value: X'80'
� The register: 1

OR 8ð. 1r l(1) pointer

Note:  Specifying the pointer operand causes 80 to be treated as an immediate
operand and not as an address.

 Example 4
Operation:  OR the contents of an area pointed to by a register into another area.

Known:

� The register which points to the area that contains the data to be ORed: 14
� The virtual storage location which contains the second operand and result:

80680
� The length of the data to be ORed: 8 bytes

or 14r% 8ð68ð. l(8)

 Example 5
Operation:  General register 1 points to data in the address/data space referred to
by access register 1. OR four bytes where general register 1 points into location
A080 in the address/data space referred to by the ALET 40C3A.

or 1r? Að8ð. arfrom(1) aletto(4ðc3a)

 TEST—PROFILE Command
Use the PROFILE command to establish, change, or list your user profile. For a
description of the PROFILE command syntax and function, see the “PROFILE
Command” on page 1-247.

 TEST—PROTECT Command
Use the PROTECT command to prevent unauthorized access to a non-VSAM data
set. For a description of the PROTECT command syntax and function, see the
“PROTECT Command” on page 1-255.

 TEST—QUALIFY Subcommand
Use the QUALIFY subcommand to qualify symbolic and relative addresses; that is,
to establish the starting or base location to which displacements are added so that
an absolute address is obtained. The QUALIFY subcommand allows you to
uniquely specify which program and which CSECT within that program you intend
to test using symbolic and relative addresses.

1-350 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—QUALIFY Subcommand
 

Alternately, you can specify an address to be used as the base location only for
subsequent relative addresses. Each time you use the QUALIFY subcommand,
previous qualifications are voided. Automatic qualification overrides previous
qualifications.

Symbols that were established by the EQUATE subcommand before you enter
QUALIFY are not affected by the QUALIFY subcommand.

TEST—QUALIFY Subcommand Syntax 

55─ ──┬ ┬─QUALIFY─ ──┬ ┬─address──────────────────────────────────────── ─────5%
 └ ┘─Q─────── └ ┘ ──module_name ──┬ ┬───────────── ──┬ ┬──────────────

└ ┘──.entry_name └ ┘──TCB(address)

TEST—QUALIFY Subcommand Operands
address

specifies the base location to be used in determining the absolute address for
relative addresses only. It does not affect symbolic addressing. You can specify
address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

module_name[.entry_name]
specifies the name by which a load module is known, and optionally, an
externally referable name within a module. If only a module is specified, the first
entry point in the module will be supplied.

TCB(address)
specifies the address of a task control block (TCB). This operand is necessary
when programs of the same name are assigned to two or more subtasks and
you must establish uniquely which one is to be qualified.

Note:  When using QUALIFY in combination with other subcommands of TEST
(with relative addressing) for routines such as user exit routines, validity
check routines, and subtasking, the load module or CSECT indicated might
differ from the one that was qualified. This is due to system control
processing of automatic qualification.

TEST—QUALIFY Subcommand Examples

 Example 1
Operation:  Establish the absolute address 5F820 as a base location for relative
addressing.

qualify 5f82ð.

Note:  This is useful in referring to relative addresses (offsets) within a control
block or data area.

  Chapter 1. TSO/E Commands and Subcommands 1-351



 TEST—QUALIFY Subcommand  
 

 Example 2
Operation:  Establish a base location for resolving relative addresses.

Known:

� The module name is BILLS.

qualify bills

 Example 3
Operation:  Establish an address as a base location for resolving relative
addresses.

Known:

� The address is 8 bytes past the address in register 7.

q 7r%+8

 Example 4
Operation:  Establish a base location for relative addresses to a symbol within the
currently qualified program.

Known:

� The base address: QSTART

qualify qstart

 Example 5
Operation:  Establish a symbol as a base location for resolving relative addresses.

Known:

� The module name: MEMBERS
� The CSECT name: BILLS
� The symbol: NAMES

qualify members.bills.names

 Example 6
Operation:  Define the base location for relative and symbolic addressing.

Known:

� The base location is the address of a program named OUTPUT.

q output

 Example 7
Operation:  Change the currently qualified module and CSECT. This means
defining the base location for relative and symbolic addresses to a new program.
The module can be a unique name under any task, or a module under the current
task. If there is another one by the same name under a different task, the module
under the current task would be used.

Known:

� The module name: PROFITS
� The CSECT name: SALES

1-352 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—RUN Subcommand
 

qualify profits.sales

 Example 8
Operation:  Change the base location for symbolic and relative addresses to a
module that has the same name as another module under a different task.

Known:

� The module name: SALESRPT
� The specified module is the one under the task represented by the TCB whose

address is in general register 5.

q salesrpt tcb(5r%)

 TEST—RENAME Command
Use the RENAME command to change the name of a non-VSAM cataloged data
set or a member of a PDS, or to create an alias for a member of a partitioned data
set. For a description of the RENAME command syntax and function, see the
“RENAME Command” on page 1-269.

 TEST—RUN Subcommand
Use the RUN subcommand to cause the program that is being tested to execute to
termination without recognizing any breakpoints. When you specify this
subcommand, TEST is terminated. When the program completes, you can enter
another command. Overlay programs are not supported by the RUN subcommand.
Use the GO subcommand to execute overlay programs.

TEST—RUN Subcommand Syntax 

55─ ──┬ ┬─RUN─ ──┬ ┬───────── ──┬ ┬─────────────────────────── ──────────────────5
 └ ┘─R─── └ ┘─address─ └ ┘──AMODE ──┬ ┬────────────────
 │ │┌ ┐─SWITCH─
 └ ┘──( ──┼ ┼──────── )
 ├ ┤─24─────
 └ ┘─31─────

5─ ──┬ ┬──────────────────────── ───────────────────────────────────────────5%
 └ ┘──ASCMODE ( ──┬ ┬─AR────── )
 └ ┘─PRIMARY─

TEST—RUN Subcommand Operands
address

execution begins at the specified address. If you do not specify an address,
execution begins at the last point of interruption or at the entry point, if the GO
or CALL subcommand was not previously specified. You can specify address
as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)

  Chapter 1. TSO/E Commands and Subcommands 1-353



 TEST—SEND Command  
 

� An entry name (preceded by a period).

AMODE [(24 | 31 | SWITCH )]
specifies the addressing mode in which program execution resumes after the
RUN subcommand has been issued. You can specify AMODE with RUN, even
if the address is not given. However, if AMODE or any abbreviation of AMODE
is defined as a symbolic address, it should not be specified with RUN if your
intention is to start execution at the address pointed to by AMODE. If RUN
AMODE is specified, program execution starts at the last breakpoint and the
SWITCH default is taken. If AMODE(SWITCH) is specified, program execution
resumes in the addressing mode, which was non-current when RUN was
issued. The current addressing mode can be determined by issuing the
LISTPSW command.

Note the following:

� If you do not specify AMODE, there is no change in addressing mode.

� If you specify RUN with no operands, the program being tested is restarted at
the next executable instruction. However, if the tested program abends in an
address space other than home, the home and primary address space
identifiers (ASIDs) are different, and the instruction address in the PSW refers
to an address space which TEST cannot access. Therefore, do not specify
RUN without operands after such an abend.

ASCMODE(AR | PRIMARY)
specifies the PSW mode in which program execution resumes after you issue
the RUN subcommand. If you specify ASCMODE(PRIMARY), the PSW mode is
set to execute the program using the primary address space control mode (in
primary mode). When ASCMODE(AR) is specified, the PSW is set to execute
the program in AR mode.

TEST—RUN Subcommand Examples

 Example 1
Operation:  Execute a program to termination from the last point of interruption.

run

 Example 2
Operation:  Execute a program to termination from a specific address.

Known:

� The address: +A8

run +a8

 TEST—SEND Command
Use the SEND command to send a message to another terminal user or to the
system operator. For a description of the SEND command syntax and function, see
the “SEND Command” on page 1-274.

1-354 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—STATUS Command
 

 TEST—SETVSR Subcommand
Use the SETVSR subcommand to set fields in the vector status register. The
SETVSR subcommand allows you to:

� Specify the vector mask register control mode
� Update the vector count
� Update the vector interruption index
� Update the vector in-use bits.

TEST—SETVSR Subcommand Syntax 

55─ ─SETVSR─ ──┬ ┬──────── ──┬ ┬────────────── ──┬ ┬────────────── ───────────────5
├ ┤─MASK─── └ ┘──VCT( X'nnnn') └ ┘──VIX( X'nnnn')

 └ ┘─NOMASK─

5─ ──┬ ┬──────────── ───────────────────────────────────────────────────────5%
└ ┘──VIU( X'nn')

TEST—SETVSR Subcommand Operands
MASK | NOMASK

specifies the vector mask register control mode.

VCT(X'nnnn ')
allows you to update the vector count. (X'nnnn') specifies the number of
vector elements that are to be processed.

VIX(X'nnnn ')
allows you to update the vector interruption index. (X'nnnn') specifies the
vector element that processing is to start with.

VIU(X'nn')
allows you to update the vector in-use bits. (X'nn') specifies active register
pairs.

TEST—SETVSR Subcommand Examples

 Example 1
Operation:  Set values in the vector status register.

Known:

� The vector mask register control mode is to be NOMASK
� The vector count in hexadecimal: 75
� The vector interruption index in hexadecimal: 76
� The vector in-use bits in hexadecimal: B1

setvsr nomask vct(x'75') vix(x'76') viu(x'b1')

 TEST—STATUS Command
Use the STATUS command to display the status of batch jobs at the terminal. For
a description of the STATUS command syntax and function, see the “STATUS
Command” on page 1-285.

  Chapter 1. TSO/E Commands and Subcommands 1-355



 TEST—WHERE Subcommand  
 

 TEST—SUBMIT Command
Use the SUBMIT command to submit one or more batch jobs for processing under
TEST. For a description of the SUBMIT command syntax and function, see the
“SUBMIT Command” on page 1-286.

 TEST—TERMINAL Command
Use the TERMINAL command to define the operating characteristics for the type of
terminal you are using. For a description of the TERMINAL command syntax and
function, see the “TERMINAL Command” on page 1-291.

 TEST—UNALLOC Command
Use the UNALLOC command to release (deallocate) previously allocated data sets
that are no longer needed. Because FREE is an alias of the FREEMAIN
subcommand, use UNALLOC to free files under TEST. For a description of the
FREE command syntax and function, see the “FREE Command” on page 1-161.

 TEST—WHERE Subcommand
Use the WHERE subcommand to obtain:

� An absolute address
� The name of a module and CSECT
� A relative offset within the CSECT
� The address of the TCB for the specified address.

You can also use the WHERE subcommand to obtain the absolute address serving
as the starting or base location for the symbolic and relative addresses in the
program. Alternately, you can obtain the absolute address of an entry point in a
particular module or control section (CSECT). If you do not specify any operands
for the WHERE subcommand, you receive the address of the next executable
instruction, the related load module and CSECT names, and the hexadecimal
offset.

Note:  After an abend outside the home address space, do not specify WHERE
without operands. The home and primary address space identifiers (ASIDs)
are different after an abend, resulting in an instruction address which TEST
cannot access.

TEST—WHERE Subcommand Syntax 

55─ ──┬ ┬─WHERE─ ──┬ ┬───────────── ──────────────────────────────────────────5%
 └ ┘─W───── ├ ┤─address─────
 └ ┘─module_name─

1-356 OS/390 V2R7.0 TSO/E Command Reference  



  TEST—WHERE Subcommand
 

TEST—WHERE Subcommand Operands
address

You can specify address as:

� An absolute address
� A symbolic address
� A relative address
� An indirect address
� An address expression
� A module name and entry name (separated by a period)
� An entry name (preceded by a period).

If you specify WHERE without an address, the address of the next executable
instruction, the related load module and CSECT names, and the hexadecimal
offset are displayed.

module_name
specifies the name by which a load module is known or the name of an object
module. The output of the WHERE subcommand is the module name, the
CSECT name, the offset within the CSECT, the absolute address, and the
address of the TCB. If only the module name was specified, the only output is
the absolute address of the module and the address of the TCB for the task
under which the module is found.

If the specified address is not within the extent of any user program, only the
absolute address is returned. Along with the absolute address, a message will
be returned stating that the specified address is not within the program extent.
If no operands are specified, the absolute address returned is the address of
the next executable instruction.

TEST—WHERE Subcommand Examples

 Example 1
Operation:  Determine the absolute address of the next executable instruction.

where

 Example 2
Operation:  Determine in which module an absolute address is located.

Known:

� The absolute address: 3E2B8

where 3e2b8.

 Example 3
Operation:  Obtain absolute address of +2c4.

w +2c4

Note:  An unqualified relative address is calculated from the currently qualified
address (as specified using the QUALIFY command or the current module
and CSECT, if no other qualification exists). The module name, CSECT
name, and TCB address are also obtained along with the absolute address.

  Chapter 1. TSO/E Commands and Subcommands 1-357



 TEST—WHERE Subcommand  
 

 Example 4
Operation:  Obtain offset of the symbol SALES in the current program.

where sales

Note:  The module name, CSECT name, absolute address, and the TCB address
are returned along with the offset of SALES.

 Example 5
Operation:  Determine in which module the address in register 7 is located.

w 7r%

Note:  The offset, absolute address, and the TCB address are also returned with
the module name.

 Example 6
Operation:  Obtain the virtual address of the module named CSTART.

where cstart

 Example 7
Operation:  Obtain the virtual address of the CSECT named JULY in the module
named NETSALES.

where netsales.july

 Example 8
Operation:  Determine the relative address of symbol COMPARE in the module
named CALCULAT and CSECT named AVERAGE.

w calculat.average.compare

Note:  The absolute address and TCB address are also returned with the relative
address.

 Example 9
Operation:  Determine the virtual address of +1CA.

Known:

� The CSECT: MARCH
� The module: GETDATA

where getdata.march.+1ca

Note:  You also get the TCB address with the virtual address.

 Example 10
Operation:  Obtain the absolute address for relative address +2C in CSECT named
PRINTIT within the currently qualified module.

where .printit.+2C

1-358 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

 TIME Command
Use the TIME command to obtain the following information:

� Cumulative CPU time (from LOGON)

� Cumulative session time (from LOGON)

� Total service units used, which includes:

– CPU service units - A measure of task execution time.
– I/O service units - A measure of SMF data set activity.
– Storage service units - A measure of the page frame usage.

� Local time of day

Refers to the time of execution for this command. It is displayed as follows:

local time of day in hours(HH),
minutes(MM), and seconds(SS),
(am or pm is also displayed)

 � Today's date.

To enter the command while a program is executing, you must first cause an
attention interruption. The TIME command has no effect on the executing program.

TIME Command Syntax 

55──TIME─────────────────────────────────────────────────────────────────5%

TIME Command Return Code
The return code is always zero.

 TRANSMIT Command
Use the TRANSMIT command to send information (a message), or a copy of
information (a data set), or both, to another user. The TRANSMIT command
converts this data into a special format so that it can be transmitted to other users
in the network. Use the RECEIVE command to retrieve the data and restore it to its
original format.

TRANSMIT Command Syntax

  Chapter 1. TSO/E Commands and Subcommands 1-359



 TRANSMIT Command  
 

 

55─ ──┬ ┬─TRANSMIT─ ──┬ ┬─addressee──────── ──┬ ┬─────────────────────── ────────5
 └ ┘─XMIT───── │ │┌ ┐─,──────── ├ ┤─TERMINAL──────────────
 └ ┘──( ───6 ┴─adressee─ ) ├ ┤── ──┬ ┬─DATASET─ (dsname)
 │ │└ ┘─DSNAME──

└ ┘── ──┬ ┬─DDNAME─ (ddname) ─
 └ ┘─FILE───

 ┌ ┐ ──┬ ┬─MESSAGE─ ─────────────
 │ │└ ┘─MSG───── ┌ ┐─NOCOPYLIST─
5─ ──┼ ┼────────────────────────── ──┼ ┼──────────── ──┬ ┬────────── ────────────5

├ ┤── ──┬ ┬─MSGDDNAME─ (ddname) ─ └ ┘─COPYLIST─── └ ┘─ENCIPHER─
 │ │└ ┘─MSGFILE───

└ ┘── ──┬ ┬─MSGDATASET─ (dsname)
 └ ┘─MSGDSNAME──

 ┌ ┐─EPILOG───
5─ ──┼ ┼────────── ──┬ ┬──────────────── ──┬ ┬──────────────── ──────────────────5
 └ ┘─NOEPILOG─ ├ ┤─FULLSCREEN───── ├ ┤──LOG ──┬ ┬───────

└ ┘──LINE ──┬ ┬────── │ │└ ┘──(ALL)
└ ┘──(xx) └ ┘─NOLOG──────────

5─ ──┬ ┬──────────── ──┬ ┬─────────────── ──┬ ┬─────────────────────── ──────────5
├ ┤─LOGDATASET─ └ ┘──LOGNAME(name) │ │┌ ┐─,──────
├ ┤─LOGDSNAME── └ ┘──MEMBERS( ───6 ┴─member─ )
└ ┘──(dsname) ──

5─ ──┬ ┬─────────────────── ──┬ ┬──────────────────────── ──┬ ┬──────────── ─────5
├ ┤──NOTIFY ──┬ ┬─────── └ ┘──PARM(parameter_string) ├ ┤─PDS────────
│ │└ ┘──(ALL) └ ┘─SEQUENTIAL─

 └ ┘─NONOTIFY──────────

5─ ──┬ ┬────────── ──┬ ┬──────────────────────────── ──────────────────────────5
├ ┤─PROLOG─── └ ┘──SYSOUT( ──┬ ┬─*──────────── )

 └ ┘─NOPROLOG─ └ ┘─sysout_class─

5─ ──┬ ┬────────────────────────── ─────────────────────────────────────────5%
├ ┤── ──┬ ┬─OUTDDNAME─ (ddname) ─

 │ │└ ┘─OUTFILE───
└ ┘── ──┬ ┬─OUTDATASET─ (dsname)

 └ ┘─OUTDSNAME──

TRANSMIT Command Operands
Note:  If you specify either MSGDDNAME or MSGFILE, or MSGDATASET or

MSGDSNAME, the TERMINAL operand is no longer the default.

(addressee)
specifies the information identifying the target user(s). You can combine one or
more of the following: a node and user ID specified as node.user_id or
node/user_id, a nickname, or a distribution list name. If you identify only one
user as the addressee, you can omit the parentheses. See “NAMES Data Set
Function” on page 1-368.

| A maximum of 200 node/userid combinations and 200 nicknames may be
| specified, but the total number of addressees may not exceed 200.

DATASET(dsname) | DSNAME(dsname)
specifies the name of a data set to be transmitted. The data set must be on a
direct access storage device (DASD).

DDNAME(ddname) | FILE(ddname)
specifies the 1 to 8 character ddname of a preallocated file to be transmitted.
The data set must be on a direct access storage device (DASD). If you transmit

1-360 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

a member of a preallocated partitioned data set, you must specify the
MEMBERS operand.

TERMINAL
specifies data input is to be taken from the terminal. You are prompted to enter
data to be transmitted either in line mode or in full- screen mode as specified
by the LINE or FULLSCREEN operand.

MSGDDNAME(ddname) | MSGFILE(ddname)
specifies a 1 to 8 character ddname or file name of the file that is to be
transmitted. You must allocate the file before it is transmitted. The system
transmits the file as a message.

The file must have a record format of either FB or F and a record length of 80.
You can specify a sequential data set or a member of a partitioned data set.
MSGDDNAME or MSGFILE is mutually exclusive with MSGDATASET or
MSGDSNAME, and MESSAGE or MSG.

If you specify either MSGDDNAME or MSGFILE, the TERMINAL operand is no
longer the default. This allows you to send the data or message to be displayed
at the recipient's terminal without having to enter the data or message either in
line mode or in full-screen mode. If you want full-screen mode, you must
explicitly specify TERMINAL.

When you specify the ENCIPHER operand, the following can happen:

� If you specify the ENCIPHER operand and either the TERMINAL,
DATASET, DDNAME, DSNAME, or FILE operands, the system does not
encipher the data set specified with the MSGDDNAME or MSGFILE
operand.

� If you specify ENCIPHER and do not specify the TERMINAL, DATASET,
DDNAME, DSNAME, or FILE operands, the system enciphers the data set
specified with the MSGDDNAME or MSGFILE operand.

The ENCIPHER operand is described later in this section.

MSGDATASET(dsname) | MSGDSNAME(dsname)
specifies the data set that is to be transmitted. The system transmits the data
set as a message.

The data set must have a record format of either FB or F and a record length
of 80. You can specify a sequential data set or a member of a partitioned data
set. MSGDATASET or MSGDSNAME is mutually exclusive with MSGDDNAME
or MSGFILE, and MESSAGE or MSG.

If you specify either MSGDATASET or MSGDSNAME, the TERMINAL operand
is no longer the default. This allows you to send the data or message to be
displayed at the recipient's terminal without having to enter the data or
message either in line mode or in full-screen mode. If you want full-screen
mode, you must explicitly specify TERMINAL.

When you specify the ENCIPHER operand, the following can happen:

� If you specify the ENCIPHER operand and either the TERMINAL,
DATASET, DDNAME, DSNAME, or FILE operands, the system does not
encipher the data set specified with the MSGDATASET or MSGDSNAME
operand.

  Chapter 1. TSO/E Commands and Subcommands 1-361



 TRANSMIT Command  
 

� If you specify ENCIPHER and do not specify the TERMINAL, DATASET,
DDNAME, DSNAME, or FILE operands, the system enciphers the data set
specified with the MSGDATASET or MSGDSNAME operand.

The ENCIPHER operand is described later in this section.

MESSAGE | MSG
specifies that you are to be prompted for messages that accompany a
transmitted data set. The prompt is either in full-screen mode or in line mode,
depending on the terminal type and the specification of FULLSCREEN or LINE.

Note the following:

� If you specify both TERMINAL and MESSAGE, TSO/E prompts you twice
for the data.

� TSO/E uses the prefix as the high-level qualifier for the name of the data
set to be transmitted.

COPYLIST | NOCOPYLIST

COPYLIST specifies that TRANSMIT build a list of the specified addressees
and append it as a prolog to the message. If a data set is being
transmitted, the copylist is added as an accompanying message. If a
message is being transmitted, COPYLIST prefixes the message text.

NOCOPYLIST specifies no copylist is to be generated or appended.
NOCOPYLIST is the default.

ENCIPHER
specifies TRANSMIT should encipher the data by invoking the Access Method
Services REPRO command. The TRANSMIT command prompts for ENCIPHER
options to be passed with the REPRO command.

EPILOG | NOEPILOG

EPILOG specifies TRANSMIT should include epilog lines from the NAMES data
set, if a terminal message is transmitted. An EPILOG is added unless you
either type in NOEPILOG or have no epilog in your NAMES data set.
EPILOG is the default.

NOEPILOG specifies no epilog lines should be included.

FULLSCREEN | LINE | LINE( nn)

FULLSCREEN  requests all terminal input for messages or data be read in
full-screen mode. This is the default for 3270 terminals capable of
supporting a minimum screen size of 24 rows by 80 columns.

LINE | LINE( nn) requests terminal input for messages and data be read in
single line mode. This is the default for non-3270 terminals. Use nn in a 1
to 2 character string to mark the end of data. You can also use LINE(nn) to
allow a CLIST to provide messages or data. To terminate message input,
enter a null line or the 1 or 2 character string value LINE(nn) in columns 1
and 2. LINE(nn) allows you to insert blank lines into the text. Leading
blanks are eliminated when in a CLIST, but they are kept when not in a
CLIST.

1-362 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

LOG | NOLOG | LOG(ALL)

LOG records the transmission in the LOG data set. LOG does not necessarily
indicate that the log entry will contain a line for every addressee except for
node.userid addressees. The LOG/NOLOG/LOGLST tags in the nicknames
section of the NAMES data set or the LOG/NOLOG tags in the control
section of the NAMES data set determine whether the log entry will contain
addressee entries for a nickname or distribution list. Only one log entry is
built in the default log file per transaction. LOG is the default. See “Logging
Function of TRANSMIT and RECEIVE” on page 1-367. To ensure that the
log entry contains a line for each addressee, including those on a
distribution list, specify the LOG(ALL) option. See LOG(ALL) for more
information.

NOLOG specifies not to record the transmission in the LOG data set. NOLOG
overrides all LOG/LOGLST tags in the NAMES data set.

LOG(ALL)  specifies the log entry contain a line for each addressee, including
those derived from any distribution lists on the NAMES data set. This
specification overrides the NOLOG/NOLOGLST tags in the NAMES data
set.

LOGDATASET( dsname) | LOGDSNAME( dsname)
specifies an alternate name of a sequential data set in which to log the
transmitted data. Users defined to more than one security label may need to
specify a log data set name if they are logged on at a security label other than
the SECLABEL of the profile that is protecting their log data set. A user's
current security label (the security label the user is logged on with) must match
the security label of the log data set in order for a transmission to be logged in
the data set. Specifying a log data set allows users to log transmissions for
each security label they are defined to in separate data sets. The data set must
have a logical record length of 255, a record format of variable blocked, and a
block size of 3120. If the data set does not exist, the system creates it.

LOGNAME(name)
uses the name as the LOGNAME qualifier on the log data set name. See
“Logging Function of TRANSMIT and RECEIVE” on page 1-367.

MEMBERS(member)
transmits a list of members from the specified partitioned data set.

NOTIFY
notifies the sender when the data has been received. NOTIFY does not
necessarily guarantee that notification will be requested except for node.userid
addressees. For nicknames and distribution lists, control of notification is
determined by the :NOTIFY or :NONOTIFY tag in the nickname section of the
NAMES data set.

NOTIFY(ALL)
notifies the sender when the data has been received by all addressees. This
operand overrides the :NOTIFY or :NONOTIFY tags in the nickname entries of
the NAMES data set or distribution lists.

NONOTIFY
suppresses the notify function. This stops the notify function completely,
overriding any specification in the NAMES data set or in the distribution lists.

  Chapter 1. TSO/E Commands and Subcommands 1-363



 TRANSMIT Command  
 

PARM(parameter_string)
Your installation may instruct you to use this operand to specify installation
dependent data.

PDS | SEQUENTIAL

PDS unloads a member or members of a partitioned data set (PDS) before
transmission. This method preserves the directory information, but forces
the receiving user to restore the member(s) into a PDS. PDS is the default.

