
Enterprise COBOL for z/OS

Programming Guide

Version 4 Release 1

SC23-8529-00

���

Enterprise COBOL for z/OS

Programming Guide

Version 4 Release 1

SC23-8529-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

811.

First Edition (December 2007)

This edition applies to Version 4 Release 1 of IBM Enterprise COBOL for z/OS (program number 5655-S71) and to

all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using

the correct edition for the level of the product.

You can order publications online at www.ibm.com/shop/publications/order/, or order by phone or fax. IBM

Software Manufacturing Solutions takes publication orders between 8:30 a.m. and 7:00 p.m. Eastern Standard Time

(EST). The phone number is (800)879-2755. The fax number is (800)445-9269.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1991, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables xiii

Preface xv

About this document xv

Accessibility xv

How this document will help you xvi

Abbreviated terms xvi

Comparison of commonly used terms xvii

How to read syntax diagrams xvii

How examples are shown xix

Accessing softcopy documentation and support

information xix

Summary of changes xix

Version 4 Release 1 (December 2007) xix

How to send your comments xxi

Part 1. Coding your program 1

Chapter 1. Structuring your program . . 5

Identifying a program 5

Identifying a program as recursive 6

Marking a program as callable by containing

programs 6

Setting a program to an initial state 6

Changing the header of a source listing 7

Describing the computing environment 7

Example: FILE-CONTROL entries 8

Specifying the collating sequence 8

Defining symbolic characters 10

Defining a user-defined class 10

Defining files to the operating system 10

Describing the data 13

Using data in input and output operations . . . 13

Comparison of WORKING-STORAGE and

LOCAL-STORAGE 16

Using data from another program 18

Processing the data 19

How logic is divided in the PROCEDURE

DIVISION 20

Declaratives 23

Chapter 2. Using data 25

Using variables, structures, literals, and constants . 25

Using variables 25

Using data items and group items 26

Using literals 27

Using constants 28

Using figurative constants 28

Assigning values to data items 29

Examples: initializing data items 30

Initializing a structure (INITIALIZE) 32

Assigning values to elementary data items

(MOVE) 34

Assigning values to group data items (MOVE) . 35

Assigning arithmetic results (MOVE or

COMPUTE) 36

Assigning input from a screen or file (ACCEPT) 37

Displaying values on a screen or in a file (DISPLAY) 38

Displaying data on the system logical output

device 39

Using WITH NO ADVANCING 39

Using intrinsic functions (built-in functions) . . . 40

Using tables (arrays) and pointers 41

Storage and its addressability 42

Settings for RMODE 42

Storage restrictions for passing data 43

Location of data areas 43

Storage for LOCAL-STORAGE data 43

Storage for external data 44

Storage for QSAM input-output buffers 44

Chapter 3. Working with numbers and

arithmetic 45

Defining numeric data 45

Displaying numeric data 47

Controlling how numeric data is stored 48

Formats for numeric data 49

External decimal (DISPLAY and NATIONAL)

items 49

External floating-point (DISPLAY and

NATIONAL) items 50

Binary (COMP) items 50

Native binary (COMP-5) items 51

Packed-decimal (COMP-3) items 52

Internal floating-point (COMP-1 and COMP-2)

items 52

Examples: numeric data and internal

representation 52

Data format conversions 54

Conversions and precision 54

Sign representation of zoned and packed-decimal

data 55

Checking for incompatible data (numeric class test) 56

Performing arithmetic 57

Using COMPUTE and other arithmetic

statements 58

Using arithmetic expressions 58

Using numeric intrinsic functions 59

Using math-oriented callable services 60

Using date callable services 62

Examples: numeric intrinsic functions 62

Fixed-point contrasted with floating-point arithmetic 64

Floating-point evaluations 65

Fixed-point evaluations 65

Arithmetic comparisons (relation conditions) . . 65

Examples: fixed-point and floating-point

evaluations 66

Using currency signs 67

Example: multiple currency signs 68

© Copyright IBM Corp. 1991, 2007 iii

||

Chapter 4. Handling tables 69

Defining a table (OCCURS) 69

Nesting tables 71

Example: subscripting 72

Example: indexing 72

Referring to an item in a table 72

Subscripting 73

Indexing 74

Putting values into a table 75

Loading a table dynamically 75

Initializing a table (INITIALIZE) 76

Assigning values when you define a table

(VALUE) 77

Example: PERFORM and subscripting 79

Example: PERFORM and indexing 80

Creating variable-length tables (DEPENDING ON) 81

Loading a variable-length table 82

Assigning values to a variable-length table . . . 83

Searching a table 84

Doing a serial search (SEARCH) 84

Doing a binary search (SEARCH ALL) 85

Processing table items using intrinsic functions . . 86

Example: processing tables using intrinsic

functions 87

Chapter 5. Selecting and repeating

program actions 89

Selecting program actions 89

Coding a choice of actions 89

Coding conditional expressions 94

Repeating program actions 97

Choosing inline or out-of-line PERFORM . . . 98

Coding a loop 99

Looping through a table 100

Executing multiple paragraphs or sections . . . 100

Chapter 6. Handling strings 101

Joining data items (STRING) 101

Example: STRING statement 102

Splitting data items (UNSTRING) 103

Example: UNSTRING statement 104

Manipulating null-terminated strings 106

Example: null-terminated strings 107

Referring to substrings of data items 107

Reference modifiers 109

Example: arithmetic expressions as reference

modifiers 110

Example: intrinsic functions as reference

modifiers 110

Tallying and replacing data items (INSPECT) . . . 111

Examples: INSPECT statement 111

Converting data items (intrinsic functions) 112

Converting to uppercase or lowercase

(UPPER-CASE, LOWER-CASE) 113

Transforming to reverse order (REVERSE) . . . 113

Converting to numbers (NUMVAL,

NUMVAL-C) 113

Converting from one code page to another . . 115

Evaluating data items (intrinsic functions) 115

Evaluating single characters for collating

sequence 115

Finding the largest or smallest data item . . . 116

Finding the length of data items 118

Finding the date of compilation 119

Chapter 7. Processing data in an

international environment 121

COBOL statements and national data 122

Intrinsic functions and national data 124

Unicode and the encoding of language characters 125

Using national data (Unicode) in COBOL 126

Defining national data items 127

Using national literals 127

Using national-character figurative constants 128

Defining national numeric data items 129

National groups 129

Using national groups 130

Storage of national data 133

Converting to or from national (Unicode)

representation 134

Converting alphanumeric, DBCS, and integer to

national (MOVE) 134

Converting alphanumeric or DBCS to national

(NATIONAL-OF) 135

Converting national to alphanumeric

(DISPLAY-OF) 136

Overriding the default code page 136

Conversion exceptions 136

Example: converting to and from national data 137

Processing UTF-8 data 137

Processing Chinese GB 18030 data 138

Comparing national (UTF-16) data 139

Comparing two class national operands . . . 139

Comparing class national and class numeric

operands 140

Comparing national numeric and other numeric

operands 140

Comparing national and other character-string

operands 140

Comparing national data and

alphanumeric-group operands 141

Coding for use of DBCS support 141

Declaring DBCS data 142

Using DBCS literals 142

Testing for valid DBCS characters 143

Processing alphanumeric data items that contain

DBCS data 143

Chapter 8. Processing files 145

File organization and input-output devices . . . 145

Choosing file organization and access mode . . . 147

Format for coding input and output 148

Allocating files 149

Checking for input or output errors 150

Chapter 9. Processing QSAM files . . 151

Defining QSAM files and records in COBOL . . . 151

Establishing record formats 152

Setting block sizes 159

iv Enterprise COBOL for z/OS V4.1 Programming Guide

Coding input and output statements for QSAM

files 161

Opening QSAM files 162

Dynamically creating QSAM files 163

Adding records to QSAM files 163

Updating QSAM files 164

Writing QSAM files to a printer or spooled data

set 164

Closing QSAM files 165

Handling errors in QSAM files 165

Working with QSAM files 166

Defining and allocating QSAM files 166

Retrieving QSAM files 169

Ensuring that file attributes match your

program 170

Using striped extended-format QSAM data sets 172

Accessing HFS files using QSAM 174

Labels for QSAM files 174

Using trailer and header labels 175

Format of standard labels 176

Processing QSAM ASCII files on tape 177

Processing ASCII file labels 178

Chapter 10. Processing VSAM files 179

VSAM files 180

Defining VSAM file organization and records . . 181

Specifying sequential organization for VSAM

files 182

Specifying indexed organization for VSAM files 182

Specifying relative organization for VSAM files 184

Specifying access modes for VSAM files . . . 185

Defining record lengths for VSAM files 185

Coding input and output statements for VSAM

files 187

File position indicator 189

Opening a file (ESDS, KSDS, or RRDS) 189

Reading records from a VSAM file 192

Updating records in a VSAM file 193

Adding records to a VSAM file 193

Replacing records in a VSAM file 194

Deleting records from a VSAM file 194

Closing VSAM files 194

Handling errors in VSAM files 195

Protecting VSAM files with a password 196

Example: password protection for a VSAM

indexed file 196

Working with VSAM data sets under z/OS and

UNIX 197

Defining VSAM files 197

Creating alternate indexes 198

Allocating VSAM files 200

Sharing VSAM files through RLS 202

Improving VSAM performance 203

Chapter 11. Processing line-sequential

files 207

Defining line-sequential files and records in

COBOL 207

Allowable control characters 208

Describing the structure of a line-sequential file 208

Defining and allocating line-sequential files . . . 209

Coding input-output statements for line-sequential

files 209

Opening line-sequential files 210

Reading records from line-sequential files . . . 210

Adding records to line-sequential files 211

Closing line-sequential files 211

Handling errors in line-sequential files 212

Chapter 12. Sorting and merging files 213

Sort and merge process 214

Describing the sort or merge file 214

Describing the input to sorting or merging . . . 215

Example: describing sort and input files for

SORT 215

Coding the input procedure 216

Describing the output from sorting or merging . . 217

Coding the output procedure 218

Example: coding the output procedure when

using DFSORT 218

Restrictions on input and output procedures . . . 219

Defining sort and merge data sets 219

Sorting variable-length records 220

Requesting the sort or merge 220

Setting sort or merge criteria 221

Example: sorting with input and output

procedures 222

Choosing alternate collating sequences 223

Sorting on windowed date fields 223

Preserving the original sequence of records with

equal keys 224

Determining whether the sort or merge was

successful 224

Stopping a sort or merge operation prematurely 225

Improving sort performance with FASTSRT . . . 225

FASTSRT requirements for JCL 226

FASTSRT requirements for sort input and

output files 226

Checking for sort errors with NOFASTSRT . . . 227

Controlling sort behavior 228

Changing DFSORT defaults with control

statements 229

Allocating storage for sort or merge operations 230

Allocating space for sort files 231

Using checkpoint/restart with DFSORT 231

Sorting under CICS 231

CICS SORT application restrictions 232

Chapter 13. Handling errors 233

Requesting dumps 233

Handling errors in joining and splitting strings . . 234

Handling errors in arithmetic operations 234

Example: checking for division by zero 235

Handling errors in input and output operations 235

Using the end-of-file condition (AT END) . . . 238

Coding ERROR declaratives 238

Using file status keys 239

Example: file status key 240

Using VSAM status codes (VSAM files only) 241

Example: checking VSAM status codes 241

Contents v

Coding INVALID KEY phrases 243

Example: FILE STATUS and INVALID KEY . . 243

Handling errors when calling programs 244

Writing routines for handling errors 244

Part 2. Compiling and debugging

your program 247

Chapter 14. Compiling under z/OS 249

Compiling with JCL 249

Using a cataloged procedure 250

Writing JCL to compile programs 259

Compiling under TSO 261

Example: ALLOCATE and CALL for compiling

under TSO 262

Example: CLIST for compiling under TSO . . . 262

Starting the compiler from an assembler program 263

Defining compiler input and output 264

Data sets used by the compiler under z/OS . . 265

Defining the source code data set (SYSIN) . . . 267

Defining a compiler-option data set (SYSOPTF) 267

Specifying source libraries (SYSLIB) 268

Defining the output data set (SYSPRINT) . . . 269

Directing compiler messages to your terminal

(SYSTERM) 269

Creating object code (SYSLIN or SYSPUNCH) 269

Defining an associated-data file (SYSADATA) 270

Defining the Java-source output file (SYSJAVA) 270

Defining the debug data set (SYSDEBUG) . . . 270

Defining the library-processing output file

(SYSMDECK) 271

Specifying compiler options under z/OS 271

Specifying compiler options with the PROCESS

(CBL) statement 272

Example: specifying compiler options using JCL 273

Example: specifying compiler options under

TSO 273

Compiler options and compiler output under

z/OS 273

Compiling multiple programs (batch compilation) 274

Example: batch compilation 275

Specifying compiler options in a batch

compilation 276

Example: precedence of options in a batch

compilation 277

Example: LANGUAGE option in a batch

compilation 278

Correcting errors in your source program 279

Generating a list of compiler error messages . . 279

Messages and listings for compiler-detected

errors 279

Format of compiler error messages 280

Severity codes for compiler error messages . . 281

Chapter 15. Compiling under UNIX 283

Setting environment variables under UNIX . . . 283

Specifying compiler options under UNIX 284

Compiling and linking with the cob2 command 285

Creating a DLL under UNIX 286

Example: using cob2 to compile and link under

UNIX 287

cob2 syntax and options 287

cob2 input and output files 289

Compiling using scripts 290

Chapter 16. Compiling, linking, and

running OO applications 291

Compiling, linking, and running OO applications

under UNIX 291

Compiling OO applications under UNIX . . . 291

Preparing OO applications under UNIX . . . 292

Example: compiling and linking a COBOL class

definition under z/OS UNIX 293

Running OO applications under UNIX 293

Compiling, linking, and running OO applications

in JCL or TSO/E 295

Compiling OO applications in JCL or TSO/E 296

Preparing and running OO applications in JCL

or TSO/E 296

Example: compiling, linking, and running an

OO application using JCL 298

Using IBM SDK for z/OS, Java 2 Technology

Edition 299

Chapter 17. Compiler options 301

Option settings for Standard COBOL 85

conformance 303

Conflicting compiler options 304

ADATA 305

ADV 305

ARITH 306

AWO 307

BUFSIZE 307

CICS 308

CODEPAGE 309

COMPILE 311

CURRENCY 312

DATA 313

DATEPROC 314

DBCS 315

DECK 316

DIAGTRUNC 316

DLL 317

DUMP 318

DYNAM 319

EXIT 319

EXPORTALL 320

FASTSRT 320

FLAG 321

FLAGSTD 322

INTDATE 323

LANGUAGE 324

LIB 325

LINECOUNT 326

LIST 326

MAP 327

MDECK 328

NAME 329

NSYMBOL 330

vi Enterprise COBOL for z/OS V4.1 Programming Guide

||

NUMBER 331

NUMPROC 332

OBJECT 333

OFFSET 333

OPTFILE 334

OPTIMIZE 335

OUTDD 336

PGMNAME 337

PGMNAME(COMPAT) 337

PGMNAME(LONGUPPER) 338

PGMNAME(LONGMIXED) 338

Usage notes 338

QUOTE/APOST 339

RENT 340

RMODE 341

SEQUENCE 342

SIZE 342

SOURCE 343

SPACE 344

SQL 344

SQLCCSID 345

SSRANGE 346

TERMINAL 347

TEST 347

THREAD 350

TRUNC 352

TRUNC example 1 353

TRUNC example 2 354

VBREF 355

WORD 355

XMLPARSE 356

XREF 357

YEARWINDOW 358

ZWB 359

Chapter 18. Compiler-directing

statements 361

Chapter 19. Debugging 365

Debugging with source language 365

Tracing program logic 366

Finding and handling input-output errors . . . 367

Validating data 367

Finding uninitialized data 368

Generating information about procedures . . . 368

Debugging using compiler options 370

Finding coding errors 370

Finding line sequence problems 371

Checking for valid ranges 371

Selecting the level of error to be diagnosed . . 372

Finding program entity definitions and

references 374

Listing data items 374

Using the debugger 375

Getting listings 375

Example: short listing 377

Example: SOURCE and NUMBER output . . . 379

Example: MAP output 380

Reading LIST output 385

Example: XREF output: data-name

cross-references 396

Example: OFFSET compiler output 400

Example: VBREF compiler output 401

Part 3. Targeting COBOL programs

for certain environments 403

Chapter 20. Developing COBOL

programs for CICS 405

Coding COBOL programs to run under CICS . . 405

Getting the system date under CICS 407

Calling to or from COBOL programs 407

Determining the success of ECI calls 409

Compiling with the CICS option 409

Separating CICS suboptions 411

Integrated CICS translator 411

Using the separate CICS translator 412

CICS reserved-word table 413

Handling errors by using CICS HANDLE 414

Example: handling errors by using CICS

HANDLE 415

Chapter 21. Programming for a DB2

environment 417

DB2 coprocessor 417

Coding SQL statements 418

Using SQL INCLUDE with the DB2 coprocessor 419

Using character data in SQL statements . . . 419

Using national decimal data in SQL statements 420

Using national group items in SQL statements 420

Using binary items in SQL statements 421

Determining the success of SQL statements . . 421

Compiling with the SQL option 421

Separating DB2 suboptions 422

COBOL and DB2 CCSID determination 423

Code-page determination for string host

variables in SQL statements 424

Programming with the SQLCCSID or

NOSQLCCSID option 424

Differences in how the DB2 precompiler and

coprocessor behave 425

Period at the end of EXEC SQL INCLUDE

statements 425

EXEC SQL INCLUDE and nested COPY

REPLACING 425

EXEC SQL and REPLACE or COPY

REPLACING 426

Source code after an END-EXEC statement . . 426

Multiple definitions of host variables 426

EXEC SQL statement continuation lines . . . 426

Bit-data host variables 427

SQL-INIT-FLAG 427

Choosing the DYNAM or NODYNAM compiler

option 427

Chapter 22. Developing COBOL

programs for IMS 429

Contents vii

||

||

 |
 | |
 |
 | |

Compiling and linking COBOL programs for

running under IMS 429

Using object-oriented COBOL and Java under IMS 430

Calling a COBOL method from an IMS Java

application 430

Building a mixed COBOL/Java application that

starts with COBOL 431

Writing mixed-language IMS applications . . . 432

Chapter 23. Running COBOL

programs under UNIX 435

Running in UNIX environments 435

Setting and accessing environment variables . . . 436

Setting environment variables that affect

execution 437

Runtime environment variables 437

Example: setting and accessing environment

variables 438

Calling UNIX/POSIX APIs 438

Accessing main program parameters 440

Example: accessing main program parameters 441

Part 4. Structuring complex

applications 443

Chapter 24. Using subprograms . . . 445

Main programs, subprograms, and calls 445

Ending and reentering main programs or

subprograms 446

Transferring control to another program 447

Making static calls 448

Making dynamic calls 449

AMODE switching 451

Performance considerations of static and

dynamic calls 453

Making both static and dynamic calls 454

Examples: static and dynamic CALL statements 454

Calling nested COBOL programs 456

Making recursive calls 459

Calling to and from object-oriented programs . . 459

Using procedure and function pointers 460

Deciding which type of pointer to use 461

Calling alternate entry points 461

Making programs reentrant 462

Chapter 25. Sharing data 463

Passing data 463

Describing arguments in the calling program 465

Describing parameters in the called program 466

Testing for OMITTED arguments 466

Coding the LINKAGE SECTION 467

Coding the PROCEDURE DIVISION for passing

arguments 467

Grouping data to be passed 468

Handling null-terminated strings 468

Using pointers to process a chained list . . . 469

Passing return-code information 472

Understanding the RETURN-CODE special

register 472

Using PROCEDURE DIVISION RETURNING . .

. 472

Specifying CALL . . . RETURNING 473

Sharing data by using the EXTERNAL clause . . . 473

Sharing files between programs (external files) . . 473

Example: using external files 474

Chapter 26. Creating a DLL or a DLL

application 479

Dynamic link libraries (DLLs) 479

Compiling programs to create DLLs 480

Linking DLLs 481

Example: sample JCL for a procedural DLL

application 482

Prelinking certain DLLs 483

Using CALL identifier with DLLs 483

Search order for DLLs in the HFS 484

Using DLL linkage and dynamic calls together . . 484

Using procedure or function pointers with DLLs 486

Calling DLLs from non-DLLs 486

Example: calling DLLs from non-DLLs 487

Using COBOL DLLs with C/C++ programs . . . 488

Using DLLs in OO COBOL applications 489

Chapter 27. Preparing COBOL

programs for multithreading 491

Multithreading 492

Choosing THREAD to support multithreading . . 493

Transferring control to multithreaded programs 493

Ending multithreaded programs 494

Processing files with multithreading 494

File-definition (FD) storage 495

Serializing file access with multithreading . . . 495

Example: usage patterns of file input and

output with multithreading 496

Handling COBOL limitations with multithreading 497

Part 5. Using XML and COBOL

together 499

Chapter 28. Processing XML input 501

XML parser in COBOL 502

Accessing XML documents 503

Parsing XML documents 504

Writing procedures to process XML 506

XML-EVENT 507

XML-CODE 508

XML-TEXT and XML-NTEXT 508

XML-NAMESPACE and XML-NNAMESPACE 509

XML-NAMESPACE-PREFIX and

XML-NNAMESPACE-PREFIX 510

Transforming XML text to COBOL data items 510

Parsing XML documents one segment at a time 511

XML PARSE examples 513

Understanding the encoding of XML documents 521

Coded character sets for XML documents . . . 522

Parsing XML documents encoded in UTF-8 . . 523

Code-page-sensitive characters in XML markup 524

Specifying the code page 525

viii Enterprise COBOL for z/OS V4.1 Programming Guide

 | |

 | |
 |
 | |

 | |

 | |
 | |
 | |
 | |
 | |

Handling XML PARSE exceptions 526

How the XML parser handles errors 527

Handling conflicts in code pages 528

Terminating XML parsing 530

Chapter 29. Producing XML output 531

Generating XML output 531

Controlling the encoding of generated XML output 535

Handling errors in generating XML output . . . 536

Example: generating XML 537

Program XGFX 537

Program Pretty 538

Output from program XGFX 541

Enhancing XML output 541

Example: enhancing XML output 542

Example: converting hyphens in element or

attribute names to underscores 545

Part 6. Developing object-oriented

programs 547

Chapter 30. Writing object-oriented

programs 549

Example: accounts 550

Subclasses 551

Defining a class 552

CLASS-ID paragraph for defining a class . . . 554

REPOSITORY paragraph for defining a class 554

WORKING-STORAGE SECTION for defining

class instance data 556

Example: defining a class 557

Defining a class instance method 557

METHOD-ID paragraph for defining a class

instance method 558

INPUT-OUTPUT SECTION for defining a class

instance method 559

DATA DIVISION for defining a class instance

method 559

PROCEDURE DIVISION for defining a class

instance method 560

Overriding an instance method 561

Overloading an instance method 562

Coding attribute (get and set) methods 563

Example: defining a method 564

Defining a client 566

REPOSITORY paragraph for defining a client 567

DATA DIVISION for defining a client 568

Comparing and setting object references . . . 569

Invoking methods (INVOKE) 570

Creating and initializing instances of classes . . 574

Freeing instances of classes 576

Example: defining a client 577

Defining a subclass 577

CLASS-ID paragraph for defining a subclass 578

REPOSITORY paragraph for defining a subclass 579

WORKING-STORAGE SECTION for defining

subclass instance data 580

Defining a subclass instance method 580

Example: defining a subclass (with methods) 580

Defining a factory section 582

WORKING-STORAGE SECTION for defining

factory data 582

Defining a factory method 583

Example: defining a factory (with methods) . . 585

Wrapping procedure-oriented COBOL programs 591

Structuring OO applications 591

Examples: COBOL applications that run using

the java command 592

Chapter 31. Communicating with Java

methods 595

Accessing JNI services 595

Handling Java exceptions 596

Managing local and global references 598

Java access controls 599

Sharing data with Java 600

Coding interoperable data types in COBOL and

Java 600

Declaring arrays and strings for Java 601

Manipulating Java arrays 602

Manipulating Java strings 604

Example: J2EE client written in COBOL 607

COBOL client (ConverterClient.cbl) 607

Java client (ConverterClient.java) 609

Part 7. Specialized processing . . . 611

Chapter 32. Interrupts and

checkpoint/restart 613

Setting checkpoints 613

Designing checkpoints 614

Testing for a successful checkpoint 615

DD statements for defining checkpoint data sets 615

Messages generated during checkpoint 616

Restarting programs 616

Requesting automatic restart 617

Requesting deferred restart 617

Formats for requesting deferred restart 618

Resubmitting jobs for restart 619

Example: restarting a job at a specific

checkpoint step 619

Example: requesting a step restart 619

Example: resubmitting a job for a step restart 620

Example: resubmitting a job for a checkpoint

restart 620

Chapter 33. Processing two-digit-year

dates 623

Millennium language extensions (MLE) 624

Principles and objectives of these extensions . . 624

Resolving date-related logic problems 625

Using a century window 626

Using internal bridging 627

Moving to full field expansion 629

Using year-first, year-only, and year-last date fields 631

Compatible dates 631

Example: comparing year-first date fields . . . 632

Using other date formats 632

Contents ix

Example: isolating the year 633

Manipulating literals as dates 633

Assumed century window 634

Treatment of nondates 635

Setting triggers and limits 636

Example: using limits 637

Using sign conditions 638

Sorting and merging by date 638

Example: sorting by date and time 639

Performing arithmetic on date fields 639

Allowing for overflow from windowed date

fields 640

Specifying the order of evaluation 641

Controlling date processing explicitly 641

Using DATEVAL 642

Using UNDATE 642

Example: DATEVAL 643

Example: UNDATE 643

Analyzing and avoiding date-related diagnostic

messages 644

Avoiding problems in processing dates 645

Avoiding problems with packed-decimal fields 645

Moving from expanded to windowed date fields 646

Part 8. Improving performance and

productivity 647

Chapter 34. Tuning your program . . . 649

Using an optimal programming style 650

Using structured programming 650

Factoring expressions 650

Using symbolic constants 651

Grouping constant computations 651

Grouping duplicate computations 651

Choosing efficient data types 652

Choosing efficient computational data items . . 652

Using consistent data types 653

Making arithmetic expressions efficient 653

Making exponentiations efficient 653

Handling tables efficiently 653

Optimization of table references 655

Optimizing your code 657

Optimization 657

Choosing compiler features to enhance

performance 659

Performance-related compiler options 660

Evaluating performance 663

Running efficiently with CICS, IMS, or VSAM . . 664

Chapter 35. Simplifying coding 665

Eliminating repetitive coding 665

Example: using the COPY statement 666

Using Language Environment callable services . . 667

Sample list of Language Environment callable

services 668

Calling Language Environment services . . . 669

Example: Language Environment callable

services 670

Part 9. Appendixes 671

Appendix A. Intermediate results and

arithmetic precision 673

Terminology used for intermediate results 674

Example: calculation of intermediate results . . . 675

Fixed-point data and intermediate results 675

Addition, subtraction, multiplication, and

division 675

Exponentiation 676

Example: exponentiation in fixed-point

arithmetic 677

Truncated intermediate results 678

Binary data and intermediate results 678

Intrinsic functions evaluated in fixed-point

arithmetic 678

Integer functions 678

Mixed functions 679

Floating-point data and intermediate results . . . 680

Exponentiations evaluated in floating-point

arithmetic 681

Intrinsic functions evaluated in floating-point

arithmetic 681

Arithmetic expressions in nonarithmetic statements 681

Appendix B. Complex OCCURS

DEPENDING ON 683

Example: complex ODO 683

How length is calculated 684

Setting values of ODO objects 684

Effects of change in ODO object value 684

Preventing index errors when changing ODO

object value 685

Preventing overlay when adding elements to a

variable table 685

Appendix C. Converting double-byte

character set (DBCS) data 689

DBCS notation 689

Alphanumeric to DBCS data conversion

(IGZCA2D) 689

IGZCA2D syntax 690

IGZCA2D return codes 690

Example: IGZCA2D 691

DBCS to alphanumeric data conversion (IGZCD2A) 692

IGZCD2A syntax 692

IGZCD2A return codes 693

Example: IGZCD2A 693

Appendix D. XML reference material 695

XML PARSE exceptions that allow continuation 695

XML PARSE exceptions that do not allow

continuation 699

XML GENERATE exceptions 702

Appendix E. EXIT compiler option . . 703

Using the user-exit work area 704

Calling from exit modules 705

Processing of INEXIT 705

x Enterprise COBOL for z/OS V4.1 Programming Guide

INEXIT parameters 705

Processing of LIBEXIT 706

Processing of LIBEXIT with nested COPY

statements 707

LIBEXIT parameters 708

Processing of PRTEXIT 709

PRTEXIT parameters 710

Processing of ADEXIT 710

ADEXIT parameters 711

Error handling for exit modules 712

Using the EXIT compiler option with CICS and

SQL statements 712

Example: INEXIT user exit 713

Appendix F. JNI.cpy 717

Appendix G. COBOL SYSADATA file

contents 723

Existing compiler options that affect the

SYSADATA file 723

SYSADATA record types 724

Example: SYSADATA 725

SYSADATA record descriptions 726

Common header section 727

Job identification record: X’0000’ 728

ADATA identification record: X’0001’ 729

Compilation unit start|end record: X’0002’ . . . 729

Options record: X’0010’ 730

External symbol record: X’0020’ 739

Parse tree record: X’0024’ 740

Token record: X’0030’ 755

Source error record: X’0032’ 768

Source record: X’0038’ 769

COPY REPLACING record: X’0039’ 770

Symbol record: X’0042’ 770

Symbol cross-reference record: X’0044’ 783

Nested program record: X’0046’ 784

Library record: X’0060’ 785

Statistics record: X’0090’ 785

EVENTS record: X’0120’ 786

Appendix H. Using sample programs 791

IGYTCARA: batch application 791

Input data for IGYTCARA 792

Report produced by IGYTCARA 793

Preparing to run IGYTCARA 794

IGYTCARB: interactive program 795

Preparing to run IGYTCARB 796

IGYTSALE: nested program application 798

Input data for IGYTSALE 799

Reports produced by IGYTSALE 801

Preparing to run IGYTSALE 804

Language elements and concepts that are

illustrated 805

Notices 811

Trademarks 813

Glossary 815

List of resources 849

Enterprise COBOL for z/OS 849

Related publications 849

Index 851

Contents xi

xii Enterprise COBOL for z/OS V4.1 Programming Guide

Tables

 1. FILE-CONTROL entries 8

 2. FILE SECTION entries 14

 3. Assignment to data items in a program 29

 4. Effect of RMODE and RENT compiler

options on the RMODE attribute 42

 5. Ranges in value of COMP-5 data items 51

 6. Internal representation of numeric items 53

 7. NUMCLS(PRIM) and valid signs 57

 8. NUMCLS(ALT) and valid signs 57

 9. Order of evaluation of arithmetic operators 59

 10. Numeric intrinsic functions 60

 11. Compatibility of math intrinsic functions and

callable services 61

 12. INTDATE(LILIAN) and compatibility of date

intrinsic functions and callable services . . . 62

 13. INTDATE(ANSI) and compatibility of date

intrinsic functions and callable services . . . 62

 14. Hexadecimal values of the euro sign 67

 15. COBOL statements and national data 122

 16. Intrinsic functions and national character

data 124

 17. National group items that are processed

with group semantics 132

 18. Encoding and size of alphanumeric, DBCS,

and national data 133

 19. Summary of file organizations, access

modes, and record formats of COBOL files . 147

 20. QSAM file allocation 167

 21. Maximum record length of QSAM files 171

 22. Handling of QSAM user labels 176

 23. Identifiers for standard tape labels 176

 24. Comparison of VSAM, COBOL, and

non-VSAM terminology 179

 25. Comparison of VSAM data-set types 181

 26. VSAM file organization, access mode, and

record format 182

 27. Definition of VSAM fixed-length records 186

 28. Definition of VSAM variable-length records 186

 29. I/O statements for VSAM sequential files 188

 30. I/O statements for VSAM relative and

indexed files 188

 31. Statements to load records into a VSAM file 191

 32. Statements to update records in a VSAM

file 193

 33. Methods for improving VSAM performance 203

 34. Methods for checking for sort errors with

NOFASTSRT 228

 35. Methods for controlling sort behavior 228

 36. Compiler data sets 265

 37. Block size of fixed-length compiler data sets 267

 38. Block size of variable-length compiler data

sets 267

 39. Types of compiler output under z/OS 273

 40. Severity codes for compiler error messages 281

 41. Input files to the cob2 command 289

 42. Output files from the cob2 command 289

 43. Commands for compiling and linking a

class definition 292

 44. java command options for customizing the

JVM 294

 45. Compiler options 301

 46. Mutually exclusive compiler options 304

 47. EBCDIC multibyte coded character set

identifiers 311

 48. Values of the LANGUAGE compiler option 324

 49. Severity levels of compiler messages 372

 50. Using compiler options to get listings 375

 51. Terms used in MAP output 382

 52. Symbols used in LIST and MAP output 383

 53. Signature information bytes for compiler

options 388

 54. Signature information bytes for the DATA

DIVISION 389

 55. Signature information bytes for the

ENVIRONMENT DIVISION 390

 56. Signature information bytes for

PROCEDURE DIVISION verbs 390

 57. Signature information bytes for more

PROCEDURE DIVISION items 392

 58. Calls between COBOL and assembler under

CICS 408

 59. Compiler options required for the integrated

CICS translator 410

 60. Compiler options required for the separate

CICS translator 413

 61. TRUNC compiler options recommended for

the separate CICS translator 413

 62. Compiler options required with the DB2

coprocessor 422

 63. Samples with POSIX function calls 439

 64. Effects of termination statements 446

 65. Methods for passing data in the CALL

statement 464

 66. Compiler options for DLL applications 480

 67. Binder options for DLL applications 481

 68. Special registers used by the XML parser 506

 69. XML events and special regisers 513

 70. XML events and special registers 518

 71. Coded character sets for XML documents 523

 72. Hexadecimal values of special characters for

code page CCSIDs 524

 73. Aliases for XML encoding declarations 525

 74. Encoding of generated XML if the

ENCODING phrase is omitted 535

 75. Structure of class definitions 552

 76. Structure of instance method definitions 558

 77. Structure of COBOL clients 566

 78. Conformance of arguments in a COBOL

client 571

 79. Conformance of the returned data item in a

COBOL client 573

 80. Structure of factory definitions 582

© Copyright IBM Corp. 1991, 2007 xiii

 |
 | |

 | |
 | |
 | |
 |
 | |
 | |
 |
 |

81. Structure of factory method definitions 583

 82. JNI services for local and global references 599

 83. Interoperable data types in COBOL and Java 600

 84. Interoperable arrays and strings in COBOL

and Java 601

 85. Noninteroperable array types in COBOL

and Java 602

 86. JNI array services 602

 87. Services that convert between jstring

references and national data 605

 88. Services that convert between jstring

references and alphanumeric data 605

 89. Advantages and disadvantages of Year 2000

solutions 626

 90. Performance-related compiler options 660

 91. Performance-tuning worksheet 663

 92. Language Environment callable services 668

 93. IGZCA2D return codes 691

 94. IGZCD2A return codes 693

 95. XML PARSE exceptions that allow

continuation (for XMLPARSE(COMPAT)) 696

 96. XML PARSE exceptions that do not allow

continuation 699

 97. XML GENERATE exceptions 702

 98. INEXIT processing 705

 99. INEXIT parameters 706

100. LIBEXIT processing 707

101. LIBEXIT processing with nonnested COPY

statements 707

102. LIBEXIT processing with nested COPY

statements 708

103. LIBEXIT parameters 708

104. PRTEXIT processing 709

105. PRTEXIT parameters 710

106. ADEXIT processing 711

107. ADEXIT parameters 711

108. Actions allowed on CICS and SQL

statements in exit modules 712

109. SYSADATA record types 724

110. SYSADATA common header section 727

111. SYSADATA job identification record 728

112. ADATA identification record 729

113. SYSADATA compilation unit start|end

record 730

114. SYSADATA options record 730

115. SYSADATA external symbol record 740

116. SYSADATA parse tree record 740

117. SYSADATA token record 755

118. SYSADATA source error record 769

119. SYSADATA source record 769

120. SYSADATA COPY REPLACING record 770

121. SYSADATA symbol record 770

122. SYSADATA symbol cross-reference record 783

123. SYSADATA nested program record 784

124. SYSADATA library record 785

125. SYSADATA statistics record 785

126. SYSADATA EVENTS TIMESTAMP record

layout 786

127. SYSADATA EVENTS PROCESSOR record

layout 786

128. SYSADATA EVENTS FILE END record

layout 787

129. SYSADATA EVENTS PROGRAM record

layout 787

130. SYSADATA EVENTS FILE ID record layout 787

131. SYSADATA EVENTS ERROR record layout 788

xiv Enterprise COBOL for z/OS V4.1 Programming Guide

Preface

About this document

Welcome to IBM® Enterprise COBOL for z/OS®, IBM’s latest host COBOL

compiler!

This version of IBM COBOL adds new COBOL function to help integrate COBOL

business processes and Web-oriented business processes by:

v Simplifying the componentization of COBOL programs and enabling

interoperability with Java™ components

v Promoting the exchange and use of data in standardized formats, including

XML and Unicode

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The accessibility

features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS enable users to:

v Use assistive technology products such as screen readers and screen magnifier

software.

v Operate specific or equivalent features by using only the keyboard.

v Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products work with the user interfaces that are found in

z/OS. For specific guidance information, consult the documentation for the

assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces by using TSO/E or ISPF. For information

about accessing TSO/E or ISPF interfaces, refer to the following publications:

v z/OS TSO/E Primer

v z/OS TSO/E User’s Guide

v z/OS ISPF User’s Guide Volume I

These guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

Accessibility of this document

The English-language XHTML format of this document that will be provided in

the IBM System z Enterprise Development Tools & Compilers Information Center

at publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to visually

impaired individuals who use a screen reader.

© Copyright IBM Corp. 1991, 2007 xv

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p110
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c230/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug60
http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp

To enable your screen reader to accurately read syntax diagrams, source code

examples, and text that contains the period or comma PICTURE symbols, you must

set the screen reader to speak all punctuation.

How this document will help you

This document will help you write and compile Enterprise COBOL programs. It

will also help you define object-oriented classes and methods, invoke methods, and

refer to objects in your programs.

This document assumes experience in developing application programs and some

knowledge of COBOL. It focuses on using Enterprise COBOL to meet your

programming objectives and not on the definition of the COBOL language. For

complete information on COBOL syntax, see IBM Enterprise COBOL Language

Reference.

For information on migrating programs to Enterprise COBOL, see IBM Enterprise

COBOL Compiler and Runtime Migration Guide.

Language Environment® provides the runtime environment and runtime services

that are required to run your Enterprise COBOL programs. You will find

information on link-editing and running programs in the IBM z/OS Language

Environment Programming Guide and IBM z/OS Language Environment Programming

Reference.

For a comparison of commonly used Enterprise COBOL and IBM z/OS Language

Environment terms, see “Comparison of commonly used terms” on page xvii.

Abbreviated terms

Certain terms are used in a shortened form in this document. Abbreviations for the

product names used most frequently are listed alphabetically in the following

table.

 Term used Long form

CICS® CICS Transaction Server

Enterprise COBOL IBM Enterprise COBOL for z/OS

Language Environment IBM z/OS Language Environment

MVS™ MVS/ESA™

z/OS UNIX® z/OS UNIX System Services

In addition to these abbreviated terms, the term ″Standard COBOL 85″ is used to

refer to the combination of the following standards:

v ISO 1989:1985, Programming languages - COBOL

v ISO/IEC 1989/AMD1:1992, Programming languages - COBOL - Intrinsic

function module

v ISO/IEC 1989/AMD2:1994, Programming languages - COBOL - Correction and

clarification amendment for COBOL

v ANSI INCITS 23-1985, Programming Languages - COBOL

v ANSI INCITS 23a-1989, Programming Languages - Intrinsic Function Module for

COBOL

xvi Enterprise COBOL for z/OS V4.1 Programming Guide

v ANSI INCITS 23b-1993, Programming Language - Correction Amendment for

COBOL

The ISO standards are identical to the American National standards.

Other terms, if not commonly understood, are shown in italics the first time that

they appear, and are listed in the glossary at the back of this document.

Comparison of commonly used terms

To better understand the terms used throughout the IBM z/OS Language

Environment and IBM Enterprise COBOL for z/OS publications and what terms

are meant to be equivalent, see the following table.

 Language Environment term Enterprise COBOL equivalent

Aggregate Group item

Array A table created using the OCCURS clause

Array element Table element

Enclave Run unit

External data WORKING-STORAGE data defined with EXTERNAL clause

Local data Any non-EXTERNAL data item

Pass parameters directly, by value BY VALUE

Pass parameters indirectly, by

reference

BY REFERENCE

Pass parameters indirectly, by value BY CONTENT

Routine Program

Scalar Elementary item

How to read syntax diagrams

Use the following description to read the syntax diagrams in this information.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.

The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the

previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >---

symbol and end with the ---> symbol.

v Required items appear on the horizontal line (the main path):

�� required_item ��

v Optional items appear below the main path:

Preface xvii

�� required_item

optional_item
 ��

v If you can choose from two or more items, they appear vertically, in a stack. If

you must choose one of the items, one item of the stack appears on the main

path:

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path:

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path and the

remaining choices are shown below:

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated:

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma:

xviii Enterprise COBOL for z/OS V4.1 Programming Guide

��

required_item

�

 ,

repeatable_item

��

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase italics (for example, column-name). They

represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

How examples are shown

This document shows numerous examples of sample COBOL statements, program

fragments, and small programs to illustrate the coding techniques being discussed.

The examples of program code are written in lowercase, uppercase, or mixed case

to demonstrate that you can write your programs in any of these ways.

To more clearly separate some examples from the explanatory text, they are

presented in a monospace font.

COBOL keywords and compiler options that appear in text are generally shown in

SMALL UPPERCASE. Other terms such as program variable names are sometimes

shown in an italic font for clarity.

Accessing softcopy documentation and support information

IBM Enterprise COBOL for z/OS provides PDF and BookManager® versions of the

library on the product site at www.ibm.com/software/awdtools/cobol/zos/
library/.

You can check that Web site for the latest editions of the documents. In the

BookManager version of a document, the content of some tables and syntax

diagrams might be aligned improperly due to variations in the display technology.

Support information is also available on the product site at www.ibm.com/
software/awdtools/cobol/zos/support/.

Summary of changes

This section lists the key changes that have been made to Enterprise COBOL in

Version 4. The changes that are described in this document have an associated

cross-reference for your convenience. The latest technical changes are marked by a

vertical bar (|) in the left margin in the PDF and BookManager versions.

Version 4 Release 1 (December 2007)

v The performance of operations on Unicode (USAGE NATIONAL) data has been

significantly improved. The compiler now generates z/Architecture® hardware

instructions for most Unicode MOVE operations and comparisons.

Preface xix

|
|
|
|

|

|
|
|

http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/support/
http://www.ibm.com/software/awdtools/cobol/zos/support/

v A new compiler option, XMLPARSE, makes it possible to choose between parsing

with the parser that is available with the COBOL library (for compatibility with

Enterprise COBOL Version 3) or with the z/OS XML System Services parser

(“XMLPARSE” on page 356).

v New XML PARSE capabilities are available when you parse a document with the

z/OS XML System Services parser (Chapter 28, “Processing XML input,” on

page 501):

– Namespaces and namespace prefixes are processed using new special

registers and new XML events.

– You can specify the document encoding using the ENCODING phrase of the XML

PARSE statement.

– You can parse documents that are encoded in Unicode UTF-8 (“Parsing XML

documents encoded in UTF-8” on page 523).

– The RETURNING NATIONAL phrase enables you to receive XML document

fragments in Unicode regardless of the original encoding of an XML

document.

– You can parse documents that reside in a data set or parse very large

documents a buffer at a time (“Parsing XML documents one segment at a

time” on page 511).
v The XML GENERATE statement has been enhanced (Chapter 29, “Producing XML

output,” on page 531):

– You can specify a namespace using the NAMESPACE phrase, and a namespace

prefix to be applied to each element using the NAMESPACE-PREFIX phrase.

– You can specify the code page of the generated document using the ENCODING

phrase (“Controlling the encoding of generated XML output” on page 535).

– XML documents can now be generated in UTF-8 as well as in UTF-16 or

various EBCDIC code pages.

– The WITH ATTRIBUTES phrase causes eligible elementary items to be expressed

as attributes rather than as child elements in the generated XML.

– The WITH XML-DECLARATION phrase causes an XML declaration to be generated.
v A new compiler option, OPTFILE, enables the specifying of COBOL compiler

options from within a data set (“OPTFILE” on page 334).

v Compiler listings now cross-reference COPY statements and the data sets from

which copybooks are obtained (“Example: XREF output: COPY/BASIS

cross-references” on page 398).

v Support for new features of DB2® for z/OS V9 is enabled when you use the

integrated DB2 coprocessor (SQL compiler option) (“DB2 coprocessor” on page

417):

– New SQL data types are supported: XML types, BINARY, VARBINARY,

BIGINT, and file reference variables.

– New SQL syntax for XML manipulation, enhancements to large object

manipulation, MERGE, and SELECT FROM MERGE is supported.

– DB2 processing options STDSQL(YES|NO), NOFOR, and SQL(ALL|DB2) are

supported as suboptions to the SQL compiler option (“Compiling with the

SQL option” on page 421).
v Several usability enhancements to COBOL-DB2 applications are available when

you use the integrated DB2 coprocessor:

– The compiler listing is enhanced to show the DB2 options in effect (if you use

DB2 for z/OS V9) and to show the expansion of the SQLCA and SQLDA

control blocks.

xx Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

– You can specify an alternate ddname for DBRMLIB when you invoke the

compiler from an assembler language program (“Starting the compiler from

an assembler program” on page 263).

– An explicitly coded LOCAL-STORAGE SECTION or WORKING-STORAGE SECTION is no

longer required.
v Debugging has been enhanced to support Debug Tool V8. A new suboption of

the TEST compiler option, EJPD, enables the Debug Tool commands JUMPTO and

GOTO for production debugging. The TEST compiler option has been simplified

and has restructured suboptions (“TEST” on page 347).

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality

information. If you have comments about this document or any other Enterprise

COBOL documentation, contact us in one of these ways:

v Fill out the Readers’ Comments Form at the back of this document, and return it

by mail or give it to an IBM representative. If there is no form at the back of this

document, address your comments to:

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003

USA

v Use the Online Readers’ Comments Form at www.ibm.com/software/awdtools/
rcf/.

v Send your comments to the following e-mail address: comments@us.ibm.com.

Be sure to include the name of the document, the publication number of the

document, the version of Enterprise COBOL, and, if applicable, the specific

location (for example, the page number or section heading) of the text that you are

commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way that IBM believes appropriate without

incurring any obligation to you.

Preface xxi

|
|
|

|
|

|
|
|
|

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

xxii Enterprise COBOL for z/OS V4.1 Programming Guide

Part 1. Coding your program

Chapter 1. Structuring your program 5

Identifying a program 5

Identifying a program as recursive 6

Marking a program as callable by containing

programs 6

Setting a program to an initial state 6

Changing the header of a source listing 7

Describing the computing environment 7

Example: FILE-CONTROL entries 8

Specifying the collating sequence 8

Example: specifying the collating sequence . . 9

Defining symbolic characters 10

Defining a user-defined class 10

Defining files to the operating system 10

Varying the input or output file at run time . 11

Optimizing buffer and device space 12

Describing the data 13

Using data in input and output operations . . . 13

FILE SECTION entries 14

Comparison of WORKING-STORAGE and

LOCAL-STORAGE 16

Example: storage sections 17

Using data from another program 18

Sharing data in separately compiled programs 18

Sharing data in nested programs 18

Sharing data in recursive or multithreaded

programs 19

Processing the data 19

How logic is divided in the PROCEDURE

DIVISION 20

Imperative statements 21

Conditional statements 21

Compiler-directing statements 22

Scope terminators 22

Declaratives 23

Chapter 2. Using data 25

Using variables, structures, literals, and constants . 25

Using variables 25

Using data items and group items 26

Using literals 27

Using constants 28

Using figurative constants 28

Assigning values to data items 29

Examples: initializing data items 30

Initializing a structure (INITIALIZE) 32

Assigning values to elementary data items

(MOVE) 34

Assigning values to group data items (MOVE) . 35

Assigning arithmetic results (MOVE or

COMPUTE) 36

Assigning input from a screen or file (ACCEPT) 37

Displaying values on a screen or in a file (DISPLAY) 38

Displaying data on the system logical output

device 39

Using WITH NO ADVANCING 39

Using intrinsic functions (built-in functions) . . . 40

Using tables (arrays) and pointers 41

Storage and its addressability 42

Settings for RMODE 42

Storage restrictions for passing data 43

Location of data areas 43

Storage for LOCAL-STORAGE data 43

Storage for external data 44

Storage for QSAM input-output buffers 44

Chapter 3. Working with numbers and arithmetic 45

Defining numeric data 45

Displaying numeric data 47

Controlling how numeric data is stored 48

Formats for numeric data 49

External decimal (DISPLAY and NATIONAL)

items 49

External floating-point (DISPLAY and

NATIONAL) items 50

Binary (COMP) items 50

Native binary (COMP-5) items 51

Packed-decimal (COMP-3) items 52

Internal floating-point (COMP-1 and COMP-2)

items 52

Examples: numeric data and internal

representation 52

Data format conversions 54

Conversions and precision 54

Conversions that lose precision 54

Conversions that preserve precision 55

Conversions that result in rounding 55

Sign representation of zoned and packed-decimal

data 55

Checking for incompatible data (numeric class test) 56

Performing arithmetic 57

Using COMPUTE and other arithmetic

statements 58

Using arithmetic expressions 58

Using numeric intrinsic functions 59

Using math-oriented callable services 60

Using date callable services 62

Examples: numeric intrinsic functions 62

General number handling 63

Date and time 63

Finance 63

Mathematics 64

Statistics 64

Fixed-point contrasted with floating-point arithmetic 64

Floating-point evaluations 65

Fixed-point evaluations 65

Arithmetic comparisons (relation conditions) . . 65

Examples: fixed-point and floating-point

evaluations 66

Using currency signs 67

Example: multiple currency signs 68

© Copyright IBM Corp. 1991, 2007 1

Chapter 4. Handling tables 69

Defining a table (OCCURS) 69

Nesting tables 71

Example: subscripting 72

Example: indexing 72

Referring to an item in a table 72

Subscripting 73

Indexing 74

Putting values into a table 75

Loading a table dynamically 75

Initializing a table (INITIALIZE) 76

Assigning values when you define a table

(VALUE) 77

Initializing each table item individually . . . 77

Initializing a table at the group level 78

Initializing all occurrences of a given table

element 78

Example: PERFORM and subscripting 79

Example: PERFORM and indexing 80

Creating variable-length tables (DEPENDING ON) 81

Loading a variable-length table 82

Assigning values to a variable-length table . . . 83

Searching a table 84

Doing a serial search (SEARCH) 84

Example: serial search 84

Doing a binary search (SEARCH ALL) 85

Example: binary search 86

Processing table items using intrinsic functions . . 86

Example: processing tables using intrinsic

functions 87

Chapter 5. Selecting and repeating program

actions 89

Selecting program actions 89

Coding a choice of actions 89

Using nested IF statements 90

Using the EVALUATE statement 91

Coding conditional expressions 94

Switches and flags 95

Defining switches and flags 95

Example: switches 95

Example: flags 96

Resetting switches and flags 96

Example: set switch on 96

Example: set switch off 97

Repeating program actions 97

Choosing inline or out-of-line PERFORM . . . 98

Example: inline PERFORM statement 98

Coding a loop 99

Looping through a table 100

Executing multiple paragraphs or sections . . . 100

Chapter 6. Handling strings 101

Joining data items (STRING) 101

Example: STRING statement 102

STRING results 103

Splitting data items (UNSTRING) 103

Example: UNSTRING statement 104

UNSTRING results 105

Manipulating null-terminated strings 106

Example: null-terminated strings 107

Referring to substrings of data items 107

Reference modifiers 109

Example: arithmetic expressions as reference

modifiers 110

Example: intrinsic functions as reference

modifiers 110

Tallying and replacing data items (INSPECT) . . . 111

Examples: INSPECT statement 111

Converting data items (intrinsic functions) 112

Converting to uppercase or lowercase

(UPPER-CASE, LOWER-CASE) 113

Transforming to reverse order (REVERSE) . . . 113

Converting to numbers (NUMVAL,

NUMVAL-C) 113

Converting from one code page to another . . 115

Evaluating data items (intrinsic functions) 115

Evaluating single characters for collating

sequence 115

Finding the largest or smallest data item . . . 116

Returning variable-length results with

alphanumeric or national functions 117

Finding the length of data items 118

Finding the date of compilation 119

Chapter 7. Processing data in an international

environment 121

COBOL statements and national data 122

Intrinsic functions and national data 124

Unicode and the encoding of language characters 125

Using national data (Unicode) in COBOL 126

Defining national data items 127

Using national literals 127

Using national-character figurative constants 128

Defining national numeric data items 129

National groups 129

Using national groups 130

Using national groups as elementary items 131

Using national groups as group items . . . 132

Storage of national data 133

Converting to or from national (Unicode)

representation 134

Converting alphanumeric, DBCS, and integer to

national (MOVE) 134

Converting alphanumeric or DBCS to national

(NATIONAL-OF) 135

Converting national to alphanumeric

(DISPLAY-OF) 136

Overriding the default code page 136

Conversion exceptions 136

Example: converting to and from national data 137

Processing UTF-8 data 137

Processing Chinese GB 18030 data 138

Comparing national (UTF-16) data 139

Comparing two class national operands . . . 139

Comparing class national and class numeric

operands 140

Comparing national numeric and other numeric

operands 140

Comparing national and other character-string

operands 140

2 Enterprise COBOL for z/OS V4.1 Programming Guide

Comparing national data and

alphanumeric-group operands 141

Coding for use of DBCS support 141

Declaring DBCS data 142

Using DBCS literals 142

Testing for valid DBCS characters 143

Processing alphanumeric data items that contain

DBCS data 143

Chapter 8. Processing files 145

File organization and input-output devices . . . 145

Choosing file organization and access mode . . . 147

Format for coding input and output 148

Allocating files 149

Checking for input or output errors 150

Chapter 9. Processing QSAM files 151

Defining QSAM files and records in COBOL . . . 151

Establishing record formats 152

Logical records 152

Requesting fixed-length format 153

Requesting variable-length format 154

Requesting spanned format 156

Requesting undefined format 158

Setting block sizes 159

Coding input and output statements for QSAM

files 161

Opening QSAM files 162

Dynamically creating QSAM files 163

Adding records to QSAM files 163

Updating QSAM files 164

Writing QSAM files to a printer or spooled data

set 164

Closing QSAM files 165

Handling errors in QSAM files 165

Working with QSAM files 166

Defining and allocating QSAM files 166

Parameters for creating QSAM files 169

Retrieving QSAM files 169

Parameters for retrieving QSAM files . . . 170

Ensuring that file attributes match your

program 170

Processing existing files 171

Processing new files 172

Using striped extended-format QSAM data sets 172

Allocation of buffers for QSAM files 173

Accessing HFS files using QSAM 174

Labels for QSAM files 174

Using trailer and header labels 175

Format of standard labels 176

Standard user labels 177

Processing QSAM ASCII files on tape 177

Processing ASCII file labels 178

Chapter 10. Processing VSAM files 179

VSAM files 180

Defining VSAM file organization and records . . 181

Specifying sequential organization for VSAM

files 182

Specifying indexed organization for VSAM files 182

Using alternate keys 183

Using an alternate index 183

Specifying relative organization for VSAM files 184

Fixed-length and variable-length RRDS . . . 184

Using variable-length RRDS 184

Specifying access modes for VSAM files . . . 185

Example: using dynamic access with VSAM

files 185

Defining record lengths for VSAM files 185

Defining fixed-length records 186

Defining variable-length records 186

Coding input and output statements for VSAM

files 187

File position indicator 189

Opening a file (ESDS, KSDS, or RRDS) 189

Opening an empty file 190

Statements to load records into a VSAM file 191

Opening a loaded file (a file with records) 191

Reading records from a VSAM file 192

Updating records in a VSAM file 193

Adding records to a VSAM file 193

Replacing records in a VSAM file 194

Deleting records from a VSAM file 194

Closing VSAM files 194

Handling errors in VSAM files 195

Protecting VSAM files with a password 196

Example: password protection for a VSAM

indexed file 196

Working with VSAM data sets under z/OS and

UNIX 197

Defining VSAM files 197

Creating alternate indexes 198

Example: entries for alternate indexes . . . 199

Allocating VSAM files 200

Sharing VSAM files through RLS 202

Preventing update problems with VSAM files

in RLS mode 202

Restrictions when using RLS 203

Handling errors in VSAM files in RLS mode 203

Improving VSAM performance 203

Chapter 11. Processing line-sequential files . . 207

Defining line-sequential files and records in

COBOL 207

Allowable control characters 208

Describing the structure of a line-sequential file 208

Defining and allocating line-sequential files . . . 209

Coding input-output statements for line-sequential

files 209

Opening line-sequential files 210

Reading records from line-sequential files . . . 210

Adding records to line-sequential files 211

Closing line-sequential files 211

Handling errors in line-sequential files 212

Chapter 12. Sorting and merging files 213

Sort and merge process 214

Describing the sort or merge file 214

Describing the input to sorting or merging . . . 215

Example: describing sort and input files for

SORT 215

Coding the input procedure 216

Part 1. Coding your program 3

Describing the output from sorting or merging . . 217

Coding the output procedure 218

Example: coding the output procedure when

using DFSORT 218

Restrictions on input and output procedures . . . 219

Defining sort and merge data sets 219

Sorting variable-length records 220

Requesting the sort or merge 220

Setting sort or merge criteria 221

Example: sorting with input and output

procedures 222

Choosing alternate collating sequences 223

Sorting on windowed date fields 223

Preserving the original sequence of records with

equal keys 224

Determining whether the sort or merge was

successful 224

Stopping a sort or merge operation prematurely 225

Improving sort performance with FASTSRT . . . 225

FASTSRT requirements for JCL 226

FASTSRT requirements for sort input and

output files 226

QSAM requirements 227

VSAM requirements 227

Checking for sort errors with NOFASTSRT . . . 227

Controlling sort behavior 228

Changing DFSORT defaults with control

statements 229

Default characteristics of the IGZSRTCD data

set 230

Allocating storage for sort or merge operations 230

Allocating space for sort files 231

Using checkpoint/restart with DFSORT 231

Sorting under CICS 231

CICS SORT application restrictions 232

Chapter 13. Handling errors 233

Requesting dumps 233

Handling errors in joining and splitting strings . . 234

Handling errors in arithmetic operations 234

Example: checking for division by zero 235

Handling errors in input and output operations 235

Using the end-of-file condition (AT END) . . . 238

Coding ERROR declaratives 238

Using file status keys 239

Example: file status key 240

Using VSAM status codes (VSAM files only) 241

Example: checking VSAM status codes 241

Coding INVALID KEY phrases 243

Example: FILE STATUS and INVALID KEY . . 243

Handling errors when calling programs 244

Writing routines for handling errors 244

4 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 1. Structuring your program

COBOL programs consist of four divisions: IDENTIFICATION DIVISION, ENVIRONMENT

DIVISION, DATA DIVISION, and PROCEDURE DIVISION. Each division has a specific

logical function.

To define a program, only the IDENTIFICATION DIVISION is required.

To define a COBOL class or method, you need to define some divisions differently

than you do for a program.

RELATED TASKS

“Identifying a program”

“Describing the computing environment” on page 7

“Describing the data” on page 13

“Processing the data” on page 19

“Defining a class” on page 552

“Defining a class instance method” on page 557

“Structuring OO applications” on page 591

Identifying a program

Use the IDENTIFICATION DIVISION to name a program and optionally provide other

identifying information.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED

paragraphs for descriptive information about a program. The data you enter in the

DATE-COMPILED paragraph is replaced with the latest compilation date.

IDENTIFICATION DIVISION.

Program-ID. Helloprog.

Author. A. Programmer.

Installation. Computing Laboratories.

Date-Written. 12/21/2007.

Date-Compiled. 12/30/2007.

Use the PROGRAM-ID paragraph to name your program. The program-name that you

assign is used in these ways:

v Other programs use that name to call your program.

v The name appears in the header on each page, except the first, of the program

listing that is generated when you compile the program.

v If you use the NAME compiler option, the name is placed on the NAME

linkage-editor or binder control statement to identify the object module that the

compilation creates.

Tip: Do not use program-names that start with prefixes used by IBM products. If

you use program-names that start with any of the following prefixes, your CALL

statements might resolve to IBM library or compiler routines rather than to your

intended program:

– AFB

– AFH

– CBC

– CEE

© Copyright IBM Corp. 1991, 2007 5

– IBM

– IFY

– IGY

– IGZ

– ILB

Tip: When a program-name is case sensitive, avoid mismatches with the name the

compiler is looking for. Verify that the appropriate setting of the PGMNAME compiler

option is in effect.

RELATED TASKS

“Changing the header of a source listing” on page 7

“Identifying a program as recursive”

“Marking a program as callable by containing programs”

“Setting a program to an initial state”

RELATED REFERENCES

Compiler limits (Enterprise COBOL Language Reference)

Conventions for program-names (Enterprise COBOL Language Reference)

Identifying a program as recursive

Code the RECURSIVE attribute on the PROGRAM-ID clause to specify that a program

can be recursively reentered while a previous invocation is still active.

You can code RECURSIVE only on the outermost program of a compilation unit.

Neither nested subprograms nor programs that contain nested subprograms can be

recursive. You must code RECURSIVE for programs that you compile with the THREAD

option.

RELATED TASKS

“Sharing data in recursive or multithreaded programs” on page 19

“Making recursive calls” on page 459

Marking a program as callable by containing programs

Use the COMMON attribute in the PROGRAM-ID paragraph to specify that a program can

be called by the containing program or by any program in the containing program.

The COMMON program cannot be called by any program contained in itself.

Only contained programs can have the COMMON attribute.

RELATED CONCEPTS

“Nested programs” on page 456

Setting a program to an initial state

Use the INITIAL attribute to specify that whenever a program is called, that

program and any nested programs that it contains are to be placed in their initial

state.

When a program is in its initial state:

v Data items that have VALUE clauses are set to the specified values.

6 Enterprise COBOL for z/OS V4.1 Programming Guide

v Changed GO TO statements and PERFORM statements are in their initial states.

v Non-EXTERNAL files are closed.

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 446

“Making static calls” on page 448

“Making dynamic calls” on page 449

Changing the header of a source listing

The header on the first page of a source listing contains the identification of the

compiler and the current release level, the date and time of compilation, and the

page number.

The following example shows these five elements:

PP 5655-S71 IBM Enterprise COBOL for z/OS 4.1.0 Date 12/30/2007 Time 15:05:19 Page 1

The header indicates the compilation platform. You can customize the header on

succeeding pages of the listing by using the compiler-directing TITLE statement.

RELATED REFERENCES

TITLE statement (Enterprise COBOL Language Reference)

Describing the computing environment

In the ENVIRONMENT DIVISION of a program, you describe the aspects of the

program that depend on the computing environment.

Use the CONFIGURATION SECTION to specify the following items:

v Computer for compiling the program (in the SOURCE-COMPUTER paragraph)

v Computer for running the program (in the OBJECT-COMPUTER paragraph)

v Special items such as the currency sign and symbolic characters (in the

SPECIAL-NAMES paragraph)

v User-defined classes (in the REPOSITORY paragraph)

Use the FILE-CONTROL and I-O-CONTROL paragraphs of the INPUT-OUTPUT SECTION to:

v Identify and describe the characteristics of the files in the program.

v Associate your files with the external QSAM, VSAM, or HFS (hierarchical file

system) data sets where they physically reside.

The terms file in COBOL terminology and data set or HFS file in operating-system

terminology have essentially the same meaning and are used interchangeably in

this information.

For Customer Information Control System (CICS) and online Information

Management System (IMS™) message processing programs (MPP), code only the

ENVIRONMENT DIVISION header and, optionally, the CONFIGURATION SECTION. CICS

does not allow COBOL definition of files. IMS allows COBOL definition of files

only for batch programs.

v Provide information to control efficient transmission of the data records between

your program and the external medium.

“Example: FILE-CONTROL entries” on page 8

Chapter 1. Structuring your program 7

RELATED TASKS

“Specifying the collating sequence”

“Defining symbolic characters” on page 10

“Defining a user-defined class” on page 10

“Defining files to the operating system” on page 10

RELATED REFERENCES

Sections and paragraphs (Enterprise COBOL Language Reference)

Example: FILE-CONTROL entries

The following table shows example FILE-CONTROL entries for a QSAM sequential

file, a VSAM indexed file, and a line-sequential file.

 Table 1. FILE-CONTROL entries

QSAM file VSAM file Line-sequential file

SELECT PRINTFILE1

 ASSIGN TO UPDPRINT2

 ORGANIZATION IS SEQUENTIAL3

 ACCESS IS SEQUENTIAL.4

SELECT COMMUTER-FILE1

 ASSIGN TO COMMUTER2

 ORGANIZATION IS INDEXED3

 ACCESS IS RANDOM4

 RECORD KEY IS COMMUTER-KEY5

 FILE STATUS IS5

 COMMUTER-FILE-STATUS

 COMMUTER-VSAM-STATUS.

SELECT PRINTFILE1

 ASSIGN TO UPDPRINT2

 ORGANIZATION IS LINE SEQUENTIAL3

 ACCESS IS SEQUENTIAL.4

1. The SELECT clause chooses a file in the COBOL program to be associated with an external data set.

2. The ASSIGN clause associates the program’s name for the file with the external name for the actual data file. You

can define the external name with a DD statement or an environment variable.

3. The ORGANIZATION clause describes the file’s organization. For QSAM files, the ORGANIZATION clause is optional.

4. The ACCESS MODE clause defines the manner in which the records are made available for processing: sequential,

random, or dynamic. For QSAM and line-sequential files, the ACCESS MODE clause is optional. These files always

have sequential organization.

5. For VSAM files, you might have additional statements in the FILE-CONTROL paragraph depending on the type of

VSAM file you use.

RELATED TASKS

Chapter 9, “Processing QSAM files,” on page 151

Chapter 10, “Processing VSAM files,” on page 179

Chapter 11, “Processing line-sequential files,” on page 207

“Describing the computing environment” on page 7

Specifying the collating sequence

You can use the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the

SPECIAL-NAMES paragraph to establish the collating sequence that is used in several

operations on alphanumeric items.