Note:  Some non-MVS systems cannot receive a partitioned data set. To
transmit a member of a partitioned data set or a sequential data set,
use the SEQUENTIAL keyword. For more information on data set
transmission, see the SEQUENTIAL keyword description.

SEQUENTIAL  sends a member of a partitioned data set or a sequential data
set as a sequential data set. This method does not preserve directory
information, but allows the receiving user to restore the data set as either a
sequential data set or as a member of a partitioned data set. If
transmission is by ddname, the member must be preallocated. The
SEQUENTIAL keyword is ignored when no member is specified for a
partitioned data set.

PROLOG | NOPROLOG

PROLOG specifies TRANSMIT should include prolog lines from the control
section of the NAMES data set, if a terminal message is transmitted.
PROLOG is the default.

NOPROLOG specifies not to include prolog lines.

SYSOUT(sysoutclass | *)
uses the SYSOUT class for messages from utility programs, which are used by
TRANSMIT (for example IEBCOPY). If you specify a * (asterisk), TSO/E directs
utility program messages to the terminal. The default is usually *, but the
installation can modify it.

OUTDDNAME(ddname) | OUTFILE(ddname)
specifies the use of a preallocated file as the output data set for the TRANSMIT
command. No data is written to SYSOUT for transmission. TSO/E assigns the
DCB attributes as LRECL=80, BLKSIZE=3120, and RECFM=FB. Specify the
ddname as either a sequential data set or a member of a partitioned data set.

Use OUTDDNAME or OUTFILE in conjunction with the INDDNAME or INFILE
operand of the RECEIVE command. OUTDDNAME and OUTFILE are primarily
intended for system programmer use.

OUTDSNAME(dsname) | OUTDATASET( dsname)
specifies the use of a data set as the output data set for the TRANSMIT
command. No data is written to SYSOUT for transmission. TSO/E assigns the
DCB attributes as LRECL=80, BLKSIZE=3120, and RECFM=FB. The data set
must be a sequential data set.

Use OUTDSNAME or OUTDATASET in conjunction with the INDSNAME or
INDATASET operand of the RECEIVE command. OUTDSNAME and
OUTDATASET are primarily intended for system programmer use.

1-364 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

TRANSMIT Command Return Codes
Figure 1-54. TRANSMIT Command Return Codes

0 Processing successful.

4 Processing successful, but a warning message has been issued.

8 Processing incomplete. At least one transmission was unsuccessful.

12 Processing unsuccessful.

16 Processing unsuccessful. Abnormal end.

Transmitting Data Sets
You can use the TRANSMIT command to transmit sequential or partitioned data
sets with record formats of F, FS, FB, FBS, V, VB, VBS, and U. The data sets must
reside on a direct access storage device (DASD). For a VB or VBS data set, the
largest logical record length (LRECL) TSO/E can transmit to VM is 65,535. Data
sets with machine and ASA print-control characters are also supported. TRANSMIT
does not support data sets with keys, ISAM data sets, VSAM data sets, or data
sets with user labels.

If a partitioned data set (PDS) is transmitted, it is unloaded with IEBCOPY and then
the unloaded version is transmitted. If a single member of a PDS is transmitted, it is
generally unloaded before transmission. You can force transmission of a partitioned
data set member as a sequential data set by using the SEQUENTIAL operand.
Forced transmission of a partitioned data set member as a sequential data set does
not preserve the directory information. The IEBCOPY unload preserves directory
information, but the receiver must reload it into a partitioned data set.

Transmitting Data Sets as Messages
You can transmit a data set as a message by specifying MSGDDNAME or
MSGFILE, or MSGDATASET or MSGDSNAME. Using these operands might
reduce the time it takes to transmit a file or data set. The file or data set must have
a record format of fixed block (FB) and a record length (LRECL) of 80. You can
transmit either a sequential data set or a member of partitioned data set. For
MSGDDNAME or MSGFILE, you must allocate the file before you transmit.

 Transmitting Messages
If you specify MESSAGE when you transmit data, TRANSMIT prompts you for
messages that accompany the data. These messages are shown to the receiving
user when the RECEIVE command is issued. The messages are shown before you
are prompted to indicate what to do with the data. You can enter messages in
either full-screen mode or single line mode.

You can enter up to 220 lines of data in either full-screen mode or single line mode.
Of the 220 lines of data, ten are reserved for the PROLOG lines. If you specify the
EPILOG tag in the NAMES data set, you can specify an additional 10 lines beyond
the 220 line limit. For full-screen mode, use the program function (PF) keys for
scrolling (PF7 or PF19 and PF8 or PF20) and for termination (PF3 or PF15). For
single line mode, messages are terminated by either a null line or the string value
specified in LINE(nn).

Note:  Full-screen mode is the default for 3270 terminals capable of supporting a
minimum screen size of 24 rows by 80 columns.

  Chapter 1. TSO/E Commands and Subcommands 1-365



 TRANSMIT Command  
 

Transmitting a message that you enter from the terminal is the simplest form of the
TRANSMIT command. You specify TRANSMIT addressee-list and TRANSMIT
defaults to terminal input. Messages sent in this manner are not saved in a data
set, but are saved in the LOG data set.

Transmitting Enciphered Data
To encipher the transmitted data, specify the ENCIPHER operand. The TRANSMIT
command prompts for encipher options, which are passed to the Access Method
Services REPRO command.

Data Encryption Function of TRANSMIT and RECEIVE
The TRANSMIT and RECEIVE commands support encryption using the Data
Facility Product (DFP) program product.

TSO/E uses the Access Method Services REPRO command to encrypt data sets
before transmitting them. However, your installation must allow encryption.

If you have either of the program products installed and your installation allows
encryption, TRANSMIT, as required, invokes the Access Method Services REPRO
command to encrypt data sets before they are transmitted. The TRANSMIT and
RECEIVE commands prompt you for encipher/decipher options and append what
you entered as REPRO command suboperands of the ENCIPHER or DECIPHER
operand.

Transmitting Data Sets and Messages with Security Labels
If your installation uses security labels and security checking, any data sets or
messages you transmit have a security label associated with them. The security
label you are logged on with when you issue the TRANSMIT command is the one
associated with the data. In order for receivers to view the data set or message,
they must be logged on with a security label that is equal to or greater than the one
associated with the data.

Some considerations for transmitting and receiving data sets and messages with
security labels are:

� Receivers can only receive data sets and messages that they are authorized to
receive based on the security label they are logged on with.

� To receive data sets and messages with a greater security label, receivers can
log on with a greater security label if their TSO/E user IDs are authorized to do
so. They can then use the RECEIVE command to view the messages and data
sets.

� If the receivers cannot log on with a security label that allows them to view the
transmitted data (data set or message), the system deletes the data, unless
your installation uses a JES installation exit to take some other action.

� The receivers do not receive a notice that they have data sets or messages to
receive if the data was transmitted with a greater security label than the
receivers are logged on with.

1-366 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

Logging Function of TRANSMIT and RECEIVE
The TRANSMIT and RECEIVE functions normally log each file transmitted and
received. The TRANSMIT and RECEIVE commands create appropriate log data
sets, if they do not already exist.

The name of the log data set is determined as follows:

1. If the LOGDATASET or LOGDSNAME operand is used, the data set
‘prefix.logdsname’ is used for logging.

2. In the absence of any user or installation specification, the default log data set
name is ‘prefix.LOG.MISC’.

3. The qualifier LOG is called the log selector and can be changed by the
:LOGSEL tag in the control section of the NAMES data set. This qualifier is
common for all log data sets belonging to any given user.

4. The qualifier MISC is called the log name. It might be overridden by the
LOGNAME operand on the TRANSMIT command, the :LOGNAME tag in the
control section of the NAMES data set, or by the :LOGNAME tag in a nickname
definition.

Use the log selector to define all of your log data sets under one name. The log
name identifies each individual data set in the log data set. For example, you can
list all of your log data sets by ‘prefix.LOG’. This would give you a list of all of your
log data sets with the individual log names.

The log data sets have the following DCB attributes: LRECL=255, BLKSIZE=3120,
and RECFM=VB.

With any given invocation of the TRANSMIT or RECEIVE command, logging can
occur to more than one log data set depending upon the presence of the
:LOGNAME tag on the nickname or distribution list entry in the NAMES data set.
However, with any given invocation of the TRANSMIT or RECEIVE command, only
one log entry is written to any one log data set. This log entry then contains an
addressee entry for each addressee being logged to that log data set.

The first lines in each log entry contain a line of hyphens and a descriptor line. The
format of the descriptor line is:

Column Usage

1 - 8 Name of the command using the entry.

17 - 60 Name of the data set transmitted or received.

63 - 82 Time stamp from the command execution.

For the TRANSMIT command log entries, subsequent lines indicate the addressees
to which the transmission was sent, the names of any members of a partitioned
data set selected for transmission, and any messages entered with the TRANSMIT
command.

For the RECEIVE command log entries, the second log line always identifies the
originator of the transmission. The originator of the transmission can be the issuer
of the TRANSMIT command (in the case of a file or message receipt) or the issuer
of the RECEIVE command (if the log entry is for notification). If the entry in the log
is a file or a message receipt, the time stamp recorded is from the TRANSMIT

  Chapter 1. TSO/E Commands and Subcommands 1-367



 TRANSMIT Command  
 

command. If the entry in the log was a notification, the time stamp is from the
RECEIVE command. The format is:

Column Usage

9 - 15 Nickname of the originating user or blanks.

17 - 24 Node name of the originating user.

26 - 33 User ID of the originating user.

35 - 61 Name of the originating user or blank.

63 - 82 Time stamp from the originating command.

For RECEIVE command notification entries, the third log line identifies the original
transmission. The data set name and time stamp on this line are those from the
original transmission. The format of the third log line is:

Column Usage

4 - 15 Error code from RECEIVE. STORED indicates that the RECEIVE
operation was successful.

17 - 60 Data set name from the TRANSMIT command.

63 - 82 Time stamp from the TRANSMIT command.

NAMES Data Set Function
The TRANSMIT command allows several different specifications of a list of
addressees. The simplest is a single addressee whose node name and user ID are
specified explicitly. The next level is the nickname specification. The nickname is a
1 to 8 character name that is a synonym for the node and user ID. The TRANSMIT
and RECEIVE commands find the actual node and user ID by looking up the
nickname in tables provided in the NAMES data set. The final level of addressing is
a distribution list. A definition in the NAMES data set identifies a distribution list
name. The named list can reference up to 100 nicknames of either addressees or
other distribution lists.

Each user of the TRANSMIT and RECEIVE commands can have one or more
NAMES data sets to resolve nicknames and establish the default mode of
operation. In the absence of any explicit installation specification, the name of the
first of these data sets is ‘prefix.NAMES.TEXT’. The first data set contains the
names of any other NAMES data sets. The data set can have either fixed or
varying length records. Using varying length records will save disk space. The
records are numbered according to standard TSO/E conventions. They can also be
unnumbered. The data set is either blocked or unblocked with any record length
less than or equal to 255.

The data set is composed of two sections, the control section and the nicknames
section. The control section must precede the nicknames section. The control
section ends at the first :NICK tag. Use the control section to set defaults for
LOG/NOLOG and NOTIFY/NONOTIFY, prolog or epilog lines, the default log data
set name, and to identify other NAMES data sets that are used.

The nicknames section contains one entry for each nickname and distribution list
name that you want to define.

1-368 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

Each occurrence of a colon in the NAMES data set is treated as the start of a tag.
If the tag following the colon is not one of those described below, it is treated as a
user-defined tag that may be processed by an installation-written application that
uses the NAMES data set. The information that follows a user-defined tag is
ignored by TRANSMIT and RECEIVE processing. For more information about
installation-written applications, see OS/390 TSO/E Programming Guide.

Control Section Tags
Use the beginning of the NAMES data set to control certain operations of the
TRANSMIT and RECEIVE commands. The tags are optional. You can include any
of the following tags:

:ALTCTL. dsname
specifies the fully-qualified file name of another file to be used in the nickname
look up process. If TRANSMIT finds more than one :ALTCTL tag, TRANSMIT
uses the order of the :ALTCTL tags to scan the files. You can specify up to ten
:ALTCTL tags. All control section tags, the :LOG and :NOLOG tags, the
:LOGNAME tag, and the :NOTIFY and :NONOTIFY tags are always ignored
when read from any alternate NAMES data set.

:EPILOG. text
in the control section, specifies a text line to be appended at the end of any
transmitted message. The maximum length of an epilog line is 72 characters.
You can specify up to ten :EPILOG lines. If more than one :EPILOG record is
found, records appear in the message in the same order as they are in the file.
Text data for the :EPILOG tag should be on the same line as the :EPILOG tag.

:PROLOG. text
in the control section, specifies a text line to be inserted at the beginning of any
transmitted message. The maximum length of a prolog line is 72 characters.
You can specify up to ten :PROLOG lines. If more than one :PROLOG record
is found, records appear in the message in the same order as they are in the
file. Text data for the :PROLOG tag should be on the same line as the
:PROLOG tag.

:LOGNAME. name
in the control section, serves as a default qualifier for the log data set name. If
you specify it in the nickname entry, the value provided overrides the default
set in the control section. See “Logging Function of TRANSMIT and RECEIVE”
on page 1-367.

:LOGSEL. name
in the control section, specifies the second (middle) qualifier of all log data sets.
See “Logging Function of TRANSMIT and RECEIVE” on page 1-367.

:LOG | :NOLOG
in the control section, indicates whether you want logging for any addressee
specified by node and user ID and for any nickname that does not also specify
:LOG or :NOLOG. If the nickname entry contains the :LOG or :NOLOG tag, this
value overrides any value in the control section. However, it might have been
overridden by a specification on the TRANSMIT command. If you specify
NOLOG in your NAMES data set in the control section or on a :NICK tag,
TSO/E prompts you with a message to receive data set ‘A.MAIL.USERID’.
TSO/E then stores and places the message in ‘myid.MAIL.USERID’ where myid
is the receiver of the message and USERID is the originator of the message.

  Chapter 1. TSO/E Commands and Subcommands 1-369



 TRANSMIT Command  
 

The default is :NOLOG.

:NOTIFY | :NONOTIFY
in the control section, indicates whether you want notification for any addressee
specified by node and user ID, and for any nickname where the nickname entry
does not contain :NOTIFY or :NONOTIFY. The value of :NOTIFY or
:NONOTIFY in the NAMES data set might be overridden by a similar
specification on the TRANSMIT command. If you want to be notified for
addressees on distribution lists, you must specify :NOTIFY on the distribution
list in the control data set or specify NOTIFY(ALL).

The default is :NOTIFY.

Nicknames Section Tags
The nicknames section is composed of tags and their values in the same manner
as the control section. The nicknames section is different from the control section in
that it is divided by the occurrence of each :NICK tag and continues until the next
:NICK tag, which starts the next definition. Use the nickname as either a nickname
of a single user or the name of a distribution list. The :NODE and :USERID tags
are present when you use the nickname for a user definition. The :LIST and/or :CC
tags are present when you use the nickname for distribution list definition.

Use the log and notify tags, except for :LOGLST and :NOLOGLST, with either a
user ID definition or a distribution list definition.

Note the following:

1. Each nickname entry must begin with the :NICK tag and :NICK must be the
first non-blank character on the line.

2. You can specify the tags as all uppercase or all lowercase.

3. :NICK.nickname and :USERID.user_id are required.

:NOTIFY | :NONOTIFY
in the control section, specifies whether you want notification for any addressee
specified by node and user ID, and for any nickname where the nickname entry
does not contain :NOTIFY or :NONOTIFY. The value of :NOTIFY or
:NONOTIFY in the NAMES data set might be overridden by a similar
specification on the TRANSMIT command. If you want to be notified for
addressees on distribution lists, you must specify :NOTIFY on the distribution
list in the control data set or specify NOTIFY(ALL).

:NICK.name
indicates a nickname entry in the NAMES data set. It must be the first
non-blank (except for line numbers) character of the record. The nickname is a
1 to 8 character string of non-blank alphanumeric characters.

:NODE.node_id
in the nickname entry, specifies a network node name for the nickname entry. If
the :NODE tag is not present in a nickname entry, the local user's node name
is assumed.

:USERID.user_id
specifies the user ID of the user to be identified by the nickname. You cannot
use the :USERID tag with :LIST or :CC tags in the same nickname entry.

1-370 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

:LOG | :NOLOG
in the control section, indicates whether you want logging for any addressee
specified by node and user ID and for any nickname that does not also specify
:LOG or :NOLOG. If the nickname entry contains the :LOG or :NOLOG tag, this
value overrides any value in the control section. However, it might have been
overridden by a specification on the TRANSMIT command. If you specify
NOLOG in your NAMES data set in the control section or on a :NICK tag,
TSO/E prompts you with a message to receive data set ‘A.MAIL.USERID’.
TSO/E then stores and places the message in ‘myid.MAIL.USERID’ where myid
is the receiver of the message and USERID is the originator of the message.

:LOGLST | :NOLOGLST
in the nickname entry, defines a distribution list. The tag indicates whether a
log entry should be made for each addressee in the list.

:NAME.user_name
specifies the plain text name of the user being defined. This name appears in
the copy list and in any log entries for this nickname. You can specify up to 30
characters.

:ADDR.address
in the nickname entry, specifies the address of the specified user. Separate
individual lines of the address with semicolons.

:LIST.name name_list
in the nickname entry, specifies a list of addressees that make up the
distribution list. Specify the addressee as either a nickname of the name or
another distribution list. The :LIST tag can reference up to 100 nicknames. If
you want to be notified for addressees on distribution lists, specify :NOTIFY on
the distribution list in the control data set or specify NOTIFY(ALL) on the
TRANSMIT command.

:CC.name name_list
specifies further nicknames of addressees for a distribution list. It is treated as
a synonym of the :LIST tag. You can specify up to 100 nicknames.

:PARM. text
specifies up to 30 characters of installation-defined data. TSO/E passes this
data to the RECEIVE command installation exits. For more information about
how an installation uses these exits, see OS/390 TSO/E Customization.

TRANSMIT Command Examples
In the following examples, the transmitting user is assumed to have user ID USER1
on node NODEA and the receiving user is assumed to have user ID USER2 on
node NODEB. The sending user has a NAMES data set as follows:

  Chapter 1. TSO/E Commands and Subcommands 1-371



 TRANSMIT Command  
 

\ Control section
:altctl.DEPT.TRANSMIT.CNTL
:prolog.Greetings from John Doe.
:prolog.
:epilog.
:epilog.Yours,:epilog.John Doe :epilog.NODEA.USER1
\
\ Nicknames section.
\
:nick.alamo :list.Jim Davy :logname.alamo :notify.
:nick.addrchg :list.joe davy jim :nolog :nonotify
:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe
:nick.Me :node.nodea :userid.user1 :name.me
:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett
:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie

In the examples involving the RECEIVE command, data entered by the user
appears in lowercase and data displayed by the system is in uppercase.

 Example 1
Transmit a copy of the ‘SYS1.PARMLIB’ data set to Joe, identifying Joe by his
node and user ID.

transmit nodeb.user2 da('sys1.parmlib')

 Example 2
Joe receives the copy of ‘SYS1.PARMLIB’ transmitted above.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Enter restore parameters or 'DELETE' or 'END' +
<null line>
Restore successful to dataset 'USER2.PARMLIB'
-----------------------------------------------
No more files remain for the RECEIVE command to process.

In the above example, Joe has issued the RECEIVE command, seen the
identification of what arrived, and chosen to accept the default data set name for
the arriving file. The default name is the original data set name with the high-level
qualifier replaced by his user ID.

 Example 3
Transmit two members of ‘SYS1.PARMLIB’ to Joe, and add a message identifying
what was sent. Joe is identified by his NICKNAME, leaving it to TRANSMIT to
convert it into node and user ID by the nicknames section of the NAMES data set.

à ð
transmit joe da('sys1.parmlib') mem(ieasysðð,ieaipsðð) line
ENTER MESSAGE FOR NODEB.USER2
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
<null line>

The message text in this example was entered in line mode which would be
unusual for a user on a 3270 terminal, but which is easier to show in an example.

1-372 OS/390 V2R7.0 TSO/E Command Reference  



  TRANSMIT Command
 

 Example 4
Joe begins the receive process for the members transmitted in Example 3 and
ends the receive without actually restoring the data onto the receiving system,
because Joe does not know where he wants to store the data.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Members: IEASYSðð, IEAIPSðð
Greetings from John Doe.
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
NODEA.USER1
Enter restore parameters or 'DELETE' or 'END' +
end

In the above example, notice that the PROLOG and EPILOG lines have been
appended to the message entered by the sender. In an actual RECEIVE operation,
the original message text would appear in both uppercase and lowercase just as
the sender had entered it (assuming the receiver's terminal supports lowercase.)

 Example 5
Joe receives the ‘SYS1.PARMLIB’ members transmitted in Example 3. Specify
space parameters for the data set that will be built by RECEIVE to leave space for
later additions.

à ð
receive
Dataset SYS1.PARMLIB from USER1 on NODEA
Members: IEASYSðð, IEAIPSðð
Greetings from John Doe.
Joe,

These are the parmlib members you asked me to send you.
They are in fact the ones we are running today.
Yours, John Doe
NODEA.USER1
Enter restore parameters or 'DELETE' or 'END' +
da('nodea.parmlib') space(1) cyl dir(1ð)
Restore successful to dataset 'NODEA.PARMLIB'
-----------------------------------------------
No more files remain for the RECEIVE command to process.

The received members IEASYS00 and IEAIPS00 are saved in the output data set
with their member names unchanged.

 Example 6
Send a message to a user on another system.

transmit davy

The system displays the following screen for input:

  Chapter 1. TSO/E Commands and Subcommands 1-373



 TSOEXEC Command  
 

à ð
DATA FOR ALAMO.CROCKETT

ððð1 Davy,
ððð2 Did you check the report I gave you last week?
ððð3 Joe
ððð4
ððð5

...

Press PF3 to send the message.

In this example, the target user is identified by his nickname and no data set is
specified, causing the terminal to be used as an input source. You can type your
data, scroll using program function (PF) keys PF7 or PF19 and PF8 or PF20, and
exit using PF3 or PF15, or cancel using the PA1 key.

 Example 7
Send a member of a partitioned data set as a message and log the transmission in
the data set CNFDNTL.MYLOG. In this example, the member MEETINGS of the
partitioned data set MEMO.TEXT is sent as a message to JOE and this message is
logged in ‘MIKE.CNFDNTL.MYLOG’.

à ð
transmit nodeb.joe msgds(memo.text(meetings)) logda(cnfdntl.mylog)
 INMXðððI ð message and 7 data records sent as 5 records to NODEB.JOE
 INMXðð1I Transmission occurred on ð7/27/87 at ð9:ðð:35.
READY

JOE receives the message in his data set MY.LOG, instead of the default log data
set, LOG.MISC:

à ð
receive logds(my.log)
 INMR9ð1I Dataset \\ MESSAGE \\ from MIKE on NODED
 THIS IS A SCHEDULE OF STATUS MEETINGS FROM AUGUST THROUGH NOVEMBER:

 AUGUST MONDAYS AT 9:ðð A.M. IN MY OFFICE
 SEPTEMBER TUESDAYS AT 1ð:ðð A.M. IN YOUR OFFICE
 OCTOBER WEDNESDAYS AT 1ð:ðð A.M. IN JACK'S OFFICE
 NOVEMBER MONDAYS AT 2:ðð P.M. IN JILL'S OFFICE

 TSOEXEC Command
Use the TSOEXEC command to invoke an authorized command from an
unauthorized environment. For example, you can use TSOEXEC when in the
Interactive System Productivity Facility (ISPF), which is an unauthorized
environment, to invoke authorized commands such as TRANSMIT and RECEIVE.

Three CLIST control variables are related to the use of the TSOEXEC command:

� &SYSABNCD contains the ABEND code.

� &SYSABNRC contains the ABEND reason code.

� &SYSCMDRC contains the command return code returned by the command
most recently invoked by TSOEXEC.

For more information about these variables, see OS/390 TSO/E CLISTs.

1-374 OS/390 V2R7.0 TSO/E Command Reference  



  TSOEXEC Command
 

These variables are changed slightly when used in REXX execs. They are as
follows:

 � SYSABNCD
 � SYSABNRC
 � SYSCMDRC

Note:  Using TSOEXEC ISPSTART does not give a controlled environment. For
information on controlled environments, see OS/390 Security Server (RACF)
Security Administrator's Guide.

TSOEXEC Command Syntax 

55─ ─TSOEXEC─ ──┬ ┬────────────── ───────────────────────────────────────────5%
 └ ┘─command_name─

TSOEXEC Command Operand
[command_name]

specifies any TSO/E command the TSO/E service facility can invoke, whether
or not the command is authorized or unauthorized.

TSOEXEC Command Return Codes
Figure 1-55. TSOEXEC Command Return Codes

0 Processing successful.

4 Processing completed, but the requested command returned a
non-zero return code. It is in CLIST control variable &SYSCMDRC.

8 An attention interruption ended the requested command.

12 The requested command abnormally terminated. Its abend code and
REASON code are in CLIST control variables &SYSABNCD and
&SYSABNRC,; respectively.

24 System error.

28 The requested command is not a valid TSO/E command.

TSOEXEC Command Examples

 Example 1
Operation:  Use the TRANSMIT command to send a copy of a data set to another
user while operating in ISPF.

Known:

� The user node: NODEB
� The user ID: USER2
� The data set name: SYS1.PARMLIB

TSOEXEC TRANSMIT NODEB.USER2 DA('SYS1.PARMLIB')

  Chapter 1. TSO/E Commands and Subcommands 1-375



 TSOLIB Command  
 

 TSOLIB Command
The TSOLIB command provides for an additional search level that TSO/E uses
when searching for commands and programs. With TSOLIB, you specify load
module libraries containing executable commands and programs, which are put to
the top of the standard search order.

You can activate and deactivate the additional search level without leaving your
TSO/E session. For the life of the additional search level the activated load module
libraries serve as a task library to commands and programs you invoke.

This provides for flexible access to different versions of commands and programs,
reduces the access time, and can simplify management of user IDs and LOGON
procedures.

� The TSOLIB command, with its ACTIVATE operand, allows you to request
access to load module libraries. The requested load module libraries will be put
to the top of the system's search order for load module libraries.

� It allows you, with its DEACTIVATE operand, to remove these load module
libraries from the search chain, thus, reestablishing the previous search order.