These clauses specify the collating sequence for the following operations on

alphanumeric items:

v Comparisons explicitly specified in relation conditions and condition-name

conditions

v HIGH-VALUE and LOW-VALUE settings

v SEARCH ALL

8 Enterprise COBOL for z/OS V4.1 Programming Guide

v SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase in the SORT

or MERGE statement

“Example: specifying the collating sequence”

The sequence that you use can be based on one of these alphabets:

v EBCDIC: references the collating sequence associated with the EBCDIC character

set

v NATIVE: references the same collating sequence as EBCDIC

v STANDARD-1: references the collating sequence associated with the ASCII

character set defined by ANSI INCITS X3.4, Coded Character Sets - 7-bit American

National Standard Code for Information Interchange (7-bit ASCII)

v STANDARD-2: references the collating sequence associated with the character set

defined by ISO/IEC 646 -- Information technology -- ISO 7-bit coded character set for

information interchange, International Reference Version

v An alteration of the EBCDIC sequence that you define in the SPECIAL-NAMES

paragraph

The PROGRAM COLLATING SEQUENCE clause does not affect comparisons that involve

national or DBCS operands.

RELATED TASKS

“Choosing alternate collating sequences” on page 223

“Comparing national (UTF-16) data” on page 139

Example: specifying the collating sequence

The following example shows the ENVIRONMENT DIVISION coding that you can use

to specify a collating sequence in which uppercase and lowercase letters are

similarly handled in comparisons and in sorting and merging.

When you change the EBCDIC sequence in the SPECIAL-NAMES paragraph, the

overall collating sequence is affected, not just the collating sequence of the

characters that are included in the SPECIAL-NAMES paragraph.

IDENTIFICATION DIVISION.

. . .

ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 Source-Computer. IBM-390.

 Object-Computer. IBM-390.

 Program Collating Sequence Special-Sequence.

 Special-Names.

 Alphabet Special-Sequence Is

 "A" Also "a"

 "B" Also "b"

 "C" Also "c"

 "D" Also "d"

 "E" Also "e"

 "F" Also "f"

 "G" Also "g"

 "H" Also "h"

 "I" Also "i"

 "J" Also "j"

 "K" Also "k"

 "L" Also "l"

 "M" Also "m"

 "N" Also "n"

 "O" Also "o"

 "P" Also "p"

Chapter 1. Structuring your program 9

"Q" Also "q"

 "R" Also "r"

 "S" Also "s"

 "T" Also "t"

 "U" Also "u"

 "V" Also "v"

 "W" Also "w"

 "X" Also "x"

 "Y" Also "y"

 "Z" Also "z".

RELATED TASKS

“Specifying the collating sequence” on page 8

Defining symbolic characters

Use the SYMBOLIC CHARACTERS clause to give symbolic names to any character of the

specified alphabet. Use ordinal position to identify the character, where position 1

corresponds to character X’00’.

For example, to give a name to the backspace character (X’16’ in the EBCDIC

alphabet), code:

SYMBOLIC CHARACTERS BACKSPACE IS 23

Defining a user-defined class

Use the CLASS clause to give a name to a set of characters that you list in the

clause.

For example, name the set of digits by coding the following clause:

CLASS DIGIT IS "0" THROUGH "9"

You can reference the class-name only in a class condition. (This user-defined class

is not the same as an object-oriented class.)

Defining files to the operating system

For all files that you process in your COBOL program, you need to define the files

to the operating system with an appropriate system data definition.

Depending on the operating system, this system data definition can take any of the

following forms:

v DD statement for MVS JCL.

v ALLOCATE command under TSO.

v Environment variable for z/OS or UNIX. The contents can define either an MVS

data set or a file in the HFS (hierarchical file system).

The following examples show the relationship of a FILE-CONTROL entry to the

system data definition and to the FD entry in the FILE SECTION:

v JCL DD statement:

 (1)

//OUTFILE DD DSNAME=MY.OUT171,UNIT=SYSDA,SPACE=(TRK,(50,5))

/*

v Environment variable (export command):

10 Enterprise COBOL for z/OS V4.1 Programming Guide

(1)

export OUTFILE=DSN(MY.OUT171),UNIT(SYSDA),SPACE(TRK,(50,5))

v COBOL code:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT CARPOOL

 ASSIGN TO OUTFILE (1)

 ORGANIZATION IS SEQUENTIAL.

. . .

DATA DIVISION.

FILE SECTION.

FD CARPOOL (2)

 LABEL RECORD STANDARD

 BLOCK CONTAINS 0 CHARACTERS

 RECORD CONTAINS 80 CHARACTERS

(1) The assignment-name in the ASSIGN clause points to the ddname OUTFILE in

the DD statement or the environment variable OUTFILE in the export

command:

v //OUTFILE DD DSNAME=OUT171 . . ., or

v export OUTFILE= . . .

(2) When you specify a file file-name in a FILE-CONTROL entry, you must

describe the file in an FD entry:

SELECT CARPOOL

. . .

FD CARPOOL

RELATED TASKS

“Optimizing buffer and device space” on page 12

RELATED REFERENCES

“FILE SECTION entries” on page 14

File section (Enterprise COBOL Language Reference)

Varying the input or output file at run time

The file-name that you code in a SELECT clause is used as a constant throughout

your COBOL program, but you can associate the name of the file with a different

actual file at run time.

Changing a file-name in a COBOL program would require changing the input

statements and output statements and recompiling the program. Alternatively, you

can change the DSNAME value in the DD statement or the DSN or PATH value in the

export command to use a different file at run time.

Environment variable values that are in effect at the time of the OPEN statement are

used for associating COBOL file-names to the system file-names (including any

path specifications).

The name that you use in the assignment-name of the ASSIGN clause must be the

same as the ddname in the DD statement or the environment variable in the export

command.

The file-name that you use in the SELECT clause (such as SELECT MASTER) must be the

same as in the FD file-name entry.

Chapter 1. Structuring your program 11

Two files should not use the same ddname or environment variable name in their

SELECT clauses; otherwise, results could be unpredictable. For example, if DISPLAY

output is directed to SYSOUT, do not use SYSOUT as the ddname or environment

variable name in the SELECT clause for a file.

“Example: using different input files”

Example: using different input files:

This example shows that you use the same COBOL program to access different

files by coding a DD statement or an export command before the programs runs.

Consider a COBOL program that contains the following SELECT clause:

SELECT MASTER ASSIGN TO DA-3330-S-MASTERA

Assume the three possible input files are MASTER1, MASTER2, and MASTER3. Before

running the program, code one of the following DD statements in the job step that

calls for program execution, or issue one of the following export commands from

the same shell from which you run the program:

//MASTERA DD DSNAME=MY.MASTER1,. . .

export MASTERA=DSN(MY.MASTER1),. . .

//MASTERA DD DSNAME=MY.MASTER2,. . .

export MASTERA=DSN(MY.MASTER2),. . .

//MASTERA DD DSNAME=MY.MASTER3,. . .

export MASTERA=DSN(MY.MASTER3),. . .

Any reference in the program to MASTER will therefore be a reference to the file

currently assigned to the ddname or environment-variable name MASTERA.

Notice that in this example, you cannot use the PATH(path) form of the export

command to reference a line-sequential file in the HFS, because you cannot specify

an organization field (S- or AS-) with a line-sequential file.

Optimizing buffer and device space

Use the APPLY WRITE-ONLY clause to make optimum use of buffer and device space

when you create a sequential file with blocked variable-length records.

With APPLY WRITE-ONLY specified, a buffer is truncated only when the next record

does not fit in the unused portion of the buffer. Without APPLY WRITE-ONLY

specified, a buffer is truncated when it does not have enough space for a

maximum-size record.

The APPLY WRITE-ONLY clause has meaning only for sequential files that have

variable-length records and are blocked.

The AWO compiler option applies an implicit APPLY WRITE-ONLY clause to all eligible

files. The NOAWO compiler option has no effect on files that have the APPLY

WRITE-ONLY clause specified. The APPLY WRITE-ONLY clause takes precedence over

the NOAWO compiler option.

The APPLY-WRITE ONLY clause can cause input files to use a record area rather than

process the data in the buffer. This use might affect the processing of both input

files and output files.

12 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

“AWO” on page 307

Describing the data

Define the characteristics of your data, and group your data definitions into one of

the sections in the DATA DIVISION.

You can use these sections for defining the following types of data:

v Data used in input-output operations (FILE SECTION)

v Data developed for internal processing:

– To have storage be statically allocated and exist for the life of the run unit

(WORKING-STORAGE SECTION)

– To have storage be allocated each time a program is entered, and deallocated

on return from the program (LOCAL-STORAGE SECTION)
v Data from another program (LINKAGE SECTION)

The Enterprise COBOL compiler limits the maximum size of DATA DIVISION

elements.

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 16

RELATED TASKS

“Using data in input and output operations”

“Using data from another program” on page 18

RELATED REFERENCES

Compiler limits (Enterprise COBOL Language Reference)

Using data in input and output operations

Define the data that you use in input and output operations in the FILE SECTION.

Provide the following information about the data:

v Name the input and output files that the program will use. Use the FD entry to

give names to the files that the input-output statements in the PROCEDURE

DIVISION can refer to.

Data items defined in the FILE SECTION are not available to PROCEDURE DIVISION

statements until the file has been successfully opened.

v In the record description that follows the FD entry, describe the fields of the

records in the file:

– You can code a level-01 description of the entire record, and then in the

WORKING-STORAGE SECTION code a working copy that describes the fields of the

record in more detail. Use the READ INTO statement to bring the records into

WORKING-STORAGE. Processing occurs on the copy of data in WORKING-STORAGE.

A WRITE FROM statement writes processed data into the record area defined in

the FILE SECTION.

– The record-name established is the object of WRITE and REWRITE statements.

Chapter 1. Structuring your program 13

– For QSAM files only, you can set the record format in the RECORDING MODE

clause. If you omit the RECORDING MODE clause, the compiler determines the

record format based on the RECORD clause and on the level-01 record

descriptions.

– For QSAM files, you can set a blocking factor for the file in the BLOCK

CONTAINS clause. If you omit the BLOCK CONTAINS clause, the file defaults to

unblocked. However, you can override this with z/OS data management

facilities (including a DD file job-control statement).

– For line-sequential files, you can set a blocking factor for the file in the BLOCK

CONTAINS clause. When you code BLOCK CONTAINS 1 RECORDS, or BLOCK

CONTAINS n CHARACTERS, where n is the length of one logical record in bytes,

WRITE statements result in the record being transferred immediately to the file

rather than being buffered. This technique is useful when you want each

record written immediately, such as to an error log.

Programs in the same run unit can share, or have access to, common files. The

method for doing this depends on whether the programs are part of a nested

(contained) structure or are separately compiled (including programs compiled as

part of a batch sequence).

You can use the EXTERNAL clause for separately compiled programs. A file that is

defined as EXTERNAL can be referenced by any program in the run unit that

describes the file.

You can use the GLOBAL clause for programs in a nested, or contained, structure. If

a program contains another program (directly or indirectly), both programs can

access a common file by referencing a GLOBAL file-name.

RELATED CONCEPTS

“Nested programs” on page 456

RELATED TASKS

“Sharing files between programs (external files)” on page 473

RELATED REFERENCES

“FILE SECTION entries”

FILE SECTION entries

The entries that you can use in the FILE SECTION are summarized in the table

below.

 Table 2. FILE SECTION entries

Clause To define Notes

FD The file-name to be

referred to in PROCEDURE

DIVISION input-output

statements (OPEN, CLOSE,

READ, also START and

DELETE for VSAM)

Must match file-name in the SELECT clause.

file-name is associated with a ddname

through the assignment-name.

14 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 2. FILE SECTION entries (continued)

Clause To define Notes

BLOCK CONTAINS Size of physical records If the CHARACTERS phrase is specified, size

indicates the number of bytes in a record

regardless of the USAGE of the data items in

the record.

QSAM: If provided, must match

information on JCL or data-set label. If

specified as BLOCK CONTAINS 0, or not

provided, the system determines the

optimal block size for you.

Line sequential: Can be specified to control

buffering for WRITE statements.

VSAM: Syntax-checked, but has no effect on

execution.

RECORD CONTAINS

n

Size of logical records

(fixed length)

Integer size indicates the number of bytes

in a record regardless of the USAGE of the

data items in the record. If the clause is

provided, it must match information on JCL

or data-set label. If n is equal to 0, LRECL

must be coded on JCL or data-set label.

RECORD IS

VARYING

Size of logical records

(variable length)

Integer size or sizes, if specified, indicate

the number of bytes in a record regardless

of the USAGE of the data items in the record.

If the clause is provided, it must match

information on JCL or data-set label;

compiler checks that record descriptions

match.

RECORD CONTAINS

n TO m

Size of logical records

(variable length)

The integer sizes indicate the number of

bytes in a record regardless of the USAGE of

the data items in the record. If the clause is

provided, it must match information on JCL

or data-set label; compiler checks that

record descriptions match.

LABEL RECORDS Labels for QSAM files VSAM: Handled as comments

STANDARD Labels exist QSAM: Handled as comments

OMITTED Labels do not exist QSAM: Handled as comments

data-name Labels defined by the user QSAM: Allowed for (optional) tape or disk

VALUE OF An item in the label

records associated with

file

Comments only

DATA RECORDS Names of records

associated with file

Comments only

LINAGE Depth of logical page QSAM only

Chapter 1. Structuring your program 15

Table 2. FILE SECTION entries (continued)

Clause To define Notes

CODE-SET ASCII or EBCDIC files QSAM only.

When an ASCII file is identified with the

CODE-SET clause, the corresponding DD

statement might need to have

DCB=(OPTCD=Q. . .) or DCB=(RECFM=D. . .)

coded if the file was not created using VS

COBOL II, COBOL for OS/390® & VM, or

IBM Enterprise COBOL for z/OS.

RECORDING MODE Physical record

description

QSAM only

RELATED CONCEPTS

“Labels for QSAM files” on page 174

RELATED REFERENCES

File section (Enterprise COBOL Language Reference)

Comparison of WORKING-STORAGE and LOCAL-STORAGE

How data items are allocated and initialized varies depending on whether the

items are in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION.

WORKING-STORAGE for programs is allocated at the start of the run unit.

Any data items that have VALUE clauses are initialized to the appropriate value at

that time. For the duration of the run unit, WORKING-STORAGE items persist in their

last-used state. Exceptions are:

v A program with INITIAL specified in the PROGRAM-ID paragraph

In this case, WORKING-STORAGE data items are reinitialized each time that the

program is entered.

v A subprogram that is dynamically called and then canceled

In this case, WORKING-STORAGE data items are reinitialized on the first reentry into

the program following the CANCEL.

WORKING-STORAGE is deallocated at the termination of the run unit.

See the related tasks for information about WORKING-STORAGE in COBOL class

definitions.

A separate copy of LOCAL-STORAGE data is allocated for each call of a program or

invocation of a method, and is freed on return from the program or method. If you

specify a VALUE clause for a LOCAL-STORAGE item, the item is initialized to that value

on each call or invocation. If a VALUE clause is not specified, the initial value of the

item is undefined.

Threading: Each invocation of a program that runs simultaneously on multiple

threads shares access to a single copy of WORKING-STORAGE data. Each invocation

has a separate copy of LOCAL-STORAGE data.

“Example: storage sections” on page 17

16 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 446

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491

“WORKING-STORAGE SECTION for defining class instance data” on page 556

RELATED REFERENCES

Working-storage section (Enterprise COBOL Language Reference)

Local-storage section (Enterprise COBOL Language Reference)

Example: storage sections

The following is an example of a recursive program that uses both

WORKING-STORAGE and LOCAL-STORAGE.

CBL pgmn(lu)

* Recursive Program - Factorials

 IDENTIFICATION DIVISION.

 Program-Id. factorial recursive.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 Working-Storage Section.

 01 numb pic 9(4) value 5.

 01 fact pic 9(8) value 0.

 Local-Storage Section.

 01 num pic 9(4).

 PROCEDURE DIVISION.

 move numb to num.

 if numb = 0

 move 1 to fact

 else

 subtract 1 from numb

 call ’factorial’

 multiply num by fact

 end-if.

 display num ’! = ’ fact.

 goback.

 End Program factorial.

The program produces the following output:

0000! = 00000001

0001! = 00000001

0002! = 00000002

0003! = 00000006

0004! = 00000024

0005! = 00000120

The following tables show the changing values of the data items in LOCAL-STORAGE

and WORKING-STORAGE in the successive recursive calls of the program, and in the

ensuing gobacks. During the gobacks, fact progressively accumulates the value of

5! (five factorial).

Recursive calls

Value for num in

LOCAL-STORAGE

Value for numb in

WORKING-STORAGE

Value for fact in

WORKING-STORAGE

Main 5 5 0

1 4 4 0

2 3 3 0

3 2 2 0

Chapter 1. Structuring your program 17

Recursive calls

Value for num in

LOCAL-STORAGE

Value for numb in

WORKING-STORAGE

Value for fact in

WORKING-STORAGE

4 1 1 0

5 0 0 0

Gobacks

Value for num in

LOCAL-STORAGE

Value for numb in

WORKING-STORAGE

Value for fact in

WORKING-STORAGE

5 0 0 1

4 1 0 1

3 2 0 2

2 3 0 6

1 4 0 24

Main 5 0 120

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 16

Using data from another program

How you share data depends on the type of program. You share data differently in

programs that are separately compiled than you do for programs that are nested or

for programs that are recursive or multithreaded.

RELATED TASKS

“Sharing data in separately compiled programs”

“Sharing data in nested programs”

“Sharing data in recursive or multithreaded programs” on page 19

“Passing data” on page 463

Sharing data in separately compiled programs

Many applications consist of separately compiled programs that call and pass data

to one another. Use the LINKAGE SECTION in the called program to describe the data

passed from another program.

In the calling program, use a CALL . . . USING or INVOKE . . . USING statement

to pass the data.

RELATED TASKS

“Passing data” on page 463

Sharing data in nested programs

Some applications consist of nested programs, that is, programs that are contained

in other programs. Level-01 data items can include the GLOBAL attribute. This

attribute allows any nested program that includes the declarations to access these

data items.

18 Enterprise COBOL for z/OS V4.1 Programming Guide

A nested program can also access data items in a sibling program (one at the same

nesting level in the same containing program) that is declared with the COMMON

attribute.

RELATED CONCEPTS

“Nested programs” on page 456

Sharing data in recursive or multithreaded programs

If your program has the RECURSIVE attribute or is compiled with the THREAD

compiler option, data that is defined in the LINKAGE SECTION is not accessible on

subsequent invocations of the program.

To address a record in the LINKAGE SECTION, use either of these techniques:

v Pass an argument to the program and specify the record in an appropriate

position in the USING phrase in the program.

v Use the format-5 SET statement.

If your program has the RECURSIVE attribute or is compiled with the THREAD

compiler option, the address of the record is valid for a particular instance of the

program invocation. The address of the record in another execution instance of the

same program must be reestablished for that execution instance. Unpredictable

results will occur if you refer to a data item for which the address has not been

established.

RELATED CONCEPTS

“Multithreading” on page 492

RELATED TASKS

“Making recursive calls” on page 459

“Processing files with multithreading” on page 494

RELATED REFERENCES

“THREAD” on page 350

SET statement (Enterprise COBOL Language Reference)

Processing the data

In the PROCEDURE DIVISION of a program, you code the executable statements that

process the data that you defined in the other divisions. The PROCEDURE DIVISION

contains one or two headers and the logic of your program.

The PROCEDURE DIVISION begins with the division header and a procedure-name

header. The division header for a program can simply be:

PROCEDURE DIVISION.

You can code the division header to receive parameters by using the USING phrase,

or to return a value by using the RETURNING phrase.

To receive an argument that was passed by reference (the default) or by content,

code the division header for a program in either of these ways:

PROCEDURE DIVISION USING dataname

PROCEDURE DIVISION USING BY REFERENCE dataname

Be sure to define dataname in the LINKAGE SECTION of the DATA DIVISION.

Chapter 1. Structuring your program 19

To receive a parameter that was passed by value, code the division header for a

program as follows:

PROCEDURE DIVISION USING BY VALUE dataname

To return a value as a result, code the division header as follows:

PROCEDURE DIVISION RETURNING dataname2

You can also combine USING and RETURNING in a PROCEDURE DIVISION header:

PROCEDURE DIVISION USING dataname RETURNING dataname2

Be sure to define dataname and dataname2 in the LINKAGE SECTION.

RELATED CONCEPTS

“How logic is divided in the PROCEDURE DIVISION”

RELATED TASKS

“Eliminating repetitive coding” on page 665

RELATED REFERENCES

The procedure division header (Enterprise COBOL Language Reference)

The USING phrase (Enterprise COBOL Language Reference)

CALL statement (Enterprise COBOL Language Reference)

How logic is divided in the PROCEDURE DIVISION

The PROCEDURE DIVISION of a program is divided into sections and paragraphs,

which contain sentences, statements, and phrases.

Section

Logical subdivision of your processing logic.

 A section has a section header and is optionally followed by one or more

paragraphs.

A section can be the subject of a PERFORM statement. One type of section is

for declaratives.

Paragraph

Subdivision of a section, procedure, or program.

 A paragraph has a name followed by a period and zero or more sentences.

A paragraph can be the subject of a statement.

Sentence

Series of one or more COBOL statements that ends with a period.

Statement

Performs a defined step of COBOL processing, such as adding two

numbers.

 A statement is a valid combination of words, and begins with a COBOL

verb. Statements are imperative (indicating unconditional action),

conditional, or compiler-directing. Using explicit scope terminators instead

of periods to show the logical end of a statement is preferred.

Phrase

A subdivision of a statement.

 RELATED CONCEPTS

“Compiler-directing statements” on page 22

20 Enterprise COBOL for z/OS V4.1 Programming Guide

“Scope terminators” on page 22

“Imperative statements”

“Conditional statements”

“Declaratives” on page 23

RELATED REFERENCES

PROCEDURE DIVISION structure (Enterprise COBOL Language Reference)

Imperative statements

An imperative statement (such as ADD, MOVE, INVOKE, or CLOSE) indicates an

unconditional action to be taken.

You can end an imperative statement with an implicit or explicit scope terminator.

A conditional statement that ends with an explicit scope terminator becomes an

imperative statement called a delimited scope statement. Only imperative statements

(or delimited scope statements) can be nested.

RELATED CONCEPTS

“Conditional statements”

“Scope terminators” on page 22

Conditional statements

A conditional statement is either a simple conditional statement (IF, EVALUATE,

SEARCH) or a conditional statement made up of an imperative statement that

includes a conditional phrase or option.

You can end a conditional statement with an implicit or explicit scope terminator.

If you end a conditional statement explicitly, it becomes a delimited scope

statement (which is an imperative statement).

You can use a delimited scope statement in these ways:

v To delimit the range of operation for a COBOL conditional statement and to

explicitly show the levels of nesting

For example, use an END-IF phrase instead of a period to end the scope of an IF

statement within a nested IF.

v To code a conditional statement where the COBOL syntax calls for an imperative

statement

For example, code a conditional statement as the object of an inline PERFORM:

PERFORM UNTIL TRANSACTION-EOF

 PERFORM 200-EDIT-UPDATE-TRANSACTION

 IF NO-ERRORS

 PERFORM 300-UPDATE-COMMUTER-RECORD

 ELSE

 PERFORM 400-PRINT-TRANSACTION-ERRORS

 END-IF

 READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

 SET TRANSACTION-EOF TO TRUE

 END-READ

END-PERFORM

An explicit scope terminator is required for the inline PERFORM statement, but it is

not valid for the out-of-line PERFORM statement.

For additional program control, you can use the NOT phrase with conditional

statements. For example, you can provide instructions to be performed when a

Chapter 1. Structuring your program 21

particular exception does not occur, such as NOT ON SIZE ERROR. The NOT phrase

cannot be used with the ON OVERFLOW phrase of the CALL statement, but it can be

used with the ON EXCEPTION phrase.

Do not nest conditional statements. Nested statements must be imperative

statements (or delimited scope statements) and must follow the rules for

imperative statements.

The following statements are examples of conditional statements if they are coded

without scope terminators:

v Arithmetic statement with ON SIZE ERROR

v Data-manipulation statements with ON OVERFLOW

v CALL statements with ON OVERFLOW

v I/O statements with INVALID KEY, AT END, or AT END-OF-PAGE

v RETURN with AT END

RELATED CONCEPTS

“Imperative statements” on page 21

“Scope terminators”

RELATED TASKS

“Selecting program actions” on page 89

RELATED REFERENCES

Conditional statements (Enterprise COBOL Language Reference)

Compiler-directing statements

A compiler-directing statement causes the compiler to take specific action about the

program structure, COPY processing, listing control, or control flow.

A compiler-directing statement is not part of the program logic.

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

Compiler-directing statements (Enterprise COBOL Language Reference)

Scope terminators

A scope terminator ends a verb or statement. Scope terminators can be explicit or

implicit.

Explicit scope terminators end a verb without ending a sentence. They consist of

END followed by a hyphen and the name of the verb being terminated, such as

END-IF. An implicit scope terminator is a period (.) that ends the scope of all

previous statements not yet ended.

Each of the two periods in the following program fragment ends an IF statement,

making the code equivalent to the code after it that instead uses explicit scope

terminators:

IF ITEM = "A"

 DISPLAY "THE VALUE OF ITEM IS " ITEM

 ADD 1 TO TOTAL

 MOVE "C" TO ITEM

 DISPLAY "THE VALUE OF ITEM IS NOW " ITEM.

IF ITEM = "B"

 ADD 2 TO TOTAL.

22 Enterprise COBOL for z/OS V4.1 Programming Guide

IF ITEM = "A"

 DISPLAY "THE VALUE OF ITEM IS " ITEM

 ADD 1 TO TOTAL

 MOVE "C" TO ITEM

 DISPLAY "THE VALUE OF ITEM IS NOW " ITEM

END-IF

IF ITEM = "B"

 ADD 2 TO TOTAL

END-IF

If you use implicit terminators, the end of statements can be unclear. As a result,

you might end statements unintentionally, changing your program’s logic. Explicit

scope terminators make a program easier to understand and prevent unintentional

ending of statements. For example, in the program fragment below, changing the

location of the first period in the first implicit scope example changes the meaning

of the code:

IF ITEM = "A"

 DISPLAY "VALUE OF ITEM IS " ITEM

 ADD 1 TO TOTAL.

 MOVE "C" TO ITEM

 DISPLAY " VALUE OF ITEM IS NOW " ITEM

IF ITEM = "B"

 ADD 2 TO TOTAL.

The MOVE statement and the DISPLAY statement after it are performed regardless of

the value of ITEM, despite what the indentation indicates, because the first period

terminates the IF statement.

For improved program clarity and to avoid unintentional ending of statements, use

explicit scope terminators, especially within paragraphs. Use implicit scope

terminators only at the end of a paragraph or the end of a program.

Be careful when coding an explicit scope terminator for an imperative statement

that is nested within a conditional statement. Ensure that the scope terminator is

paired with the statement for which it was intended. In the following example, the

scope terminator will be paired with the second READ statement, though the

programmer intended it to be paired with the first.

READ FILE1

 AT END

 MOVE A TO B

 READ FILE2

END-READ

To ensure that the explicit scope terminator is paired with the intended statement,

the preceding example can be recoded in this way:

READ FILE1

 AT END

 MOVE A TO B

 READ FILE2

 END-READ

END-READ

RELATED CONCEPTS

“Conditional statements” on page 21

“Imperative statements” on page 21

Declaratives

Declaratives provide one or more special-purpose sections that are executed when

an exception condition occurs.

Chapter 1. Structuring your program 23

Start each declarative section with a USE statement that identifies the function of

the section. In the procedures, specify the actions to be taken when the condition

occurs.

RELATED TASKS

“Finding and handling input-output errors” on page 367

RELATED REFERENCES

Declaratives (Enterprise COBOL Language Reference)

24 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 2. Using data

This information is intended to help non-COBOL programmers relate terms for

data used in other programming languages to COBOL terms. It introduces COBOL

fundamentals for variables, structures, literals, and constants; assigning and

displaying values; intrinsic (built-in) functions, and tables (arrays) and pointers.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Using variables, structures, literals, and constants”

“Assigning values to data items” on page 29

“Displaying values on a screen or in a file (DISPLAY)” on page 38

“Using intrinsic functions (built-in functions)” on page 40

“Using tables (arrays) and pointers” on page 41

Chapter 7, “Processing data in an international environment,” on page 121

Using variables, structures, literals, and constants

Most high-level programming languages share the concept of data being

represented as variables, structures (group items), literals, or constants.

The data in a COBOL program can be alphabetic, alphanumeric, double-byte

character set (DBCS), national, or numeric. You can also define index-names and

data items described as USAGE POINTER, USAGE FUNCTION-POINTER, USAGE

PROCEDURE-POINTER, or USAGE OBJECT REFERENCE. You place all data definitions in

the DATA DIVISION of your program.

RELATED TASKS

“Using variables”

“Using data items and group items” on page 26

“Using literals” on page 27

“Using constants” on page 28

“Using figurative constants” on page 28

RELATED REFERENCES

Classes and categories of data (Enterprise COBOL Language Reference)

Using variables

A variable is a data item whose value can change during a program. The value is

restricted, however, to the data type that you define when you specify a name and

a length for the data item.

For example, if a customer name is an alphanumeric data item in your program,

you could define and use the customer name as shown below:

Data Division.

01 Customer-Name Pic X(20).

01 Original-Customer-Name Pic X(20).

© Copyright IBM Corp. 1991, 2007 25

. . .

Procedure Division.

 Move Customer-Name to Original-Customer-Name

 . . .

You could instead declare the customer names above as national data items by

specifying their PICTURE clauses as Pic N(20) and specifying the USAGE NATIONAL

clause for the items. National data items are represented in Unicode UTF-16, in

which most characters are represented in 2 bytes of storage.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

RELATED REFERENCES

“NSYMBOL” on page 330

“Storage of national data” on page 133

PICTURE clause (Enterprise COBOL Language Reference)

Using data items and group items

Related data items can be parts of a hierarchical data structure. A data item that

does not have subordinate data items is called an elementary item. A data item that

is composed of one or more subordinate data items is called a group item.

A record can be either an elementary item or a group item. A group item can be

either an alphanumeric group item or a national group item.

For example, Customer-Record below is an alphanumeric group item that is

composed of two subordinate alphanumeric group items (Customer-Name and

Part-Order), each of which contains elementary data items. These groups items

implicitly have USAGE DISPLAY. You can refer to an entire group item or to parts of

a group item in MOVE statements in the PROCEDURE DIVISION as shown below:

Data Division.

File Section.

FD Customer-File

 Record Contains 45 Characters.

01 Customer-Record.

 05 Customer-Name.

 10 Last-Name Pic x(17).

 10 Filler Pic x.

 10 Initials Pic xx.

 05 Part-Order.

 10 Part-Name Pic x(15).

 10 Part-Color Pic x(10).

Working-Storage Section.

01 Orig-Customer-Name.

 05 Surname Pic x(17).

 05 Initials Pic x(3).

01 Inventory-Part-Name Pic x(15).

. . .

Procedure Division.

 Move Customer-Name to Orig-Customer-Name

 Move Part-Name to Inventory-Part-Name

 . . .

You could instead define Customer-Record as a national group item that is

composed of two subordinate national group items by changing the declarations in

26 Enterprise COBOL for z/OS V4.1 Programming Guide

the DATA DIVISION as shown below. National group items behave in the same way

as elementary category national data items in most operations. The GROUP-USAGE

NATIONAL clause indicates that a group item and any group items subordinate to it

are national groups. Subordinate elementary items in a national group must be

explicitly or implicitly described as USAGE NATIONAL.

Data Division.

File Section.

FD Customer-File

 Record Contains 90 Characters.

01 Customer-Record Group-Usage National.

 05 Customer-Name.

 10 Last-Name Pic n(17).

 10 Filler Pic n.

 10 Initials Pic nn.

 05 Part-Order.

 10 Part-Name Pic n(15).

 10 Part-Color Pic n(10).

Working-Storage Section.

01 Orig-Customer-Name Group-Usage National.

 05 Surname Pic n(17).

 05 Initials Pic n(3).

01 Inventory-Part-Name Pic n(15) Usage National.

. . .

Procedure Division.

 Move Customer-Name to Orig-Customer-Name

 Move Part-Name to Inventory-Part-Name

 . . .

In the example above, the group items could instead specify the USAGE NATIONAL

clause at the group level. A USAGE clause at the group level applies to each

elementary data item in a group (and thus serves as a convenient shorthand

notation). However, a group that specifies the USAGE NATIONAL clause is not a

national group despite the representation of the elementary items within the group.

Groups that specify the USAGE clause are alphanumeric groups and behave in many

operations, such as moves and compares, like elementary data items of USAGE

DISPLAY (except that no editing or conversion of data occurs).

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

“National groups” on page 129

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

“Using national groups” on page 130

RELATED REFERENCES

“FILE SECTION entries” on page 14

“Storage of national data” on page 133

Classes and categories of group items (Enterprise COBOL Language Reference)

PICTURE clause (Enterprise COBOL Language Reference)

MOVE statement (Enterprise COBOL Language Reference)

USAGE clause (Enterprise COBOL Language Reference)

Using literals

A literal is a character string whose value is given by the characters themselves. If

you know the value you want a data item to have, you can use a literal

representation of the data value in the PROCEDURE DIVISION.

Chapter 2. Using data 27

You do not need to declare a data item for the value nor refer to it by using a

data-name. For example, you can prepare an error message for an output file by

moving an alphanumeric literal:

Move "Name is not valid" To Customer-Name

You can compare a data item to a specific integer value by using a numeric literal.

In the example below, "Name is not valid" is an alphanumeric literal, and 03519 is

a numeric literal:

01 Part-number Pic 9(5).

. . .

 If Part-number = 03519 then display "Part number was found"

You can use the opening delimiter N" or N’ to designate a national literal if the

NSYMBOL(NATIONAL) compiler option is in effect, or to designate a DBCS literal if the

NSYMBOL(DBCS) compiler option is in effect.

You can use the opening delimiter NX" or NX’ to designate national literals in

hexadecimal notation (regardless of the setting of the NSYMBOL compiler option).

Each group of four hexadecimal digits designates a single national character.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Using national literals” on page 127

“Using DBCS literals” on page 142

RELATED REFERENCES

“NSYMBOL” on page 330

Literals (Enterprise COBOL Language Reference)

Using constants

A constant is a data item that has only one value. COBOL does not define a

construct for constants. However, you can define a data item with an initial value

by coding a VALUE clause in the data description (instead of coding an INITIALIZE

statement).

Data Division.

01 Report-Header pic x(50) value "Company Sales Report".

. . .

01 Interest pic 9v9999 value 1.0265.

The example above initializes an alphanumeric and a numeric data item. You can

likewise use a VALUE clause in defining a national or DBCS constant.

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

“Coding for use of DBCS support” on page 141

Using figurative constants

Certain commonly used constants and literals are available as reserved words

called figurative constants: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, and ALL

literal. Because they represent fixed values, figurative constants do not require a

data definition.

28 Enterprise COBOL for z/OS V4.1 Programming Guide

For example:

Move Spaces To Report-Header

RELATED TASKS

“Using national-character figurative constants” on page 128

“Coding for use of DBCS support” on page 141

RELATED REFERENCES

Figurative constants (Enterprise COBOL Language Reference)

Assigning values to data items

After you have defined a data item, you can assign a value to it at any time.

Assignment takes many forms in COBOL, depending on what you want to do.

 Table 3. Assignment to data items in a program

What you want to do How to do it

Assign values to a data item or large data area. Use one of these ways:

v INITIALIZE statement

v MOVE statement

v STRING or UNSTRING statement

v VALUE clause (to set data items to the values you

want them to have when the program is in

initial state)

Assign the results of arithmetic. Use COMPUTE, ADD, SUBTRACT, MULTIPLY, or DIVIDE

statements.

Examine or replace characters or groups of characters in a data

item.

Use the INSPECT statement.

Receive values from a file. Use the READ (or READ INTO) statement.

Receive values from a system input device or a file. Use the ACCEPT statement.

Establish a constant. Use the VALUE clause in the definition of the data

item, and do not use the data item as a receiver.

Such an item is in effect a constant even though the

compiler does not enforce read-only constants.

One of these actions:

v Place a value associated with a table element in an index.

v Set the status of an external switch to ON or OFF.

v Move data to a condition-name to make the condition true.

v Set a POINTER, PROCEDURE-POINTER, or FUNCTION-POINTER data

item to an address.

v Associate an OBJECT REFERENCE data item with an object

instance.

Use the SET statement.

“Examples: initializing data items” on page 30

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32

“Assigning values to elementary data items (MOVE)” on page 34

“Assigning values to group data items (MOVE)” on page 35

“Assigning input from a screen or file (ACCEPT)” on page 37

“Joining data items (STRING)” on page 101

Chapter 2. Using data 29

“Splitting data items (UNSTRING)” on page 103

“Assigning arithmetic results (MOVE or COMPUTE)” on page 36

“Tallying and replacing data items (INSPECT)” on page 111

Chapter 7, “Processing data in an international environment,” on page 121

Examples: initializing data items

The following examples show how you can initialize many kinds of data items,

including alphanumeric, national-edited, and numeric-edited data items, by using

INITIALIZE statements.

An INITIALIZE statement is functionally equivalent to one or more MOVE statements.

The related tasks about initializing show how you can use an INITIALIZE statement

on a group item to conveniently initialize all the subordinate data items that are in

a given data category.

Initializing a data item to blanks or zeros:

INITIALIZE identifier-1

 identifier-1 PICTURE identifier-1 before identifier-1 after

9(5) 12345 00000

X(5) AB123 bbbbb1

N(3) 0041004200312 0020002000203

99XX9 12AB3 bbbbb1

XXBX/XX ABbC/DE bbbb/bb1

**99.9CR 1234.5CR **00.0bb1

A(5) ABCDE bbbbb1

+99.99E+99 +12.34E+02 +00.00E+00

1. The symbol b represents a blank space.

2. Hexadecimal representation of the national (UTF-16) characters ’AB1’. The example

assumes that identifier-1 has Usage National.

3. Hexadecimal representation of the national (UTF-16) characters ’ ’ (three blank

spaces). Note that if identifier-1 were not defined as Usage National, and if

NSYMBOL(DBCS) were in effect, INITIALIZE would instead store DBCS spaces (’4040’) into

identifier-1.

Initializing an alphanumeric data item:

01 ALPHANUMERIC-1 PIC X VALUE "y".

01 ALPHANUMERIC-3 PIC X(1) VALUE "A".

. . .

 INITIALIZE ALPHANUMERIC-1

 REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

 ALPHANUMERIC-3 ALPHANUMERIC-1 before ALPHANUMERIC-1 after

A y A

Initializing an alphanumeric right-justified data item:

01 ANJUST PIC X(8) VALUE SPACES JUSTIFIED RIGHT.

01 ALPHABETIC-1 PIC A(4) VALUE "ABCD".

. . .

 INITIALIZE ANJUST

 REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

30 Enterprise COBOL for z/OS V4.1 Programming Guide

ALPHABETIC-1 ANJUST before ANJUST after

ABCD bbbbbbbb1 bbbbABCD1

1. The symbol b represents a blank space.

Initializing an alphanumeric-edited data item:

01 ALPHANUM-EDIT-1 PIC XXBX/XXX VALUE "ABbC/DEF".

01 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/bb".

. . .

 INITIALIZE ALPHANUM-EDIT-1

 REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

 ALPHANUM-EDIT-3 ALPHANUM-EDIT-1 before ALPHANUM-EDIT-1 after

M/bb1 ABbC/DEF1 M/bb/bbb1

1. The symbol b represents a blank space.

Initializing a national data item:

01 NATIONAL-1 PIC NN USAGE NATIONAL VALUE N"AB".

01 NATIONAL-3 PIC NN USAGE NATIONAL VALUE N"CD".

. . .

 INITIALIZE NATIONAL-1

 REPLACING NATIONAL DATA BY NATIONAL-3

 NATIONAL-3 NATIONAL-1 before NATIONAL-1 after

004300441 004100422 004300441

1. Hexadecimal representation of the national characters ’CD’

2. Hexadecimal representation of the national characters ’AB’

Initializing a national-edited data item:

01 NATL-EDIT-1 PIC 0NN USAGE NATIONAL VALUE N"123".

01 NATL-3 PIC NNN USAGE NATIONAL VALUE N"456".

. . .

 INITIALIZE NATL-EDIT-1

 REPLACING NATIONAL-EDITED DATA BY NATL-3

 NATL-3 NATL-EDIT-1 before NATL-EDIT-1 after

0034003500361 0031003200332 0030003400353

1. Hexadecimal representation of the national characters ’456’

2. Hexadecimal representation of the national characters ’123’

3. Hexadecimal representation of the national characters ’045’

Initializing a numeric (zoned decimal) data item:

01 NUMERIC-1 PIC 9(8) VALUE 98765432.

01 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.

. . .

 INITIALIZE NUMERIC-1

 REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

 NUM-INT-CMPT-3 NUMERIC-1 before NUMERIC-1 after

1234567 98765432 01234567

Chapter 2. Using data 31

Initializing a numeric (national decimal) data item:

01 NAT-DEC-1 PIC 9(3) USAGE NATIONAL VALUE 987.

01 NUM-INT-BIN-3 PIC 9(2) BINARY VALUE 12.

. . .

 INITIALIZE NAT-DEC-1

 REPLACING NUMERIC DATA BY NUM-INT-BIN-3

 NUM-INT-BIN-3 NAT-DEC-1 before NAT-DEC-1 after

12 0039003800371 0030003100322

1. Hexadecimal representation of the national characters ’987’

2. Hexadecimal representation of the national characters ’012’

Initializing a numeric-edited (USAGE DISPLAY) data item:

01 NUM-EDIT-DISP-1 PIC $ZZ9V VALUE "$127".

01 NUM-DISP-3 PIC 999V VALUE 12.

. . .

 INITIALIZE NUM-EDIT-DISP-1

 REPLACING NUMERIC DATA BY NUM-DISP-3

 NUM-DISP-3 NUM-EDIT-DISP-1 before NUM-EDIT-DISP-1 after

012 $127 $ 12

Initializing a numeric-edited (USAGE NATIONAL) data item:

01 NUM-EDIT-NATL-1 PIC $ZZ9V NATIONAL VALUE N"$127".

01 NUM-NATL-3 PIC 999V NATIONAL VALUE 12.

. . .

 INITIALIZE NUM-EDIT-NATL-1

 REPLACING NUMERIC DATA BY NUM-NATL-3

 NUM-NATL-3 NUM-EDIT-NATL-1 before NUM-EDIT-NATL-1 after

0030003100321 00240031003200372 00240020003100323

1. Hexadecimal representation of the national characters ’012’

2. Hexadecimal representation of the national characters ’$127’

3. Hexadecimal representation of the national characters ’$ 12’

RELATED TASKS

“Initializing a structure (INITIALIZE)”

“Initializing a table (INITIALIZE)” on page 76

“Defining numeric data” on page 45

RELATED REFERENCES

“NSYMBOL” on page 330

Initializing a structure (INITIALIZE)

You can reset the values of all subordinate data items in a group item by applying

the INITIALIZE statement to that group item. However, it is inefficient to initialize

an entire group unless you really need all the items in the group to be initialized.

The following example shows how you can reset fields to spaces and zeros in

transaction records that a program produces. The values of the fields are not

32 Enterprise COBOL for z/OS V4.1 Programming Guide

identical in each record that is produced. (The transaction record is defined as an

alphanumeric group item, TRANSACTION-OUT.)

01 TRANSACTION-OUT.

 05 TRANSACTION-CODE PIC X.

 05 PART-NUMBER PIC 9(6).

 05 TRANSACTION-QUANTITY PIC 9(5).

 05 PRICE-FIELDS.

 10 UNIT-PRICE PIC 9(5)V9(2).

 10 DISCOUNT PIC V9(2).

 10 SALES-PRICE PIC 9(5)V9(2).

. . .

 INITIALIZE TRANSACTION-OUT

 Record TRANSACTION-OUT before TRANSACTION-OUT after

 1 R001383000240000000000000000 b0000000000000000000000000001

 2 R001390000480000000000000000 b0000000000000000000000000001

 3 S001410000120000000000000000 b0000000000000000000000000001

 4 C001383000000000425000000000 b0000000000000000000000000001

 5 C002010000000000000100000000 b0000000000000000000000000001

1. The symbol b represents a blank space.

You can likewise reset the values of all the subordinate data items in a national

group item by applying the INITIALIZE statement to that group item. The

following structure is similar to the preceding structure, but instead uses Unicode

UTF-16 data:

01 TRANSACTION-OUT GROUP-USAGE NATIONAL.

 05 TRANSACTION-CODE PIC N.

 05 PART-NUMBER PIC 9(6).

 05 TRANSACTION-QUANTITY PIC 9(5).

 05 PRICE-FIELDS.

 10 UNIT-PRICE PIC 9(5)V9(2).

 10 DISCOUNT PIC V9(2).

 10 SALES-PRICE PIC 9(5)V9(2).

. . .

 INITIALIZE TRANSACTION-OUT

Regardless of the previous contents of the transaction record, after the INITIALIZE

statement above is executed:

v TRANSACTION-CODE contains NX"0020" (a national space).

v Each of the remaining 27 national character positions of TRANSACTION-OUT

contains NX"0030" (a national-decimal zero).

When you use an INITIALIZE statement to initialize an alphanumeric or national

group data item, the data item is processed as a group item, that is, with group

semantics. The elementary data items within the group are recognized and

processed, as shown in the examples above. If you do not code the REPLACING

phrase of the INITIALIZE statement:

v SPACE is the implied sending item for alphabetic, alphanumeric,

alphanumeric-edited, DBCS, category national, and national-edited receiving

items.

v ZERO is the implied sending item for numeric and numeric-edited receiving

items.

RELATED CONCEPTS

“National groups” on page 129

Chapter 2. Using data 33

RELATED TASKS

“Initializing a table (INITIALIZE)” on page 76

“Using national groups” on page 130

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)

Assigning values to elementary data items (MOVE)

Use a MOVE statement to assign a value to an elementary data item.

The following statement assigns the contents of an elementary data item,

Customer-Name, to the elementary data item Orig-Customer-Name:

Move Customer-Name to Orig-Customer-Name

If Customer-Name is longer than Orig-Customer-Name, truncation occurs on the right.

If Customer-Name is shorter, the extra character positions on the right in

Orig-Customer-Name are filled with spaces.

For data items that contain numbers, moves can be more complicated than with

character data items because there are several ways in which numbers can be

represented. In general, the algebraic values of numbers are moved if possible, as

opposed to the digit-by-digit moves that are performed with character data. For

example, after the MOVE statement below, Item-x contains the value 3.0, represented

as 0030:

01 Item-x Pic 999v9.

. . .

 Move 3.06 to Item-x

You can move an alphabetic, alphanumeric, alphanumeric-edited, DBCS, integer, or

numeric-edited data item to a category national or national-edited data item; the

sending item is converted. You can move a national data item to a category

national or national-edited data item. If the content of a category national data

item has a numeric value, you can move that item to a numeric, numeric-edited,

external floating-point, or internal floating-point data item. You can move a

national-edited data item only to a category national data item or another

national-edited data item. Padding or truncation might occur.

For complete details about elementary moves, see the related reference below

about the MOVE statement.

The following example shows an alphanumeric data item in the Greek language

that is moved to a national data item:

CBL CODEPAGE(00875)

. . .

01 Data-in-Unicode Pic N(100) usage national.

01 Data-in-Greek Pic X(100).

. . .

 Read Greek-file into Data-in-Greek

 Move Data-in-Greek to Data-in-Unicode

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

34 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Assigning values to group data items (MOVE)”

“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

“CODEPAGE” on page 309

Classes and categories of data (Enterprise COBOL Language Reference)

MOVE statement (Enterprise COBOL Language Reference)

Assigning values to group data items (MOVE)

Use the MOVE statement to assign values to group data items.

You can move a national group item (a data item that is described with the

GROUP-USAGE NATIONAL clause) to another national group item. The compiler

processes the move as though each national group item were an elementary item

of category national, that is, as if each item were described as PIC N(m), where m

is the length of that item in national character positions.

You can move an alphanumeric group item to an alphanumeric group item or to a

national group item. You can also move a national group item to an alphanumeric

group item. The compiler performs such moves as group moves, that is, without

consideration of the individual elementary items in the sending or receiving group,

and without conversion of the sending data item. Be sure that the subordinate data

descriptions in the sending and receiving group items are compatible. The moves

occur even if a destructive overlap could occur at run time.

You can code the CORRESPONDING phrase in a MOVE statement to move subordinate

elementary items from one group item to the identically named corresponding

subordinate elementary items in another group item:

01 Group-X.

 02 T-Code Pic X Value "A".

 02 Month Pic 99 Value 04.

 02 State Pic XX Value "CA".

 02 Filler PIC X.

01 Group-N Group-Usage National.

 02 State Pic NN.

 02 Month Pic 99.

 02 Filler Pic N.

 02 Total Pic 999.

. . .

 MOVE CORR Group-X TO Group-N

In the example above, State and Month within Group-N receive the values in

national representation of State and Month, respectively, from Group-X. The other

data items in Group-N are unchanged. (Filler items in a receiving group item are

unchanged by a MOVE CORRESPONDING statement.)

In a MOVE CORRESPONDING statement, sending and receiving group items are treated

as group items, not as elementary data items; group semantics apply. That is, the

elementary data items within each group are recognized, and the results are the

same as if each pair of corresponding data items were referenced in a separate

MOVE statement. Data conversions are performed according to the rules for the MOVE

statement as specified in the related reference below. For details about which types

of elementary data items correspond, see the related reference about the

CORRESPONDING phrase.

Chapter 2. Using data 35

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

“National groups” on page 129

RELATED TASKS

“Assigning values to elementary data items (MOVE)” on page 34

“Using national groups” on page 130

“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

Classes and categories of group items (Enterprise COBOL Language Reference)

MOVE statement (Enterprise COBOL Language Reference)

CORRESPONDING phrase (Enterprise COBOL Language Reference)

Assigning arithmetic results (MOVE or COMPUTE)

When assigning a number to a data item, consider using the COMPUTE statement

instead of the MOVE statement.

Move w to z

Compute z = w

In the example above, the two statements in most cases have the same effect. The

MOVE statement however carries out the assignment with truncation. You can use

the DIAGTRUNC compiler option to request that the compiler issue a warning for

MOVE statements that might truncate numeric receivers.

When significant left-order digits would be lost in execution, the COMPUTE statement

can detect the condition and allow you to handle it. If you use the ON SIZE ERROR

phrase of the COMPUTE statement, the compiler generates code to detect a

size-overflow condition. If the condition occurs, the code in the ON SIZE ERROR

phrase is performed, and the content of z remains unchanged. If you do not

specify the ON SIZE ERROR phrase, the assignment is carried out with truncation.

There is no ON SIZE ERROR support for the MOVE statement.

You can also use the COMPUTE statement to assign the result of an arithmetic

expression or intrinsic function to a data item. For example:

Compute z = y + (x ** 3)

Compute x = Function Max(x y z)

You can assign the results of date, time, mathematical, and other calculations to

data items by using Language Environment callable services. Language

Environment services are available through a standard COBOL CALL statement, and

the values they return are passed in the parameters of the CALL statement. For

example, you can call the Language Environment service CEESIABS to find the

absolute value of a data item by coding the following statement:

Call ’CEESIABS’ Using Arg, Feedback-code, Result.

As a result of this call, data item Result is assigned the absolute value of the value

in data item Arg; data item Feedback-code contains the return code that indicates

whether the service completed successfully. You have to define all the data items in

the DATA DIVISION using the correct descriptions according to the requirements of

the particular callable service. For the example above, the data items could be

defined as follows:

77 Arg Pic s9(9) Binary.

77 Feedback-code Pic x(12) Display.

77 Result Pic s9(9) Binary.

36 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

“DIAGTRUNC” on page 316

Intrinsic functions (Enterprise COBOL Language Reference)

Language Environment Programming Reference (Callable services)

Assigning input from a screen or file (ACCEPT)

One way to assign a value to a data item is to read the value from a screen or a

file.

To enter data from the screen, first associate the monitor with a mnemonic-name in

the SPECIAL-NAMES paragraph. Then use ACCEPT to assign the line of input entered

at the screen to a data item. For example:

Environment Division.

Configuration Section.

Special-Names.

 Console is Names-Input.

. . .

 Accept Customer-Name From Names-Input

To read from a file instead of the screen, make the following change:

v Change Console to device, where device is any valid system device (for example,

SYSIN). For example:

SYSIN is Names-Input

device can be a ddname that references a hierarchical file system (HFS) path. If

this ddname is not defined and your program is running in the z/OS UNIX

environment, stdin is the input source. If this ddname is not defined and your

program is not running in the z/OS UNIX environment, the ACCEPT statement

fails.

When you use the ACCEPT statement, you can assign a value to an alphanumeric or

national group item, or to an elementary data item that has USAGE DISPLAY, USAGE

DISPLAY-1, or USAGE NATIONAL.

When you assign a value to a USAGE NATIONAL data item, input data from the

console is converted from the EBCDIC code page specified in the CODEPAGE

compiler option to national (Unicode UTF-16) representation. This is the only case

where conversion of national data is done when you use the ACCEPT statement.

Conversion is done in this case because the input is known to be coming from a

screen.

To have conversion done when the input data is from any other device, use the

NATIONAL-OF intrinsic function.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 135

RELATED REFERENCES

“CODEPAGE” on page 309

ACCEPT statement (Enterprise COBOL Language Reference)

SPECIAL-NAMES paragraph (Enterprise COBOL Language Reference)

Chapter 2. Using data 37

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

Displaying values on a screen or in a file (DISPLAY)

You can display the value of a data item on a screen or write it to a file by using

the DISPLAY statement.

Display "No entry for surname ’" Customer-Name "’ found in the file.".

In the example above, if the content of data item Customer-Name is JOHNSON,

then the statement displays the following message on the system logical output

device:

No entry for surname ’JOHNSON’ found in the file.

To write data to a destination other than the system logical output device, use the

UPON phrase with a destination other than SYSOUT. For example, the following

statement writes to the file specified in the SYSPUNCH DD statement:

Display "Hello" upon syspunch.

You can specify a file in the HFS by using the SYSPUNCH DD statement. For example,

the following definition causes DISPLAY output to be written to the file

/u/userid/cobol/demo.lst:

//SYSPUNCH DD PATH=’/u/userid/cobol/demo.lst’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU,

// FILEDATA=TEXT

The following statement writes to the job log or console and to the TSO screen if

you are running under TSO:

Display "Hello" upon console.

When you display the value of a USAGE NATIONAL data item to the console, it is

converted from Unicode (UTF-16) representation to EBCDIC based on the value of

the CODEPAGE option. This is the only case where conversion of national data is

done when you use the DISPLAY statement. Conversion is done in this case because

the output is known to be directed to a screen.

To have a national data item be converted when you direct output to a different

device, use the DISPLAY-OF intrinsic function, such as in the following example:

01 Data-in-Unicode pic N(10) usage national.

. . .

 Display function Display-of(Data-in-Unicode, 00037)

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Displaying data on the system logical output device” on page 39

“Using WITH NO ADVANCING” on page 39

“Converting national to alphanumeric (DISPLAY-OF)” on page 136

“Coding COBOL programs to run under CICS” on page 405

RELATED REFERENCES

“CODEPAGE” on page 309

DISPLAY statement (Enterprise COBOL Language Reference)

38 Enterprise COBOL for z/OS V4.1 Programming Guide

Displaying data on the system logical output device

To write data to the system logical output device, either omit the UPON clause or

use the UPON clause with destination SYSOUT.

Display "Hello" upon sysout.

The output is directed to the ddname that you specify in the OUTDD compiler

option. You can specify a file in the hierarchical file system with this ddname.

If the OUTDD ddname is not allocated and you are not running in the z/OS UNIX

environment, a default DD of SYSOUT=* is allocated. If the OUTDD ddname is not

allocated and you are running in the z/OS UNIX environment, the _IGZ_SYSOUT

environment variable is used as follows:

Undefined or set to stdout

Output is routed to stdout (file descriptor 1).

Set to stderr

Output is routed to stderr (file descriptor 2).

Otherwise (set to something other than stdout or stderr)

The DISPLAY statement fails; a severity-3 Language Environment condition

is raised.

When DISPLAY output is routed to stdout or stderr, the output is not subdivided

into records. The output is written as a single stream of characters without line

breaks.

If OUTDD and the Language Environment runtime option MSGFILE specify the same

ddname, both DISPLAY output and Language Environment runtime diagnostics are

routed to the Language Environment message file.

RELATED TASKS

“Setting and accessing environment variables” on page 436

RELATED REFERENCES

“OUTDD” on page 336

DISPLAY statement (Enterprise COBOL Language Reference)

Using WITH NO ADVANCING

If you specify the WITH NO ADVANCING phrase, and output is going to a ddname, the

printer control character + (plus) is placed into the first output position from the

next DISPLAY statement. + is the ANSI-defined printer control character that

suppresses line spacing before a record is printed.

If you specify the WITH NO ADVANCING phrase and the output is going to stdout or

stderr, a newline character is not appended to the end of the stream. A subsequent

DISPLAY statement might add additional characters to the end of the stream.

If you do not specify WITH NO ADVANCING, and the output is going to a ddname, the

printer control character ’ ’ (space) is placed into the first output position from the

next DISPLAY statement, indicating single-spaced output.

Chapter 2. Using data 39

DISPLAY "ABC"

DISPLAY "CDEF" WITH NO ADVANCING

DISPLAY "GHIJK" WITH NO ADVANCING

DISPLAY "LMNOPQ"

DISPLAY "RSTUVWX"

If you code the statements above, the result sent to the output device is:

 ABC

 CDEF

+GHIJK

+LMNOPQ

 RSTUVMX

The output that is printed depends on how the output device interprets printer

control characters.

If you do not specify the WITH NO ADVANCING phrase and the output is going to

stdout or stderr, a newline character is appended to the end of the stream.

RELATED REFERENCES

DISPLAY statement (Enterprise COBOL Language Reference)

Using intrinsic functions (built-in functions)

Some high-level programming languages have built-in functions that you can

reference in your program as if they were variables that have defined attributes

and a predetermined value. In COBOL, these functions are called intrinsic functions.

They provide capabilities for manipulating strings and numbers.

Because the value of an intrinsic function is derived automatically at the time of

reference, you do not need to define functions in the DATA DIVISION. Define only

the nonliteral data items that you use as arguments. Figurative constants are not

allowed as arguments.

A function-identifier is the combination of the COBOL reserved word FUNCTION

followed by a function name (such as Max), followed by any arguments to be used

in the evaluation of the function (such as x, y, z). For example, the groups of

highlighted words below are function-identifiers:

Unstring Function Upper-case(Name) Delimited By Space

 Into Fname Lname

Compute A = 1 + Function Log10(x)

Compute M = Function Max(x y z)

A function-identifier represents both the invocation of the function and the data

value returned by the function. Because it actually represents a data item, you can

use a function-identifier in most places in the PROCEDURE DIVISION where a data

item that has the attributes of the returned value can be used.

The COBOL word function is a reserved word, but the function-names are not

reserved. You can use them in other contexts, such as for the name of a data item.

For example, you could use Sqrt to invoke an intrinsic function and to name a

data item in your program:

Working-Storage Section.

01 x Pic 99 value 2.

01 y Pic 99 value 4.

01 z Pic 99 value 0.

01 Sqrt Pic 99 value 0.

40 Enterprise COBOL for z/OS V4.1 Programming Guide

. . .

 Compute Sqrt = 16 ** .5

 Compute z = x + Function Sqrt(y)

 . . .

A function-identifier represents a value that is of one of these types: alphanumeric,

national, numeric, or integer. You can include a substring specification (reference

modifier) in a function-identifier for alphanumeric or national functions. Numeric

intrinsic functions are further classified according to the type of numbers they

return.

The functions MAX, MIN, DATEVAL, and UNDATE can return either type of value

depending on the type of arguments you supply.

The functions DATEVAL, UNDATE, and YEARWINDOW are provided with the millennium

language extensions to assist with manipulating and converting windowed date

fields.

Functions can reference other functions as arguments provided that the results of

the nested functions meet the requirements for the arguments of the outer function.

For example, Function Sqrt(5) returns a numeric value. Thus, the three arguments

to the MAX function below are all numeric, which is an allowable argument type for

this function:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

RELATED TASKS

“Processing table items using intrinsic functions” on page 86

“Converting data items (intrinsic functions)” on page 112

“Evaluating data items (intrinsic functions)” on page 115

Using tables (arrays) and pointers

In COBOL, arrays are called tables. A table is a set of logically consecutive data

items that you define in the DATA DIVISION by using the OCCURS clause.

Pointers are data items that contain virtual storage addresses. You define them

either explicitly with the USAGE IS POINTER clause in the DATA DIVISION or

implicitly as ADDRESS OF special registers.

You can perform the following operations with pointer data items:

v Pass them between programs by using the CALL . . . BY REFERENCE statement.

v Move them to other pointers by using the SET statement.

v Compare them to other pointers for equality by using a relation condition.

v Initialize them to contain an invalid address by using VALUE IS NULL.

Use pointer data items to:

v Accomplish limited base addressing, particularly if you want to pass and receive

addresses of a record area that is defined with OCCURS DEPENDING ON and is

therefore variably located.

v Handle a chained list.

RELATED TASKS

“Defining a table (OCCURS)” on page 69

“Using procedure and function pointers” on page 460

Chapter 2. Using data 41

Storage and its addressability

When you run COBOL programs, the programs and the data that they use reside

in virtual storage. Storage that you use with COBOL can be either below the

16-MB line or above the 16-MB line but below the 2-GB bar. Two modes of

addressing are available to address this storage: 24-bit and 31-bit.

You can address storage below (but not above) the 16-MB line with 24-bit

addressing. You can address storage either above or below the 16-MB line with

31-bit addressing. Unrestricted storage is addressable by 31-bit addressing and

therefore encompasses all the storage available to your program, both above and

below the 16-MB line.

Enterprise COBOL does not directly exploit the 64-bit virtual addressing capability

of z/OS; however, COBOL applications running in 31-bit or 24-bit addressing

mode are fully supported on 64-bit z/OS systems.

Addressing mode (AMODE) is the attribute that tells which hardware addressing mode

is supported by your program: 24-bit addressing, 31-bit addressing, or either 24-bit

or 31-bit addressing. This attribute is AMODE 24, AMODE 31, or AMODE ANY,

respectively. The object program, the load module, and the executing program each

has an AMODE attribute. All Enterprise COBOL object programs are AMODE ANY.

Residency mode (RMODE) is the attribute of a program load module that identifies

where in virtual storage the program will reside: below the 16-MB line, or either

below or above. This attribute is RMODE 24 or RMODE ANY.

Enterprise COBOL uses Language Environment services to control the storage used

at run time. Thus COBOL compiler options and Language Environment runtime

options influence the AMODE and RMODE attributes of your program and data, alone

and in combination:

DATA Compiler option that influences the location of storage for WORKING-STORAGE

data, I-O buffers, and parameter lists for programs compiled with RENT.

RMODE Compiler option that influences the residency mode and also influences the

location of storage for WORKING-STORAGE data, I-O buffers, and parameter

lists for programs compiled with NORENT.

RENT Compiler option to generate a reentrant program.

HEAP Runtime option that controls storage for the runtime heap. For example,

COBOL WORKING-STORAGE is allocated from heap storage.

STACK Runtime option that controls storage for the runtime stack. For example,

COBOL LOCAL-STORAGE is allocated from stack storage.

ALL31 Runtime option that specifies whether an application can run entirely in

AMODE 31.

Settings for RMODE

The RMODE and RENT options determine the RMODE attribute of your program:

 Table 4. Effect of RMODE and RENT compiler options on the RMODE attribute

RMODE compiler option RENT compiler option RMODE attribute

RMODE(AUTO) NORENT RMODE 24

RMODE(AUTO) RENT RMODE ANY

42 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 4. Effect of RMODE and RENT compiler options on the RMODE

attribute (continued)

RMODE compiler option RENT compiler option RMODE attribute

RMODE(24) RENT or NORENT RMODE 24

RMODE(ANY) RENT or NORENT RMODE ANY

Link-edit considerations: When the object code that COBOL generates has an

attribute of RMODE 24, you must link-edit it with RMODE 24. When the object code

that COBOL generates has an attribute of RMODE ANY, you can link-edit it with

RMODE ANY or RMODE 24.

Storage restrictions for passing data

Do not pass parameters that are allocated in storage above the 16-MB line to AMODE

24 subprograms. Force the WORKING-STORAGE data and parameter lists below the line

for programs that run in 31-bit addressing mode and pass data to programs that

run in AMODE 24:

v Compile reentrant programs (RENT) with DATA(24).

v Compile nonreentrant programs (NORENT) with RMODE(24) or RMODE(AUTO).

v Nonreentrant programs (NORENT) compiled with RMODE(ANY) must be link-edited

with RMODE 24. The data areas for NORENT programs are above the 16-MB line or

below the 16-MB line depending on where the program is loaded, even if the

program was compiled with DATA(24). The DATA option does not affect programs

compiled with NORENT.

Location of data areas

For reentrant programs, the DATA compiler option and the HEAP runtime option

control whether storage for data areas such as WORKING-STORAGE SECTION and FD

record areas is obtained from below the 16-MB line or from unrestricted storage.

Compile programs with RENT or RMODE(ANY) if they will be run with 31-bit

addressing in virtual storage addresses above the 16-MB line. The DATA option does

not affect programs compiled with NORENT.

When you specify the runtime option HEAP(,,BELOW), the DATA compiler option has

no effect; the storage for WORKING-STORAGE SECTION data areas is allocated from

below the 16-MB line. However, with HEAP(,,ANYWHERE) as the runtime option,

storage for data areas is allocated from below the 16-MB line if you compiled the

program with the DATA(24) compiler option, or from unrestricted storage if you

compiled with the DATA(31) compiler option.

Storage for LOCAL-STORAGE data

The location of LOCAL-STORAGE data items is controlled by the STACK runtime option

and the AMODE of the program. LOCAL-STORAGE data items are acquired in

unrestricted storage when the STACK(,,ANYWHERE) runtime option is in effect and

the program is running in AMODE 31. Otherwise LOCAL-STORAGE is acquired below

the 16-MB line. The DATA compiler option does not influence the location of

LOCAL-STORAGE data.

Chapter 2. Using data 43

Storage for external data

In addition to affecting how storage is obtained for dynamic data areas

(WORKING-STORAGE, FD record areas, and parameter lists), the DATA compiler option

can also influence where storage for EXTERNAL data is obtained. Storage required for

EXTERNAL data is obtained from unrestricted storage if the following conditions are

met:

v The program is compiled with the DATA(31) and RENT compiler options or the

RMODE(ANY) and NORENT compiler options.

v The HEAP(,,ANYWHERE) runtime option is in effect.

v The ALL31(ON) runtime option is in effect.

In all other cases, the storage for EXTERNAL data is obtained from below the 16-MB

line. When you specify the ALL31(ON) runtime option, all the programs in the run

unit must be capable of running in 31-bit addressing mode.

Storage for QSAM input-output buffers

The DATA compiler option can also influence where input-output buffers for QSAM

files are obtained. See the related references below for information about allocation

of buffers for QSAM files and the DATA compiler option.

RELATED CONCEPTS

“AMODE switching” on page 451

Language Environment Programming Guide (Heap storage overview: AMODE

 considerations)

RELATED TASKS

Chapter 24, “Using subprograms,” on page 445

Chapter 25, “Sharing data,” on page 463

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 173

“DATA” on page 313

“RENT” on page 340

“RMODE” on page 341

“Performance-related compiler options” on page 660

Language Environment Programming Reference (HEAP, STACK, ALL31)

MVS Program Management: User’s Guide and Reference

44 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Chapter 3. Working with numbers and arithmetic

In general, you can view COBOL numeric data as a series of decimal digit

positions. However, numeric items can also have special properties such as an

arithmetic sign or a currency sign.

To define, display, and store numeric data so that you can perform arithmetic

operations efficiently:

v Use the PICTURE clause and the characters 9, +, -, P, S, and V to define numeric

data.

v Use the PICTURE clause and editing characters (such as Z, comma, and period)

along with MOVE and DISPLAY statements to display numeric data.

v Use the USAGE clause with various formats to control how numeric data is stored.

v Use the numeric class test to validate that data values are appropriate.

v Use ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements to perform

arithmetic.

v Use the CURRENCY SIGN clause and appropriate PICTURE characters to designate

the currency you want.

RELATED TASKS

“Defining numeric data”

“Displaying numeric data” on page 47

“Controlling how numeric data is stored” on page 48

“Checking for incompatible data (numeric class test)” on page 56

“Performing arithmetic” on page 57

“Using currency signs” on page 67

Defining numeric data

Define numeric items by using the PICTURE clause with the character 9 in the data

description to represent the decimal digits of the number. Do not use an X, which

is for alphanumeric data items.

For example, Count-y below is a numeric data item, an external decimal item that

has USAGE DISPLAY (a zoned decimal item):

05 Count-y Pic 9(4) Value 25.

05 Customer-name Pic X(20) Value "Johnson".

You can similarly define numeric data items to hold national characters (UTF-16).

For example, Count-n below is an external decimal data item that has USAGE

NATIONAL (a national decimal item):

05 Count-n Pic 9(4) Value 25 Usage National.

You can code up to 18 digits in the PICTURE clause when you compile using the

default compiler option ARITH(COMPAT) (referred to as compatibility mode). When

you compile using ARITH(EXTEND) (referred to as extended mode), you can code up

to 31 digits in the PICTURE clause.

Other characters of special significance that you can code are:

P Indicates leading or trailing zeros

© Copyright IBM Corp. 1991, 2007 45

S Indicates a sign, positive or negative

V Implies a decimal point

The s in the following example means that the value is signed:

05 Price Pic s99v99.

The field can therefore hold a positive or a negative value. The v indicates the

position of an implied decimal point, but does not contribute to the size of the

item because it does not require a storage position. An s usually does not

contribute to the size of a numeric item, because by default s does not require a

storage position.

However, if you plan to port your program or data to a different machine, you

might want to code the sign for a zoned decimal data item as a separate position

in storage. In the following case, the sign takes 1 byte:

05 Price Pic s99V99 Sign Is Leading, Separate.

This coding ensures that the convention your machine uses for storing a

nonseparate sign will not cause unexpected results on a machine that uses a

different convention.

Separate signs are also preferable for zoned decimal data items that will be printed

or displayed.

Separate signs are required for national decimal data items that are signed. The

sign takes 2 bytes of storage, as in the following example:

05 Price Pic s99V99 Usage National Sign Is Leading, Separate.

You cannot use the PICTURE clause with internal floating-point data (COMP-1 or

COMP-2). However, you can use the VALUE clause to provide an initial value for an

internal floating-point literal:

05 Compute-result Usage Comp-2 Value 06.23E-24.

For information about external floating-point data, see the examples referenced

below and the related concept about formats for numeric data.

“Examples: numeric data and internal representation” on page 52

RELATED CONCEPTS

“Formats for numeric data” on page 49

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS

“Displaying numeric data” on page 47

“Controlling how numeric data is stored” on page 48

“Performing arithmetic” on page 57

“Defining national numeric data items” on page 129

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 55

“Storage of national data” on page 133

“ARITH” on page 306

“NUMPROC” on page 332

SIGN clause (Enterprise COBOL Language Reference)

46 Enterprise COBOL for z/OS V4.1 Programming Guide

Displaying numeric data

You can define numeric items with certain editing symbols (such as decimal points,

commas, dollar signs, and debit or credit signs) to make the items easier to read

and understand when you display or print them.

For example, in the code below, Edited-price is a numeric-edited item that has

USAGE DISPLAY. (You can specify the clause USAGE IS DISPLAY for numeric-edited

items; however, it is implied. It means that the items are stored in character

format.)

05 Price Pic 9(5)v99.

05 Edited-price Pic $zz,zz9.99.

. . .

Move Price To Edited-price

Display Edited-price

If the contents of Price are 0150099 (representing the value 1,500.99), $ 1,500.99 is

displayed when you run the code. The z in the PICTURE clause of Edited-price

indicates the suppression of leading zeros.

You can define numeric-edited data items to hold national (UTF-16) characters

instead of alphanumeric characters. To do so, declare the numeric-edited items as

USAGE NATIONAL. The effect of the editing symbols is the same for numeric-edited

items that have USAGE NATIONAL as it is for numeric-edited items that have USAGE

DISPLAY, except that the editing is done with national characters. For example, if

Edited-price is declared as USAGE NATIONAL in the code above, the item is edited

and displayed using national characters.

To display numeric or numeric-edited data items that have USAGE NATIONAL in

EBCDIC, direct them to CONSOLE. For example, if Edited-price in the code above

has USAGE NATIONAL, $ 1,500.99 is displayed when you run the program if the last

statement above is:

Display Edited-price Upon Console

You can cause an elementary numeric or numeric-edited item to be filled with

spaces when a value of zero is stored into it by coding the BLANK WHEN ZERO clause

for the item. For example, each of the DISPLAY statements below causes blanks to

be displayed instead of zeros:

05 Price Pic 9(5)v99.

05 Edited-price-D Pic $99,999.99

 Blank When Zero.

05 Edited-price-N Pic $99,999.99 Usage National

 Blank When Zero.

. . .

Move 0 to Price

Move Price to Edited-price-D

Move Price to Edited-price-N

Display Edited-price-D

Display Edited-price-N upon console

You cannot use numeric-edited items as sending operands in arithmetic

expressions or in ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statements. (Numeric

editing takes place when a numeric-edited item is the receiving field for one of

these statements, or when a MOVE statement has a numeric-edited receiving field

and a numeric-edited or numeric sending field.) You use numeric-edited items

primarily for displaying or printing numeric data.

Chapter 3. Working with numbers and arithmetic 47

You can move numeric-edited items to numeric or numeric-edited items. In the

following example, the value of the numeric-edited item (whether it has USAGE

DISPLAY or USAGE NATIONAL) is moved to the numeric item:

Move Edited-price to Price

Display Price

If these two statements immediately followed the statements in the first example

above, then Price would be displayed as 0150099, representing the value 1,500.99.

Price would also be displayed as 0150099 if Edited-price had USAGE NATIONAL.

You can also move numeric-edited items to alphanumeric, alphanumeric-edited,

floating-point, and national data items. For a complete list of the valid receiving

items for numeric-edited data, see the related reference about the MOVE statement.

“Examples: numeric data and internal representation” on page 52

RELATED TASKS

“Displaying values on a screen or in a file (DISPLAY)” on page 38

“Controlling how numeric data is stored”

“Defining numeric data” on page 45

“Performing arithmetic” on page 57

“Defining national numeric data items” on page 129

“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)

BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

Controlling how numeric data is stored

You can control how the computer stores numeric data items by coding the USAGE

clause in your data description entries.

You might want to control the format for any of several reasons such as these:

v Arithmetic performed with computational data types is more efficient than with

USAGE DISPLAY or USAGE NATIONAL data types.

v Packed-decimal format requires less storage per digit than USAGE DISPLAY or

USAGE NATIONAL data types.

v Packed-decimal format converts to and from DISPLAY or NATIONAL format more

efficiently than binary format does.

v Floating-point format is well suited for arithmetic operands and results with

widely varying scale, while maintaining the maximal number of significant

digits.

v You might need to preserve data formats when you move data from one

machine to another.

The numeric data you use in your program will have one of the following formats

available with COBOL:

v External decimal (USAGE DISPLAY or USAGE NATIONAL)

v External floating point (USAGE DISPLAY or USAGE NATIONAL)

v Internal decimal (USAGE PACKED-DECIMAL)

v Binary (USAGE BINARY)

v Native binary (USAGE COMP-5)

48 Enterprise COBOL for z/OS V4.1 Programming Guide

v Internal floating point (USAGE COMP-1 or USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with

PACKED-DECIMAL.

The compiler converts displayable numbers to the internal representation of their

numeric values before using them in arithmetic operations. Therefore it is often

more efficient if you define data items as BINARY or PACKED-DECIMAL than as

DISPLAY or NATIONAL. For example:

05 Initial-count Pic S9(4) Usage Binary Value 1000.

Regardless of which USAGE clause you use to control the internal representation of a

value, you use the same PICTURE clause conventions and decimal value in the

VALUE clause (except for internal floating-point data, for which you cannot use a

PICTURE clause).

“Examples: numeric data and internal representation” on page 52

RELATED CONCEPTS

“Formats for numeric data”

“Data format conversions” on page 54

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS

“Defining numeric data” on page 45

“Displaying numeric data” on page 47

“Performing arithmetic” on page 57

RELATED REFERENCES

“Conversions and precision” on page 54

“Sign representation of zoned and packed-decimal data” on page 55

Formats for numeric data

Several formats are available for numeric data.

External decimal (DISPLAY and NATIONAL) items

When USAGE DISPLAY is in effect for a category numeric data item (either because

you have coded it, or by default), each position (byte) of storage contains one

decimal digit. The items are stored in displayable form. External decimal items that

have USAGE DISPLAY are referred to as zoned decimal data items.

When USAGE NATIONAL is in effect for a category numeric data item, 2 bytes of

storage are required for each decimal digit. The items are stored in UTF-16 format.

External decimal items that have USAGE NATIONAL are referred to as national decimal

data items.

National decimal data items, if signed, must have the SIGN SEPARATE clause in

effect. All other rules for zoned decimal items apply to national decimal items. You

can use national decimal items anywhere that other category numeric data items

can be used.

External decimal (both zoned decimal and national decimal) data items are

primarily intended for receiving and sending numbers between your program and

Chapter 3. Working with numbers and arithmetic 49

files, terminals, or printers. You can also use external decimal items as operands

and receivers in arithmetic processing. However, if your program performs a lot of

intensive arithmetic, and efficiency is a high priority, COBOL’s computational

numeric types might be a better choice for the data items used in the arithmetic.

External floating-point (DISPLAY and NATIONAL) items

When USAGE DISPLAY is in effect for a floating-point data item (either because you

have coded it, or by default), each PICTURE character position (except for v, an

implied decimal point, if used) takes 1 byte of storage. The items are stored in

displayable form. External floating-point items that have USAGE DISPLAY are

referred to as display floating-point data items in this information when necessary to

distinguish them from external floating-point items that have USAGE NATIONAL.

In the following example, Compute-Result is implicitly defined as a display

floating-point item:

05 Compute-Result Pic -9v9(9)E-99.

The minus signs (-) do not mean that the mantissa and exponent must necessarily

be negative numbers. Instead, they mean that when the number is displayed, the

sign appears as a blank for positive numbers or a minus sign for negative

numbers. If you instead code a plus sign (+), the sign appears as a plus sign for

positive numbers or a minus sign for negative numbers.

When USAGE NATIONAL is in effect for a floating-point data item, each PICTURE

character position (except for v, if used) takes 2 bytes of storage. The items are

stored as national characters (UTF-16). External floating-point items that have

USAGE NATIONAL are referred to as national floating-point data items.

The existing rules for display floating-point items apply to national floating-point

items.

In the following example, Compute-Result-N is a national floating-point item:

05 Compute-Result-N Pic -9v9(9)E-99 Usage National.

If Compute-Result-N is displayed, the signs appear as described above for

Compute-Result, but in national characters.To instead display Compute-Result-N in

EBCDIC characters, direct it to the console:

Display Compute-Result-N Upon Console

You cannot use the VALUE clause for external floating-point items.

As with external decimal numbers, external floating-point numbers have to be

converted (by the compiler) to an internal representation of their numeric value

before they can be used in arithmetic operations. If you compile with the default

option ARITH (COMPAT), external floating-point numbers are converted to long

(64-bit) floating-point format. If you compile with ARITH (EXTEND), they are instead

converted to extended-precision (128-bit) floating-point format.

Binary (COMP) items

BINARY, COMP, and COMP-4 are synonyms. Binary-format numbers occupy 2, 4, or 8

bytes of storage. If the PICTURE clause specifies that an item is signed, the leftmost

bit is used as the operational sign.

50 Enterprise COBOL for z/OS V4.1 Programming Guide

A binary number with a PICTURE description of four or fewer decimal digits

occupies 2 bytes; five to nine decimal digits, 4 bytes; and 10 to 18 decimal digits, 8

bytes. Binary items with nine or more digits require more handling by the

compiler. Testing them for the SIZE ERROR condition and rounding is more

cumbersome than with other types.

You can use binary items, for example, for indexes, subscripts, switches, and

arithmetic operands or results.

Use the TRUNC(STD|OPT|BIN) compiler option to indicate how binary data (BINARY,

COMP, or COMP-4) is to be truncated.

Native binary (COMP-5) items

Data items that you declare as USAGE COMP-5 are represented in storage as binary

data. However, unlike USAGE COMP items, they can contain values of magnitude up

to the capacity of the native binary representation (2, 4, or 8 bytes) rather than

being limited to the value implied by the number of 9s in the PICTURE clause.

When you move or store numeric data into a COMP-5 item, truncation occurs at the

binary field size rather than at the COBOL PICTURE size limit. When you reference

a COMP-5 item, the full binary field size is used in the operation.

COMP-5 is thus particularly useful for binary data items that originate in

non-COBOL programs where the data might not conform to a COBOL PICTURE

clause.

The table below shows the ranges of possible values for COMP-5 data items.

 Table 5. Ranges in value of COMP-5 data items

PICTURE Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through +2,147,483,647

S9(10) through

S9(18)

Binary doubleword (8

bytes)

-9,223,372,036,854,775,808 through

+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8

bytes)

0 through 18,446,744,073,709,551,615

You can specify scaling (that is, decimal positions or implied integer positions) in

the PICTURE clause of COMP-5 items. If you do so, you must appropriately scale the

maximal capacities listed above. For example, a data item you describe as PICTURE

S99V99 COMP-5 is represented in storage as a binary halfword, and supports a range

of values from -327.68 through +327.67.

Large literals in VALUE clauses: Literals specified in VALUE clauses for COMP-5 items

can, with a few exceptions, contain values of magnitude up to the capacity of the

native binary representation. See Enterprise COBOL Language Reference for the

exceptions.

Regardless of the setting of the TRUNC compiler option, COMP-5 data items behave

like binary data does in programs compiled with TRUNC(BIN).

Chapter 3. Working with numbers and arithmetic 51

Packed-decimal (COMP-3) items

PACKED-DECIMAL and COMP-3 are synonyms. Packed-decimal items occupy 1 byte of

storage for every two decimal digits you code in the PICTURE description, except

that the rightmost byte contains only one digit and the sign. This format is most

efficient when you code an odd number of digits in the PICTURE description, so

that the leftmost byte is fully used. Packed-decimal items are handled as

fixed-point numbers for arithmetic purposes.

Internal floating-point (COMP-1 and COMP-2) items

COMP-1 refers to short floating-point format and COMP-2 refers to long floating-point

format, which occupy 4 and 8 bytes of storage, respectively. The leftmost bit

contains the sign and the next 7 bits contain the exponent; the remaining 3 or 7

bytes contain the mantissa.

COMP-1 and COMP-2 data items are stored in zSeries® hexadecimal format.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS

“Defining numeric data” on page 45

“Defining national numeric data items” on page 129

RELATED REFERENCES

“Storage of national data” on page 133

“TRUNC” on page 352

Classes and categories of data (Enterprise COBOL Language Reference)

SIGN clause (Enterprise COBOL Language Reference)

VALUE clause (Enterprise COBOL Language Reference)

Examples: numeric data and internal representation

The following table shows the internal representation of numeric items.

52 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 6. Internal representation of numeric items

Numeric type

PICTURE and USAGE and

optional SIGN clause Value Internal representation

External decimal PIC S9999 DISPLAY + 1234 F1 F2 F3 C4

- 1234 F1 F2 F3 D4

 1234 F1 F2 F3 C4

PIC 9999 DISPLAY 1234 F1 F2 F3 F4

PIC 9999 NATIONAL 1234 00 31 00 32 00 33 00 34

PIC S9999 DISPLAY

 SIGN LEADING

+ 1234 C1 F2 F3 F4

- 1234 D1 F2 F3 F4

PIC S9999 DISPLAY

 SIGN LEADING SEPARATE

+ 1234 4E F1 F2 F3 F4

- 1234 60 F1 F2 F3 F4

PIC S9999 DISPLAY

 SIGN TRAILING SEPARATE

+ 1234 F1 F2 F3 F4 4E

- 1234 F1 F2 F3 F4 60

PIC S9999 NATIONAL

 SIGN LEADING SEPARATE

+ 1234 00 2B 00 31 00 32 00 33 00 34

- 1234 00 2D 00 31 00 32 00 33 00 34

PIC S9999 NATIONAL

 SIGN TRAILING SEPARATE

+ 1234 00 31 00 32 00 33 00 34 00 2B

- 1234 00 31 00 32 00 33 00 34 00 2D

Binary PIC S9999 BINARY

PIC S9999 COMP

PIC S9999 COMP-4

+ 1234 04 D2

- 1234 FB 2E

PIC S9999 COMP-5 + 123451

 30 39

- 123451

 CF C7

PIC 9999 BINARY

PIC 9999 COMP

PIC 9999 COMP-4

 1234 04 D2

PIC 9999 COMP-5 600001

 EA 60

Internal decimal PIC S9999 PACKED-DECIMAL

PIC S9999 COMP-3

+ 1234 01 23 4C

- 1234 01 23 4D

PIC 9999 PACKED-DECIMAL

PIC 9999 COMP-3

 1234 01 23 4F

Internal floating

point

COMP-1 + 1234 43 4D 20 00

- 1234 C3 4D 20 00

COMP-2 + 1234 43 4D 20 00 00 00 00 00

- 1234 C3 4D 20 00 00 00 00 00

External floating

point

PIC +9(2).9(2)E+99 DISPLAY + 12.34E+02 4E F1 F2 4B F3 F4 C5 4E F0 F2

- 12.34E+02 60 F1 F2 4B F3 F4 C5 4E F0 F2

PIC +9(2).9(2)E+99 NATIONAL + 12.34E+02 00 2B 00 31 00 32 00 2E 00 33

00 34 00 45 00 2B 00 30 00 32

- 12.34E+02 00 2D 00 31 00 32 00 2E 00 33

00 34 00 45 00 2B 00 30 00 32

1. The example demonstrates that COMP-5 data items can contain values of magnitude up to the capacity of the

native binary representation (2, 4, or 8 bytes), rather than being limited to the value implied by the number of 9s

in the PICTURE clause.

Chapter 3. Working with numbers and arithmetic 53

Data format conversions

When the code in your program involves the interaction of items that have

different data formats, the compiler converts those items either temporarily, for

comparisons and arithmetic operations, or permanently, for assignment to the

receiver in a MOVE or COMPUTE statement.

A conversion is actually a move of a value from one data item to another. The

compiler performs any conversions that are required during the execution of

arithmetic or comparisons by using the same rules that are used for MOVE and

COMPUTE statements.

When possible, the compiler performs a move to preserve numeric value instead of

a direct digit-for-digit move.

Conversion generally requires additional storage and processing time because data

is moved to an internal work area and converted before the operation is

performed. The results might also have to be moved back into a work area and

converted again.

Conversions between fixed-point data formats (external decimal, packed decimal,

or binary) are without loss of precision provided that the target field can contain

all the digits of the source operand.

A loss of precision is possible in conversions between fixed-point data formats and

floating-point data formats (short floating point, long floating point, or external

floating point). These conversions happen during arithmetic evaluations that have

a mixture of both fixed-point and floating-point operands.

RELATED REFERENCES

“Conversions and precision”

“Sign representation of zoned and packed-decimal data” on page 55

Conversions and precision

In some numeric conversions, a loss of precision is possible; other conversions

preserve precision or result in rounding.

Because both fixed-point and external floating-point items have decimal

characteristics, references to fixed-point items in the following examples include

external floating-point items unless stated otherwise.

When the compiler converts from fixed-point to internal floating-point format,

fixed-point numbers in base 10 are converted to the numbering system used

internally.

When the compiler converts short form to long form for comparisons, zeros are

used for padding the shorter number.

Conversions that lose precision

When a USAGE COMP-1 data item is moved to a fixed-point data item that has more

than nine digits, the fixed-point data item will receive only nine significant digits,

and the remaining digits will be zero.

54 Enterprise COBOL for z/OS V4.1 Programming Guide

When a USAGE COMP-2 data item is moved to a fixed-point data item that has more

than 18 digits, the fixed-point data item will receive only 18 significant digits, and

the remaining digits will be zero.

Conversions that preserve precision

If a fixed-point data item that has six or fewer digits is moved to a USAGE COMP-1

data item and then returned to the fixed-point data item, the original value is

recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of nine or more

digits and then returned to the USAGE COMP-1 data item, the original value is

recovered.

If a fixed-point data item that has 15 or fewer digits is moved to a USAGE COMP-2

data item and then returned to the fixed-point data item, the original value is

recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point)

data item of 18 or more digits and then returned to the USAGE COMP-2 data item,

the original value is recovered.

Conversions that result in rounding

If a USAGE COMP-1 data item, a USAGE COMP-2 data item, an external floating-point

data item, or a floating-point literal is moved to a fixed-point data item, rounding

occurs in the low-order position of the target data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding occurs

in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item and the

PICTURE of the fixed-point data item contains more digit positions than the PICTURE

of the external floating-point data item, rounding occurs in the low-order position

of the target data item.

RELATED CONCEPTS

Appendix A, “Intermediate results and arithmetic precision,” on page 673

Sign representation of zoned and packed-decimal data

Sign representation affects the processing and interaction of zoned decimal and

internal decimal data.

Given X’sd’, where s is the sign representation and d represents the digit, the valid

sign representations for zoned decimal (USAGE DISPLAY) data without the SIGN IS

SEPARATE clause are:

Positive:

C, A, E, and F

Negative:

D and B

The COBOL NUMPROC compiler option affects sign processing for zoned decimal and

internal decimal data. NUMPROC has no effect on binary data, national decimal data,

or floating-point data.

Chapter 3. Working with numbers and arithmetic 55

NUMPROC(PFD)

Given X’sd’, where s is the sign representation and d represents the digit,

when you use NUMPROC(PFD), the compiler assumes that the sign in your

data is one of three preferred signs:

Signed positive or 0:

X’C’

Signed negative:

X’D’

Unsigned or alphanumeric:

X’F’

Based on this assumption, the compiler uses whatever sign it is given to

process data. The preferred sign is generated only where necessary (for

example, when unsigned data is moved to signed data). Using the

NUMPROC(PFD) option can save processing time, but you must use preferred

signs with your data for correct processing.

NUMPROC(NOPFD)

When the NUMPROC(NOPFD) compiler option is in effect, the compiler accepts

any valid sign configuration. The preferred sign is always generated in the

receiver. NUMPROC(NOPFD) is less efficient than NUMPROC(PFD), but you should

use it whenever data that does not use preferred signs might exist.

 If an unsigned, zoned-decimal sender is moved to an alphanumeric

receiver, the sign is unchanged (even with NUMPROC(NOPFD) in effect).

NUMPROC(MIG)

When NUMPROC(MIG) is in effect, the compiler generates code that is similar

to that produced by OS/VS COBOL. This option can be especially useful if

you migrate OS/VS COBOL programs to IBM Enterprise COBOL for z/OS.

RELATED REFERENCES

“NUMPROC” on page 332

“ZWB” on page 359

Checking for incompatible data (numeric class test)

The compiler assumes that values you supply for a data item are valid for the

PICTURE and USAGE clauses, and does not check their validity. Ensure that the

contents of a data item conform to the PICTURE and USAGE clauses before using the

item in additional processing.

It can happen that values are passed into your program and assigned to items that

have incompatible data descriptions for those values. For example, nonnumeric

data might be moved or passed into a field that is defined as numeric, or a signed

number might be passed into a field that is defined as unsigned. In either case, the

receiving fields contain invalid data. When you give an item a value that is

incompatible with its data description, references to that item in the PROCEDURE

DIVISION are undefined and your results are unpredictable.

You can use the numeric class test to perform data validation. For example:

Linkage Section.

01 Count-x Pic 999.

. . .

Procedure Division Using Count-x.

 If Count-x is numeric then display "Data is good"

56 Enterprise COBOL for z/OS V4.1 Programming Guide

The numeric class test checks the contents of a data item against a set of values

that are valid for the PICTURE and USAGE of the data item. For example, a

packed-decimal item is checked for hexadecimal values X’0’ through X’9’ in the

digit positions and for a valid sign value in the sign position (whether separate or

nonseparate).

For zoned decimal and packed-decimal items, the numeric class test is affected by

the NUMPROC compiler option and the NUMCLS option (which is set at installation

time). To determine the NUMCLS setting used at your installation, consult your

system programmer.

If NUMCLS(PRIM) is in effect at your installation, use the following table to find the

values that the compiler considers valid for the sign.

 Table 7. NUMCLS(PRIM) and valid signs

 NUMPROC(NOPFD) NUMPROC(PFD) NUMPROC(MIG)

Signed C, D, F C, D, +0 (positive

zero)

C, D, F

Unsigned F F F

Separate sign +, - +, -, +0 (positive

zero)

+, -

If NUMCLS(ALT) is in effect at your installation, use the following table to find the

values that the compiler considers valid for the sign.

 Table 8. NUMCLS(ALT) and valid signs

 NUMPROC(NOPFD) NUMPROC(PFD) NUMPROC(MIG)

Signed A to F C, D, +0 (positive

zero)

A to F

Unsigned F F F

Separate sign +, - +, -, +0 (positive

zero)

+, -

RELATED REFERENCES

“NUMPROC” on page 332

Performing arithmetic

You can use any of several COBOL language features (including COMPUTE,

arithmetic expressions, numeric intrinsic functions, and math and date callable

services) to perform arithmetic. Your choice depends on whether a feature meets

your particular needs.

For most common arithmetic evaluations, the COMPUTE statement is appropriate. If

you need to use numeric literals, numeric data, or arithmetic operators, you might

want to use arithmetic expressions. In places where numeric expressions are

allowed, you can save time by using numeric intrinsic functions. Language

Environment callable services for mathematical functions and for date and time

operations also provide a means of assigning arithmetic results to data items.

RELATED TASKS

“Using COMPUTE and other arithmetic statements” on page 58

Chapter 3. Working with numbers and arithmetic 57

“Using arithmetic expressions”

“Using numeric intrinsic functions” on page 59

“Using math-oriented callable services” on page 60

“Using date callable services” on page 62

Using COMPUTE and other arithmetic statements

Use the COMPUTE statement for most arithmetic evaluations rather than ADD,

SUBTRACT, MULTIPLY, and DIVIDE statements. Often you can code only one COMPUTE

statement instead of several individual arithmetic statements.

The COMPUTE statement assigns the result of an arithmetic expression to one or

more data items:

Compute z = a + b / c ** d - e

Compute x y z = a + b / c ** d - e

Some arithmetic calculations might be more intuitive using arithmetic statements

other than COMPUTE. For example:

 COMPUTE Equivalent arithmetic statements

Compute Increment = Increment + 1 Add 1 to Increment

Compute Balance =

 Balance - Overdraft

Subtract Overdraft from Balance

Compute IncrementOne =

 IncrementOne + 1

Compute IncrementTwo =

 IncrementTwo + 1

Compute IncrementThree =

 IncrementThree + 1

Add 1 to IncrementOne,

 IncrementTwo,

 IncrementThree

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for

division in which you want to process a remainder. The REM intrinsic function also

provides the ability to process a remainder.

When you perform arithmetic calculations, you can use national decimal data

items as operands just as you use zoned decimal data items. You can also use

national floating-point data items as operands just as you use display

floating-point operands.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 64

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS

“Defining numeric data” on page 45

Using arithmetic expressions

You can use arithmetic expressions in many (but not all) places in statements

where numeric data items are allowed.

For example, you can use arithmetic expressions as comparands in relation

conditions:

If (a + b) > (c - d + 5) Then. . .

58 Enterprise COBOL for z/OS V4.1 Programming Guide

Arithmetic expressions can consist of a single numeric literal, a single numeric data

item, or a single intrinsic function reference. They can also consist of several of

these items connected by arithmetic operators.

Arithmetic operators are evaluated in the following order of precedence:

 Table 9. Order of evaluation of arithmetic operators

Operator Meaning Order of evaluation

Unary + or - Algebraic sign First

** Exponentiation Second

/ or * Division or multiplication Third

Binary + or - Addition or subtraction Last

Operators at the same level of precedence are evaluated from left to right;

however, you can use parentheses to change the order of evaluation. Expressions

in parentheses are evaluated before the individual operators are evaluated.

Parentheses, whether necessary or not, make your program easier to read.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 64

Appendix A, “Intermediate results and arithmetic precision,” on page 673

Using numeric intrinsic functions

You can use numeric intrinsic functions only in places where numeric expressions

are allowed. These functions can save you time because you don’t have to code the

many common types of calculations that they provide.

Numeric intrinsic functions return a signed numeric value, and are treated as

temporary numeric data items.

Numeric functions are classified into the following categories:

Integer

Those that return an integer

Floating point

Those that return a long (64-bit) or extended-precision (128-bit)

floating-point value (depending on whether you compile using the default

option ARITH(COMPAT) or using ARITH(EXTEND))

Mixed Those that return an integer, a floating-point value, or a fixed-point

number with decimal places, depending on the arguments

You can use intrinsic functions to perform several different arithmetic operations,

as outlined in the following table.

Chapter 3. Working with numbers and arithmetic 59

Table 10. Numeric intrinsic functions

Number

handling Date and time Finance Mathematics Statistics

LENGTH

MAX

MIN

NUMVAL

NUMVAL-C

ORD-MAX

ORD-MIN

CURRENT-DATE

DATE-OF-INTEGER

DATE-TO-YYYYMMDD

DATEVAL

DAY-OF-INTEGER

DAY-TO-YYYYDDD

INTEGER-OF-DATE

INTEGER-OF-DAY

UNDATE

WHEN-COMPILED

YEAR-TO-YYYY

YEARWINDOW

ANNUITY

PRESENT-VALUE

ACOS

ASIN

ATAN

COS

FACTORIAL

INTEGER

INTEGER-PART

LOG

LOG10

MOD

REM

SIN

SQRT

SUM

TAN

MEAN

MEDIAN

MIDRANGE

RANDOM

RANGE

STANDARD-DEVIATION

VARIANCE

“Examples: numeric intrinsic functions” on page 62

You can reference one function as the argument of another. A nested function is

evaluated independently of the outer function (except when the compiler

determines whether a mixed function should be evaluated using fixed-point or

floating-point instructions).

You can also nest an arithmetic expression as an argument to a numeric function.

For example, in the statement below, there are three function arguments (a, b, and

the arithmetic expression (c / d)):

Compute x = Function Sum(a b (c / d))

You can reference all the elements of a table (or array) as function arguments by

using the ALL subscript.

You can also use the integer special registers as arguments wherever integer

arguments are allowed.

Many of the capabilities of numeric intrinsic functions are also provided by

Language Environment callable services.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 64

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED REFERENCES

“ARITH” on page 306

Using math-oriented callable services

Most COBOL intrinsic functions have corresponding math-oriented callable

services that you can use to produce the same results.

When you compile with the default option ARITH(COMPAT), COBOL floating-point

intrinsic functions return long (64-bit) results. When you compile with option

60 Enterprise COBOL for z/OS V4.1 Programming Guide

ARITH(EXTEND), COBOL floating-point intrinsic functions (with the exception of

RANDOM) return extended-precision (128-bit) results.

For example (considering the first row of the table below), if you compile using

ARITH(COMPAT), CEESDACS returns the same result as ACOS. If you compile using

ARITH(EXTEND), CEESQACS returns the same result as ACOS.

 Table 11. Compatibility of math intrinsic functions and callable services

COBOL intrinsic

function

Corresponding

long-precision Language

Environment callable service

Corresponding

extended-precision Language

Environment callable service

Results same for intrinsic

function and callable

service?

ACOS CEESDACS CEESQACS Yes

ASIN CEESDASN CEESQASN Yes

ATAN CEESDATN CEESQATN Yes

COS CEESDCOS CEESQCOS Yes

LOG CEESDLOG CEESQLOG Yes

LOG10 CEESDLG1 CEESQLG1 Yes

RANDOM1 CEERAN0 none No

REM CEESDMOD CEESQMOD Yes

SIN CEESDSIN CEESQSIN Yes

SQRT CEESDSQT CEESQSQT Yes

TAN CEESDTAN CEESQTAN Yes

1. RANDOM returns a long (64-bit) floating-point result even if you pass it a 31-digit argument and compile with

ARITH(EXTEND).

Both the RANDOM intrinsic function and CEERAN0 service generate random

numbers between zero and one. However, because each uses its own algorithm,

RANDOM and CEERAN0 produce different random numbers from the same seed.

Even for functions that produce the same results, how you use intrinsic functions

and Language Environment callable services differs. The rules for the data types

required for intrinsic function arguments are less restrictive. For numeric intrinsic

functions, you can use arguments that are of any numeric data type. When you

invoke a Language Environment callable service with a CALL statement, however,

you must ensure that the parameters match the numeric data types (generally

COMP-1 or COMP-2) required by that service.

The error handling of intrinsic functions and Language Environment callable

services sometimes differs. If you pass an explicit feedback token when calling the

Language Environment math services, you must check the feedback code after

each call and take explicit action to deal with errors. However, if you call with the

feedback token explicitly OMITTED, you do not need to check the token; Language

Environment automatically signals any errors.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 64

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS

“Using Language Environment callable services” on page 667

Chapter 3. Working with numbers and arithmetic 61

RELATED REFERENCES

“ARITH” on page 306

Using date callable services

Both the COBOL date intrinsic functions and the Language Environment date

callable services are based on the Gregorian calendar. However, the starting dates

can differ depending on the setting of the INTDATE compiler option.

When INTDATE(LILIAN) is in effect, COBOL uses October 15, 1582 as day 1.

Language Environment always uses October 15, 1582 as day 1. If you use

INTDATE(LILIAN), you get equivalent results from COBOL intrinsic functions and

Language Environment date callable services. The following table compares the

results when INTDATE(LILIAN) is in effect.

 Table 12. INTDATE(LILIAN) and compatibility of date intrinsic functions and callable

services

COBOL intrinsic function

Language Environment callable

service Results

DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD Compatible

DAY-OF-INTEGER CEEDATE with picture string YYYYDDD Compatible

INTEGER-OF-DATE CEEDAYS Compatible

INTEGER-OF-DATE CEECBLDY Incompatible

When the default setting of INTDATE(ANSI) is in effect, COBOL uses January 1, 1601

as day 1. The following table compares the results when INTDATE(ANSI) is in effect.

 Table 13. INTDATE(ANSI) and compatibility of date intrinsic functions and callable

services

COBOL intrinsic function

Language Environment callable

service Results

INTEGER-OF-DATE CEECBLDY Compatible

DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD Incompatible

DAY-OF-INTEGER CEEDATE with picture string YYYYDDD Incompatible

INTEGER-OF-DATE CEEDAYS Incompatible

RELATED TASKS

“Using Language Environment callable services” on page 667

RELATED REFERENCES

“INTDATE” on page 323

Examples: numeric intrinsic functions

The following examples and accompanying explanations show intrinsic functions

in each of several categories.

Where the examples below show zoned decimal data items, national decimal items

could instead be used. (Signed national decimal items, however, require that the

SIGN SEPARATE clause be in effect.)

62 Enterprise COBOL for z/OS V4.1 Programming Guide

General number handling

Suppose you want to find the maximum value of two prices (represented below as

alphanumeric items with dollar signs), put this value into a numeric field in an

output record, and determine the length of the output record. You can use

NUMVAL-C (a function that returns the numeric value of an alphanumeric or national

literal, or an alphanumeric or national data item) and the MAX and LENGTH functions

to do so:

01 X Pic 9(2).

01 Price1 Pic x(8) Value "$8000".

01 Price2 Pic x(8) Value "$2000".

01 Output-Record.

 05 Product-Name Pic x(20).

 05 Product-Number Pic 9(9).

 05 Product-Price Pic 9(6).

. . .

Procedure Division.

 Compute Product-Price =

 Function Max (Function Numval-C(Price1) Function Numval-C(Price2))

 Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters,

you can use the following statement:

Move Function Upper-case (Product-Name) to Product-Name

Date and time

The following example shows how to calculate a due date that is 90 days from

today. The first eight characters returned by the CURRENT-DATE function represent

the date in a four-digit year, two-digit month, and two-digit day format (YYYYMMDD).

The date is converted to its integer value; then 90 is added to this value and the

integer is converted back to the YYYYMMDD format.

01 YYYYMMDD Pic 9(8).

01 Integer-Form Pic S9(9).

. . .

 Move Function Current-Date(1:8) to YYYYMMDD

 Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)

 Add 90 to Integer-Form

 Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)

 Display ’Due Date: ’ YYYYMMDD

Finance

Business investment decisions frequently require computing the present value of

expected future cash inflows to evaluate the profitability of a planned investment.

The present value of an amount that you expect to receive at a given time in the

future is that amount, which, if invested today at a given interest rate, would

accumulate to that future amount.

For example, assume that a proposed investment of $1,000 produces a payment

stream of $100, $200, and $300 over the next three years, one payment per year

respectively. The following COBOL statements calculate the present value of those

cash inflows at a 10% interest rate:

01 Series-Amt1 Pic 9(9)V99 Value 100.

01 Series-Amt2 Pic 9(9)V99 Value 200.

01 Series-Amt3 Pic 9(9)V99 Value 300.

01 Discount-Rate Pic S9(2)V9(6) Value .10.

01 Todays-Value Pic 9(9)V99.

. . .

Chapter 3. Working with numbers and arithmetic 63

Compute Todays-Value =

 Function

 Present-Value(Discount-Rate Series-Amt1 Series-Amt2 Series-Amt3)

You can use the ANNUITY function in business problems that require you to

determine the amount of an installment payment (annuity) necessary to repay the

principal and interest of a loan. The series of payments is characterized by an

equal amount each period, periods of equal length, and an equal interest rate each

period. The following example shows how you can calculate the monthly payment

required to repay a $15,000 loan in three years at a 12% annual interest rate (36

monthly payments, interest per month = .12/12):

01 Loan Pic 9(9)V99.

01 Payment Pic 9(9)V99.

01 Interest Pic 9(9)V99.

01 Number-Periods Pic 99.

. . .

 Compute Loan = 15000

 Compute Interest = .12

 Compute Number-Periods = 36

 Compute Payment =

 Loan * Function Annuity((Interest / 12) Number-Periods)

Mathematics

The following COBOL statement demonstrates that you can nest intrinsic

functions, use arithmetic expressions as arguments, and perform previously

complex calculations simply:

Compute Z = Function Log(Function Sqrt (2 * X + 1)) + Function Rem(X 2)

Here in the addend the intrinsic function REM (instead of a DIVIDE statement with a

REMAINDER clause) returns the remainder of dividing X by 2.

Statistics

Intrinsic functions make calculating statistical information easier. Assume you are

analyzing various city taxes and want to calculate the mean, median, and range

(the difference between the maximum and minimum taxes):

01 Tax-S Pic 99v999 value .045.

01 Tax-T Pic 99v999 value .02.

01 Tax-W Pic 99v999 value .035.

01 Tax-B Pic 99v999 value .03.

01 Ave-Tax Pic 99v999.

01 Median-Tax Pic 99v999.

01 Tax-Range Pic 99v999.

. . .

 Compute Ave-Tax = Function Mean (Tax-S Tax-T Tax-W Tax-B)

 Compute Median-Tax = Function Median (Tax-S Tax-T Tax-W Tax-B)

 Compute Tax-Range = Function Range (Tax-S Tax-T Tax-W Tax-B)

RELATED TASKS

“Converting to numbers (NUMVAL, NUMVAL-C)” on page 113

Fixed-point contrasted with floating-point arithmetic

How you code arithmetic in a program (whether an arithmetic statement, an

intrinsic function, an expression, or some combination of these nested within each

other) determines whether the evaluation is done with floating-point or fixed-point

arithmetic.

64 Enterprise COBOL for z/OS V4.1 Programming Guide

Many statements in a program could involve arithmetic. For example, each of the

following types of COBOL statements requires some arithmetic evaluation:

v General arithmetic

compute report-matrix-col = (emp-count ** .5) + 1

add report-matrix-min to report-matrix-max giving report-matrix-tot

v Expressions and functions

compute report-matrix-col = function sqrt(emp-count) + 1

compute whole-hours = function integer-part((average-hours) + 1)

v Arithmetic comparisons

if report-matrix-col < function sqrt(emp-count) + 1

if whole-hours not = function integer-part((average-hours) + 1)

Floating-point evaluations

In general, if your arithmetic coding has either of the characteristics listed below, it

is evaluated in floating-point arithmetic:

v An operand or result field is floating point.

An operand is floating point if you code it as a floating-point literal or if you

code it as a data item that is defined as USAGE COMP-1, USAGE COMP-2, or external

floating point (USAGE DISPLAY or USAGE NATIONAL with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to a numeric

intrinsic function results in floating-point arithmetic when any of the following

conditions is true:

– An argument in an arithmetic expression results in floating point.

– The function is a floating-point function.

– The function is a mixed function with one or more floating-point arguments.
v An exponent contains decimal places.

An exponent contains decimal places if you use a literal that contains decimal

places, give the item a PICTURE that contains decimal places, or use an arithmetic

expression or function whose result has decimal places.

An arithmetic expression or numeric function yields a result that has decimal

places if any operand or argument (excluding divisors and exponents) has decimal

places.

Fixed-point evaluations

In general, if an arithmetic operation contains neither of the characteristics listed

above for floating point, the compiler causes it to be evaluated in fixed-point

arithmetic. In other words, arithmetic evaluations are handled as fixed point only if

all the operands are fixed point, the result field is defined to be fixed point, and

none of the exponents represent values with decimal places. Nested arithmetic

expressions and function references must also represent fixed-point values.

Arithmetic comparisons (relation conditions)

When you compare numeric expressions using a relational operator, the numeric

expressions (whether they are data items, arithmetic expressions, function

references, or some combination of these) are comparands in the context of the

entire evaluation. That is, the attributes of each can influence the evaluation of the

other: both expressions are evaluated in fixed point, or both are evaluated in

Chapter 3. Working with numbers and arithmetic 65

floating point. This is also true of abbreviated comparisons even though one

comparand does not explicitly appear in the comparison. For example:

if (a + d) = (b + e) and c

This statement has two comparisons: (a + d) = (b + e), and (a + d) = c.

Although (a + d) does not explicitly appear in the second comparison, it is a

comparand in that comparison. Therefore, the attributes of c can influence the

evaluation of (a + d).

The compiler handles comparisons (and the evaluation of any arithmetic

expressions nested in comparisons) in floating-point arithmetic if either comparand

is a floating-point value or resolves to a floating-point value.

The compiler handles comparisons (and the evaluation of any arithmetic

expressions nested in comparisons) in fixed-point arithmetic if both comparands

are fixed-point values or resolve to fixed-point values.

Implicit comparisons (no relational operator used) are not handled as a unit,

however; the two comparands are treated separately as to their evaluation in

floating-point or fixed-point arithmetic. In the following example, five arithmetic

expressions are evaluated independently of one another’s attributes, and then are

compared to each other.

evaluate (a + d)

 when (b + e) thru c

 when (f / g) thru (h * i)

 . . .

end-evaluate

“Examples: fixed-point and floating-point evaluations”

RELATED REFERENCES

“Arithmetic expressions in nonarithmetic statements” on page 681

Examples: fixed-point and floating-point evaluations

The following example shows statements that are evaluated using fixed-point

arithmetic and using floating-point arithmetic.

Assume that you define the data items for an employee table in the following

manner:

01 employee-table.

 05 emp-count pic 9(4).

 05 employee-record occurs 1 to 1000 times

 depending on emp-count.

 10 hours pic +9(5)e+99.

. . .

01 report-matrix-col pic 9(3).

01 report-matrix-min pic 9(3).

01 report-matrix-max pic 9(3).

01 report-matrix-tot pic 9(3).

01 average-hours pic 9(3)v9.

01 whole-hours pic 9(4).

These statements are evaluated using floating-point arithmetic:

compute report-matrix-col = (emp-count ** .5) + 1

compute report-matrix-col = function sqrt(emp-count) + 1

if report-matrix-tot < function sqrt(emp-count) + 1

These statements are evaluated using fixed-point arithmetic:

66 Enterprise COBOL for z/OS V4.1 Programming Guide

add report-matrix-min to report-matrix-max giving report-matrix-tot

compute report-matrix-max =

 function max(report-matrix-max report-matrix-tot)

if whole-hours not = function integer-part((average-hours) + 1)

Using currency signs

Many programs need to process financial information and present that information

using the appropriate currency signs. With COBOL currency support (and the

appropriate code page for your printer or display unit), you can use several

currency signs in a program.

You can use one or more of the following signs:

v Symbols such as the dollar sign ($)

v Currency signs of more than one character (such as USD or EUR)

v Euro sign, established by the Economic and Monetary Union (EMU)

To specify the symbols for displaying financial information, use the CURRENCY SIGN

clause (in the SPECIAL-NAMES paragraph in the CONFIGURATION SECTION) with the

PICTURE characters that relate to those symbols. In the following example, the

PICTURE character $ indicates that the currency sign $US is to be used:

 Currency Sign is "$US" with Picture Symbol "$".

 . . .

77 Invoice-Amount Pic $$,$$9.99.

. . .

 Display "Invoice amount is " Invoice-Amount.

In this example, if Invoice-Amount contained 1500.00, the display output would be:

Invoice amount is $US1,500.00

By using more than one CURRENCY SIGN clause in your program, you can allow for

multiple currency signs to be displayed.

You can use a hexadecimal literal to indicate the currency sign value. Using a

hexadecimal literal could be useful if the data-entry method for the source

program does not allow the entry of the intended characters easily. The following

example shows the hexadecimal value X’9F’ used as the currency sign:

 Currency Sign X’9F’ with Picture Symbol ’U’.

 . . .

01 Deposit-Amount Pic UUUUU9.99.

If there is no corresponding character for the euro sign on your keyboard, you

need to specify it as a hexadecimal value in the CURRENCY SIGN clause. The

hexadecimal value for the euro sign is either X’9F’ or X’5A’ depending on the code

page in use, as shown in the following table.

 Table 14. Hexadecimal values of the euro sign

Code page

CCSID Applicable countries

Modified

from Euro sign

1140 USA, Canada, Netherlands, Portugal, Australia,

New Zealand

037 X’9F’

1141 Austria, Germany 273 X’9F’

1142 Denmark, Norway 277 X’5A’

1143 Finland, Sweden 278 X’5A’

Chapter 3. Working with numbers and arithmetic 67

Table 14. Hexadecimal values of the euro sign (continued)

Code page

CCSID Applicable countries

Modified

from Euro sign

1144 Italy 280 X’9F’

1145 Spain, Latin America - Spanish 284 X’9F’

1146 UK 285 X’9F’

1147 France 297 X’9F’

1148 Belgium, Canada, Switzerland 500 X’9F’

1149 Iceland 871 X’9F’

RELATED REFERENCES

“CURRENCY” on page 312

CURRENCY SIGN clause (Enterprise COBOL Language Reference)

Example: multiple currency signs

The following example shows how you can display values in both euro currency

(as EUR) and Swiss francs (as CHF).

IDENTIFICATION DIVISION.

PROGRAM-ID. EuroSamp.

Environment Division.

Configuration Section.

Special-Names.

 Currency Sign is "CHF " with Picture Symbol "F"

 Currency Sign is "EUR " with Picture Symbol "U".

Data Division.

Working-Storage Section.

01 Deposit-in-Euro Pic S9999V99 Value 8000.00.

01 Deposit-in-CHF Pic S99999V99.

01 Deposit-Report.

 02 Report-in-Franc Pic -FFFFF9.99.

 02 Report-in-Euro Pic -UUUUU9.99.

01 EUR-to-CHF-Conv-Rate Pic 9V99999 Value 1.53893.

. . .

PROCEDURE DIVISION.

Report-Deposit-in-CHF-and-EUR.

 Move Deposit-in-Euro to Report-in-Euro

 Compute Deposit-in-CHF Rounded

 = Deposit-in-Euro * EUR-to-CHF-Conv-Rate

 On Size Error

 Perform Conversion-Error

 Not On Size Error

 Move Deposit-in-CHF to Report-in-Franc

 Display "Deposit in euro = " Report-in-Euro

 Display "Deposit in franc = " Report-in-Franc

 End-Compute

 Goback.

Conversion-Error.

 Display "Conversion error from EUR to CHF"

 Display "Euro value: " Report-in-Euro.

The above example produces the following display output:

Deposit in euro = EUR 8000.00

Deposit in franc = CHF 12311.44

The exchange rate used in this example is for illustrative purposes only.

68 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 4. Handling tables

A table is a collection of data items that have the same description, such as account

totals or monthly averages; it consists of a table name and subordinate items called

table elements. A table is the COBOL equivalent of an array.

In the example above, SAMPLE-TABLE-ONE is the group item that contains the table.

TABLE-COLUMN names the table element of a one-dimensional table that occurs three

times.

Rather than defining repetitious items as separate, consecutive entries in the DATA

DIVISION, you use the OCCURS clause in the DATA DIVISION entry to define a table.

This practice has these advantages:

v The code clearly shows the unity of the items (the table elements).

v You can use subscripts and indexes to refer to the table elements.

v You can easily repeat data items.

Tables are important for increasing the speed of a program, especially one that

looks up records.

RELATED TASKS

“Nesting tables” on page 71

“Defining a table (OCCURS)”

“Referring to an item in a table” on page 72

“Putting values into a table” on page 75

“Creating variable-length tables (DEPENDING ON)” on page 81

“Searching a table” on page 84

“Processing table items using intrinsic functions” on page 86

“Handling tables efficiently” on page 653

Defining a table (OCCURS)

To code a table, give the table a group name and define a subordinate item (the

table element) to be repeated n times.

01 table-name.

 05 element-name OCCURS n TIMES.

 . . . (subordinate items of the table element)

In the example above, table-name is the name of an alphanumeric group item. The

table element definition (which includes the OCCURS clause) is subordinate to the

group item that contains the table. The OCCURS clause cannot appear in a level-01

description.

© Copyright IBM Corp. 1991, 2007 69

If a table is to contain only Unicode (UTF-16) data, and you want the group item

that contains the table to behave like an elementary category national item in most

operations, code the GROUP-USAGE NATIONAL clause for the group item:

01 table-nameN Group-Usage National.

 05 element-nameN OCCURS m TIMES.

 10 elementN1 Pic nn.

 10 elementN2 Pic S99 Sign Is Leading, Separate.

 . . .

Any elementary item that is subordinate to a national group must be explicitly or

implicitly described as USAGE NATIONAL, and any subordinate numeric data item

that is signed must be implicitly or explicitly described with the SIGN IS SEPARATE

clause.

To create tables of two to seven dimensions, use nested OCCURS clauses.

To create a variable-length table, code the DEPENDING ON phrase of the OCCURS

clause.

To specify that table elements will be arranged in ascending or descending order

based on the values in one or more key fields of the table, code the ASCENDING or

DESCENDING KEY phrases of the OCCURS clause, or both. Specify the names of the

keys in decreasing order of significance. Keys can be of class alphabetic,

alphanumeric, DBCS, national, or numeric. (If it has USAGE NATIONAL, a key can be

of category national, or can be a national-edited, numeric-edited, national decimal,

or national floating-point item.)

You must code the ASCENDING or DESCENDING KEY phrase of the OCCURS clause to do

a binary search (SEARCH ALL) of a table.

“Example: binary search” on page 86

RELATED CONCEPTS

“National groups” on page 129

RELATED TASKS

“Nesting tables” on page 71

“Referring to an item in a table” on page 72

“Putting values into a table” on page 75

“Creating variable-length tables (DEPENDING ON)” on page 81

“Using national groups” on page 130

“Doing a binary search (SEARCH ALL)” on page 85

“Defining numeric data” on page 45

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

SIGN clause (Enterprise COBOL Language Reference)

ASCENDING KEY and DESCENDING KEY phrases

 (Enterprise COBOL Language Reference)

70 Enterprise COBOL for z/OS V4.1 Programming Guide

Nesting tables

To create a two-dimensional table, define a one-dimensional table in each

occurrence of another one-dimensional table.

For example, in SAMPLE-TABLE-TWO above, TABLE-ROW is an element of a

one-dimensional table that occurs two times. TABLE-COLUMN is an element of a

two-dimensional table that occurs three times in each occurrence of TABLE-ROW.

To create a three-dimensional table, define a one-dimensional table in each

occurrence of another one-dimensional table, which is itself contained in each

occurrence of another one-dimensional table. For example:

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that

occurs two times. TABLE-ROW is an element of a two-dimensional table that occurs

two times within each occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a

three-dimensional table that occurs three times within each occurrence of

TABLE-ROW.

In a two-dimensional table, the two subscripts correspond to the row and column

numbers. In a three-dimensional table, the three subscripts correspond to the

depth, row, and column numbers.

“Example: subscripting” on page 72

“Example: indexing” on page 72

RELATED TASKS

“Defining a table (OCCURS)” on page 69

“Referring to an item in a table” on page 72

“Putting values into a table” on page 75

“Creating variable-length tables (DEPENDING ON)” on page 81

“Searching a table” on page 84

“Processing table items using intrinsic functions” on page 86

“Handling tables efficiently” on page 653

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 71

Example: subscripting

The following example shows valid references to SAMPLE-TABLE-THREE that use

literal subscripts. The spaces are required in the second example.

TABLE-COLUMN (2, 2, 1)

TABLE-COLUMN (2 2 1)

In either table reference, the first value (2) refers to the second occurrence within

TABLE-DEPTH, the second value (2) refers to the second occurrence within TABLE-ROW,

and the third value (1) refers to the first occurrence within TABLE-COLUMN.

The following reference to SAMPLE-TABLE-TWO uses variable subscripts. The reference

is valid if SUB1 and SUB2 are data-names that contain positive integer values within

the range of the table.

TABLE-COLUMN (SUB1 SUB2)

RELATED TASKS

“Subscripting” on page 73

Example: indexing

The following example shows how displacements to elements that are referenced

with indexes are calculated.

Consider the following three-dimensional table, SAMPLE-TABLE-FOUR:

01 SAMPLE-TABLE-FOUR

 05 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.

 10 TABLE-ROW OCCURS 4 TIMES INDEXED BY INX-B.

 15 TABLE-COLUMN OCCURS 8 TIMES INDEXED BY INX-C PIC X(8).

Suppose you code the following relative indexing reference to SAMPLE-TABLE-FOUR:

TABLE-COLUMN (INX-A + 1, INX-B + 2, INX-C - 1)

This reference causes the following computation of the displacement to the

TABLE-COLUMN element:

 (contents of INX-A) + (256 * 1)

+ (contents of INX-B) + (64 * 2)

+ (contents of INX-C) - (8 * 1)

This calculation is based on the following element lengths:

v Each occurrence of TABLE-DEPTH is 256 bytes in length (4 * 8 * 8).

v Each occurrence of TABLE-ROW is 64 bytes in length (8 * 8).

v Each occurrence of TABLE-COLUMN is 8 bytes in length.

RELATED TASKS

“Indexing” on page 74

Referring to an item in a table

A table element has a collective name, but the individual items within it do not

have unique data-names.

To refer to an item, you have a choice of three techniques:

72 Enterprise COBOL for z/OS V4.1 Programming Guide

v Use the data-name of the table element, along with its occurrence number

(called a subscript) in parentheses. This technique is called subscripting.

v Use the data-name of the table element, along with a value (called an index) that

is added to the address of the table to locate an item (as a displacement from the

beginning of the table). This technique is called indexing, or subscripting using

index-names.

v Use both subscripts and indexes together.

RELATED TASKS

“Subscripting”

“Indexing” on page 74

Subscripting

The lowest possible subscript value is 1, which references the first occurrence of a

table element. In a one-dimensional table, the subscript corresponds to the row

number.

You can use a literal or a data-name as a subscript. If a data item that has a literal

subscript is of fixed length, the compiler resolves the location of the data item.

When you use a data-name as a variable subscript, you must describe the

data-name as an elementary numeric integer. The most efficient format is

COMPUTATIONAL (COMP) with a PICTURE size that is smaller than five digits. You

cannot use a subscript with a data-name that is used as a subscript. The code

generated for the application resolves the location of a variable subscript at run

time.

You can increment or decrement a literal or variable subscript by a specified

integer amount. For example:

TABLE-COLUMN (SUB1 - 1, SUB2 + 3)

You can change part of a table element rather than the whole element. To do so,

refer to the character position and length of the substring to be changed. For

example:

01 ANY-TABLE.

 05 TABLE-ELEMENT PIC X(10)

 OCCURS 3 TIMES VALUE "ABCDEFGHIJ".

. . .

 MOVE "??" TO TABLE-ELEMENT (1) (3 : 2).

The MOVE statement in the example above moves the string ’??’ into table element

number 1, beginning at character position 3, for a length of 2 characters.

“Example: subscripting” on page 72

RELATED TASKS

“Indexing” on page 74

Chapter 4. Handling tables 73

“Putting values into a table” on page 75

“Searching a table” on page 84

“Handling tables efficiently” on page 653

Indexing

You create an index by using the INDEXED BY phrase of the OCCURS clause to

identify an index-name.

For example, INX-A in the following code is an index-name:

05 TABLE-ITEM PIC X(8)

 OCCURS 10 INDEXED BY INX-A.

The compiler calculates the value contained in the index as the occurrence number

(subscript) minus 1, multiplied by the length of the table element. Therefore, for

the fifth occurrence of TABLE-ITEM, the binary value contained in INX-A is (5 - 1) * 8,

or 32.

You can use an index-name to reference another table only if both table

descriptions have the same number of table elements, and the table elements are of

the same length.

You can use the USAGE IS INDEX clause to create an index data item, and can use

an index data item with any table. For example, INX-B in the following code is an

index data item:

77 INX-B USAGE IS INDEX.

. . .

 SET INX-A TO 10

 SET INX-B TO INX-A.

 PERFORM VARYING INX-A FROM 1 BY 1 UNTIL INX-A > INX-B

 DISPLAY TABLE-ITEM (INX-A)

 . . .

 END-PERFORM.

The index-name INX-A is used to traverse table TABLE-ITEM above. The index data

item INX-B is used to hold the index of the last element of the table. The advantage

of this type of coding is that calculation of offsets of table elements is minimized,

and no conversion is necessary for the UNTIL condition.

You can use the SET statement to assign to an index data item the value that you

stored in an index-name, as in the statement SET INX-B TO INX-A above. For

example, when you load records into a variable-length table, you can store the

index value of the last record into a data item defined as USAGE IS INDEX. Then

you can test for the end of the table by comparing the current index value with the

index value of the last record. This technique is useful when you look through or

process a table.

You can increment or decrement an index-name by an elementary integer data

item or a nonzero integer literal, for example:

SET INX-A DOWN BY 3

The integer represents a number of occurrences. It is converted to an index value

before being added to or subtracted from the index.

74 Enterprise COBOL for z/OS V4.1 Programming Guide

Initialize the index-name by using a SET, PERFORM VARYING, or SEARCH ALL

statement. You can then use the index-name in SEARCH or relational condition

statements. To change the value, use a PERFORM, SEARCH, or SET statement.

Because you are comparing a physical displacement, you can directly use index

data items only in SEARCH and SET statements or in comparisons with indexes or

other index data items. You cannot use index data items as subscripts or indexes.

“Example: indexing” on page 72

RELATED TASKS

“Subscripting” on page 73

“Putting values into a table”

“Searching a table” on page 84

“Processing table items using intrinsic functions” on page 86

“Handling tables efficiently” on page 653

RELATED REFERENCES

INDEXED BY phrase (Enterprise COBOL Language Reference)

INDEX phrase (Enterprise COBOL Language Reference)

SET statement (Enterprise COBOL Language Reference)

Putting values into a table

You can put values into a table by loading the table dynamically, initializing the

table with the INITIALIZE statement, or assigning values with the VALUE clause

when you define the table.

RELATED TASKS

“Loading a table dynamically”

“Loading a variable-length table” on page 82

“Initializing a table (INITIALIZE)” on page 76

“Assigning values when you define a table (VALUE)” on page 77

“Assigning values to a variable-length table” on page 83

Loading a table dynamically

If the initial values of a table are different with each execution of your program,

you can define the table without initial values. You can instead read the changed

values into the table dynamically before the program refers to the table.

To load a table, use the PERFORM statement and either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not

exceed the space allocated for the table. Use a named value (rather than a literal)

for the maximum item count. Then, if you make the table bigger, you need to

change only one value instead of all references to a literal.

“Example: PERFORM and subscripting” on page 79

“Example: PERFORM and indexing” on page 80

RELATED REFERENCES

PERFORM with VARYING phrase (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 75

Initializing a table (INITIALIZE)

You can load a table by coding one or more INITIALIZE statements.

For example, to move the value 3 into each of the elementary numeric data items

in a table called TABLE-ONE, shown below, you can code the following statement:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

To move the character ’X’ into each of the elementary alphanumeric data items in

TABLE-ONE, you can code the following statement:

INITIALIZE TABLE-ONE REPLACING ALPHANUMERIC DATA BY "X".

When you use the INITIALIZE statement to initialize a table, the table is processed

as a group item (that is, with group semantics); elementary data items within the

group are recognized and processed. For example, suppose that TABLE-ONE is an

alphanumeric group that is defined like this:

01 TABLE-ONE.

 02 Trans-out Occurs 20.

 05 Trans-code Pic X Value "R".

 05 Part-number Pic XX Value "13".

 05 Trans-quan Pic 99 Value 10.

 05 Price-fields.

 10 Unit-price Pic 99V Value 50.

 10 Discount Pic 99V Value 25.

 10 Sales-Price Pic 999 Value 375.

 . . .

 Initialize TABLE-ONE Replacing Numeric Data By 3

 Alphanumeric Data By "X"

The table below shows the content that each of the twenty 12-byte elements

Trans-out(n) has before execution and after execution of the INITIALIZE statement

shown above:

 Trans-out(n) before Trans-out(n) after

R13105025375 XXb0303030031

1. The symbol b represents a blank space.

You can similarly use an INITIALIZE statement to load a table that is defined as a

national group. For example, if TABLE-ONE shown above specified the GROUP-USAGE

NATIONAL clause, and Trans-code and Part-number had N instead of X in their

PICTURE clauses, the following statement would have the same effect as the

INITIALIZE statement above, except that the data in TABLE-ONE would instead be

encoded in UTF-16:

Initialize TABLE-ONE Replacing Numeric Data By 3

 National Data By N"X"

The REPLACING NUMERIC phrase initializes floating-point data items also.

You can use the REPLACING phrase of the INITIALIZE statement similarly to

initialize all of the elementary ALPHABETIC, DBCS, ALPHANUMERIC-EDITED,

NATIONAL-EDITED, and NUMERIC-EDITED data items in a table.

The INITIALIZE statement cannot assign values to a variable-length table (that is, a

table that was defined using the OCCURS DEPENDING ON clause).

76 Enterprise COBOL for z/OS V4.1 Programming Guide

“Examples: initializing data items” on page 30

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32

“Assigning values when you define a table (VALUE)”

“Assigning values to a variable-length table” on page 83

“Looping through a table” on page 100

“Using data items and group items” on page 26

“Using national groups” on page 130

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)

Assigning values when you define a table (VALUE)

If a table is to contain stable values (such as days and months), you can set the

specific values when you define the table.

Set static values in tables in one of these ways:

v Initialize each table item individually.

v Initialize an entire table at the group level.

v Initialize all occurrences of a given table element to the same value.

RELATED TASKS

“Initializing each table item individually”

“Initializing a table at the group level” on page 78

“Initializing all occurrences of a given table element” on page 78

“Initializing a structure (INITIALIZE)” on page 32

Initializing each table item individually

If a table is small, you can set the value of each item individually by using a VALUE

clause.

Use the following technique, which is shown in the example code below:

1. Declare a record (such as Error-Flag-Table below) that contains the items that

are to be in the table.

2. Set the initial value of each item in a VALUE clause.

3. Code a REDEFINES entry to make the record into a table.

*** E R R O R F L A G T A B L E ***

 01 Error-Flag-Table Value Spaces.

 88 No-Errors Value Spaces.

 05 Type-Error Pic X.

 05 Shift-Error Pic X.

 05 Home-Code-Error Pic X.

 05 Work-Code-Error Pic X.

 05 Name-Error Pic X.

 05 Initials-Error Pic X.

 05 Duplicate-Error Pic X.

 05 Not-Found-Error Pic X.

 01 Filler Redefines Error-Flag-Table.

 05 Error-Flag Occurs 8 Times

 Indexed By Flag-Index Pic X.

Chapter 4. Handling tables 77

In the example above, the VALUE clause at the 01 level initializes each of the table

items to the same value. Each table item could instead be described with its own

VALUE clause to initialize that item to a distinct value.