� The TSOLIB command allows for stacking multiple requests for load module
libraries, making any further request to become the active one but keeping the
previous requests stacked for later use. Every removal, respectively
deactivation, of the currently active request reactivates the previous request.
This allows for faster variation of your library search order without having to
enter lengthy command strings.

The stacking of multiple requests can be inhibited, thus ensuring that a request
is performed only if no previous request is active.

� The DISPLAY operand of the TSOLIB command shows the currently active
libraries being put to the top of the standard search order. If any library
requests are stacked, they are shown as well.

� The RESET operand sets the search order back to its original state.

Search Order for Load Modules
The TSOLIB command is meant to provide a flexible way to extend the system's
search order for commands and programs you invoke, or commands and programs
invoked from other commands and programs.

For efficient use of the TSOLIB command you need to be aware of the search
order, its variations through TSOLIB, and further variations by programs like ISPF
that establish their own task libraries.

The Standard Search Order
Without having used the TSOLIB command, TSO/E searches for a command or
program using the following sequence:

1. The step library or job library

The user's LOGON procedure is checked for any //STEPLIB DD-card that
specifies a user's load module library or list of libraries. If the module is found
here, it will be executed.

2. The link pack area

1-376 OS/390 V2R7.0 TSO/E Command Reference  



  TSOLIB Command
 

The search is continued in the libraries specified in SYS1.PARMLIB member
LPALSTnn. If the module is found here, it will be executed.

3. The link list concatenation

The search is continued in the libraries specified in SYS1.PARMLIB member
LNKLSTnn. The module should be found here.

Extending the Range of a Search with TSOLIB
With the first invocation of TSOLIB, you activate an additional search level and
specify a load module library or a list of load module libraries. The specified
libraries serve as a task library for further command and program invocations.

The system starts searching an invoked command or program in the task library
you have activated. If a command or program is found in the newly activated
libraries, it is executed; else the system follows the standard search order as
described before.

The extended search order remains intact until one of the following happens:

� You reset the additional search level.

The system will use the standard search order.

� You deactivate the additional search level.

If you did not stack any previous requests, the system will use the standard
search order.

If a request has been stacked, the previously stacked request becomes active.

� You logoff from the session.

After a new logon, the system will use the standard search order.

� You invoke an application, like ISPF, that places its own task libraries on top of
the search order TSOLIB has set up.

When that application completes, the search order TSOLIB has set up again
becomes the top of the search chain.

 Further Considerations
� Authorized Commands and Programs

A load module library activated by the TSOLIB command can contain
unauthorized and authorized commands and programs.

Authorized commands and programs:

– Must have been link-edited with an authorization code of 1

– Must reside in an APF-authorized library

– Must be listed on the AUTHCMD, AUTHPGM, AUTHTSF statements of
SYS1.PARMLIB member IKJTSOxx

 before they can be invoked.

If you intend for authorized commands or programs to be invoked authorized,
then the entire concatenation of data sets must contain data set names that
reside in the APF-authorized library list. This means that, if you activate a list of
load modules libraries with TSOLIB, every data set name representing a library
must be named in the APF-authorized library list.

  Chapter 1. TSO/E Commands and Subcommands 1-377



 TSOLIB Command  
 

� Direct entry from applications to TSO/E

Several applications, like ISPF, allocate their own task libraries, for example
ISPLLIB, to be on top of the search order that TSOLIB set up. However,
applications also have a direct entry in to TSO/E environment. For example:

– TSO/E service facility in an isolated environment

– The TSO/E TSOEXEC command

– Authorized commands and programs.

 These use the search order that TSOLIB has set up.

� Access permission to libraries

If you have a security server active on your system, ensure that you are
permitted access to the libraries TSOLIB is to activate.

 Command Usage
The TSOLIB command with its ACTIVATE, DEACTIVATE, and RESET operands is
intended to be issued from TSO/E READY mode, either in the foreground or in the
background. The requested extension on the search order becomes effective when
TSO/E READY mode processes its next command. If the TSOLIB command is
issued from any other environment, like ISPF or REXX , only the TSOLIB command
with its DISPLAY operand is valid.

THE TSOLIB command may be used from a CLIST or from a REXX exec, with
considerations to the READY environment. For more information, see “TSOLIB
Command Examples” on page 1-382.

Stacking Load Module Library Requests
Requests to activate load module libraries into the search chain can be stacked.
You control this with the COND and UNCOND operands of the TSOLIB command.

By default, a request to activate libraries is done unconditionally. The request
becomes the current and active one. Any previous request (if one was issued) is
stacked and temporarily made inactive. The next request to deactivate libraries will
remove the current and active one from the search chain and re-activate the
previous request (if there was one).

If a request is made conditionally, by using the COND keyword operand, the
request will not become active if any previous activation took place before. See
“TSOLIB Command Examples” on page 1-382 for a detailed example on how to
stack load module library requests.

TSOLIB Command Syntax

1-378 OS/390 V2R7.0 TSO/E Command Reference  



  TSOLIB Command
 

 

55──TSOLIB────────────────────────────────────────────────────────────────5

 ┌ ┐─,──────── ┌ ┐─UNCOND─
5─ ──┬ ┬──┬ ┬─ACTIVATE─ ──┬ ┬──┬ ┬──DATASET( ───6 ┴─dsname───(1) ) ──┼ ┼──────── ─────────5
 │ │└ ┘─ACT────── │ ││ │┌ ┐─,──────── └ ┘─COND───

│ ││ │└ ┘──DSNAME( ───6 ┴─dsname───(2) ) ─
│ │└ ┘──┬ ┬──FILE(ddname) ─── ────────
│ │├ ┤──DDNAME(ddname) ─
│ │└ ┘──LIBRARY(ddname)

 ├ ┤──┬ ┬─DEACTIVATE─ ───────────────────────────────────────────
 │ │├ ┤─DEACT──────
 │ │└ ┘─DEA────────
 ├ ┤──┬ ┬─RESET─ ────────────────────────────────────────────────
 │ │└ ┘─RES───
 └ ┘──┬ ┬─DISPLAY─ ──────────────────────────────────────────────
 ├ ┤─DISP────
 └ ┘─DIS─────

5─ ──┬ ┬─────── ────────────────────────────────────────────────────────────5%
 └ ┘─QUIET─

Notes:
1 1 to 15 data sets for libraries.
2 1 to 15 data sets for libraries.

TSOLIB Command Operands
ACTIVATE | ACT

indicates that you want to include the specified libraries ahead of the standard
search order.

DEACTIVATE | DEACT | DEA
indicates that you want to exclude the previously activated libraries from the top
of the search order.

If previous activation requests have been done unconditionally, DEACTIVATE
causes the last stacked request to become active again. See “Stacking Load
Module Library Requests” on page 1-378 for more information about stacking
library activation requests.

DATASET(dsname{,dsname, ... }) | DSNAME( dsname{,dsname, ... })
specifies the data set name of a load module library, or a list of data set names
of load module libraries, to be activated. Up to 15 data set names can be
specified.

The data sets must be cataloged partitioned data sets, and they must be of the
same record format (RECFM = U).

For the load module libraries to be activated, the system automatically creates
a ddname of SYSnnnnn. The ddname remains allocated until you issue
TSOLIB DEACTIVATE or TSOLIB RESET.

If you want to activate more than 15 data set names, use the FILE operand of
TSOLIB.

For authorized commands and programs to be invoked from a library read
“Further Considerations” on page 1-377.

FILE(ddname) |  DDNAME(ddname) | LIBRARY( ddname)
specifies a ddname that represents a load module library or a list of load
module libraries. The ddname must be allocated before you issue the TSOLIB

  Chapter 1. TSO/E Commands and Subcommands 1-379



 TSOLIB Command  
 

command. The ddname remains allocated even after a TSOLIB DEACTIVATE
or RESET command is issued. Use the FREE command to deallocate the
ddname when required.

For authorized commands and programs to be invoked from a library read
“Further Considerations” on page 1-377.

Using a ddname, compared to a dsname or a list of dsnames, allows for a
greater number of libraries to be activated. Use the ALLOCATE command to
associate up to 255 data sets with a ddname; then issue TSOLIB ACTIVATE
FILE(ddname).

UNCOND | COND
controls the way TSOLIB is to treat an ACTIVATE request if previous requests
have been performed.

UNCOND (the default) indicates that the activation request is to be done
unconditionally. Any active request is temporarily deactivated and stacked
for later re-activation. See “Stacking Load Module Library Requests” on
page 1-378 for more information about stacking library activation requests,
and “TSOLIB Command Examples” on page 1-382.

Note that stacked ddnames remain allocated. See also the description
about the DATASET and FILE operands.

COND indicates that the activate request is to be successful if no other request
is active. Otherwise, the activate request is unsuccessful, a message is
displayed, and a non-zero return code is set.

RESET | RES
excludes all specified libraries, set with the ACTIVATE operand, back to the
standard search order. The search order for library load modules is now the
same as it was before any TSOLIB command was given.

DISPLAY | DISP | DIS
issues information about the currently activate ddname that is in front of the
standard search order and those still on the stack, which will become the active
ones, one after the other, with each following TSOLIB DEACTIVATE command.

If other task libraries became active after TSOLIB activated a library, for
example, ISPF was started with ISPLLIB, the DISPLAY operand issues
information about the situation.

QUIET
indicates that you do not want messages from this invocation of the TSOLIB
command displayed.

The QUIET operand is primarily intended for programs under ISPF that invoke
the TSOLIB command. The programs need access to the messages that
TSOLIB issues, but will not want to display them. Trapping of messages is not
available, and &SYSOUTTRAP cannot be used in a program.

If ISPF is active, the messages are saved in ISPF shared pool variables:

� Variable IKJTSM contains the number of non-blank messages being
returned from this invocation of the TSOLIB command with the QUIET
operand.

1-380 OS/390 V2R7.0 TSO/E Command Reference  



  TSOLIB Command
 

� Variable IKJTSM1 contains the first message, IKJTSM2 the second
message, and so on. Up to 99 messages are saved in variables IKJTSM1
through IKJTSM99.

The variables contain the actual messages that TSOLIB would have
displayed if invoked without the QUIET operand. The lengths of the
messages are not restricted to 80 characters.

The ISPF shared pool variables are only set when needed. They are not
blanked out when not needed.

QUIET does not take effect until after the content of the command buffer,
holding this invocation of the TSOLIB command, is known to be syntactically
correct. If the command parser finds an error, or needs to prompt for input, it
will issue messages and obtain input from the terminal as necessary.

Note:  Do not use the QUIET option of TSOLIB in the IPCS dialog. IPCS does
not make ISPF services available to TSO/E commands that IPCS
invoke.

If you invoke the TSOLIB command without specifying an operand, TSOLIB will
assume the ACTIVATE and DATASET operands and prompt you for the missing
information. Note that prompting restricts you to a single data set name. You
cannot enter a list of dsnames.

Operands may be abbreviated by entering only the significant characters.
However, the abbreviations shown are recommended for clarity reasons.

TSOLIB Command Return Codes
Figure 1-56. TSOLIB Command Return Codes

0 Processing successful. A load module library, or a list of load module
libraries, has been successfully activated, deactivated, or reset.
However, informational messages may have been issued, for
example, IDYððð2ðI Unable to free previously allocated data
sets. Enter ? for more information.

4 A TSOLIB library does not exist for this type (when deactivating a
TSOLIB library).

8 A load module library already exists for this type when the COND
operand is used.

16 The load module library specified with the TSOLIB ACTIVATE
command was not previously allocated.

20 Severe error. More information is contained in the messages.

24 Internal processing error. TSOLIB is either unable to establish a
recovery environment or encountered an error processing a TSOLIB
installation exit.

28 Environment error. TSOLIB was not invoked in a TSO/E READY
environment.

32 Environment error. TSOLIB was not invoked as a command
processor.

  Chapter 1. TSO/E Commands and Subcommands 1-381



 TSOLIB Command  
 

TSOLIB Command Examples

Example: Activate a Single Data Set
Operation:  Activate a single data set 'sys3.loadlib1' using the ACTIVATE
DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the
current search order. Assume no previous request has been issued before.

TSOLIB ACTIVATE DATASET('sys3.loadlib1')
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = SYSðð1ð1

Note that the system has created a ddname of SYS00101 for the activated load
module library.

Example: Activate a Concatenation of Data Sets
Operation:  Activate data sets 'sys3.loadlib1' and 'sys3.testlib' using the
ACTIVATE DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to
display the current search order. Assume no previous request has been issued
before.

TSOLIB ACTIVATE DATASET('sys3.loadlib1' 'sys3.testlib')
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = SYSðð1ð1

Note that the system has created a ddname of SYS00101 for the concatenated
load module libraries.

Example: Activate an Allocated File
Operation:  (1) Allocate data set my.load and specify the ddname aalib to be
associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE
command, and (3) use the TSOLIB DISPLAY command to display to current search
order. Assume no previous request has been issued before.

ALLOCATE FILE(aalib) DATASET(my.load)
TSOLIB ACTIVATE FILE(aalib)
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = AALIB

Example: Activate a Data Set from within a CLIST
Operation:  Activate data set 'JIM.LOAD' from within a CLIST running in TSO/E
READY environment.

PROC ð
TSOLIB ACTIVATE DATASET('JIM.LOAD')
IF &LASTCC = ð THEN +

... process commands and programs from TSOLIB data set.
...

Example: Activate an Allocated File from within a REXX Exec
Operation:  (1) Allocate data set 'JIM.LOAD' and specify the ddname MYLOAD to be
associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE FILE
command. Note that the REXX exec is to run in a TSO/E READY environment.

1-382 OS/390 V2R7.0 TSO/E Command Reference  



  TSOLIB Command
 

/\ rexx \/
"ALLOCATE FILE(MYLOAD) DATASET('JIM.LOAD') SHR"
if RC = ð then

push "TSOLIB ACTIVATE FILE(MYLOAD)"
exit
...
... back in TSO/E READY environment, start the REXX exec
...
... invoke commands and programs from TSOLIB data set.
...

Example: The Use of TSOLIB Library Stacking
Operation:  Activate data set 'sys3.loadlib1' using the ACTIVATE DATASET
operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the current
search order. Assume no previous request has been issued before.

TSOLIB ACTIVATE DATASET('sys3.loadlib1')
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = SYSðð1ð1

Note that the system has created a ddname of SYS00101 for the activated load
module library.

Operation:  Activate another data set 'sys3.loadlib2' using the ACTIVATE
DATASET operand of TSOLIB. Use the TSOLIB DISPLAY operand to display the
currently active and stacked ddnames.

TSOLIB ACTIVATE DATASET('sys3.loadlib2')
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = SYSðð1ð2
IDYððð24I DDNAME = SYSðð1ð1 (Stacked)

Note that the system has created a ddname of SYS00102 for the activated load
module library. The previously activated ddname SYS00101 is temporarily
deactivated and marked (Stacked).

Operation:  (1) Allocate a third data set my.load and specify the ddname aalib to
be associated with it, (2) activate ddname aalib with the TSOLIB ACTIVATE
command, and (3) use the TSOLIB DISPLAY command to display the currently
active and stacked ddnames.

ALLOCATE FILE(aalib) DATASET(my.load)
TSOLIB ACTIVATE FILE(aalib)
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = AALIB
IDYððð24I DDNAME = SYSðð1ð2 (Stacked)
IDYððð24I DDNAME = SYSðð1ð1 (Stacked)

The previously activated ddname SYS00102 is temporarily deactivated and marked
(Stacked) in addition to SYS00101. Ddname AALIB is the active library included
ahead of the standard search order.

  Chapter 1. TSO/E Commands and Subcommands 1-383



 TSOLIB Command  
 

Example: The Use of the TSOLIB COND Operand
Operation:  Based on “Example: The Use of TSOLIB Library Stacking” on
page 1-383, try to activate ddname trylib with the COND operand.

ALLOCATE FILE(trylib) DATASET(your.load)
TSOLIB ACTIVATE FILE(trylib) COND
IDYððð15I TSOLIB terminated. Load library already active

and COND keyword was specified.
...

TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = AALIB
IDYððð24I DDNAME = SYSðð1ð2 (Stacked)
IDYððð24I DDNAME = SYSðð1ð1 (Stacked)

The activate request is unsuccessful; the previous activation remains unchanged.

Example: Reactivate a TSOLIB Library from the Stack
Operation:  Based on “Example: The Use of TSOLIB Library Stacking” on
page 1-383, (or “Example: The Use of the TSOLIB COND Operand”) exclude the
currently active library AALIB and activate the last one stacked (SYS00102).

TSOLIB DEACTIVATE
TSOLIB DISPLAY
IDYððð22I Search order (by DDNAME) is:
IDYððð23I DDNAME = SYSðð1ð2
IDYððð24I DDNAME = SYSðð1ð1 (Stacked)

Example: The Use of the TSOLIB QUIET Operand
Operation:  (1) Activate a single data set 'aalib.load', to which the system
associates a ddname of SYS00100, (2) activate a concatenation of data sets, to
which the system associates a ddname of SYS00101, (3) and invoke a REXX exec
to show use of the QUIET operand when ISPF is active.

The contents of the variables in the ISPF shared pool are then examined. Assume
no previous request has been issued before.

READY
TSOLIB ACTIVATE DATASET(mylib.load)
TSOLIB ACTIVATE DATASET('sys3.loadlib1' 'sys3.testlib')

Invoke the following REXX exec when ISPF is active:

/\ rexx \/
ADDRESS TSO
"TSOLIB DISPLAY QUIET"
...

The ISPF shared pool variables are now set as follows:

Variable Content

IKJTSM 4

IKJTSM1 TSOLIB DISPLAY QUIET

IKJTSM2 IDY00022I Search order (by DDNAME) is:

IKJTSM3 IDY00023I DDNAME = SYS00101

IKJTSM4 IDY00024I DDNAME = SYS00100 (Stacked)

1-384 OS/390 V2R7.0 TSO/E Command Reference  



  VLFNOTE Command
 

 VLFNOTE Command
When you change data that is shared across systems and managed by the virtual
lookaside facility (VLF), you might need to enter the VLFNOTE command to notify
VLF of the change. VLF needs to know when you make changes to the data it
manages so that it can make current data available for users. The types of data
VLF manages are:

� Data in a partitioned data set (PDS)
� A named collection of data (non-PDS).

The type of data and the system environment determine whether you need to enter
VLFNOTE.

You do not need to use VLFNOTE (because notification to VLF is automatic) when
both of the following are true:

� VLF is running on MVS/ESA systems and are part of a single sysplex.

� The changed data belongs to a PDS class.

When both conditions are true, VLF receives notification automatically through
sysplex services. (OS/390 MVS Setting Up a Sysplex, describes running VLF in a
sysplex.) Otherwise, you need to enter VLFNOTE.

The types of changes that require VLF notification are listed below:

For data in a PDS, enter VLFNOTE when you are:

� Adding a member to an eligible data set (a data set that is identified to VLF).

� Adding a member to a non-eligible data set when both of the following are true:

– The new member is in a user's SYSPROC concatenation ahead of an
eligible data set.

– The eligible data set has a member with the same name as the new
member.

� Updating an existing member of an eligible data set.

� Deleting an eligible data set or member of an eligible data set.

To notify VLF about changes to data in a PDS, use the VLFNOTE command syntax
described in “Changing Data Associated with a Partitioned Data Set” on
page 1-386.

For non-PDS data, use VLFNOTE when you are:

� Adding a minor name to a major name.
� Updating a minor name associated with a major name.
� Deleting a minor name from a major name.

To notify VLF about changes to non-PDS data, use the VLFNOTE command syntax
described in “Changing Non-PDS Data” on page 1-387.

There are several ways to issue the VLFNOTE command. Depending on the
method available at your installation you can:

� Logon to each of the other systems in your complex and enter VLFNOTE.

  Chapter 1. TSO/E Commands and Subcommands 1-385



 VLFNOTE Command  
 

� Send a message to users on each of the other systems in your complex and
have them enter VLFNOTE.

� Submit a short batch job, with system affinity, to each of the other systems in
your complex and issue VLFNOTE in the job.

� If your installation is using APPC/MVS, write an APPC/MVS transaction
program to prompt the affected systems to issue the VLFNOTE command.
Each of the affected systems must have an APPC/MVS transaction program
that will issue the VLFNOTE command.

See OS/390 MVS Programming: Authorized Assembler Services Guide, for more
information about VLF notification.

Changing Data Associated with a Partitioned Data Set
Use the following syntax to notify VLF that you have changed a partitioned data
set. To notify VLF that you have changed non-PDS data, see “Changing Non-PDS
Data” on page 1-387 for the correct syntax.

Note:  For partitioned data set changes, the VLFNOTE command needs to be
issued on each system in the shared DASD complex, except for the system
on which the change was made. VLF is automatically notified on the system
on which the change was made.

VLFNOTE Command Syntax (Partitioned Data Set) 

55──VLFNOTE─ ──┬ ┬─ADD──── ──┬ ┬──DATASET(partitioned_data_set_name) ──────────5
├ ┤─DELETE─ └ ┘──DSNAME(partitioned_data_set_name) ─

 └ ┘─UPDATE─

5─ ──┬ ┬─────────────── ──┬ ┬─────────────────────── ─────────────────────────5%
└ ┘──(member_name) └ ┘──VOLSER(volume_serial)

VLFNOTE Command Operands (Partitioned Data Set)
ADD

specifies that you have added a member to a partitioned data set.

DELETE
specifies that you have deleted a partitioned data set or a member of a
partitioned data set.

UPDATE
specifies that you have updated a member of a partitioned data set.

DATASET |  DSNAME ( partitioned_data_set_name[(member_name)])
specifies the name of the partitioned data set that you changed. Include the
member name if you have added, deleted or updated a member.

VOLSER(volume_serial)
specifies the volume on which the changed partitioned data set resides. If you
do not include VOLSER, VLF uses the catalog to determine the volume serial
where the data set resides.

1-386 OS/390 V2R7.0 TSO/E Command Reference  



  VLFNOTE Command
 

VLFNOTE Command Examples (Partitioned Data Set)

 Example 1
Operation:  Notify VLF that you deleted member MAKEMEMO of partitioned data
set ‘COMMON.TOOLS.CLIST’

vlfnote delete dataset(‘common.tools.clist(makememo)’)

 Example 2
Operation:  Notify VLF that you renamed a member, X, of a CLIST data set
“YOURID.TAILORED.CLIST”. It is now called NEWX. Delete the old member name
and add the new member name.

vlfnote delete dataset(tailored.clist(X))

and

vlfnote add dataset(tailored.clist(newx))

Changing Non-PDS Data
Use this syntax to notify VLF that you changed non-PDS data (data that belongs to
a CLASS-MAJOR or CLASS-MAJOR-MINOR combination). The specified class
name must be an installation-supplied class name. To notify VLF that you changed
a partitioned data set see “Changing Data Associated with a Partitioned Data Set”
on page 1-386 for the correct syntax.

VLFNOTE Command Syntax (Non-PDS) 

55──VLFNOTE─ ──┬ ┬─ADD──── ──CLASS(class_name) ──MAJOR(major_name) ────────────5
 ├ ┤─DELETE─
 └ ┘─UPDATE─

5─ ──MINOR(minor_name) ────────────────────────────────────────────────────5%

VLFNOTE Command Operands (Non-PDS)
ADD

specifies that you have added a minor name to a major name.

DELETE
specifies that you have deleted a minor name from a major name or that you
have deleted a major name from an installation-supplied class.

UPDATE
specifies that you have updated a minor name associated with a major name.

CLASS(class_name)
specifies the name of an installation-supplied class (class name beginning with
a letter from H - Z) affected by the change you made.

MAJOR(major_name)
specifies the major name associated with the change you made.

MINOR(minor_name)
specifies the minor name associated with the change you made.

  Chapter 1. TSO/E Commands and Subcommands 1-387



 WHEN Command  
 

VLFNOTE Command Examples (Non-PDS)

 Example 1
Operation:  Notify VLF that non-PDS data has been deleted.

vlfnote delete class(myclass1) major(major1) minor(minor1)

 Example 2
Operation:  Notify VLF that you deleted major name “NOTICE”, of the
installation-supplied class “MYCLASS”.

vlfnote delete class(myclass) major(notice)

VLFNOTE Command Return Codes
Figure 1-57. VLFNOTE Command Return Codes

0 Processing successful.

12 Return code 12 means one of the following:

� Incorrect syntax was specified for the command.

� The invoked VLF function returned a non-zero return code.

� The TSO/E parse service routine or the TSO/E catalog
information routine returned a non-zero return code.

� Unauthorized for specific request.

Error messages indicate the exact problem.

 WHEN Command
Use the WHEN command to test return codes from programs invoked by an
immediately preceding CALL or LOADGO command, and to take a prescribed
action if the return code meets a certain specified condition.

WHEN Command Syntax 

 ┌ ┐─END──────────
55──WHEN─ ──SYSRC(operator integer) ──┼ ┼────────────── ─────────────────────5%
 └ ┘─command_name─

WHEN Command Operands
SYSRC

specifies the return code from the previous function (the previous command in
the CLIST) is to be tested according to the values specified for operator and
integer.

operator
specifies one of the following operators:

1-388 OS/390 V2R7.0 TSO/E Command Reference  



  WHEN Command
 

EQ or = means equal to
NE or ¬= means not equal to
GT or > means greater than
LT or < means less than
GE or >= means greater than or equal to
NG or ¬> means not greater than
LE or <= means less than or equal to
NL or ¬< means not less than

integer
specifies the numeric constant that the return code is to be compared to.

END
specifies processing is to be terminated if the comparison is true. If you do not
specify a command, END is the default.

command_name
specifies any valid TSO/E command name and appropriate operands. If the
comparison is true, TSO/E processes the command.

WHEN terminates CLIST processing and then executes the TSO/E command name
specified.

Use successive WHEN commands to determine an exact return code and then
perform some action based on that return code.

WHEN Command Return Code
The return code is from the command that executed last.

WHEN Command Examples

 Example 1
Operation:  Use successive WHEN commands to determine an exact return code.