To initialize larger tables, use MOVE, PERFORM, or INITIALIZE statements.

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32

“Assigning values to a variable-length table” on page 83

RELATED REFERENCES

REDEFINES clause (Enterprise COBOL Language Reference)

OCCURS clause (Enterprise COBOL Language Reference)

Initializing a table at the group level

Code an alphanumeric or national group data item and assign to it, through the

VALUE clause, the contents of the whole table. Then, in a subordinate data item, use

an OCCURS clause to define the individual table items.

In the following example, the alphanumeric group data item TABLE-ONE uses a

VALUE clause that initializes each of the four elements of TABLE-TWO:

01 TABLE-ONE VALUE "1234".

 05 TABLE-TWO OCCURS 4 TIMES PIC X.

In the following example, the national group data item Table-OneN uses a VALUE

clause that initializes each of the three elements of the subordinate data item

Table-TwoN (each of which is implicitly USAGE NATIONAL). Note that you can

initialize a national group data item with a VALUE clause that uses an alphanumeric

literal, as shown below, or a national literal.

01 Table-OneN Group-Usage National Value "AB12CD34EF56".

 05 Table-TwoN Occurs 3 Times Indexed By MyI.

 10 ElementOneN Pic nn.

 10 ElementTwoN Pic 99.

After Table-OneN is initialized, ElementOneN(1) contains NX"00410042" (the UTF-16

representation of ’AB’), the national decimal item ElementTwoN(1) contains

NX"00310032" (the UTF-16 representation of ’12’), and so forth.

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

GROUP-USAGE clause (Enterprise COBOL Language Reference)

Initializing all occurrences of a given table element

You can use the VALUE clause in the data description of a table element to initialize

all instances of that element to the specified value.

01 T2.

 05 T-OBJ PIC 9 VALUE 3.

 05 T OCCURS 5 TIMES

 DEPENDING ON T-OBJ.

 10 X PIC XX VALUE "AA".

 10 Y PIC 99 VALUE 19.

 10 Z PIC XX VALUE "BB".

For example, the code above causes all the X elements (1 through 5) to be

initialized to AA, all the Y elements (1 through 5) to be initialized to 19, and all the

Z elements (1 through 5) to be initialized to BB. T-OBJ is then set to 3.

78 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Assigning values to a variable-length table” on page 83

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

Example: PERFORM and subscripting

This example traverses an error-flag table using subscripting until an error code

that has been set is found. If an error code is found, the corresponding error

message is moved to a print report field.

*** E R R O R F L A G T A B L E ***

 01 Error-Flag-Table Value Spaces.

 88 No-Errors Value Spaces.

 05 Type-Error Pic X.

 05 Shift-Error Pic X.

 05 Home-Code-Error Pic X.

 05 Work-Code-Error Pic X.

 05 Name-Error Pic X.

 05 Initials-Error Pic X.

 05 Duplicate-Error Pic X.

 05 Not-Found-Error Pic X.

 01 Filler Redefines Error-Flag-Table.

 05 Error-Flag Occurs 8 Times

 Indexed By Flag-Index Pic X.

 77 Error-on Pic X Value "E".

*** E R R O R M E S S A G E T A B L E ***

 01 Error-Message-Table.

 05 Filler Pic X(25) Value

 "Transaction Type Invalid".

 05 Filler Pic X(25) Value

 "Shift Code Invalid".

 05 Filler Pic X(25) Value

 "Home Location Code Inval.".

 05 Filler Pic X(25) Value

 "Work Location Code Inval.".

 05 Filler Pic X(25) Value

 "Last Name - Blanks".

 05 Filler Pic X(25) Value

 "Initials - Blanks".

 05 Filler Pic X(25) Value

 "Duplicate Record Found".

 05 Filler Pic X(25) Value

 "Commuter Record Not Found".

 01 Filler Redefines Error-Message-Table.

 05 Error-Message Occurs 8 Times

 Indexed By Message-Index Pic X(25).

 . . .

 PROCEDURE DIVISION.

 . . .

 Perform

 Varying Sub From 1 By 1

 Until No-Errors

 If Error-Flag (Sub) = Error-On

 Move Space To Error-Flag (Sub)

 Move Error-Message (Sub) To Print-Message

 Perform 260-Print-Report

 End-If

 End-Perform

 . . .

Chapter 4. Handling tables 79

Example: PERFORM and indexing

This example traverses an error-flag table using indexing until an error code that

has been set is found. If an error code is found, the corresponding error message is

moved to a print report field.

*** E R R O R F L A G T A B L E ***

 01 Error-Flag-Table Value Spaces.

 88 No-Errors Value Spaces.

 05 Type-Error Pic X.

 05 Shift-Error Pic X.

 05 Home-Code-Error Pic X.

 05 Work-Code-Error Pic X.

 05 Name-Error Pic X.

 05 Initials-Error Pic X.

 05 Duplicate-Error Pic X.

 05 Not-Found-Error Pic X.

 01 Filler Redefines Error-Flag-Table.

 05 Error-Flag Occurs 8 Times

 Indexed By Flag-Index Pic X.

 77 Error-on Pic X Value "E".

*** E R R O R M E S S A G E T A B L E ***

 01 Error-Message-Table.

 05 Filler Pic X(25) Value

 "Transaction Type Invalid".

 05 Filler Pic X(25) Value

 "Shift Code Invalid".

 05 Filler Pic X(25) Value

 "Home Location Code Inval.".

 05 Filler Pic X(25) Value

 "Work Location Code Inval.".

 05 Filler Pic X(25) Value

 "Last Name - Blanks".

 05 Filler Pic X(25) Value

 "Initials - Blanks".

 05 Filler Pic X(25) Value

 "Duplicate Record Found".

 05 Filler Pic X(25) Value

 "Commuter Record Not Found".

 01 Filler Redefines Error-Message-Table.

 05 Error-Message Occurs 8 Times

 Indexed By Message-Index Pic X(25).

 . . .

 PROCEDURE DIVISION.

 . . .

 Set Flag-Index To 1

 Perform Until No-Errors

 Search Error-Flag

 When Error-Flag (Flag-Index) = Error-On

 Move Space To Error-Flag (Flag-Index)

 Set Message-Index To Flag-Index

 Move Error-Message (Message-Index) To

 Print-Message

 Perform 260-Print-Report

 End-Search

 End-Perform

 . . .

80 Enterprise COBOL for z/OS V4.1 Programming Guide

Creating variable-length tables (DEPENDING ON)

If you do not know before run time how many times a table element occurs, define

a variable-length table. To do so, use the OCCURS DEPENDING ON (ODO) clause.

X OCCURS 1 TO 10 TIMES DEPENDING ON Y

In the example above, X is called the ODO subject, and Y is called the ODO object.

Two factors affect the successful manipulation of variable-length records:

v Correct calculation of record lengths

The length of the variable portions of a group item is the product of the object

of the DEPENDING ON phrase and the length of the subject of the OCCURS clause.

v Conformance of the data in the object of the OCCURS DEPENDING ON clause to its

PICTURE clause

If the content of the ODO object does not match its PICTURE clause, the program

could terminate abnormally. You must ensure that the ODO object correctly

specifies the current number of occurrences of table elements.

The following example shows a group item (REC-1) that contains both the subject

and object of the OCCURS DEPENDING ON clause. The way the length of the group

item is determined depends on whether it is sending or receiving data.

WORKING-STORAGE SECTION.

01 MAIN-AREA.

 03 REC-1.

 05 FIELD-1 PIC 9.

 05 FIELD-2 OCCURS 1 TO 5 TIMES

 DEPENDING ON FIELD-1 PIC X(05).

01 REC-2.

 03 REC-2-DATA PIC X(50).

If you want to move REC-1 (the sending item in this case) to REC-2, the length of

REC-1 is determined immediately before the move, using the current value in

FIELD-1. If the content of FIELD-1 conforms to its PICTURE clause (that is, if FIELD-1

contains a zoned decimal item), the move can proceed based on the actual length

of REC-1. Otherwise, the result is unpredictable. You must ensure that the ODO

object has the correct value before you initiate the move.

When you do a move to REC-1 (the receiving item in this case), the length of REC-1

is determined using the maximum number of occurrences. In this example, five

occurrences of FIELD-2, plus FIELD-1, yields a length of 26 bytes. In this case, you

do not need to set the ODO object (FIELD-1) before referencing REC-1 as a receiving

item. However, the sending field’s ODO object (not shown) must be set to a valid

numeric value between 1 and 5 for the ODO object of the receiving field to be

validly set by the move.

However, if you do a move to REC-1 (again the receiving item) where REC-1 is

followed by a variably located group (a type of complex ODO), the actual length of

REC-1 is calculated immediately before the move, using the current value of the

ODO object (FIELD-1). In the following example, REC-1 and REC-2 are in the same

record, but REC-2 is not subordinate to REC-1 and is therefore variably located:

01 MAIN-AREA

 03 REC-1.

 05 FIELD-1 PIC 9.

 05 FIELD-3 PIC 9.

 05 FIELD-2 OCCURS 1 TO 5 TIMES

 DEPENDING ON FIELD-1 PIC X(05).

Chapter 4. Handling tables 81

03 REC-2.

 05 FIELD-4 OCCURS 1 TO 5 TIMES

 DEPENDING ON FIELD-3 PIC X(05).

The compiler issues a message that lets you know that the actual length was used.

This case requires that you set the value of the ODO object before using the group

item as a receiving field.

The following example shows how to define a variable-length table when the ODO

object (LOCATION-TABLE-LENGTH below) is outside the group:

 DATA DIVISION.

 FILE SECTION.

 FD LOCATION-FILE

 RECORDING MODE F

 BLOCK 0 RECORDS

 RECORD 80 CHARACTERS

 LABEL RECORD STANDARD.

 01 LOCATION-RECORD.

 05 LOC-CODE PIC XX.

 05 LOC-DESCRIPTION PIC X(20).

 05 FILLER PIC X(58).

 WORKING-STORAGE SECTION.

 01 FLAGS.

 05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.

 88 LOCATION-EOF VALUE "FALSE".

 01 MISC-VALUES.

 05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

 05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.

*** L O C A T I O N T A B L E ***

*** FILE CONTAINS LOCATION CODES. ***

 01 LOCATION-TABLE.

 05 LOCATION-CODE OCCURS 1 TO 100 TIMES

 DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

RELATED CONCEPTS

Appendix B, “Complex OCCURS DEPENDING ON,” on page 683

RELATED TASKS

“Assigning values to a variable-length table” on page 83

“Loading a variable-length table”

“Preventing overlay when adding elements to a variable table” on page 685

“Finding the length of data items” on page 118

Enterprise COBOL Compiler and Runtime Migration Guide

RELATED REFERENCES

OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Loading a variable-length table

You can use a do-until structure (a TEST AFTER loop) to control the loading of a

variable-length table. For example, after the following code runs,

LOCATION-TABLE-LENGTH contains the subscript of the last item in the table.

 DATA DIVISION.

 FILE SECTION.

 FD LOCATION-FILE

 RECORDING MODE F

 BLOCK 0 RECORDS

 RECORD 80 CHARACTERS

 LABEL RECORD STANDARD.

82 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

01 LOCATION-RECORD.

 05 LOC-CODE PIC XX.

 05 LOC-DESCRIPTION PIC X(20).

 05 FILLER PIC X(58).

 . . .

 WORKING-STORAGE SECTION.

 01 FLAGS.

 05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.

 88 LOCATION-EOF VALUE "YES".

 01 MISC-VALUES.

 05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

 05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.

*** L O C A T I O N T A B L E ***

*** FILE CONTAINS LOCATION CODES. ***

 01 LOCATION-TABLE.

 05 LOCATION-CODE OCCURS 1 TO 100 TIMES

 DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

 . . .

 PROCEDURE DIVISION.

 . . .

 Perform Test After

 Varying Location-Table-Length From 1 By 1

 Until Location-EOF

 Or Location-Table-Length = Location-Table-Max

 Move Location-Record To

 Location-Code (Location-Table-Length)

 Read Location-File

 At End Set Location-EOF To True

 End-Read

 End-Perform

Assigning values to a variable-length table

You can code a VALUE clause for an alphanumeric or national group item that has a

subordinate data item that contains the OCCURS clause with the DEPENDING ON

phrase. Each subordinate structure that contains the DEPENDING ON phrase is

initialized using the maximum number of occurrences.

If you define the entire table by using the DEPENDING ON phrase, all the elements

are initialized using the maximum defined value of the ODO (OCCURS DEPENDING

ON) object.

If the ODO object is initialized by a VALUE clause, it is logically initialized after the

ODO subject has been initialized.

01 TABLE-THREE VALUE "3ABCDE".

 05 X PIC 9.

 05 Y OCCURS 5 TIMES

 DEPENDING ON X PIC X.

For example, in the code above, the ODO subject Y(1) is initialized to ’A’, Y(2) to

’B’, . . ., Y(5) to ’E’, and finally the ODO object X is initialized to 3. Any subsequent

reference to TABLE-THREE (such as in a DISPLAY statement) refers to X and the first

three elements, Y(1) through Y(3), of the table.

RELATED TASKS

“Assigning values when you define a table (VALUE)” on page 77

RELATED REFERENCES

OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 83

Searching a table

COBOL provides two search techniques for tables: serial and binary.

To do serial searches, use SEARCH and indexing. For variable-length tables, you can

use PERFORM with subscripting or indexing.

To do binary searches, use SEARCH ALL and indexing.

A binary search can be considerably more efficient than a serial search. For a serial

search, the number of comparisons is of the order of n, the number of entries in

the table. For a binary search, the number of comparisons is of the order of only

the logarithm (base 2) of n. A binary search, however, requires that the table items

already be sorted.

RELATED TASKS

“Doing a serial search (SEARCH)”

“Doing a binary search (SEARCH ALL)” on page 85

Doing a serial search (SEARCH)

Use the SEARCH statement to do a serial (sequential) search beginning at the current

index setting. To modify the index setting, use the SET statement.

The conditions in the WHEN phrase are evaluated in the order in which they appear:

v If none of the conditions is satisfied, the index is increased to correspond to the

next table element, and the WHEN conditions are evaluated again.

v If one of the WHEN conditions is satisfied, the search ends. The index remains

pointing to the table element that satisfied the condition.

v If the entire table has been searched and no conditions were met, the AT END

imperative statement is executed if there is one. If you did not code AT END,

control passes to the next statement in the program.

You can reference only one level of a table (a table element) with each SEARCH

statement. To search multiple levels of a table, use nested SEARCH statements.

Delimit each nested SEARCH statement with END-SEARCH.

Performance: If the found condition comes after some intermediate point in the

table, you can speed up the search by using the SET statement to set the index to

begin the search after that point. Arranging the table so that the data used most

often is at the beginning of the table also enables more efficient serial searching. If

the table is large and is presorted, a binary search is more efficient.

“Example: serial search”

RELATED REFERENCES

SEARCH statement (Enterprise COBOL Language Reference)

Example: serial search

The following example shows how you might find a particular string in the

innermost table of a three-dimensional table.

84 Enterprise COBOL for z/OS V4.1 Programming Guide

Each dimension of the table has its own index (set to 1, 4, and 1, respectively). The

innermost table (TABLE-ENTRY3) has an ascending key.

01 TABLE-ONE.

 05 TABLE-ENTRY1 OCCURS 10 TIMES

 INDEXED BY TE1-INDEX.

 10 TABLE-ENTRY2 OCCURS 10 TIMES

 INDEXED BY TE2-INDEX.

 15 TABLE-ENTRY3 OCCURS 5 TIMES

 ASCENDING KEY IS KEY1

 INDEXED BY TE3-INDEX.

 20 KEY1 PIC X(5).

 20 KEY2 PIC X(10).

. . .

PROCEDURE DIVISION.

 . . .

 SET TE1-INDEX TO 1

 SET TE2-INDEX TO 4

 SET TE3-INDEX TO 1

 MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

 MOVE "AAAAAAAA00" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

 . . .

 SEARCH TABLE-ENTRY3

 AT END

 MOVE 4 TO RETURN-CODE

 WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)

 = "A1234AAAAAAAA00"

 MOVE 0 TO RETURN-CODE

 END-SEARCH

Values after execution:

TE1-INDEX = 1

TE2-INDEX = 4

TE3-INDEX points to the TABLE-ENTRY3 item

 that equals "A1234AAAAAAAA00"

RETURN-CODE = 0

Doing a binary search (SEARCH ALL)

If you use SEARCH ALL to do a binary search, you do not need to set the index

before you begin. The index is always the one that is associated with the first

index-name in the OCCURS clause. The index varies during execution to maximize

the search efficiency.

To use the SEARCH ALL statement to search a table, the table must specify the

ASCENDING or DESCENDING KEY phrases of the OCCURS clause, or both, and must

already be ordered on the key or keys that are specified in the ASCENDING and

DESCENDING KEY phrases.

In the WHEN phrase of the SEARCH ALL statement, you can test any key that is named

in the ASCENDING or DESCENDING KEY phrases for the table, but you must test all

preceding keys, if any. The test must be an equal-to condition, and the WHEN phrase

must specify either a key (subscripted by the first index-name associated with the

table) or a condition-name that is associated with the key. The WHEN condition can

be a compound condition that is formed from simple conditions that use AND as the

only logical connective.

Each key and its object of comparison must be compatible according to the rules

for comparison of data items. Note though that if a key is compared to a national

literal or identifier, the key must be a national data item.

Chapter 4. Handling tables 85

“Example: binary search”

RELATED TASKS

“Defining a table (OCCURS)” on page 69

RELATED REFERENCES

SEARCH statement (Enterprise COBOL Language Reference)

General relation conditions (Enterprise COBOL Language Reference)

Example: binary search

The following example shows how you can code a binary search of a table.

Suppose you define a table that contains 90 elements of 40 bytes each, and three

keys. The primary and secondary keys (KEY-1 and KEY-2) are in ascending order,

but the least significant key (KEY-3) is in descending order:

01 TABLE-A.

 05 TABLE-ENTRY OCCURS 90 TIMES

 ASCENDING KEY-1, KEY-2

 DESCENDING KEY-3

 INDEXED BY INDX-1.

 10 PART-1 PIC 99.

 10 KEY-1 PIC 9(5).

 10 PART-2 PIC 9(6).

 10 KEY-2 PIC 9(4).

 10 PART-3 PIC 9(18).

 10 KEY-3 PIC 9(5).

You can search this table by using the following statements:

SEARCH ALL TABLE-ENTRY

 AT END

 PERFORM NOENTRY

 WHEN KEY-1 (INDX-1) = VALUE-1 AND

 KEY-2 (INDX-1) = VALUE-2 AND

 KEY-3 (INDX-1) = VALUE-3

 MOVE PART-1 (INDX-1) TO OUTPUT-AREA

END-SEARCH

If an entry is found in which each of the three keys is equal to the value to which

it is compared (VALUE-1, VALUE-2, and VALUE-3, respectively), PART-1 of that entry is

moved to OUTPUT-AREA. If no matching key is found in the entries in TABLE-A, the

NOENTRY routine is performed.

Processing table items using intrinsic functions

You can use intrinsic functions to process alphabetic, alphanumeric, national, or

numeric table items. (You can process DBCS data items only with the NATIONAL-OF

intrinsic function.) The data descriptions of the table items must be compatible

with the requirements for the function arguments.

Use a subscript or index to reference an individual data item as a function

argument. For example, assuming that Table-One is a 3 x 3 array of numeric items,

you can find the square root of the middle element by using this statement:

Compute X = Function Sqrt(Table-One(2,2))

You might often need to iteratively process the data in tables. For intrinsic

functions that accept multiple arguments, you can use the subscript ALL to

86 Enterprise COBOL for z/OS V4.1 Programming Guide

reference all the items in the table or in a single dimension of the table. The

iteration is handled automatically, which can make your code shorter and simpler.

You can mix scalars and array arguments for functions that accept multiple

arguments:

Compute Table-Median = Function Median(Arg1 Table-One(ALL))

“Example: processing tables using intrinsic functions”

RELATED TASKS

“Using intrinsic functions (built-in functions)” on page 40

“Converting data items (intrinsic functions)” on page 112

“Evaluating data items (intrinsic functions)” on page 115

RELATED REFERENCES

Intrinsic functions (Enterprise COBOL Language Reference)

Example: processing tables using intrinsic functions

These examples show how you can apply an intrinsic function to some or all of the

elements in a table by using the ALL subscript.

Assuming that Table-Two is a 2 x 3 x 2 array, the following statement adds the

values in elements Table-Two(1,3,1), Table-Two(1,3,2), Table-Two(2,3,1), and

Table-Two(2,3,2):

Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL))

The following example computes various salary values for all the employees

whose salaries are encoded in Employee-Table:

01 Employee-Table.

 05 Emp-Count Pic s9(4) usage binary.

 05 Emp-Record Occurs 1 to 500 times

 depending on Emp-Count.

 10 Emp-Name Pic x(20).

 10 Emp-Idme Pic 9(9).

 10 Emp-Salary Pic 9(7)v99.

. . .

Procedure Division.

 Compute Max-Salary = Function Max(Emp-Salary(ALL))

 Compute I = Function Ord-Max(Emp-Salary(ALL))

 Compute Avg-Salary = Function Mean(Emp-Salary(ALL))

 Compute Salary-Range = Function Range(Emp-Salary(ALL))

 Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

Chapter 4. Handling tables 87

88 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 5. Selecting and repeating program actions

Use COBOL control language to choose program actions based on the outcome of

logical tests, to iterate over selected parts of your program and data, and to

identify statements to be performed as a group.

These controls include the IF, EVALUATE, and PERFORM statements, and the use of

switches and flags.

RELATED TASKS

“Selecting program actions”

“Repeating program actions” on page 97

Selecting program actions

You can provide for different program actions depending on the tested value of

one or more data items.

The IF and EVALUATE statements in COBOL test one or more data items by means

of a conditional expression.

RELATED TASKS

“Coding a choice of actions”

“Coding conditional expressions” on page 94

RELATED REFERENCES

IF statement (Enterprise COBOL Language Reference)

EVALUATE statement (Enterprise COBOL Language Reference)

Coding a choice of actions

Use IF . . . ELSE to code a choice between two processing actions. (The word

THEN is optional.) Use the EVALUATE statement to code a choice among three or

more possible actions.

IF condition-p

 statement-1

ELSE

 statement-2

END-IF

When one of two processing choices is no action, code the IF statement with or

without ELSE. Because the ELSE clause is optional, you can code the IF statement as

follows:

IF condition-q

 statement-1

END-IF

Such coding is suitable for simple cases. For complex logic, you probably need to

use the ELSE clause. For example, suppose you have nested IF statements in which

there is an action for only one of the processing choices. You could use the ELSE

clause and code the null branch of the IF statement with the CONTINUE statement:

© Copyright IBM Corp. 1991, 2007 89

IF condition-q

 statement-1

ELSE

 CONTINUE

END-IF

The EVALUATE statement is an expanded form of the IF statement that allows you to

avoid nesting IF statements, a common source of logic errors and debugging

problems.

RELATED TASKS

“Using nested IF statements”

“Using the EVALUATE statement” on page 91

“Coding conditional expressions” on page 94

Using nested IF statements

When an IF statement contains an IF statement as one of its possible branches, the

IF statements are said to be nested. Theoretically, there is no limit to the depth of

nested IF statements.

However, use nested IF statements sparingly. The logic can be difficult to follow,

although explicit scope terminators and indentation help. When a program has to

test a variable for more than two values, EVALUATE is probably a better choice.

The following pseudocode depicts a nested IF statement:

IF condition-p

 IF condition-q

 statement-1

 ELSE

 statement-2

 END-IF

 statement-3

ELSE

 statement-4

END-IF

In the pseudocode above, an IF statement and a sequential structure are nested in

one branch of the outer IF. In this structure, the END-IF that closes the nested IF is

very important. Use END-IF instead of a period, because a period would end the

outer IF structure also.

The following figure shows the logic structure of the pseudocode above.

90 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Coding a choice of actions” on page 89

RELATED REFERENCES

Explicit scope terminators (Enterprise COBOL Language Reference)

Using the EVALUATE statement

You can use the EVALUATE statement instead of a series of nested IF statements to

test several conditions and specify a different action for each. Thus you can use the

EVALUATE statement to implement a case structure or decision table.

You can also use the EVALUATE statement to cause multiple conditions to lead to the

same processing, as shown in these examples:

“Example: EVALUATE using THRU phrase” on page 92

“Example: EVALUATE using multiple WHEN phrases” on page 92

In an EVALUATE statement, the operands before the WHEN phrase are referred to as

selection subjects, and the operands in the WHEN phrase are called the selection objects.

Selection subjects can be identifiers, literals, conditional expressions, or the word

TRUE or FALSE. Selection objects can be identifiers, literals, conditional or arithmetic

expressions, or the word TRUE, FALSE, or ANY.

You can separate multiple selection subjects with the ALSO phrase. You can separate

multiple selection objects with the ALSO phrase. The number of selection objects

within each set of selection objects must be equal to the number of selection

subjects, as shown in this example:

“Example: EVALUATE testing several conditions” on page 93

Identifiers, literals, or arithmetic expressions that appear within a selection object

must be valid operands for comparison to the corresponding operand in the set of

selection subjects. Conditions or the word TRUE or FALSE that appear in a selection

Chapter 5. Selecting and repeating program actions 91

object must correspond to a conditional expression or the word TRUE or FALSE in

the set of selection subjects. (You can use the word ANY as a selection object to

correspond to any type of selection subject.)

The execution of the EVALUATE statement ends when one of the following

conditions occurs:

v The statements associated with the selected WHEN phrase are performed.

v The statements associated with the WHEN OTHER phrase are performed.

v No WHEN conditions are satisfied.

WHEN phrases are tested in the order that they appear in the source program.

Therefore, you should order these phrases for the best performance. First code the

WHEN phrase that contains selection objects that are most likely to be satisfied, then

the next most likely, and so on. An exception is the WHEN OTHER phrase, which must

come last.

RELATED TASKS

“Coding a choice of actions” on page 89

RELATED REFERENCES

EVALUATE statement (Enterprise COBOL Language Reference)

General relation conditions (Enterprise COBOL Language Reference)

Example: EVALUATE using THRU phrase:

This example shows how you can code several conditions in a range of values to

lead to the same processing action by coding the THRU phrase. Operands in a THRU

phrase must be of the same class.

In this example, CARPOOL-SIZE is the selection subject; 1, 2, and 3 THRU 6 are the

selection objects:

EVALUATE CARPOOL-SIZE

 WHEN 1

 MOVE "SINGLE" TO PRINT-CARPOOL-STATUS

 WHEN 2

 MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

 WHEN 3 THRU 6

 MOVE "SMALL GROUP" TO PRINT-CARPOOL STATUS

 WHEN OTHER

 MOVE "BIG GROUP" TO PRINT-CARPOOL STATUS

END-EVALUATE

The following nested IF statements represent the same logic:

IF CARPOOL-SIZE = 1 THEN

 MOVE "SINGLE" TO PRINT-CARPOOL-STATUS

ELSE

 IF CARPOOL-SIZE = 2 THEN

 MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

 ELSE

 IF CARPOOL-SIZE >= 3 and CARPOOL-SIZE <= 6 THEN

 MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS

 ELSE

 MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS

 END-IF

 END-IF

END-IF

Example: EVALUATE using multiple WHEN phrases:

92 Enterprise COBOL for z/OS V4.1 Programming Guide

The following example shows that you can code multiple WHEN phrases if several

conditions should lead to the same action. Doing so gives you more flexibility than

using only the THRU phrase, because the conditions do not have to evaluate to

values in a range nor have the same class.

EVALUATE MARITAL-CODE

 WHEN "M"

 ADD 2 TO PEOPLE-COUNT

 WHEN "S"

 WHEN "D"

 WHEN "W"

 ADD 1 TO PEOPLE-COUNT

END-EVALUATE

The following nested IF statements represent the same logic:

IF MARITAL-CODE = "M" THEN

 ADD 2 TO PEOPLE-COUNT

ELSE

 IF MARITAL-CODE = "S" OR

 MARITAL-CODE = "D" OR

 MARITAL-CODE = "W" THEN

 ADD 1 TO PEOPLE-COUNT

 END-IF

END-IF

Example: EVALUATE testing several conditions:

This example shows the use of the ALSO phrase to separate two selection subjects

(True ALSO True) and to separate the two corresponding selection objects within

each set of selection objects (for example, When A + B < 10 Also C = 10).

Both selection objects in a WHEN phrase must satisfy the TRUE, TRUE condition before

the associated action is performed. If both objects do not evaluate to TRUE, the next

WHEN phrase is processed.

Identification Division.

 Program-ID. MiniEval.

Environment Division.

 Configuration Section.

 Source-Computer. IBM-390.

Data Division.

 Working-Storage Section.

 01 Age Pic 999.

 01 Sex Pic X.

 01 Description Pic X(15).

 01 A Pic 999.

 01 B Pic 9999.

 01 C Pic 9999.

 01 D Pic 9999.

 01 E Pic 99999.

 01 F Pic 999999.

Procedure Division.

 PN01.

 Evaluate True Also True

 When Age < 13 Also Sex = "M"

 Move "Young Boy" To Description

 When Age < 13 Also Sex = "F"

 Move "Young Girl" To Description

 When Age > 12 And Age < 20 Also Sex = "M"

 Move "Teenage Boy" To Description

 When Age > 12 And Age < 20 Also Sex = "F"

 Move "Teenage Girl" To Description

 When Age > 19 Also Sex = "M"

 Move "Adult Man" To Description

 When Age > 19 Also Sex = "F"

Chapter 5. Selecting and repeating program actions 93

Move "Adult Woman" To Description

 When Other

 Move "Invalid Data" To Description

 End-Evaluate

 Evaluate True Also True

 When A + B < 10 Also C = 10

 Move "Case 1" To Description

 When A + B > 50 Also C = (D + E) / F

 Move "Case 2" To Description

 When Other

 Move "Case Other" To Description

 End-Evaluate

 Stop Run.

Coding conditional expressions

Using the IF and EVALUATE statements, you can code program actions that will be

performed depending on the truth value of a conditional expression.

The following are some of the conditions that you can specify:

v Relation conditions, such as:

– Numeric comparisons

– Alphanumeric comparisons

– DBCS comparisons

– National comparisons
v Class conditions; for example, to test whether a data item:

– IS NUMERIC

– IS ALPHABETIC

– IS DBCS

– IS KANJI

– IS NOT KANJI

v Condition-name conditions, to test the value of a conditional variable that you

define

v Sign conditions, to test whether a numeric operand IS POSITIVE, NEGATIVE, or

ZERO

v Switch-status conditions, to test the status of UPSI switches that you name in the

SPECIAL-NAMES paragraph

v Complex conditions, such as:

– Negated conditions; for example, NOT (A IS EQUAL TO B)

– Combined conditions (conditions combined with logical operators AND or OR)

RELATED CONCEPTS

“Switches and flags” on page 95

RELATED TASKS

“Defining switches and flags” on page 95

“Resetting switches and flags” on page 96

“Checking for incompatible data (numeric class test)” on page 56

“Comparing national (UTF-16) data” on page 139

“Testing for valid DBCS characters” on page 143

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

94 Enterprise COBOL for z/OS V4.1 Programming Guide

Class condition (Enterprise COBOL Language Reference)

Rules for condition-name entries (Enterprise COBOL Language Reference)

Sign condition (Enterprise COBOL Language Reference)

Combined conditions (Enterprise COBOL Language Reference)

Switches and flags

Some program decisions are based on whether the value of a data item is true or

false, on or off, yes or no. Control these two-way decisions by using level-88 items

with meaningful names (condition-names) to act as switches.

Other program decisions depend on the particular value or range of values of a

data item. When you use condition-names to give more than just on or off values

to a field, the field is generally referred to as a flag.

Flags and switches make your code easier to change. If you need to change the

values for a condition, you have to change only the value of that level-88

condition-name.

For example, suppose a program uses a condition-name to test a field for a given

salary range. If the program must be changed to check for a different salary range,

you need to change only the value of the condition-name in the DATA DIVISION.

You do not need to make changes in the PROCEDURE DIVISION.

RELATED TASKS

“Defining switches and flags”

“Resetting switches and flags” on page 96

Defining switches and flags

In the DATA DIVISION, define level-88 items that will act as switches or flags, and

give them meaningful names.

To test for more than two values with flags, assign more than one condition-name

to a field by using multiple level-88 items.

The reader can easily follow your code if you choose meaningful condition-names

and if the values assigned to them have some association with logical values.

“Example: switches”

“Example: flags” on page 96

Example: switches

The following examples show how you can use level-88 items to test for various

binary-valued (on-off) conditions in your program.

For example, to test for the end-of-file condition for an input file named

Transaction-File, you can use the following data definitions:

Working-Storage Section.

01 Switches.

 05 Transaction-EOF-Switch Pic X value space.

 88 Transaction-EOF value "y".

The level-88 description says that a condition named Transaction-EOF is turned on

when Transaction-EOF-Switch has value ’y’. Referencing Transaction-EOF in the

PROCEDURE DIVISION expresses the same condition as testing Transaction-EOF-

Chapter 5. Selecting and repeating program actions 95

Switch = "y". For example, the following statement causes a report to be printed

only if Transaction-EOF-Switch has been set to ’y’:

If Transaction-EOF Then

 Perform Print-Report-Summary-Lines

Example: flags

The following examples show how you can use several level-88 items together

with an EVALUATE statement to determine which of several conditions in a program

is true.

Consider for example a program that updates a master file. The updates are read

from a transaction file. The records in the file contain a field that indicates which

of the three functions is to be performed: add, change, or delete. In the record

description of the input file, code a field for the function code using level-88 items:

01 Transaction-Input Record

 05 Transaction-Type Pic X.

 88 Add-Transaction Value "A".

 88 Change-Transaction Value "C".

 88 Delete-Transaction Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names to determine

which function is to be performed might look like this:

Evaluate True

 When Add-Transaction

 Perform Add-Master-Record-Paragraph

 When Change-Transaction

 Perform Update-Existing-Record-Paragraph

 When Delete-Transaction

 Perform Delete-Master-Record-Paragraph

End-Evaluate

Resetting switches and flags

Throughout your program, you might need to reset switches or flags to the

original values they had in their data descriptions. To do so, either use a SET

statement or define a data item to move to the switch or flag.

When you use the SET condition-name TO TRUE statement, the switch or flag is set to

the original value that it was assigned in its data description. For a level-88 item

that has multiple values, SET condition-name TO TRUE assigns the first value (A in the

example below):

88 Record-is-Active Value "A" "O" "S"

Using the SET statement and meaningful condition-names makes it easier for

readers to follow your code.

“Example: set switch on”

“Example: set switch off” on page 97

Example: set switch on

The following examples show how you can set a switch on by coding a SET

statement that moves the value TRUE to a level-88 item.

For example, the SET statement in the following example has the same effect as

coding the statement Move "y" to Transaction-EOF-Switch:

96 Enterprise COBOL for z/OS V4.1 Programming Guide

01 Switches

 05 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".

. . .

Procedure Division.

000-Do-Main-Logic.

 Perform 100-Initialize-Paragraph

 Read Update-Transaction-File

 At End Set Transaction-EOF to True

 End-Read

The following example shows how to assign a value to a field in an output record

based on the transaction code of an input record:

01 Input-Record.

 05 Transaction-Type Pic X(9).

01 Data-Record-Out.

 05 Data-Record-Type Pic X.

 88 Record-Is-Active Value "A".

 88 Record-Is-Suspended Value "S".

 88 Record-Is-Deleted Value "D".

 05 Key-Field Pic X(5).

. . .

Procedure Division.

 Evaluate Transaction-Type of Input-Record

 When "ACTIVE"

 Set Record-Is-Active to TRUE

 When "SUSPENDED"

 Set Record-Is-Suspended to TRUE

 When "DELETED"

 Set Record-Is-Deleted to TRUE

 End-Evaluate

Example: set switch off

The following example shows how you can set a switch off by coding a MOVE

statement that moves a value to a level-88 item.

For example, you can use a data item called SWITCH-OFF to set an on-off switch to

off, as in the following code, which resets a switch to indicate that end-of-file has

not been reached:

01 Switches

 05 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".

01 SWITCH-OFF Pic X Value "n".

. . .

Procedure Division.

 . . .

 Move SWITCH-OFF to Transaction-EOF-Switch

Repeating program actions

Use a PERFORM statement to repeat the same code (that is, loop) either a specified

number of times or based on the outcome of a decision.

You can also use a PERFORM statement to execute a paragraph and then implicitly

return control to the next executable statement. In effect, this PERFORM statement is

a way of coding a closed subroutine that you can enter from many different parts

of the program.

PERFORM statements can be inline or out-of-line.

Chapter 5. Selecting and repeating program actions 97

RELATED TASKS

“Choosing inline or out-of-line PERFORM”

“Coding a loop” on page 99

“Looping through a table” on page 100

“Executing multiple paragraphs or sections” on page 100

RELATED REFERENCES

PERFORM statement (Enterprise COBOL Language Reference)

Choosing inline or out-of-line PERFORM

An inline PERFORM is an imperative statement that is executed in the normal flow of

a program; an out-of-line PERFORM entails a branch to a named paragraph and an

implicit return from that paragraph.

To determine whether to code an inline or out-of-line PERFORM statement, answer

the following questions:

v Is the PERFORM statement used in several places?

Use an out-of-line PERFORM when you want to use the same portion of code in

several places in your program.

v Which placement of the statement will be easier to read?

If the code to be performed is short, an inline PERFORM can be easier to read. But

if the code extends over several screens, the logical flow of the program might

be clearer if you use an out-of-line PERFORM. (Each paragraph in structured

programming should perform one logical function, however.)

v What are the efficiency tradeoffs?

An inline PERFORM avoids the overhead of branching that occurs with an

out-of-line PERFORM. But even out-of-line PERFORM coding can improve code

optimization, so efficiency gains should not be overemphasized.

In the 1974 COBOL standard, the PERFORM statement is out-of-line and thus requires

a branch to a separate paragraph and an implicit return. If the performed

paragraph is in the subsequent sequential flow of your program, it is also executed

in that logic flow. To avoid this additional execution, place the paragraph outside

the normal sequential flow (for example, after the GOBACK) or code a branch around

it.

The subject of an inline PERFORM is an imperative statement. Therefore, you must

code statements (other than imperative statements) within an inline PERFORM with

explicit scope terminators.

“Example: inline PERFORM statement”

Example: inline PERFORM statement

This example shows the structure of an inline PERFORM statement that has the

required scope terminators and the required END-PERFORM phrase.

 Perform 100-Initialize-Paragraph

* The following statement is an inline PERFORM:

 Perform Until Transaction-EOF

 Read Update-Transaction-File Into WS-Transaction-Record

 At End

 Set Transaction-EOF To True

 Not At End

 Perform 200-Edit-Update-Transaction

 If No-Errors

 Perform 300-Update-Commuter-Record

98 Enterprise COBOL for z/OS V4.1 Programming Guide

Else

 Perform 400-Print-Transaction-Errors

* End-If is a required scope terminator

 End-If

 Perform 410-Re-Initialize-Fields

* End-Read is a required scope terminator

 End-Read

 End-Perform

Coding a loop

Use the PERFORM . . . TIMES statement to execute a paragraph a specified number

of times.

PERFORM 010-PROCESS-ONE-MONTH 12 TIMES

INSPECT . . .

In the example above, when control reaches the PERFORM statement, the code for the

paragraph 010-PROCESS-ONE-MONTH is executed 12 times before control is transferred

to the INSPECT statement.

Use the PERFORM . . . UNTIL statement to execute a paragraph until a condition

you choose is satisfied. You can use either of the following forms:

PERFORM . . . WITH TEST AFTER UNTIL . . .

PERFORM . . . [WITH TEST BEFORE] . . . UNTIL . . .

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL statement if you want to

execute the paragraph at least once, and test before any subsequent execution. This

statement is equivalent to a do-until structure:

In the following example, the implicit WITH TEST BEFORE phrase provides a

do-while structure:

PERFORM 010-PROCESS-ONE-MONTH

 UNTIL MONTH GREATER THAN 12

INSPECT . . .

When control reaches the PERFORM statement, the condition MONTH GREATER THAN 12

is tested. If the condition is satisfied, control is transferred to the INSPECT

statement. If the condition is not satisfied, 010-PROCESS-ONE-MONTH is executed, and

the condition is tested again. This cycle continues until the condition tests as true.

(To make your program easier to read, you might want to code the WITH TEST

BEFORE clause.)

Chapter 5. Selecting and repeating program actions 99

Looping through a table

You can use the PERFORM . . . VARYING statement to initialize a table. In this form

of the PERFORM statement, a variable is increased or decreased and tested until a

condition is satisfied.

Thus you use the PERFORM statement to control looping through a table. You can

use either of these forms:

PERFORM . . . WITH TEST AFTER VARYING . . . UNTIL . . .

PERFORM . . . [WITH TEST BEFORE] . . . VARYING . . . UNTIL . . .

The following section of code shows an example of looping through a table to

check for invalid data:

PERFORM TEST AFTER VARYING WS-DATA-IX

 FROM 1 BY 1 UNTIL WS-DATA-IX = 12

 IF WS-DATA (WS-DATA-IX) EQUALS SPACES

 SET SERIOUS-ERROR TO TRUE

 DISPLAY ELEMENT-NUM-MSG5

 END-IF

END-PERFORM

INSPECT . . .

When control reaches the PERFORM statement above, WS-DATA-IX is set equal to 1

and the PERFORM statement is executed. Then the condition WS-DATA-IX = 12 is

tested. If the condition is true, control drops through to the INSPECT statement. If

the condition is false, WS-DATA-IX is increased by 1, the PERFORM statement is

executed, and the condition is tested again. This cycle of execution and testing

continues until WS-DATA-IX is equal to 12.

The loop above controls input-checking for the 12 fields of item WS-DATA. Empty

fields are not allowed in the application, so the section of code loops and issues

error messages as appropriate.

Executing multiple paragraphs or sections

In structured programming, you usually execute a single paragraph. However, you

can execute a group of paragraphs, or a single section or group of sections, by

coding the PERFORM . . . THRU statement.

When you use the PERFORM . . . THRU statement, code a paragraph-EXIT statement

to clearly indicate the end point of a series of paragraphs.

RELATED TASKS

“Processing table items using intrinsic functions” on page 86

100 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 6. Handling strings

COBOL provides language constructs for performing many different operations on

string data items.

For example, you can:

v Join or split data items.

v Manipulate null-terminated strings, such as count or move characters.

v Refer to substrings by their ordinal position and, if needed, length.

v Tally and replace data items, such as count the number of times a specific

character occurs in a data item.

v Convert data items, such as change to uppercase or lowercase.

v Evaluate data items, such as determine the length of a data item.

RELATED TASKS

“Joining data items (STRING)”

“Splitting data items (UNSTRING)” on page 103

“Manipulating null-terminated strings” on page 106

“Referring to substrings of data items” on page 107

“Tallying and replacing data items (INSPECT)” on page 111

“Converting data items (intrinsic functions)” on page 112

“Evaluating data items (intrinsic functions)” on page 115

Chapter 7, “Processing data in an international environment,” on page 121

Joining data items (STRING)

Use the STRING statement to join all or parts of several data items or literals into

one data item. One STRING statement can take the place of several MOVE statements.

The STRING statement transfers data into a receiving data item in the order that you

indicate. In the STRING statement you also specify:

v A delimiter for each set of sending fields that, if encountered, causes those

sending fields to stop being transferred (DELIMITED BY phrase)

v (Optional) Action to be taken if the receiving field is filled before all of the

sending data has been processed (ON OVERFLOW phrase)

v (Optional) An integer data item that indicates the leftmost character position

within the receiving field into which data should be transferred (WITH POINTER

phrase)

The receiving data item must not be an edited item, or a display or national

floating-point item. If the receiving data item has:

v USAGE DISPLAY, each identifier in the statement except the POINTER identifier

must have USAGE DISPLAY, and each literal in the statement must be

alphanumeric

v USAGE NATIONAL, each identifier in the statement except the POINTER identifier

must have USAGE NATIONAL, and each literal in the statement must be national

v USAGE DISPLAY-1, each identifier in the statement except the POINTER identifier

must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

© Copyright IBM Corp. 1991, 2007 101

Only that portion of the receiving field into which data is written by the STRING

statement is changed.

“Example: STRING statement”

RELATED TASKS

“Handling errors in joining and splitting strings” on page 234

RELATED REFERENCES

STRING statement (Enterprise COBOL Language Reference)

Example: STRING statement

The following example shows the STRING statement selecting and formatting

information from a record into an output line.

The FILE SECTION defines the following record:

01 RCD-01.

 05 CUST-INFO.

 10 CUST-NAME PIC X(15).

 10 CUST-ADDR PIC X(35).

 05 BILL-INFO.

 10 INV-NO PIC X(6).

 10 INV-AMT PIC $$,$$$.99.

 10 AMT-PAID PIC $$,$$$.99.

 10 DATE-PAID PIC X(8).

 10 BAL-DUE PIC $$,$$$.99.

 10 DATE-DUE PIC X(8).

The WORKING-STORAGE SECTION defines the following fields:

77 RPT-LINE PIC X(120).

77 LINE-POS PIC S9(3).

77 LINE-NO PIC 9(5) VALUE 1.

77 DEC-POINT PIC X VALUE ".".

The record RCD-01 contains the following information (the symbol b indicates a

blank space):

J.B.bSMITHbbbbb

444bSPRINGbST.,bCHICAGO,bILL.bbbbbb

A14275

$4,736.85

$2,400.00

09/22/76

$2,336.85

10/22/76

In the PROCEDURE DIVISION, these settings occur before the STRING statement:

v RPT-LINE is set to SPACES.

v LINE-POS, the data item to be used as the POINTER field, is set to 4.

Here is the STRING statement:

STRING

 LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE

 DELIMITED BY SIZE

 BAL-DUE

 DELIMITED BY DEC-POINT

 INTO RPT-LINE

 WITH POINTER LINE-POS.

102 Enterprise COBOL for z/OS V4.1 Programming Guide

Because the POINTER field LINE-POS has value 4 before the STRING statement is

performed, data is moved into the receiving field RPT-LINE beginning at character

position 4. Characters in positions 1 through 3 are unchanged.

The sending items that specify DELIMITED BY SIZE are moved in their entirety to

the receiving field. Because BAL-DUE is delimited by DEC-POINT, the moving of

BAL-DUE to the receiving field stops when a decimal point (the value of DEC-POINT)

is encountered.

STRING results

When the STRING statement is performed, items are moved into RPT-LINE as shown

in the table below.

 Item Positions

LINE-NO 4 - 8

Space 9

CUST-INFO 10 - 59

INV-NO 60 - 65

Space 66

DATE-DUE 67 - 74

Space 75

Portion of BAL-DUE that precedes the decimal point 76 - 81

After the STRING statement is performed, the value of LINE-POS is 82, and RPT-LINE

has the values shown below.

Splitting data items (UNSTRING)

Use the UNSTRING statement to split a sending field into several receiving fields.

One UNSTRING statement can take the place of several MOVE statements.

In the UNSTRING statement you can specify:

v Delimiters that, when one of them is encountered in the sending field, cause the

current receiving field to stop receiving and the next, if any, to begin receiving

(DELIMITED BY phrase)

v A field for the delimiter that, when encountered in the sending field, causes the

current receiving field to stop receiving (DELIMITER IN phrase)

v An integer data item that stores the number of characters placed in the current

receiving field (COUNT IN phrase)

v An integer data item that indicates the leftmost character position within the

sending field at which UNSTRING processing should begin (WITH POINTER phrase)

v An integer data item that stores a tally of the number of receiving fields that are

acted on (TALLYING IN phrase)

Chapter 6. Handling strings 103

v Action to be taken if all of the receiving fields are filled before the end of the

sending data item is reached (ON OVERFLOW phrase)

The sending data item and the delimiters in the DELIMITED BY phrase must be of

category alphabetic, alphanumeric, alphanumeric-edited, DBCS, national, or

national-edited.

Receiving data items can be of category alphabetic, alphanumeric, numeric, DBCS,

or national. If numeric, a receiving data item must be zoned decimal or national

decimal. If a receiving data item has:

v USAGE DISPLAY, the sending item and each delimiter item in the statement must

have USAGE DISPLAY, and each literal in the statement must be alphanumeric

v USAGE NATIONAL, the sending item and each delimiter item in the statement must

have USAGE NATIONAL, and each literal in the statement must be national

v USAGE DISPLAY-1, the sending item and each delimiter item in the statement

must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

“Example: UNSTRING statement”

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Handling errors in joining and splitting strings” on page 234

RELATED REFERENCES

UNSTRING statement (Enterprise COBOL Language Reference)

Classes and categories of data (Enterprise COBOL Language Reference)

Example: UNSTRING statement

The following example shows the UNSTRING statement transferring selected

information from an input record. Some information is organized for printing and

some for further processing.

The FILE SECTION defines the following records:

* Record to be acted on by the UNSTRING statement:

 01 INV-RCD.

 05 CONTROL-CHARS PIC XX.

 05 ITEM-INDENT PIC X(20).

 05 FILLER PIC X.

 05 INV-CODE PIC X(10).

 05 FILLER PIC X.

 05 NO-UNITS PIC 9(6).

 05 FILLER PIC X.

 05 PRICE-PER-M PIC 99999.

 05 FILLER PIC X.

 05 RTL-AMT PIC 9(6).99.

*

* UNSTRING receiving field for printed output:

 01 DISPLAY-REC.

 05 INV-NO PIC X(6).

 05 FILLER PIC X VALUE SPACE.

 05 ITEM-NAME PIC X(20).

 05 FILLER PIC X VALUE SPACE.

 05 DISPLAY-DOLS PIC 9(6).

*

* UNSTRING receiving field for further processing:

104 Enterprise COBOL for z/OS V4.1 Programming Guide

01 WORK-REC.

 05 M-UNITS PIC 9(6).

 05 FIELD-A PIC 9(6).

 05 WK-PRICE REDEFINES FIELD-A PIC 9999V99.

 05 INV-CLASS PIC X(3).

*

* UNSTRING statement control fields:

 77 DBY-1 PIC X.

 77 CTR-1 PIC S9(3).

 77 CTR-2 PIC S9(3).

 77 CTR-3 PIC S9(3).

 77 CTR-4 PIC S9(3).

 77 DLTR-1 PIC X.

 77 DLTR-2 PIC X.

 77 CHAR-CT PIC S9(3).

 77 FLDS-FILLED PIC S9(3).

In the PROCEDURE DIVISION, these settings occur before the UNSTRING statement:

v A period (.) is placed in DBY-1 for use as a delimiter.

v CHAR-CT (the POINTER field) is set to 3.

v The value zero (0) is placed in FLDS-FILLED (the TALLYING field).

v Data is read into record INV-RCD, whose format is as shown below.

Here is the UNSTRING statement:

* Move subfields of INV-RCD to the subfields of DISPLAY-REC

* and WORK-REC:

 UNSTRING INV-RCD

 DELIMITED BY ALL SPACES OR "/" OR DBY-1

 INTO ITEM-NAME COUNT IN CTR-1

 INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2

 INV-CLASS

 M-UNITS COUNT IN CTR-3

 FIELD-A

 DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4

 WITH POINTER CHAR-CT

 TALLYING IN FLDS-FILLED

 ON OVERFLOW GO TO UNSTRING-COMPLETE.

Because the POINTER field CHAR-CT has value 3 before the UNSTRING statement is

performed, the two character positions of the CONTROL-CHARS field in INV-RCD are

ignored.

UNSTRING results

When the UNSTRING statement is performed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME,

left justified in the area, and the four unused character positions are padded

with spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is coded as a delimiter, the five contiguous space characters

in positions 19 through 23 are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character

slash (/) is placed in DLTR-1, and the value 6 is placed in CTR-2.

Chapter 6. Handling strings 105

4. Positions 31 through 33 (BBA) are placed in INV-CLASS. The delimiter is SPACE,

but because no field has been defined as a receiving area for delimiters, the

space in position 34 is bypassed.

5. Positions 35 through 40 (475120) are placed in M-UNITS. The value 6 is placed in

CTR-3. The delimiter is SPACE, but because no field has been defined as a

receiving area for delimiters, the space in position 41 is bypassed.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right justified in the

area. The high-order digit position is filled with a zero (0). The delimiter is

SPACE, but because no field was defined as a receiving area for delimiters, the

space in position 47 is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)

delimiter in DBY-1 is placed in DLTR-2, and the value 6 is placed in CTR-4.

8. Because all receiving fields have been acted on and two characters in INV-RCD

have not been examined, the ON OVERFLOW statement is executed. Execution of

the UNSTRING statement is completed.

After the UNSTRING statement is performed, the fields contain the values shown

below.

 Field Value

DISPLAY-REC 707890 FOUR-PENNY-NAILS 000379

WORK-REC 475120000122BBA

CHAR-CT (the POINTER field) 55

FLDS-FILLED (the TALLYING field) 6

Manipulating null-terminated strings

You can construct and manipulate null-terminated strings (for example, strings that

are passed to or from a C program) by various mechanisms.

For example, you can:

v Use null-terminated literal constants (Z". . . ").

v Use an INSPECT statement to count the number of characters in a null-terminated

string:

MOVE 0 TO char-count

INSPECT source-field TALLYING char-count

 FOR CHARACTERS

 BEFORE X"00"

v Use an UNSTRING statement to move characters in a null-terminated string to a

target field, and get the character count:

WORKING-STORAGE SECTION.

01 source-field PIC X(1001).

01 char-count COMP-5 PIC 9(4).

01 target-area.

 02 individual-char OCCURS 1 TO 1000 TIMES DEPENDING ON char-count

 PIC X.

. . .

PROCEDURE DIVISION.

 UNSTRING source-field DELIMITED BY X"00"

 INTO target-area

 COUNT IN char-count

 ON OVERFLOW

 DISPLAY "source not null terminated or target too short"

 END-UNSTRING

106 Enterprise COBOL for z/OS V4.1 Programming Guide

v Use a SEARCH statement to locate trailing null or space characters. Define the

string being examined as a table of single characters.

v Check each character in a field in a loop (PERFORM). You can examine each

character in a field by using a reference modifier such as source-field (I:1).

“Example: null-terminated strings”

RELATED TASKS

“Handling null-terminated strings” on page 468

RELATED REFERENCES

Alphanumeric literals (Enterprise COBOL Language Reference)

Example: null-terminated strings

The following example shows several ways in which you can process

null-terminated strings.

 01 L pic X(20) value z’ab’.

 01 M pic X(20) value z’cd’.

 01 N pic X(20).

 01 N-Length pic 99 value zero.

 01 Y pic X(13) value ’Hello, World!’.

 . . .

* Display null-terminated string:

 Inspect N tallying N-length

 for characters before initial x’00’

 Display ’N: ’ N(1:N-Length) ’ Length: ’ N-Length

 . . .

* Move null-terminated string to alphanumeric, strip null:

 Unstring N delimited by X’00’ into X

 . . .

* Create null-terminated string:

 String Y delimited by size

 X’00’ delimited by size

 into N.

 . . .

* Concatenate two null-terminated strings to produce another:

 String L delimited by x’00’

 M delimited by x’00’

 X’00’ delimited by size

 into N.

Referring to substrings of data items

Refer to a substring of a data item that has USAGE DISPLAY, DISPLAY-1, or NATIONAL

by using a reference modifier. You can also refer to a substring of an alphanumeric

or national character string that is returned by an intrinsic function by using a

reference modifier.

The following example shows how to use a reference modifier to refer to a

twenty-character substring of a data item called Customer-Record:

Move Customer-Record(1:20) to Orig-Customer-Name

You code a reference modifier in parentheses immediately after the data item. As

the example shows, a reference modifier can contain two values that are separated

by a colon, in this order:

1. Ordinal position (from the left) of the character that you want the substring to

start with

Chapter 6. Handling strings 107

2. (Optional) Length of the desired substring in character positions

The reference-modifier position and length for an item that has USAGE DISPLAY are

expressed in terms of single-byte characters. The reference-modifier position and

length for items that have USAGE DISPLAY-1 or NATIONAL are expressed in terms of

DBCS character positions and national character positions, respectively.

If you omit the length in a reference modifier (coding only the ordinal position of

the first character, followed by a colon), the substring extends to the end of the

item. Omit the length where possible as a simpler and less error-prone coding

technique.

You can refer to substrings of USAGE DISPLAY data items, including alphanumeric

groups, alphanumeric-edited data items, numeric-edited data items, display

floating-point data items, and zoned decimal data items, by using reference

modifiers. When you reference-modify any of these data items, the result is of

category alphanumeric. When you reference-modify an alphabetic data item, the

result is of category alphabetic.

You can refer to substrings of USAGE NATIONAL data items, including national

groups, national-edited data items, numeric-edited data items, national

floating-point data items, and national decimal data items, by using reference

modifiers. When you reference-modify any of these data items, the result is of

category national. For example, suppose that you define a national decimal data

item as follows:

01 NATL-DEC-ITEM Usage National Pic 999 Value 123.

You can use NATL-DEC-ITEM in an arithmetic expression because NATL-DEC-ITEM is of

category numeric. But you cannot use NATL-DEC-ITEM(2:1) (the national character

2, which in hexadecimal notation is NX"0032") in an arithmetic expression, because

it is of category national.

You can refer to substrings of table entries, including variable-length entries, by

using reference modifiers. To refer to a substring of a table entry, code the

subscript expression before the reference modifier. For example, assume that

PRODUCT-TABLE is a properly coded table of character strings. To move D to the

fourth character in the second string in the table, you can code this statement:

MOVE ’D’ to PRODUCT-TABLE (2), (4:1)

You can code either or both of the two values in a reference modifier as a variable

or as an arithmetic expression.

“Example: arithmetic expressions as reference modifiers” on page 110

Because numeric function identifiers can be used anywhere that arithmetic

expressions can be used, you can code a numeric function identifier in a reference

modifier as the leftmost character position or as the length, or both.

“Example: intrinsic functions as reference modifiers” on page 110

Each number in the reference modifier must have a value of at least 1. The sum of

the two numbers must not exceed the total length of the data item by more than 1

character position so that you do not reference beyond the end of the substring.

108 Enterprise COBOL for z/OS V4.1 Programming Guide

If the leftmost character position or the length value is a fixed-point noninteger,

truncation occurs to create an integer. If either is a floating-point noninteger,

rounding occurs to create an integer.

The following options detect out-of-range reference modifiers, and flag violations

with a runtime message:

v SSRANGE compiler option

v CHECK runtime option

RELATED CONCEPTS

“Reference modifiers”

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Referring to an item in a table” on page 72

RELATED REFERENCES

“SSRANGE” on page 346

Reference modification (Enterprise COBOL Language Reference)

Function definitions (Enterprise COBOL Language Reference)

Reference modifiers

Reference modifiers let you easily refer to a substring of a data item.

For example, assume that you want to retrieve the current time from the system

and display its value in an expanded format. You can retrieve the current time

with the ACCEPT statement, which returns the hours, minutes, seconds, and

hundredths of seconds in this format:

HHMMSSss

However, you might prefer to view the current time in this format:

HH:MM:SS

Without reference modifiers, you would have to define data items for both formats.

You would also have to write code to convert from one format to the other.

With reference modifiers, you do not need to provide names for the subfields that

describe the TIME elements. The only data definition you need is for the time as

returned by the system. For example:

01 REFMOD-TIME-ITEM PIC X(8).

The following code retrieves and expands the time value:

 ACCEPT REFMOD-TIME-ITEM FROM TIME.

 DISPLAY "CURRENT TIME IS: "

* Retrieve the portion of the time value that corresponds to

* the number of hours:

 REFMOD-TIME-ITEM (1:2)

 ":"

* Retrieve the portion of the time value that corresponds to

* the number of minutes:

 REFMOD-TIME-ITEM (3:2)

 ":"

* Retrieve the portion of the time value that corresponds to

* the number of seconds:

 REFMOD-TIME-ITEM (5:2)

Chapter 6. Handling strings 109

“Example: arithmetic expressions as reference modifiers”

“Example: intrinsic functions as reference modifiers”

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 37

“Referring to substrings of data items” on page 107

“Using national data (Unicode) in COBOL” on page 126

RELATED REFERENCES

Reference modification (Enterprise COBOL Language Reference)

Example: arithmetic expressions as reference modifiers

Suppose that a field contains some right-justified characters, and you want to

move those characters to another field where they will be left justified. You can do

so by using reference modifiers and an INSPECT statement.

Suppose a program has the following data:

01 LEFTY PIC X(30).

01 RIGHTY PIC X(30) JUSTIFIED RIGHT.

01 I PIC 9(9) USAGE BINARY.

The program counts the number of leading spaces and, using arithmetic

expressions in a reference modifier, moves the right-justified characters into

another field, justified to the left:

MOVE SPACES TO LEFTY

MOVE ZERO TO I

INSPECT RIGHTY

 TALLYING I FOR LEADING SPACE.

IF I IS LESS THAN LENGTH OF RIGHTY THEN

 MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY

END-IF

The MOVE statement transfers characters from RIGHTY, beginning at the position

computed as I + 1 for a length that is computed as LENGTH OF RIGHTY - I, into the

field LEFTY.

Example: intrinsic functions as reference modifiers

You can use intrinsic functions in reference modifiers if you do not know the

leftmost position or length of a substring at compile time.

For example, the following code fragment causes a substring of Customer-Record to

be moved into the data item WS-name. The substring is determined at run time.

05 WS-name Pic x(20).

05 Left-posn Pic 99.

05 I Pic 99.

. . .

Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

If you want to use a noninteger function in a position that requires an integer

function, you can use the INTEGER or INTEGER-PART function to convert the result to

an integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

RELATED REFERENCES

INTEGER (Enterprise COBOL Language Reference)

INTEGER-PART (Enterprise COBOL Language Reference)

110 Enterprise COBOL for z/OS V4.1 Programming Guide

Tallying and replacing data items (INSPECT)

Use the INSPECT statement to inspect characters or groups of characters in a data

item and to optionally replace them.

Use the INSPECT statement to do the following tasks:

v Count the number of times a specific character occurs in a data item (TALLYING

phrase).

v Fill a data item or selected portions of a data item with specified characters such

as spaces, asterisks, or zeros (REPLACING phrase).

v Convert all occurrences of a specific character or string of characters in a data

item to replacement characters that you specify (CONVERTING phrase).

You can specify one of the following data items as the item to be inspected:

v An elementary item described explicitly or implicitly as USAGE DISPLAY, USAGE

DISPLAY-1, or USAGE NATIONAL

v An alphanumeric group item or national group item

If the inspected item has:

v USAGE DISPLAY, each identifier in the statement (except the TALLYING count field)

must have USAGE DISPLAY, and each literal in the statement must be

alphanumeric

v USAGE NATIONAL, each identifier in the statement (except the TALLYING count field)

must have USAGE NATIONAL, and each literal in the statement must be national

v USAGE DISPLAY-1, each identifier in the statement (except the TALLYING count

field) must have USAGE DISPLAY-1, and each literal in the statement must be a

DBCS literal

“Examples: INSPECT statement”

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED REFERENCES

INSPECT statement (Enterprise COBOL Language Reference)

Examples: INSPECT statement

The following examples show some uses of the INSPECT statement to examine and

replace characters.

In the following example, the INSPECT statement examines and replaces characters

in data item DATA-2. The number of times a leading zero (0) occurs in the data item

is accumulated in COUNTR. The first instance of the character A that follows the first

instance of the character C is replaced by the character 2.

77 COUNTR PIC 9 VALUE ZERO.

01 DATA-2 PIC X(11).

. . .

 INSPECT DATA-2

 TALLYING COUNTR FOR LEADING "0"

 REPLACING FIRST "A" BY "2" AFTER INITIAL "C"

Chapter 6. Handling strings 111

DATA-2 before COUNTR after DATA-2 after

00ACADEMY00 2 00AC2DEMY00

0000ALABAMA 4 0000ALABAMA

CHATHAM0000 0 CH2THAM0000

In the following example, the INSPECT statement examines and replaces characters

in data item DATA-3. Each character that precedes the first instance of a quotation

mark (") is replaced by the character 0.

77 COUNTR PIC 9 VALUE ZERO.

01 DATA-3 PIC X(8).

. . .

 INSPECT DATA-3

 REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

 DATA-3 before COUNTR after DATA-3 after

456"ABEL 0 000"ABEL

ANDES"12 0 00000"12

"TWAS BR 0 "TWAS BR

The following example shows the use of INSPECT CONVERTING with AFTER and

BEFORE phrases to examine and replace characters in data item DATA-4. All

characters that follow the first instance of the character / but that precede the first

instance of the character ? (if any) are translated from lowercase to uppercase.

01 DATA-4 PIC X(11).

. . .

 INSPECT DATA-4

 CONVERTING

 "abcdefghijklmnopqrstuvwxyz" TO

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 AFTER INITIAL "/"

 BEFORE INITIAL"?"

 DATA-4 before DATA-4 after

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

zfour?inspe zfour?inspe

Converting data items (intrinsic functions)

You can use intrinsic functions to convert character-string data items to several

other formats, for example, to uppercase or lowercase, to reverse order, to

numbers, or to one code page from another.

You can use the NATIONAL-OF and DISPLAY-OF intrinsic functions to convert to and

from national (Unicode) strings.

You can also use the INSPECT statement to convert characters.

“Examples: INSPECT statement” on page 111

112 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Converting to uppercase or lowercase (UPPER-CASE, LOWER-CASE)”

“Transforming to reverse order (REVERSE)”

“Converting to numbers (NUMVAL, NUMVAL-C)”

“Converting from one code page to another” on page 115

Converting to uppercase or lowercase (UPPER-CASE,

LOWER-CASE)

You can use the UPPER-CASE and LOWER-CASE intrinsic functions to easily change the

case of alphanumeric, alphabetic, or national strings.

01 Item-1 Pic x(30) Value "Hello World!".

01 Item-2 Pic x(30).

. . .

 Display Item-1

 Display Function Upper-case(Item-1)

 Display Function Lower-case(Item-1)

 Move Function Upper-case(Item-1) to Item-2

 Display Item-2

The code above displays the following messages on the system logical output

device:

Hello World!

HELLO WORLD!

hello world!

HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1, but affect only

how the letters are displayed. However, the MOVE statement causes uppercase

letters to replace the contents of Item-2.

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 37

“Displaying values on a screen or in a file (DISPLAY)” on page 38

Transforming to reverse order (REVERSE)

You can reverse the order of the characters in a string by using the REVERSE

intrinsic function.