CALL compiler
WHEN SYSRC(= ð) EXEC LNKED
WHEN SYSRC(= 4) EXEC LNKED
WHEN SYSRC(= 8) EXEC ERROR

  Chapter 1. TSO/E Commands and Subcommands 1-389



 WHEN Command  
 

1-390 OS/390 V2R7.0 TSO/E Command Reference  



  
 

Chapter 2. Session Manager Commands

Entering Session Manager Commands . . . . . . . . . . . . . . . . . . . . . . .  2-3
Command Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Session Manager Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
Defaults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Session Manager Command Summary . . . . . . . . . . . . . . . . . . . . . . .  2-5
CHANGE.CURSOR Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

CHANGE.CURSOR Command Syntax . . . . . . . . . . . . . . . . . . . . . .  2-7
CHANGE.CURSOR Command Operands . . . . . . . . . . . . . . . . . . . .  2-7
CHANGE.CURSOR Command Return Codes . . . . . . . . . . . . . . . . .  2-7
CHANGE.CURSOR Command Examples . . . . . . . . . . . . . . . . . . . .  2-8

CHANGE.FUNCTION Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
CHANGE.FUNCTION Command Syntax . . . . . . . . . . . . . . . . . . . . .  2-8
CHANGE.FUNCTION Command Operands . . . . . . . . . . . . . . . . . . .  2-9
CHANGE.FUNCTION Command Return Codes . . . . . . . . . . . . . . .  2-10
CHANGE.FUNCTION Command Examples . . . . . . . . . . . . . . . . . .  2-10

CHANGE.MODE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
CHANGE.MODE Command Syntax . . . . . . . . . . . . . . . . . . . . . .  2-11
CHANGE.MODE Command Operands . . . . . . . . . . . . . . . . . . . . .  2-11
CHANGE.MODE Command Return Codes . . . . . . . . . . . . . . . . . .  2-11
CHANGE.MODE Command Examples . . . . . . . . . . . . . . . . . . . . .  2-11

CHANGE.PFK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
CHANGE.PFK Command Syntax . . . . . . . . . . . . . . . . . . . . . . . .  2-12
CHANGE.PFK Command Operands . . . . . . . . . . . . . . . . . . . . . .  2-12
CHANGE.PFK Command Return Codes . . . . . . . . . . . . . . . . . . . .  2-13
CHANGE.PFK Command Examples . . . . . . . . . . . . . . . . . . . . . .  2-13

CHANGE.STREAM Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
CHANGE.STREAM Command Syntax . . . . . . . . . . . . . . . . . . . . .  2-14
CHANGE.STREAM Command Operands . . . . . . . . . . . . . . . . . . .  2-14
CHANGE.STREAM Command Return Codes . . . . . . . . . . . . . . . . .  2-14
CHANGE.STREAM Command Examples . . . . . . . . . . . . . . . . . . .  2-14

CHANGE.TERMINAL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
CHANGE.TERMINAL Command Syntax . . . . . . . . . . . . . . . . . . . .  2-15
CHANGE.TERMINAL Command Operands . . . . . . . . . . . . . . . . . .  2-15
CHANGE.TERMINAL Command Return Codes . . . . . . . . . . . . . . . .  2-15
CHANGE.TERMINAL Command Examples . . . . . . . . . . . . . . . . . .  2-15

CHANGE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
CHANGE.WINDOW Command Syntax . . . . . . . . . . . . . . . . . . . . .  2-16
CHANGE.WINDOW Command Operands . . . . . . . . . . . . . . . . . . .  2-16
CHANGE.WINDOW Command Return Codes . . . . . . . . . . . . . . . .  2-18
CHANGE.WINDOW Command Examples . . . . . . . . . . . . . . . . . . .  2-18

DEFINE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
DEFINE.WINDOW Command Syntax . . . . . . . . . . . . . . . . . . . . .  2-18
DEFINE.WINDOW Command Operands . . . . . . . . . . . . . . . . . . . .  2-19
DEFINE.WINDOW Command Return Codes . . . . . . . . . . . . . . . . .  2-21
DEFINE.WINDOW Command Examples . . . . . . . . . . . . . . . . . . . .  2-21

DELETE.WINDOW Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
DELETE.WINDOW Command Syntax . . . . . . . . . . . . . . . . . . . . .  2-22
DELETE.WINDOW Command Operands . . . . . . . . . . . . . . . . . . .  2-22
DELETE.WINDOW Command Return Codes . . . . . . . . . . . . . . . . .  2-22

 Copyright IBM Corp. 1988, 1999  2-1



  
 

DELETE.WINDOW Command Examples . . . . . . . . . . . . . . . . . . .  2-22
END Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

END Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-23
FIND Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

FIND Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-23
FIND Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-23
FIND Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . . .  2-24
FIND Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-24

PUT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
PUT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-25
PUT Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-25
PUT Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . .  2-26
PUT Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-26

QUERY Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
QUERY Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-26
QUERY Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . .  2-26
QUERY Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  2-28
QUERY Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  2-28

RESET Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
RESET Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-30
RESET Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . .  2-30

RESTORE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
RESTORE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . .  2-31
RESTORE Command Operands . . . . . . . . . . . . . . . . . . . . . . . .  2-31
RESTORE Command Return Codes . . . . . . . . . . . . . . . . . . . . . .  2-32
RESTORE Command Examples . . . . . . . . . . . . . . . . . . . . . . . .  2-32

SAVE Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32
SAVE Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-32
SAVE Command Operands . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-32
SAVE Command Return Codes . . . . . . . . . . . . . . . . . . . . . . . . .  2-33
SAVE Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-33

SCROLL Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
SCROLL Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-34
SCROLL Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  2-34
SCROLL Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  2-36
SCROLL Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  2-36

SNAPSHOT Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
SNAPSHOT Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
SNAPSHOT Command Operands . . . . . . . . . . . . . . . . . . . . . . .  2-36
SHAPSHOT Command Return Codes . . . . . . . . . . . . . . . . . . . . .  2-37
SHAPSHOT Command Examples . . . . . . . . . . . . . . . . . . . . . . .  2-37

UNLOCK Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
UNLOCK Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-37
UNLOCK Command Operands . . . . . . . . . . . . . . . . . . . . . . . . .  2-37
UNLOCK Command Return Codes . . . . . . . . . . . . . . . . . . . . . . .  2-38
UNLOCK Command Examples . . . . . . . . . . . . . . . . . . . . . . . . .  2-38

This chapter describes the functions and syntax of each Session Manager
command. It includes:

� The general format and syntax rules for the commands.

� A description of the function and syntax for each command. The commands are
described in alphabetical order.

2-2 OS/390 V2R7.0 TSO/E Command Reference  



  Command Format
 

Introductory information about how to use and start Session Manager at your
terminal is described in OS/390 TSO/E User's Guide.

Entering Session Manager Commands
You can enter Session Manager commands by:

� Pressing the CLEAR key and entering a command anywhere on the screen
� Pressing a program function (PF) key set up to issue a command
� Executing a TSO/E CLIST, which contains commands
� Defining the command as the text_string of the SMPUT command

Regardless of how you enter the commands, the following rules apply:

� You can enter multiple Session Manager commands on one line provided you
separate them with a semicolon (;). The number of characters on any one line
cannot exceed 512. When multiple commands are entered on a line, an error in
one command does not prevent the remaining commands from executing.

� In order for a Session Manager command to execute, it must be placed in the
SMIN stream.

� Any change you make to the definitions of the windows, cursor, PF keys,
session functions, streams, or the terminal, remain in effect for your terminal
session. You can place these definitions in a CLIST to be executed each time
you log on.

 Command Format
A Session Manager command consists of a command name, usually followed by a
command modifier and one or more operands.

A command name is typically a familiar English word that describes the function of
the command. Some command names are followed by command modifiers, which
qualify the action of the command name.

Operands provide specific information about how an operation is to be performed.
The two types of operands used with Session Manager commands are positional
and keyword.

You must separate the command name and command modifier with a period or
one or more blanks. Also separate the command or command modifier from the
first operand by one or more blanks.

The command descriptions include some operands in lowercase letters and some
in uppercase letters. If the operand is in lowercase letters, you must substitute a
specific value for the letters. For example, in the command

CHANGE.PFK pfk_number ...

you must replace pfk_number with the number of the program function (PF) key to
be changed.

CHANGE.PFK 1 ...

command.modifier one or more blanks operand, operand, ...

  Chapter 2. Session Manager Commands 2-3



 Abbreviations  
 

Lowercase operands are positional operands because they follow the command
names or modifiers in a prescribed order.

The operands in uppercase letters are keyword operands. You must type those
operands as shown. For example:

ALARM(ON)

CONTROL(seconds)

Both of the preceding keyword operands have subfield values enclosed in
parentheses. You must type the keyword (or its abbreviation), a left parenthesis,
and then the subfield value. You can omit the closing parenthesis if it is the last
character of the command.

The ALARM keyword shows the only possible subfield value within the
parentheses.

The CONTROL operand shows the subfield value in lowercase letters. Therefore,
you are to substitute a value for the lowercase name.

Session Manager Command Syntax
The command syntax for Session Manager commands is represented using
structured diagrams. This method of syntax representation is described in “How to
Read the TSO/E Command Syntax” on page 1-11.

 Defaults
To make the commands easier to enter, certain operands default to a specific
value. If the default value is the value you want to use, you do not have to enter
the operand. The default values are underlined in the syntax description for each
command.

Many Session Manager commands refer to a default window. The default window is
the MAIN window or the window you have assigned as the default window via the
CHANGE.TERMINAL command.

 Abbreviations
You can abbreviate nearly all Session Manager command names, modifiers, and
keyword operands. These abbreviations can be as short as possible, while still
providing uniqueness among them. For example, the minimum abbreviation for the
DELETE command is:

DEL

DEL distinguishes DELETE from the DEFINE command.

The exceptions to this rule are the following frequently used commands:

DEFINE D
SCROLL S
RESTORE R

2-4 OS/390 V2R7.0 TSO/E Command Reference  



  Session Manager Command Summary
 

You can also abbreviate any keyword operand. For example, the keyword operands
of the CHANGE.WINDOW command and their minimum abbreviations are:

ALARM A
HOLD H
OVERLAP O
PROTECT P
TARGET T
UPDATE U
VIEW V

 The Session Manager also accepts the following commonly used abbreviations:

CONTROL CNTL
FORMAT FMT

Session Manager Command Summary
Figure 2-1 summarizes the Session Manager commands and their functions.

Figure 2-1 (Page 1 of 2). Summary of the Session Manager Commands

Command Function

CHANGE.CURSOR Changes the permanent or temporary location of the cursor.

CHANGE.FUNCTION Changes whether the terminal's audible alarm is to sound when
information enters an input or output stream.

Specifies whether information from an input stream is to be
copied to an output stream and the intensity at which the
information is to be displayed.

Specifies the input stream for a session function.

Specifies the output stream for a session function and the
intensity at which the information is to be displayed.

CHANGE.MODE Indicates whether you want to run under VS/APL or under the
Session Manager.

CHANGE.PFK Changes the definition of a program function (PF) key.

CHANGE.STREAM Specifies whether the terminal's audible alarm is to sound when
information enters a given stream.

Erases all of the information in a given stream.

CHANGE.TERMINAL Specifies whether the terminal's audible alarm is to sound when
the keyboard unlocks.

Specifies the maximum time the keyboard is to be locked while a
command is executing.

Changes the default window.

  Chapter 2. Session Manager Commands 2-5



 Session Manager Command Summary  
 

Figure 2-1 (Page 2 of 2). Summary of the Session Manager Commands

Command Function

CHANGE.WINDOW Specifies whether the terminal's audible alarm is to sound when
the Session Manager scrolls a window to display new
information.

Specifies how long a window is to be held in place before the
Session Manager scrolls it.

Specifies how many lines of a window's old position are to be
repeated when the window scrolls to a new position.

Specifies whether information can be entered in a window.

Indicates the name of the stream that is to receive the
information in a window and the intensity at which the information
is to be displayed.

Indicates how much new information must enter a stream before
the window scrolls to display it.

Specifies the name of the stream a window is to display.

DEFINE.WINDOW Defines a new window on the display screen.

DELETE.WINDOW Deletes a window from the display screen.

END Ends Session Manager support of your TSO/E session.

FIND Searches for a text string in a stream that is currently displayed
by a window.

Finds the number of the top line being displayed by a window.

PUT Places a text string in a stream and indicates the intensity at
which the text string is to be displayed.

QUERY Displays information about:

� TSO, SM, and MSG functions
� Program function (PF) keys

 � Streams
 � Terminal
 � Windows

RESET Restarts the Session Manager display environment.

RESTORE Restores the definitions of the following, which were saved via
the SAVE command:

� Program function (PF) keys
 � Screen layout
 � Windows

SAVE Saves the definitions of the following:

� Program function (PF) keys
 � Screen layout
 � Windows

SCROLL Moves a window over a stream.

SNAPSHOT Copies a display screen of information into a stream.

UNLOCK Unlocks a window.

2-6 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE.CURSOR Command
 

 CHANGE.CURSOR Command
Use the CHANGE.CURSOR command to change the location of the cursor on the
display screen. You can establish a permanent or temporary location for the cursor.

If you define a permanent location, the cursor returns to that location each time you
press a program function (PF) key, the Enter key, the attention (PA1) key, the
CLEAR key or the cancel (PA2) key. If you define a temporary location, the cursor
moves to and remains at that location until the next keyboard entry. After the
keyboard entry, the cursor moves to the permanent location.

CHANGE.CURSOR Command Syntax 

 ┌ ┐─default_window─
55─ ──┬ ┬─CHANGE.CURSOR─ ──┬ ┬───────────────────── ──┼ ┼──────────────── ───────5
 ├ ┤─C.C─────────── │ │┌ ┐─1─── ┌ ┐─1────── └ ┘─window_name────
 └ ┘─C C─────────── └ ┘ ──┴ ┴─row─ ──┴ ┴─column─

5─ ──┬ ┬─────────── ────────────────────────────────────────────────────────5%
 └ ┘─TEMPORARY─

CHANGE.CURSOR Command Operands
row column

The location in the specified window where the cursor is to go. The row and
column numbers are relative to those in the window, not the entire display
screen. If you specify a number for row that is greater than the number of lines
in the window, the Session Manager uses the last row in the window. If you
specify a number for column that is greater than the number of columns in the
window, the Session Manager adjusts the column value to the number of
columns in the window minus one. If you specify 0 or a negative number for
row or column, the Session Manager places the cursor in the first row and
column in the window.

window_name
The name of the window where the cursor is to be placed.

TEMPORARY
specifies that this change to the cursor location is to be temporary. If both the
row and column and window_name operands are omitted, and a temporary
location for the cursor was previously set, the Session Manager moves the
cursor to that location. If a temporary location was not previously set, the
Session Manager moves the cursor to the upper left hand corner of the display
screen.

Unless you specify TEMPORARY, the change is permanent.

CHANGE.CURSOR Command Return Codes
Figure 2-2. CHANGE.CURSOR Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

  Chapter 2. Session Manager Commands 2-7



 CHANGE.FUNCTION Command  
 

CHANGE.CURSOR Command Examples

 Example 1
Set the permanent location of the cursor to row 5, column 3 of the TEST window.

change.cursor 5 3 test

 Example 2
Set the temporary location of the cursor to row 2, column 1 of the ENTRY window.

change.cursor 2 1 entry temporary

 Example 3
Set the cursor to the temporary location that was set in a previous
CHANGE.CURSOR command.

change.cursor temporary

 Example 4
Change the permanent location of the cursor to row 1, column 1 of the default
window.

change.cursor

 CHANGE.FUNCTION Command
Use the CHANGE.FUNCTION command to:

� Change whether the terminal's audible alarm is to sound when information
enters an input or output stream

� Specify whether information from an input stream is to be copied to an output
stream and the intensity at which the information is to be displayed

� Specify the input stream for the TSO, Session Manager (SM), or message
(MSG) functions

� Specify the output stream for a session function and the intensity at which the
information is to be displayed

CHANGE.FUNCTION Command Syntax

2-8 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE.FUNCTION Command
 

 

55─ ──┬ ┬─CHANGE.FUNCTION─ ──────────────────────────────────────────────────5
 ├ ┤─C.F─────────────
 └ ┘─C F─────────────

5─ ──┬ ┬ ──┬ ┬─MSG─ ──┬ ┬──────────────────────────────────── ───────────────────5
 │ │├ ┤─SM── │ │┌ ┐─1─────────

│ │└ ┘─TSO─ └ ┘──OUTPUT(stream_name ──┼ ┼─────────── )
 │ │└ ┘─intensity─
 └ ┘──┬ ┬─SM── ──┬ ┬──────────────────── ─┤ Copy ├───────
 └ ┘─TSO─ └ ┘──INPUT(stream_name)

5─ ──┬ ┬───────────────────── ──────────────────────────────────────────────5%
└ ┘──ALARM( ──┬ ┬─INPUT── )

 ├ ┤─OUTPUT─
 └ ┘─NO─────

Copy:
├─ ──┬ ┬────────────────────────────────── ──────────────────────────────────┤
 │ │┌ ┐─1─────────

├ ┤──COPY(stream_name ──┼ ┼─────────── )
 │ │└ ┘─intensity─
 └ ┘─NOCOPY───────────────────────────

CHANGE.FUNCTION Command Operands
MSG

requests that the change apply to the message (MSG) function. The MSG
function represents the messages from other TSO/E users, the operator, and
background jobs.

SM
requests that the change apply to the Session Manager (SM) function. The SM
function represents work related to the Session Manager.

TSO
requests that the change apply to the TSO function. The TSO function
represents work related to TSO.

OUTPUT(stream_name intensity)

stream_name The name of the output stream for the specified function.

intensity specifies the brightness at which the information is to be displayed in
the output stream. The valid values are:

1 The information is to be displayed at normal intensity.
2 The information is to be highlighted.

INPUT(stream_name)
The name of the input stream for the specified function.

COPY(stream_name intensity) | NOCOPY

COPY(stream_name intensity) requests that the Session Manager copy the
input stream for this function into an output stream.

stream_name is the name of the output stream that is to contain a copy of
the information from the input stream.

  Chapter 2. Session Manager Commands 2-9



 CHANGE.FUNCTION Command  
 

intensity specifies the brightness at which the copied information is be
displayed. The valid values are:

0 The copied information is not to be displayed. You can see the line
that the information occupies, but the information itself is invisible.

1 The copied information is to be displayed at normal intensity.

2 The copied information is to be highlighted.

NOCOPY specifies that the Session Manager is not to copy the information
from the input stream into an output stream.

ALARM(INPUT | OUTPUT | NO)
specifies whether the terminal's audible alarm is to sound when information
enters a stream. The stream does not have to be currently displayed for the
alarm to sound. You can set ALARM to sound for either the input stream or the
output stream, but not both.

Note:  If your terminal does not have an audible alarm, the Session Manager
still accepts this operand. It has no way of knowing whether your
terminal has an audible alarm.

INPUT specifies that the audible alarm is to sound when a line of information
enters the input stream for the specified function.

OUTPUT specifies that the audible alarm is to sound when the a line of
information enters the output stream for the specified function.

NO specifies that the audible alarm is not to sound when information is added
to any of the function streams.

CHANGE.FUNCTION Command Return Codes
Figure 2-3. CHANGE.FUNCTION Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.FUNCTION Command Examples

 Example 1
Define the MSG function so that all messages are highlighted in the TSOOUT
stream and the terminal's audible alarm sounds when you receive a message.

change.function msg output(tsoout 2) alarm(output)

 Example 2
Set the Session Manager function to get commands from the SMIN stream and
place the output from these commands in the SMOUT stream highlighted. The
information in the SMIN stream is not to be copied to the SMOUT stream.

change.function sm input(smin) output(smout 2) nocopy

2-10 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE
 

 Example 3
Set the SM function to copy the SMIN stream into the SMOUT stream.

change.function sm copy(smout)

 Example 4
Set the TSO function to get its input from the TSOIN stream and highlight its output
in the TSOOUT stream. The information in the TSOIN stream is to be copied into
the TSOOUT stream.

change.function tso input(tsoin) output(tsoout 2)
 copy(tsoout)

 CHANGE.MODE Command
Use the CHANGE.MODE command to indicate whether you want to run under
VS/APL or the Session Manager.

CHANGE.MODE Command Syntax 

55─ ──┬ ┬─CHANGE.MODE─ ──┬ ┬─APL─ ────────────────────────────────────────────5%
 ├ ┤─C.M───────── └ ┘─SM──
 └ ┘─C M─────────

CHANGE.MODE Command Operands
APL

indicates that you are running VS/APL and you want the Session Manager to
provide any additional functions that were designed specifically to enhance the
interface between the Session Manager and VS/APL.

Note:  To use a VS/APL program function (PF) key definition, first make the
corresponding Session Manager PF key definition null. To find out how
to make a PF key null, refer to the CHANGE.PFK command.

SM
indicates that you are running under the Session Manager.

CHANGE.MODE Command Return Codes
Figure 2-4. CHANGE.MODE Command Return Codes

0 Processing successful.

4 Syntax error in command.

CHANGE.MODE Command Examples

 Example 1
Change the mode to run under VS/APL.

change.mode apl

  Chapter 2. Session Manager Commands 2-11



 CHANGE  
 

 CHANGE.PFK Command
Use the CHANGE.PFK key to change the definition of a program function (PF) key.
You can define a PF key to issue one or more Session Manager commands,
TSO/E commands, input to an application program, or any other string of
characters.

CHANGE.PFK Command Syntax 

55─ ──┬ ┬─CHANGE.PFK─ ─pfk_number─ ─definition_text_string──stream_name───────5
 ├ ┤─C.P────────
 └ ┘─C P────────

5─ ──┬ ┬───────────────────────────────────────────── ──────────────────────5%
 │ │┌ ┐─&────────── ┌ ┐─b─────────

└ ┘──SUBSTITUTE( ──┴ ┴─identifier─ ──┼ ┼─────────── )
 └ ┘─delimiter─

CHANGE.PFK Command Operands
pfk_number

The number of the PF key to be changed. If you specify a number that does
not exist on your terminal, the Session Manager still accepts this operand. It
has no way of knowing how many PF keys you have.

definition_text_string
The string of characters that are to be placed in the specified stream. If the text
string contains lowercase letters, blanks, commas, or parentheses, enclose it in
single quotes. A single quote mark in the text string must be represented as
two adjacent quotes.

If there are no blanks, commas, or parentheses in the text string, you can omit
the enclosing quotes. If you omit the quotes, however, the Session Manager
translates the text string to uppercase letters. When using the CHANGE.PFK
command in a CLIST, the Session Manager always stores the text string in
uppercase letters, even if it is enclosed in quotes.

If you enter more than one command for the text string, separate them with a
semicolon (;).

If you want to use a PF key defined under some other 3270 application (for
example, VS/APL), first define the definition_text_string for the PF key as null
to the Session Manager. The PF key can then be passed back to the
application. To specify a null PF key, define the definition_text_string as two
adjacent quotes ('').

stream_name
The name of the stream where the text string is to be placed.

SUBSTITUTE
specifies that the information read from the screen is to be substituted into the
‘definition_text_string’, replacing the symbolic arguments.

identifier identifies the symbolic argument that is to be replaced. Any character
(except a blank or comma) can be used as the identifier. If the identifier
character appears elsewhere in the definition_text_string, it must be
doubled.

2-12 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE
 

delimiter separates the information on the screen that is to be substituted into
the text string. One or more blanks are treated as a single delimiter. The
delimiter can be any character except a comma.

CHANGE.PFK Command Return Codes
Figure 2-5. CHANGE.PFK Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.PFK Command Examples

 Example 1
Change PF1 to place the TSO/E TIME command in the TSOIN stream where it will
be executed.

change.pfk 1 'time' tsoin

 Example 2
Change PF12 to issue the QUERY.TERMINAL command. Direct the output to the
EXTRA1 stream and cause the default window to display that stream.

change.pfk 12 'query.terminal extra1;change.window
 view(extra1)' smin

 Example 3
Change PF2 to issue the TSO/E LISTDS command. Each line typed just before the
key is pressed is to be substituted as the data set name operand for the command.

change.pfk 2 'listds &1;.\ members' tsoin substitute

If you type the following on the screen:

test
sample

and pressed PF2, the following TSO/E commands are executed:

listds test.\ members
listds sample.\ members

 CHANGE.STREAM Command
Use the CHANGE.STREAM command to:

� Change whether the terminal's audible alarm is to sound when information
enters a stream

� Erase all of the information in a stream

(Use the QUERY.STREAMS command to display the names and attributes of all of
the streams.)

  Chapter 2. Session Manager Commands 2-13



 CHANGE  
 

CHANGE.STREAM Command Syntax 

55─ ──┬ ┬─CHANGE.STREAM─ ─stream_name─ ──┬ ┬────────────────── ──┬ ┬─────── ─────5%
├ ┤─C.S─────────── └ ┘──ALARM( ──┬ ┬─YES─ ) └ ┘─CLEAR─

 └ ┘─C S─────────── └ ┘─NO──

CHANGE.STREAM Command Operands
stream_name

The name of the stream to be changed.

ALARM(YES | NO)
specifies whether the terminal's audible alarm is to sound when information
enters the stream. The stream does not have to be currently displayed for the
alarm to sound. If your terminal does not have an audible alarm, the Session
Manager still accepts this operand. It has no way of knowing whether your
terminal has an alarm.

CLEAR
erases all of the information in the stream. The stream itself is not erased.

CHANGE.STREAM Command Return Codes
Figure 2-6. CHANGE.STREAM Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

CHANGE.STREAM Command Examples

 Example 1
Set the display terminal's audible alarm to sound when information goes into the
EXTRA1 stream.

change.stream extra1 alarm(yes)

 Example 2
Erase all information in the TSOOUT stream.

change.stream tsoout clear

 CHANGE.TERMINAL Command
Use the CHANGE.TERMINAL command to:

� Specify whether the audible alarm is to sound when the keyboard unlocks

� Indicate the maximum time the keyboard is to be locked while a command is
executing

� Change the default window

2-14 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE
 

CHANGE.TERMINAL Command Syntax 

55─ ──┬ ┬─CHANGE.TERMINAL─ ──┬ ┬────────────────── ────────────────────────────5
├ ┤─C.T───────────── └ ┘──ALARM( ──┬ ┬─YES─ )

 └ ┘─C T───────────── └ ┘─NO──

5─ ──┬ ┬──────────────────────── ──┬ ┬────────────────────── ─────────────────5%
└ ┘──CONTROL( ──┬ ┬─LAST──── ) └ ┘──DEFAULT(window_name)

 └ ┘─seconds─

CHANGE.TERMINAL Command Operands
ALARM(YES | NO)

specifies whether the terminal's alarm is to sound when the keyboard unlocks.
When the keyboard is unlocked, you can enter input. If your terminal does not
have an audible alarm, the Session Manager still accepts this operand. It has
no way of knowing whether your terminal has an alarm.