Move Function Reverse(Orig-cust-name) To Orig-cust-name

For example, the statement above reverses the order of the characters in

Orig-cust-name. If the starting value is JOHNSONbbb, the value after the statement is

performed is bbbNOSNHOJ, where b represents a blank space.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

Converting to numbers (NUMVAL, NUMVAL-C)

The NUMVAL and NUMVAL-C functions convert character strings (alphanumeric or

national literals, or class alphanumeric or class national data items) to numbers.

Use these functions to convert free-format character-representation numbers to

numeric form so that you can process them numerically.

Chapter 6. Handling strings 113

01 R Pic x(20) Value "- 1234.5678".

01 S Pic x(20) Value " $12,345.67CR".

01 Total Usage is Comp-1.

. . .

 Compute Total = Function Numval(R) + Function Numval-C(S)

Use NUMVAL-C when the argument includes a currency symbol or comma or both,

as shown in the example above. You can also place an algebraic sign before or after

the character string, and the sign will be processed. The arguments must not

exceed 18 digits when you compile with the default option ARITH(COMPAT)

(compatibility mode) nor 31 digits when you compile with ARITH(EXTEND) (extended

mode), not including the editing symbols.

NUMVAL and NUMVAL-C return long (64-bit) floating-point values in compatibility

mode, and return extended-precision (128-bit) floating-point values in extended

mode. A reference to either of these functions represents a reference to a numeric

data item.

At most 15 decimal digits can be converted accurately to long-precision floating

point (as described in the related reference below about conversions and precision).

If the argument to NUMVAL or NUMVAL-C has more than 15 digits, it is recommended

that you specify the ARITH(EXTEND) compiler option so that an extended-precision

function result that can accurately represent the value of the argument is returned.

When you use NUMVAL or NUMVAL-C, you do not need to statically declare numeric

data in a fixed format nor input data in a precise manner. For example, suppose

you define numbers to be entered as follows:

01 X Pic S999V99 leading sign is separate.

. . .

 Accept X from Console

The user of the application must enter the numbers exactly as defined by the

PICTURE clause. For example:

+001.23

-300.00

However, using the NUMVAL function, you could code:

01 A Pic x(10).

01 B Pic S999V99.

. . .

 Accept A from Console

 Compute B = Function Numval(A)

The input could then be:

1.23

-300

RELATED CONCEPTS

“Formats for numeric data” on page 49

“Data format conversions” on page 54

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

114 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

“Conversions and precision” on page 54

“ARITH” on page 306

Converting from one code page to another

You can nest the DISPLAY-OF and NATIONAL-OF intrinsic functions to easily convert

from any code page to any other code page.

For example, the following code converts an EBCDIC string to an ASCII string:

 77 EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.

 77 ASCII-CCSID PIC 9(4) BINARY VALUE 819.

 77 Input-EBCDIC PIC X(80).

 77 ASCII-Output PIC X(80).

 . . .

* Convert EBCDIC to ASCII

 Move Function Display-of

 (Function National-of (Input-EBCDIC EBCDIC-CCSID),

 ASCII-CCSID)

 to ASCII-output

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

Evaluating data items (intrinsic functions)

You can use intrinsic functions to determine the ordinal position of a character in

the collating sequence, to find the largest or smallest item in a series, to find the

length of data item, or to determine when a program was compiled.

Use these intrinsic functions:

v CHAR and ORD to evaluate integers and single alphabetic or alphanumeric

characters with respect to the collating sequence used in a program

v MAX, MIN, ORD-MAX, and ORD-MIN to find the largest and smallest items in a series

of data items, including USAGE NATIONAL data items

v LENGTH to find the length of data items, including USAGE NATIONAL data items

v WHEN-COMPILED to find the date and time when a program was compiled

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

RELATED TASKS

“Evaluating single characters for collating sequence”

“Finding the largest or smallest data item” on page 116

“Finding the length of data items” on page 118

“Finding the date of compilation” on page 119

Evaluating single characters for collating sequence

To find out the ordinal position of a given alphabetic or alphanumeric character in

the collating sequence, use the ORD function with the character as the argument. ORD

returns an integer that represents that ordinal position.

Chapter 6. Handling strings 115

You can use a one-character substring of a data item as the argument to ORD:

IF Function Ord(Customer-record(1:1)) IS > 194 THEN . . .

If you know the ordinal position in the collating sequence of a character, and want

to find the character that it corresponds to, use the CHAR function with the integer

ordinal position as the argument. CHAR returns the desired character. For example:

INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

RELATED REFERENCES

CHAR (Enterprise COBOL Language Reference)

ORD (Enterprise COBOL Language Reference)

Finding the largest or smallest data item

To determine which of two or more alphanumeric, alphabetic, or national data

items has the largest value, use the MAX or ORD-MAX intrinsic function. To determine

which item has the smallest value, use MIN or ORD-MIN. These functions evaluate

according to the collating sequence.

To compare numeric items, including those that have USAGE NATIONAL, you can use

MAX, ORD-MAX, MIN, or ORD-MIN. With these intrinsic functions, the algebraic values of

the arguments are compared.

The MAX and MIN functions return the content of one of the arguments that you

supply. For example, suppose that your program has the following data

definitions:

05 Arg1 Pic x(10) Value "THOMASSON ".

05 Arg2 Pic x(10) Value "THOMAS ".

05 Arg3 Pic x(10) Value "VALLEJO ".

The following statement assigns VALLEJObbb to the first 10 character positions of

Customer-record, where b represents a blank space:

Move Function Max(Arg1 Arg2 Arg3) To Customer-record(1:10)

If you used MIN instead, then THOMASbbbb would be assigned.

The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal

position (counting from the left) of the argument that has the largest or smallest

value in the list of arguments that you supply. If you used the ORD-MAX function in

the example above, the compiler would issue an error message because the

reference to a numeric function is not in a valid place. The following statement is a

valid use of ORD-MAX:

Compute x = Function Ord-max(Arg1 Arg2 Arg3)

The statement above assigns the integer 3 to x if the same arguments are used as

in the previous example. If you used ORD-MIN instead, the integer 2 would be

returned. The examples above might be more realistic if Arg1, Arg2, and Arg3 were

successive elements of an array (table).

If you specify a national item for any argument, you must specify all arguments as

class national.

RELATED TASKS

“Performing arithmetic” on page 57

116 Enterprise COBOL for z/OS V4.1 Programming Guide

“Processing table items using intrinsic functions” on page 86

“Returning variable-length results with alphanumeric or national functions”

RELATED REFERENCES

MAX (Enterprise COBOL Language Reference)

MIN (Enterprise COBOL Language Reference)

ORD-MAX (Enterprise COBOL Language Reference)

ORD-MIN (Enterprise COBOL Language Reference)

Returning variable-length results with alphanumeric or national

functions

The results of alphanumeric or national functions could be of varying lengths and

values depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the

COMPUTE statement depend on the values and sizes of R1 and R2:

01 R1 Pic x(10) value "e".

01 R2 Pic x(05) value "f".

01 R3 Pic x(20) value spaces.

01 L Pic 99.

. . .

 Move Function Max(R1 R2) to R3

 Compute L = Function Length(Function Max(R1 R2))

This code has the following results:

v R2 is evaluated to be larger than R1.

v The string ’fbbbb’ is moved to R3, where b represents a blank space. (The unfilled

character positions in R3 are padded with spaces.)

v L evaluates to the value 5.

If R1 contained ’g’ instead of ’e’, the code would have the following results:

v R1 would evaluate as larger than R2.

v The string ’gbbbbbbbbb’ would be moved to R3. (The unfilled character positions

in R3 would be padded with spaces.)

v The value 10 would be assigned to L.

If a program uses national data for function arguments, the lengths and values of

the function results could likewise vary. For example, the following code is

identical to the fragment above, but uses national data instead of alphanumeric

data.

01 R1 Pic n(10) national value "e".

01 R2 Pic n(05) national value "f".

01 R3 Pic n(20) national value spaces.

01 L Pic 99 national.

. . .

 Move Function Max(R1 R2) to R3

 Compute L = Function Length(Function Max(R1 R2))

This code has the following results, which are similar to the first set of results

except that these are for national characters:

v R2 is evaluated to be larger than R1.

v The string NX"0066 0020 0020 0020 0020" (the equivalent in national characters

of ’fbbbb’, where b represents a blank space), shown here in hexadecimal notation

with added spaces for readability, is moved to R3. The unfilled character

positions in R3 are padded with national spaces.

Chapter 6. Handling strings 117

v L evaluates to the value 5, the length in national character positions of R2.

You might be dealing with variable-length output from alphanumeric or national

functions. Plan your program accordingly. For example, you might need to think

about using variable-length files when the records that you are writing could be of

different lengths:

File Section.

FD Output-File Recording Mode V.

01 Short-Customer-Record Pic X(50).

01 Long-Customer-Record Pic X(70).

Working-Storage Section.

01 R1 Pic x(50).

01 R2 Pic x(70).

. . .

 If R1 > R2

 Write Short-Customer-Record from R1

 Else

 Write Long-Customer-Record from R2

 End-if

RELATED TASKS

“Finding the largest or smallest data item” on page 116

“Performing arithmetic” on page 57

RELATED REFERENCES

MAX (Enterprise COBOL Language Reference)

Finding the length of data items

You can use the LENGTH function in many contexts (including tables and numeric

data) to determine the length of an item. For example, you can use the LENGTH

function to determine the length of an alphanumeric or national literal, or a data

item of any type except DBCS.

The LENGTH function returns the length of a national item (a literal, or any item that

has USAGE NATIONAL, including national group items) as an integer equal to the

length of the argument in national character positions. It returns the length of any

other data item as an integer equal to the length of the argument in alphanumeric

character positions.

The following COBOL statement demonstrates moving a data item into the field in

a record that holds customer names:

Move Customer-name To Customer-record(1:Function Length(Customer-name))

You can also use the LENGTH OF special register, which returns the length in bytes

even for national data. Coding either Function Length(Customer-name) or LENGTH

OF Customer-name returns the same result for alphanumeric items: the length of

Customer-name in bytes.

You can use the LENGTH function only where arithmetic expressions are allowed.

However, you can use the LENGTH OF special register in a greater variety of

contexts. For example, you can use the LENGTH OF special register as an argument

to an intrinsic function that allows integer arguments. (You cannot use an intrinsic

function as an operand to the LENGTH OF special register.) You can also use the

LENGTH OF special register as a parameter in a CALL statement.

118 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Performing arithmetic” on page 57

“Creating variable-length tables (DEPENDING ON)” on page 81

“Processing table items using intrinsic functions” on page 86

RELATED REFERENCES

LENGTH (Enterprise COBOL Language Reference)

LENGTH OF (Enterprise COBOL Language Reference)

Finding the date of compilation

You can use the WHEN-COMPILED intrinsic function to determine when a program

was compiled. The 21-character result indicates the four-digit year, month, day, and

time (in hours, minutes, seconds, and hundredths of seconds) of compilation, and

the difference in hours and minutes from Greenwich mean time.

The first 16 positions are in the following format:

YYYYMMDDhhmmsshh

You can instead use the WHEN-COMPILED special register to determine the date and

time of compilation in the following format:

MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year, and carries the

time out only to seconds. You can use this special register only as the sending field

in a MOVE statement.

RELATED REFERENCES

WHEN-COMPILED (Enterprise COBOL Language Reference)

Chapter 6. Handling strings 119

120 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 7. Processing data in an international environment

Enterprise COBOL supports Unicode UTF-16 as national character data at run

time. UTF-16 provides a consistent and efficient way to encode plain text. Using

UTF-16, you can develop software that will work with various national languages.

Use these COBOL facilities to code and compile programs that process national

data:

v Data types and literals:

– Character data types, defined with the USAGE NATIONAL clause and a PICTURE

clause that defines data of category national, national-edited, or

numeric-edited

– Numeric data types, defined with the USAGE NATIONAL clause and a PICTURE

clause that defines a numeric data item (a national decimal item) or an external

floating-point data item (a national floating-point item)

– National literals, specified with literal prefix N or NX

– Figurative constant ALL national-literal

– Figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO, which have

national character (UTF-16) values when used in national-character contexts
v The COBOL statements shown in the related reference below about COBOL

statements and national data

v Intrinsic functions:

– NATIONAL-OF to convert an alphanumeric or double-byte character set (DBCS)

character string to USAGE NATIONAL (UTF-16)

– DISPLAY-OF to convert a national character string to USAGE DISPLAY in a

selected code page (EBCDIC, ASCII, EUC, or UTF-8)

– The other intrinsic functions shown in the related reference below about

intrinsic functions and national data
v The GROUP-USAGE NATIONAL clause to define groups that contain only USAGE

NATIONAL data items and that behave like elementary category national items in

most operations

v Compiler options:

– CODEPAGE to specify the code page to use for alphanumeric and DBCS data in

your program

– NSYMBOL to control whether national or DBCS processing is used for the N

symbol in literals and PICTURE clauses

You can also take advantage of implicit conversions of alphanumeric or DBCS data

items to national representation. The compiler performs such conversions (in most

cases) when you move these items to national data items, or compare these items

with national data items.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

“National groups” on page 129

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

“Converting to or from national (Unicode) representation” on page 134

© Copyright IBM Corp. 1991, 2007 121

“Processing UTF-8 data” on page 137

“Processing Chinese GB 18030 data” on page 138

“Comparing national (UTF-16) data” on page 139

“Coding for use of DBCS support” on page 141

Appendix C, “Converting double-byte character set (DBCS) data,” on page 689

RELATED REFERENCES

“COBOL statements and national data”

“Intrinsic functions and national data” on page 124

“CODEPAGE” on page 309

“NSYMBOL” on page 330

Classes and categories of data (Enterprise COBOL Language Reference)

Data categories and PICTURE rules (Enterprise COBOL Language Reference)

MOVE statement (Enterprise COBOL Language Reference)

General relation conditions (Enterprise COBOL Language Reference)

COBOL statements and national data

You can use national data with the PROCEDURE DIVISION and compiler-directing

statements shown in the table below.

 Table 15. COBOL statements and national data

COBOL

statement Can be national Comment For more information

ACCEPT identifier-1, identifier-2 identifier-1 is converted

from the native code page

specified in the CODEPAGE

compiler option only if

input is from CONSOLE.

“Assigning input from a screen or file

(ACCEPT)” on page 37

ADD All identifiers can be

numeric items that have

USAGE NATIONAL. identifier-3

(GIVING) can be

numeric-edited with USAGE

NATIONAL.

 “Using COMPUTE and other

arithmetic statements” on page 58

CALL identifier-2, identifier-3,

identifier-4, identifier-5;

literal-2, literal-3

 “Passing data” on page 463

COMPUTE identifier-1 can be numeric

or numeric-edited with

USAGE NATIONAL.

arithmetic-expression can

contain numeric items that

have USAGE NATIONAL.

 “Using COMPUTE and other

arithmetic statements” on page 58

COPY . . .

REPLACING

operand-1, operand-2 of the

REPLACING phrase

 Chapter 18, “Compiler-directing

statements,” on page 361

DISPLAY identifier-1 identifier-1 is converted to

EBCDIC only if the CONSOLE

mnemonic-name is

specified directly or

indirectly.

“Displaying values on a screen or in a

file (DISPLAY)” on page 38

122 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 15. COBOL statements and national data (continued)

COBOL

statement Can be national Comment For more information

DIVIDE All identifiers can be

numeric items that have

USAGE NATIONAL. identifier-3

(GIVING) and identifier-4

(REMAINDER) can be

numeric-edited with USAGE

NATIONAL.

 “Using COMPUTE and other

arithmetic statements” on page 58

INITIALIZE identifier-1; identifier-2 or

literal-1 of the REPLACING

phrase

If you specify REPLACING

NATIONAL or REPLACING

NATIONAL-EDITED, identifier-2

or literal-1 must be valid as

a sending operand in a

move to identifier-1.

“Examples: initializing data items” on

page 30

INSPECT All identifiers and literals.

(identifier-2, the TALLYING

integer data item, can have

USAGE NATIONAL.)

If any of these (other than

identifier-2, the TALLYING

identifier) have USAGE

NATIONAL, all must be

national.

“Tallying and replacing data items

(INSPECT)” on page 111

INVOKE Method-name as identifier-2

or literal-1; identifier-3 or

literal-2 in the BY VALUE

phrase

 “Invoking methods (INVOKE)” on

page 570

MERGE Merge keys The COLLATING SEQUENCE

phrase does not apply.

“Setting sort or merge criteria” on

page 221

MOVE Both the sender and

receiver, or only the

receiver

Implicit conversions are

performed for valid MOVE

operands.

“Assigning values to elementary data

items (MOVE)” on page 34

“Assigning values to group data items

(MOVE)” on page 35

MULTIPLY All identifiers can be

numeric items that have

USAGE NATIONAL. identifier-3

(GIVING) can be

numeric-edited with USAGE

NATIONAL.

 “Using COMPUTE and other

arithmetic statements” on page 58

SEARCH ALL

(binary search)

Both the key data item and

its object of comparison

The key data item and its

object of comparison must

be compatible according to

the rules of comparison. If

the object of comparison is

of class national, the key

must be also.

“Doing a binary search (SEARCH

ALL)” on page 85

SORT Sort keys The COLLATING SEQUENCE

phrase does not apply.

“Setting sort or merge criteria” on

page 221

STRING All identifiers and literals.

(identifier-4, the POINTER

integer data item, can have

USAGE NATIONAL.)

If identifier-3, the receiving

data item, is national, all

identifiers and literals

(other than identifier-4, the

POINTER identifier) must be

national.

“Joining data items (STRING)” on

page 101

Chapter 7. Processing data in an international environment 123

Table 15. COBOL statements and national data (continued)

COBOL

statement Can be national Comment For more information

SUBTRACT All identifiers can be

numeric items that have

USAGE NATIONAL. identifier-3

(GIVING) can be

numeric-edited with USAGE

NATIONAL.

 “Using COMPUTE and other

arithmetic statements” on page 58

UNSTRING All identifiers and literals.

(identifier-6 and identifier-7,

the COUNT and TALLYING

integer data items,

respectively, can have USAGE

NATIONAL.)

If identifier-4, a receiving

data item, has USAGE

NATIONAL, the sending data

item and each delimiter

must have USAGE NATIONAL,

and each literal must be

national.

“Splitting data items (UNSTRING)” on

page 103

XML GENERATE identifier-1 (the generated

XML document); identifier-2

(the source field or fields);

identifier-4 or literal-4 (the

namespace identifier);

identifier-5 or literal-5 (the

namespace prefix)

 Chapter 29, “Producing XML output,”

on page 531

XML PARSE identifier-1 (the XML

document)

The XML-NTEXT special

register contains national

character document

fragments during parsing.

XML-NNAMESPACE and

XML-NNAMESPACE-PREFIX

special registers contain the

associated namespace

identifier and namespace

prefix, if any, in national

characters.

Chapter 28, “Processing XML input,”

on page 501

RELATED TASKS

“Defining numeric data” on page 45

“Displaying numeric data” on page 47

“Using national data (Unicode) in COBOL” on page 126

“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES

“CODEPAGE” on page 309

Classes and categories of data (Enterprise COBOL Language Reference)

Intrinsic functions and national data

You can use arguments of class national with the intrinsic functions shown in the

table below.

 Table 16. Intrinsic functions and national character data

Intrinsic function Function type For more information

DISPLAY-OF Alphanumeric “Converting national to alphanumeric (DISPLAY-OF)” on

page 136

124 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|
|
|
|
|
|
|

Table 16. Intrinsic functions and national character data (continued)

Intrinsic function Function type For more information

LENGTH Integer “Finding the length of data items” on page 118

LOWER-CASE, UPPER-CASE National “Converting to uppercase or lowercase (UPPER-CASE,

LOWER-CASE)” on page 113

NUMVAL, NUMVAL-C Numeric “Converting to numbers (NUMVAL, NUMVAL-C)” on page

113

MAX, MIN National “Finding the largest or smallest data item” on page 116

ORD-MAX, ORD-MIN Integer “Finding the largest or smallest data item” on page 116

REVERSE National “Transforming to reverse order (REVERSE)” on page 113

You can use national decimal arguments wherever zoned decimal arguments are

allowed. You can use national floating-point arguments wherever display

floating-point arguments are allowed. (See the related reference below about

arguments for a complete list of intrinsic functions that can take integer or numeric

arguments.)

RELATED TASKS

“Defining numeric data” on page 45

“Using national data (Unicode) in COBOL” on page 126

RELATED REFERENCES

Arguments (Enterprise COBOL Language Reference)

Classes and categories of data (Enterprise COBOL Language Reference)

Unicode and the encoding of language characters

Enterprise COBOL provides basic runtime support for Unicode, which can handle

tens of thousands of characters that cover all commonly used characters and

symbols in the world.

A character set is a defined set of characters, but is not associated with a coded

representation. A coded character set (also referred to in this documentation as a code

page) is a set of unambiguous rules that relate the characters of the set to their

coded representation. Each code page has a name and is like a table that sets up

the symbols for representing a character set; each symbol is associated with a

unique bit pattern, or code point. Each code page also has a coded character set

identifier (CCSID), which is a value from 1 to 65,536.

Unicode has several encoding schemes, called Unicode Transformation Format (UTF),

such as UTF-8, UTF-16, and UTF-32. Enterprise COBOL uses UTF-16 (CCSID 1200)

in big-endian format as the representation for national literals and data items that

have USAGE NATIONAL.

UTF-8 represents ASCII invariant characters a-z, A-Z, 0-9, and certain special

characters such as ’ @ , . + - = / * () the same way that they are represented in

ASCII. UTF-16 represents these characters as NX’00nn’, where X’nn’ is the

representation of the character in ASCII.

For example, the string ’ABC’ is represented in UTF-16 as NX’004100420043’. In

UTF-8, ’ABC’ is represented as X’414243’.

Chapter 7. Processing data in an international environment 125

One or more encoding units are used to represent a character from a coded

character set. For UTF-16, an encoding unit takes 2 bytes of storage. Any character

defined in any EBCDIC, ASCII, or EUC code page is represented in one UTF-16

encoding unit when the character is converted to the national data representation.

Cross-platform considerations: Enterprise COBOL and COBOL for AIX® support

UTF-16 in big-endian format in national data. COBOL for Windows® supports

UTF-16 in little-endian format (UTF-16LE) in national data. If you are porting

Unicode data that is encoded in UTF-16LE representation to Enterprise COBOL

from another platform, you must convert that data to UTF-16 in big-endian format

to process the data as national data.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

“Storage of national data” on page 133

Character sets and code pages (Enterprise COBOL Language Reference)

Using national data (Unicode) in COBOL

In Enterprise COBOL, you can specify national (UTF-16) data in any of several

ways.

These types of national data are available:

v National data items (categories national, national-edited, and numeric-edited)

v National literals

v Figurative constants as national characters

v Numeric data items (national decimal and national floating-point)

In addition, you can define national groups that contain only data items that

explicitly or implicitly have USAGE NATIONAL, and that behave in the same way as

elementary category national data items in most operations.

These declarations affect the amount of storage that is needed.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

“National groups” on page 129

RELATED TASKS

“Defining national data items” on page 127

“Using national literals” on page 127

“Using national-character figurative constants” on page 128

“Defining national numeric data items” on page 129

“Using national groups” on page 130

“Converting to or from national (Unicode) representation” on page 134

“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES

“Storage of national data” on page 133

Classes and categories of data (Enterprise COBOL Language Reference)

126 Enterprise COBOL for z/OS V4.1 Programming Guide

Defining national data items

Define national data items with the USAGE NATIONAL clause to hold national

(UTF-16) character strings.

You can define national data items of the following categories:

v National

v National-edited

v Numeric-edited

To define a category national data item, code a PICTURE clause that contains only

one or more PICTURE symbols N.

To define a national-edited data item, code a PICTURE clause that contains at least

one of each of the following symbols:

v Symbol N

v Simple insertion editing symbol B, 0, or /

To define a numeric-edited data item of class national, code a PICTURE clause that

defines a numeric-edited item (for example, -$999.99) and code a USAGE NATIONAL

clause. You can use a numeric-edited data item that has USAGE NATIONAL in the

same way that you use a numeric-edited item that has USAGE DISPLAY.

You can also define a data item as numeric-edited by coding the BLANK WHEN ZERO

clause for an elementary item that is defined as numeric by its PICTURE clause.

If you code a PICTURE clause but do not code a USAGE clause for data items that

contain only one or more PICTURE symbols N, you can use the compiler option

NSYMBOL(NATIONAL) to ensure that such items are treated as national data items

instead of as DBCS items.

RELATED TASKS

“Displaying numeric data” on page 47

RELATED REFERENCES

“NSYMBOL” on page 330

BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

Using national literals

To specify national literals, use the prefix character N and compile with the option

NSYMBOL(NATIONAL).

You can use either of these notations:

v N"character-data"

v N’character-data’

If you compile with the option NSYMBOL(DBCS), the literal prefix character N

specifies a DBCS literal, not a national literal.

To specify a national literal as a hexadecimal value, use the prefix NX. You can use

either of these notations:

v NX"hexadecimal-digits"

Chapter 7. Processing data in an international environment 127

v NX’hexadecimal-digits’

Each of the following MOVE statements sets the national data item Y to the UTF-16

value of the characters ’AB’:

01 Y pic NN usage national.

. . .

 Move NX"00410042" to Y

 Move N"AB" to Y

 Move "AB" to Y

Do not use alphanumeric hexadecimal literals in contexts that call for national

literals, because such usage is easily misunderstood. For example, the following

statement also results in moving the UTF-16 characters ’AB’ (not the hexadecimal

bit pattern C1C2) to Y, where Y is defined as USAGE NATIONAL:

Move X"C1C2" to Y

You cannot use national literals in the SPECIAL-NAMES paragraph or as

program-names. You can use a national literal to name an object-oriented method

in the METHOD-ID paragraph or to specify a method-name in an INVOKE statement.

RELATED TASKS

“Using literals” on page 27

RELATED REFERENCES

“NSYMBOL” on page 330

National literals (Enterprise COBOL Language Reference)

Using national-character figurative constants

You can use the figurative constant ALL national-literal in a context that requires

national characters. ALL national-literal represents all or part of the string that is

generated by successive concatenations of the encoding units that make up the

national literal.

You can use the figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO

in a context that requires national characters, such as a MOVE statement, an implicit

move, or a relation condition that has national operands. In these contexts, the

figurative constant represents a national-character (UTF-16) value.

When you use the figurative constant HIGH-VALUE in a context that requires

national characters, its value is NX’FFFF’. When you use LOW-VALUE in a context

that requires national characters, its value is NX’0000’.

Restrictions: You must not use HIGH-VALUE or the value assigned from HIGH-VALUE

in a way that results in conversion of the value from one data representation to

another (for example, between USAGE DISPLAY and USAGE NATIONAL). X’FF’ (the

value of HIGH-VALUE in an alphanumeric context when the EBCDIC collating

sequence is being used) does not represent a valid EBCDIC character, and NX’FFFF’

does not represent a valid national character. Conversion of such a value to

another representation results in a substitution character being used (not X’FF’ or

NX’FFFF’). Consider the following example:

01 natl-data PIC NN Usage National.

01 alph-data PIC XX.

. . .

 MOVE HIGH-VALUE TO natl-data, alph-data

 IF natl-data = alph-data. . .

128 Enterprise COBOL for z/OS V4.1 Programming Guide

The IF statement above evaluates as false even though each of its operands was set

to HIGH-VALUE. Before an elementary alphanumeric operand is compared to a

national operand, the alphanumeric operand is treated as though it were moved to

a temporary national data item, and the alphanumeric characters are converted to

the corresponding national characters. When X’FF’ is converted to UTF-16,

however, the UTF-16 item gets a substitution character value and so does not

compare equally to NX’FFFF’.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES

Figurative constants (Enterprise COBOL Language Reference)

DISPLAY-OF (Enterprise COBOL Language Reference)

Support for Unicode: Using Unicode Services

Defining national numeric data items

Define data items with the USAGE NATIONAL clause to hold numeric data that is

represented in national characters (UTF-16). You can define national decimal items

and national floating-point items.

To define a national decimal item, code a PICTURE clause that contains only the

symbols 9, P, S, and V. If the PICTURE clause contains S, the SIGN IS SEPARATE

clause must be in effect for that item.

To define a national floating-point item, code a PICTURE clause that defines a

floating-point item (for example, +99999.9E-99).

You can use national decimal items in the same way that you use zoned decimal

items. You can use national floating-point items in the same way that you use

display floating-point items.

RELATED TASKS

“Defining numeric data” on page 45

“Displaying numeric data” on page 47

RELATED REFERENCES

SIGN clause (Enterprise COBOL Language Reference)

National groups

National groups, which are specified either explicitly or implicitly with the

GROUP-USAGE NATIONAL clause, contain only data items that have USAGE NATIONAL. In

most cases, a national group item is processed as though it were redefined as an

elementary category national item described as PIC N(m), where m is the number

of national (UTF-16) characters in the group.

For some operations on national groups, however (just as for some operations on

alphanumeric groups), group semantics apply. Such operations (for example, MOVE

CORRESPONDING and INITIALIZE) recognize or process the elementary items within

the national group.

Chapter 7. Processing data in an international environment 129

http://publib.boulder.ibm.com/cgi-bin/bookmgr/books/iea2un70

Where possible, use national groups instead of alphanumeric groups that contain

USAGE NATIONAL items. National groups provide several advantages for the

processing of national data compared to the processing of national data within

alphanumeric groups:

v When you move a national group to a longer data item that has USAGE NATIONAL,

the receiving item is padded with national characters. By contrast, if you move

an alphanumeric group that contains national characters to a longer

alphanumeric group that contains national characters, alphanumeric spaces are

used for padding. As a result, mishandling of data items could occur.

v When you move a national group to a shorter data item that has USAGE

NATIONAL, the national group is truncated at national-character boundaries. By

contrast, if you move an alphanumeric group that contains national characters to

a shorter alphanumeric group that contains national characters, truncation might

occur between the 2 bytes of a national character.

v When you move a national group to a national-edited or numeric-edited item,

the content of the group is edited. By contrast, if you move an alphanumeric

group to an edited item, no editing takes place.

v When you use a national group as an operand in a STRING, UNSTRING, or INSPECT

statement:

– The group content is processed as national characters rather than as

single-byte characters.

– TALLYING and POINTER operands operate at the logical level of national

characters.

– The national group operand is supported with a mixture of other national

operand types.

By contrast, if you use an alphanumeric group that contains national characters

in these contexts, the characters are processed byte by byte. As a result, invalid

handling or corruption of data could occur.

USAGE NATIONAL groups: A group item can specify the USAGE NATIONAL clause at the

group level as a convenient shorthand for the USAGE of each of the elementary data

items within the group. Such a group is not a national group, however, but an

alphanumeric group, and behaves in many operations, such as moves and

compares, like an elementary data item of USAGE DISPLAY (except that no editing or

conversion of data occurs).

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 35

“Joining data items (STRING)” on page 101

“Splitting data items (UNSTRING)” on page 103

“Tallying and replacing data items (INSPECT)” on page 111

“Using national groups”

RELATED REFERENCES

GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups

To define a group data item as a national group, code a GROUP-USAGE NATIONAL

clause at the group level for the item. The group can contain only data items that

explicitly or implicitly have USAGE NATIONAL.

The following data description entry specifies that a level-01 group and its

subordinate groups are national group items:

130 Enterprise COBOL for z/OS V4.1 Programming Guide

01 Nat-Group-1 GROUP-USAGE NATIONAL.

 02 Group-1.

 04 Month PIC 99.

 04 DayOf PIC 99.

 04 Year PIC 9999.

 02 Group-2 GROUP-USAGE NATIONAL.

 04 Amount PIC 9(4).99 USAGE NATIONAL.

In the example above, Nat-Group-1 is a national group, and its subordinate groups

Group-1 and Group-2 are also national groups. A GROUP-USAGE NATIONAL clause is

implied for Group-1, and USAGE NATIONAL is implied for the subordinate items in

Group-1. Month, DayOf, and Year are national decimal items, and Amount is a

numeric-edited item that has USAGE NATIONAL.

You can subordinate national groups within alphanumeric groups as in the

following example:

01 Alpha-Group-1.

 02 Group-1.

 04 Month PIC 99.

 04 DayOf PIC 99.

 04 Year PIC 9999.

 02 Group-2 GROUP-USAGE NATIONAL.

 04 Amount PIC 9(4).99.

In the example above, Alpha-Group-1 and Group-1 are alphanumeric groups; USAGE

DISPLAY is implied for the subordinate items in Group-1. (If Alpha-Group-1 specified

USAGE NATIONAL at the group level, USAGE NATIONAL would be implied for each of

the subordinate items in Group-1. However, Alpha-Group-1 and Group-1 would be

alphanumeric groups, not national groups, and would behave like alphanumeric

groups during operations such as moves and compares.) Group-2 is a national

group, and USAGE NATIONAL is implied for the numeric-edited item Amount.

You cannot subordinate alphanumeric groups within national groups. All

elementary items within a national group must be explicitly or implicitly described

as USAGE NATIONAL, and all group items within a national group must be explicitly

or implicitly described as GROUP-USAGE NATIONAL.

RELATED CONCEPTS

“National groups” on page 129

RELATED TASKS

“Using national groups as elementary items”

“Using national groups as group items” on page 132

RELATED REFERENCES

GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups as elementary items

In most cases, you can use a national group as though it were an elementary data

item.

In the following example, a national group item, Group-1, is moved to a

national-edited item, Edited-date. Because Group-1 is treated as an elementary

data item during the move, editing takes place in the receiving data item. The

value in Edited-date after the move is 06/23/2007 in national characters.

Chapter 7. Processing data in an international environment 131

01 Edited-date PIC NN/NN/NNNN USAGE NATIONAL.

01 Group-1 GROUP-USAGE NATIONAL.

 02 Month PIC 99 VALUE 06.

 02 DayOf PIC 99 VALUE 23.

 02 Year PIC 9999 VALUE 2007.

 . . .

 MOVE Group-1 to Edited-date.

If Group-1 were instead an alphanumeric group in which each of its subordinate

items had USAGE NATIONAL (specified either explicitly with a USAGE NATIONAL clause

on each elementary item, or implicitly with a USAGE NATIONAL clause at the group

level), a group move, rather than an elementary move, would occur. Neither

editing nor conversion would take place during the move. The value in the first

eight character positions of Edited-date after the move would be 06232007 in

national characters, and the value in the remaining two character positions would

be 4 bytes of alphanumeric spaces.

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 35

“Comparing national data and alphanumeric-group operands” on page 141

“Using national groups as group items”

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)

Using national groups as group items

In some cases when you use a national group, it is handled with group semantics;

that is, the elementary items in the group are recognized or processed.

In the following example, an INITIALIZE statement that acts upon national group

item Group-OneN causes the value 15 in national characters to be moved to only the

numeric items in the group:

01 Group-OneN Group-Usage National.

 05 Trans-codeN Pic N Value "A".

 05 Part-numberN Pic NN Value "XX".

 05 Trans-quanN Pic 99 Value 10.

 . . .

 Initialize Group-OneN Replacing Numeric Data By 15

Because only Trans-quanN in Group-OneN above is numeric, only Trans-quanN

receives the value 15. The other subordinate items are unchanged.

The table below summarizes the cases where national groups are processed with

group semantics.

 Table 17. National group items that are processed with group semantics

Language feature Uses of national group items Comment

CORRESPONDING phrase

of the ADD, SUBTRACT,

or MOVE statement

Specify a national group item for

processing as a group in

accordance with the rules of the

CORRESPONDING phrase.

Elementary items within the

national group are processed

like elementary items that

have USAGE NATIONAL within

an alphanumeric group.

Host variable in EXEC

SQL statement

Specify a national group item as a

host variable.

The national group item is in

effect shorthand for the set of

host variables that are

subordinate to the group item.

132 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 17. National group items that are processed with group semantics (continued)

Language feature Uses of national group items Comment

INITIALIZE statement Specify a national group for

processing as a group in

accordance with the rules of the

INITIALIZE statement.

Elementary items within the

national group are initialized

like elementary items that

have USAGE NATIONAL within

an alphanumeric group.

Name qualification Use the name of a national group

item to qualify the names of

elementary data items and of

subordinate group items in the

national group.

Follow the same rules for

qualification as for an

alphanumeric group.

THROUGH phrase of the

RENAMES clause

To specify a national group item in

the THROUGH phrase, use the same

rules as for an alphanumeric group

item.

The result is an alphanumeric

group item.

FROM phrase of the

XML GENERATE

statement

Specify a national group item in

the FROM phrase for processing as a

group in accordance with the rules

of the XML GENERATE statement.

Elementary items within the

national group are processed

like elementary items that

have USAGE NATIONAL within

an alphanumeric group.

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32

“Initializing a table (INITIALIZE)” on page 76

“Assigning values to elementary data items (MOVE)” on page 34

“Assigning values to group data items (MOVE)” on page 35

“Finding the length of data items” on page 118

“Generating XML output” on page 531

“Using national group items in SQL statements” on page 420

RELATED REFERENCES

Qualification (Enterprise COBOL Language Reference)

RENAMES clause (Enterprise COBOL Language Reference)

Storage of national data

Use the table below to compare alphanumeric (DISPLAY), DBCS (DISPLAY-1), and

Unicode (NATIONAL) encoding and to plan storage usage.

 Table 18. Encoding and size of alphanumeric, DBCS, and national data

Characteristic DISPLAY DISPLAY-1 NATIONAL

Character encoding unit 1 byte 2 bytes 2 bytes

Code page1 EBCDIC EBCDIC DBCS UTF-16BE

Encoding units per graphic

character

1 1 1 or 22

Bytes per graphic character 1 byte 2 bytes 2 or 4 bytes

Chapter 7. Processing data in an international environment 133

Table 18. Encoding and size of alphanumeric, DBCS, and national data (continued)

Characteristic DISPLAY DISPLAY-1 NATIONAL

1. Use the CODEPAGE compiler option to specify the EBCDIC code page that is applicable to

alphanumeric or DBCS data.

2. Most characters are represented in UTF-16 using one encoding unit. In particular, the

following characters are represented using a single UTF-16 encoding unit per character:

v COBOL characters A-Z, a-z, 0-9, space, + -*/= $,;.″()><:’

v All characters that are converted from an EBCDIC, ASCII, or EUC code page

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125

Converting to or from national (Unicode) representation

You can implicitly or explicitly convert data items to national (UTF-16)

representation.

You can implicitly convert alphabetic, alphanumeric, DBCS, or integer data to

national data by using the MOVE statement. Implicit conversions also take place in

other COBOL statements, such as IF statements that compare an alphanumeric

data item with a data item that has USAGE NATIONAL.

You can explicitly convert to and from national data items by using the intrinsic

functions NATIONAL-OF and DISPLAY-OF, respectively. By using these intrinsic

functions, you can specify a code page for the conversion that is different from the

code page that is in effect with the CODEPAGE compiler option.

RELATED TASKS

“Converting alphanumeric, DBCS, and integer to national (MOVE)”

“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 135

“Converting national to alphanumeric (DISPLAY-OF)” on page 136

“Overriding the default code page” on page 136

“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES

“CODEPAGE” on page 309

“Conversion exceptions” on page 136

Converting alphanumeric, DBCS, and integer to national

(MOVE)

You can use a MOVE statement to implicitly convert data to national representation.

You can move the following kinds of data to category national or national-edited

data items, and thus convert the data to national representation:

v Alphabetic

v Alphanumeric

v Alphanumeric-edited

v DBCS

v Integer of USAGE DISPLAY

v Numeric-edited of USAGE DISPLAY

134 Enterprise COBOL for z/OS V4.1 Programming Guide

You can likewise move the following kinds of data to numeric-edited data items

that have USAGE NATIONAL:

v Alphanumeric

v Display floating-point (floating-point of USAGE DISPLAY)

v Numeric-edited of USAGE DISPLAY

v Integer of USAGE DISPLAY

For complete rules about moves to national data, see the related reference about

the MOVE statement.

For example, the MOVE statement below moves the alphanumeric literal "AB" to the

national data item UTF16-Data:

01 UTF16-Data Pic N(2) Usage National.

 . . .

 Move "AB" to UTF16-Data

After the MOVE statement above, UTF16-Data contains NX’00410042’, the national

representation of the alphanumeric characters ’AB’.

If padding is required in a receiving data item that has USAGE NATIONAL, the default

UTF-16 space character (NX’0020’) is used. If truncation is required, it occurs at the

boundary of a national-character position.

RELATED TASKS

“Assigning values to elementary data items (MOVE)” on page 34

“Assigning values to group data items (MOVE)” on page 35

“Displaying numeric data” on page 47

“Coding for use of DBCS support” on page 141

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)

Converting alphanumeric or DBCS to national (NATIONAL-OF)

Use the NATIONAL-OF intrinsic function to convert alphabetic, alphanumeric, or

DBCS data to a national data item. Specify the source code page as the second

argument if the source is encoded in a different code page than is in effect with the

CODEPAGE compiler option.

“Example: converting to and from national data” on page 137

RELATED TASKS

“Processing UTF-8 data” on page 137

“Processing Chinese GB 18030 data” on page 138

“Processing alphanumeric data items that contain DBCS data” on page 143

RELATED REFERENCES

“CODEPAGE” on page 309

NATIONAL-OF (Enterprise COBOL Language Reference)

Chapter 7. Processing data in an international environment 135

Converting national to alphanumeric (DISPLAY-OF)

Use the DISPLAY-OF intrinsic function to convert national data to an alphanumeric

(USAGE DISPLAY) character string that is represented in a code page that you specify

as the second argument.

If you omit the second argument, the output code page is the one that was in

effect with the CODEPAGE compiler option when the source was compiled.

If you specify an EBCDIC or ASCII code page that combines single-byte character

set (SBCS) and DBCS characters, the returned string might contain a mixture of

SBCS and DBCS characters. The DBCS substrings are delimited by shift-in and

shift-out characters if the code page in effect for the function is an EBCDIC code

page.

“Example: converting to and from national data” on page 137

RELATED TASKS

“Processing UTF-8 data” on page 137

“Processing Chinese GB 18030 data” on page 138

RELATED REFERENCES

DISPLAY-OF (Enterprise COBOL Language Reference)

Overriding the default code page

In some cases, you might need to convert data to or from a code page that differs

from the CCSID that is specified as the CODEPAGE option value. To do so, convert

the item by using a conversion function in which you explicitly specify the code

page.

If you specify a code page as an argument to the DISPLAY-OF intrinsic function, and

the code page differs from the code page that is in effect with the CODEPAGE

compiler option, do not use the function result in any operations that involve

implicit conversion (such as an assignment to, or comparison with, a national data

item). Such operations assume the EBCDIC code page that is specified with the

CODEPAGE compiler option.

RELATED REFERENCES

“CODEPAGE” on page 309

Conversion exceptions

Implicit or explicit conversion between national data and alphanumeric data can

fail and generate a severity-3 Language Environment condition.

Failure can occur if the code page that you specified implicitly or explicitly is not a

valid code page.

A character that does not have a counterpart in the target CCSID does not result in

a conversion exception. Such a character is converted to a substitution character in

the target code page.

RELATED REFERENCES

“CODEPAGE” on page 309

136 Enterprise COBOL for z/OS V4.1 Programming Guide

Example: converting to and from national data

The following example shows the NATIONAL-OF and DISPLAY-OF intrinsic functions

and the MOVE statement for converting to and from national (UTF-16) data items. It

also demonstrates the need for explicit conversions when you operate on strings

that are encoded in multiple code pages.

 CBL CODEPAGE(00037)

* . . .

 01 Data-in-Unicode pic N(100) usage national.

 01 Data-in-Greek pic X(100).

 01 other-data-in-US-English pic X(12) value "PRICE in $ =".

* . . .

 Read Greek-file into Data-in-Greek

 Move function National-of(Data-in-Greek, 00875)

 to Data-in-Unicode

* . . . process Data-in-Unicode here . . .

 Move function Display-of(Data-in-Unicode, 00875)

 to Data-in-Greek

 Write Greek-record from Data-in-Greek

The example above works correctly because the input code page is specified.

Data-in-Greek is converted as data represented in CCSID 00875 (Greek). However,

the following statement results in an incorrect conversion unless all the characters

in the item happen to be among those that have a common representation in both

the Greek and the English code pages:

Move Data-in-Greek to Data-in-Unicode

The MOVE statement above converts Data-in-Greek to Unicode representation based

on the CCSID 00037 (U.S. English) to UTF-16 conversion. This conversion does not

produce the expected results because Data-in-Greek is encoded in CCSID 00875.

If you can correctly set the CODEPAGE compiler option to CCSID 00875 (that is, the

rest of your program also handles EBCDIC data in Greek), you can code the same

example correctly as follows:

 CBL CODEPAGE(00875)

* . . .

 01 Data-in-Unicode pic N(100) usage national.

 01 Data-in-Greek pic X(100).

* . . .

 Read Greek-file into Data-in-Greek

* . . . process Data-in-Greek here ...

* . . . or do the following (if need to process data in Unicode):

 Move Data-in-Greek to Data-in-Unicode

* . . . process Data-in-Unicode

 Move function Display-of(Data-in-Unicode) to Data-in-Greek

 Write Greek-record from Data-in-Greek

Processing UTF-8 data

When you need to process UTF-8 data, first convert the data to UTF-16 in a

national data item. After processing the national data, convert it back to UTF-8 for

output. For the conversions, use the intrinsic functions NATIONAL-OF and

DISPLAY-OF, respectively. Use code page 1208 for UTF-8 data.

You need to do two steps to convert ASCII or EBCDIC data to UTF-8:

1. Use the function NATIONAL-OF to convert the ASCII or EBCDIC string to a

national (UTF-16) string.

2. Use the function DISPLAY-OF to convert the national string to UTF-8.

Chapter 7. Processing data in an international environment 137

The following example converts Greek EBCDIC data to UTF-8:

Usage note: Use care if you use reference modification to refer to data encoded in

UTF-8. UTF-8 characters are encoded with a varying number of bytes per

character. Avoid operations that might split a multibyte character.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

“Referring to substrings of data items” on page 107

“Parsing XML documents encoded in UTF-8” on page 523

Processing Chinese GB 18030 data

GB 18030 is a national-character standard specified by the government of the

People’s Republic of China.

GB 18030 characters can be encoded in either UTF-16 or in code page CCSID 1392.

Code page 1392 is an ASCII multibyte code page that uses 1, 2, or 4 bytes per

character. A subset of the GB 18030 characters can be encoded in the Chinese ASCII

code page, CCSID 1386, or in the Chinese EBCDIC code page, CCSID 1388.

Enterprise COBOL does not have explicit support for GB 18030, but does support

the processing of GB 18030 characters in several ways. You can:

v Use DBCS data items to process GB 18030 characters that are represented in

CCSID 1388.

v Use national data items to define and process GB 18030 characters that are

represented in UTF-16, CCSID 01200.

v Process data in any code page (including CCSID 1388 or 1392) by converting the

data to UTF-16, processing the UTF-16 data, and then converting the data back

to the original code-page representation.

When you need to process Chinese GB 18030 data that requires conversion, first

convert the input data to UTF-16 in a national data item. After you process the

national data item, convert it back to Chinese GB 18030 for output. For the

conversions, use the intrinsic functions NATIONAL-OF and DISPLAY-OF, respectively,

and specify code page 1388 or 1392 as the second argument of each function.

The following example illustrates these conversions:

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

“Coding for use of DBCS support” on page 141

138 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

RELATED REFERENCES

“Storage of national data” on page 133

Comparing national (UTF-16) data

You can compare national (UTF-16) data, that is, national literals and data items

that have USAGE NATIONAL (whether of class national or class numeric), explicitly or

implicitly with other kinds of data in relation conditions.

You can code conditional expressions that use national data in the following

statements:

v EVALUATE

v IF

v INSPECT

v PERFORM

v SEARCH

v STRING

v UNSTRING

The following sections provide an overview about comparing national data to

other data items. For full details, see the related references.

RELATED TASKS

“Comparing two class national operands”

“Comparing class national and class numeric operands” on page 140

“Comparing national numeric and other numeric operands” on page 140

“Comparing national and other character-string operands” on page 140

“Comparing national data and alphanumeric-group operands” on page 141

RELATED REFERENCES

Relation conditions (Enterprise COBOL Language Reference)

General relation conditions (Enterprise COBOL Language Reference)

National comparisons (Enterprise COBOL Language Reference)

Group comparisons (Enterprise COBOL Language Reference)

Comparing two class national operands

You can compare the character values of two operands of class national.

Either operand (or both) can be any of the following types of items:

v A national group

v An elementary category national or national-edited data item

v A numeric-edited data item that has USAGE NATIONAL

One of the operands can instead be a national literal or a national intrinsic

function.

When you compare two class national operands that have the same length, they

are determined to be equal if all pairs of the corresponding characters are equal.

Otherwise, comparison of the binary values of the first pair of unequal characters

determines the operand with the larger binary value.

Chapter 7. Processing data in an international environment 139

When you compare operands that have unequal lengths, the shorter operand is

treated as if it were padded on the right with default UTF-16 space characters

(NX’0020’) to the length of the longer operand.

The PROGRAM COLLATING SEQUENCE clause does not affect the comparison of two

class national operands.

RELATED CONCEPTS

“National groups” on page 129

RELATED TASKS

“Using national groups” on page 130

RELATED REFERENCES

National comparisons (Enterprise COBOL Language Reference)

Comparing class national and class numeric operands

You can compare national literals or class national data items to integer literals or

numeric data items that are defined as integer (that is, national decimal items or

zoned decimal items). At most one of the operands can be a literal.

You can also compare national literals or class national data items to floating-point

data items (that is, display floating-point or national floating-point items).

Numeric operands are converted to national (UTF-16) representation if they are not

already in national representation. A comparison is made of the national character

values of the operands.

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

Comparing national numeric and other numeric operands

National numeric operands (national decimal and national floating-point operands)

are data items of class numeric that have USAGE NATIONAL.

You can compare the algebraic values of numeric operands regardless of their

USAGE. Thus you can compare a national decimal item or a national floating-point

item with a binary item, an internal-decimal item, a zoned decimal item, a display

floating-point item, or any other numeric item.

RELATED TASKS

“Defining national numeric data items” on page 129

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

Comparing national and other character-string operands

You can compare the character value of a national literal or class national data item

with the character value of any of the following other character-string operands:

alphabetic, alphanumeric, alphanumeric-edited, DBCS, or numeric-edited of USAGE

DISPLAY.

140 Enterprise COBOL for z/OS V4.1 Programming Guide

These operands are treated as if they were moved to an elementary national data

item. The characters are converted to national (UTF-16) representation, and the

comparison proceeds with two national character operands.

RELATED TASKS

“Using national-character figurative constants” on page 128

RELATED REFERENCES

National comparisons (Enterprise COBOL Language Reference)

Comparing national data and alphanumeric-group operands

You can compare a national literal, a national group item, or any elementary data

item that has USAGE NATIONAL to an alphanumeric group.

Neither operand is converted. The national operand is treated as if it were moved

to an alphanumeric group item of the same size in bytes as the national operand,

and the two groups are compared. An alphanumeric comparison is done regardless

of the representation of the subordinate items in the alphanumeric group operand.

For example, Group-XN is an alphanumeric group that consists of two subordinate

items that have USAGE NATIONAL:

01 Group-XN.

 02 TransCode PIC NN Value "AB" Usage National.

 02 Quantity PIC 999 Value 123 Usage National.

 . . .

 If N"AB123" = Group-XN Then Display "EQUAL"

 Else Display "NOT EQUAL".

When the IF statement above is executed, the 10 bytes of the national literal

N"AB123" are compared byte by byte to the content of Group-XN. The items compare

equally, and ″EQUAL″ is displayed.

RELATED REFERENCES

Group comparisons (Enterprise COBOL Language Reference)

Coding for use of DBCS support

IBM Enterprise COBOL for z/OS supports using applications in any of many

national languages, including languages that use double-byte character sets

(DBCS).

The following list summarizes the support for DBCS:

v DBCS characters in user-defined words (DBCS names)

v DBCS characters in comments

v DBCS data items (defined with PICTURE N, G, or G and B)

v DBCS literals

v DBCS compiler option

RELATED TASKS

“Declaring DBCS data” on page 142

“Using DBCS literals” on page 142

“Testing for valid DBCS characters” on page 143

Chapter 7. Processing data in an international environment 141

“Processing alphanumeric data items that contain DBCS data” on page 143

Appendix C, “Converting double-byte character set (DBCS) data,” on page 689

RELATED REFERENCES

“DBCS” on page 315

Declaring DBCS data

Use the PICTURE and USAGE clauses to declare DBCS data items. DBCS data items

can use PICTURE symbols G, G and B, or N. Each DBCS character position is 2 bytes

in length.

You can specify a DBCS data item by using the USAGE DISPLAY-1 clause. When you

use PICTURE symbol G, you must specify USAGE DISPLAY-1. When you use PICTURE

symbol N but omit the USAGE clause, USAGE DISPLAY-1 or USAGE NATIONAL is implied

depending on the setting of the NSYMBOL compiler option.

If you use a VALUE clause with the USAGE clause in the declaration of a DBCS item,

you must specify a DBCS literal or the figurative constant SPACE or SPACES.

For the purpose of handling reference modifications, each character in a DBCS data

item is considered to occupy the number of bytes that corresponds to the

code-page width (that is, 2).

RELATED REFERENCES

“NSYMBOL” on page 330

Using DBCS literals

You can use the prefix N or G to represent a DBCS literal.

That is, you can specify a DBCS literal in either of these ways:

v N’dbcs characters’ (provided that the compiler option NSYMBOL(DBCS) is in effect)

v G’dbcs characters’

You can use quotation marks (") or single quotation marks (’) as the delimiters of

a DBCS literal irrespective of the setting of the APOST or QUOTE compiler option. You

must code the same opening and closing delimiter for a DBCS literal.

The shift-out (SO) control character X’0E’ must immediately follow the opening

delimiter, and the shift-in (SI) control character X’0F’ must immediately precede

the closing delimiter.

In addition to DBCS literals, you can use alphanumeric literals to specify any

character in one of the supported code pages. However, any string of DBCS

characters that is within an alphanumeric literal must be delimited by the SO and

SI characters, and the DBCS compiler option must be in effect for the SO and SI

characters to be recognized as shift codes.

You cannot continue an alphanumeric literal that contains DBCS characters. The

length of a DBCS literal is likewise limited by the available space in Area B on a

single source line. The maximum length of a DBCS literal is thus 28 double-byte

characters.

142 Enterprise COBOL for z/OS V4.1 Programming Guide

An alphanumeric literal that contains DBCS characters is processed byte by byte,

that is, with semantics appropriate for single-byte characters, except when it is

converted explicitly or implicitly to national data representation, as for example in

an assignment to or comparison with a national data item.

RELATED TASKS

“Using figurative constants” on page 28

RELATED REFERENCES

“DBCS” on page 315

“NSYMBOL” on page 330

“QUOTE/APOST” on page 339

DBCS literals (Enterprise COBOL Language Reference)

Testing for valid DBCS characters

The Kanji class test tests for valid Japanese graphic characters. This testing includes

Katakana, Hiragana, Roman, and Kanji character sets.

The Kanji class test is done by checking characters for the range X’41’ through

X’7E’ in the first byte and X’41’ through X’FE’ in the second byte, plus the space

character X’4040’.

The DBCS class test tests for valid graphic characters for the code page.

The DBCS class test is done by checking characters for the range X’41’ through

X’FE’ in both the first and second byte of each character, plus the space character

X’4040’.

RELATED TASKS

“Coding conditional expressions” on page 94

RELATED REFERENCES

Class condition (Enterprise COBOL Language Reference)

Processing alphanumeric data items that contain DBCS data

If you use byte-oriented operations (for example, STRING, UNSTRING, or reference

modification) on an alphanumeric data item that contains DBCS characters, results

are unpredictable. You should instead convert the item to a national data item

before you process it.

That is, do these steps:

1. Convert the item to UTF-16 in a national data item by using a MOVE statement

or the NATIONAL-OF intrinsic function.

2. Process the national data item as needed.

3. Convert the result back to an alphanumeric data item by using the DISPLAY-OF

intrinsic function.

RELATED TASKS

“Joining data items (STRING)” on page 101

“Splitting data items (UNSTRING)” on page 103

“Referring to substrings of data items” on page 107

“Converting to or from national (Unicode) representation” on page 134

Chapter 7. Processing data in an international environment 143

144 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 8. Processing files

Reading and writing data is an essential part of every program. Your program

retrieves information, processes it as you request, and then produces the results.

The source of the information and the target for the results can be one or more of

the following items:

v Another program

v Direct-access storage device

v Magnetic tape

v Printer

v Terminal

v Card reader or punch

The information as it exists on an external device is in a physical record or block, a

collection of information that is handled as a unit by the system during input or

output operations.

Your COBOL program does not directly handle physical records. It processes

logical records. A logical record can correspond to a complete physical record, part

of a physical record, or to parts or all of one or more physical records. Your

COBOL program handles logical records exactly as you have defined them.

In COBOL, a collection of logical records is a file, a sequence of pieces of

information that your program can process.

RELATED CONCEPTS

“File organization and input-output devices”

RELATED TASKS

“Choosing file organization and access mode” on page 147

“Allocating files” on page 149

“Checking for input or output errors” on page 150

File organization and input-output devices

Depending on the input-output devices, your file organization can be sequential,

line sequential, indexed, or relative. Decide on the file types and devices to be used

when you design your program.

You have the following choices of file organization:

Sequential file organization

The chronological order in which records are entered when a file is created

establishes the arrangement of the records. Each record except the first has

a unique predecessor record, and each record except the last has a unique

successor record. Once established, these relationships do not change.

 The access (record transmission) mode allowed for sequential files is

sequential only.

© Copyright IBM Corp. 1991, 2007 145

Line-sequential file organization

Line-sequential files are sequential files that reside on the hierarchical file

system (HFS) and that contain only characters as data. Each record ends

with a newline character.

 The only access (record transmission) mode allowed for line-sequential files

is sequential.

Indexed file organization

Each record in the file contains a special field whose contents form the

record key. The position of the key is the same in each record. The index

component of the file establishes the logical arrangement of the file, an

ordering by record key. The actual physical arrangement of the records in

the file is not significant to your COBOL program.

 An indexed file can also use alternate indexes in addition to the record key.

These keys let you access the file using a different logical ordering of the

records.

The access (record transmission) modes allowed for indexed files are

sequential, random, or dynamic. When you read or write indexed files

sequentially, the sequence is that of the key values.

Relative file organization

Records in the file are identified by their location relative to the beginning

of the file. The first record in the file has a relative record number of 1, the

tenth record has a relative record number of 10, and so on.

 The access (record transmission) modes allowed for relative files are

sequential, random, or dynamic. When relative files are read or written

sequentially, the sequence is that of the relative record number.

 With IBM Enterprise COBOL for z/OS, requests to the operating system for the

storage and retrieval of records from input-output devices are handled by the two

access methods QSAM and VSAM, and the UNIX file system.

The device type upon which you elect to store your data could affect the choices of

file organization available to you. Direct-access storage devices provide greater

flexibility in the file organization options. Sequential-only devices limit

organization options but have other characteristics, such as the portability of tapes,

that might be useful.

Sequential-only devices

Terminals, printers, card readers, and punches are called unit-record devices

because they process one line at a time. Therefore, you must also process

records one at a time sequentially in your program when it reads from or

writes to unit-record devices.

 On tape, records are ordered sequentially, so your program must process

them sequentially. Use QSAM physical sequential files when processing

tape files. The records on tape can be fixed length or variable length.

Direct-access storage devices

Direct-access storage devices hold many records. The record arrangement

of files stored on these devices determines the ways that your program can

process the data. When using direct-access devices, you have greater

flexibility within your program, because your can use several types of file

organization:

v Sequential (VSAM or QSAM)

v Line sequential (UNIX)

146 Enterprise COBOL for z/OS V4.1 Programming Guide

v Indexed (VSAM)

v Relative (VSAM)

 RELATED TASKS

“Allocating files” on page 149

Chapter 9, “Processing QSAM files,” on page 151

Chapter 10, “Processing VSAM files,” on page 179

Chapter 11, “Processing line-sequential files,” on page 207

“Choosing file organization and access mode”

Choosing file organization and access mode

There are several guidelines you can use to determine which file organization and

access mode to use in an application.

Consider the following guidelines when choosing file organization:

v If an application accesses records (whether fixed-length or variable-length) only

sequentially and does not insert records between existing records, a QSAM or

VSAM sequential file is the simplest type.

v If you are developing an application for UNIX that sequentially accesses records

that contain only printable characters and certain control characters,

line-sequential files work best.

v If an application requires both sequential and random access (whether records

are fixed length or variable length), a VSAM indexed file is the most flexible

type.

v If an application inserts and deletes records randomly, a relative file works well.

Consider the following guidelines when choosing access mode:

v If a large percentage of a file is referenced or updated in an application,

sequential access is faster than random or dynamic access.

v If a small percentage of records is processed during each run of an application,

use random or dynamic access.

 Table 19. Summary of file organizations, access modes, and record formats of COBOL

files

File organization

Sequential

access

Random

access

Dynamic

access

Fixed

length

Variable

length

QSAM (physical

sequential)

X X X

Line sequential X X1 X

VSAM sequential (ESDS) X X X

VSAM indexed (KSDS) X X X X X

VSAM relative (RRDS) X X X X X

1. The data itself is in variable format but can be read into and written from COBOL

fixed-length records.

RELATED REFERENCES

“Format for coding input and output” on page 148

“Allowable control characters” on page 208

Chapter 8. Processing files 147

Format for coding input and output

The following code shows the general format of input-output coding. Explanations

of the user-supplied information follow the code.

IDENTIFICATION DIVISION.

. . .

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT filename ASSIGN TO assignment-name (1) (2)

 ORGANIZATION IS org ACCESS MODE IS access (3) (4)

 FILE STATUS IS file-status (5)

. . .

DATA DIVISION.

FILE SECTION.

FD filename

01 recordname (6)

 nn . . . fieldlength & type (7) (8)

 nn . . . fieldlength & type

. . .

WORKING-STORAGE SECTION

01 file-status PICTURE 99.

. . .

PROCEDURE DIVISION.

 . . .

 OPEN iomode filename (9)

 . . .

 READ filename

 . . .

 WRITE recordname

 . . .

 CLOSE filename

 . . .

 STOP RUN.

The user-supplied information in the code above is as follows:

(1) filename

Any legal COBOL name. You must use the same file-name in the SELECT

clause and in the FD entry, and on the READ, OPEN, and CLOSE statements. In

addition, the file-name is required if you use the START or DELETE

statements. This name is not necessarily the actual name of the data set as

known to the system. Each file requires its own SELECT clause, FD entry,

and input-output statements.

(2) assignment-name

Any name you choose, provided that it follows COBOL and system

naming rules. The name can be 1-30 characters long if it is a user-defined

word, or 1-160 characters long if it is a literal. You code the name part of

the assignment-name on a DD statement, in an ALLOCATE command (TSO) or

as an environment variable (for example, in an export command) (UNIX).

(3) org The organization can be SEQUENTIAL, LINE SEQUENTIAL, INDEXED, or

RELATIVE. This clause is optional for QSAM files.

(4) access

The access mode can be SEQUENTIAL, RANDOM, or DYNAMIC. For sequential file

processing, including line-sequential, you can omit this clause.

(5) file-status

The COBOL file status key. You can specify the file status key as a

148 Enterprise COBOL for z/OS V4.1 Programming Guide

two-character category alphanumeric or category national item, or as a

two-digit zoned decimal (USAGE DISPLAY) or national decimal (USAGE

NATIONAL) item.

(6) recordname

The name of the record used in the WRITE and REWRITE statements.

(7) fieldlength

The logical length of the field.

(8) type

The record format of the file. If you break the record entry beyond the

level-01 description, each element should map accurately against the fields

in the record.

(9) iomode

The INPUT or OUTPUT mode. If you are only reading from a file, code INPUT.

If you are only writing to it, code OUTPUT or EXTEND. If you are both reading

and writing, code I-O, except for organization LINE SEQUENTIAL.

RELATED TASKS

Chapter 9, “Processing QSAM files,” on page 151

Chapter 10, “Processing VSAM files,” on page 179

Chapter 11, “Processing line-sequential files,” on page 207

Allocating files

For any type of file (sequential, line sequential, indexed, or relative) in your z/OS

or UNIX applications, you can define the external name with either a ddname or

an environment-variable name. The external name is the name in the

assignment-name of the ASSIGN clause.

If the file is in the HFS, you can use either a DD definition or an environment

variable to define the file by specifying its path name with the PATH keyword.

The environment-variable name must be uppercase. The allowable attributes for its

value depend on the organization of the file being defined.

Because you can define the external name in either of two ways, the COBOL run

time goes through the following steps to find the definition of the file:

1. If the ddname is explicitly allocated, it is used. The definition can be from a DD

statement in JCL, an ALLOCATE command from TSO/E, or a user-initiated

dynamic allocation.

2. If the ddname is not explicitly allocated and an environment variable of the

same name is set, the value of the environment variable is used.

The file is dynamically allocated using the attributes specified by the

environment variable. At a minimum, you must specify either the PATH() or

DSN() option. All options and attributes must be in uppercase, except for the

path-name suboption of the PATH option, which is case sensitive. You cannot

specify a temporary data-set name in the DSN() option.

File status code 98 results from any of the following:

v The contents (including a value of null or all blanks) of the environment

variable are not valid.

v The dynamic allocation of the file fails.

v The dynamic deallocation of the file fails.

Chapter 8. Processing files 149

The COBOL run time checks the contents of the environment variable at each

OPEN statement. If a file with the same external name was dynamically allocated

by a previous OPEN statement, and the contents of the environment variable

have changed since that OPEN, the run time dynamically deallocates the

previous allocation and reallocates the file using the options currently set in the

environment variable. If the contents of the environment variable have not

changed, the run time uses the current allocation.

3. If neither a ddname nor an environment variable is defined, the following steps

occur:

a. If the allocation is for a QSAM file and the CBLQDA runtime option is in

effect, CBLQDA dynamic allocation processing takes place for those eligible

files. This type of ″implicit″ dynamic allocation persists for the life of the

run unit and cannot be reallocated.

b. Otherwise, the allocation fails.

The COBOL run time deallocates all dynamic allocations at run unit termination,

except for implicit CBLQDA allocations.

RELATED TASKS

“Setting and accessing environment variables” on page 436

“Defining and allocating QSAM files” on page 166

“Dynamically creating QSAM files” on page 163

“Allocating VSAM files” on page 200

Checking for input or output errors

After each input or output statement is performed, the file status key is updated

with a value that indicates the success or failure of the operation.