CONTROL(LAST | seconds)
specifies the maximum time, in seconds, that the keyboard is to remain locked.
The Session Manager sets a timer to unlock the terminal keyboard when the
time expires. Note, however, that when the keyboard is locked, you cannot
enter commands, and attention interrupts will not be processed.

LAST  specifies that the timer is to be set to the last non-zero value entered for
the CONTROL keyword of this command.

seconds specifies that the keyboard is to be unlocked after the specified
number of seconds has elapsed. seconds must be an integer from 0 to
999.

DEFAULT(window_name)
The name of the window that you want to be the default window. This window
serves as the default window for other Session Manager commands when a
window name is entered with the command. The MAIN window is the
IBM-supplied default window.

CHANGE.TERMINAL Command Return Codes
Figure 2-7. CHANGE.TERMINAL Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

CHANGE.TERMINAL Command Examples

 Example 1
Set the terminal so that the keyboard will be locked for no more than 10 seconds.

change.terminal control(1ð)

  Chapter 2. Session Manager Commands 2-15



 CHANGE  
 

 Example 2
Set the terminal so that each time the keyboard unlocks the audible alarm sounds.

change.terminal alarm(yes)

 Example 3
Set the terminal so that the keyboard will be locked for no more than 15 seconds
and set the MAIN window as the default window.

change.terminal control(15) default(main)

 CHANGE.WINDOW Command
Use the CHANGE.WINDOW command to change the attributes of an existing
window on the display screen. Use the QUERY.TERMINAL or QUERY.WINDOWS
command to display the names and attributes of the currently defined windows.

CHANGE.WINDOW Command Syntax 

 ┌ ┐─default_window─
55─ ──┬ ┬─CHANGE.WINDOW─ ──┼ ┼──────────────── ──┬ ┬────────────────── ──────────5

├ ┤─C.W─────────── └ ┘─window_name──── └ ┘──ALARM( ──┬ ┬─YES─ )
 └ ┘─C W─────────── └ ┘─NO──

5─ ──┬ ┬───────────────────── ──┬ ┬──────────────── ──┬ ┬──────────────────── ───5
└ ┘──HOLD( ──┬ ┬─INPUT─── ) └ ┘──OVERLAP(lines) └ ┘──PROTECT( ──┬ ┬─YES─ )

 └ ┘─seconds─ └ ┘─NO──

5─ ──┬ ┬──────────────────────────────────── ──┬ ┬────────────────────── ──────5
│ │┌ ┐─1───────── └ ┘──UPDATE( ──┬ ┬─LINE─── )
└ ┘──TARGET(stream_name ──┼ ┼─────────── ) ├ ┤─NEWEST─

 └ ┘─intensity─ └ ┘─PAGE───

5─ ──┬ ┬─────────────────── ────────────────────────────────────────────────5%
└ ┘──VIEW(stream_name)

CHANGE.WINDOW Command Operands
window_name

The name of the window whose attributes are to be changed.

ALARM(YES | NO)
specifies whether the terminal's audible alarm is to sound when the Session
Manager places new information in the stream. If your terminal does not have
an audible alarm, the Session Manager still accepts this operand. It has no way
of knowing whether your terminal has an alarm.

HOLD(INPUT | seconds)
specifies how long the window (when unlocked) is to be held in place before it
is scrolled towards the bottom of the stream.

INPUT specifies that the window (when unlocked) be held in place until you
supply input by pressing the Enter key or any program function (PF) key.

seconds specifies that the window (when unlocked) be held in place the
specified number of seconds before it is scrolled toward the bottom of the
stream. seconds must be an integer from 0 to 999.

2-16 OS/390 V2R7.0 TSO/E Command Reference  



  CHANGE
 

During the time the window is held in place, the keyboard remains locked.
The keyboard unlocks when the time expires or when the window displays
the bottom of the stream.

Note:  The value specified on the CONTROL operand of the
CHANGE.TERMINAL command overrides the value specified on
this operand.

OVERLAP( lines)
specifies how many lines of the window's old position are to be repeated when
the window scrolls to a new position.

lines must be an integer from 0 to 999. If you specify a value for lines that is
greater than or equal to the number of lines in the window, the Session
Manager adjusts lines to be the number of lines in the window minus one.
Thus, at least the bottom line of the window's old position appears at the top of
the window's new position.

PROTECT(YES | NO)
specifies whether you can enter data in the window. You can enter data in an
unprotected window only. If you try to enter data in a protected window, the
keyboard locks.

TARGET(stream_name intensity)

stream_name is the name of the stream that is to receive the information
entered in the window.

intensity specifies the brightness at which the information in the stream is to be
displayed. The valid values are:

0 The information in the stream is not to be displayed. You can see the
line that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

UPDATE(LINE | NEWEST | PAGE)
specifies how much new information must enter the stream before the Session
Manager updates the window. The window scrolls only when it is unlocked.

LINE specifies that the window scroll sequentially towards the bottom of the
stream. Thus, all of the new information is displayed as the window scrolls
over the stream. When the window is full, it scrolls forward (repeating the
number of lines specified by the OVERLAP operand) and the new
information again starts to fill up the window.

NEWEST specifies that the window always display the newest information in
the stream. When new information enters the stream, the window scrolls
directly to the bottom of the stream. Some information in the stream might
be skipped over. Thus, if a large amount of information is sent to the
stream in a short period of time, only the last few lines (the number of lines
in the window) are displayed.

PAGE specifies that the window scroll sequentially over the stream when there
are enough new lines of information (minus the number of overlap lines) to
fill the window. The window does not scroll to display the new information

  Chapter 2. Session Manager Commands 2-17



 DEFINE  
 

until enough additional information (a “page” of information) enters the
stream.

VIEW(stream_name)
The name of the stream the window is to display. Initially, the Session Manager
places the window at the bottom of the stream and unlocks the window.

CHANGE.WINDOW Command Return Codes
Figure 2-8. CHANGE.WINDOW Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

CHANGE.WINDOW Command Examples

 Example 1
Change the TEST window to display the SMOUT stream.

change.window test view(smout)

 Example 2
Change the PASSWD window so that TSO/E passwords can be entered in
non-display mode.

change.window passwd target(tsoin ð)

 Example 3
Change the default window so that input cannot be entered there.

change.window protect(yes)

 DEFINE.WINDOW Command
Use the DEFINE.WINDOW command to define a new window on the display
screen.

DEFINE.WINDOW Command Syntax

2-18 OS/390 V2R7.0 TSO/E Command Reference  



  DEFINE
 

 

55─ ──┬ ┬─DEFINE.WINDOW─ ─window_name─ ─row─ ─column─ ──┬ ┬─lines─ ──┬ ┬─width─ ────5
 ├ ┤─D.W─────────── └ ┘─MAX─── ├ ┤─MAX───
 └ ┘─D W─────────── └ ┘─WRAP──

5─ ──┬ ┬────────────────── ──┬ ┬───────────────────── ─────────────────────────5
└ ┘──ALARM( ──┬ ┬─YES─ ) │ │┌ ┐─ð───────

└ ┘─NO── └ ┘──HOLD( ──┼ ┼─INPUT─── )
 └ ┘─seconds─

5─ ──┬ ┬────────────────────── ──┬ ┬──────────────────── ──────────────────────5
│ │┌ ┐─1───── └ ┘──PROTECT( ──┬ ┬─YES─ )
└ ┘──OVERLAP( ──┴ ┴─lines─ ) └ ┘─NO──

5─ ──┬ ┬────────────────────────────────────────── ──────────────────────────5
 │ │┌ ┐─TSOIN─────── ┌ ┐─1─────────

└ ┘──TARGET( ──┴ ┴─stream_name─ ──┼ ┼─────────── )
 └ ┘─intensity─

5─ ──┬ ┬────────────────────── ──┬ ┬───────────────────────── ────────────────5%
└ ┘──UPDATE( ──┬ ┬─LINE─── ) │ │┌ ┐─TSOOUT──────

├ ┤─NEWEST─ └ ┘──VIEW( ──┴ ┴─stream_name─ )
 └ ┘─PAGE───

DEFINE.WINDOW Command Operands
window_name

The name of the window being defined. The name must be 1 to 8
alphanumeric characters, with the first character alphabetic.

row
specifies which row of the display screen the top line of the window is to
occupy. row must be an integer n or -n, where n can be any number from 1 to
the number of rows on the display screen. An integer of -n is relative to the
bottom of the screen. For example, a row value of -4 on a 24 line screen
means that the top line of the window is to be row 21.

column
specifies which column of the display screen the left side of the window is to
occupy. column must be an integer n or -n, where n can be any number from 1
to the number of columns on the screen. An integer of -n is relative to the right
side of the display screen. For example, a column value of -4 on an 80 column
screen means that the left side of the window is to be in column 77.

lines | MAX
specifies the number of lines in the window. lines must be an integer n or the
character string MAX. The value n can be any number from 1 to the number of
lines on the display screen. MAX indicates that the window is to consist of the
remaining lines on the display screen or until a line is encountered that has
already been defined as part of another window.

width | MAX | WRAP
specifies the number of character positions in each line of the window. width
can be an integer n or the character string MAX or WRAP.

width can be any number from 1 (or the number defined as the starting column)
to the physical width of the display screen.

MAX indicates that the width of the window should be determined by the
number of character positions available in the first line of the window (those
not used by another window).

  Chapter 2. Session Manager Commands 2-19



 DEFINE  
 

WRAP indicates that the width of the window is to start from the column value
specified with this command and continue to either the beginning of the
next window or to the last row and column of the screen. WRAP can only
be used when lines is defined as 1.

Note:  The first character position in a window is used as a terminal attribute
byte and is protected. Therefore, a window defined with a width of 1 is
useless.

ALARM(YES | NO)
specifies whether the terminal's audible alarm is to sound when the Session
Manager scrolls the window to display new information in the stream. If your
terminal does not have an audible alarm, the Session Manager still accepts this
operand. It has no way of knowing whether your terminal has an alarm.

HOLD(INPUT | seconds)
specifies how long the window (when unlocked) is to be held in place before it
is scrolled towards the bottom of the stream.

INPUT specifies that the window (when unlocked) be held in place until you supply
input by pressing the Enter key or any program function (PF) key.

seconds specifies that the window (when unlocked) be held in place the specified
number of seconds before it is scrolled toward the bottom of the stream.
seconds must be an integer from 0 to 999.

During the time the window is held in place, the keyboard remains locked. The
keyboard unlocks when the time expires or when the window displays the
bottom of the stream.

Note:  The value specified on the CONTROL operand of the
CHANGE.TERMINAL command overrides the value specified on this
operand.

OVERLAP( lines)
specifies how many lines of the window's old position are to be repeated when
the window scrolls to the new position.

lines must be an integer from 0 to 999. If you specify a value for lines that is
greater than or equal to the number of lines in the window, the Session
Manager adjusts the value to be the number of lines in the window minus one.
Thus, at least the bottom line of the window's old position always appears at
the top of the window's new position.

PROTECT(YES | NO)
specifies whether you can enter data in the window. You can enter data in an
unprotected window only. If you try to enter data in a protected window, the
keyboard locks.

TARGET(stream_name intensity)

stream_name The name of the stream that is to receive the information entered
in the window.

intensity specifies the brightness at which the information in the stream is to be
displayed. The valid values are:

2-20 OS/390 V2R7.0 TSO/E Command Reference  



  DEFINE
 

0 The information in the stream is not to be displayed. You can see the
line that the information occupies, but the information itself is invisible.

1 The information is to be displayed at normal intensity.

2 The information is to be highlighted.

UPDATE(LINE | NEWEST | PAGE)
specifies how much new information must enter the stream before the Session
Manager updates the window. The window scrolls only when it is unlocked.

LINE specifies that the window scroll sequentially towards the bottom of the
stream. Thus, all of the new information is displayed as the window scrolls
over the stream. When the window is full, it scrolls forward (repeating the
number of lines specified by the OVERLAP operand) and the new
information again starts to fill up the window.

NEWEST specifies that the window always display the newest information in
the stream. When new information enters the stream, the window scrolls
directly to the bottom of the stream. Some information in the stream might
be skipped over. Thus, if a large amount of information is sent to the
stream in a short period of time, only the last few lines (the number of lines
in the window) are displayed.

PAGE specifies that the window scroll sequentially over the stream when there
are enough new lines of information (minus the number of overlap lines) to
fill the window. The window does not scroll to display the new information
until enough additional information (a “page” of information) enters the
stream.

VIEW(stream_name | TSOOUT)
The name of the stream that the window is to display. Initially, the Session
Manager places the window at the bottom of the stream and unlocks the
window.

DEFINE.WINDOW Command Return Codes
Figure 2-9. DEFINE.WINDOW Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

DEFINE.WINDOW Command Examples

 Example 1
Note:  The display screen for this example contains 24 lines and is 80 columns

wide.

Create a screen layout having an output window occupying the top 22 lines of the
screen with a character width of the entire screen and an input window that
occupies the bottom two lines of the screen but is logically a single line. The output
window is to display the TSOOUT stream and input window is to display the
HEADER stream. All other attributes of the windows are to assume the default
values.

  Chapter 2. Session Manager Commands 2-21



 END Command  
 

define.window output 1 1 22 max
define.window input -2 1 1 wrap view(header)

 DELETE.WINDOW Command
Use the DELETE.WINDOW command to delete a window from the display screen.

DELETE.WINDOW Command Syntax 

55─ ──┬ ┬─DELETE.WINDOW─ ──┬ ┬─window_name─ ──────────────────────────────────5%
 ├ ┤─D.W─────────── └ ┘─*───────────
 └ ┘─D W───────────

DELETE.WINDOW Command Operands
window_name

The name of the window to be deleted.

* specifies that all of the windows on the display screen are to be deleted. When
all windows are deleted, press the CLEAR key before entering commands from
the keyboard.

DELETE.WINDOW Command Return Codes
Figure 2-10. DELETE.WINDOW Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

DELETE.WINDOW Command Examples

 Example 1
Delete the TEST window.

delete.window test

 Example 2
Delete all of the windows on the display screen.

delete.window \

 END Command
Use the END command to end Session Manager display support of your TSO/E
session. The information in your streams is erased when you issue the END
command. If, after issuing this command, you want to have Session Manager
support again, you must reissue the TSO/E LOGON command.

2-22 OS/390 V2R7.0 TSO/E Command Reference  



  FIND Command
 

END Command Syntax 

55──END──────────────────────────────────────────────────────────────────5%

 FIND Command
Use the FIND command to search for a specific text string in the stream that a
window is displaying or to determine the number of the top line displayed in a
window.

If the Session Manager finds the text string, it scrolls the window so that the line
containing the text string is displayed on the top line of the window and the window
is locked. If the text string is not found, the Session Manager places a message in
the Session Manager output stream. If you issue the FIND command with a null
text string (adjacent quote marks ''), the Session Manager searches for the
previous text string.

For the FIND.LINE command, the Session Manager writes the following message in
the specified window:

à ð
ADFð31I window_name VIEWING LINE nnnnn

‘nnnnn’ is the top line number in the window.

The FIND.LINE command is useful for finding a line number for the
SCROLL.ABSOLUTE command, for copying a range of lines using the SMCOPY
command, or for locating a text string within a range of lines using the SMFIND
command. The Session Manager does not lock the window when you use the
FIND.LINE command.

FIND Command Syntax 

55─ ──┬ ┬─FIND.─ ──┬ ┬──┬ ┬──┬ ┬─BACKWARD─ ──'text_string' ──────── ───────────────5
 └ ┘─F───── │ ││ │└ ┘─B────────
 │ │└ ┘──┬ ┬─FORWARD─ ─
 │ │└ ┘─F───────
 └ ┘ ──┬ ┬─LINE─ ──┬ ┬───────────────────────────
 └ ┘─L──── │ │┌ ┐─SMOUT───────
 └ ┘──TARGET( ──┴ ┴─stream_name─ )

 ┌ ┐─default_window─
5─ ──┼ ┼──────────────── ───────────────────────────────────────────────────5%
 └ ┘─window_name────

FIND Command Operands
BACKWARD

causes the Session Manager to search for the specified text_string from the top
line in the window on the display screen backward toward the top of the
stream. The stream searched is the one displayed in either the default window
or the window specified on the command.

  Chapter 2. Session Manager Commands 2-23



 FIND Command  
 

FORWARD
causes the Session Manager to search for the specified text_string from the
current line on the display screen forward toward the bottom of the stream. The
stream searched is the one displayed in either the default window or the
window specified on the command.

LINE
causes the Session Manager to find the number of the top line in the default
window or the specified window and writes a message identifying the line
number in the specified stream.

text_string
The string of characters for which Session Manager is to search. If the
text_string contains lowercase letters, blanks, commas, or parentheses, enclose
it in single quotes. A single quote mark in the text_string must be represented
as two adjacent quotes.

If there are no blanks, commas, or parentheses in the text_string, you can omit
the enclosing quotes. If you omit the enclosing quotes, however, the Session
Manager translates the text_string to uppercase letters before beginning the
search. When the FIND command is used in a CLIST, the Session Manager
always stores the text_string in uppercase letters, even if it is enclosed in
quotes.

If you specify a null text_string, the Session Manager uses the last text_string
you entered as the string of characters to search for. A null text_string is
defined as two adjacent quotes ('').

TARGET(stream_name | SMOUT)
The name of the stream that is to contain the message produced by the
FIND.LINE command.

window_name
For FIND.BACKWARD and FIND.FORWARD, window_name is the name of the
window whose stream is to be searched.

For FIND.LINE, window_name is the name of the window whose top line
number is to be found.

FIND Command Return Codes
Figure 2-11. FIND Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Text not found.

FIND Command Examples

 Example 1
Assume that the default window is displaying the bottom of the TSOOUT stream.
Find the last time the character string ‘link’ was issued.

find.backward 'link'

2-24 OS/390 V2R7.0 TSO/E Command Reference  



  PUT Command
 

 Example 2
Assume that the TEST window is displaying the top of the TSOOUT stream. Find
the first time you edited a data set named ‘abc.asm’.

find.forward 'edit abc.asm' test

Now find the next occurrence of this same text string.

find.forward '' test

 PUT Command
Use the PUT command to place a text string in a Session Manager stream. If you
place the text string in the TSOIN stream, it is sent to TSO/E to be executed as a
TSO/E command. If you place the text string in the SMIN stream, it is interpreted
as a Session Manager command. The length of the entire PUT command cannot
exceed 512 characters.

PUT Command Syntax 

55─ ──┬ ┬─PUT─ ──'text_string' ─stream_name─ ──┬ ┬──────────────────────────── ─5%
 └ ┘─P─── │ │┌ ┐─1─────────

└ ┘──INTENSITY( ──┴ ┴─intensity─ )

PUT Command Operands
text_string

The string of characters to be placed in the stream. If the text_string contains
lowercase letters, blanks, commas, parentheses, it must be enclosed in single
quote marks. A single quote mark in the text_string must be represented as two
adjacent quotes.

If there are no blanks, commas, or parentheses in the text_string, you can omit
the enclosing quotes. If you omit the enclosing the enclosing quotes, however,
the Session Manager translates the text_string to uppercase letters before
beginning the search. When the PUT command is used in a CLIST, the
Session Manager always stores the text_string in uppercase letters, even if it is
enclosed in quotes.

stream_name
The name of the stream where the text_string is to be placed. The Session
Manager places the text_string at the bottom of this stream.

INTENSITY(intensity)
specifies the brightness at which the text_string is to be displayed in the
stream. The valid values are:

0 The text_string is not to be displayed. You can see the line that the
text_string occupies, but the information itself is invisible.

1 The text_string is to be displayed at normal intensity.

2 The text_string is to be highlighted.

  Chapter 2. Session Manager Commands 2-25



 QUERY Command  
 

PUT Command Return Codes
Figure 2-12. PUT Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

PUT Command Examples

 Example 1
Place a comment in the TSOOUT stream and highlight it.

put 'this is a comment' tsoout intensity(2)

 Example 2
Use the PUT command in the definition_text_string of the CHANGE.PFK command.
When pressed, PF3 is to issue the TSO/E TIME command and the Session
Manager UNLOCK.NEWEST command. The commands are to be placed in the
SMIN stream.

change.pfk 3 'put time tsoin;put 'unlock newest'
smin' smin

 QUERY Command
Use the QUERY command to display information about the Session Manager
functions, program function (PF) keys, streams, terminal, and windows.

QUERY Command Syntax 

 ┌ ┐─TSOOUT──────
55─ ──┬ ┬─QUERY.─ ──┬ ┬──┬ ┬─FUNCTION─ ──┼ ┼───────────── ───────────────────────5%
 └ ┘─Q────── │ │└ ┘─F──────── └ ┘─stream_name─
 ├ ┤──┬ ┬─PFKS─ ────
 │ │└ ┘─P────
 ├ ┤──┬ ┬─STREAMS─ ─
 │ │└ ┘─S───────
 ├ ┤──┬ ┬─TERMINAL─
 │ │└ ┘─T────────
 └ ┘──┬ ┬─WINDOWS─ ─
 └ ┘─W───────

QUERY Command Operands
FUNCTION

displays the following information for each currently defined session function:

� The name of the function

� The input, output, and copy streams for the function

� Whether the audible alarm is to sound when information enters the input
and output streams

� The intensity at which the information in the output and copy streams is
displayed.

2-26 OS/390 V2R7.0 TSO/E Command Reference  



  QUERY Command
 

PFKS
displays the following information for each currently defined program function
(PF) key:

� The number of the PF key
� The name of the stream where the text_string is to be placed
� The identifier and delimiter characters for the PF keys
� The text_string used to define the key.

STREAMS
displays the following information for each currently defined stream:

� The name of the stream

� The numbers of the top and bottom lines in the stream

� The maximum size of the stream (in lines and bytes)

� The number of lines and bytes currently used by the stream

� The type of stream (input, output, or extra)

� Whether the audible alarm is to sound when information enters the stream.

TERMINAL
displays the following information about the terminal environment:

� The control setting for the keyboard indicating the maximum time the
keyboard is to remain locked

� Whether the audible alarm is to sound when the keyboard unlocks

� The current number of windows defined on the display screen

� The maximum number of windows that can be defined

� The name of the default window

� The permanent location of the cursor

� The following information for each currently defined window:

– The name of the window

– The name of the stream that the window displays

– Whether the window is locked

– Whether you can enter data in the window

– The name of the stream that is to receive the information entered in the
window

– The intensity at which the information in the stream is to be displayed

– Whether the terminal's audible alarm is to sound when the Session
Manager scrolls the window to display new information in the stream

– How long the window (when unlocked) is to be held in place before it is
scrolled towards the bottom of the stream

– How many lines of the window's old position are to be repeated when
the window scrolls to the new position

– How much new information must enter the stream before the Session
Manager updates the window.

  Chapter 2. Session Manager Commands 2-27



 QUERY Command  
 

WINDOWS
displays the following information for each currently defined window:

� The name of the window

� The starting location of the window on the display screen (in rows and
columns)

� The size of the window (in lines and width)

� The name of the stream that the window displays

� The numbers of the top and bottom lines of the stream that the window is
currently displaying

� The numbers of the top and bottom lines of the stream that the window
was displaying when it was last unlocked. (These numbers are used when
the UNLOCK.RESUME command is issued.)

� The numbers of the top and bottom lines of the newest information in the
stream that the window is currently displaying.

stream_name
The name of the stream where the output from the command is to be placed.
The output is in table format.

QUERY Command Return Codes
Figure 2-13. QUERY Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

QUERY Command Examples

 Example 1
Display the information for all session functions.

query.function

The output from the command is as follows:

FUNCTION INPUT OUTPUT COPY
 NAME STREAM ALARM STREAM INT ALARM STREAM INT
TSO TSOIN N TSOOUT 1 N TSOOUT 2
SM SMIN N SMOUT 2 Y SMOUT ð
MSG \NONE\ TSOOUT 2 Y \NONE\

 Example 2
Display the information for all streams defined.

query.streams

The output from the command is as follows:

2-28 OS/390 V2R7.0 TSO/E Command Reference  



  QUERY Command
 

 STREAM LINE RANGE MAXIMUM SIZE USED
 NAME LOW HIGH LINES BYTES LINES BYTES TYPE ALARM
TSOIN 1 4 3ð5 8192 4 82 INPUT N
TSOOUT 1 47 4ðð5 147456 47 4678 OUTPUT N
EXTRA1 1 1 4ð5 32768 1 38 OUTPUT N
SMOUT 1 61 155 4ð96 61 424 OUTPUT N
HEADER 1 9 55 1ð24 9 349 EXTRA N
EXTRA3 1 2 1ð5 1ð24 2 47 EXTRA N
EXTRA2 1 1 1ð5 1ð24 1 38 EXTRA N
MESSAGE 1 1 55 1ð24 1 39 OUTPUT Y
SMIN 1 59 3ð5 8192 59 6192 INPUT N
QUERY COMPLETE

 Example 3
Display all information related to the terminal.

query.terminal

The output from the command is as follows:

KEYBOARD CNTL ALARM
 15 N
WINDOWS CURRENT # MAXIMUM # DEFAULT WINDOW CURSOR POSITION
 11 25 MAIN ENTRY 1 1
 NAME VIEW LOCKED PROT TARGET INTENSITY ALARM HOLD OVERLAP UPDATE
LINE HEADER Y Y TSOIN 1 N ð ð N
STITLE HEADER Y Y TSOIN 1 N ð ð N
SVALUE EXTRA3 N Y EXTRA3 1 N ð ð N
LTITLE HEADER Y Y TSOIN 1 N ð ð N
LVALUE HEADER Y Y TSOIN 1 N ð ð N
VLINE HEADER Y Y TSOIN 1 N ð ð N
PASSWD SMOUT N N TSOIN ð N ð ð N
CURRENT TSOOUT N N TSOIN 1 N ð ð N
TENTRY HEADER Y Y TSOIN 1 N ð ð N
ENTRY HEADER Y N TSOIN 1 N ð ð N
MAIN TSOOUT N N TSOIN 1 N I 9 L
QUERY COMPLETE

 Example 4
Display the information for all windows defined:

query.windows

The output from the command is as follows:

  Chapter 2. Session Manager Commands 2-29



 RESTORE Command  
 

PRESENT RESUME NEWEST
VIEWING TOP BOTTOM TOP BOTTOM TOP BOTTOM

 WINDOW ROW COL LINES WIDTH STREAM LINE LINE LINE LINE LINE LINE
LINE 2ð 1 1 8ð HEADER 2 2 1 1 1ð 1ð
STITLE 21 63 1 12 HEADER 6 6 1 1 1ð 1ð
SVALUE 21 75 1 6 EXTRA3 2 2 1 1 2 2
LTITLE 22 63 1 9 HEADER 9 9 1 1 1ð 1ð
LVALUE 22 72 1 9 HEADER 7 7 1 1 1ð 1ð
VLINE 24 41 1 2 HEADER 4 4 1 1 1ð 1ð
PASSWD 24 43 1 38 SMOUT 57 57 1 1 1ð 1ð
CURRENT 21 1 2 62 TSOOUT 36 37 36 37 46 47
TENTRY 23 1 1 5 HEADER 3 3 1 1 1ð 1ð
ENTRY 23 6 1 114 HEADER 1ð 1ð 1 1 1ð 1ð
MAIN 1 1 19 8ð TSOOUT 1 19 1 19 32 5ð
QUERY COMPLETE

 RESET Command
Use the RESET command to restart your Session Manager display environment.
For example, if you accidentally deleted any of the windows on your display screen,
use RESET to get the default display screen back. This command removes the
entries from all of the stacks and re-executes the commands that created the
default environment. The RESET command causes the HEADER stream to be
cleared and then redefined containing only those lines needed in the default
environment. In addition, the default scroll amount is placed in the EXTRA3 stream,
thereby resetting the default scroll amount on your display screen. None of the
other streams are altered.