Using a FILE STATUS clause, test the file status key after each input or output

statement, and call an error-handling procedure if a nonzero file status code is

returned. With VSAM files, you can use a second data item in the FILE STATUS

clause to get additional VSAM status code information.

Another way of handling errors in input and output operations is to code ERROR

(synonymous with EXCEPTION) declaratives.

RELATED TASKS

“Handling errors in input and output operations” on page 235

“Coding ERROR declaratives” on page 238

“Using file status keys” on page 239

150 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 9. Processing QSAM files

Queued sequential access method (QSAM) files are unkeyed files in which the

records are placed one after another, according to entry order.

Your program can process these files only sequentially, retrieving (with the READ

statement) records in the same order as they are in the file. Each record is placed

after the preceding record. To process QSAM files in your program, use COBOL

language statements that:

v Identify and describe the QSAM files in the ENVIRONMENT DIVISION and the DATA

DIVISION.

v Process the records in these files in the PROCEDURE DIVISION.

After you have created a record, you cannot change its length or its position in the

file, and you cannot delete it. You can, however, update QSAM files on

direct-access storage devices (using REWRITE), though not in the HFS.

QSAM files can be on tape, direct-access storage devices (DASDs), unit-record

devices, and terminals. QSAM processing is best for tables and intermediate

storage.

You can also access byte-stream files in the HFS using QSAM. These files are

binary byte-oriented sequential files with no record structure. The record

definitions that you code in your COBOL program and the length of the variables

that you read into and write from determine the amount of data transferred.

RELATED CONCEPTS

“Labels for QSAM files” on page 174

z/OS DFSMS: Using Data Sets (Access methods)

RELATED TASKS

“Defining QSAM files and records in COBOL”

“Coding input and output statements for QSAM files” on page 161

“Handling errors in QSAM files” on page 165

“Working with QSAM files” on page 166

“Processing QSAM ASCII files on tape” on page 177

“Processing ASCII file labels” on page 178

Defining QSAM files and records in COBOL

Use the FILE-CONTROL entry to define the files in a COBOL program as QSAM files,

and to associate the files with their external file-names.

An external file-name (a ddname or environment variable name) is the name by

which a file is known to the operating system. In the following example,

COMMUTER-FILE-MST is your program’s name for the file; COMMUTR is the external

name:

FILE-CONTROL.

 SELECT COMMUTER-FILE-MST

 ASSIGN TO S-COMMUTR

 ORGANIZATION IS SEQUENTIAL

 ACCESS MODE IS SEQUENTIAL.

© Copyright IBM Corp. 1991, 2007 151

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

The ASSIGN clause name can include an S- before the external name to document

that the file is a QSAM file. Both the ORGANIZATION and ACCESS MODE clauses are

optional.

RELATED TASKS

“Establishing record formats”

“Setting block sizes” on page 159

Establishing record formats

In the FD entry in the DATA DIVISION, code the record format and indication of

whether the records are blocked. In the associated record description entry or

entries, specify the record-name and record length.

You can code a record format of F, V, S, or U in the RECORDING MODE clause. COBOL

determines the record format from the RECORD clause or from the record

descriptions associated with the FD entry for the file. If you want the records to be

blocked, code the BLOCK CONTAINS clause in the FD entry.

The following example shows how the FD entry might look for a file that has

fixed-length records:

FILE SECTION.

FD COMMUTER-FILE-MST

 RECORDING MODE IS F

 BLOCK CONTAINS 0 RECORDS

 RECORD CONTAINS 80 CHARACTERS.

01 COMMUTER-RECORD-MST.

 05 COMMUTER-NUMBER PIC X(16).

 05 COMMUTER-DESCRIPTION PIC X(64).

A recording mode of S is not supported for files in the HFS. The above example is

appropriate for such a file.

RELATED CONCEPTS

“Logical records”

RELATED TASKS

“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154

“Requesting spanned format” on page 156

“Requesting undefined format” on page 158

“Defining QSAM files and records in COBOL” on page 151

RELATED REFERENCES

“FILE SECTION entries” on page 14

Logical records

COBOL uses the term logical record in a slightly different way than z/OS QSAM.

For format-V and format-S files, a QSAM logical record includes a 4-byte prefix in

front of the user data portion of the record that is not included in the definition of

a COBOL logical record.

For format-F and format-U files, and for HFS byte-stream files, the definitions of

QSAM logical record and COBOL logical record are identical.

152 Enterprise COBOL for z/OS V4.1 Programming Guide

In this information, QSAM logical record refers to the QSAM definition, and logical

record refers to the COBOL definition.

RELATED REFERENCES

“Layout of format-F records”

“Layout of format-V records” on page 155

“Layout of format-S records” on page 157

“Layout of format-U records” on page 159

Requesting fixed-length format

Fixed-length records are in format F. Use RECORDING MODE F to explicitly request

this format.

You can omit the RECORDING MODE clause. The compiler determines the recording

mode to be F if the length of the largest level-01 record associated with the file is

not greater than the block size coded in the BLOCK CONTAINS clause, and you take

one of the following actions:

v Use the RECORD CONTAINS integer clause (format-1 RECORD clause) to indicate the

length of the record in bytes.

When you use this clause, the file is always fixed format with record length

integer even if there are multiple level-01 record description entries with different

lengths associated with the file.

v Omit the RECORD CONTAINS integer clause, but code the same fixed size and no

OCCURS DEPENDING ON clause for all level-01 record description entries associated

with the file. This fixed size is the record length.

In an unblocked format-F file, the logical record is the same as the block.

In a blocked format-F file, the number of logical records in a block (the blocking

factor) is constant for every block in the file except the last block, which might be

shorter.

Files in the HFS are never blocked.

RELATED CONCEPTS

“Logical records” on page 152

RELATED TASKS

“Requesting variable-length format” on page 154

“Requesting spanned format” on page 156

“Requesting undefined format” on page 158

“Establishing record formats” on page 152

RELATED REFERENCES

“Layout of format-F records”

Layout of format-F records:

The layout of format-F QSAM records is shown below.

Chapter 9. Processing QSAM files 153

RELATED CONCEPTS

“Logical records” on page 152

RELATED TASKS

“Requesting fixed-length format” on page 153

z/OS DFSMS: Using Data Sets (Fixed-length record formats)

RELATED REFERENCES

“Layout of format-V records” on page 155

“Layout of format-S records” on page 157

“Layout of format-U records” on page 159

Requesting variable-length format

Variable-length records can be in format V or format D. Format-D records are

variable-length records on ASCII tape files. Format-D records are processed in the

same way as format-V records.

Use RECORDING MODE V for both. You can omit the RECORDING MODE clause. The

compiler determines the recording mode to be V if the largest level-01 record

associated with the file is not greater than the block size set in the BLOCK CONTAINS

clause, and you take one of the following actions:

v Use the RECORD IS VARYING clause (format-3 RECORD clause).

If you provide values for integer-1 and integer-2 (RECORD IS VARYING FROM

integer-1 TO integer-2), the maximum record length is the value coded for integer-2

regardless of the lengths coded in the level-01 record description entries

associated with the file. The integer sizes indicate the minimum and maximum

record lengths in numbers of bytes regardless of the USAGE of the data items in

the record.

If you omit integer-1 and integer-2, the maximum record length is determined to

be the size of the largest level-01 record description entry associated with the

file.

v Use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD clause).

Make integer-1 and integer-2 match the minimum length and the maximum

length in bytes of the level-01 record description entries associated with the file.

The maximum record length is the integer-2 value.

v Omit the RECORD clause, but code multiple level-01 records (associated with the

file) that are of different sizes or contain an OCCURS DEPENDING ON clause.

The maximum record length is determined to be the size of the largest level-01

record description entry associated with the file.

When you specify a READ INTO statement for a format-V file, the record size read

for that file is used in the MOVE statement generated by the compiler. Consequently,

you might not get the result you expect if the record just read does not correspond

to the level-01 record description. All other rules of the MOVE statement apply. For

154 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

example, when you specify a MOVE statement for a format-V record read in by the

READ statement, the size of the record moved corresponds to its level-01 record

description.

When you specify a READ statement for a format-V file followed by a MOVE of the

level-01 record, the actual record length is not used. The program will attempt to

move the number of bytes described by the level-01 record description. If this

number exceeds the actual record length and extends outside the area addressable

by the program, results are unpredictable. If the number of bytes described by the

level-01 record description is shorter than the physical record read, truncation of

bytes beyond the level-01 description occurs. To find the actual length of a

variable-length record, specify data-name-1 in format 3 of the RECORD clause of the

File Definition (FD).

RELATED TASKS

“Requesting fixed-length format” on page 153

“Requesting spanned format” on page 156

“Requesting undefined format” on page 158

“Establishing record formats” on page 152

RELATED REFERENCES

“FILE SECTION entries” on page 14

“Layout of format-V records”

Enterprise COBOL Compiler and Runtime Migration Guide (Moving from the

 VS COBOL II run time)

Layout of format-V records:

Format-V QSAM records have control fields that precede the data. The QSAM

logical record length is determined by adding 4 bytes (for the control fields) to the

record length defined in your program, but you must not include these 4 bytes in

the description of the record and record length.

CC The first 4 bytes of each block contain control information.

 LL Represents 2 bytes designating the length of the block (including the

’CC’ field).

BB Represents 2 bytes reserved for system use.

cc The first 4 bytes of each logical record contain control information.

 ll Represents 2 bytes designating the logical record length (including the

’cc’ field).

bb Represents 2 bytes reserved for system use.

The block length is determined as follows:

v Unblocked format-V records: CC + cc + the data portion

Chapter 9. Processing QSAM files 155

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

v Blocked format-V records: CC + the cc of each record + the data portion of each

record

The operating system provides the control bytes when the file is written; the

control byte fields do not appear in your description of the logical record in the

DATA DIVISION of your program. COBOL allocates input and output buffers large

enough to accommodate the control bytes. These control fields in the buffer are not

available for you to use in your program. When variable-length records are written

on unit record devices, control bytes are neither printed nor punched. They appear,

however, on other external storage devices, as well as in buffer areas of storage. If

you move V-mode records from an input buffer to a WORKING-STORAGE area, they’ll

be moved without the control bytes.

Files in the HFS are never blocked.

RELATED CONCEPTS

“Logical records” on page 152

RELATED TASKS

“Requesting variable-length format” on page 154

RELATED REFERENCES

“Layout of format-F records” on page 153

“Layout of format-S records” on page 157

“Layout of format-U records” on page 159

Requesting spanned format

Spanned records are in format S. A spanned record is a QSAM logical record that

can be contained in one or more physical blocks.

You can code RECORDING MODE S for spanned records in QSAM files that are

assigned to magnetic tape or to direct access devices. Do not request spanned

records for files in the HFS. You can omit the RECORDING MODE clause. The compiler

determines the recording mode to be S if the maximum record length (in bytes)

plus 4 is greater than the block size set in the BLOCK CONTAINS clause.

For files with format S in your program, the compiler determines the maximum

record length with the same rules as are used for format V. The length is based on

your usage of the RECORD clause.

When creating files that contain format-S records and a record is larger than the

remaining space in a block, COBOL writes a segment of the record to fill the block.

The rest of the record is stored in the next block or blocks depending on its length.

COBOL supports QSAM spanned records up to 32,760 bytes in length.

When retrieving files that have format-S records, a program can retrieve only

complete records.

Benefits of format-S files: You can efficiently use external storage and still

organize your files with logical record lengths by defining files with format-S

records:

v You can set block lengths to efficiently use track capacities on direct access

devices.

v You are not required to adjust the logical record lengths to device-dependent

physical block lengths. One logical record can span two or more physical blocks.

156 Enterprise COBOL for z/OS V4.1 Programming Guide

v You have greater flexibility when you want to transfer logical records between

direct access storage types.

You will, however, have additional overhead in processing format-S files.

Format-S files and READ INTO: When you specify a READ INTO statement for a

format-S file, the compiler generates a MOVE statement that uses the size of the

record that it just read for that file. If the record just read does not correspond to

the level-01 record description, you might not get the result that you expect. All

other rules of the MOVE statement apply.

RELATED CONCEPTS

“Logical records” on page 152

“Spanned blocked and unblocked files”

RELATED TASKS

“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154

“Requesting undefined format” on page 158

“Establishing record formats” on page 152

RELATED REFERENCES

“FILE SECTION entries” on page 14

“Layout of format-S records”

Spanned blocked and unblocked files: A spanned blocked QSAM file is made

up of blocks, each containing one or more logical records or segments of logical

records. A spanned unblocked file is made up of physical blocks, each containing

one logical record or one segment of a logical record.

In a spanned blocked file, a logical record can be either fixed or variable in length,

and its size can be smaller than, equal to, or larger than the physical block size.

There are no required relationships between logical records and physical block

sizes.

In a spanned unblocked file, the logical records can be either fixed or variable in

length. When the physical block contains one logical record, the block length is

determined by the logical record size. When a logical record has to be segmented,

the system always writes the largest physical block possible. The system segments

the logical record when the entire logical record cannot fit on a track.

RELATED CONCEPTS

“Logical records” on page 152

RELATED TASKS

“Requesting spanned format” on page 156

Layout of format-S records:

Spanned records are preceded by control fields, as shown below.

Chapter 9. Processing QSAM files 157

Each block is preceded by a 4-byte block descriptor field (’BDF’ in the image).

There is only one block descriptor field at the beginning of each physical block.

Each segment of a record in a block, even if the segment is the entire record, is

preceded by a 4-byte segment descriptor field (’SDF’ in the image). There is one

segment descriptor field for each record segment in the block. The segment

descriptor field also indicates whether the segment is the first, the last, or an

intermediate segment.

You do not describe these fields in the DATA DIVISION of your COBOL program,

and the fields are not available for you to use in your program.

RELATED TASKS

“Requesting spanned format” on page 156

RELATED REFERENCES

“Layout of format-F records” on page 153

“Layout of format-V records” on page 155

“Layout of format-U records” on page 159

Requesting undefined format

Format-U records have undefined or unspecified characteristics. With format U,

you can process blocks that do not meet format-F or format-V specifications.

When you use format-U files, each block of storage is one logical record. A read of

a format-U file returns the entire block as a record. A write to a format-U file

writes a record out as a block. The compiler determines the recording mode to be

U only if you code RECORDING MODE U.

It is recommended that you not use format U to update or extend a file that was

written with a different record format. If you use format U to update a file that

was written with a different format, the RECFM value in the data-set label could be

changed or the data set could contain records written in different formats.

The record length is determined in your program based on how you use the

RECORD clause:

v If you use the RECORD CONTAINS integer clause (format-1 RECORD clause), the record

length is the integer value regardless of the lengths of the level-01 record

description entries associated with the file. The integer size indicates the number

of bytes in a record regardless of the USAGE of its data items.

v If you use the RECORD IS VARYING clause (format-3 RECORD clause), the record

length is determined based on whether you code integer-1 and integer-2.

If you code integer-1 and integer-2 (RECORD IS VARYING FROM integer-1 TO

integer-2), the maximum record length is the integer-2 value regardless of the

lengths of the level-01 record description entries associated with the file. The

integer sizes indicate the minimum and maximum record lengths in numbers of

bytes regardless of the USAGE of the data items in the record.

If you omit integer-1 and integer-2, the maximum record length is determined to

be the size of the largest level-01 record description entry associated with the

file.

v If you use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD

clause), with integer-1 and integer-2 matching the minimum length and the

maximum length in bytes of the level-01 record description entries associated

with the file, the maximum record length is the integer-2 value.

158 Enterprise COBOL for z/OS V4.1 Programming Guide

v If you omit the RECORD clause, the maximum record length is determined to be

the size of the largest level-01 record description entry associated with the file.

Format-U files and READ INTO: When you specify a READ INTO statement for a

format-U file, the compiler generates a MOVE statement that uses the size of the

record that it just read for that file. If the record just read does not correspond to

the level-01 record description, you might not get the result that you expect. All

other rules of the MOVE statement apply.

RELATED TASKS

“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154

“Requesting spanned format” on page 156

“Establishing record formats” on page 152

RELATED REFERENCES

“FILE SECTION entries” on page 14

“Layout of format-U records”

Layout of format-U records:

With format-U, each block of external storage is handled as a logical record. There

are no record-length or block-length fields.

RELATED CONCEPTS

“Logical records” on page 152

RELATED TASKS

“Requesting undefined format” on page 158

RELATED REFERENCES

“Layout of format-F records” on page 153

“Layout of format-V records” on page 155

“Layout of format-S records” on page 157

Setting block sizes

In COBOL, you establish the size of a physical record by using the BLOCK CONTAINS

clause. If you omit this clause, the compiler assumes that the records are not

blocked.

Blocking QSAM files on tape and disk can enhance processing speed and minimize

storage requirements. You can block z/OS UNIX files (including those in the HFS),

PDSE members, and spooled data sets, but doing so has no effect on how the

system stores the data.

If you set the block size explicitly in the BLOCK CONTAINS clause, the size must not

be greater than the maximum block size for the device. If you specify the

CHARACTERS phrase of the BLOCK CONTAINS clause, size must indicate the number of

bytes in a record regardless of the USAGE of the data items in the record. The block

size that is set for a format-F file must be an integral multiple of the record length.

Chapter 9. Processing QSAM files 159

If your program uses QSAM files on tape, use a physical block size of at least 12 to

18 bytes. Otherwise, the block will be skipped over when a parity check occurs

during one of the following actions:

v Reading a block of records of fewer than 12 bytes

v Writing a block of records of fewer than 18 bytes

Larger blocks generally give you better performance. Blocks of only a few kilobytes

are particularly inefficient; you should choose a block size of at least tens of

kilobytes. If you specify record blocking and omit the block size, the system will

pick a block size that is optimal for device utilization and for data transfer speed.

Letting z/OS determine block size: To maximize performance, do not explicitly set

the block size for a blocked file in your COBOL source program. For new blocked

data sets, it is simpler to allow z/OS to supply a system-determined block size. To

use this feature, follow these guidelines:

v Code BLOCK CONTAINS 0 in your source program.

v Do not code RECORD CONTAINS 0 in your source program.

v Do not code a BLKSIZE value in the JCL DD statement.

Setting block size explicitly: If you prefer to set a block size explicitly, your

program will be most flexible if you follow these guidelines:

v Code BLOCK CONTAINS 0 in your source program.

v Code a BLKSIZE value in the ddname definition (the JCL DD statement).

For extended-format data sets on z/OS, DFSMS™ adds a 32-byte block suffix to the

physical record. If you specify a block size explicitly (using JCL or ISPF), do not

include the size of this block suffix in the block size. This block suffix is not

available for you to use in your program. z/OS DFSMS allocates the space used to

read in the block suffix. However, when you calculate how many blocks of an

extended-format data set will fit on a track of a direct-access device, you need to

include the size of the block suffix in the block size.

If you specify a block size that is larger than 32760 directly in the BLOCK CONTAINS

clause or indirectly with the use of BLOCK CONTAINS n RECORDS, the OPEN of the data

set fails with file status code 90 unless you define the data set to be on tape.

For existing blocked data sets, it is simplest to:

v Code BLOCK CONTAINS 0 in your source program.

v Not code a BLKSIZE value in the ddname definition.

When you omit the BLKSIZE from the ddname definition, the block size is

automatically obtained by the system from the data-set label.

Taking advantage of LBI: You can improve the performance of tape data sets by

using the large block interface (LBI) for large block sizes. When the LBI is

available, the COBOL run time automatically uses this facility for those tape files

for which you use system-determined block size. LBI is also used for those files for

which you explicitly define a block size in JCL or a BLOCK CONTAINS clause. Use of

the LBI allows block sizes to exceed 32760 if the tape device supports it.

The LBI is not used in all cases. An attempt to use a block size greater than 32760

in the following cases is diagnosed at compile time or results in a failure at OPEN:

v Spanned records

160 Enterprise COBOL for z/OS V4.1 Programming Guide

v OPEN I-O

Using a block size that exceeds 32760 might result in your not being able to read

the tape on another system. A tape that you create with a block size greater than

32760 can be read only on a system that has a tape device that supports block sizes

greater than 32760. If you specify a block size that is too large for the file, the

device, or the operating system level, a runtime message is issued.

To limit a system-determined block size to 32760, do not specify BLKSIZE anywhere,

and set one of the following items to 32760:

v The BLKSZLIM keyword on the DD statement for the data set

v BLKSZLIM for the data class by using the BLKSZLIM keyword (must be set by your

systems programmer)

v A block-size limit for the system in the DEVSUPxx member of SYS1.PARMLIB

by using the keyword TAPEBLKSZLIM (must be set by your systems programmer)

The block-size limit is the first nonzero value that the compiler finds by checking

these items.

If no BLKSIZE or BLKSZLIM value is available from any source, the system limits

BLKSIZE to 32760. You can then enable block sizes larger than 32760 in one of two

ways:

v Specify a BLKSZLIM value greater than 32760 in the DD statement for the file and

use BLOCK CONTAINS 0 in your COBOL source.

v Specify a value greater than 32760 for the BLKSIZE in the DD statement or in the

BLOCK CONTAINS clause in your COBOL source.

BLKSZLIM is device-independent.

Block size and the DCB RECFM subparameter: Under z/OS, you can code the S

or T option in the DCB RECFM subparameter:

v Use the S (standard) option in the DCB RECFM subparameter for a format-F record

with only standard blocks (ones that have no truncated blocks or unfilled tracks

in the file, except for the last block of the file). S is also supported for records on

tape. It is ignored if the records are not on DASD or tape.

Using this standard block option might improve input-output performance,

especially for direct-access devices.

v The T (track overflow) option for QSAM files is no longer useful.

RELATED TASKS

“Defining QSAM files and records in COBOL” on page 151

z/OS DFSMS: Using Data Sets

RELATED REFERENCES

“FILE SECTION entries” on page 14

BLOCK CONTAINS clause (Enterprise COBOL Language Reference)

Coding input and output statements for QSAM files

You can code the following input and output statements to process a QSAM file or

a byte-stream file in the HFS using QSAM: OPEN, READ, WRITE, REWRITE, and CLOSE.

OPEN Initiates the processing of files. You can open all QSAM files as INPUT,

OUTPUT, or EXTEND (depending on device capabilities).

Chapter 9. Processing QSAM files 161

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

You can also open QSAM files on direct access storage devices as I-O. You

cannot open HFS files as I-O; a file status of 37 results if you attempt to do

so.

READ Reads a record from the file. With sequential processing, your program

reads one record after another in the same order in which they were

entered when the file was created.

WRITE Creates a record in the file. Your program writes new records to the end of

the file.

REWRITE

Updates a record. You cannot update a file in the HFS using REWRITE.

CLOSE Releases the connection between the file and your program.

RELATED TASKS

“Opening QSAM files”

“Adding records to QSAM files” on page 163

“Updating QSAM files” on page 164

“Writing QSAM files to a printer or spooled data set” on page 164

“Closing QSAM files” on page 165

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

READ statement (Enterprise COBOL Language Reference)

WRITE statement (Enterprise COBOL Language Reference)

REWRITE statement (Enterprise COBOL Language Reference)

CLOSE statement (Enterprise COBOL Language Reference)

File status key (Enterprise COBOL Language Reference)

Opening QSAM files

Before your program can use any READ, WRITE, or REWRITE statements to process

records in a file, it must first open the file with an OPEN statement.

An OPEN statement works if both of the following conditions are true:

v The file is available or has been dynamically allocated.

v The fixed file attributes coded in the ddname definition or the data-set label for

the file match the attributes coded for that file in the SELECT clause and FD entry.

Mismatches in the file-organization attributes, code set, maximum record size, or

record format (fixed or variable) result in a file status code 39, and the failure of

the OPEN statement. Mismatches in maximum record size and record format are

not errors when opening files in the HFS.

For fixed-length QSAM files, if you code RECORD CONTAINS 0 in the FD entry, the

record size attributes are not in conflict. The record size is taken from the DD

statement or the data-set label, and the OPEN statement is successful.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program

is running.

Use the REVERSED option of the OPEN statement to process tape files in reverse order.

The file is positioned at the end, and READ statements read the data records in

reverse order, starting with the last record. The REVERSED option is supported only

for files that have fixed-length records.

162 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Dynamically creating QSAM files”

“Ensuring that file attributes match your program” on page 170

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

Dynamically creating QSAM files

Sometimes a QSAM file is unavailable on the operating system, but a COBOL

program specifies that the file be created. Under certain circumstances, the file is

created for you dynamically.

A QSAM file is considered to be available on z/OS when it has been identified to

the operating system using a valid DD statement, an export command for an

environment variable, or a TSO ALLOCATE command. Otherwise the file is

unavailable.

Note that a DD statement with a misspelled ddname is equivalent to a missing DD

statement, and an environment variable with a value that is not valid is equivalent

to an unset variable.

The QSAM file is implicitly created if you use the runtime option CBLQDA and one

of the following circumstances exists:

v An optional file is being opened as EXTEND or I-O.

Optional files are files that are not necessarily available each time the program is

run. You define a file that is being opened in INPUT, I-O, or EXTEND mode as

optional by coding the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

v The file is being opened for OUTPUT, regardless of the OPTIONAL phrase.

The file is allocated with the system default attributes established at your

installation and the attributes coded in the SELECT clause and FD entry in your

program.

Do not confuse this implicit allocation mechanism with the explicit dynamic

allocation of files by means of environment variables. Explicit dynamic allocation

requires that a valid environment variable be set. CBLQDA support is used only

when the QSAM file is unavailable as defined above, which includes no valid

environment variable being set.

Under z/OS, files created using the CBLQDA option are temporary data sets and do

not exist after the program has run.

RELATED TASKS

“Opening QSAM files” on page 162

Adding records to QSAM files

To add to a QSAM file, open the file as EXTEND and use the WRITE statement to add

records immediately after the last record in the file.

To add records to a file opened as I-O, you must first close the file and open it as

EXTEND.

Chapter 9. Processing QSAM files 163

|
|

RELATED REFERENCES

READ statement (Enterprise COBOL Language Reference)

WRITE statement (Enterprise COBOL Language Reference)

Updating QSAM files

You can update QSAM files only if they reside on direct access storage devices.

You cannot update files in the HFS.

Replace an existing record with another record of the same length by doing these

steps:

1. Open the file as I-O.

2. Use REWRITE to update an existing record. (The last file processing statement

before REWRITE must have been a successful READ statement.)

You cannot open as I-O an extended format data set that you allocate in

compressed format.

RELATED REFERENCES

REWRITE statement (Enterprise COBOL Language Reference)

Writing QSAM files to a printer or spooled data set

COBOL provides language statements to control the size of a printed page and

control the vertical positioning of records.

Controlling the page size: Use the LINAGE clause of the FD entry to control the size

of your printed page: the number of lines in the top and bottom margins and in

the footing area of the page. When you use the LINAGE clause, COBOL handles the

file as if you had also requested the ADV compiler option.

If you use the LINAGE clause in combination with WRITE BEFORE|AFTER ADVANCING

nn LINES, be careful about the values you set. With the ADVANCING nn LINES phrase,

COBOL first calculates the sum of LINAGE-COUNTER plus nn. Subsequent actions

depend on the size of nn. The END-OF-PAGE imperative phrase is performed after

the LINAGE-COUNTER is increased. Consequently, the LINAGE-COUNTER could be

pointing to the next logical page instead of to the current footing area when the

END-OF-PAGE phrase is performed.

AT END-OF-PAGE or NOT AT END-OF-PAGE imperative phrases are performed only if

the write operation completes successfully. If the write operation is unsuccessful,

control is passed to the end of the WRITE statement, and all conditional phrases are

omitted.

Controlling the vertical positioning of records: Use the WRITE ADVANCING

statement to control the vertical positioning of each record you write on a printed

page.

BEFORE ADVANCING prints the record before the page is advanced. AFTER ADVANCING

prints the record after the page is advanced.

Specify the number of lines the page is advanced with an integer (or an identifier

with a mnemonic-name) following ADVANCING. If you omit the ADVANCING phrase from

a WRITE statement, the effect is as if you had coded:

AFTER ADVANCING 1 LINE

164 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

WRITE statement (Enterprise COBOL Language Reference)

Closing QSAM files

Use the CLOSE statement to disconnect your program from a QSAM file. If you try

to close a file that is already closed, you will get a logic error.

If you do not close a QSAM file, the file is automatically closed for you under the

following conditions, except for files defined in any OS/VS COBOL programs in

the run unit:

v When the run unit ends normally, the run time closes all open files that are

defined in any COBOL programs in the run unit.

v If the run unit ends abnormally and the TRAP(ON) runtime option is in effect, the

run time closes all open files that are defined in any COBOL programs in the

run unit.

v When Language Environment condition handling has completed and the

application resumes in a routine other than where the condition occurred, the

run time closes all open files that are defined in any COBOL programs in the

run unit that might be called again and reentered.

You can change the location where the program resumes running (after a

condition is handled) by moving the resume cursor with the Language

Environment CEEMRCR callable service or by using language constructs such as

a C longjmp.

v When you use CANCEL for a COBOL subprogram, the run time closes any open

nonexternal files that are defined in that program.

v When a COBOL subprogram with the INITIAL attribute returns control, the run

time closes any open nonexternal files that are defined in that program.

v When a thread of a multithreaded application ends, both external and

nonexternal files that you opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE

operations are performed, but your EXCEPTION/ERROR and LABEL declaratives are not

invoked.

Errors: If you open a QSAM file in a multithreaded application, you must close it

from the same thread of execution from which the file was opened. Attempting to

close the file from a different thread results in a close failure with file-status

condition 90.

RELATED REFERENCES

CLOSE statement (Enterprise COBOL Language Reference)

Handling errors in QSAM files

When an input statement or output statement fails, COBOL does not take

corrective action for you. You choose whether your program should continue

running after a less-than-severe input or output error occurs.

COBOL provides these ways for you to intercept and handle certain QSAM input

and output errors:

v End-of-file phrase (AT END)

v EXCEPTION/ERROR declarative

Chapter 9. Processing QSAM files 165

v FILE STATUS clause

v INVALID KEY phrase

If you do not code a FILE STATUS key or a declarative, serious QSAM processing

errors will cause a message to be issued and a Language Environment condition to

be signaled, which will cause an abend if you specify the runtime option

ABTERMENC(ABEND).

If you use the FILE STATUS clause or the EXCEPTION/ERROR declarative, code

EROPT=ACC in the DCB of the DD statement for that file. Otherwise, your COBOL

program will not be able to continue processing after some error conditions.

If you use the FILE STATUS clause, be sure to check the key and take appropriate

action based on its value. If you do not check the key, your program might

continue, but the results will probably not be what you expected.

RELATED TASKS

“Handling errors in input and output operations” on page 235

Working with QSAM files

To work with QSAM files in a COBOL program, you define and allocate them,

retrieve them, and ensure that their file attributes match those in your program.

You can also use striped extended-format QSAM data sets to help improve

performance.

RELATED TASKS

“Defining and allocating QSAM files”

“Retrieving QSAM files” on page 169

“Ensuring that file attributes match your program” on page 170

“Using striped extended-format QSAM data sets” on page 172

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 173

Defining and allocating QSAM files

You can define a QSAM file or a byte-stream file in the HFS by using either a DD

statement or an environment variable. Allocation of these files follows the general

rules for the allocation of COBOL files.

When you use an environment variable, the name must be in uppercase. Specify

the MVS data set in one of these ways:

v DSN(dataset-name)

v DSN(dataset-name(member-name))

dataset-name must be fully qualified and cannot be a temporary data set (that is, it

must not start with &).

Restriction: You cannot create a PDS or PDSE by using an environment variable.

You can optionally specify the following attributes in any order after DSN:

v A disposition value, one of: NEW, OLD, SHR, or MOD

v TRACKS or CYL

166 Enterprise COBOL for z/OS V4.1 Programming Guide

v SPACE(nnn,mmm)

v VOL(volume-serial)

v UNIT(type)

v KEEP, DELETE, CATALOG, or UNCATALOG

v STORCLAS(storage-class)

v MGMTCLAS(management-class)

v DATACLAS(data-class)

You can use either an environment variable or a DD definition to define a file in the

HFS. To do so, define one of the following items with a name that matches the

external name in the ASSIGN clause:

v A DD allocation that uses PATH=’absolute-path-name’ and FILEDATA=BINARY

v An environment variable with a value PATH(pathname), where pathname is an

absolute path name (starting with /)

For compatibility with releases of COBOL before COBOL for OS/390 & VM

Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation

for HFS files, but this use is not recommended. To process text files in the HFS, use

LINE SEQUENTIAL organization. If you do use QSAM to process text files in the HFS,

you cannot use environment variables to define the files.

When you define a QSAM file, use the parameters as shown below.

 Table 20. QSAM file allocation

What you want to do DD parameter to use EV keyword to use

Name the file. DSNAME (data-set name) DSN

Select the type and quantity of

input-output devices to be

allocated for the file.

UNIT UNIT for type only

Give instructions for the volume in

which the file will reside and for

volume mounting.

VOLUME (or let the system

choose an output volume)

VOL

Allocate the type and amount of

space the file needs. (Only for

direct-access storage devices.)

SPACE SPACE for the amount of

space (primary and

secondary only); TRACKS or

CYL for the type of space

Specify the type and some of the

contents of the label associated

with the file.

LABEL n/a

Indicate whether you want to

catalog, pass, or keep the file after

the job step is completed.

DISP NEW, OLD, SHR, MOD plus

KEEP, DELETE, CATALOG, or

UNCATALOG

Complete any data control block

information that you want to add.

DCB subparameters n/a

Some of the information about the QSAM file must always be coded in the

FILE-CONTROL paragraph, the FD entry, and other COBOL clauses. Other

information must be coded in the DD statement or environment variable for output

files. For input files, the system can obtain information from the file label (for

standard label files). If DCB information is provided in the DD statement for input

Chapter 9. Processing QSAM files 167

files, it overrides information on the data-set label. For example, the amount of

space allocated for a new direct-access device file can be set in the DD statement by

the SPACE parameter.

You cannot express certain characteristics of QSAM files in the COBOL language,

but you can code them in the DD statement for the file by using the DCB parameter.

Use the subparameters of the DCB parameter to provide information that the system

needs for completing the data set definition, including the following items:

v Block size (BLKSIZE=), if BLOCK CONTAINS 0 RECORDS was coded at compile time

(recommended)

v Options to be executed if an error occurs in reading or writing a record

v TRACK OVERFLOW or standard blocks

v Mode of operation for a card reader or punch

DCB attributes coded for a DD DUMMY do not override those coded in the FD entry of

your COBOL program.

“Example: setting and accessing environment variables” on page 438

RELATED TASKS

“Setting block sizes” on page 159

“Defining QSAM files and records in COBOL” on page 151

“Allocating files” on page 149

RELATED REFERENCES

“Parameters for creating QSAM files” on page 169

MVS Program Management: User’s Guide and Reference

168 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Parameters for creating QSAM files

The following DD statement parameters are frequently used to create QSAM files.

dataset-name
dataset-name(member-name)
&&name
&&name(member-name)

TRK ,(primary-quantity[,secondary-quantity][,directory-quantity]))
CYL
average-record-length

LABEL=

DISP=

(SPACE=

DSNAME=

(name[,unitcount])UNIT=

([PRIVATE] [,RETAIN] [,vol-sequence-num] [,volume-count] ...VOLUME=

,SER=(volume-serial[,volume-serial]...)
,REF= dsname

*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

(

[Data-set-sequence-number,] NL ,EXPDT= yyddd(
SL
SUL

yyyy/ddd
,RETPD=xxxx

(

NEW ,DELETE ,DELETE)(
MOD ,KEEP

,PASS
,CATLG

,KEEP
,CATLG

(subparameter-list)DCB=

DSN=

VOL=
...

RELATED TASKS

“Defining and allocating QSAM files” on page 166

Retrieving QSAM files

You retrieve QSAM files, cataloged or not, by using job control statements or

environment variables.

Cataloged files

All data set information, such as volume and space, is stored in the catalog

and file label. All you have to code are the data set name and a

disposition. When you use a DD statement, this is the DSNAME parameter and

the DISP parameter. When you use an environment variable, this is the DSN

parameter and one of the parameters OLD, SHR, or MOD.

Noncataloged files

Some information is stored in the file label, but you must code the unit

and volume information, and the dsname and disposition.

If you are using JCL, and you created the file in the current job step or in a

previous job step in the current job, you can refer to the previous DD statement for

most of the data set information. You do, however, need to code DSNAME and DISP.

RELATED REFERENCES

“Parameters for retrieving QSAM files” on page 170

Chapter 9. Processing QSAM files 169

Parameters for retrieving QSAM files

The following DD statement parameters are used to retrieve previously created files.

RELATED TASKS

“Retrieving QSAM files” on page 169

Ensuring that file attributes match your program

When the fixed file attributes in the DD statement or the data-set label and the

attributes that are coded for that file in the SELECT clause and FD entry are not

consistent, an OPEN statement in your program might not work.

Mismatches in the attributes for file organization, record format (fixed or variable),

record length, or the code set result in file status code 39 and the failure of the

OPEN statement. An exception exists for files in the HFS: mismatches in record

format and record length do not cause an error.

To prevent common file status 39 problems, follow the guidelines for processing

existing or new files.

If you have not made a file available with a DD statement or a TSO ALLOCATE

command, and your COBOL program specifies that the file be created, Enterprise

COBOL dynamically allocates the file. When the file is opened, the file attributes

that are coded in your program are used. You do not have to worry about file

attribute conflicts.

Remember that information in the JCL or environment variable overrides

information in the data-set label.

170 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Processing existing files”

“Processing new files” on page 172

“Opening QSAM files” on page 162

RELATED REFERENCES

“FILE SECTION entries” on page 14

Processing existing files

When your program processes an existing file, code the description of the file in

your COBOL program to be consistent with the file attributes of the data set. Use

the guidelines below to define the maximum record length.

 Table 21. Maximum record length of QSAM files

For this format: Specify this:

V or S Exactly 4 bytes less than the length attribute of the data set

F Same value as the length attribute of the data set

U Same value as the length attribute of the data set

The easiest way to define variable-length (format-V) records in a program is to use

the RECORD IS VARYING FROM integer-1 TO integer-2 clause in the FD entry and set an

appropriate value for integer-2. Express the integer sizes in bytes regardless of the

underlying USAGE of the data items in the record. For example, assume that you

determine that the length attribute of the data set is 104 bytes (LRECL=104).

Remembering that the maximum record length is determined from the RECORD IS

VARYING clause and not from the level-01 record descriptions, you could define a

format-V file in your program with this code:

FILE SECTION.

FD COMMUTER-FILE-MST

 RECORDING MODE IS V

 RECORD IS VARYING FROM 4 TO 100 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).

01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of

format-V. If the 104 bytes are all user data, you could define the file in your

program with this code:

FILE SECTION.

FD COMMUTER-FILE-MST

 RECORDING MODE IS U

 RECORD IS VARYING FROM 4 TO 104 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).

01 COMMUTER-RECORD-B PIC X(75).

To define fixed-length records in your program, either code the RECORD CONTAINS

integer clause, or omit this clause and code all level-01 record descriptions to be the

same fixed size. In either case, use a value that equals the value of the length

attribute of the data set. If you intend to use the same program to process different

files at run time, and those files have differing fixed lengths, avoid record-length

conflicts by coding RECORD CONTAINS 0.

If the existing file is an ASCII data set (DCB=(OPTCD=Q)), you must use the CODE-SET

clause in the FD entry for the file.

Chapter 9. Processing QSAM files 171

RELATED TASKS

“Processing new files”

“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154

“Requesting undefined format” on page 158

“Opening QSAM files” on page 162

RELATED REFERENCES

“FILE SECTION entries” on page 14

Processing new files

If your COBOL program writes records to a new file that will be made available

before the program runs, ensure that the file attributes in the DD statement, the

environment variable, or the allocation do not conflict with the attributes in the

program.

Usually you need to code only a minimum of parameters when predefining files.

But if you need to explicitly set a length attribute for the data set (for example, you

are using an ISPF allocation panel, or your DD statement is for a batch job in which

the program uses RECORD CONTAINS 0), follow these guidelines:

v For format-V and format-S files, set a length attribute that is 4 bytes larger than

that defined in the program.

v For format-F and format-U files, set a length attribute that is the same as that

defined in the program.

v If you open the file as OUTPUT and write it to a printer, the compiler might add 1

byte to the record length to account for the carriage-control character, depending

on the ADV compiler option and the language used in your program. In such a

case, take the added byte into account when coding the LRECL value.

For example, if your program contains the following code for a file that has

variable-length records, the LRECL value in the DD statement or allocation should be

54.

FILE SECTION.

FD COMMUTER-FILE-MST

 RECORDING MODE IS V

 RECORD CONTAINS 10 TO 50 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(10).

01 COMMUTER-RECORD-B PIC X(50).

RELATED TASKS

“Processing existing files” on page 171

“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154

“Requesting undefined format” on page 158

“Opening QSAM files” on page 162

“Dynamically creating QSAM files” on page 163

RELATED REFERENCES

“FILE SECTION entries” on page 14

Using striped extended-format QSAM data sets

Striped extended-format QSAM data sets can benefit applications that process files

that have large amounts of data or in which the time needed for I/O operations

significantly affects overall performance.

172 Enterprise COBOL for z/OS V4.1 Programming Guide

A striped extended-format QSAM data set is an extended-format QSAM data set

that is spread over multiple volumes, thus allowing parallel data access.

For you to gain the maximum benefit from using QSAM striped data sets, z/OS

DFSMS needs to be able to allocate the required number of buffers above the

16-MB line. When you develop applications that contain files allocated to QSAM

striped data sets, follow these guidelines:

v Avoid using a QSAM striped data set for a file that cannot have buffers

allocated above the 16-MB line.

v Omit the RESERVE clause in the FILE-CONTROL entry for the file. Doing so lets

z/OS DFSMS determine the optimum number of buffers for the data set.

v Compile your program with the DATA(31) and RENT compiler options, and make

the load module AMODE 31.

v Specify the ALL31(ON) runtime option if the file is an EXTERNAL file with format-F,

format-V, or format-U records.

Note that all striped data sets are extended-format data sets, but not all

extended-format data sets are striped.

RELATED TASKS

z/OS DFSMS: Using Data Sets

RELATED REFERENCES

“Allocation of buffers for QSAM files”

Allocation of buffers for QSAM files

z/OS DFSMS automatically allocates buffers for storing input and output for a

QSAM file above or below the 16-MB line as appropriate for the file.

Most QSAM files have buffers allocated above the 16-MB line. Exceptions are:

v Programs running in AMODE 24.

v Programs compiled with the DATA(24) and RENT options.

v Programs compiled with the NORENT and RMODE(24) options.

v Programs compiled with the NORENT and RMODE(AUTO) options.

v EXTERNAL files when the ALL31(OFF) runtime option is specified. To specify the

ALL31(ON) runtime option, all programs in the run unit must be capable of

running in 31-bit addressing mode.

v Files allocated to the TSO terminal.

v A file with format-S (spanned) records, if the file is any of the following:

– An EXTERNAL file (even if ALL31(ON) is specified)

– A file specified in a SAME RECORD AREA clause of the I-O-CONTROL paragraph

– A blocked file that is opened I-O and updated using the REWRITE statement

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Using striped extended-format QSAM data sets” on page 172

Chapter 9. Processing QSAM files 173

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

Accessing HFS files using QSAM

You can process byte-stream files in the hierarchical file system (HFS) as

ORGANIZATION SEQUENTIAL files using QSAM. To do this, specify as the

assignment-name in the ASSIGN clause either a ddname or an environment-variable

name.

ddname

A DD allocation that identifies the file with the keywords PATH= and

FILEDATA=BINARY

Environment-variable name

An environment variable that holds the runtime value of the HFS path for

the file

Observe the following restrictions:

v Spanned record format is not supported.

v OPEN I-O and REWRITE are not supported. If you attempt one of these operations,

one of the following file-status conditions results:

– 37 from OPEN I-O

– 47 from REWRITE (because you could not have successfully opened the file as

I-O)

Usage notes

v File status 39 (fixed file attribute conflict) is not enforced for either of the

following types of conflicts:

– Record-length conflict

– Record-type conflict (fixed as opposed to variable)
v A READ returns the number of bytes of the maximum logical record size for the

file except for the last record, which might be shorter.

For example, suppose that a file definition has level-01 record descriptions of 3,

5, and 10 bytes long, and you write the following three records: ’abc’, ’defgh’,

and ’ijklmnopqr’, in that order. The first READ of this file returns ’abcdefghij’, the

second READ returns ’klmnopqr ’, and the third READ results in the AT END

condition.

For compatibility with releases of IBM COBOL before COBOL for OS/390 & VM

Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation

for HFS files, but this use is not recommended. To process text files in the HFS, use

LINE SEQUENTIAL organization. If you use QSAM to process text files in the HFS,

you cannot use environment variables to define the files.

RELATED TASKS

“Allocating files” on page 149

“Defining and allocating QSAM files” on page 166

z/OS DFSMS: Using Data Sets (Using HFS data sets)

Labels for QSAM files

You can use labels to identify magnetic tape and direct access volumes and data

sets. The operating system uses label-processing routines to identify and verify

labels and locate volumes and data sets.

174 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

There are two kinds of labels: standard and nonstandard. Enterprise COBOL does

not support nonstandard user labels. In addition, standard user labels contain

user-specified information about the associated data set.

Standard labels consist of volume labels and groups of data-set labels. Volume

labels precede or follow data on the volume, and identify and describe the volume.

The data-set labels precede or follow each data set on the volume, and identify and

describe the data set.

v The data-set labels that precede the data set are called header labels.

v The data-set labels that follow the data set are called trailer labels. They are

similar to the header labels, except that they also contain a count of blocks in the

data set.

v The data-set label groups can optionally include standard user labels.

v The volume label groups can optionally include standard user labels.

RELATED TASKS

“Using trailer and header labels”

RELATED REFERENCES

“Format of standard labels” on page 176

Using trailer and header labels

You can create, examine, or update user labels when the beginning or end of a

data set or volume (reel) is reached. End-of-volume or beginning-of-volume exits

are allowed. You can also create or examine intermediate trailers and headers.

You can create, examine, or update up to eight header labels and eight trailer

labels on each volume of the data set. (QSAM EXTEND works in a manner identical

to OUTPUT except that the beginning-of-file label is not processed.) Labels reside on

the initial volume of a multivolume data set. This volume must be mounted as

CLOSE if trailer labels are to be created, examined, or updated. Trailer labels for files

opened as INPUT or I-O are processed when a CLOSE statement is performed for the

file that has reached an AT END condition.

If you code a header or trailer with the wrong position number, the result is

unpredictable. (Data management might force the label to the correct relative

position.)

When you use standard label processing, code the label type of the standard and

user labels (SUL) on the DD statement that describes the data set.

Getting a user-label track: If you use a LABEL subparameter of SUL for direct access

volumes, a separate user-label track is allocated when the data set is created. This

additional track is allocated at initial allocation and for sequential data sets at

end-of-volume (volume switch). The user-label track (one per volume of a

sequential data set) contains both user header and user trailer labels. If a LABEL

name is referenced outside the user LABEL declarative, results are unpredictable.

Handling user labels: The USE AFTER LABEL declarative provides procedures for

handling user labels on supported files. The AFTER option indicates processing of

standard user labels.

List the labels as data-names in the LABEL RECORDS clause in the FD entry for the file.

Chapter 9. Processing QSAM files 175

Table 22. Handling of QSAM user labels

When the file is

opened as: And: Result:

INPUT USE . . . LABEL declarative is

coded for the OPEN option or for

the file.

The label is read and control is

passed to the LABEL declarative.

OUTPUT USE . . . LABEL declarative is

coded for the OPEN option or for

the file.

A buffer area for the label is

provided, and control is passed to

the LABEL declarative.

INPUT or I-O CLOSE statement is performed

for the file that has reached the

AT END condition.

Control is passed to the LABEL

declarative for processing trailer

labels.

You can specify a special exit by using the statement GO TO MORE-LABELS. When

this statement results in an exit from a label DECLARATIVE SECTION, the system takes

one of the following actions:

v Writes the current beginning or ending label, and then reenters the USE section at

its beginning to create more labels. After creating the last label, the system exits

by performing the last statement of the section.

v Reads an additional beginning or ending label, and then reenters the USE section

at its beginning to check more labels. When processing user labels, the system

reenters the section only if there is another user label to check. Hence, a program

path that flows through the last statement in the section is not needed.

If a GO TO MORE-LABELS statement is not performed for a user label, the

DECLARATIVE SECTION is not reentered to check or create any immediately

succeeding user labels.

RELATED CONCEPTS

“Labels for QSAM files” on page 174

Format of standard labels

Standard labels are 80-character records that are recorded in EBCDIC or ASCII. The

first four characters are always used to identify the labels.

 Table 23. Identifiers for standard tape labels

Identifier Description

VOL1 Volume label

HDR1 or HDR2 Data set header labels

EOV1 or EOV2 Data set trailer labels (end-of-volume)

EOF1 or EOF2 Data set trailer labels (end-of-data-set)

UHL1 to UHL8 User header labels

UTL1 to UTL8 User trailer labels

The format of the label for a direct-access volume is the almost the same as the

format of the label group for a tape volume label group. The difference is that a

data-set label of the initial DASTO volume label consists of the data set control

block (DSCB). The DSCB appears in the volume table of contents (VTOC) and

contains the equivalent of the tape data set header and trailer, in addition to

control information such as space allocation.

176 Enterprise COBOL for z/OS V4.1 Programming Guide

Standard user labels

User labels are optional within the standard label groups. The format for user

header labels (UHL1-8) and user trailer labels (UTL1-8) consists of a label 80

characters in length recorded in either:

v EBCDIC on DASD or on IBM standard labeled tapes

v ASCII or ISO/ANSI labeled tapes

The first 3 bytes consist of the characters that identify the label as either:

v UHL for a user header label (at the beginning of a data set)

v UTL for a user trailer label (at the end-of-volume or end-of-data set)

The next byte contains the relative position of this label within a set of labels of the

same type; one to eight labels are permitted. The remaining 76 bytes consist of

user-specified information.

Standard user labels are not supported for QSAM striped data sets.

RELATED CONCEPTS

“Labels for QSAM files” on page 174

Processing QSAM ASCII files on tape

If your program processes a QSAM ASCII file, you must request the ASCII

alphabet, define the record formats, and define the ddname (with JCL).

In addition, if your program processes signed numeric data items from ASCII files,

define the numeric data as zoned decimal items with separate signs, that is, as

USAGE DISPLAY and with the SEPARATE phrase of the SIGN clause.

The CODEPAGE compiler option has no effect on the code page used for conversions

between ASCII and EBCDIC for ASCII tape support. See the z/OS DFSMS

documentation for information about how CCSIDs used for the ASCII tape support

are selected and what the default CCSIDs are.

Requesting the ASCII alphabet: In the SPECIAL-NAMES paragraph, code STANDARD-1

for ASCII:

ALPHABET-NAME IS STANDARD-1

In the FD entry for the file, code:

CODE-SET IS ALPHABET-NAME

Defining the record formats: Process QSAM ASCII tape files with any of these

record formats:

v Fixed length (format F)

v Undefined (format U)

v Variable length (format V)

If you use variable-length records, you cannot explicitly code format D; instead,

code RECORDING MODE V. The format information is internally converted to D mode.

D-mode records have a 4-byte record descriptor for each record.

Chapter 9. Processing QSAM files 177

Defining the ddname: Under z/OS, processing ASCII files requires special JCL

coding. Code these subparameters of the DCB parameter in the DD statement:

BUFOFF=[L|n]

L A 4-byte block prefix that contains the block length (including the

block prefix)

n The length of the block prefix:

v For input, from 0 through 99

v For output, either 0 or 4

Use this value if you coded BLOCK CONTAINS 0.

BLKSIZE=n

n The size of the block, including the length of the block prefix

LABEL=[AL|AUL|NL]

AL American National Standard (ANS) labels

AUL ANS and user labels

NL No labels

OPTCD=Q

Q This value is required for ASCII files and is the default if the file is

created using Enterprise COBOL.

RELATED TASKS

“Processing ASCII file labels”

RELATED REFERENCES

z/OS DFSMS: Using Data Sets (Character data conversion)

Processing ASCII file labels

Standard label processing for ASCII files is the same as standard label processing

for EBCDIC files. The system translates ASCII code into EBCDIC before processing.

All ANS user labels are optional. ASCII files can have user header labels (UHLn)

and user trailer labels (UTLn). There is no limit to the number of user labels at the

beginning and the end of a file; you can write as many labels as you need. All user

labels must be 80 bytes in length.

To create or verify user labels (user label exit), code a USE AFTER STANDARD LABEL

procedure. You cannot use USE BEFORE STANDARD LABEL procedures.

ASCII files on tape can have:

v ANS labels

v ANS and user labels

v No labels

Any labels on an ASCII tape must be in ASCII code only. Tapes that contain a

combination of ASCII and EBCDIC cannot be read.

RELATED TASKS

“Processing QSAM ASCII files on tape” on page 177

178 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

Chapter 10. Processing VSAM files

Virtual storage access method (VSAM) is an access method for files on

direct-access storage devices. With VSAM you can load files, retrieve records from

files, update files, and add, replace, and delete records in files.

VSAM processing has these advantages over QSAM:

v Protection of data against unauthorized access

v Compatibility across systems

v Independence of devices (no need to be concerned with block size and other

control information)

v Simpler JCL (information needed by the system is provided in integrated

catalogs)

v Ability to use indexed file organization or relative file organization

The table below shows how VSAM terms differ from COBOL terms and other

terms that you might be familiar with.

 Table 24. Comparison of VSAM, COBOL, and non-VSAM terminology

VSAM term COBOL term Similar non-VSAM term

Data set File Data set

Entry-sequenced data set (ESDS) Sequential file QSAM data set

Key-sequenced data set (KSDS) Indexed file ISAM data set

Relative-record data set (RRDS) Relative file BDAM data set

Control interval Block

Control interval size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access method control block (ACB) Data control block (DCB)

Cluster (CL) Data set

Cluster definition Data-set allocation

AMP parameter of JCL DD statement DCB parameter of JCL DD statement

Record size Record length

The term file in this VSAM documentation refers to either a COBOL file or a

VSAM data set.

If you have complex requirements or frequently use VSAM, review the VSAM

publications for your operating system.

RELATED CONCEPTS

“VSAM files” on page 180

RELATED TASKS

“Defining VSAM file organization and records” on page 181

“Coding input and output statements for VSAM files” on page 187

“Handling errors in VSAM files” on page 195

“Protecting VSAM files with a password” on page 196

© Copyright IBM Corp. 1991, 2007 179

“Working with VSAM data sets under z/OS and UNIX” on page 197

“Improving VSAM performance” on page 203

RELATED REFERENCES

z/OS DFSMS: Using Data Sets

z/OS DFSMS Macro Instructions for Data Sets

z/OS DFSMS: Access Method Services for Catalogs

VSAM files

The physical organization of VSAM data sets differs considerably from the

organizations used by other access methods.

VSAM data sets are held in control intervals (CI) and control areas (CA). The size

of the CI and CA is normally determined by the access method, and the way in

which they are used is not visible to you.

You can use three types of file organization with VSAM:

VSAM sequential file organization

(Also referred to as VSAM ESDS (entry-sequenced data set) organization.) In

VSAM sequential file organization, the records are stored in the order in

which they were entered.

 VSAM entry-sequenced data sets are equivalent to QSAM sequential files.

The order of the records is fixed.

VSAM indexed file organization

(Also referred to as VSAM KSDS (key-sequenced data set) organization.) In a

VSAM indexed file (KSDS), the records are ordered according to the

collating sequence of an embedded prime key field, which you define. The

prime key consists of one or more consecutive characters in the records.

The prime key uniquely identifies the record and determines the sequence

in which it is accessed with respect to other records. A prime key for a

record might be, for example, an employee number or an invoice number.

VSAM relative file organization

(Also referred to as VSAM fixed-length or variable-length RRDS

(relative-record data set) organization.) A VSAM relative-record data set

(RRDS) contains records ordered by their relative key. The relative key is the

relative record number, which represents the location of the record relative

to where the file begins. The relative record number identifies the fixed- or

variable-length record.

 In a VSAM fixed-length RRDS, records are placed in a series of

fixed-length slots in storage. Each slot is associated with a relative record

number. For example, in a fixed-length RRDS containing 10 slots, the first

slot has a relative record number of 1, and the tenth slot has a relative

record number of 10.

In a VSAM variable-length RRDS, the records are ordered according to

their relative record number. Records are stored and retrieved according to

the relative record number that you set.

Throughout this documentation, the term VSAM relative-record data set (or

RRDS) is used to mean both relative-record data sets with fixed-length

records and with variable-length records, unless they need to be

differentiated.

180 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d540
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

The following table compares the characteristics of the different types of VSAM

data sets.

 Table 25. Comparison of VSAM data-set types

Characteristic

Entry-sequenced data set

(ESDS)

Key-sequenced data set

(KSDS)

Relative-record data set

(RRDS)

Order of records Order in which they are

written

Collating sequence by key

field

Order of relative record

number

Access Sequential By key through an index By relative record number,

which is handled like a key

Alternate indexes Can have one or more

alternate indexes, although

not supported in COBOL

Can have one or more

alternate indexes

Cannot have alternate indexes

Relative byte address

(RBA) and relative

record number (RRN)

of a record

RBA cannot change. RBA can change. RRN cannot change.

Space for adding

records

Uses space at the end of

the data set

Uses distributed free space

for inserting records and

changing their lengths in

place

For fixed-length RRDS, uses

empty slots in the data set

For variable-length RRDS, uses

distributed free space and

changes the lengths of added

records in place

Space from deleting

records

You cannot delete a record,

but you can reuse its space

for a record of the same

length.

Space from a deleted or

shortened record is

automatically reclaimed in a

control interval.

Space from a deleted record

can be reused.

Spanned records Can have spanned records Can have spanned records Cannot have spanned records

Reuse as work file Can be reused unless it has

an alternate index, is

associated with key ranges,

or exceeds 123 extents per

volume

Can be reused unless it has

an alternate index, is

associated with key ranges, or

exceeds 123 extents per

volume

Can be reused

RELATED TASKS

“Specifying sequential organization for VSAM files” on page 182

“Specifying indexed organization for VSAM files” on page 182

“Specifying relative organization for VSAM files” on page 184

“Defining VSAM files” on page 197

Defining VSAM file organization and records

Use an entry in the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define

the file organization and access modes for the VSAM files in your COBOL

program.

In the FILE SECTION of the DATA DIVISION, code a file description (FD) entry for the

file. In the associated record description entry or entries, define the record-name and

record length. Code the logical size of the records with the RECORD clause.

Important: You can process VSAM data sets in Enterprise COBOL programs only

after you define them with access method services.

Chapter 10. Processing VSAM files 181

Table 26. VSAM file organization, access mode, and record format

File organization

Sequential

access

Random

access

Dynamic

access

Fixed

length

Variable

length

VSAM sequential

(ESDS)

Yes No No Yes Yes

VSAM indexed

(KSDS)

Yes Yes Yes Yes Yes

VSAM relative

(RRDS)

Yes Yes Yes Yes Yes

RELATED TASKS

“Specifying sequential organization for VSAM files”

“Specifying indexed organization for VSAM files”

“Specifying relative organization for VSAM files” on page 184

“Specifying access modes for VSAM files” on page 185

“Defining record lengths for VSAM files” on page 185

“Using file status keys” on page 239

“Using VSAM status codes (VSAM files only)” on page 241

“Defining VSAM files” on page 197

Specifying sequential organization for VSAM files

Identify VSAM ESDS files in a COBOL program with the ORGANIZATION IS

SEQUENTIAL clause. You can access (read or write) records in sequential files only

sequentially.

After you place a record in the file, you cannot shorten, lengthen, or delete it.

However, you can update (REWRITE) a record if the length does not change. New

records are added at the end of the file.

The following example shows typical FILE-CONTROL entries for a VSAM sequential

file (ESDS):

SELECT S-FILE

 ASSIGN TO SEQUENTIAL-AS-FILE

 ORGANIZATION IS SEQUENTIAL

 ACCESS IS SEQUENTIAL

 FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS

“VSAM files” on page 180

Specifying indexed organization for VSAM files

Identify a VSAM KSDS file in a COBOL program by using the ORGANIZATION IS

INDEXED clause. Code a prime key for the record by using the RECORD KEY clause.

You can also use alternate keys and an alternate index.

RECORD KEY IS data-name

In the example above, data-name is the name of the prime key field as you define it

in the record description entry in the DATA DIVISION. The prime key data item can

be class alphabetic, alphanumeric, DBCS, numeric, or national. If it has USAGE

NATIONAL, the prime key can be category national, or can be a national-edited,

182 Enterprise COBOL for z/OS V4.1 Programming Guide

numeric-edited, national decimal, or national floating-point data item. The collation

of record keys is based on the binary value of the keys regardless of the class or

category of the keys.

The following example shows the statements for a VSAM indexed file (KSDS) that

is accessed dynamically. In addition to the primary key, COMMUTER-NO, an alternate

key, LOCATION-NO, is specified:

SELECT I-FILE

 ASSIGN TO INDEXED-FILE

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IFILE-RECORD-KEY

 ALTERNATE RECORD KEY IS IFILE-ALTREC-KEY

 FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS

“VSAM files” on page 180

RELATED TASKS

“Using alternate keys”

“Using an alternate index”

RELATED REFERENCES

RECORD KEY clause (Enterprise COBOL Language Reference)

Classes and categories of data (Enterprise COBOL Language Reference)

Using alternate keys

In addition to the primary key, you can code one or more alternate keys for a

VSAM KSDS file. By using alternate keys, you can access an indexed file to read

records in some sequence other than the prime-key sequence.

Alternate keys do not need to be unique. More than one record could be accessed

if alternate keys are coded to allow duplicates. For example, you could access the

file through employee department rather than through employee number.

You define the alternate key in your COBOL program with the ALTERNATE RECORD

KEY clause:

ALTERNATE RECORD KEY IS data-name

In the example above, data-name is the name of the alternate key field as you

define it in the record description entry in the DATA DIVISION. Alternate key data

items, like prime key data items, can be class alphabetic, alphanumeric, DBCS,

numeric, or national. The collation of alternate keys is based on the binary value of

the keys regardless of the class or category of the keys.

Using an alternate index

To use an alternate index for a VSAM KSDS file, you need to define a data set

called the alternate index (AIX) by using access method services.

The AIX contains one record for each value of a given alternate key. The records

are in sequential order by alternate-key value. Each record contains the

corresponding primary keys of all records in the associated indexed files that

contain the alternate-key value.

Chapter 10. Processing VSAM files 183

RELATED TASKS

“Creating alternate indexes” on page 198

Specifying relative organization for VSAM files

Identify VSAM RRDS files in a COBOL program by using the ORGANIZATION IS

RELATIVE clause. Use the RELATIVE KEY IS clause to associate each logical record

with its relative record number.

The following example shows a relative-record data set (RRDS) that is accessed

randomly by the value in the relative key:

SELECT R-FILE

 ASSIGN TO RELATIVE-FILE

 ORGANIZATION IS RELATIVE

 ACCESS IS RANDOM

 RELATIVE KEY IS RFILE-RELATIVE-KEY

 FILE STATUS IS FSTAT-CODE VSAM-CODE.

You can use a randomizing routine to associate a key value in each record with the

relative record number for that record. Although there are many techniques to

convert a record key to a relative record number, the most commonly used is the

division/remainder technique. With this technique, you divide the key by a value

equal to the number of slots in the data set to produce a quotient and remainder.

When you add one to the remainder, the result is a valid relative record number.

Alternate indexes are not supported for VSAM RRDS.

RELATED CONCEPTS

“VSAM files” on page 180

“Fixed-length and variable-length RRDS”

RELATED TASKS

“Using variable-length RRDS”

“Defining VSAM files” on page 197

Fixed-length and variable-length RRDS

In an RRDS that has fixed-length records, each record occupies one slot. You store

and retrieve records according to the relative record number of the slot. A

variable-length RRDS does not have slots; instead, the free space that you define

allows for more efficient record insertions.

When you load an RRDS that has fixed-length records, you have the option of

skipping over slots and leaving them empty. When you load an RRDS that has

variable-length records, you can skip over relative record numbers.

Using variable-length RRDS

To use relative-record data sets (RRDS) that have variable-length records, you must

use VSAM variable-length RRDS support.

Do these steps:

1. Define the file with the ORGANIZATION IS RELATIVE clause.

2. Use FD entries to describe the records with variable-length sizes.

3. Use the NOSIMVRD runtime option.

4. Define the VSAM file through access-method services as an RRDS.

184 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

RELATED TASKS

“Defining VSAM files” on page 197

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Specifying access modes for VSAM files

You can access records in VSAM sequential files only sequentially. You can access

records in VSAM indexed and relative files in three ways: sequentially, randomly,

or dynamically.

For sequential access, code ACCESS IS SEQUENTIAL in the FILE-CONTROL entry.

Records in indexed files are then accessed in the order of the key field selected

(either primary or alternate). Records in relative files are accessed in the order of

the relative record numbers.

For random access, code ACCESS IS RANDOM in the FILE-CONTROL entry. Records in

indexed files are then accessed according to the value you place in a key field.

Records in relative files are accessed according to the value you place in the

relative key.

For dynamic access, code ACCESS IS DYNAMIC in the FILE-CONTROL entry. Dynamic

access is a mixed sequential-random access in the same program. Using dynamic

access, you can write one program to perform both sequential and random

processing, accessing some records in sequential order and others by their keys.

“Example: using dynamic access with VSAM files”

RELATED TASKS

“Reading records from a VSAM file” on page 192

Example: using dynamic access with VSAM files

Suppose that you have an indexed file of employee records, and the employee’s

hourly wage forms the record key.

If your program processes those employees who earn between $15.00 and $20.00

per hour and those who earn $25.00 per hour and above, using dynamic access of

VSAM files, the program would:

1. Retrieve the first record randomly (with a random-retrieval READ) based on the

key of 1500.

2. Read sequentially (using READ NEXT) until the salary field exceeds 2000.

3. Retrieve the next record randomly, based on a key of 2500.

4. Read sequentially until the end of the file.

RELATED TASKS

“Reading records from a VSAM file” on page 192

Defining record lengths for VSAM files

You can define VSAM records to be fixed or variable in length. COBOL determines

the record format from the RECORD clause and the record descriptions that are

associated with the FD entry for a file.

Chapter 10. Processing VSAM files 185

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

Because the concept of blocking has no meaning for VSAM files, you can omit the

BLOCK CONTAINS clause. The clause is syntax-checked, but it has no effect on how

the program runs.

RELATED TASKS

“Defining fixed-length records”

“Defining variable-length records”

Enterprise COBOL Compiler and Runtime Migration Guide

RELATED REFERENCES

“FILE SECTION entries” on page 14

Defining fixed-length records

To define VSAM records as fixed length, use one of these coding options.

 Table 27. Definition of VSAM fixed-length records

RECORD clause

Clause

format Record length Comments

Code RECORD CONTAINS

integer.

1 Fixed in size with a

length of integer-3 bytes

The lengths of the

level-01 record

description entries

associated with the file

do not matter.

Omit the RECORD clause,

but code all level-01

records that are

associated with the file as

the same size; and code

none with an OCCURS

DEPENDING ON clause.

 The fixed size that you

coded

RELATED REFERENCES

RECORD clause (Enterprise COBOL Language Reference)

Defining variable-length records

To define VSAM records as variable length, use one of these coding options.

 Table 28. Definition of VSAM variable-length records

RECORD clause

Clause

format Maximum record length Comments

Code RECORD IS VARYING

FROM integer-6 TO integer-7.

3 integer-7 bytes The lengths of the

level-01 record

description entries

associated with the file

do not matter.

Code RECORD IS VARYING. 3 Size of the largest level-01

record description entry

associated with the file

The compiler determines

the maximum record

length.

Code RECORD CONTAINS

integer-4 TO integer-5.

2 integer-5 bytes The minimum record

length is integer-4 bytes.

186 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

Table 28. Definition of VSAM variable-length records (continued)

RECORD clause

Clause

format Maximum record length Comments

Omit the RECORD clause,

but code multiple level-01

records that are

associated with the file

and are of different sizes

or contain an OCCURS

DEPENDING ON clause.

 Size of the largest level-01

record description entry

associated with the file

The compiler determines

the maximum record

length.

When you specify a READ INTO statement for a format-V file, the record size that is

read for that file is used in the MOVE statement generated by the compiler.

Consequently, you might not get the result you expect if the record read in does

not correspond to the level-01 record description. All other rules of the MOVE

statement apply. For example, when you specify a MOVE statement for a format-V

record read in by the READ statement, the size of the record corresponds to its

level-01 record description.

RELATED REFERENCES

RECORD clause (Enterprise COBOL Language Reference)

Coding input and output statements for VSAM files

Use the COBOL statements shown below to process VSAM files.

OPEN To connect the VSAM data set to your COBOL program for processing.

WRITE To add records to a file or load a file.

START To establish the current location in the cluster for a READ NEXT statement.

 START does not retrieve a record; it only sets the current record pointer.

READ and READ NEXT

To retrieve records from a file.

REWRITE

To update records.

DELETE To logically remove records from indexed and relative files only.

CLOSE To disconnect the VSAM data set from your program.

All of the following factors determine which input and output statements you can

use for a given VSAM data set:

v Access mode (sequential, random, or dynamic)

v File organization (ESDS, KSDS, or RRDS)

v Mode of OPEN statement (INPUT, OUTPUT, I-O, or EXTEND)

The following table shows the possible combinations of statements and open

modes for sequential files (ESDS). The X indicates that you can use a statement

with the open mode shown at the top of the column.

Chapter 10. Processing VSAM files 187

Table 29. I/O statements for VSAM sequential files

Access mode

COBOL

statement OPEN INPUT OPEN OUTPUT OPEN I-O OPEN EXTEND

Sequential OPEN X X X X

WRITE X X

START

READ X X

REWRITE X

DELETE

CLOSE X X X X

The following table shows the possible combinations of statements and open

modes you can use with indexed (KSDS) files and relative (RRDS) files. The X

indicates that you can use the statement with the open mode shown at the top of

the column.

 Table 30. I/O statements for VSAM relative and indexed files

Access mode

COBOL

statement OPEN INPUT OPEN OUTPUT OPEN I-O OPEN EXTEND

Sequential OPEN X X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X X

Random OPEN X X X

WRITE X X

START

READ X X

REWRITE X

DELETE X

CLOSE X X X

Dynamic OPEN X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X

The fields that you code in the FILE STATUS clause are updated by VSAM after

each input-output statement to indicate the success or failure of the operation.

188 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS

“File position indicator”

RELATED TASKS

“Opening a file (ESDS, KSDS, or RRDS)”

“Reading records from a VSAM file” on page 192

“Updating records in a VSAM file” on page 193

“Adding records to a VSAM file” on page 193

“Replacing records in a VSAM file” on page 194

“Deleting records from a VSAM file” on page 194

“Closing VSAM files” on page 194

RELATED REFERENCES

File status key (Enterprise COBOL Language Reference)

File position indicator

The file position indicator marks the next record to be accessed for sequential

COBOL requests. You do not set the file position indicator in your program. It is

set by successful OPEN, START, READ, and READ NEXT statements.

Subsequent READ or READ NEXT requests use the established file position indicator

location and update it.

The file position indicator is not used or affected by the output statements WRITE,

REWRITE, or DELETE. The file position indicator has no meaning for random

processing.

RELATED TASKS

“Reading records from a VSAM file” on page 192

Opening a file (ESDS, KSDS, or RRDS)

Before you can use WRITE, START, READ, REWRITE, or DELETE statements to process

records in a file, you must first open the file with an OPEN statement.

File availability and creation affect OPEN processing, optional files, and file status

codes 05 and 35. For example, if you open a file that is neither optional nor

available in EXTEND, I-O, or INPUT mode, you get file status 35 and the OPEN

statement fails. If the file is OPTIONAL, the same OPEN statement creates the file and

returns file status 05.

An OPEN operation works successfully only when you set fixed file attributes in the

DD statement or data-set label for a file and specify consistent attributes for the file

in the SELECT clause and FD entries of your COBOL program. Mismatches in the

following items result in a file status code 39 and the failure of the OPEN statement:

v Attributes for file organization (sequential, relative, or indexed)

v Prime record key

v Alternate record keys

v Maximum record size

v Record type (fixed or variable)

How you code the OPEN statement for a VSAM file depends on whether the file is

empty (a file that has never contained records) or loaded. For either type of file,

your program should check the file status key after each OPEN statement.

Chapter 10. Processing VSAM files 189

RELATED TASKS

“Opening an empty file”

“Opening a loaded file (a file with records)” on page 191

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 191

Opening an empty file

To open a file that has never contained records (an empty file), use a form of the

OPEN statement.

Depending on the type of file that you are opening, use one of the following

statements:

v OPEN OUTPUT for ESDS files.

v OPEN OUTPUT or OPEN EXTEND for KSDS and RRDS files. (Either coding has the

same effect.) If you coded the file for random or dynamic access and the file is

optional, you can use OPEN I-O.

Optional files are files that are not necessarily available each time a program is run.

You can define files opened in INPUT, I-O, or OUTPUT mode as optional by defining

them with the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

Initially loading a file sequentially: Initially loading a file means writing records

into the file for the first time. Doing so is not the same as writing records into a

file from which all previous records have been deleted. To initially load a VSAM

file:

1. Open the file.

2. Use sequential processing (ACCESS IS SEQUENTIAL). (Sequential processing is

faster than random or dynamic processing.)

3. Use WRITE to add a record to the file.

Using OPEN OUTPUT to load a VSAM file significantly improves the performance of

your program. Using OPEN I-O or OPEN EXTEND has a negative effect on the

performance of your program.

When you load VSAM indexed files sequentially, you optimize both loading

performance and subsequent processing performance, because sequential

processing maintains user-defined free space. Future insertions will be more

efficient.

With ACCESS IS SEQUENTIAL, you must write the records in ascending RECORD KEY

order.

When you load VSAM relative files sequentially, the records are placed in the file

in the ascending order of relative record numbers.

Initially loading a file randomly or dynamically: You can use random or dynamic

processing to load a file, but they are not as efficient as sequential processing.

Because VSAM does not support random or dynamic processing, COBOL has to

perform some extra processing to enable you to use ACCESS IS RANDOM or ACCESS

IS DYNAMIC with OPEN OUTPUT or OPEN I-O. These steps prepare the file for use and

give it the status of a loaded file because it has been used at least once.

190 Enterprise COBOL for z/OS V4.1 Programming Guide

In addition to extra overhead for preparing files for use, random processing does

not consider any user-defined free space. As a result, any future insertions might

be inefficient. Sequential processing maintains user-defined free space.

When you are loading an extended-format VSAM data set, file status 30 will occur

for the OPEN if z/OS DFSMS system-managed buffering sets the buffering to local

shared resources (LSR). To successfully load the VSAM data set in this case, specify

ACCBIAS=USER in the DD AMP parameter for the VSAM data set to bypass

system-managed buffering.

Loading a VSAM data set with access method services: You can load or update a

VSAM data set by using the access method services REPRO command. Use REPRO

whenever possible.

RELATED TASKS

“Opening a loaded file (a file with records)”

RELATED REFERENCES

“Statements to load records into a VSAM file”

z/OS DFSMS: Access Method Services for Catalogs (REPRO)

Statements to load records into a VSAM file

Use the statements shown below to load records into a VSAM file.

 Table 31. Statements to load records into a VSAM file

Division ESDS KSDS RRDS

ENVIRONMENT

DIVISION

SELECT

ASSIGN

FILE STATUS

PASSWORD

ACCESS MODE

SELECT

ASSIGN

ORGANIZATION IS INDEXED

RECORD KEY

ALTERNATE RECORD KEY

FILE STATUS

PASSWORD

ACCESS MODE

SELECT

ASSIGN

ORGANIZATION IS RELATIVE

RELATIVE KEY

FILE STATUS

PASSWORD

ACCESS MODE

DATA DIVISION FD entry FD entry FD entry

PROCEDURE

DIVISION

OPEN OUTPUT

OPEN EXTEND

WRITE

CLOSE

OPEN OUTPUT

OPEN EXTEND

WRITE

CLOSE

OPEN OUTPUT

OPEN EXTEND

WRITE

CLOSE

RELATED TASKS

“Opening an empty file” on page 190

“Updating records in a VSAM file” on page 193

Opening a loaded file (a file with records)

To open a file that already contains records, use OPEN INPUT, OPEN I-O, or OPEN

EXTEND.

If you open a VSAM entry-sequenced or relative-record file as EXTEND, the added

records are placed after the last existing records in the file.

If you open a VSAM key-sequenced file as EXTEND, each record you add must have

a record key higher than the highest record in the file.

Chapter 10. Processing VSAM files 191

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

RELATED TASKS

“Opening an empty file” on page 190

“Working with VSAM data sets under z/OS and UNIX” on page 197

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 191

z/OS DFSMS: Access Method Services for Catalogs

Reading records from a VSAM file

Use the READ statement to retrieve (READ) records from a file. To read a record, you

must have opened the file INPUT or I-O. Your program should check the file status

key after each READ.

You can retrieve records in VSAM sequential files only in the sequence in which

they were written.

You can retrieve records in VSAM indexed and relative record files in any of the

following ways:

Sequentially

According to the ascending order of the key you are using, the RECORD KEY

or the ALTERNATE RECORD KEY, beginning at the current position of the file

position indicator for indexed files, or according to ascending relative

record locations for relative files

Randomly

In any order, depending on how you set the RECORD KEY or ALTERNATE

RECORD KEY or the RELATIVE KEY before your READ request

Dynamically

Mixed sequential and random

With dynamic access, you can switch between reading a specific record directly

and reading records sequentially, by using READ NEXT for sequential retrieval and

READ for random retrieval (by key).

When you want to read sequentially, beginning at a specific record, use START

before the READ NEXT statement to set the file position indicator to point to a

particular record. When you code START followed by READ NEXT, the next record is

read and the file position indicator is reset to the next record. You can move the

file position indicator randomly by using START, but all reading is done

sequentially from that point.

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is performed for a VSAM indexed file, based on an alternate

index for which duplicates exist, only the first record in the data set (base cluster)

with that alternate key value is retrieved. You need a series of READ NEXT

statements to retrieve each of the data set records with the same alternate key. A

file status code of 02 is returned if there are more records with the same alternate

key value to be read; a code of 00 is returned when the last record with that key

value has been read.

RELATED CONCEPTS

“File position indicator” on page 189

192 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

RELATED TASKS

“Specifying access modes for VSAM files” on page 185

Updating records in a VSAM file

To update a VSAM file, use these PROCEDURE DIVISION statements.

 Table 32. Statements to update records in a VSAM file

Access

method ESDS KSDS RRDS

ACCESS IS

SEQUENTIAL

OPEN EXTEND

WRITE

CLOSE

or

OPEN I-O

READ

REWRITE

CLOSE

OPEN EXTEND

WRITE

CLOSE

or

OPEN I-O

READ

REWRITE

DELETE

CLOSE

OPEN EXTEND

WRITE

CLOSE

or

OPEN I-O

READ

REWRITE

DELETE

CLOSE

ACCESS IS

RANDOM

Not applicable OPEN I-O

READ

WRITE

REWRITE

DELETE

CLOSE

OPEN I-O

READ

WRITE

REWRITE

DELETE

CLOSE

ACCESS IS

DYNAMIC

(sequential

processing)

Not applicable OPEN I-O

READ NEXT

WRITE

REWRITE

START

DELETE

CLOSE

OPEN I-O

READ NEXT

WRITE

REWRITE

START

DELETE

CLOSE

ACCESS IS

DYNAMIC

(random

processing)

Not applicable OPEN I-O

READ

WRITE

REWRITE

DELETE

CLOSE

OPEN I-O

READ

WRITE

REWRITE

DELETE

CLOSE

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 191

Adding records to a VSAM file

Use the COBOL WRITE statement to add a record to a file without replacing any

existing records. The record to be added must not be larger than the maximum

record size that you set when you defined the file. Your program should check the

file status key after each WRITE statement.

Adding records sequentially: Use ACCESS IS SEQUENTIAL and code the WRITE

statement to add records sequentially to the end of a VSAM file that has been

opened with either OUTPUT or EXTEND.

Chapter 10. Processing VSAM files 193

Sequential files are always written sequentially.

For indexed files, you must write new records in ascending key sequence. If you

open the file EXTEND, the record keys of the records to be added must be higher

than the highest primary record key on the file when you opened the file.

For relative files, the records must be in sequence. If you include a RELATIVE KEY

data item in the SELECT clause, the relative record number of the record to be

written is placed in that data item.

Adding records randomly or dynamically: When you write records to an indexed

data set and ACCESS IS RANDOM or ACCESS IS DYNAMIC, you can write the records in

any order.

Replacing records in a VSAM file

To replace a record in a VSAM file, use REWRITE on a file that you opened as I-O. If

the file was not opened as I-O, the record is not rewritten and the status key is set

to 49. Check the file status key after each REWRITE statement.

For sequential files, the length of the replacement record must be the same as the

length of the original record. For indexed files or variable-length relative files, you

can change the length of the record you replace.

To replace a record randomly or dynamically, you do not have to first READ the

record. Instead, locate the record you want to replace as follows:

v For indexed files, move the record key to the RECORD KEY data item, and then

issue the REWRITE.

v For relative files, move the relative record number to the RELATIVE KEY data

item, and then issue the REWRITE.

Deleting records from a VSAM file

To remove an existing record from an indexed or relative file, open the file I-O and

use the DELETE statement. You cannot use DELETE on a sequential file.

When you use ACCESS IS SEQUENTIAL or the file contains spanned records, your

program must first read the record to be deleted. The DELETE then removes the

record that was read. If the DELETE is not preceded by a successful READ, the

deletion is not done and the status key value is set to 92.

When you use ACCESS IS RANDOM or ACCESS IS DYNAMIC, your program does not

have to first read the record to be deleted. To delete a record, move the key of the

record to be deleted to the RECORD KEY data item, and then issue the DELETE. Your

program should check the file status key after each DELETE statement.

Closing VSAM files

Use the CLOSE statement to disconnect your program from a VSAM file. If you try

to close a file that is already closed, you will get a logic error. Check the file status

key after each CLOSE statement.

194 Enterprise COBOL for z/OS V4.1 Programming Guide

If you do not close a VSAM file, the file is automatically closed for you under the

following conditions, except for files defined in any OS/VS COBOL programs in

the run unit:

v When the run unit ends normally, all open files defined in any COBOL

programs in the run unit are closed.

v When the run unit ends abnormally, if the TRAP(ON) runtime option has been set,

all open files defined in any COBOL programs in the run unit are closed.

v When Language Environment condition handling has completed and the

application resumes in a routine other than where the condition occurred, open

files defined in any COBOL programs in the run unit that might be called again

and reentered are closed.

You can change the location where a program resumes after a condition is

handled. To make this change, you can, for example, move the resume cursor

with the CEEMRCR callable service or use language constructs such as a C

longjmp statement.

v When you issue CANCEL for a COBOL subprogram, any open nonexternal files

defined in that program are closed.

v When a COBOL subprogram with the INITIAL attribute returns control, any

open nonexternal files defined in that program are closed.

v When a thread of a multithreaded application ends, both external and

nonexternal files that were opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE

operations are performed, but your EXCEPTION/ERROR and LABEL declaratives are not

invoked.

Errors: If you open a VSAM file in a multithreaded application, you must close it

from the same thread of execution. Attempting to close the file from a different

thread results in a close failure with file-status condition 90.

Handling errors in VSAM files

When an input or output statement operation fails, COBOL does not perform

corrective action for you.

All OPEN and CLOSE errors with a VSAM file, whether logical errors in your

program or input/output errors on the external storage media, return control to

your COBOL program even if you coded no DECLARATIVE and no FILE STATUS

clause.

If any other input or output statement operation fails, you choose whether your

program will continue running after a less-than-severe error.

COBOL provides these ways for you to intercept and handle certain VSAM input

and output errors:

v End-of-file phrase (AT END)

v EXCEPTION/ERROR declarative

v FILE STATUS clause (file status key and VSAM status code)

v INVALID KEY phrase

You should define a status key for each VSAM file that you define in your

program. Check the status key value after each input or output request, especially

OPEN and CLOSE.

Chapter 10. Processing VSAM files 195

If you do not code a file status key or a declarative, serious VSAM processing

errors will cause a message to be issued and a Language Environment condition to

be signaled, which will cause an abend if you specify the runtime option

ABTERMENC(ABEND).

RELATED TASKS

“Handling errors in input and output operations” on page 235

“Using VSAM status codes (VSAM files only)” on page 241

RELATED REFERENCES

z/OS DFSMS Macro Instructions for Data Sets (VSAM macro return and

 reason codes)

Protecting VSAM files with a password

Although the preferred security mechanism on a z/OS system is RACF®,

Enterprise COBOL also supports using explicit passwords on VSAM files to

prevent unauthorized access and update.

To use explicit passwords, code the PASSWORD clause in the FILE-CONTROL

paragraph. Use this clause only if the catalog entry for the files includes a read or

an update password:

v If the catalog entry includes a read password, you cannot open and access the

file in a COBOL program unless you use the PASSWORD clause in the

FILE-CONTROL paragraph and describe it in the DATA DIVISION. The data-name

referred to must contain a valid password when the file is opened.

v If the catalog entry includes an update password, you can open and access it,

but not update it, unless you code the PASSWORD clause in the FILE-CONTROL

paragraph and describe it in the DATA DIVISION.

v If the catalog entry includes both a read password and an update password,

specify the update password to both read and update the file in your program.

If your program only retrieves records and does not update them, you need only

the read password. If your program loads files or updates them, you need to

specify the update password that was cataloged.

For indexed files, the PASSWORD data item for the RECORD KEY must contain the valid

password before the file can be successfully opened.

If you password-protect a VSAM indexed file, you must also password-protect

each alternate index in order to be fully password protected. Where you place the

PASSWORD clause is important because each alternate index has its own password.

The PASSWORD clause must directly follow the key clause to which it applies.

Example: password protection for a VSAM indexed file

The following example shows the COBOL code used for a VSAM indexed file that

has password protection.

. . .

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT LIBFILE

 ASSIGN TO PAYMAST

 ORGANIZATION IS INDEXED

 RECORD KEY IS EMPL-NUM

196 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d540

PASSWORD IS BASE-PASS

 ALTERNATE RECORD KEY IS EMPL-PHONE

 PASSWORD IS PATH1-PASS

. . .

WORKING-STORAGE SECTION.

01 BASE-PASS PIC X(8) VALUE "25BSREAD".

01 PATH1-PASS PIC X(8) VALUE "25ATREAD".

Working with VSAM data sets under z/OS and UNIX

There are some special coding considerations for VSAM files under z/OS and

UNIX for access method services (IDCAMS) commands, environment variables,

and JCL.

A VSAM file is available if all of the following conditions are true:

v You define it using access method services.

v You define it for your program by providing a DD statement, an environment

variable, or an ALLOCATE command.

v It has previously contained a record.

A VSAM file is unavailable if it has never contained a record, even if you have

defined it.

You always get a return code of zero on completion of the OPEN statement for a

VSAM sequential file.

Use the access method services REPRO command to empty a file. Deleting records in

this manner resets the high-use relative byte address (RBA) of the file to zero. The

file is effectively empty and appears to COBOL as if it never contained a record.

RELATED TASKS

“Defining files to the operating system” on page 10

“Defining VSAM files”

“Creating alternate indexes” on page 198

“Allocating VSAM files” on page 200

“Sharing VSAM files through RLS” on page 202

Defining VSAM files

You can process VSAM entry-sequenced, key-sequenced, and relative-record data

sets in Enterprise COBOL only after you define them through access method

services (IDCAMS).

A VSAM cluster is a logical definition for a VSAM data set and has one or two

components:

v The data component of a VSAM cluster contains the data records.

v The index component of a VSAM key-sequenced cluster consists of the index

records.

Use the DEFINE CLUSTER access-method services command to define VSAM data

sets (clusters). This process includes creating an entry in an integrated catalog

without any data transfer. Define the following information about the cluster:

v Name of the entry

Chapter 10. Processing VSAM files 197

v Name of the catalog to contain this definition and its password (can use default

name)

v Organization (sequential, indexed, or relative)

v Device and volumes that the data set will occupy

v Space required for the data set

v Record size and control interval sizes (CISIZE)

v Passwords (if any) required for future access

Depending on what kind of data set is in the cluster, also define the following

information for each cluster:

v For VSAM indexed data sets (KSDS), specify length and position of the prime

key in the records.

v For VSAM fixed-length relative-record data sets (RRDS), specify the record size

as greater than or equal to the maximum size COBOL record:

DEFINE CLUSTER NUMBERED

RECORDSIZE(n,n)

When you define a data set in this way, all records are padded to the fixed slot

size n. If you use the RECORD IS VARYING ON data-name form of the RECORD clause,

a WRITE or REWRITE uses the length specified in DEPENDING ON data-name as the

length of the record to be transferred by VSAM. This data is then padded to the

fixed slot size. READ statements always return the fixed slot size in the DEPENDING

ON data-name.

v For VSAM variable-length relative-record data sets (RRDS), specify the average

size COBOL record expected and the maximum size COBOL record expected:

DEFINE CLUSTER NUMBERED

RECORDSIZE(avg,m)

The average size COBOL record expected must be less than the maximum size

COBOL record expected.

RELATED TASKS

“Creating alternate indexes”

“Allocating VSAM files” on page 200

“Specifying relative organization for VSAM files” on page 184

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Creating alternate indexes

An alternate index provides access to the records in a data set that uses more than

one key. It accesses records in the same way as the prime index key of an indexed

data set (KSDS).

When planning to use an alternate index, you must know:

v The type of data set (base cluster) with which the index will be associated

v Whether the keys will be unique or not unique

v Whether the index is to be password protected

v Some of the performance aspects of using alternate indexes

Because an alternate index is, in practice, a VSAM data set that contains pointers to

the keys of a VSAM data set, you must define the alternate index and the alternate

index path (the entity that establishes the relationship between the alternate index

198 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

and the prime index). After you define an alternate index, make a catalog entry to

establish the relationship (or path) between the alternate index and its base cluster.

This path allows you to access the records of the base cluster through the alternate

keys.

To use an alternate index, do these steps:

1. Define the alternate index by using the DEFINE ALTERNATEINDEX command. In it,

specify these items:

v Name of the alternate index

v Name of its related VSAM indexed data set

v Location in the record of any alternate indexes and whether they are unique

v Whether alternate indexes are to be updated when the data set is changed

v Name of the catalog to contain this definition and its password (can use

default name)

In your COBOL program, the alternate index is identified solely by the

ALTERNATE RECORD KEY clause in the FILE-CONTROL paragraph. The ALTERNATE

RECORD KEY definitions must match the definitions in the catalog entry. Any

password entries that you cataloged should be coded directly after the

ALTERNATE RECORD KEY phrase.

2. Relate the alternate index to the base cluster (the data set to which the alternate

index gives you access) by using the DEFINE PATH command. In it, specify these

items:

v Name of the path

v Alternate index to which the path is related

v Name of the catalog that contains the alternate index

The base cluster and alternate index are described by entries in the same

catalog.

3. Load the VSAM indexed data set.

4. Build the alternate index by using (typically) the BLDINDEX command. Identify

the input file as the indexed data set (base cluster) and the output file as the

alternate index or its path. BLDINDEX reads all the records in the VSAM indexed

data set (or base cluster) and extracts the data needed to build the alternate

index.

Alternatively, you can use the runtime option AIXBLD to build the alternate

index at run time. However, this option might adversely affect performance.

“Example: entries for alternate indexes”

RELATED TASKS

“Using an alternate index” on page 183

RELATED REFERENCES

Language Environment Programming Reference (AIXBLD (COBOL only))

Example: entries for alternate indexes

The following example maps the relationships between the COBOL FILE-CONTROL

entry and the DD statements or environment variables for a VSAM indexed file that

has two alternate indexes.

Using JCL:

Chapter 10. Processing VSAM files 199

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

//MASTERA DD DSNAME=clustername,DISP=OLD (1)

//MASTERA1 DD DSNAME=path1,DISP=OLD (2)

//MASTERA2 DD DSNAME=path2,DISP=OLD (3)

Using environment variables:

export MASTERA=DSN(clustername),OLD (1)

export MASTERA=DSN(path1),OLD (2)

export MASTERA=DSN(path2),OLD (3)

. . .

FILE-CONTROL.

 SELECT MASTER-FILE ASSIGN TO MASTERA (4)

 RECORD KEY IS EM-NAME

 PASSWORD IS PW-BASE (5)

 ALTERNATE RECORD KEY IS EM-PHONE (6)

 PASSWORD IS PW-PATH1

 ALTERNATE RECORD KEY IS EM-CITY (7)

 PASSWORD IS PW-PATH2.

(1) The base cluster name is clustername.

(2) The name of the first alternate index path is path1.

(3) The name of the second alternate index path is path2.

(4) The ddname or environment variable name for the base cluster is specified

with the ASSIGN clause.

(5) Passwords immediately follow their indexes.

(6) The key EM-PHONE relates to the first alternate index.

(7) The key EM-CITY relates to the second alternate index.

RELATED TASKS

“Creating alternate indexes” on page 198

Allocating VSAM files

You must predefine and catalog all VSAM data sets through the access method

services DEFINE command. Most of the information about a VSAM data set is in the

catalog, so you need to specify only minimal DD or environment variable

information.

Allocation of VSAM files (indexed, relative, and sequential) follows the general

rules for the allocation of COBOL files.

When you use an environment variable to allocate a VSAM file, the variable name

must be in uppercase. Usually the input and data buffers are the only variables

that you are concerned about. You must specify these options in the order shown,

but no others:

1. DSN(dsname), where dsname is the name of the base cluster

2. OLD or SHR

The basic DD statement that you need for VSAM files and the corresponding export

command are these:

//ddname DD DSN=dsname,DISP=SHR,AMP=AMORG

export evname="DSN(dsname),SHR"

200 Enterprise COBOL for z/OS V4.1 Programming Guide

In either case, dsname must be the same as the name used in the access method

services DEFINE CLUSTER or DEFINE PATH command. DISP must be OLD or SHR

because the data set is already cataloged. If you specify MOD when using JCL, the

data set is treated as OLD.

AMP is a VSAM JCL parameter that supplements the information that the program

supplies about the data set. AMP takes effect when your program opens the VSAM

file. Any information that you set through the AMP parameter takes precedence over

the information that is in the catalog or that the program supplies. The AMP

parameter is required only under the following circumstances:

v You use a dummy VSAM data set. For example,

//ddname DD DUMMY,AMP=AMORG

v You request additional index or data buffers. For example,

//ddname DD DSN=VSAM.dsname,DISP=SHR,

// AMP=(’BUFNI=4,BUFND=8’)

You cannot specify AMP if you allocate a VSAM data set with an environment

variable.

For a VSAM base cluster, specify the same system-name (ddname or environment

variable name) that you specify in the ASSIGN clause after the SELECT clause.

When you use alternate indexes in your COBOL program, you must specify not

only a system-name (using a DD statement or environment variable) for the base

cluster, but also a system-name for each alternate index path. No language

mechanism exists to explicitly declare system-names for alternate index paths

within the program. Therefore, you must adhere to the following guidelines for

forming the system-name (ddname or environment variable name) for each

alternate index path:

v Concatenate the base cluster name with an integer.

v Begin with 1 for the path associated with the first alternate record defined for

the file in your program (ALTERNATE RECORD KEY clause of the FILE-CONTROL

paragraph).

v Increment by 1 for the path associated with each successive alternate record

definition for that file.

For example, if the system-name of a base cluster is ABCD, the system-name for the

first alternate index path defined for the file in your program is ABCD1, the

system-name for the second alternate index path is ABCD2, and so on.

If the length of the base cluster system-name together with the sequence number

exceeds eight characters, the base cluster portion of the system-name is truncated

on the right to reduce the concatenated result to eight characters. For example, if

the system-name of a base cluster is ABCDEFGH, the system name of the first

alternate index path is ABCDEFG1, the tenth is ABCDEF10, and so on.

RELATED TASKS

“Allocating files” on page 149

RELATED REFERENCES

MVS Program Management: User’s Guide and Reference

Chapter 10. Processing VSAM files 201

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Sharing VSAM files through RLS

By using the VSAM JCL parameter RLS, you can specify record-level sharing with

VSAM. Specifying RLS is the only way to request the RLS mode when running

COBOL programs.

Use RLS=CR when consistent read protocols are required, and RLS=NRI when no read

integrity protocols are required. You cannot specify RLS if you allocate your VSAM

data set with an environment variable

RELATED TASKS

“Preventing update problems with VSAM files in RLS mode”

“Handling errors in VSAM files in RLS mode” on page 203

RELATED REFERENCES

“Restrictions when using RLS” on page 203

Preventing update problems with VSAM files in RLS mode

When you open a VSAM data set in RLS mode for I-O (updates), the first READ

causes an exclusive lock of the record regardless of the value of RLS (RLS=CR or

RLS=NRI) that you specify.

If the COBOL file is defined as ACCESS RANDOM, VSAM releases the exclusive lock

on the record after a WRITE or REWRITE statement is issued or a READ statement is

issued for another record. When a WRITE or REWRITE is done, VSAM writes the

record immediately.

However, if the COBOL file is defined as ACCESS DYNAMIC, VSAM does not release

the exclusive lock on the record after a WRITE or REWRITE statement, nor after a READ

statement, unless the I-O statement causes VSAM to move to another control

interval (CI). As a result, if a WRITE or REWRITE was done, VSAM does not write the

record until processing is moved to another CI and the lock is released. When you

use ACCESS DYNAMIC, one way to cause the record to be written immediately, to

release the exclusive lock immediately, or both, is to define the VSAM data set to

allow only one record per CI.

Specifying RLS=CR locks a record and prevents an update to it until another READ is

requested for another record. While a lock on the record being read is in effect,

other users can request a READ for the same record, but they cannot update the

record until the read lock is released. When you specify RLS=NRI, no lock will be in

effect when a READ for input is issued. Another user might update the record.

The locking rules for RLS=CR can cause the application to wait for availability of a

record lock. This wait might slow down the READ for input. You might need to

modify your application logic to use RLS=CR. Do not use the RLS parameter for

batch jobs that update nonrecoverable spheres until you are sure that the

application functions correctly in a multiple-updater environment.

When you open a VSAM data set in RLS mode for INPUT or I-O processing, it is

good to issue an OPEN or START immediately before a READ. If there is a delay

between the OPEN or START and the READ, another user might add records before the

record on which the application is positioned after the OPEN or START. The COBOL

run time points explicitly to the beginning of the VSAM data set at the time when

OPEN was requested, but another user might add records that would alter the true

beginning of the VSAM data set if the READ is delayed.

202 Enterprise COBOL for z/OS V4.1 Programming Guide

Restrictions when using RLS

When you use RLS mode, several restrictions apply to VSAM cluster attributes and

to runtime options.

Be aware of these restrictions:

v The VSAM cluster attributes KEYRANGE and IMBED are not supported when you

open a VSAM file.

v The VSAM cluster attribute REPLICATE is not recommended because the benefits

are negated by the system-wide buffer pool and potentially large CF cache

structure in the storage hierarchy.

v The AIXBLD runtime option is not supported when you open a VSAM file

because VSAM does not allow an empty path to be opened. If you need the

AIXBLD runtime option to build the alternate index data set, open the VSAM data

set in non-RLS mode.

v The SIMVRD runtime option is not supported for VSAM files.

v Temporary data sets are not allowed.

Handling errors in VSAM files in RLS mode

If your application accesses a VSAM data set in RLS mode, be sure to check the file

status and VSAM feedback codes after each request.

If your application encounters ″SMSVSAM server not available″ while processing

input or output, explicitly close the VSAM file before you try to open it again.

VSAM generates return code 16 for such failures, and there is no feedback code.

You can have COBOL programs check the first 2 bytes of the second file status

area for VSAM return code 16. The COBOL run time generates message IGZ0205W

and automatically closes the file if the error occurs during OPEN processing.

All other RLS mode errors return a VSAM return code of 4, 8, or 12.

RELATED TASKS

“Using VSAM status codes (VSAM files only)” on page 241

Improving VSAM performance

Your system programmer is most likely responsible for tuning the performance of

COBOL and VSAM. As an application programmer, you can control the aspects of

VSAM that are listed below.

 Table 33. Methods for improving VSAM performance

Aspect of VSAM What you can do Rationale and comments

Invoking access

methods service

Build your alternate indexes in

advance, using IDCAMS.

Chapter 10. Processing VSAM files 203

Table 33. Methods for improving VSAM performance (continued)

Aspect of VSAM What you can do Rationale and comments

Buffering For sequential access, request

more data buffers; for random

access, request more index

buffers. Specify both BUFND

and BUFNI when ACCESS IS

DYNAMIC.

Avoid coding additional

buffers unless your application

will run interactively; then

code buffers only when

response-time problems arise

that might be caused by

delays in input and output.

The default is one index (BUFNI) and

two data buffers (BUFND).

Loading records,

using access

methods services

Use the access methods service

REPRO command when:

v The target indexed data set

already contains records.

v The input sequential data

set contains records to be

updated or inserted into the

indexed data set.

If you use a COBOL program

to load the file, use OPEN

OUTPUT and ACCESS

SEQUENTIAL.

The REPRO command can update an

indexed data set as fast or faster than

any COBOL program under these

conditions.

File access modes For best performance, access

records sequentially.

Dynamic access is less efficient than

sequential access, but more efficient

than random access. Random access

results in increased EXCPs because

VSAM must access the index for each

request.

Key design Design the key in the records

so that the high-order portion

is relatively constant and the

low-order portion changes

often.

This method compresses the key best.

Multiple

alternate indexes

Avoid using multiple alternate

indexes.

Updates must be applied through the

primary paths and are reflected

through multiple alternate paths,

perhaps slowing performance.

Relative file

organization

Use VSAM fixed-length

relative data sets rather than

VSAM variable-length relative

data sets.

Although not as space efficient, VSAM

fixed-length relative data sets are more

runtime efficient than VSAM

variable-length relative data sets.

204 Enterprise COBOL for z/OS V4.1 Programming Guide

|

Table 33. Methods for improving VSAM performance (continued)

Aspect of VSAM What you can do Rationale and comments

Control interval

sizes (CISZ)

Provide your system

programmer with information

about the data access and

future growth of your VSAM

data sets. From this

information, your system

programmer can determine

the best control interval size

(CISZ) and FREESPACE size

(FSPC).

Choose proper values for CISZ

and FSPC to minimize control

area (CA) splits. You can

diagnose the current number

of CA splits by issuing the

LISTCAT ALL command on the

cluster, and then compress

(using EXPORT, IMPORT, or

REPRO) the cluster to omit all

CA splits periodically.

VSAM calculates CISZ to best fit the

direct-access storage device (DASD)

usage algorithm, which might not,

however, be efficient for your

application.

An average CISZ of 4K is suitable for

most applications. A smaller CISZ

means faster retrieval for random

processing at the expense of inserts

(that is, more CISZ splits and therefore

more space in the data set). A larger

CISZ results in the transfer of more data

across the channel for each READ. This is

more efficient for sequential processing,

similar to a large OS BLKSIZE.

Many control area (CA) splits are

unfavorable for VSAM performance.

The FREESPACE value can affect CA

splits, depending on how the file is

used.

RELATED TASKS

“Specifying access modes for VSAM files” on page 185

z/OS DFSMS: Using Data Sets (Building a resource pool, Selecting the optimal

 percentage of free space)

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Chapter 10. Processing VSAM files 205

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

206 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 11. Processing line-sequential files

Line-sequential files reside in the hierarchical file system (HFS) and contain only

printable characters and certain control characters as data. Each record ends with

an EBCDIC newline character (X’15’), which is not included in the record length.

Because these are sequential files, records are placed one after another according to

entry order. Your program can process these files only sequentially, retrieving (with

the READ statement) records in the same order as they are in the file. A new record

is placed after the preceding record.

To process line-sequential files in your program, use COBOL language statements

that:

v Identify and describe the files in the ENVIRONMENT DIVISION and the DATA

DIVISION

v Process the records in the files in the PROCEDURE DIVISION

After you have created a record, you cannot change its length or its position in the

file, and you cannot delete it.

RELATED TASKS

“Defining line-sequential files and records in COBOL”

“Describing the structure of a line-sequential file” on page 208

“Coding input-output statements for line-sequential files” on page 209

“Handling errors in line-sequential files” on page 212

“Defining and allocating line-sequential files” on page 209

UNIX System Services User’s Guide

RELATED REFERENCES

“Allowable control characters” on page 208

Defining line-sequential files and records in COBOL

Use the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define the files in

a COBOL program as line-sequential files, and to associate the files with the

corresponding external file-names (ddnames or environment variable names).

An external file-name is the name by which a file is known to the operating

system. In the following example, COMMUTER-FILE is the name that your program

uses for the file; COMMUTR is the external name:

FILE-CONTROL.

 SELECT COMMUTER-FILE

 ASSIGN TO COMMUTR

 ORGANIZATION IS LINE SEQUENTIAL

 ACCESS MODE IS SEQUENTIAL

 FILE STATUS IS ECODE.

The ASSIGN assignment-name clause must not include an organization field (S- or

AS-) before the external name. The ACCESS phrase and the FILE STATUS clause are

optional.

RELATED TASKS

“Describing the structure of a line-sequential file” on page 208

© Copyright IBM Corp. 1991, 2007 207

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471

“Coding input-output statements for line-sequential files” on page 209

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES

“Allowable control characters”

Allowable control characters

The control characters shown in the table below are the only characters other than

printable characters that line-sequential files can contain. The hexadecimal values

are in EBCDIC.

 Hexadecimal value Control character

X’05’ Horizontal tab

X’0B’ Vertical tab

X’0C’ Form feed

X’0D’ Carriage return

X’0E’ DBCS shift-out

X’0F’ DBCS shift-in

X’15’ Newline

X’16’ Backspace

X’2F’ Alarm

The newline character is treated as a record delimiter. The other control characters

are treated as data and are part of the record.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 207

Describing the structure of a line-sequential file

In the FILE SECTION, code a file description (FD) entry for the file. In the associated

record description entry or entries, define the record-name and record length.

Code the logical size in bytes of the records by using the RECORD clause.

Line-sequential files are stream files. Because of their character-oriented nature, the

physical records are of variable length.

The following examples show how the FD entry might look for a line-sequential

file:

With fixed-length records:

FILE SECTION.

FD COMMUTER-FILE

 RECORD CONTAINS 80 CHARACTERS.

01 COMMUTER-RECORD.

 05 COMMUTER-NUMBER PIC X(16).

 05 COMMUTER-DESCRIPTION PIC X(64).

With variable-length records:

208 Enterprise COBOL for z/OS V4.1 Programming Guide

FILE SECTION.

FD COMMUTER-FILE

 RECORD VARYING FROM 16 TO 80 CHARACTERS.

01 COMMUTER-RECORD.

 05 COMMUTER-NUMBER PIC X(16).

 05 COMMUTER-DESCRIPTION PIC X(64).

If you code the same fixed size and no OCCURS DEPENDING ON clause for any level-01

record description entries associated with the file, that fixed size is the logical

record length. However, because blanks at the end of a record are not written to

the file, the physical records might be of varying lengths.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 207

“Coding input-output statements for line-sequential files”

“Defining and allocating line-sequential files”

RELATED REFERENCES

Data division--file description entries (Enterprise COBOL Language Reference)

Defining and allocating line-sequential files

You can define a line-sequential file in the HFS by using either a DD statement or

an environment variable. Allocation of these files follows the general rules for

allocating COBOL files.

To define a line-sequential file, code a DD allocation or an environment variable

with a name that matches the external name in the ASSIGN clause:

v A DD allocation:

– A DD statement that specifies PATH=’absolute-path-name’

– A TSO allocation that specifies PATH(’absolute-path-name’)

You can optionally also specify these options:

– PATHOPTS

– PATHMODE

– PATHDISP

v An environment variable with a value of PATH(absolute-path-name). No other

values can be specified.

For example, to have your program use HFS file /u/myfiles/commuterfile for a

COBOL file that has an assignment-name of COMMUTR, you could use the following

command:

export COMMUTR="PATH(/u/myfiles/commuterfile)"

RELATED TASKS

“Allocating files” on page 149

“Defining line-sequential files and records in COBOL” on page 207

RELATED REFERENCES

MVS Program Management: User’s Guide and Reference

Coding input-output statements for line-sequential files

Code the input and output statements shown below to process a line-sequential

file.

Chapter 11. Processing line-sequential files 209

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

OPEN To initiate the processing of a file.

 You can open a line-sequential file as INPUT, OUTPUT, or EXTEND. You cannot

open a line-sequential file as I-O.

READ To read a record from a file.

 With sequential processing, a program reads one record after another in

the same order in which the records were entered when the file was

created.

WRITE To create a record in a file.

 A program writes new records to the end of the file.

CLOSE To release the connection between a file and the program.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 207

“Describing the structure of a line-sequential file” on page 208

“Opening line-sequential files”

“Reading records from line-sequential files”

“Adding records to line-sequential files” on page 211

“Closing line-sequential files” on page 211

“Handling errors in line-sequential files” on page 212

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

READ statement (Enterprise COBOL Language Reference)

WRITE statement (Enterprise COBOL Language Reference)

CLOSE statement (Enterprise COBOL Language Reference)

Opening line-sequential files

Before your program can use any READ or WRITE statements to process records in a

file, it must first open the file with an OPEN statement. An OPEN statement works if

the file is available or has been dynamically allocated.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program

is running.

RELATED TASKS

“Reading records from line-sequential files”

“Adding records to line-sequential files” on page 211

“Closing line-sequential files” on page 211

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

CLOSE statement (Enterprise COBOL Language Reference)

Reading records from line-sequential files

To read from a line-sequential file, open the file and use the READ statement. Your

program reads one record after another in the same order in which the records

were entered when the file was created.

210 Enterprise COBOL for z/OS V4.1 Programming Guide

Characters in the file record are read one at a time into the record area until one of

the following conditions occurs:

v The record delimiter (the EBCDIC newline character) is encountered.

The delimiter is discarded and the remainder of the record area is filled with

spaces. (Record area is longer than the file record.)

v The entire record area is filled with characters.

If the next unread character is the record delimiter, it is discarded. The next READ

reads from the first character of the next record. (Record area is the same length

as the file record.)

Otherwise the next unread character is the first character to be read by the next

READ. (Record area is shorter than the file record.)

v End-of-file is encountered.

The remainder of the record area is filled with spaces. (Record area is longer

than the file record.)

RELATED TASKS

“Opening line-sequential files” on page 210

“Adding records to line-sequential files”

“Closing line-sequential files”

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

WRITE statement (Enterprise COBOL Language Reference)

Adding records to line-sequential files

To add to a line-sequential file, open the file as EXTEND and use the WRITE statement

to add records immediately after the last record in the file.

Blanks at the end of the record area are removed, and the record delimiter is

added. The characters in the record area from the first character up to and

including the added record delimiter are written to the file as one record.

Records written to line-sequential files must contain only USAGE DISPLAY and

DISPLAY-1 items. Zoned decimal data items must be unsigned or declared with the

SEPARATE phrase of the SIGN clause if signed.

RELATED TASKS

“Opening line-sequential files” on page 210

“Reading records from line-sequential files” on page 210

“Closing line-sequential files”

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

WRITE statement (Enterprise COBOL Language Reference)

Closing line-sequential files

Use the CLOSE statement to disconnect your program from a line-sequential file. If

you try to close a file that is already closed, you will get a logic error.

Chapter 11. Processing line-sequential files 211

If you do not close a line-sequential file, the file is automatically closed for you

under the following conditions:

v When the run unit ends normally.

v When the run unit ends abnormally, if the TRAP(ON) runtime option is set.

v When Language Environment condition handling is completed and the

application resumes in a routine other than where the condition occurred, open

files defined in any COBOL programs in the run unit that might be called again

and reentered are closed.

You can change the location where the program resumes (after a condition is

handled) by moving the resume cursor with the Language Environment

CEEMRCR callable service or using HLL language constructs such as a C

longjmp call.

File status codes are set when these implicit CLOSE operations are performed, but

EXCEPTION/ERROR declaratives are not invoked.

RELATED TASKS

“Opening line-sequential files” on page 210

“Reading records from line-sequential files” on page 210

“Adding records to line-sequential files” on page 211

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES

CLOSE statement (Enterprise COBOL Language Reference)

Handling errors in line-sequential files

When an input or output statement fails, COBOL does not take corrective action

for you. You choose whether your program should continue running after an input

or output statement fails.

COBOL provides these language elements for intercepting and handling certain

line-sequential input and output errors:

v End-of-file phrase (AT END)

v EXCEPTION/ERROR declarative

v FILE STATUS clause

If you do not use one of these techniques, an error in processing input or output

raises a Language Environment condition.

If you use the FILE STATUS clause, be sure to check the key and take appropriate

action based on its value. If you do not check the key, your program might

continue, but the results will probably not be what you expected.

RELATED TASKS

“Coding input-output statements for line-sequential files” on page 209

“Handling errors in input and output operations” on page 235

212 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 12. Sorting and merging files

You can arrange records in a particular sequence by using a SORT or MERGE

statement. You can mix SORT and MERGE statements in the same COBOL program.

SORT statement

Accepts input (from a file or an internal procedure) that is not in sequence,

and produces output (to a file or an internal procedure) in a requested

sequence. You can add, delete, or change records before or after they are

sorted.

MERGE statement

Compares records from two or more sequenced files and combines them in

order. You can add, delete, or change records after they are merged.

A program can contain any number of sort and merge operations. They can be the

same operation performed many times or different operations. However, one

operation must finish before another begins.

With Enterprise COBOL, your IBM licensed program for sorting and merging must

be DFSORT™ or an equivalent. Where DFSORT is mentioned, you can use any

equivalent sort or merge product.

COBOL programs that contain SORT or MERGE statements can reside above or below

the 16-MB line.

The steps you take to sort or merge are generally as follows:

1. Describe the sort or merge file to be used for sorting or merging.

2. Describe the input to be sorted or merged. If you want to process the records

before you sort them, code an input procedure.

3. Describe the output from sorting or merging. If you want to process the records

after you sort or merge them, code an output procedure.

4. Request the sort or merge.

5. Determine whether the sort or merge operation was successful.

Restrictions:

v You cannot run a COBOL program that contains SORT or MERGE statements under

z/OS UNIX. This restriction includes BPXBATCH.

v You cannot use SORT or MERGE statements in programs compiled with the THREAD

option. This includes programs that use object-oriented syntax and

multithreaded applications, both of which require the THREAD option.

RELATED CONCEPTS

“Sort and merge process” on page 214

RELATED TASKS

“Describing the sort or merge file” on page 214

“Describing the input to sorting or merging” on page 215

“Describing the output from sorting or merging” on page 217

“Requesting the sort or merge” on page 220

“Determining whether the sort or merge was successful” on page 224

“Stopping a sort or merge operation prematurely” on page 225

© Copyright IBM Corp. 1991, 2007 213

“Improving sort performance with FASTSRT” on page 225

“Controlling sort behavior” on page 228

DFSORT Application Programming Guide

RELATED REFERENCES

“CICS SORT application restrictions” on page 232

SORT statement (Enterprise COBOL Language Reference)

MERGE statement (Enterprise COBOL Language Reference)

Sort and merge process

During the sorting of a file, all of the records in the file are ordered according to

the contents of one or more fields (keys) in each record. You can sort the records in

either ascending or descending order of each key.

If there are multiple keys, the records are first sorted according to the content of

the first (or primary) key, then according to the content of the second key, and so

on.

To sort a file, use the COBOL SORT statement.

During the merging of two or more files (which must already be sorted), the

records are combined and ordered according to the contents of one or more keys in

each record. You can order the records in either ascending or descending order of

each key. As with sorting, the records are first ordered according to the content of

the primary key, then according to the content of the second key, and so on.

Use MERGE . . . USING to name the files that you want to combine into one

sequenced file. The merge operation compares keys in the records of the input

files, and passes the sequenced records one by one to the RETURN statement of an

output procedure or to the file that you name in the GIVING phrase.

RELATED TASKS

“Setting sort or merge criteria” on page 221

RELATED REFERENCES

SORT statement (Enterprise COBOL Language Reference)

MERGE statement (Enterprise COBOL Language Reference)

Describing the sort or merge file

Describe the sort file to be used for sorting or merging. You need SELECT clauses

and SD entries even if you are sorting or merging data items only from

WORKING-STORAGE or LOCAL-STORAGE.

Code as follows:

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the

ENVIRONMENT DIVISION to name a sort file. For example:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT Sort-Work-1 ASSIGN TO SortFile.

Sort-Work-1 is the name of the file in your program. Use this name to refer to

the file.

214 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

2. Describe the sort file in an SD entry in the FILE SECTION of the DATA DIVISION.

Every SD entry must contain a record description. For example:

DATA DIVISION.

FILE SECTION.

SD Sort-Work-1

 RECORD CONTAINS 100 CHARACTERS.

01 SORT-WORK-1-AREA.

 05 SORT-KEY-1 PIC X(10).

 05 SORT-KEY-2 PIC X(10).

 05 FILLER PIC X(80).

The file described in an SD entry is the working file used for a sort or merge

operation. You cannot perform any input or output operations on this file and you

do not need to provide a ddname definition for it.

RELATED REFERENCES

“FILE SECTION entries” on page 14

Describing the input to sorting or merging

Describe the input file or files for sorting or merging by following the procedure

below.

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the

ENVIRONMENT DIVISION to name the input files. For example:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT Input-File ASSIGN TO InFile.

Input-File is the name of the file in your program. Use this name to refer to the

file.

2. Describe the input file (or files when merging) in an FD entry in the FILE

SECTION of the DATA DIVISION. For example:

DATA DIVISION.

FILE SECTION.

FD Input-File

 LABEL RECORDS ARE STANDARD

 BLOCK CONTAINS 0 CHARACTERS

 RECORDING MODE IS F

 RECORD CONTAINS 100 CHARACTERS.

01 Input-Record PIC X(100).

RELATED TASKS

“Coding the input procedure” on page 216

“Requesting the sort or merge” on page 220

RELATED REFERENCES

“FILE SECTION entries” on page 14

Example: describing sort and input files for SORT

The following example shows the ENVIRONMENT DIVISION and DATA DIVISION entries

needed to describe sort work files and an input file.

 ID Division.

 Program-ID. SmplSort.

 Environment Division.

 Input-Output Section.

 File-Control.

Chapter 12. Sorting and merging files 215

*

* Assign name for a working file is treated as documentation.

*

 Select Sort-Work-1 Assign To SortFile.

 Select Sort-Work-2 Assign To SortFile.

 Select Input-File Assign To InFile.

 . . .

 Data Division.

 File Section.

 SD Sort-Work-1

 Record Contains 100 Characters.

 01 Sort-Work-1-Area.

 05 Sort-Key-1 Pic X(10).

 05 Sort-Key-2 Pic X(10).

 05 Filler Pic X(80).

 SD Sort-Work-2

 Record Contains 30 Characters.

 01 Sort-Work-2-Area.

 05 Sort-Key Pic X(5).

 05 Filler Pic X(25).

 FD Input-File

 Label Records Are Standard

 Block Contains 0 Characters

 Recording Mode is F

 Record Contains 100 Characters.

 01 Input-Record Pic X(100).

 . . .

 Working-Storage Section.

 01 EOS-Sw Pic X.

 01 Filler.

 05 Table-Entry Occurs 100 Times

 Indexed By X1 Pic X(30).

 . . .

RELATED TASKS

“Requesting the sort or merge” on page 220

Coding the input procedure

To process the records in an input file before they are released to the sort program,

use the INPUT PROCEDURE phrase of the SORT statement.

You can use an input procedure to:

v Release data items to the sort file from WORKING-STORAGE or LOCAL-STORAGE.

v Release records that have already been read elsewhere in the program.

v Read records from an input file, select or process them, and release them to the

sort file.

Each input procedure must be contained in either paragraphs or sections. For

example, to release records from a table in WORKING-STORAGE or LOCAL-STORAGE to

the sort file SORT-WORK-2, you could code as follows:

 SORT SORT-WORK-2

 ON ASCENDING KEY SORT-KEY

 INPUT PROCEDURE 600-SORT3-INPUT-PROC

 . . .

600-SORT3-INPUT-PROC SECTION.

 PERFORM WITH TEST AFTER

 VARYING X1 FROM 1 BY 1 UNTIL X1 = 100

 RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)

 END-PERFORM.

216 Enterprise COBOL for z/OS V4.1 Programming Guide

To transfer records to the sort program, all input procedures must contain at least

one RELEASE or RELEASE FROM statement. To release A from X, for example, you can

code:

MOVE X TO A.

RELEASE A.

Alternatively, you can code:

RELEASE A FROM X.

The following table compares the RELEASE and RELEASE FROM statements.

 RELEASE RELEASE FROM

MOVE EXT-RECORD

 TO SORT-EXT-RECORD

PERFORM RELEASE-SORT-RECORD

. . .

RELEASE-SORT-RECORD.

 RELEASE SORT-RECORD

PERFORM RELEASE-SORT-RECORD

. . .

RELEASE-SORT-RECORD.

 RELEASE SORT-RECORD

 FROM SORT-EXT-RECORD

RELATED REFERENCES

“Restrictions on input and output procedures” on page 219

RELEASE statement (Enterprise COBOL Language Reference)

Describing the output from sorting or merging

If the output from sorting or merging is a file, describe the file by following the

procedure below.

1. Write a SELECT clause in the FILE-CONTROL paragraph of the ENVIRONMENT

DIVISION to name the output file. For example:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT Output-File ASSIGN TO OutFile.

Output-File is the name of the file in your program. Use this name to refer to

the file.

2. Describe the output file (or files when merging) in an FD entry in the FILE

SECTION of the DATA DIVISION. For example:

DATA DIVISION.

FILE SECTION.

FD Output-File

 LABEL RECORDS ARE STANDARD

 BLOCK CONTAINS 0 CHARACTERS

 RECORDING MODE IS F

 RECORD CONTAINS 100 CHARACTERS.

01 Output-Record PIC X(100).

RELATED TASKS

“Coding the output procedure” on page 218

“Requesting the sort or merge” on page 220

RELATED REFERENCES

“FILE SECTION entries” on page 14

Chapter 12. Sorting and merging files 217

Coding the output procedure

To select, edit, or otherwise change sorted records before writing them from the

sort work file into another file, use the OUTPUT PROCEDURE phrase of the SORT

statement.

Each output procedure must be contained in either a section or a paragraph. An

output procedure must include both of the following elements:

v At least one RETURN statement or one RETURN statement with the INTO phrase

v Any statements necessary to process the records that are made available, one at

a time, by the RETURN statement

The RETURN statement makes each sorted record available to the output procedure.

(The RETURN statement for a sort file is similar to a READ statement for an input file.)

You can use the AT END and END-RETURN phrases with the RETURN statement. The

imperative statements in the AT END phrase are performed after all the records have

been returned from the sort file. The END-RETURN explicit scope terminator delimits

the scope of the RETURN statement.

If you use RETURN INTO instead of RETURN, the records will be returned to

WORKING-STORAGE, LOCAL-STORAGE, or to an output area.

DFSORT coding: When you use DFSORT and a RETURN statement does not

encounter an AT END condition before a COBOL program finishes running, the SORT

statement could end abnormally with DFSORT message IEC025A. To avoid this

situation, be sure to code the RETURN statement with the AT END phrase. In addition,

ensure that the RETURN statement is executed until the AT END condition is

encountered. The AT END condition occurs after the last record is returned to the

program from the sort work file and a subsequent RETURN statement is executed.

“Example: coding the output procedure when using DFSORT”

RELATED REFERENCES

“Restrictions on input and output procedures” on page 219

RETURN statement (Enterprise COBOL Language Reference)

Example: coding the output procedure when using DFSORT

The following example shows a coding technique that ensures that the RETURN

statement encounters the AT END condition before the program finishes running.

The RETURN statement, coded with the AT END phrase, is executed until the AT END

condition occurs.

IDENTIFICATION DIVISION.

DATA DIVISION.

FILE SECTION.

SD OUR-FILE.

01 OUR-SORT-REC.

 03 SORT-KEY PIC X(10).

 03 FILLER PIC X(70).

. . .

WORKING-STORAGE SECTION.

01 WS-SORT-REC PIC X(80).

01 END-OF-SORT-FILE-INDICATOR PIC X VALUE ’N’.

 88 NO-MORE-SORT-RECORDS VALUE ’Y’.

. . .

218 Enterprise COBOL for z/OS V4.1 Programming Guide

PROCEDURE DIVISION.

A-CONTROL SECTION.

 SORT OUR-FILE ON ASCENDING KEY SORT-KEY

 INPUT PROCEDURE IS B-INPUT

 OUTPUT PROCEDURE IS C-OUTPUT.

 . . .

B-INPUT SECTION.

 MOVE TO WS-SORT-REC.

 RELEASE OUR-SORT-REC FROM WS-SORT-REC.

 . . .

C-OUTPUT SECTION.

 DISPLAY ’STARTING READS OF SORTED RECORDS: ’.

 RETURN OUR-FILE

 AT END

 SET NO-MORE-SORT-RECORDS TO TRUE.

 PERFORM WITH TEST BEFORE UNTIL NO-MORE-SORT-RECORDS

 IF SORT-RETURN = 0 THEN

 DISPLAY ’OUR-SORT-REC = ’ OUR-SORT-REC

 RETURN OUR-FILE

 AT END

 SET NO-MORE-SORT-RECORDS TO TRUE

 END-IF

 END-PERFORM.

Restrictions on input and output procedures

The restrictions listed below apply to each input or output procedure called by

SORT and to each output procedure called by MERGE.

v The procedure must not contain any SORT or MERGE statements.

v You can use ALTER, GO TO, and PERFORM statements in the procedure to refer to

procedure-names outside the input or output procedure. However, control must

return to the input or output procedure after a GO TO or PERFORM statement.

v The remainder of the PROCEDURE DIVISION must not contain any transfers of

control to points inside the input or output procedure (with the exception of the

return of control from a declarative section).

v In an input or output procedure, you can call a program that follows standard

linkage conventions. However, the called program cannot issue a SORT or MERGE

statement.

v During a SORT or MERGE operation, the SD data item is used. You must not use it

in the output procedure before the first RETURN executes. If you move data into

this record area before the first RETURN statement, the first record to be returned

will be overwritten.

v Language Environment condition handling does not allow user-written

condition handlers to be established in an input or output procedure.

RELATED TASKS

“Coding the input procedure” on page 216

“Coding the output procedure” on page 218

Language Environment Programming Guide (Preparing to link-edit

 and run)

Defining sort and merge data sets

To use DFSORT under z/OS, code DD statements in the runtime JCL to describe the

necessary data sets that are listed below.

Chapter 12. Sorting and merging files 219

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

Sort or merge work

Define a minimum of three data sets: SORTWK01, SORTWK02, SORTWK03, . . .,

SORTWKnn (where nn is 99 or less). These data sets cannot be in the HFS.

SYSOUT Define for sort diagnostic messages, unless you change the data-set name.

(Change the name using either the MSGDDN keyword of the OPTION control

statement in the SORT-CONTROL data set, or using the SORT-MESSAGE special

register.)

SORTCKPT

Define if the sort or merge is to take checkpoints.

Input and output

Define input and output data sets, if any.

SORTLIB (DFSORT library)

Define the library that contains the sort modules, for example,

SYS1.SORTLIB.

RELATED TASKS

“Controlling sort behavior” on page 228

“Using checkpoint/restart with DFSORT” on page 231

Sorting variable-length records

Your sort work file will be variable length only if you define it to be variable

length, even if the input file to the sort contains variable-length records.

The compiler determines that the sort work file is variable length if you code one

of the following elements in the SD entry:

v A RECORD IS VARYING clause

v Two or more record descriptions that define records that have different sizes, or

records that contain an OCCURS DEPENDING ON clause

You cannot use RECORDING MODE V for the sort work file because the SD entry does

not allow the RECORDING MODE clause.

Performance consideration: To improve sort performance of variable-length files,

specify the most frequently occurring record length of the input file (the modal

length) on the SMS= control card or in the SORT-MODE-SIZE special register.

RELATED TASKS

“Changing DFSORT defaults with control statements” on page 229

“Controlling sort behavior” on page 228

Requesting the sort or merge

To read records from an input file (files for MERGE) without preliminary processing,

use SORT . . . USING or MERGE . . . USING and the name of the input file (files)

that you declared in a SELECT clause.

To transfer sorted or merged records from the sort or merge program to another

file without any further processing, use SORT . . . GIVING or MERGE . . . GIVING

and the name of the output file that you declared in a SELECT clause. For example:

220 Enterprise COBOL for z/OS V4.1 Programming Guide

SORT Sort-Work-1

 ON ASCENDING KEY Sort-Key-1

 USING Input-File

 GIVING Output-File.

For SORT . . . USING or MERGE . . . USING, the compiler generates an input

procedure to open the file (files), read the records, release the records to the sort or

merge program, and close the file (files). The file (files) must not be open when the

SORT or MERGE statement begins execution. For SORT . . . GIVING or MERGE . . .

GIVING, the compiler generates an output procedure to open the file, return the

records, write the records, and close the file. The file must not be open when the

SORT or MERGE statement begins execution.

The USING or GIVING files in a SORT or MERGE statement can be sequential files

residing in the HFS.

“Example: describing sort and input files for SORT” on page 215

If you want an input procedure to be performed on the sort records before they are

sorted, use SORT . . . INPUT PROCEDURE. If you want an output procedure to be

performed on the sorted records, use SORT . . . OUTPUT PROCEDURE. For example:

SORT Sort-Work-1

 ON ASCENDING KEY Sort-Key-1

 INPUT PROCEDURE EditInputRecords

 OUTPUT PROCEDURE FormatData.

“Example: sorting with input and output procedures” on page 222

Restriction: You cannot use an input procedure with the MERGE statement. The

source of input to the merge operation must be a collection of already sorted files.

However, if you want an output procedure to be performed on the merged

records, use MERGE . . . OUTPUT PROCEDURE. For example:

MERGE Merge-Work

 ON ASCENDING KEY Merge-Key

 USING Input-File-1 Input-File-2 Input-File-3

 OUTPUT PROCEDURE ProcessOutput.

In the FILE SECTION, you must define Merge-Work in an SD entry, and the input files

in FD entries.

RELATED TASKS

“Defining sort and merge data sets” on page 219

RELATED REFERENCES

SORT statement (Enterprise COBOL Language Reference)

MERGE statement (Enterprise COBOL Language Reference)

Setting sort or merge criteria

To set sort or merge criteria, define the keys on which the operation is to be

performed.

Do these steps:

1. In the record description of the files to be sorted or merged, define the key or

keys.

Chapter 12. Sorting and merging files 221

There is no maximum number of keys, but the keys must be located in the first

4092 bytes of the record description. The total length of the keys cannot exceed

4092 bytes unless the EQUALS keyword is coded in the DFSORT OPTION control

statement, in which case the total length of the keys must not exceed 4088

bytes.

Restriction: A key cannot be variably located.

2. In the SORT or MERGE statement, specify the key fields to be used for sequencing

by coding the ASCENDING or DESCENDING KEY phrase, or both. When you code

more than one key, some can be ascending, and some descending.

Specify the names of the keys in decreasing order of significance. The leftmost

key is the primary key. The next key is the secondary key, and so on.

SORT and MERGE keys can be of class alphabetic, alphanumeric, national, or numeric

(but not numeric of USAGE NATIONAL). If it has USAGE NATIONAL, a key can be of

category national or can be a national-edited or numeric-edited data item. A key

cannot be a national decimal data item or a national floating-point data item.

The collation order for national keys is determined by the binary order of the keys.

If you specify a national data item as a key, any COLLATING SEQUENCE phrase in the

SORT or MERGE statement does not apply to that key.

You can mix SORT and MERGE statements in the same COBOL program. A program

can perform any number of sort or merge operations. However, one operation

must end before another can begin.

RELATED REFERENCES

DFSORT Application Programming Guide (SORT control statement)

SORT statement (Enterprise COBOL Language Reference)

MERGE statement (Enterprise COBOL Language Reference)

Example: sorting with input and output procedures

The following example shows the use of an input and an output procedure in a

SORT statement. The example also shows how you can define a primary key

(SORT-GRID-LOCATION) and a secondary key (SORT-SHIFT) before using them in the

SORT statement.

DATA DIVISION.

. . .

SD SORT-FILE

 RECORD CONTAINS 115 CHARACTERS

 DATA RECORD SORT-RECORD.

01 SORT-RECORD.

 05 SORT-KEY.

 10 SORT-SHIFT PIC X(1).

 10 SORT-GRID-LOCATION PIC X(2).

 10 SORT-REPORT PIC X(3).

 05 SORT-EXT-RECORD.

 10 SORT-EXT-EMPLOYEE-NUM PIC X(6).

 10 SORT-EXT-NAME PIC X(30).

 10 FILLER PIC X(73).

. . .