The RESET command should not be followed by any other Session Manager
command on the same line. A command entered on the same line executes before
the RESET command can reestablish the default screen layout.

RESET Command Syntax 

55──RESET────────────────────────────────────────────────────────────────5%

RESET Command Return Codes
Figure 2-14. RESET Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

 RESTORE Command
Use the RESTORE command to restore the definitions of the program function (PF)
keys, screen layout, or windows previously saved via the SAVE command. If only
one set of definitions exists on the stack, it is not removed. If more than one set of
definitions has been saved, you must issue the RESTORE command as many
times as you issued the SAVE command to get to the definitions you want.

2-30 OS/390 V2R7.0 TSO/E Command Reference  



  RESTORE Command
 

RESTORE Command Syntax 

55─ ──┬ ┬─RESTORE.─ ──┬ ┬──┬ ┬─PFKS─ ────────────────────── ────────────────────5%
 └ ┘─R──────── │ │└ ┘─P────
 ├ ┤──┬ ┬─SCREEN─ ────────────────────
 │ │└ ┘─S──────
 │ │┌ ┐─default_window─
 └ ┘ ──┬ ┬─WINDOW─ ──┼ ┼────────────────
 └ ┘─W────── └ ┘─window_name────

RESTORE Command Operands
PFKS

specifies that the Session Manager is to restore the program function (PF) key
definitions.

SCREEN
specifies that the Session Manager is to restore the screen layout. The
following items are included in each screen stack element:

� A description of the screen layout

� The location of the cursor

� The value indicating how long the keyboard is to remain locked while a
command is executing (as set using the CHANGE.TERMINAL command)

� The name of the default window

� The name and attributes of each window.

WINDOW
specifies that the Session Manager is to restore the window definitions. Each
window description element contains the following information:

� The audible alarm setting for the window (ALARM)

� The amount of time the window (when unlocked) is held in place before it is
scrolled toward the bottom of the stream (HOLD)

� The number of lines from the window's old position that are to be repeated
when the window scrolls (OVERLAP)

� Whether you can enter data in the window (PROTECT)

� The name of the stream that is to receive the information typed in the
window and the intensity at which the information is to be displayed
(TARGET)

� How often the window is to scroll over the new information in the stream
(UPDATE)

� The name of the stream the window is displaying (VIEW)

� The numbers of the top and bottom lines in the stream that the window is
currently displaying

� Whether the window is locked or unlocked

The location and size of the window are not restored.

  Chapter 2. Session Manager Commands 2-31



 SAVE Command  
 

window_name
The name of the window whose description is to be restored.

RESTORE Command Return Codes
Figure 2-15. RESTORE Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream or window not found.

RESTORE Command Examples

 Example 1
Restore the definition of the TEST window that was previously saved via the SAVE
command.

restore.window test

 SAVE Command
Use the SAVE command to save the current definitions of program function (PF)
keys, windows, and the screen layout. Later, you can restore these same
definitions by using the RESTORE command.

SAVE Command Syntax 

55─ ──┬ ┬─SAVE.─ ──┬ ┬──┬ ┬─PFKS─ ────────────────────── ───────────────────────5%
 └ ┘─S───── │ │└ ┘─P────
 ├ ┤──┬ ┬─SCREEN─ ────────────────────
 │ │└ ┘─S──────
 │ │┌ ┐─default_window─
 └ ┘ ──┬ ┬─WINDOW─ ──┼ ┼────────────────
 └ ┘─W────── └ ┘─window_name────

SAVE Command Operands
PFKS

specifies that all current PF key definitions are to be saved as the top element
of the PF key stack.

SCREEN
specifies that the current screen layout is to be saved as the top element on
the screen stack. The following items are saved for each screen stack element:

� A description of the screen layout

� The location of the cursor

� The value indicating how long the keyboard is to remain locked while a
command is executing (as set using the CHANGE.TERMINAL command)

� The name of the default window

� The name and attributes of each window.

2-32 OS/390 V2R7.0 TSO/E Command Reference  



  SCROLL Command
 

WINDOW
requests that the definitions for the default window or the window specified on
the command be saved as the top element of the window stack. Each window
description element contains the following information:

� The audible alarm setting for the window (ALARM)

� The amount of time the window (when unlocked) is held in place before it is
scrolled toward the bottom of the stream (HOLD)

� The number of lines from the window's old position that are to be repeated
when the window scrolls (OVERLAP)

� Whether you can enter data in the window (PROTECT)

� The name of the stream that is to receive the information typed in the
window and the intensity at which the information is to be displayed
(TARGET)

� How often the window is to scroll over the new information in the stream
(UPDATE)

� The name of the stream the window is displaying (VIEW)

� The numbers of the top and bottom lines in the stream that the window is
currently displaying

� Whether the window is locked or unlocked

The location and size of the window are not saved.

window_name
The name of the window whose description is to be saved.

SAVE Command Return Codes
Figure 2-16. SAVE Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

SAVE Command Examples

 Example 1
Save the definition of the TEST window on the window stack.

save.window test

 SCROLL Command
Use the SCROLL command to move a window over a stream. After the Session
Manager moves the window, the window is locked in position. You can then move
the window by using another scroll command or you can unlock the window by
using the UNLOCK command.

  Chapter 2. Session Manager Commands 2-33



 SCROLL Command  
 

SCROLL Command Syntax 

55─ ──┬ ┬─SCROLL.─ ──┬ ┬──┬ ┬─ABSOLUTE─ ──┬ ┬───────────── ───────── ──────────────5
 └ ┘─S─────── │ │└ ┘─A──────── └ ┘─line_number─
 ├ ┤ ──┬ ┬──┬ ┬─BACKWARD─ ──┬ ┬──────────────────
 │ ││ │└ ┘─B──────── │ │┌ ┐─ð─────
 │ │└ ┘──┬ ┬─FORWARD─ ─ └ ┘ ─pages─ ──┼ ┼───────
 │ │└ ┘─F─────── └ ┘─lines─
 ├ ┤ ──┬ ┬──┬ ┬─LEFT─ ─ ──┬ ┬───────── ────────────
 │ ││ │└ ┘─L──── └ ┘─columns─
 │ │└ ┘──┬ ┬─RIGHT─
 │ │└ ┘─R─────
 └ ┘──┬ ┬──┬ ┬─NEWEST─ ────────────────────────
 │ │└ ┘─N──────
 └ ┘──┬ ┬─OLDEST─
 └ ┘─O──────

 ┌ ┐─default_window─
5─ ──┼ ┼──────────────── ──┬ ┬────────────────────── ─────────────────────────5%

└ ┘─window_name──── └ ┘──AMOUNT( ──┬ ┬─HALF─── )
 ├ ┤─MAX────
 ├ ┤─PAGE───
 └ ┘─amount─

SCROLL Command Operands
ABSOLUTE

specifies that the Session Manager is to scroll the window so that the identified
line_number is the top line in the window. Use the QUERY, SMFIND, or
FIND.LINE commands to find specific line numbers.

line_number The number of the line you want to appear at the top of the
window. If you enter a value for line_number that is 0 or less, the Session
Manager sets line_number to 1. If you enter a value for line_number that is
greater than the highest line number in the stream, the Session Manager
sets line_number to the highest line number in the stream.

BACKWARD
specifies that the Session Manager is to scroll the window backward toward the
top of the stream.

pages specifies how many pages to scroll the window. (A page is defined as
the number of lines in the window.)

If the AMOUNT keyword is entered, the default is 0. If the AMOUNT
keyword is not entered, the default is 1.

If you specify a value that would cause the window to scroll beyond the top
or bottom of the stream, the Session Manager adjusts the value to place
the window at the top or bottom (depending on the direction of the
scrolling).

lines specifies how many lines to scroll the window.

If you specify a value that would cause the window to scroll beyond the top
or bottom of the stream, the Session Manager adjusts the value to place
the window at the top or bottom (depending on the direction of the
scrolling).

2-34 OS/390 V2R7.0 TSO/E Command Reference  



  SCROLL Command
 

FORWARD
specifies that the Session Manager is to scroll the window forward toward the
bottom of the stream.

LEFT
specifies that the Session Manager is to scroll the window toward the left side
of the stream. The limit for scrolling left is column 1 of the stream.

columns specifies the number of columns to scroll the window.

If the AMOUNT keyword is entered, the default is 0. If the AMOUNT
keyword is not entered, the default is 40.

If you specify a value that would cause the window to scroll beyond the left
side of the stream, the Session Manager adjusts the value to place the
window at column 1 of the stream. Values that would cause the window to
scroll beyond column 32768 are adjusted to place the window at column
32,768.

RIGHT
specifies that the Session Manager is to scroll the window toward the right side
of the stream. The limit for scrolling right is 32,768 column positions.

NEWEST
specifies that the Session Manager is to scroll the window forward to the
bottom of the stream.

OLDEST
specifies that the Session Manager is to scroll the window backward to the top
of the stream.

window_name
The name of the window to be scrolled.

AMOUNT
The amount the window is to be scrolled. AMOUNT can be specified instead of
or in addition to, the operands columns, lines, or pages. If you enter a value for
one of the preceding operands and a value for AMOUNT, the Session Manager
sums the two values and scrolls the window the resulting amount. The valid
AMOUNT values are:

HALF  specifies that the window is to be scrolled half a page. (For forward or
backward scrolling, a page is defined as the number of lines in the window.
For right or left scrolling, a page is defined as the number of columns in the
window.)

MAX specifies that the window is to be scrolled the maximum amount. For
forward scrolling, MAX indicates to scroll to the bottom of the stream
(equivalent to the SCROLL.NEWEST command). For backward scrolling,
MAX indicates to scroll to the top of the stream (equivalent to the
SCROLL.OLDEST command).

PAGE specifies that the window is to be scrolled a full page.

amount specifies the number of lines or columns to scroll the window.

  Chapter 2. Session Manager Commands 2-35



 SNAPSHOT Command  
 

SCROLL Command Return Codes
Figure 2-17. SCROLL Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

SCROLL Command Examples

 Example 1
Scroll the default window to the oldest information.

scroll.oldest

or

scroll.backward amount(max)

 Example 2
Scroll the TEST window forward one page.

scroll.forward test

or

scroll.forward test amount(page)

 Example 3
Scroll the SAMPLE window backward 20 lines.

scroll.backward ð 2ð sample

or

scroll.backward sample amount(2ð)

 SNAPSHOT Command
Use the SNAPSHOT command to copy a display screen of information into a
stream. You can then use the SMCOPY command to print the stream or copy it
into a data set.

SNAPSHOT Command Syntax 

55─ ──┬ ┬─SNAPSHOT─ ─stream_name─ ──┬ ┬──────── ───────────────────────────────5%
 └ ┘─S──────── └ ┘─FORMAT─

SNAPSHOT Command Operands
stream_name

The name of the stream where the information is to go.

FORMAT
specifies that carriage control information is to be included in the copy of the
information for printing on a system printer. Highlighted lines on the screen
appear darker in the printed copy.

2-36 OS/390 V2R7.0 TSO/E Command Reference  



  UNLOCK Command
 

Note:  If the copied information contains the carriage control characters, you
must use the PREFORMAT operand of the SMCOPY command when
printing it.

SHAPSHOT Command Return Codes
Figure 2-18. SHAPSHOT Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Stream not found.

SHAPSHOT Command Examples

 Example 1
Place a copy of the display screen in the EXTRA1 stream.

snapshot extra1 format

Print the stream, using the SMCOPY command.

smcopy fromstream(extra1) preformat

 UNLOCK Command
Use the UNLOCK command to unlock a window.

UNLOCK Command Syntax 

 ┌ ┐─default_window─
55─ ──┬ ┬─UNLOCK.─ ──┬ ┬──┬ ┬─HERE─ ── ──┼ ┼──────────────── ─────────────────────5%
 └ ┘─U─────── │ │└ ┘─H──── └ ┘─window_name────
 ├ ┤──┬ ┬─NEWEST─
 │ │└ ┘─N──────
 └ ┘──┬ ┬─RESUME─
 └ ┘─R──────

UNLOCK Command Operands
HERE

causes the Session Manager to unlock the specified window at its current
position.

NEWEST
causes the Session Manager to display the newest information in the stream,
then unlocks it.

RESUME
causes the Session Manager to display the information the window was viewing
before being locked, then unlocks the window.

window_name
The name of the window to be unlocked.

  Chapter 2. Session Manager Commands 2-37



 UNLOCK Command  
 

UNLOCK Command Return Codes
Figure 2-19. UNLOCK Command Return Codes

0 Processing successful.

4 Syntax error in command.

8 Window not found.

UNLOCK Command Examples

 Example 1
Move the default window to the bottom of the stream it is displaying and unlock it
there.

unlock.newest

 Example 2
Unlock the SAMPLE window at its current position.

unlock.here sample

2-38 OS/390 V2R7.0 TSO/E Command Reference  



  
 

 Index

Special Characters
&LASTCC variable 1-282
&SYSABNCD 1-374
&SYSABNRC 1-374
&SYSCMDRC 1-374

Numerics
1403 printer 1-238
3203-5 Printer 1-239
3211 Printer 1-43, 1-216, 1-239
3800 Printer

BURST/NOBURST operand
ALLOCATE command 1-42
OUTDES command 1-212
PRINTDS command 1-235

CHARS operand
ALLOCATE command 1-42
OUTDES command 1-212

COPIES operand
ALLOCATE command 1-42
OUTDES command 1-213
PRINTDS command 1-237

FCB operand
ALLOCATE command 1-43
OUTDES command 1-215
PRINTDS command 1-239

FLASH operand
ALLOCATE command 1-42
OUTDES command 1-215
PRINTDS command 1-239

image_id operand
ALLOCATE command 1-43
PRINTDS command 1-239

MODIFY operand
ALLOCATE command 1-43
OUTDES command 1-216
PRINTDS command 1-241

A
abbreviating keyword operands 1-13
abbreviations

for commands 2-4
ABSOLUTE operand

SCROLL command 2-34
AC operand

LINK command 1-181
ACCODE operand

ALLOCATE command 1-32
ACS (automatic class selection) 1-20

ACTIVATE operand
ALTLIB command 1-62
TSOLIB command 1-376, 1-379

address operand
AT subcommand of TEST 1-310
CALL subcommand of TEST 1-314
RUN subcommand of TEST 1-353

address_1 operand
COPY subcommand of TEST 1-317

address_2 operand
COPY subcommand of TEST 1-317

advanced function printer (AFP) 1-215
ALARM operand

CHANGE.FUNCTION command 2-10
CHANGE.STREAM command 2-14
CHANGE.TERMINAL command 2-15
CHANGE.WINDOW command 2-5, 2-16

ALIAS operand
DELETE command 1-83
LISTCAT command 1-191
RENAME command 1-270

ALIGN operand
ALLOCATE command 1-43

ALL operand
ALTLIB command 1-63
EDIT—CHANGE subcommand 1-95
HELP command 1-170
LISTCAT command 1-191
PRINTDS command 1-240
SMFIND command 1-283

ALLOCATE command 1-18, 1-39, 1-40, 1-41, 1-71,
1-72

operands 1-39, 1-40, 1-41, 1-71, 1-72
ACCODE 1-32
ALIGN 1-43
ALTFILE 1-31
AVBLOCK 1-29
AVGREC 1-29
BFALN 1-38
BFTEK 1-39
BLKSIZE 1-30
BLOCK 1-29
BUFL 1-36
BUFNO 1-36
BUFOFF 1-40
BURST 1-42
CATALOG 1-36
CHARS 1-42
COPIES 1-42
CYLINDERS 1-29
DATACLAS 1-27
DDNAME 1-25
DELETE 1-36

 Copyright IBM Corp. 1988, 1999  X-1



  
 

ALLOCATE command (continued)
operands (continued)

DEN 1-40, 1-72
DEST 1-31
DIAGNS 1-40
DIR 1-31
DSNTYPE 1-45
DSORG 1-40
DUMMY 1-24
EROPT 1-39
EXPDT 1-38
FCB 1-43
FILE 1-25
FILEDATA 1-49
FLASH 1-42
FORMS 1-44
HOLD 1-31
image_id 1-43
INPUT 1-37
KEEP 1-36
KEYLEN 1-41
KEYOFF 1-41
LABEL 1-32
LIKE 1-33
LIMCT 1-40
LRECL 1-37
MAXVOL 1-33
MGMTCLAS 1-27
MOD 1-25
MODIFY 1-43
NCP 1-37
NEW 1-25
NOBURST 1-42
NOHOLD 1-31
OLD 1-25
OPTCD 1-38
OSYNC 1-49
OTRUNC 1-49
OUTDES 1-44
OUTPUT 1-37
PARALLEL 1-32
PATH 1-45
PATHDISP 1-46
PATHMODE 1-47
PATHOPTS 1-48
POSITION 1-32
PRIVATE 1-33
PROTECT 1-42
RECFM 1-39, 1-71
RECORG 1-41
REFDD 1-35
RELEASE 1-36
RETPD 1-38
REUSE 1-31
RLS 1-50
ROUND 1-36
SECMODEL 1-35

ALLOCATE command (continued)
operands (continued)

SEGMENT 1-44
SHR 1-25
SPACE 1-28
SPIN 1-44
STORCLAS 1-27
SYSOUT 1-26
TRACKS 1-29
TRTCH 1-41, 1-72
UCOUNT 1-32
UCS 1-45
UNCATALOG 1-36
UNIT 1-31
USING 1-34
VERIFY 1-44
VOLUME 1-26
VSEQ 1-33
WRITER 1-45

ALLOCATE command under TEST 1-303
ALLOCATE subcommand of EDIT 1-93
allocation attributes 1-27
allocation of SMS data sets 1-19
ALLOCATION operand

LISTCAT command 1-192
ALTFILE operand

ALLOCATE command 1-31
ALTLIB command 1-58

in concurrent applications 1-59
in ISPF 1-59
in most applications 1-59
in the IPCS dialog 1-60
search order for libraries 1-58
stacking application-level requests 1-60

AMODE operand
CALL subcommand of TEST 1-315
GO subcommand of TEST 1-328, 1-354
LINK command 1-174
LOADGO command 1-197
RUN subcommand of TEST 1-354

AMOUNT operand
SCROLL command 2-35

AND subcommand of TEST 1-303
ANY operand

SMFIND command 1-283
APPC/MVS transaction program, using TEST

command 1-296
APPLICATION operand

ALTLIB command 1-62
ASIS operand

CALL command 1-76
EDIT command 1-89
SMCOPY command 1-281
SMFIND command 1-283

ASM command
EDIT command 1-87

X-2 OS/390 V2R7.0 TSO/E Command Reference  



  
 

ASM command (continued)
RUN command 1-272

assignment of values function of TEST 1-306
AT subcommand of TEST 1-310

address 1-311
COUNT 1-312
DEFER 1-312
NOTIFY 1-312
subcommands 1-312
TITLE 1-312

ATTRIB
command 1-66
command under TEST 1-314
subcommand of EDIT 1-93

ATTRIB command 1-39, 1-40, 1-41, 1-71, 1-72
operands 1-39, 1-40, 1-41, 1-71, 1-72

DEN 1-40, 1-72
RECFM 1-39, 1-71
TRTCH 1-41, 1-72

attributes, allocation 1-27
ATTRLIST operand

FREE command 1-162
authorized command, running in unauthorized

environment 1-374
automatic class selection routine 1-19
AVBLOCK operand

ALLOCATE command 1-29
AVGREC operand

ALLOCATE command 1-29

B
background behavior of command

CALL 1-74
LOGOFF 1-202
LOGON 1-205
PROFILE 1-252
SUBMIT 1-286

BACKWARD operand
FIND command 2-23
SCROLL command 2-34
SMFIND command 1-283

BASELU operand
TEST command 1-298

batch processing, cancelling jobs 1-78
BEGIN operand

CONTINUE subcommand of OUTPUT 1-230
OUTPUT command 1-226

BFALN operand
ALLOCATE command 1-38
ATTRIB command 1-70

BFTEK operand
ALLOCATE command 1-39
ATTRIB command 1-71

BIND operand
PRINTDS command 1-235

BINDER operand
LINK command 1-174
LOADGO command 1-198

BLKSIZE operand
ALLOCATE command 1-30
ATTRIB command 1-68
RECEIVE command 1-263

BLOCK operand
ALLOCATE command 1-29
EDIT command 1-89
RECEIVE command 1-263

BMARGIN operand
PRINTDS command 1-235

BOTTOM subcommand of EDIT 1-93
BREAK operand

TERMINAL command 1-293
BUFL (buffer_length) operand

ALLOCATE command 1-36
ATTRIB command 1-68

BUFNO (number_of_buffers) operand
ALLOCATE command 1-36
ATTRIB command 1-68

BUFOFF (block_prefix_length) operand
ALLOCATE command 1-40
ATTRIB command 1-72

BURST operand
ALLOCATE command 1-42
OUTDES command 1-212
PRINTDS command 1-235

C
CALL command 1-74
CALL operand

LINK command 1-174
LOADGO command 1-200

CALL subcommand of TEST 1-314
CANCEL command 1-78
CANCEL command under TEST 1-316
CAPS operand

CALL command 1-76
EDIT command 1-89
SMCOPY command 1-281

CASE operand
LINK command 1-174
LOADGO command 1-198

CATALOG operand
ALLOCATE command 1-36
DELETE command 1-82
LISTCAT command 1-189
LISTDS command 1-194

CCHAR operand
PRINTDS command 1-236

CHANGE subcommand of EDIT 1-93
CHANGE.CURSOR command 2-7

  Index X-3



  
 

CHANGE.FUNCTION command 2-8
CHANGE.MODE command 2-11
CHANGE.PFK command 2-12
CHANGE.STREAM command 2-13
CHANGE.TERMINAL command 2-14
CHANGE.WINDOW command 2-16
CHAR operand

PROFILE command 1-249
TERMINAL command 1-294

character arrangement table 1-212
CHARS operand

ALLOCATE command 1-42
OUTDES command 1-212
PRINTDS command 1-237

CHECK operand
RUN command 1-272
RUN subcommand of EDIT 1-128

CKPOINT subcommand of EDIT 1-98
CKPTLINE operand

OUTDES command 1-212
CKPTPAGE operand

OUTDES command 1-212
CKPTSEC operand

OUTDES command 1-213
CLASS operand

OUTDES command 1-213
OUTPUT command 1-225
PRINTDS command 1-237

classes, SMS 1-19
CLEAR key, use of 2-3
CLEAR operand

CHANGE.STREAM command 2-14
TERMINAL command 1-293

CLIST operand
EDIT command 1-87
executing with EXEC command 1-141

CLUSTER operand
DELETE command 1-83
LISTCAT command 1-191

CN operand
SEND command 1-276

CNTL operand
EDIT command 1-87

COBLIB operand
LINK command 1-177
LOADGO command 1-199

COBOL operand
EDIT command 1-87
RUN command 1-272

Code and Go FORTRAN
EDIT command 1-88

column operand
CHANGE.CURSOR command 2-7
DEFINE.WINDOW command 2-19

COLUMNS operand
PRINTDS command 1-237

COLUMNS operand (continued)
SCROLL command 2-35

command modifier, definition 2-3
command name, definition 2-3
comments 1-13
COMPACT operand

OUTDES command 1-213
compaction table 1-213
compiler type, determining 1-274
COND operand

ALTLIB command 1-63
TSOLIB command 1-378, 1-380

constructs of data sets 1-20
CONTINUE subcommand of OUTPUT 1-230
CONTROL operand

abbreviation 2-5
CHANGE.TERMINAL command 2-15
OUTDES command 1-213

control section tags 1-369
control_password operand

PROTECT command 1-256
COPIES operand

ALLOCATE command 1-42
OUTDES command 1-213
PRINTDS command 1-237

copy modification module 1-216, 1-241
COPY operand

CHANGE.FUNCTION command 2-9
RECEIVE command 1-264

COPY subcommand of
EDIT command 1-100
TEST command 1-316

COPYLIST operand
TRANSMIT command 1-362

count operand
CHANGE subcommand of EDIT 1-93
COPY subcommand of EDIT 1-101
DELETE subcommand of EDIT 1-107
DOWN subcommand of EDIT 1-109
LIST subcommand of EDIT 1-117
MOVE subcommand of EDIT 1-120
SCAN subcommand of EDIT 1-132
UP subcommand of EDIT 1-139

CP operand
TEST command 1-298

CREATION operand
LISTCAT command 1-191

cursor
changing the location of 2-7
permanent location 2-7
temporary location 2-7

CYLINDER operand
ALLOCATE command 1-29
RECEIVE command 1-263

X-4 OS/390 V2R7.0 TSO/E Command Reference  



  
 

D
data check errors 1-214
data class for data set 1-27
data class, definition of 1-19
data encryption (TRANSMIT and RECEIVE) 1-366
Data Facility Hierarchical Storage Manager

(DFHSM) 1-19
DATA operand

LISTCAT command 1-191
PROTECT command 1-257

data set
formatting 1-232
printing 1-232
profile, RACF 1-35
RACF protected 1-42
with Storage Management Subsystem 1-19

data_set_name operand
ALLOCATE command 1-23
LINK command 1-173
LISTDS command 1-193
LOADGO command 1-197
PRINTDS command 1-235
PROTECT command 1-256
SAVE subcommand of EDIT 1-130

DATACK operand
OUTDES command 1-214

DATACLAS operand
ALLOCATE command 1-27

DATASET operand
ALLOCATE command 1-23
ALTLIB command 1-63
FREE command 1-162
PRINTDS command 1-235
RECEIVE command 1-262
TRANSMIT command 1-360
TSOLIB command 1-379
VLFNOTE command 1-386

DC operand
LINK command 1-180

DCBS operand
LINK command 1-181

DCF (see Document Composition Facility) 1-233
DCF operand

PRINTDS command 1-238
DDNAME operand

ALLOCATE command 1-25
ALTLIB command 1-63
FREE command 1-162
PRINTDS command 1-235
TRANSMIT command 1-360
TSOLIB command 1-379

DEACTIVATE operand
ALTLIB command 1-62
TSOLIB command 1-376, 1-379

DEFAULT operand
CHANGE.TERMINAL command 2-15
OUTDES command 1-214

default window 2-4, 2-14
DEFINE.WINDOW command 2-18
defining allocation attributes 1-27
defining output descriptors 1-209
definition_text_string operand

CHANGE.PFK command 2-12
DELETE command 1-80
DELETE operand

ALLOCATE command 1-36
FREE command 1-163
OUTPUT command 1-227
PROTECT command 1-256
RECEIVE command 1-264

DELETE subcommand of
EDIT command 1-107
TEST command 1-320

DELETE.WINDOW command 2-22
delimiter 1-14
delimiter operand

CHANGE.PFK command 2-13
DEN operand 1-40, 1-72

ALLOCATE command 1-40, 1-72
ATTRIB command 1-40, 1-72

DEST operand
ALLOCATE command 1-31
FREE command 1-162
OUTDES command 1-214
OUTPUT command 1-227
PRINTDS command 1-238

determining compiler type 1-274
device number 1-32

four-digit device support 1-32
DFHSM (see Data Facility Hierarchical Storage

Manager) 1-19
diagnostic information 1-208
DIAGNS (TRACE) operand

ALLOCATE command 1-40
ATTRIB command 1-72

DIR operand
ALLOCATE command 1-31

directory operand
PRINTDS command 1-240
RECEIVE command 1-263

DISCONNECT operand
LOGOFF command 1-202

discrete data set profile 1-35
DISPLAY operand

ALTLIB command 1-62
RECEIVE command 1-260
TSOLIB command 1-376, 1-380

displaying
allocated data sets 1-182
contents of broadcast data set 1-186

  Index X-5



  
 

Document Composition Facility (DCF) 1-233
DOUBLE operand

PRINTDS command 1-236
DOWN subcommand of EDIT 1-109
DPAGELBL operand

OUTDES command 1-215
DROP subcommand of TEST 1-320
DSNAME operand

ALLOCATE command 1-23
ALTLIB command 1-63
CALL command 1-75
EDIT command 1-85
FREE command 1-162
PRINTDS command 1-235
RECEIVE command 1-262
TRANSMIT command 1-360
TSOLIB command 1-379
VLFNOTE command 1-386

DSNMAP command (VM/PC user) 1-208
DSNTYPE operand

ALLOCATE command 1-45
DSORG operand

ALLOCATE command 1-40
ATTRIB command 1-72

DUMMY operand
ALLOCATE command 1-24

E
EDIT command

subcommands
ALLOCATE 1-93
ATTRIB 1-93
BOTTOM 1-93
CHANGE 1-93
CKPOINT 1-98
COPY 1-100
DELETE 1-107
DOWN 1-109
END 1-110
FIND 1-110
FREE 1-112
HELP 1-112
INPUT 1-112
INSERT 1-114
insert/replace/delete function 1-116
LIST 1-117
MOVE 1-119
PROFILE 1-125
RENUM 1-125
RUN 1-127
SAVE 1-130
SCAN 1-132
SEND 1-133
SUBMIT 1-133
TABSET 1-136
TOP 1-138

EDIT command (continued)
subcommands (continued)

UNNUM 1-139
UP 1-139
VERIFY 1-140

EMODE operand
EDIT command 1-85

ENCIPHER operand
TRANSMIT command 1-362

encryption, data (TRANSMIT and RECEIVE) 1-366
END command 1-141, 2-22
END operand

RECEIVE command 1-264
WHEN command 1-389

END subcommand of
EDIT command 1-110
OUTPUT command 1-231
TEST command 1-321

end_line_number operand
SAVE subcommand of EDIT 1-131

ENTRIES operand
LISTCAT command 1-190

EP operand
LOADGO command 1-201

EPILOG operand
TRANSMIT command 1-362

EQUATE operand
address 1-322
data_type 1-322
LENGTH 1-323
MULTIPLE 1-323
symbol 1-322

EQUATE subcommand of TEST 1-322
ERASE operand

DELETE command 1-82
EROPT operand

ALLOCATE command 1-39
ATTRIB command 1-71

EXEC command 1-141
EXEC as a subcommand 1-142

EXEC command under TEST 1-324
EXEC subcommand of EDIT 1-110
EXECUTIL command 1-154
executing CLIST, EXEC command 1-141
EXPDT (year_day) operand

ALLOCATE command 1-38
ATTRIB command 1-70

EXPIRATION operand
LISTCAT command 1-191

explicit form of EXEC command 1-141
extended implicit form of EXEC 1-141
external writer name 1-45, 1-219, 1-243

X-6 OS/390 V2R7.0 TSO/E Command Reference  



  
 

F
FCB operand

ALLOCATE command 1-43
OUTDES command 1-215
PRINTDS command 1-239

FETCHOPT operand
LINK command 1-175

FIB commands
See foreground-initiated-background (FIB)

commands
FILE operand

ALLOCATE command 1-25
ALTLIB command 1-63
DELETE command 1-82
FREE command 1-162
PRINTDS command 1-235
TRANSMIT command 1-360
TSOLIB command 1-379

FILEDATA operand
ALLOCATE command 1-49

FIND command 2-23
FIND subcommand of EDIT 1-110
FIRST operand

SMFIND command 1-283
FLASH operand

ALLOCATE command 1-42
OUTDES command 1-215
PRINTDS command 1-239

flash overlay 1-42, 1-215, 1-239
FOLD operand

PRINTDS command 1-239
foreground-initiated-background (FIB) commands

CANCEL 1-79
OUTPUT 1-224
STATUS 1-285
SUBMIT 1-287

format of commands 2-3
FORMAT operand

abbreviation 2-5
SMCOPY command 1-281
SNAPSHOT command 2-36

FORMDEF operand
OUTDES command 1-215

forms control buffer (FCB) 1-43, 1-215
FORMS operand

ALLOCATE command 1-44
OUTDES command 1-215
PRINTDS command 1-239

FORT operand
RUN command 1-272

FORTG operand
EDIT command 1-87

FORTGE operand
EDIT command 1-87

FORTGI operand
EDIT command 1-87

FORTH operand
EDIT command 1-88

FORTLIB operand
LINK command 1-176
LOADGO command 1-199

FORTRAN
(H) compiler 1-132
Code and Go 1-88
IV (E) 1-87
IV (G) 1-87
IV (G1) 1-87
IV (H) EXTCOMP statements 1-88

FORWARD operand
FIND command 2-24
SCROLL command 2-35
SMFIND command 1-283

four-digit device support 1-32
See also device number

FREE command 1-161
operands

PATH 1-164
PATHDISP 1-164

FREE subcommand of EDIT 1-112
freeing list of output descriptor names 1-163
FREEMAIN subcommand of TEST 1-324
FROMDATASET operand

SMCOPY command 1-280
FROMSTREAM operand

SMCOPY command 1-280
FULLSCREEN

logon 1-204
operand of TRANSMIT command 1-362

FUNCTION operand
HELP command 1-169
QUERY command 2-26

G
GENERATIONDATAGROUP operand

DELETE command 1-83
LISTCAT command 1-191

generic data set profile 1-35
GETMAIN subcommand of TEST 1-326
GETMAIN, operands of TEST

EQUATE 1-326
integer 1-326
LOC(ANY) 1-326
LOC(BELOW) 1-326
LOC(RES) 1-326
SP 1-326

GO operand
RUN command 1-273

GO subcommand of TEST 1-327

  Index X-7



  
 

GOFORT operand
EDIT command 1-88
RUN command 1-272

GROUP operand
LOGON command 1-207

GROUPID operand
OUTDES command 1-216

H
HALF operand

SCROLL command 2-35
halt processing of batch jobs 1-78
HELP command 1-166
HELP command under TEST 1-328
help information 1-167
HELP subcommand of

EDIT command 1-112
OUTPUT command 1-231

help text, specifying languages for 1-251
HELP, using 1-15
HERE operand

CONTINUE subcommand of OUTPUT 1-230
OUTPUT command 1-226
UNLOCK command 2-37

HIAR operand
LINK command 1-180, 1-181

hierarchy assignments 1-180
HISTORY operand

LISTALC command 1-183
LISTCAT command 1-192
LISTDS command 1-194

HOLD operand
ALLOCATE command 1-31
CHANGE.WINDOW command 2-5, 2-16
DEFINE.WINDOW command 2-20
FREE command 1-163
LOGOFF command 1-202
OUTPUT command 1-226
PRINTDS command 1-239

host computer 1-208

I
I operand, INPUT subcommand of EDIT 1-112
IBM host computer 1-208
IBM Personal Computer 1-208
identifier operand

CHANGE.PFK command 2-12
image_id of ALLOCATE command 1-43
IMODE operand

EDIT command 1-86
implicit form of EXEC command 1-141
INCR operand

COPY subcommand of EDIT 1-100
MOVE subcommand of EDIT 1-119

increment operand
INPUT subcommand of EDIT 1-112
RENUM subcommand of EDIT 1-125

INDATASET operand
RECEIVE command 1-260

INDDNAME operand
RECEIVE command 1-260

INDEX operand
LISTCAT command 1-191
OUTDES command 1-216

INDSNAME operand
RECEIVE command 1-260

INFILE operand
RECEIVE command 1-260

INPUT operand
ALLOCATE command 1-37
ATTRIB command 1-69
CHANGE.FUNCTION command 2-9, 2-10
CHANGE.WINDOW command 2-16
DEFINE.WINDOW command 2-20

INPUT subcommand of EDIT 1-112
INSERT subcommand of EDIT 1-114
insert/replace/delete function of EDIT 1-116
INTENSITY operand

CHANGE.FUNCTION command 2-10
PUT command 2-25
SMPUT command 1-285

INTERCOM operand
PROFILE command 1-250

IOTRACE operand
MVSSERV command 1-209

J
JES printers 1-232

K
KEEP operand

ALLOCATE command 1-36
FREE command 1-163
OUTPUT command 1-226

KEEPTP operand
TEST command 1-298

KEYLEN operand
ALLOCATE command 1-41
ATTRIB command 1-72

KEYOFF operand
ALLOCATE command 1-41

keyword operand 1-11, 1-13, 2-3

L
LABEL operand

ALLOCATE command 1-32
LISTDS command 1-194

X-8 OS/390 V2R7.0 TSO/E Command Reference  



  
 

language
PLANGUAGE operand

PROFILE command 1-251
primary

PROFILE command 1-251
secondary

PROFILE command 1-251
SLANGUAGE operand

PROFILE command 1-251
LEFT operand

SCROLL command 2-35
LENGTH operand

COPY subcommand of TEST 1-318
LET operand

LINK command 1-177
LOADGO command 1-200

LEVEL operand
LISTCAT command 1-190
LISTDS command 1-194

LIB operand
LINK command 1-176
LOADGO command 1-198
RUN command 1-272
RUN subcommand of EDIT 1-129

LIBRARY operand
ALTLIB command 1-63
TSOLIB command 1-379

LIKE operand
ALLOCATE command 1-33

LIMCT (search_number) operand
ALLOCATE command 1-40
ATTRIB command 1-72

LINDEX operand
OUTDES command 1-216

line continuation 1-14
line mode logon 1-203
line numbers, location 1-241
LINE operand

CHANGE.WINDOW command 2-17
DEFINE.WINDOW command 2-21
FIND command 2-24
SMCOPY command 1-282
SMFIND command 1-283
TRANSMIT command 1-362

line_1 operand
COPY subcommand of EDIT 1-100
MOVE subcommand of EDIT 1-119

line_2 operand
COPY subcommand of EDIT 1-100
MOVE subcommand of EDIT 1-119

line_3 operand
COPY subcommand of EDIT 1-100
MOVE subcommand of EDIT 1-119

line_4 operand
COPY subcommand of EDIT 1-101
MOVE subcommand of EDIT 1-120

line_number operand
INPUT subcommand of EDIT 1-112
SCROLL command 2-34

line_number_1 operand
CHANGE subcommand of EDIT 1-94
DELETE subcommand of EDIT 1-108
LIST subcommand of EDIT 1-117
SCAN subcommand of EDIT 1-132

line_number_2 operand
CHANGE subcommand of EDIT 1-94
DELETE subcommand of EDIT 1-108
LIST subcommand of EDIT 1-117
SCAN subcommand of EDIT 1-132

LINECT operand
LINK command 1-177
LOADGO command 1-199
OUTDES command 1-216

LINES operand
DEFINE.WINDOW command 2-19
PRINTDS command 1-239
SCROLL command 2-34

LINK command 1-171
operands

BINDER 1-174
CALL 1-174
HIAR 1-180, 1-181
NCAL 1-174
NOBINDER 1-174
NONCAL 1-174

LINK command under TEST 1-328
LIST operand

EXEC command 1-144
LINK command 1-178
LOADGO command 1-199

LIST subcommand of
EDIT 1-117
TEST 1-328

LIST, operands of TEST
address 1-329
ALET 1-330
AR 1-331
data_type 1-330
LENGTH 1-331
MULTIPLE 1-331
PRINT 1-331

LISTALC command 1-182
LISTALC command under TEST 1-335
LISTBC command 1-186
LISTBC command under TEST 1-335
LISTCAT command 1-188
LISTCAT command under TEST 1-335
LISTDCB subcommand of TEST 1-335
LISTDS command 1-192
LISTDS command under TEST 1-339
LISTMAP subcommand of TEST 1-339

  Index X-9



  
 

LISTPSW operands of TEST
ADDR 1-340
PRINT 1-340

LISTPSW subcommand of TEST 1-340
LISTVP subcommand of TEST 1-343
LISTVSR subcommand of TEST 1-344
LMARGIN of PRINTDS 1-235
LMSG operand on RUN subcommand of EDIT 1-127
LOAD subcommand of TEST 1-345
LOADGO command

description 1-195
operands

CALL 1-200
COBLIB 1-199
data-set-list 1-197
FORTLIB 1-199
LIB 1-198
MAP 1-200
NAME 1-201
NOCALL 1-200
NOMAP 1-200
NOPRINT 1-197
NORES 1-200
NOTERM 1-200
PLIBASE 1-199
PLICMIX 1-199
PLILIB 1-199
PRINT 1-197
RES 1-200
TERM 1-200

LOG operand
TRANSMIT command 1-363

LOG(ALL) operand
TRANSMIT command 1-363

LOGDATASET operand
RECEIVE command 1-260
TRANSMIT command 1-363

LOGDSNAME operand
RECEIVE command 1-260
TRANSMIT command 1-363

logging function of TRANSMIT and RECEIVE 1-367
LOGNAME operand

TRANSMIT command 1-363
LOGOFF command 1-202
LOGON command 1-203
LOGON, full-screen 1-204
LPREC operand

RUN command 1-273
LRECL (logical_record_length) operand

ALLOCATE command 1-37
ATTRIB command 1-69
EDIT command 1-89

LU operand
TEST command 1-298

M
MAIL operand

LISTBC command 1-187
LOGON command 1-206

management class of data set 1-27
management class, definition of 1-19
managing data sets 1-19
MAP operand

LINK command 1-177
MAX operand

SCROLL command 2-35
MAXVOL operand

ALLOCATE command 1-33
media destination 1-220
members of PDS, printing 1-232
MEMBERS operand

LISTALC command 1-183
LISTDS command 1-194
PRINTDS command 1-240
TRANSMIT command 1-363

message (MSG) function, change the streams for 2-8
MESSAGE operand

TRANSMIT command 1-362
MGMTCLAS operand

ALLOCATE command 1-27
RECEIVE command 1-264

MOD operand
ALLOCATE command 1-25
RECEIVE command 1-263

MODE operand
PROFILE command 1-250

model data set profile 1-35
MODIFY operand

ALLOCATE command 1-43
OUTDES command 1-216
PRINTDS command 1-241

module call 1-208
MOVE subcommand of EDIT 1-119
MSG operand

CHANGE.FUNCTION command 2-9
MSGDATASET operand

TRANSMIT command 1-361
MSGDDNAME operand

TRANSMIT command 1-361
MSGDSNAME operand

TRANSMIT command 1-361
MSGFILE operand

TRANSMIT command 1-361
MSGID (list) operand

HELP command 1-170
PROFILE command 1-250

MSGLEVEL operand
LINK command 1-178
LOADGO command 1-200

X-10 OS/390 V2R7.0 TSO/E Command Reference  



  
 

multiple output bin 1-220
MVSSERV command 1-208

diagnostic information 1-208
DSNMAP command 1-208
error messages 1-208
IBM Personal Computer 1-208
informational messages 1-208
IOTRACE operand 1-209
module calls 1-208
NOTRACE operand 1-208
syntax 1-208
terminal messages 1-208
trace data set 1-208
TRACE operand 1-208
TSO/E command 1-208
TSO/E Enhanced Connectivity Facility 1-208
VM/SP 1-208

N
name operand

LISTCAT command 1-192
NAMES data set

control section tags 1-369
function 1-368
nicknames section tags 1-370

NAMES operand
RECEIVE command 1-261

NCAL operand
LINK command 1-174

NCP operand
ALLOCATE command 1-37
ATTRIB command 1-69

NE operand
LINK command 1-180

NEW operand
ALLOCATE command 1-25
EDIT command 1-86
OUTDES command 1-212
RECEIVE command 1-263

new_line_number operand
RENUM subcommand of EDIT 1-125
SAVE subcommand of EDIT 1-130

new_name operand
RENAME command 1-270

NEWCLASS operand
OUTPUT command 1-227

NEWEST operand
CHANGE.WINDOW operand 2-17
DEFINE.WINDOW command 2-21
SCROLL command 2-35
UNLOCK command 2-37

NEXT operand on CONTINUE subcommand of
OUTPUT 1-230

nicknames section tags 1-370

NO operand
CHANGE.FUNCTION command 2-10

NOBINDER operand
LINK command 1-174
LOADGO command 1-198

NOBURST operand
OUTDES command 1-212
PRINTDS command 1-236

NOCOPY operand
CHANGE.FUNCTION command 2-10

NOCP operand
TEST command 1-298

NODC operand
LINK command 1-180

NODCF operand
PRINTDS command 1-238

NODEFAULT operand
OUTDES command 1-214

NODISPLAY operand
RECEIVE command 1-261

NODPAGELBL operand
OUTDES command 1-215

NOENVB operand
CALL command 1-76

NOEPILOG operand
TRANSMIT command 1-362

NOERASE operand
DELETE command 1-82

NOFORMAT operand
SMCOPY command 1-281

NOGO operand
RUN command 1-273
RUN subcommand of EDIT 1-127

NOHOLD operand
ALLOCATE command 1-31
FREE command 1-163
OUTPUT command 1-227
PRINTDS command 1-239

NOINTERCOM operand
PROFILE command 1-250

NOKEEP operand
OUTPUT command 1-226

NOLET operand
LINK command 1-177

NOLINE operand
PROFILE command 1-250

NOLINES operand
TERMINAL command 1-292

NOLIST operand
EXEC command 1-144

NOLOG operand
TRANSMIT command 1-363

NOMAIL operand
LISTBC command 1-187

NOMAP operand
LINK command 1-177

  Index X-11



  
 

NOMAP operand (continued)
LOADGO command 1-200

NOMODE operand
PROFILE command 1-250

NOMSGID operand
PROFILE command 1-250

non-VSAM data sets
TSO/E commands and subcommands 1-16

NONAMES operand
RECEIVE command 1-261

NONCAL operand
LINK command 1-174

NONE operand
LINK command 1-180

NONOTICES operand
LISTBC command 1-187
LOGON command 1-206

NONOTIFY operand
SUBMIT command 1-290
SUBMIT subcommand of EDIT 1-135
TRANSMIT command 1-363

NONUM operand
EDIT command 1-89
PRINTDS command 1-241

NONVSAM or NVSAM operand
DELETE command 1-83
LISTCAT command 1-191

NOOL operand
LINK command 1-180

NOOVLY operand
LINK command 1-179

NOPAUSE operand
CONTINUE subcommand of OUTPUT 1-231
OUTPUT command 1-226
PROFILE command 1-250
RUN command 1-273
RUN subcommand of EDIT 1-127

NOPOINTER operand
COPY subcommand of TEST 1-318

NOPOINTER operand on COPY subcommand of
TEST 1-318

NOPREFIX operand
PROFILE command 1-251

NOPREVIEW operand
RECEIVE command 1-263

NOPRINT operand
LOADGO command 1-197

NOPROLOG operand
TRANSMIT command 1-364

NOPROMPT operand
INPUT subcommand of EDIT 1-112
PROFILE command 1-250

NOPURGE operand
CANCEL command 1-79
DELETE command 1-82

NOPWREAD operand
PROTECT command 1-257

NORECOVER operand
EDIT command 1-86
PROFILE command 1-249

NOREFR operand
LINK command 1-179

NORENT operand
LINK command 1-180

NORES operand
LOADGO command 1-200

NOREUS operand
LINK command 1-177

NOSAVE operand, END subcommand of EDIT 1-110
NOSCAN operand

EDIT command 1-88
NOSCRATCH operand

DELETE command 1-82
NOSCTR operand

LINK command 1-179
NOSECONDS operand

TERMINAL command 1-292
NOSTORE operand

RUN command 1-273
NOSYSAREA operand

OUTDES command 1-218
NOTERM operand

LINK command 1-181
LOADGO command 1-200

NOTEST operand
LINK command 1-180
RUN command 1-273

NOTICES operand
LISTBC command 1-187
LOGON command 1-206

NOTIFY operand
SUBMIT command 1-290
SUBMIT subcommand of EDIT 1-135
TRANSMIT command 1-363

NOTIMEOUT operand
TERMINAL command 1-293

NOTITLE operand
PRINTDS command 1-242

NOTRAN operand
TERMINAL command 1-294

NOTRANS operand
SMCOPY command 1-281

NOTRC operand
OUTDES command 1-219
PRINTDS command 1-243

NOUSER operand
EDIT—SUBMIT subcommand 1-135
SUBMIT command 1-289

NOWAIT operand
SEND command 1-277

X-12 OS/390 V2R7.0 TSO/E Command Reference  



  
 

NOWRITE operand
PROTECT command 1-257

NOWTPMSG operand
PROFILE command 1-251

NOXCAL operand
LINK command 1-177

NOXREF operand
LINK command 1-177

NUM operand
EDIT command 1-88
PRINTDS command 1-241

O
OBJECT operand

RUN command 1-273
OFF operand

address 1-346
SCAN subcommand of EDIT 1-132
TABSET subcommand of EDIT 1-138
VERIFY subcommand of EDIT 1-140

OFF subcommand of TEST 1-346
OIDCARD operand

LOGON command 1-207
OL operand

LINK command 1-180
OLD operand

ALLOCATE command 1-25
EDIT command 1-86
RECEIVE command 1-263

old_line_number operand
SAVE subcommand of EDIT 1-131

old_name operand
RENAME command 1-270

OLDEST operand
SCROLL command 2-35

ON operand
SCAN subcommand of EDIT 1-132
TABSET subcommand of EDIT 1-136
VERIFY subcommand of EDIT 1-140

operand, description of
Session Manager 2-3
TSO/E 1-10

OPERANDS operand
HELP command 1-169

operator operand
WHEN command 1-388

OPT operand
RUN command 1-273

OPTCD operand
ALLOCATE command 1-38
ATTRIB command 1-70

OR subcommand of TEST, operands
address_1 1-348
address_2 1-348
LENGTH 1-349

OR subcommand of TEST, operands (continued)
POINTER 1-349

OSYNC operand
ALLOCATE command 1-49

OUTBIN operand
OUTDES command 1-220

OUTDATASET operand
TRANSMIT command 1-364

OUTDDNAME operand
TRANSMIT command 1-364

OUTDES command
operands 1-209

ADDRESS 1-212
BUILDING 1-212
BURST 1-212
CHARS 1-212
CKPTLINE 1-212
CKPTPAGE 1-212
CKPTSEC 1-213
CLASS 1-213
COMPACT 1-213
CONTROL 1-213
COPIES 1-213
DATACK 1-214
DEFAULT 1-214
DEPT 1-214
DEST 1-214
DPAGELBL 1-215
FCB 1-215
FLASH 1-215
FORMDEF 1-215
FORMS 1-215
GROUPID 1-216
INDEX 1-216
LINDEX 1-216
LINECT 1-216
MODIFY 1-216
NAME 1-216
NEW 1-212
NOBURST 1-212
NODEFAULT 1-214
NODPAGELBL 1-215
NOSYSAREA 1-218
NOTIFY 1-216
NOTRC 1-219
OUTBIN 1-220
OUTDISP 1-217
output descriptor name 1-211
PAGEDEF 1-217
PIMSG 1-218
PRMODE 1-218
PRTY 1-218
REUSE 1-212
ROOM 1-218
SYSAREA 1-218
TITLE 1-219
TRC 1-219

  Index X-13



  
 

OUTDES command (continued)
operands (continued)

UCS 1-219
USERDATA 1-219
USERLIB 1-219
WRITER 1-219

PRINTDS command 1-241
OUTDES operand

ALLOCATE command 1-44
FREE command 1-163

OUTDSNAME operand
TRANSMIT command 1-364

OUTFILE operand
TRANSMIT command 1-364

output characteristics 1-233
output class 1-213
OUTPUT command 1-224
output descriptor name operand

OUTDES command 1-211
PRINTDS command 1-241

OUTPUT operand
ALLOCATE command 1-37
ATTRIB command 1-69
CHANGE.FUNCTION command 2-9, 2-10

output sequence 1-227
OUTPUT subcommands 1-230
OVERLAP operand

CHANGE.WINDOW command 2-5, 2-17
DEFINE.WINDOW command 2-20

OVLY operand
LINK command 1-179

P
page labeling 1-215
PAGE operand

CHANGE.WINDOW command 2-17
DEFINE.WINDOW command 2-21
SCROLL command 2-35

PAGEDEF operand
OUTDES command 1-217

PAGELEN operand
PRINTDS command 1-242

pages operand
SCROLL command 2-34

PAGESPACE operand
DELETE command 1-83
LISTCAT command 1-191

PARALLEL operand
ALLOCATE command 1-32

parameters operand
TEST command 1-297

PARM operand
RECEIVE command 1-260
TRANSMIT command 1-364

partitioned data set, printing 1-232
PASSENVB operand

CALL command 1-76
password

data set 1-258
DELETE command 1-82
EDIT command 1-85
operand of PROTECT command 1-256

password reprompt 1-205
PATH operand

ALLOCATE command 1-45
FREE command 1-164

PATHDISP operand
ALLOCATE command 1-46
FREE command 1-164

PATHMODE operand
ALLOCATE command 1-47

PATHOPTS operand
ALLOCATE command 1-48

PAUSE operand
CONTINUE subcommand of OUTPUT 1-231
OUTPUT command 1-226
PROFILE command 1-250
RUN command 1-273
RUN subcommand of EDIT 1-127

PDS operand
TRANSMIT command 1-364

personal computer 1-208
pfk_number operand

CHANGE.PFK command 2-3, 2-12
PFKS operand

QUERY command 2-27
RESTORE command 2-31
SAVE operand 2-32

PIMSG operand
OUTDES command 1-218

PLANGUAGE operand
PROFILE command 1-251

example 1-255
PLI operand

EDIT command 1-86
RUN command 1-272

PLIBASE operand
LINK command 1-176
LOADGO command 1-199

PLICMIX operand
LINK command 1-176
LOADGO command 1-199

PLIF operand
EDIT command 1-86

PLILIB operand
LOADGO command 1-199

POINTER operand
COPY subcommand of TEST 1-318

POINTER operand on COPY subcommand of
TEST 1-318

X-14 OS/390 V2R7.0 TSO/E Command Reference  



  
 

POSITION operand
ALLOCATE command 1-32

position operand, FIND subcommand of EDIT 1-111
POSITIONAL operand 2-3

HELP command 1-169
positional operands 1-11
PREFIX operand

PROFILE command 1-251
PREFORMAT operand

SMCOPY command 1-281
PREVIEW operand

RECEIVE command 1-263
PRINT operand

LINK command 1-173
OUTPUT command 1-225
SMCOPY command 1-280

print services facility (PSF) 1-214
PRINTDS command 1-232

operands 1-232
ALL 1-240
BIND 1-235
BMARGIN 1-235
BURST 1-235
CCHAR 1-236
CHARS 1-237
CLASS 1-237
COLUMNS 1-237
COPIES 1-237
DCF 1-238
DDNAME 1-235
DEST 1-238
DIRECTORY 1-240
DOUBLE 1-236
FCB 1-239
FILE 1-235
FLASH 1-239
FOLD or TRUNCATE 1-239
FORMS 1-239
HOLD 1-239
LINES 1-239
LMARGIN 1-235
MEMBERS 1-240
MODIFY 1-241
NOBURST 1-236
NODCF 1-238
NOHOLD 1-239
NONUM 1-241
NUM 1-241
OUTDES 1-241
PAGELEN 1-242
SINGLE 1-236
SNUM 1-241
TITLE or NOTITLE 1-242
TMARGIN 1-243
TODATASET or TODSNAME 1-243
TRC or NOTRC 1-243
TRIPLE 1-236

PRINTDS command (continued)
operands (continued)

UCS 1-243
WRITER 1-243

printer support for SYSOUT data sets 1-44
printing on JES printers 1-232
priority, processing 1-218
PRIVATE operand

ALLOCATE command 1-33
PRMODE operand

OUTDES command 1-218
process mode 1-218
processing priority 1-218
PROFILE command 1-247
PROFILE command under TEST 1-350
PROFILE subcommand of EDIT 1-125
program function (PF) keys

defining 2-12
information displayed 2-27
uses 2-3

PROLOG operand
TRANSMIT command 1-364

PROMPT operand
INPUT subcommand of EDIT 1-112
PROFILE command 1-250

PROTECT command 1-255
dynamic UCB 1-255

PROTECT operand
ALLOCATE command 1-42
CHANGE.WINDOW command 2-5, 2-17
DEFINE.WINDOW command 2-20

PRTY operand
OUTDES command 1-218

PURGE operand
CANCEL command 1-79
DELETE command 1-82

purging jobs 1-79
PUT command 2-25
PWREAD operand

PROTECT command 1-257
PWWRITE operand

PROTECT command 1-257

Q
QUALIFY subcommand of TEST, operands

address 1-351
module_name.entry_name 1-351
TCB 1-351

QUERY command 2-26
QUIET operand

ALTLIB command 1-64
TSOLIB command 1-380

quoted string notation 1-95, 1-111

  Index X-15



  
 

R
R operand, INPUT subcommand of EDIT 1-112
RACF data set profile 1-35
RACF job with user ID 1-252
RACF protected data set 1-42

CHARS operand
ALLOCATE command 1-42

reason codes, EXEC command 1-150
RECEIVE command

data encryption function 1-366
description 1-259
logging function 1-367

RECFM operand 1-39, 1-71
ALLOCATE command 1-39, 1-71
ATTRIB command 1-39, 1-71

RECONNECT operand
LOGON command 1-206

record format 1-39, 1-71, 1-235
RECORG operand

ALLOCATE command 1-41
RECOVER operand

EDIT command 1-86
PROFILE command 1-249

recovering, EDIT command 1-86
REFDD operand

ALLOCATE command 1-35
REFR operand

LINK command 1-179
RELEASE operand

ALLOCATE command 1-36
RECEIVE command 1-263

RENAME command 1-269
RENAME command under TEST 1-353
RENT operand

LINK command 1-179
RENUM operand

SAVE subcommand of EDIT 1-131
RENUM subcommand of EDIT 1-125
REPLACE operand

PROTECT command 1-256
requester 1-208
RES operand

LOADGO command 1-200
RESET command 2-30
RESET operand

ALTLIB command 1-62
TSOLIB command 1-376, 1-380

RESTORE command 2-30
RESTORE operand

RECEIVE command 1-264
RESUME operand

UNLOCK command 2-37
RETPD (number_of_days) operand

ALLOCATE command 1-38
ATTRIB command 1-70

return codes
ALLOCATE 1-50
ATTRIB command 1-73
CALL command 1-77
CANCEL command 1-80
CHANGE.CURSOR command 2-7
CHANGE.FUNCTION command 2-10
CHANGE.MODE command 2-11
CHANGE.PFK command 2-13
CHANGE.STREAM command 2-14
CHANGE.TERMINAL command 2-15
CHANGE.WINDOW command 2-18
DEFINE.WINDOW command 2-21
DELETE command 1-83
DELETE.WINDOW command 2-22
EDIT command 1-90
EXEC command 1-150
FIND command 2-24
FREE command 1-165
HELP command 1-170
LINK command 1-181
LISTALC command 1-184
LISTBC command 1-187
MVSSERV command 1-209
OUTDES 1-221
OUTPUT command 1-229
PRINTDS command 1-246
PROFILE command 1-254
PROTECT command 1-258
PUT command 2-26
QUERY command 2-28
RECEIVE command 1-265
RENAME command 1-270
RESET command 2-30
RESTORE command 2-32
RUN command 1-274
SAVE command 2-33
SCROLL command 2-36
SEND command 1-278
SMCOPY command 1-282
SMFIND command 1-284
SMPUT command 1-285
SNAPSHOT command 2-37
STATUS command 1-286
SUBMIT command 1-290
TERMINAL command 1-295
TEST command 1-299
TIME command 1-359
TRANSMIT command 1-365
TSOEXEC command 1-375
TSOLIB command 1-381
UNLOCK command 2-38
VLFNOTE command 1-388
WHEN command 1-389

REUS operand
LINK command 1-177

X-16 OS/390 V2R7.0 TSO/E Command Reference  



  
 

REUSE operand
ALLOCATE command 1-31
OUTDES command 1-212

RIGHT operand
SCROLL command 2-35

RLS operand
ALLOCATE command 1-50

RMODE operand
LINK command 1-176

ROUND operand
ALLOCATE command 1-36

row operand
CHANGE.CURSOR command 2-7
DEFINE.WINDOW command 2-19

RUN command 1-271
RUN subcommand of

EDIT command 1-127
TEST command 1-353

S
SAVE command 2-32
SAVE subcommand of

EDIT command 1-130
OUTPUT command 1-231

SCAN operand
EDIT command 1-88

SCAN subcommand of EDIT 1-132
SCRATCH operand

DELETE command 1-82
screen layout, Session Manager

information restored 2-31
information saved 2-32

SCREEN operand
RESTORE command 2-31
SAVE command 2-32

SCROLL command 2-33
SCRSIZE operand

TERMINAL command 1-294
SCTR operand

LINK command 1-179
SECLABEL operand

See also security label
LOGON command 1-206

SECMODEL operand
ALLOCATE command 1-35

SECONDS operand
TERMINAL command 1-292

security label
cancelling jobs 1-79
for submitting jobs 1-286
LISTBC command

message processing 1-186
on job statement 1-286
on LOGON command 1-206
on output pages 1-215, 1-218

security label (continued)
processing job output 1-224
RECEIVE command

message processing 1-266
SEND command

message processing 1-275
TRANSMIT command

message processing 1-366
SEND command 1-274
SEND command under TEST 1-354
sequential data set, printing 1-232
SEQUENTIAL operand

TRANSMIT command 1-364
server 1-208
service request 1-208
session functions

change the streams for 2-8
information displayed 2-26
message (MSG) 2-8
Session Manager (SM) 2-8
TSO/E 2-8

Session Manager
commands

CHANGE.CURSOR 2-7
CHANGE.FUNCTION 2-8
CHANGE.MODE 2-11
CHANGE.PFK 2-3, 2-12
CHANGE.STREAM 2-13
CHANGE.TERMINAL 2-4, 2-14
CHANGE.WINDOW 2-5, 2-16
DEFINE 2-4
DEFINE.WINDOW 2-18
DELETE 2-4
DELETE.WINDOW 2-22
description 2-2
END 2-22
FIND 2-23
format 2-3
how to enter 2-3
PUT 2-25
QUERY 2-26
QUERY.STREAMS 2-13
RESET 2-30
RESTORE 2-4, 2-30
SAVE 2-32
SCROLL 2-4, 2-33
SMCOPY 1-279
SMFIND 1-282
SMPUT 1-284
SNAPSHOT 2-36
summary 2-5
UNLOCK 2-37
VS/APL 2-11

session function, change the streams for 2-8
SHR operand

ALLOCATE command 1-25

  Index X-17



  
 

SHR operand (continued)
RECEIVE command 1-263

SINGLE operand
PRINTDS command 1-236

SIZE operand
LINK command 1-180
RUN command 1-273
RUN subcommand of EDIT 1-129

SLANGUAGE operand
PROFILE command 1-251

example 1-255
SM operand

CHANGE.FUNCTION command 2-9
SMCOPY command 1-279
SMFIND command 1-282
SMPUT command 1-284
SMS classes 1-19
SMS data set 1-19
SMS-managed data set 1-27
SMSG operand on RUN subcommand of EDIT 1-127
SNAPSHOT command 2-36
SNUM operand

LIST subcommand of EDIT 1-117
PRINTDS command 1-241

SOURCE operand
RUN command 1-273

source statements, running 1-271
SPACE operand

ALLOCATE command 1-28
DELETE command 1-83
LISTCAT command 1-191
RECEIVE command 1-262

SPIN operand
FREE command 1-164

SPREC operand
RUN command 1-273

SSI operand
LINK command 1-179

STATUS command 1-285
STATUS command under TEST 1-355
STATUS operand

LISTALC command 1-183
LISTDS command 1-193

storage administrator, role of 1-19
storage class for data set 1-27
storage class, definition of 1-19
Storage Management Subsystem classes 1-19
Storage Management Subsystem data set 1-19
STORCLAS operand

ALLOCATE command 1-27
RECEIVE command 1-264

STORE operand
RUN command 1-273
RUN subcommand of EDIT 1-129

STREAM operand
SMFIND command 1-283

stream_name operand
CHANGE.FUNCTION command 2-9
CHANGE.PFK command 2-12
CHANGE.STREAM command 2-14
CHANGE.WINDOW command 2-17
FIND command 2-24
PUT command 2-25
QUERY command 2-28
SMPUT command 1-284
SNAPSHOT command 2-36

STREAMS operand
QUERY command 2-27

streams, information displayed 2-27
string operand

CHANGE subcommand of EDIT 1-94
COPY subcommand of EDIT 1-101
FIND subcommand of EDIT 1-111
insert/replace/delete function of EDIT 1-116
MOVE subcommand of EDIT 1-120

SUBMIT
command 1-286
subcommand of EDIT 1-133
support in batch 1-286
under TEST 1-356

SUBSTITUTE operand
CHANGE.PFK command 2-12

summary of
Session Manager commands 2-5
TSO/E commands 1-17

surrogate job submission 1-287
syntax diagrams 1-11
SYNTAX operand

HELP command 1-169
syntax rules for

Session Manager commands 2-4
TSO/E commands and subcommands 1-11

SYSABNCD 1-375
SYSABNRC 1-375
SYSAREA operand

OUTDES command 1-218
SYSCMDRC 1-375
SYSNAMES operand

LISTALC command 1-184
SYSOUT operand

ALLOCATE command 1-26
PRINTDS command 1-237
RECEIVE command 1-263
TRANSMIT command 1-364

SYSRC operand
WHEN command 1-388

system area 1-218
SYSTEM operand

ALTLIB command 1-63
system printable area 1-218

X-18 OS/390 V2R7.0 TSO/E Command Reference  



  
 

T
table reference character 1-219, 1-243
TABSET subcommand of EDIT 1-136
tag definitions

control section 1-369
nicknames section 1-370

TARGET operand
CHANGE.WINDOW command 2-5, 2-17
DEFINE.WINDOW command 2-20
FIND command 2-24

TEMPORARY operand
CHANGE.CURSOR command 2-7

TERM operand
LINK command 1-181
LOADGO command 1-200

TERMINAL command 1-291
TERMINAL command under TEST 1-356
TERMINAL operand

QUERY command 2-27
TRANSMIT command 1-361

terminal, information displayed (Session
Manager) 2-27

TEST
commands under TEST

ALLOCATE 1-303
ATTRIB 1-314
CANCEL 1-316
EXEC 1-324
LINK 1-328
LISTALC 1-335
LISTBC 1-335
LISTCAT 1-335
LISTDS 1-339
PROFILE 1-350
PROTECT 1-350
RENAME 1-353
SEND 1-354
STATUS 1-355
SUBMIT 1-356
TERMINAL 1-356
UNALLOC 1-356

subcommands
AND 1-303
AT 1-310
CALL 1-314
COPY 1-316
DELETE 1-320
DROP 1-320
END 1-321
EQUATE 1-322
FREEMAIN 1-324
GETMAIN 1-326
GO 1-327
HELP 1-328
LIST 1-328
list of 1-301

TEST (continued)
subcommands (continued)

LISTDCB 1-335
LISTDEB 1-337
LISTMAP 1-339
LISTPSW 1-340
LISTTCB 1-341
LISTVP 1-343
LISTVSR 1-344
LOAD 1-345
OFF 1-346
OR 1-347
QUALIFY 1-350
RUN 1-353
SETVSR 1-355
WHERE 1-356

TEST operand
RUN command 1-273

TEXT operand
EDIT command 1-87
SEND command 1-276

text_string operand
FIND command 2-24
PUT command 2-25
SMFIND command 1-283
SMPUT command 1-284

TIME command 1-359
TIMEOUT operand

TERMINAL command 1-293
TITLE operand

PRINTDS command 1-242
TMARGIN operand

PRINTDS command 1-243
TMP initialization in background 1-252
TODATASET operand

PRINTDS command 1-243
SMCOPY command 1-280

TOP subcommand of EDIT 1-138
TOSTREAM operand

SMCOPY command 1-281
TP operand

TEST command 1-298
trace data set 1-208
TRACE operand

MVSSERV command 1-208
TRACKS operand

ALLOCATE command 1-29
RECEIVE command 1-263

TRAN operand
TERMINAL command 1-294

TRANSMIT command 1-359
data encryption function 1-366
logging function 1-367

TRC operand
OUTDES command 1-219
PRINTDS command 1-243

  Index X-19



  
 

TRIPLE operand
PRINTDS command 1-236

TRTCH operand 1-41, 1-72
ALLOCATE command 1-41, 1-72
ATTRIB command 1-41, 1-72

TRUNCATE operand
PRINTDS command 1-239

TSO/E command (VM/PC user) 1-208
TSO/E command, definition 1-10
TSO/E Enhanced Connectivity Facility 1-208
TSO/E Interactive Data Transmission

RECEIVE command 1-259
TRANSMIT command 1-359

TSOEXEC command 1-374
TSOLIB command 1-376

ACTIVATE operand 1-376, 1-378, 1-379
COND operand 1-378, 1-380
DATASET operand 1-379
DDNAME operand 1-379
DEACTIVATE operand 1-376, 1-378, 1-379
DISPLAY operand 1-376, 1-378, 1-380
DSNAME operand 1-379
FILE operand 1-379
LIBRARY operand 1-379
QUIET operand 1-380
RESET operand 1-376, 1-378, 1-380
UNCOND operand 1-378, 1-380

U
UCOUNT operand

ALLOCATE command 1-32
UCS operand

ALLOCATE command 1-45
OUTDES command 1-219
PRINTDS command 1-243

UNALLOC command under TEST 1-356
unauthorized command, running in unauthorized

environment 1-374
UNCATALOG operand

ALLOCATE command 1-36
FREE command 1-163

UNCOND operand
ALTLIB command 1-63
TSOLIB command 1-378, 1-380

UNIT operand
ALLOCATE command 1-31
RECEIVE command 1-262

universal character set name 1-45, 1-219, 1-243
UNLOCK command 2-33, 2-37
UNNUM operand

SAVE subcommand of EDIT 1-131
UNNUM subcommand of EDIT 1-139
UP subcommand of EDIT 1-139
UPDATE operand

CHANGE.WINDOW command 2-5, 2-17

UPDATE operand (continued)
DEFINE.WINDOW command 2-21

user data value 1-219
USER operand

ALTLIB command 1-62
EDIT—SUBMIT subcommand 1-135
SEND command 1-276
SUBMIT command 1-289

USERCATALOG operand
LISTCAT command 1-191

USERDATA operand
OUTDES command 1-219

USERID operand
RECEIVE command 1-260

using HELP 1-15
USING operand

ALLOCATE command 1-34

V
VERIFY operand

ALLOCATE command 1-44
VERIFY subcommand of EDIT 1-140
VIEW operand

CHANGE.WINDOW command 2-5, 2-18
DEFINE.WINDOW command 2-21

VLFNOTE command 1-385
VOLUME operand

ALLOCATE command 1-26
LISTCAT command 1-192
RECEIVE command 1-262

VSAM data sets
TSO/E commands and subcommands 1-16

VSBASIC
EDIT command 1-88
RUN command 1-273

VSEQ operand
ALLOCATE command 1-33

W
WAIT operand

SEND command 1-277
WHEN command 1-388
WHERE subcommand of TEST 1-356
width operand

DEFINE.WINDOW command 2-19
WINDOW operand

RESTORE command 2-31
SAVE operand 2-33

window_name operand
CHANGE.CURSOR command 2-7
CHANGE.TERMINAL command 2-15
CHANGE.WINDOW command 2-16
DEFINE.WINDOW command 2-19
DELETE.WINDOW command 2-22

X-20 OS/390 V2R7.0 TSO/E Command Reference  



  
 

window_name operand (continued)
FIND command 2-24
RESTORE command 2-32
SAVE command 2-33
SCROLL command 2-35
UNLOCK command 2-37

windows
default 2-4
deleting 2-22
information displayed 2-28
information restored 2-31
information saved 2-33

WINDOWS operand
QUERY command 2-28

WKSPACE operand
LINK command 1-178
LOADGO command 1-200

writer name 1-45
WRITER operand

ALLOCATE command 1-45
OUTDES command 1-219
PRINTDS command 1-243

X
XCAL operand

LINK command 1-177
XREF operand

LINK command 1-177

  Index X-21



Communicating Your Comments to IBM

OS/390
TSO/E
Command Reference

Publication No. SC28-1969-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

FAX (United States and Canada): 1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

Internet e-mail: mhvrcfs@us.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.



 

Readers' Comments — We'd Like to Hear from You

OS/390
TSO/E
Command Reference

Publication No. SC28-1969-02

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

 
Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø
 

 
Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
 



Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC28-1969-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC28-1969-02



 

 



IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC28-1969-ð2


	Notices
	Trademarks

	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Where to Find More Information
	Referenced Program Products

	Summary of Changes
	Changes to this Book for OS/390 Version 2 Release 4

	Chapter 1.  TSO/E Commands and Subcommands
	Using a TSO/E Command
	How to Read the TSO/E Command Syntax
	Using the HELP Command
	Using Commands for VSAM and Non-VSAM Data Sets
	TSO/E Commands and Subcommands
	Summary of TSO/E Commands
	ALLOCATE Command
	ALTLIB Command
	ATTRIB Command
	CALL Command
	CANCEL Command
	DELETE Command
	EDIT Command
	EDIT Subcommands (Overview)
	EDIT—ALLOCATE Subcommand
	EDIT—ATTRIB Subcommand
	EDIT—BOTTOM Subcommand
	EDIT—CHANGE Subcommand
	EDIT—CKPOINT Subcommand
	EDIT—COPY Subcommand
	EDIT—DELETE Subcommand
	EDIT—DOWN Subcommand
	EDIT—END Subcommand
	EDIT—EXEC Subcommand
	EDIT—FIND Subcommand
	EDIT—FREE Subcommand
	EDIT—HELP Subcommand
	EDIT—INPUT Subcommand
	EDIT—INSERT Subcommand
	EDIT—Insert/Replace/Delete Function
	EDIT—LIST Subcommand
	EDIT—MOVE Subcommand
	EDIT—PROFILE Subcommand
	EDIT—RENUM Subcommand
	EDIT—RUN Subcommand
	EDIT—SAVE Subcommand
	EDIT—SCAN Subcommand
	EDIT—SEND Subcommand
	EDIT—SUBMIT Subcommand
	EDIT—TABSET Subcommand
	EDIT—TOP Subcommand
	EDIT—UNNUM Subcommand
	EDIT—UP Subcommand
	EDIT—VERIFY Subcommand
	END Command
	EXEC Command
	EXECUTIL Command
	FREE Command
	HELP Command
	LINK Command
	LISTALC Command
	LISTBC Command
	LISTCAT Command
	LISTDS Command
	LOADGO Command
	LOGOFF Command
	LOGON Command
	MVSSERV Command
	OUTDES Command
	OUTPUT Command
	OUTPUT Subcommands (Overview)
	OUTPUT—CONTINUE Subcommand
	OUTPUT—END Subcommand
	OUTPUT—HELP Subcommand
	OUTPUT—SAVE Subcommand
	PRINTDS Command
	PROFILE Command
	PROTECT Command
	RECEIVE Command
	RENAME Command
	RUN Command
	SEND Command
	SMCOPY Command
	SMFIND Command
	SMPUT Command
	STATUS Command
	SUBMIT Command
	TERMINAL Command
	TEST Command
	TEST Subcommands (Overview)
	TEST—ALLOCATE Command
	TEST—AND Subcommand
	Assignment of Values Function of TEST
	TEST—AT Subcommand
	TEST—ATTRIB Command
	TEST—CALL Subcommand
	TEST—CANCEL Command
	TEST—COPY Subcommand
	TEST—DELETE Subcommand
	TEST—DROP Subcommand
	TEST—END Subcommand
	TEST—EQUATE Subcommand
	TEST—EXEC Command
	TEST—FREEMAIN Subcommand
	TEST—GETMAIN Subcommand
	TEST—GO Subcommand
	TEST—HELP Command
	TEST—LINK Command
	TEST—LIST Subcommand
	TEST—LISTALC Command
	TEST—LISTBC Command
	TEST—LISTCAT Command
	TEST—LISTDCB Subcommand
	TEST—LISTDEB Subcommand
	TEST—LISTDS Command
	TEST—LISTMAP Subcommand
	TEST—LISTPSW Subcommand
	TEST—LISTTCB Subcommand
	TEST—LISTVP Subcommand
	TEST—LISTVSR Subcommand
	TEST—LOAD Subcommand
	TEST—OFF Subcommand
	TEST—OR Subcommand
	TEST—PROFILE Command
	TEST—PROTECT Command
	TEST—QUALIFY Subcommand
	TEST—RENAME Command
	TEST—RUN Subcommand
	TEST—SEND Command
	TEST—SETVSR Subcommand
	TEST—STATUS Command
	TEST—SUBMIT Command
	TEST—TERMINAL Command
	TEST—UNALLOC Command
	TEST—WHERE Subcommand
	TIME Command
	TRANSMIT Command
	TSOEXEC Command
	TSOLIB Command
	VLFNOTE Command
	WHEN Command

	Chapter 2.  Session Manager Commands
	Entering Session Manager Commands
	Command Format
	Session Manager Command Syntax
	Defaults
	Abbreviations
	Session Manager Command Summary
	CHANGE.CURSOR Command
	CHANGE.FUNCTION Command
	CHANGE.MODE Command
	CHANGE.PFK Command
	CHANGE.STREAM Command
	CHANGE.TERMINAL Command
	CHANGE.WINDOW Command
	DEFINE.WINDOW Command
	DELETE.WINDOW Command
	END Command
	FIND Command
	PUT Command
	QUERY Command
	RESET Command
	RESTORE Command
	SAVE Command
	SCROLL Command
	SNAPSHOT Command
	UNLOCK Command

	Index