WORKING-STORAGE SECTION.

01 TAB1.

 05 TAB-ENTRY OCCURS 10 TIMES

 INDEXED BY TAB-INDX.

 10 WS-SHIFT PIC X(1).

 10 WS-GRID-LOCATION PIC X(2).

 10 WS-REPORT PIC X(3).

222 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

10 WS-EXT-EMPLOYEE-NUM PIC X(6).

 10 WS-EXT-NAME PIC X(30).

 10 FILLER PIC X(73).

. . .

PROCEDURE DIVISION.

 . . .

 SORT SORT-FILE

 ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT

 INPUT PROCEDURE 600-SORT3-INPUT

 OUTPUT PROCEDURE 700-SORT3-OUTPUT.

 . . .

600-SORT3-INPUT.

 PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10

 RELEASE SORT-RECORD FROM TAB-ENTRY(TAB-INDX)

 END-PERFORM.

. . .

700-SORT3-OUTPUT.

 PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10

 RETURN SORT-FILE INTO TAB-ENTRY(TAB-INDX)

 AT END DISPLAY ’Out Of Records In SORT File’

 END-RETURN

 END-PERFORM.

RELATED TASKS

“Requesting the sort or merge” on page 220

Choosing alternate collating sequences

You can sort or merge records on the EBCDIC or ASCII collating sequence, or on

another collating sequence. The default collating sequence is EBCDIC unless you

code the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph.

To override the default sequence, use the COLLATING SEQUENCE phrase of the SORT or

MERGE statement. You can use different collating sequences for each SORT or MERGE

statement in your program.

The PROGRAM COLLATING SEQUENCE clause and the COLLATING SEQUENCE phrase apply

only to keys of class alphabetic or alphanumeric.

When you sort or merge an ASCII file, you have to request the ASCII collating

sequence. To do so, code the COLLATING SEQUENCE phrase of the SORT or MERGE

statement, and define the alphabet-name as STANDARD-1 in the SPECIAL-NAMES

paragraph.

RELATED TASKS

“Specifying the collating sequence” on page 8

“Setting sort or merge criteria” on page 221

RELATED REFERENCES

OBJECT-COMPUTER paragraph (Enterprise COBOL Language Reference)

SORT statement (Enterprise COBOL Language Reference)

Classes and categories of data (Enterprise COBOL Language Reference)

Sorting on windowed date fields

You can specify windowed date fields as sort keys if your version of DFSORT

supports the Y2PAST option. If so, DFSORT can sort or merge on the windowed

date sequence.

Chapter 12. Sorting and merging files 223

To sort on a windowed date field, use the DATE FORMAT clause to define a

windowed date field; then use the field as the sort key. DFSORT will use the same

century window as that used by the compilation unit. Specify the century window

with the YEARWINDOW compiler option.

DFSORT supports year-last windowed date fields, although the compiler itself

does not provide automatic windowing for year-last windowed date fields in

statements other than MERGE or SORT.

RELATED CONCEPTS

“Millennium language extensions (MLE)” on page 624

RELATED TASKS

“Sorting and merging by date” on page 638

RELATED REFERENCES

“YEARWINDOW” on page 358

DATE FORMAT clause (Enterprise COBOL Language Reference)

DFSORT Application Programming Guide (OPTION control statement: Y2PAST)

Preserving the original sequence of records with equal keys

You can preserve the order of identical collating records from input to output.

Use one of these techniques:

v Install DFSORT with the EQUALS option as the default.

v Provide, at run time, an OPTION card that has the EQUALS keyword in the

IGZSRTCD data set.

v Use the WITH DUPLICATES IN ORDER phrase in the SORT statement. Doing so adds

the EQUALS keyword to the OPTION card in the IGZSRTCD data set.

Do not use both the NOEQUALS keyword on the OPTION card and the DUPLICATES

phrase, or the run unit will end.

RELATED REFERENCES

DFSORT Application Programming Guide (OPTION control statement)

Determining whether the sort or merge was successful

The DFSORT program returns a completion code of either 0 (successful

completion) or 16 (unsuccessful completion) after each sort or merge has finished.

The completion code is stored in the SORT-RETURN special register.

You should test for successful completion after each SORT or MERGE statement. For

example:

 SORT SORT-WORK-2

 ON ASCENDING KEY SORT-KEY

 INPUT PROCEDURE IS 600-SORT3-INPUT-PROC

 OUTPUT PROCEDURE IS 700-SORT3-OUTPUT-PROC.

 IF SORT-RETURN NOT=0

 DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = " SORT-RETURN.

 . . .

600-SORT3-INPUT-PROC SECTION.

 . . .

700-SORT3-OUTPUT-PROC SECTION.

 . . .

224 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

If you do not reference SORT-RETURN anywhere in your program, the COBOL run

time tests the completion code. If it is 16, COBOL issues a runtime diagnostic

message.

By default, DFSORT diagnostic messages are sent to the SYSOUT data set. If you

want to change this default, use the MSGDDN parameter of the DFSORT OPTION

control card or use the SORT-MESSAGE special register.

If you test SORT-RETURN for one or more (but not necessarily all) SORT or MERGE

statements, the COBOL run time does not check the completion code.

RELATED TASKS

“Checking for sort errors with NOFASTSRT” on page 227

“Controlling sort behavior” on page 228

RELATED REFERENCES

DFSORT Application Programming Guide (DFSORT messages and return codes)

Stopping a sort or merge operation prematurely

To stop a sort or merge operation, move the integer 16 into the SORT-RETURN special

register.

Move 16 into the register in either of the following ways:

v Use MOVE in an input or output procedure.

Sort or merge processing will be stopped immediately after the next RELEASE or

RETURN statement is performed.

v Reset the register in a declarative section entered during processing of a USING or

GIVING file.

Sort or merge processing will be stopped immediately after the next implicit

RELEASE or RETURN is performed, which will occur after a record has been read

from or written to the USING or GIVING file.

Control then returns to the statement following the SORT or MERGE statement.

Improving sort performance with FASTSRT

Using the FASTSRT compiler option improves the performance of most sort

operations. With FASTSRT, the DFSORT product (instead of Enterprise COBOL)

performs the I/O on the input and output files you name in the SORT . . . USING

and SORT . . . GIVING statements.

The compiler issues informational messages to point out statements in which

FASTSRT can improve performance.

Usage notes

v You cannot use the DFSORT options SORTIN or SORTOUT if you use FASTSRT. The

FASTSRT compiler option does not apply to line-sequential files you use as USING

or GIVING files.

v If you specify file status and use FASTSRT, file status is ignored during the sort.

RELATED REFERENCES

“FASTSRT” on page 320

Chapter 12. Sorting and merging files 225

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

“FASTSRT requirements for JCL”

“FASTSRT requirements for sort input and output files”

FASTSRT requirements for JCL

In the runtime JCL, you must assign the sort work files (SORTWKnn) to a

direct-access device, not to tape data sets.

For the input and output files, the DCB parameter of the DD statement must match

the FD description.

FASTSRT requirements for sort input and output files

If you specify FASTSRT but your code does not meet FASTSRT requirements, the

compiler issues a message and the COBOL run time performs the I/O instead.

Your program will not experience the performance improvements that are

otherwise possible.

To use FASTSRT, you must describe and process the input files to the sort and the

output files from the sort in these ways:

v You can name only one input file in the USING phrase. You can name only one

output file in the GIVING phrase.

v You cannot use an input procedure on an input file nor an output procedure on

an output file.

Instead of using input or output procedures, you might be able to use these

DFSORT control statements:

– INREC

– OUTFILE

– OUTREC

– INCLUDE

– OMIT

– STOPAFT

– SKIPREC

– SUM

Many DFSORT functions perform the same operations that are common in input

or output procedures. Code the appropriate DFSORT control statements instead,

and place them either in the IGZSRTCD or SORTCNTL data set.

v Do not code the LINAGE clause for the output FD entry.

v Do not code any INPUT declarative (for input files), OUTPUT declarative (for

output files), or file-specific declaratives (for either input or output files) to

apply to any FDs used in the sort.

v Do not use a variable relative file as the input or output file.

v Do not use a line-sequential file as the input or output file.

v For either an input or an output file, the record descriptions of the SD and FD

entry must define the same format (fixed or variable), and the largest records of

the SD and FD entry must define the same record length.

If you code a RELATIVE KEY clause for an output file, it will not be set by the sort.

Performance tip: If you block your input and output records, the sort performance

could be significantly improved.

226 Enterprise COBOL for z/OS V4.1 Programming Guide

QSAM requirements

v QSAM files must have a record format of fixed, variable, or spanned.

v A QSAM input file can be empty.

v To use the same QSAM file for both input and output, you must describe the file

using two different DD statements. For example, in the FILE-CONTROL SECTION

you might code this:

SELECT FILE-IN ASSIGN INPUTF.

SELECT FILE-OUT ASSIGN OUTPUTF.

In the DATA DIVISION, you would have an FD entry for both FILE-IN and

FILE-OUT, where FILE-IN and FILE-OUT are identical except for their names.

In the PROCEDURE DIVISION, your SORT statement could look like this:

SORT file-name

 ASCENDING KEY data-name-1

 USING FILE-IN GIVING FILE-OUT

Then in your JCL, assuming that data set INOUT has been cataloged, you would

code:

//INPUTF DD DSN=INOUT,DISP=SHR

//OUTPUTF DD DSN=INOUT,DISP=SHR

On the other hand, if you code the same file-name in the USING and GIVING

phrases, or assign the input and output files the same ddname, then the file can

be accepted for FASTSRT either for input or output, but not both. If no other

conditions disqualify the file from being eligible for FASTSRT on input, then the

file will be accepted for FASTSRT on input, but not on output. If the file was

found to be ineligible for FASTSRT on input, it might be eligible for FASTSRT on

output.

A QSAM file that qualifies for FASTSRT can be accessed by the COBOL program

while the SORT statement is being performed. For example, if the file is used for

FASTSRT on input, you can access it in an output procedure; if it is used for FASTSRT

on output, you can access it in an input procedure.

VSAM requirements

v A VSAM input file must not be empty.

v VSAM files cannot be password-protected.

v You cannot name the same VSAM file in both the USING and GIVING phrases.

v A VSAM file that qualifies for FASTSRT cannot be accessed by the COBOL

program until the SORT statement processing is completed. For example, if the

file qualifies for FASTSRT on input, you cannot access it in an output procedure

and vice versa. (If you do so, OPEN fails.)

RELATED TASKS

DFSORT Application Programming Guide

Checking for sort errors with NOFASTSRT

When you compile with the NOFASTSRT option, the sort process does not check for

errors in open, close, or input or output operations for files that you reference in

the USING or GIVING phrase of the SORT statement. Therefore, you might need to

check whether SORT completed successfully.

The code required depends on whether you code a FILE STATUS clause or an ERROR

declarative for the files referenced in the USING and GIVING phrases, as shown in

the table below.

Chapter 12. Sorting and merging files 227

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

Table 34. Methods for checking for sort errors with NOFASTSRT

FILE STATUS

clause?

ERROR

declarative? Then do:

No No No special coding. Any failure during the sort process

causes the program to end abnormally.

Yes No Test the SORT-RETURN special register after the SORT

statement, and test the file status key. (Not recommended

if you want complete file-status checking, because the file

status code is set but COBOL cannot check it.)

Maybe Yes In the ERROR declarative, set the SORT-RETURN special

register to 16 to stop the sort process and indicate that it

was not successful. Test the SORT-RETURN special register

after the SORT statement.

RELATED TASKS

“Determining whether the sort or merge was successful” on page 224

“Using file status keys” on page 239

“Coding ERROR declaratives” on page 238

“Stopping a sort or merge operation prematurely” on page 225

Controlling sort behavior

You can control several aspects of sort behavior by inserting values in special

registers before the sort or by using compiler options. You might also have a choice

of control statements and keywords.

You can verify sort behavior by examining the contents of special registers after the

sort.

The table below lists those aspects of sort behavior that you can affect by using

special registers or compiler options, and the equivalent sort control statement

keywords if any are available.

 Table 35. Methods for controlling sort behavior

To set or test

Use this special register or

compiler option

Or this control statement

(and keyword if

applicable)

Amount of main storage to be

reserved

SORT-CORE-SIZE special register OPTION (keyword RESINV)

Amount of main storage to be

used

SORT-CORE-SIZE special register OPTION (keywords

MAINSIZE or MAINSIZE=MAX)

Modal length of records in a

file with variable-length

records

SORT-MODE-SIZE special register SMS=nnnnn

Name of sort control statement

data set (default IGZSRTCD)

SORT-CONTROL special register None

Name of sort message file

(default SYSOUT)

SORT-MESSAGE special register OPTION (keyword MSGDDN)

Number of sort records SORT-FILE-SIZE special register OPTION (keyword FILSZ)

Sort completion code SORT-RETURN special register None

228 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 35. Methods for controlling sort behavior (continued)

To set or test

Use this special register or

compiler option

Or this control statement

(and keyword if

applicable)

Century window for sorting or

merging on date fields

YEARWINDOW compiler option OPTION (keyword Y2PAST)

Format of windowed date

fields used as sort or merge

keys

(Derived from PICTURE, USAGE,

and DATE FORMAT clauses)

SORT (keyword

FORMAT=Y2x)

Sort special registers: SORT-CONTROL is an eight-character COBOL special register

that contains the ddname of the sort control statement file. If you do not want to

use the default ddname IGZSRTCD, assign to SORT-CONTROL the ddname of the

data set that contains your sort control statements.

The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE special

registers are used in the SORT interface if you assign them nondefault values. At

run time, however, any parameters in control statements in the sort control

statement data set override corresponding settings in the special registers, and a

message to that effect is issued.

You can use the SORT-RETURN special register to determine whether the sort or

merge was successful and to stop a sort or merge operation prematurely.

A compiler warning message (W-level) is issued for each sort special register that

you set in a program.

RELATED TASKS

“Determining whether the sort or merge was successful” on page 224

“Stopping a sort or merge operation prematurely” on page 225

“Changing DFSORT defaults with control statements”

“Allocating space for sort files” on page 231

DFSORT Application Programming Guide (Using DFSORT program

 control statements)

RELATED REFERENCES

“Default characteristics of the IGZSRTCD data set” on page 230

Changing DFSORT defaults with control statements

If you want to change DFSORT system defaults to improve sort performance, pass

information to DFSORT through control statements in the runtime data set

IGZSRTCD.

The control statements that you can include in IGZSRTCD (in the order listed) are:

1. SMS=nnnnn, where nnnnn is the length in bytes of the most frequently occurring

record size. (Use only if the SD file is variable length.)

2. OPTION (except keywords SORTIN or SORTOUT).

3. Other DFSORT control statements (except SORT, MERGE, RECORD, or END).

Chapter 12. Sorting and merging files 229

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

Code control statements between columns 2 and 71. You can continue a control

statement record by ending the line with a comma and starting the next line with a

new keyword. You cannot use labels or comments on a record, and a record itself

cannot be a DFSORT comment statement.

RELATED TASKS

“Controlling sort behavior” on page 228

DFSORT Application Programming Guide (Using DFSORT program

 control statements)

RELATED REFERENCES

“Default characteristics of the IGZSRTCD data set”

Default characteristics of the IGZSRTCD data set

The IGZSRTCD data set is optional. Its defaults are LRECL=80, BLKSIZE=400, and

ddname IGZSRTCD.

You can use a different ddname by coding it in the SORT-CONTROL special register. If

you defined a ddname for the SORT-CONTROL data set and you receive the message

IGZ0027W, an OPEN failure occurred that you should investigate.

RELATED TASKS

“Controlling sort behavior” on page 228

Allocating storage for sort or merge operations

Certain parameters set during the installation of DFSORT determine the amount of

storage that DFSORT uses. In general, the more storage DFSORT has available, the

faster the sort or merge operations in your program will be.

DFSORT installation should not allocate all the free space in the region for its

COBOL operation, however. When your program is running, storage must be

available for:

v COBOL programs that are dynamically called from an input or output procedure

v Language Environment runtime library modules

v Data management modules that can be loaded into the region for use by an

input or output procedure

v Any storage obtained by these modules

For a specific sort or merge operation, you can override the DFSORT storage

values set at installation. To do so, code the MAINSIZE and RESINV keywords on the

OPTION control statement in the sort control statement data set, or use the

SORT-CORE-SIZE special register.

Be careful not to override the storage allocation to the extent that all the free space

in the region is used for sort operations for your COBOL program.

RELATED TASKS

“Controlling sort behavior” on page 228

DFSORT Installation and Customization

RELATED REFERENCES

DFSORT Application Programming Guide (OPTION control statement)

230 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CI00
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

Allocating space for sort files

If you use NOFASTSRT or an input procedure, DFSORT does not know the size of

the file that you are sorting. This can lead to an out-of-space condition when you

sort large files or to overallocation of resources when you sort small files.

If this occurs, you can use the SORT-FILE-SIZE special register to help DFSORT

determine the amount of resource (for example, workspace or hiperspace) needed

for the sort. Set SORT-FILE-SIZE to a reasonable estimate of the number of input

records. This value is passed to DFSORT as its FILSZ=En value.

RELATED TASKS

“Controlling sort behavior” on page 228

“Coding the input procedure” on page 216

DFSORT Application Programming Guide

Using checkpoint/restart with DFSORT

You cannot use checkpoints taken while DFSORT is running under z/OS to restart,

unless the checkpoints are taken by DFSORT. Checkpoints taken by a COBOL

program while SORT or MERGE statements execute are invalid; such restarts are

detected and canceled.

To take a checkpoint during a sort or merge operation, do these steps:

1. Add a DD statement for SORTCKPT in the JCL.

2. Code the RERUN clause in the I-O-CONTROL paragraph:

RERUN ON assignment-name

3. Code the CKPT (or CHKPT) keyword on an OPTION control statement in the sort

control statement data set (default ddname IGZSRTCD).

RELATED CONCEPTS

Chapter 32, “Interrupts and checkpoint/restart,” on page 613

RELATED TASKS

“Changing DFSORT defaults with control statements” on page 229

“Setting checkpoints” on page 613

Sorting under CICS

There is no IBM sort product that is supported under CICS. However, you can use

the SORT statement with a sort program you write that runs under CICS to sort

small amounts of data.

You must have both an input and an output procedure for the SORT statement. In

the input procedure, use the RELEASE statement to transfer records from the

COBOL program to the sort program before the sort is performed. In the output

procedure, use the RETURN statement to transfer records from the sort program to

the COBOL program after the sort is performed.

RELATED TASKS

“Coding the input procedure” on page 216

“Coding the output procedure” on page 218

“Coding COBOL programs to run under CICS” on page 405

Chapter 12. Sorting and merging files 231

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

RELATED REFERENCES

“CICS SORT application restrictions”

“CICS reserved-word table” on page 413

CICS SORT application restrictions

Several restrictions apply to COBOL applications that run under CICS and use the

SORT statement.

The restrictions are:

v SORT statements that include the USING or GIVING phrase are not supported.

v Sort control data sets are not supported. Data in the SORT-CONTROL special

register is ignored.

v These CICS commands in the input or output procedures can cause

unpredictable results:

– CICS LINK

– CICS XCTL

– CICS RETURN

– CICS HANDLE

– CICS IGNORE

– CICS PUSH

– CICS POP

You can use CICS commands other than these if you use the NOHANDLE or RESP

option. Unpredictable results can occur if you do not use NOHANDLE or RESP.

RELATED REFERENCES

“CICS reserved-word table” on page 413

232 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 13. Handling errors

Put code in your programs that anticipates possible system or runtime problems. If

you do not include such code, output data or files could be corrupted, and the

user might not even be aware that there is a problem.

The error-handling code can take actions such as handling the situation, issuing a

message, or halting the program. You might for example create error-detection

routines for data-entry errors or for errors as your installation defines them. In any

event, coding a warning message is a good idea.

Enterprise COBOL contains special elements to help you anticipate and correct

error conditions:

v User-requested dumps

v ON OVERFLOW in STRING and UNSTRING operations

v ON SIZE ERROR in arithmetic operations

v Elements for handling input or output errors

v ON EXCEPTION or ON OVERFLOW in CALL statements

v User-written routines for handling errors

RELATED TASKS

“Handling errors in joining and splitting strings” on page 234

“Handling errors in arithmetic operations” on page 234

“Handling errors in input and output operations” on page 235

“Handling errors when calling programs” on page 244

“Writing routines for handling errors” on page 244

Requesting dumps

You can cause a formatted dump of the Language Environment runtime

environment and the member language libraries at any prespecified point in your

program by coding a call to the Language Environment callable service CEE3DMP.

77 Title-1 Pic x(80) Display.

77 Options Pic x(255) Display.

01 Feedback-code Pic x(12) Display.

. . .

 Call "CEE3DMP" Using Title-1, Options, Feedback-code

To have symbolic variables included in the formatted dump, compile with the TEST

compiler option and use the VARIABLES subparameter of CEE3DMP. You can also

request, through runtime options, that a dump be produced for error conditions of

your choosing.

You can cause a system dump at any prespecified point in your program. Request

an abend without cleanup by calling the Language Environment service CEE3ABD

with a cleanup value of zero. This callable service stops the run unit immediately,

and a system dump is requested when the abend is issued.

RELATED REFERENCES

“TEST” on page 347

© Copyright IBM Corp. 1991, 2007 233

Language Environment Debugging Guide

Language Environment Programming Reference (CEE3DMP--generate dump)

Handling errors in joining and splitting strings

During the joining or splitting of strings, the pointer used by STRING or UNSTRING

might fall outside the range of the receiving field. A potential overflow condition

exists, but COBOL does not let the overflow happen.

Instead, the STRING or UNSTRING operation is not completed, the receiving field

remains unchanged, and control passes to the next sequential statement. If you do

not code the ON OVERFLOW phrase of the STRING or UNSTRING statement, you are not

notified of the incomplete operation.

Consider the following statement:

String Item-1 space Item-2 delimited by Item-3

 into Item-4

 with pointer String-ptr

 on overflow

 Display "A string overflow occurred"

End-String

These are the data values before and after the statement is performed:

 Data item PICTURE Value before Value after

Item-1 X(5) AAAAA AAAAA

Item-2 X(5) EEEAA EEEAA

Item-3 X(2) EA EA

Item-4 X(8) bbbbbbbb1 bbbbbbbb1

String-ptr 9(2) 0 0

1. The symbol b represents a blank space.

Because String-ptr has a value (0) that falls short of the receiving field, an

overflow condition occurs and the STRING operation is not completed. (Overflow

would also occur if String-ptr were greater than 9.) If ON OVERFLOW had not been

specified, you would not be notified that the contents of Item-4 remained

unchanged.

Handling errors in arithmetic operations

The results of arithmetic operations might be larger than the fixed-point field that

is to hold them, or you might have tried dividing by zero. In either case, the ON

SIZE ERROR clause after the ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statement

can handle the situation.

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal

overflow, you must specify the TRAP(ON) runtime option.

The imperative statement of the ON SIZE ERROR clause will be performed and the

result field will not change in these cases:

v Fixed-point overflow

v Division by zero

234 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

v Zero raised to the zero power

v Zero raised to a negative number

v Negative number raised to a fractional power

Floating-point exponent overflow occurs when the value of a floating-point

computation cannot be represented in the zSeries floating-point operand format.

This type of overflow does not cause SIZE ERROR; an abend occurs instead. You

could code a user-written condition handler to intercept the abend and provide

your own error recovery logic.

Example: checking for division by zero

The following example shows how you can code an ON SIZE ERROR imperative

statement so that the program issues an informative message if division by zero

occurs.

DIVIDE-TOTAL-COST.

 DIVIDE TOTAL-COST BY NUMBER-PURCHASED

 GIVING ANSWER

 ON SIZE ERROR

 DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"

 DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED

 PERFORM FINISH

 END-DIVIDE

 . . .

 FINISH.

 STOP RUN.

If division by zero occurs, the program writes a message and halts program

execution.

Handling errors in input and output operations

When an input or output operation fails, COBOL does not automatically take

corrective action. You choose whether your program will continue running after a

less-than-severe input or output error.

You can use any of the following techniques for intercepting and handling certain

input or output conditions or errors:

v End-of-file condition (AT END)

v ERROR declaratives

v FILE STATUS clause and file status key

v File system status code

v Imperative-statement phrases on READ or WRITE statements

For VSAM files, if you specify a FILE STATUS clause, you can also test the VSAM

status code to direct your program to error-handling logic.

v INVALID KEY phrase

To have your program continue, you must code the appropriate error-recovery

procedure. You might code, for example, a procedure to check the value of the file

status key. If you do not handle an input or output error in any of these ways, a

severity-3 Language Environment condition is signaled, which causes the run unit

to end if the condition is not handled.

The following figure shows the flow of logic after a VSAM input or output error:

Chapter 13. Handling errors 235

The following figure shows the flow of logic after an input or output error with

QSAM or line-sequential files. The error can be from a READ statement, a WRITE

statement, or a CLOSE statement with a REEL/UNIT clause (QSAM only).

236 Enterprise COBOL for z/OS V4.1 Programming Guide

Yes

Set status key
(if present)

Yes

Yes

No

No

No

File-status
clause

specified ?

Associated
ERROR

declarative?

Applicable*
imperative
phrase?

Execute
imperative
statement

Execute
ERROR

declarative

Test file**
status key

Return to COBOL
at the end of I/O

statement

***Terminate the run
unit with a message

*Possible phrases for QSAM are AT END, AT END-OF-PAGE, and INVALID KEY; for line

sequential, AT END.

**You need to write the code to test the file status key.

***Execution of your COBOL program continues after the input or output

statement that caused the error.

RELATED TASKS

“Using the end-of-file condition (AT END)” on page 238

“Coding ERROR declaratives” on page 238

“Using file status keys” on page 239

“Handling errors in QSAM files” on page 165

“Using VSAM status codes (VSAM files only)” on page 241

“Handling errors in line-sequential files” on page 212

“Coding INVALID KEY phrases” on page 243

RELATED REFERENCES

File status key (Enterprise COBOL Language Reference)

Chapter 13. Handling errors 237

Using the end-of-file condition (AT END)

You code the AT END phrase of the READ statement to handle errors or normal

conditions, according to your program design. At end-of-file, the AT END phrase is

performed. If you do not code an AT END phrase, the associated ERROR declarative is

performed.

In many designs, reading sequentially to the end of a file is done intentionally, and

the AT END condition is expected. For example, suppose you are processing a file

that contains transactions in order to update a master file:

PERFORM UNTIL TRANSACTION-EOF = "TRUE"

 READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

 DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"

 MOVE "TRUE" TO TRANSACTION-EOF

 END READ

 . . .

END-PERFORM

Any NOT AT END phrase is performed only if the READ statement completes

successfully. If the READ operation fails because of a condition other than

end-of-file, neither the AT END nor the NOT AT END phrase is performed. Instead,

control passes to the end of the READ statement after any associated declarative

procedure is performed.

You might choose not to code either an AT END phrase or an EXCEPTION declarative

procedure, but to code a status key clause for the file. In that case, control passes

to the next sequential instruction after the input or output statement that detected

the end-of-file condition. At that place, you should have some code that takes

appropriate action.

RELATED REFERENCES

AT END phrases (Enterprise COBOL Language Reference)

Coding ERROR declaratives

You can code one or more ERROR declarative procedures that will be given control

if an input or output error occurs during the execution of your program. If you do

not code such procedures, your job could be canceled or abnormally terminated

after an input or output error occurs.

Place each such procedure in the declaratives section of the PROCEDURE DIVISION.

You can code:

v A single, common procedure for the entire program

v Procedures for each file open mode (whether INPUT, OUTPUT, I-O, or EXTEND)

v Individual procedures for each file

In an ERROR declarative procedure, you can code corrective action, retry the

operation, continue, or end execution. (If you continue processing a blocked file,

though, you might lose the remaining records in a block after the record that

caused the error.) You can use the ERROR declaratives procedure in combination

with the file status key if you want a further analysis of the error.

Multithreading: Avoid deadlocks when coding I/O declaratives in multithreaded

applications. When an I/O operation results in a transfer of control to an I/O

declarative, the automatic serialization lock associated with the file is held during

238 Enterprise COBOL for z/OS V4.1 Programming Guide

the execution of the statements within the declarative. If you code I/O operations

within your declaratives, your logic might result in a deadlock as illustrated by the

following sample:

Declaratives.

D1 section.

Use after standard error procedure on F1

 Read F2.

 . . .

D2 section.

Use after standard error procedure on F2

 Read F1.

 . . .

End declaratives.

 . . .

 Rewrite R1.

 Rewrite R2.

When this program is running on two threads, the following sequence of events

could occur:

1. Thread 1: Rewrite R1 acquires lock on F1 and encounters I/O error.

2. Thread 1: Enter declarative D1, holding lock on F1.

3. Thread 2: Rewrite R2 acquires lock on F2 and encounters I/O error.

4. Thread 2: Enter declarative D2.

5. Thread 1: Read F2 from declarative D1; wait on F2 lock held by thread 2.

6. Thread 2: Read F1 from declarative D2; wait on F1 lock held by thread 1.

7. Deadlock.

RELATED REFERENCES

EXCEPTION/ERROR declarative (Enterprise COBOL Language Reference)

Using file status keys

After each input or output statement is performed on a file, the system updates

values in the two digit positions of the file status key. In general, a zero in the first

position indicates a successful operation, and a zero in both positions means that

nothing abnormal occurred.

Establish a file status key by coding:

v The FILE STATUS clause in the FILE-CONTROL paragraph:

FILE STATUS IS data-name-1

v Data definitions in the DATA DIVISION (WORKING-STORAGE, LOCAL-STORAGE, or

LINKAGE SECTION), for example:

WORKING-STORAGE SECTION.

01 data-name-1 PIC 9(2) USAGE NATIONAL.

Specify the file status key data-name-1 as a two-character category alphanumeric or

category national item, or as a two-digit zoned decimal or national decimal item.

This data-name-1 cannot be variably located.

Your program can check the file status key to discover whether an error occurred,

and, if so, what type of error occurred. For example, suppose that a FILE STATUS

clause is coded like this:

FILE STATUS IS FS-CODE

FS-CODE is used by COBOL to hold status information like this:

Chapter 13. Handling errors 239

Follow these rules for each file:

v Define a different file status key for each file.

Doing so means that you can determine the cause of a file input or output

exception, such as an application logic error or a disk error.

v Check the file status key after each input or output request.

If the file status key contains a value other than 0, your program can issue an

error message or can take action based on that value.

You do not have to reset the file status key code, because it is set after each

input or output attempt.

For VSAM files, you can additionally code a second identifier in the FILE STATUS

clause to get more detailed information about VSAM input or output requests.

You can use the file status key alone or in conjunction with the INVALID KEY

option, or to supplement the EXCEPTION or ERROR declarative. Using the file status

key in this way gives you precise information about the results of each input or

output operation.

“Example: file status key”

RELATED TASKS

“Using VSAM status codes (VSAM files only)” on page 241

RELATED REFERENCES

FILE STATUS clause (Enterprise COBOL Language Reference)

File status key (Enterprise COBOL Language Reference)

Example: file status key

The following example shows how you can perform a simple check of the file

status key after opening a file.

IDENTIFICATION DIVISION.

PROGRAM-ID. SIMCHK.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT MASTERFILE ASSIGN TO AS-MASTERA

 FILE STATUS IS MASTER-CHECK-KEY

 . . .

DATA DIVISION.

. . .

WORKING-STORAGE SECTION.

01 MASTER-CHECK-KEY PIC X(2).

. . .

PROCEDURE DIVISION.

 OPEN INPUT MASTERFILE

 IF MASTER-CHECK-KEY NOT = "00"

 DISPLAY "Nonzero file status returned from OPEN " MASTER-CHECK-KEY

 . . .

240 Enterprise COBOL for z/OS V4.1 Programming Guide

Using VSAM status codes (VSAM files only)

Often the COBOL file status code is too general to pinpoint the disposition of a

request. You can get more detailed information about VSAM input or output

requests by coding a second data item in the FILE STATUS clause.

FILE STATUS IS data-name-1 data-name-8

The data item data-name-1 shown above specifies the COBOL file status key, which

you define as a two-character alphanumeric or national data item, or as a two-digit

zoned decimal or national decimal item.

The data item data-name-8 specifies the VSAM status code, which you define as a

6-byte alphanumeric group data item that has three subordinate 2-byte binary

fields. The VSAM status code contains meaningful values when the COBOL file

status key is not 0.

You can define data-name-8 in the WORKING-STORAGE SECTION, as in VSAM-CODE below.

01 RETURN-STATUS.

 05 FS-CODE PIC X(2).

 05 VSAM-CODE.

 10 VSAM-R15-RETURN PIC S9(4) Usage Comp-5.

 10 VSAM-FUNCTION PIC S9(4) Usage Comp-5.

 10 VSAM-FEEDBACK PIC S9(4) Usage Comp-5.

Enterprise COBOL uses data-name-8 to pass information supplied by VSAM. In the

following example, FS-CODE corresponds to data-name-1 and VSAM-CODE corresponds

to data-name-8:

“Example: checking VSAM status codes”

RELATED REFERENCES

FILE STATUS clause (Enterprise COBOL Language Reference)

File status key (Enterprise COBOL Language Reference)

z/OS DFSMS Macro Instructions for Data Sets (VSAM macro return and

 reason codes)

Example: checking VSAM status codes

The following example reads an indexed file (starting at the fifth record), checks

the file status key after each input or output request, and displays the VSAM

status codes when the file status key is not zero.

Chapter 13. Handling errors 241

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d540

This example also illustrates how output from this program might look if the file

being processed contained six records.

IDENTIFICATION DIVISION

PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT VSAMFILE ASSIGN TO VSAMFILE

 ORGANIZATION IS INDEXED

 ACCESS DYNAMIC

 RECORD KEY IS VSAMFILE-KEY

 FILE STATUS IS FS-CODE VSAM-CODE.

DATA DIVISION.

FILE SECTION.

FD VSAMFILE

 RECORD 30.

01 VSAMFILE-REC.

 10 VSAMFILE-KEY PIC X(6).

 10 FILLER PIC X(24).

WORKING-STORAGE SECTION.

01 RETURN-STATUS.

 05 FS-CODE PIC XX.

 05 VSAM-CODE.

 10 VSAM-RETURN-CODE PIC S9(2) Usage Binary.

 10 VSAM-COMPONENT-CODE PIC S9(1) Usage Binary.

 10 VSAM-REASON-CODE PIC S9(3) Usage Binary.

PROCEDURE DIVISION.

 OPEN INPUT VSAMFILE.

 DISPLAY "OPEN INPUT VSAMFILE FS-CODE: " FS-CODE.

 IF FS-CODE NOT = "00"

 PERFORM VSAM-CODE-DISPLAY

 STOP RUN

 END-IF.

 MOVE "000005" TO VSAMFILE-KEY.

 START VSAMFILE KEY IS EQUAL TO VSAMFILE-KEY.

 DISPLAY "START VSAMFILE KEY=" VSAMFILE-KEY

 " FS-CODE: " FS-CODE.

 IF FS-CODE NOT = "00"

 PERFORM VSAM-CODE-DISPLAY

 END-IF.

 IF FS-CODE = "00"

 PERFORM READ-NEXT UNTIL FS-CODE NOT = "00"

 END-IF.

 CLOSE VSAMFILE.

 STOP RUN.

READ-NEXT.

 READ VSAMFILE NEXT.

 DISPLAY "READ NEXT VSAMFILE FS-CODE: " FS-CODE.

 IF FS-CODE NOT = "00"

 PERFORM VSAM-CODE-DISPLAY

 END-IF.

 DISPLAY VSAMFILE-REC.

VSAM-CODE-DISPLAY.

 DISPLAY "VSAM-CODE ==>"

 " RETURN: " VSAM-RETURN-CODE,

 " COMPONENT: " VSAM-COMPONENT-CODE,

 " REASON: " VSAM-REASON-CODE.

Below is a sample of the output from the example program that checks VSAM

status-code information:

242 Enterprise COBOL for z/OS V4.1 Programming Guide

OPEN INPUT VSAMFILE FS-CODE: 00

START VSAMFILE KEY=000005 FS-CODE: 00

READ NEXT VSAMFILE FS-CODE: 00

000005 THIS IS RECORD NUMBER 5

READ NEXT VSAMFILE FS-CODE: 00

000006 THIS IS RECORD NUMBER 6

READ NEXT VSAMFILE FS-CODE: 10

VSAM-CODE ==> RETURN: 08 COMPONENT: 2 REASON: 004

Coding INVALID KEY phrases

You can include an INVALID KEY phrase on READ, START, WRITE, REWRITE, and DELETE

statements for VSAM indexed and relative files. The INVALID KEY phrase is given

control if an input or output error occurs because of a faulty index key.

You can also include the INVALID KEY phrase in WRITE requests for QSAM files, but

the phrase has limited meaning for QSAM files. It is used only if you try to write

to a disk that is full.

Use the FILE STATUS clause with the INVALID KEY phrase to evaluate the status key

and determine the specific INVALID KEY condition.

INVALID KEY phrases differ from ERROR declaratives in several ways. INVALID KEY

phrases:

v Operate for only limited types of errors. ERROR declaratives encompass all forms.

v Are coded directly in the input or output verb. ERROR declaratives are coded

separately.

v Are specific for a single input or output operation. ERROR declaratives are more

general.

If you code INVALID KEY in a statement that causes an INVALID KEY condition,

control is transferred to the INVALID KEY imperative statement. Any ERROR

declaratives that you coded are not performed.

If you code a NOT INVALID KEY phrase, it is performed only if the statement

completes successfully. If the operation fails because of a condition other than

INVALID KEY, neither the INVALID KEY nor the NOT INVALID KEY phrase is

performed. Instead, after the program performs any associated ERROR declaratives,

control passes to the end of the statement.

“Example: FILE STATUS and INVALID KEY”

Example: FILE STATUS and INVALID KEY

The following example shows how you can use the file status code and the

INVALID KEY phrase to determine more specifically why an input or output

statement failed.

Assume that you have a file that contains master customer records and you need

to update some of these records with information from a transaction update file.

The program reads each transaction record, finds the corresponding record in the

master file, and makes the necessary updates. The records in both files contain a

field for a customer number, and each record in the master file has a unique

customer number.

Chapter 13. Handling errors 243

The FILE-CONTROL entry for the master file of customer records includes statements

that define indexed organization, random access, MASTER-CUSTOMER-NUMBER as the

prime record key, and CUSTOMER-FILE-STATUS as the file status key.

.

. (read the update transaction record)

.

MOVE "TRUE" TO TRANSACTION-MATCH

MOVE UPDATE-CUSTOMER-NUMBER TO MASTER-CUSTOMER-NUMBER

READ MASTER-CUSTOMER-FILE INTO WS-CUSTOMER-RECORD

 INVALID KEY

 DISPLAY "MASTER CUSTOMER RECORD NOT FOUND"

 DISPLAY "FILE STATUS CODE IS: " CUSTOMER-FILE-STATUS

 MOVE "FALSE" TO TRANSACTION-MATCH

END-READ

Handling errors when calling programs

When a program dynamically calls a separately compiled program, the called

program might be unavailable. For example, the system might be out of storage or

unable to locate the load module. If the CALL statement does not have an ON

EXCEPTION or ON OVERFLOW phrase, your application might abend.

Use the ON EXCEPTION phrase to perform a series of statements and to perform your

own error handling. For example, in the code fragment below, if program REPORTA

is unavailable, control passes to the ON EXCEPTION phrase.

MOVE "REPORTA" TO REPORT-PROG

CALL REPORT-PROG

 ON EXCEPTION

 DISPLAY "Program REPORTA not available, using REPORTB.’

 MOVE "REPORTB" TO REPORT-PROG

 CALL REPORT-PROG

 END-CALL

END-CALL

The ON EXCEPTION phrase applies only to the availability of the called program. If

an error occurs while the called program is running, the ON EXCEPTION phrase is

not performed.

RELATED TASKS

Enterprise COBOL Compiler and Runtime Migration Guide

Writing routines for handling errors

You can handle most error conditions that might occur while your program is

running by using the ON EXCEPTION phrase, ON SIZE ERROR phrase, or other

language constructs. But if an extraordinary condition such as a machine check

occurs, usually your application is abnormally terminated.

Enterprise COBOL and Language Environment provide a way for a user-written

program to gain control when such conditions occur. Using Language Environment

condition handling, you can write your own error-handling routines in COBOL.

They can report, analyze, or even fix up a program and enable it to resume

running.

To have Language Environment pass control to a user-written error program, you

must first identify and register its entry point to Language Environment.

244 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

PROCEDURE-POINTER data items enable you to pass the entry address of procedure

entry points to Language Environment services.

RELATED TASKS

“Using procedure and function pointers” on page 460

Chapter 13. Handling errors 245

246 Enterprise COBOL for z/OS V4.1 Programming Guide

Part 2. Compiling and debugging your program

Chapter 14. Compiling under z/OS 249

Compiling with JCL 249

Using a cataloged procedure 250

Compile procedure (IGYWC) 251

Compile and link-edit procedure (IGYWCL) 252

Compile, link-edit, and run procedure

(IGYWCLG) 253

Compile, load, and run procedure (IGYWCG) 254

Compile, prelink, and link-edit procedure

(IGYWCPL) 255

Compile, prelink, link-edit, and run

procedure (IGYWCPLG) 256

Prelink and link-edit procedure (IGYWPL) 258

Compile, prelink, load, and run procedure

(IGYWCPG) 258

Writing JCL to compile programs 259

Example: user-written JCL for compiling . . 260

Compiling under TSO 261

Example: ALLOCATE and CALL for compiling

under TSO 262

Example: CLIST for compiling under TSO . . . 262

Starting the compiler from an assembler program 263

Defining compiler input and output 264

Data sets used by the compiler under z/OS . . 265

Logical record length and block size 266

Defining the source code data set (SYSIN) . . . 267

Defining a compiler-option data set (SYSOPTF) 267

Specifying source libraries (SYSLIB) 268

Defining the output data set (SYSPRINT) . . . 269

Directing compiler messages to your terminal

(SYSTERM) 269

Creating object code (SYSLIN or SYSPUNCH) 269

Defining an associated-data file (SYSADATA) 270

Defining the Java-source output file (SYSJAVA) 270

Defining the debug data set (SYSDEBUG) . . . 270

Defining the library-processing output file

(SYSMDECK) 271

Specifying compiler options under z/OS 271

Specifying compiler options with the PROCESS

(CBL) statement 272

Example: specifying compiler options using JCL 273

Example: specifying compiler options under

TSO 273

Compiler options and compiler output under

z/OS 273

Compiling multiple programs (batch compilation) 274

Example: batch compilation 275

Specifying compiler options in a batch

compilation 276

Example: precedence of options in a batch

compilation 277

Example: LANGUAGE option in a batch

compilation 278

Correcting errors in your source program 279

Generating a list of compiler error messages . . 279

Messages and listings for compiler-detected

errors 279

Format of compiler error messages 280

Severity codes for compiler error messages . . 281

Chapter 15. Compiling under UNIX 283

Setting environment variables under UNIX . . . 283

Specifying compiler options under UNIX 284

Compiling and linking with the cob2 command 285

Creating a DLL under UNIX 286

Example: using cob2 to compile and link under

UNIX 287

cob2 syntax and options 287

cob2 input and output files 289

Compiling using scripts 290

Chapter 16. Compiling, linking, and running OO

applications 291

Compiling, linking, and running OO applications

under UNIX 291

Compiling OO applications under UNIX . . . 291

Preparing OO applications under UNIX . . . 292

Example: compiling and linking a COBOL class

definition under z/OS UNIX 293

Running OO applications under UNIX 293

Running OO applications that start with a

main method 294

Running OO applications that start with a

COBOL program 295

Compiling, linking, and running OO applications

in JCL or TSO/E 295

Compiling OO applications in JCL or TSO/E 296

Preparing and running OO applications in JCL

or TSO/E 296

Example: compiling, linking, and running an

OO application using JCL 298

JCL for program TSTHELLO 298

Definition of class HelloJ 299

Environment variable settings file, ENV . . 299

Using IBM SDK for z/OS, Java 2 Technology

Edition 299

Chapter 17. Compiler options 301

Option settings for Standard COBOL 85

conformance 303

Conflicting compiler options 304

ADATA 305

ADV 305

ARITH 306

AWO 307

BUFSIZE 307

CICS 308

CODEPAGE 309

COMPILE 311

CURRENCY 312

© Copyright IBM Corp. 1991, 2007 247

||

DATA 313

DATEPROC 314

DBCS 315

DECK 316

DIAGTRUNC 316

DLL 317

DUMP 318

DYNAM 319

EXIT 319

EXPORTALL 320

FASTSRT 320

FLAG 321

FLAGSTD 322

INTDATE 323

LANGUAGE 324

LIB 325

LINECOUNT 326

LIST 326

MAP 327

MDECK 328

NAME 329

NSYMBOL 330

NUMBER 331

NUMPROC 332

OBJECT 333

OFFSET 333

OPTFILE 334

OPTIMIZE 335

OUTDD 336

PGMNAME 337

PGMNAME(COMPAT) 337

PGMNAME(LONGUPPER) 338

PGMNAME(LONGMIXED) 338

Usage notes 338

QUOTE/APOST 339

RENT 340

RMODE 341

SEQUENCE 342

SIZE 342

SOURCE 343

SPACE 344

SQL 344

SQLCCSID 345

SSRANGE 346

TERMINAL 347

TEST 347

THREAD 350

TRUNC 352

TRUNC example 1 353

TRUNC example 2 354

VBREF 355

WORD 355

XMLPARSE 356

XREF 357

YEARWINDOW 358

ZWB 359

Chapter 18. Compiler-directing statements . . 361

Chapter 19. Debugging 365

Debugging with source language 365

Tracing program logic 366

Finding and handling input-output errors . . . 367

Validating data 367

Finding uninitialized data 368

Generating information about procedures . . . 368

Example: USE FOR DEBUGGING 369

Debugging using compiler options 370

Finding coding errors 370

Finding line sequence problems 371

Checking for valid ranges 371

Selecting the level of error to be diagnosed . . 372

Example: embedded messages 373

Finding program entity definitions and

references 374

Listing data items 374

Using the debugger 375

Getting listings 375

Example: short listing 377

Example: SOURCE and NUMBER output . . . 379

Example: MAP output 380

Example: embedded map summary 381

Terms used in MAP output 382

Symbols used in LIST and MAP output . . 383

Example: nested program map 384

Reading LIST output 385

Example: program initialization code . . . 386

Signature information bytes: compiler

options 387

Signature information bytes: DATA

DIVISION 389

Signature information bytes:

ENVIRONMENT DIVISION 390

Signature information bytes: PROCEDURE

DIVISION verbs 390

Signature information bytes: more

PROCEDURE DIVISION items 392

Example: assembler code generated from

source code 393

Example: TGT memory map 394

Example: DSA memory map 396

Example: location and size of

WORKING-STORAGE 396

Example: XREF output: data-name

cross-references 396

Example: XREF output: program-name

cross-references 398

Example: XREF output: COPY/BASIS

cross-references 398

Example: embedded cross-reference 399

Example: OFFSET compiler output 400

Example: VBREF compiler output 401

248 Enterprise COBOL for z/OS V4.1 Programming Guide

||

||

 |
 | |

Chapter 14. Compiling under z/OS

You can compile Enterprise COBOL programs under z/OS using job control

language (JCL), TSO commands, CLISTs, or ISPF panels.

For compiling with JCL, IBM provides a set of cataloged procedures, which can

reduce the amount of JCL coding that you need to write. If the cataloged

procedures do not meet your needs, you can write your own JCL. Using JCL, you

can compile a single program or compile several programs as part of a batch job.

When compiling under TSO, you can use TSO commands, CLISTs, or ISPF panels.

You can also compile in a z/OS UNIX shell by using the cob2 command.

You might instead want to start the Enterprise COBOL compiler from an assembler

program, for example, if your shop has developed a tool or interface that calls the

Enterprise COBOL compiler.

As part of the compilation step, you need to define the data sets needed for the

compilation and specify any compiler options necessary for your program and the

desired output.

The compiler translates your COBOL program into language that the computer can

process (object code). The compiler also lists errors in your source statements and

provides supplementary information to help you debug and tune your program.

Use compiler-directing statements and compiler options to control your

compilation.

After compiling your program, you need to review the results of the compilation

and correct any compiler-detected errors.

RELATED TASKS

“Compiling with JCL”

“Compiling under TSO” on page 261

Chapter 15, “Compiling under UNIX,” on page 283

“Starting the compiler from an assembler program” on page 263

“Defining compiler input and output” on page 264

“Specifying compiler options under z/OS” on page 271

“Compiling multiple programs (batch compilation)” on page 274

“Correcting errors in your source program” on page 279

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

“Data sets used by the compiler under z/OS” on page 265

“Compiler options and compiler output under z/OS” on page 273

Compiling with JCL

Include the following information in the JCL for compilation: job description,

statement to invoke the compiler, and definitions of the needed data sets

(including the directory paths of HFS files, if any).

© Copyright IBM Corp. 1991, 2007 249

The simplest way to compile your program under z/OS is to code JCL that uses a

cataloged procedure. A cataloged procedure is a set of job control statements in a

partitioned data set called the procedure library (SYS1.PROCLIB).

The following JCL shows the general format for a cataloged procedure.

//jobname JOB parameters

//stepname EXEC [PROC=]procname[,{PARM=|PARM.stepname=}’options’]

//SYSIN DD data-set parameters

. . . (source program to be compiled)

/*

//

Additional considerations apply when you use cataloged procedures to compile

object-oriented programs.

“Example: sample JCL for a procedural DLL application” on page 482

RELATED TASKS

“Using a cataloged procedure”

“Writing JCL to compile programs” on page 259

“Specifying compiler options under z/OS” on page 271

“Specifying compiler options in a batch compilation” on page 276

“Compiling programs to create DLLs” on page 480

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 265

Using a cataloged procedure

Specify a cataloged procedure in an EXEC statement in your JCL.

For example, the following JCL calls the IBM-supplied cataloged procedure

IGYWC for compiling an Enterprise COBOL program and defining the required

data sets:

//JOB1 JOB1

//STEPA EXEC PROC=IGYWC

//COBOL.SYSIN DD *

000100 IDENTIFICATION DIVISION

 * (the source code)

. . .

/*

You can omit /* after the source code. If your source code is stored in a data set,

replace SYSIN DD * with appropriate parameters that describe the data set.

You can use these procedures with any of the job schedulers that are part of z/OS.

When a scheduler encounters parameters that it does not require, the scheduler

either ignores them or substitutes alternative parameters.

If the compiler options are not explicitly supplied with the procedure, default

options established at the installation apply. You can override these default options

by using an EXEC statement that includes the desired options.

You can specify data sets to be in the hierarchical file system by overriding the

corresponding DD statement. However, the compiler utility files (SYSUTx) and copy

libraries (SYSLIB) you specify must be MVS data sets.

250 Enterprise COBOL for z/OS V4.1 Programming Guide

Additional details about invoking cataloged procedures, overriding and adding to

EXEC statements, and overriding and adding to DD statements are in the Language

Environment information.

RELATED TASKS

Language Environment Programming Guide

RELATED REFERENCES

“Compile procedure (IGYWC)”

“Compile and link-edit procedure (IGYWCL)” on page 252

“Compile, link-edit, and run procedure (IGYWCLG)” on page 253

“Compile, load, and run procedure (IGYWCG)” on page 254

“Compile, prelink, and link-edit procedure (IGYWCPL)” on page 255

“Compile, prelink, link-edit, and run procedure (IGYWCPLG)” on page 256

“Prelink and link-edit procedure (IGYWPL)” on page 258

“Compile, prelink, load, and run procedure (IGYWCPG)” on page 258

MVS Program Management: User’s Guide and Reference

Compile procedure (IGYWC)

IGYWC is a single-step cataloged procedure for compiling a program. It produces

an object module. The compile steps in all other cataloged procedures that invoke

the compiler are similar.

You must supply the following DD statement, indicating the location of the source

program, in the input stream:

//COBOL.SYSIN DD * (or appropriate parameters)

If you use copybooks in the program that you are compiling, you must also supply

a DD statement for SYSLIB or other libraries that you specify in COPY statements. For

example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWC PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200

//*

//* COMPILE A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

Chapter 14. Compiling under z/OS 251

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

“Example: JCL for compiling using HFS”

Example: JCL for compiling using HFS:

The following job uses procedure IGYWC to compile a COBOL program demo.cbl

that is located in the hierarchical file system (HFS). It writes the generated

compiler listing demo.lst, object file demo.o, and SYSADATA file demo.adt to the

HFS.

//HFSDEMO JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=50M,

// NOTIFY=&SYSUID,USER=&SYSUID

//COMPILE EXEC IGYWC,

// PARM.COBOL=’LIST,MAP,RENT,FLAG(I,I),XREF,ADATA’

//SYSPRINT DD PATH=’/u/userid/cobol/demo.lst’, (1)

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC), (2)

// PATHMODE=SIRWXU, (3)

// FILEDATA=TEXT (4)

//SYSLIN DD PATH=’/u/userid/cobol/demo.o’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//SYSADATA DD PATH=’/u/userid/cobol/demo.adt’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU

//SYSIN DD PATH=’/u/userid/cobol/demo.cbl’,

// PATHOPTS=ORDONLY,

// FILEDATA=TEXT,

// RECFM=F

(1) PATH specifies the path name for an HFS file.

(2) PATHOPTS indicates the access for the file (such as read or read-write) and

sets the status for the file (such as append, create, or truncate).

(3) PATHMODE indicates the permissions, or file access attributes, to be set when

a file is created.

(4) FILEDATA specifies whether the data is to be treated as text or binary.

You can use a mixture of HFS (PATH=’hfs-directory-path’) and MVS data sets

(DSN=traditional-data-set-name) on the compilation DD statements shown in this

example as overrides. However, the compiler utility files (DD statements SYSUTx)

and COPY libraries (DD statements SYSLIB) must be MVS data sets.

RELATED REFERENCES

UNIX System Services Command Reference

MVS JCL Reference

“Data sets used by the compiler under z/OS” on page 265

Compile and link-edit procedure (IGYWCL)

IGYWCL is a two-step cataloged procedure to compile and link-edit a program.

The COBOL job step produces an object module that is input to the linkage editor

or binder. You can add other object modules. You must supply the following DD

statement, indicating the location of the source program, in the input stream:

//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

252 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA580
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b670

//IGYWCL PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// LIBPRFX=’CEE’,

// PGMLIB=’&&GOSET’,GOPGM=GO

//*

//* COMPILE AND LINK EDIT A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLOCK SIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* PGMLIB &&GOSET DATA SET NAME FOR LOAD MODULE

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (3)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),

// SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

(3) SYSLIB can be installation-dependent.

Compile, link-edit, and run procedure (IGYWCLG)

IGYWCLG is a three-step cataloged procedure to compile, link-edit, and run a

program.

The COBOL job step produces an object module that is input to the linkage editor

or binder. You can add other object modules. If the COBOL program refers to any

data sets, you must also supply DD statements that define these data sets. You must

supply the following DD statement, indicating the location of the source program,

in the input stream:

//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCLG PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// LIBPRFX=’CEE’,GOPGM=GO

//*

Chapter 14. Compiling under z/OS 253

//* COMPILE, LINK EDIT AND RUN A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (3)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

(3) SYSLIB can be installation-dependent.

Compile, load, and run procedure (IGYWCG)

IGYWCG is a two-step cataloged procedure to compile, load, and run a program.

The COBOL job step produces an object module that is input to the loader. If the

COBOL program refers to any data sets, you must supply the DD statements that

define these data sets. You must supply the following DD statement, indicating the

location of the source program, in the input stream:

//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCG PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// LIBPRFX=’CEE’

//*

//* COMPILE, LOAD AND RUN A COBOL PROGRAM

254 Enterprise COBOL for z/OS V4.1 Programming Guide

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA, (2)

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (3)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//GO EXEC PGM=LOADER,COND=(8,LT,COBOL),REGION=2048K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (4)

// DISP=SHR

//SYSLOUT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

(1) STEPLIB can be installation-dependent.

(2) SYSLIN can reside in the HFS.

(3) SYSUT5 is needed only if the LIB option is used.

(4) SYSLIB can be installation-dependent.

Compile, prelink, and link-edit procedure (IGYWCPL)

IGYWCPL is a three-step cataloged procedure for compiling, prelinking, and

link-editing a program.

You must supply the following DD statement, indicating the location of the source

program, in the input stream:

SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCPL PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// LIBPRFX=’CEE’,PLANG=EDCPMSGE,

// PGMLIB=’&&GOSET’,GOPGM=GO

//*

//* COMPILE, PRELINK AND LINK EDIT A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLOCK SIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* PLANG EDCPMSGE PRELINKER MESSAGES MODULE

//* PGMLIB &&GOSET DATA SET NAME FOR LOAD MODULE

Chapter 14. Compiling under z/OS 255

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//PLKED EXEC PGM=EDCPRLK,PARM=’’,COND=(8,LT,COBOL),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSMSGS DD DSNAME=&LIBPRFX..SCEEMSGP(&PLANG),

// DISP=SHR

//SYSLIB DD DUMMY

//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

//SYSMOD DD DSNAME=&&PLKSET,UNIT=SYSDA,DISP=(NEW,PASS),

// SPACE=(32000,(100,50)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSDEFSD DD DUMMY

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (3)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),

// SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

(3) SYSLIB can be installation-dependent.

Compile, prelink, link-edit, and run procedure (IGYWCPLG)

IGYWCPLG is a four-step cataloged procedure for compiling, prelinking,

link-editing, and running a program.

You must supply the following DD statement, indicating the location of the source

program, in the input stream:

SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCPLG PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// PLANG=EDCPMSGE,

// LIBPRFX=’CEE’,GOPGM=GO

256 Enterprise COBOL for z/OS V4.1 Programming Guide

//*

//* COMPILE, PRELINK, LINK EDIT, AND RUN A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* PLANG EDCPMSGE PRELINKER MESSAGES MODULE

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//PLKED EXEC PGM=EDCPRLK,PARM=’’,COND=(8,LT,COBOL),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSMSGS DD DSNAME=&LIBPRFX..SCEEMSGP(&PLANG),

// DISP=SHR

//SYSLIB DD DUMMY

//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

//SYSMOD DD DSNAME=&&PLKSET,UNIT=SYSDA,DISP=(NEW,PASS),

// SPACE=(32000,(100,50)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSDEFSD DD DUMMY

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (3)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

(3) SYSLIB can be installation-dependent.

Chapter 14. Compiling under z/OS 257

Prelink and link-edit procedure (IGYWPL)

The IGYWPL cataloged procedure is a two-step procedure for prelinking and

link-editing a program.

//IGYWPL PROC PLANG=EDCPMSGE,SYSLBLK=3200,

// LIBPRFX=’CEE’,

// PGMLIB=’&&GOSET’,GOPGM=GO

//*

//* PRELINK AND LINK EDIT A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* PLANG EDCPMSGE PRELINK MESSAGES MEMBER NAME

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* PGMLIB &&GOSET DATA SET NAME FOR LOAD MODULE

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //PLKED.SYSIN DD . . .

//*

//PLKED EXEC PGM=EDCPRLK,PARM=’’,

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN, (1)

// DISP=SHR

//SYSMSGS DD DSNAME=&LIBPRFX..SCEEMSGP(&PLANG),

// DISP=SHR

//SYSLIB DD DUMMY

//SYSMOD DD DSNAME=&&PLKSET,UNIT=SYSDA,DISP=(NEW,PASS),

// SPACE=(32000,(100,50)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=&SYSLBLK)

//SYSDEFSD DD DUMMY

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//LKED EXEC PGM=HEWL,COND=(4,LT,PLKED),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (2)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=*.PLKED.SYSMOD,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

//SYSIN DD DUMMY

(1) STEPLIB can be installation-dependent.

(2) SYSLIB can be installation-dependent.

Compile, prelink, load, and run procedure (IGYWCPG)

IGYWCPG is a four-step cataloged procedure for compiling, prelinking, loading,

and running a program.

You must supply the following DD statement, indicating the location of the source

program, in the input stream:

//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or

other libraries that you specify in COPY statements. For example:

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCPG PROC LNGPRFX=’IGY.V4R1M0’,SYSLBLK=3200,

// PLANG=EDCPMSGE,

// LIBPRFX=’CEE’

258 Enterprise COBOL for z/OS V4.1 Programming Guide

//*

//* COMPILE, PRELINK, LOAD, AND RUN A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* PLANG EDCPMSGE PRELINKER MESSAGES MODULE

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP, (1)

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) (2)

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//PLKED EXEC PGM=EDCPRLK,PARM=’’,COND=(8,LT,COBOL),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSMSGS DD DSNAME=&LIBPRFX..SCEEMSGP(&PLANG),

// DISP=SHR

//SYSLIB DD DUMMY

//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

//SYSMOD DD DSNAME=&&PLKSET,UNIT=SYSDA,DISP=(NEW,PASS), (3)

// SPACE=(32000,(100,50)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSDEFSD DD DUMMY

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//GO EXEC PGM=LOADER,COND=(8,LT,COBOL),REGION=2048K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED, (4)

// DISP=SHR

//SYSLOUT DD SYSOUT=*

//SYSLIN DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

(1) STEPLIB can be installation-dependent.

(2) SYSUT5 is needed only if the LIB option is used.

(3) SYSMOD can reside in the HFS.

(4) SYSLIB can be installation-dependent.

Writing JCL to compile programs

If the cataloged procedures do not give you the flexibility you need for more

complex programs, write your own job control statements. The following example

shows the general format of JCL used to compile a program.

Chapter 14. Compiling under z/OS 259

//jobname JOB acctno,name,MSGCLASS=1 (1)

//stepname EXEC PGM=IGYCRCTL,PARM=(options) (2)

//STEPLIB DD DSNAME=IGY.V4R1M0.SIGYCOMP,DISP=SHR (3)

//SYSUT1 DD UNIT=SYSDA,SPACE=(subparms) (4)

//SYSUT2 DD UNIT=SYSDA,SPACE=(subparms)

//SYSUT3 DD UNIT=SYSDA,SPACE=(subparms)

//SYSUT4 DD UNIT=SYSDA,SPACE=(subparms)

//SYSUT5 DD UNIT=SYSDA,SPACE=(subparms)

//SYSUT6 DD UNIT=SYSDA,SPACE=(subparms)

//SYSUT7 DD UNIT=SYSDA,SPACE=(subparms)

//SYSPRINT DD SYSOUT=A (5)

//SYSLIN DD DSNAME=MYPROG,UNIT=SYSDA, (6)

// DISP=(MOD,PASS),SPACE=(subparms)

//SYSIN DD DSNAME=dsname,UNIT=device, (7)

 VOLUME=(subparms),DISP=SHR

(1) The JOB statement indicates the beginning of a job.

(2) The EXEC statement specifies that the Enterprise COBOL compiler

(IGYCRCTL) is to be invoked.

(3) This DD statement defines the data set where the Enterprise COBOL

compiler resides.

(4) The SYSUT DD statements define the utility data sets that the compiler will

use to process the source program. All SYSUT files must be on

direct-access storage devices.

(5) The SYSPRINT DD statement defines the data set that receives output from

options such as LIST and MAP. SYSOUT=A is the standard designation for data

sets whose destination is the system output device.

(6) The SYSLIN DD statement defines the data set that receives output from the

OBJECT option (the object module).

(7) The SYSIN DD statement defines the data set to be used as input to the job

step (source code).

You can use a mixture of HFS (PATH=’hfs-directory-path’) and MVS data sets

(DSN=traditional-data-set-name) in the compilation DD statements for the following

data sets:

v Sources files

v Object files

v Listings

v ADATA files

v Debug files

v Executable modules

However, the compiler utility files (DD statements SYSUTx) and COPY libraries (DD

statement SYSLIB) must be MVS data sets.

“Example: user-written JCL for compiling”

“Example: sample JCL for a procedural DLL application” on page 482

RELATED REFERENCES

MVS Program Management: User’s Guide and Reference

Example: user-written JCL for compiling

The following example shows a few possibilities for adapting the basic JCL.

260 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

//JOB1 JOB (1)

//STEP1 EXEC PGM=IGYCRCTL,PARM=’OBJECT’ (2)

//STEPLIB DD DSNAME=IGY.V4R1M0.SIGYCOMP,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=MYPROG,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3))

//SYSIN DD * (3)

000100 IDENTIFICATION DIVISION.

. . .

/* (4)

(1) JOB1 is the name of the job.

(2) STEP1 is the name of the sole job step in the job. The EXEC statement also

specifies that the generated object code should be placed on disk or tape

(to be used as input to the link step).

(3) The asterisk indicates that the input data set follows in the input stream.

(4) The delimiter statement /* separates data from subsequent control

statements in the input stream.

Compiling under TSO

Under TSO, you can use TSO commands, command lists (CLISTs), REXX™ execs,

or ISPF to compile programs using traditional MVS data sets. You can use TSO

commands or REXX execs to compile programs using HFS files.

With each method, you need to allocate the data sets and request the compilation:

1. Use the ALLOCATE command to allocate data sets.

For any compilation, allocate the work data sets (SYSUTn) and the SYSIN and

SYSPRINT data sets.

If you specify certain compiler options, you must allocate other data sets. For

example, if you specify the TERMINAL compiler option, you must allocate the

SYSTERM data set to receive compiler messages at your terminal.

You can allocate data sets in any order. However, you must allocate all needed

data sets before you start to compile.

2. Use the CALL command at the READY prompt to request compilation:

CALL ’IGY.V4R1M0.SIGYCOMP(IGYCRCTL)’

You can specify the ALLOCATE and CALL commands on the TSO command line, or, if

you are not using HFS files, you can include them in a CLIST.

You can allocate HFS files for all the compiler data sets except the SYSUTx utility

data sets and the SYSLIB libraries. ALLOCATE statements have the following form:

Allocate File(SYSIN) Path(’/u/myu/myap/std/prog2.cbl’)

Pathopts(ORDONLY) Filedata(TEXT)

“Example: ALLOCATE and CALL for compiling under TSO” on page 262

“Example: CLIST for compiling under TSO” on page 262

Chapter 14. Compiling under z/OS 261

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 265

Example: ALLOCATE and CALL for compiling under TSO

The following example shows how to specify ALLOCATE and CALL commands when

you are compiling under TSO.

[READY]

ALLOCATE FILE(SYSUT1) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT2) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT3) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT4) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT5) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT6) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSUT7) CYLINDERS SPACE(1 1)

[READY]

ALLOCATE FILE(SYSPRINT) SYSOUT

[READY]

ALLOCATE FILE(SYSTERM) DATASET(*)

[READY]

ALLOCATE FILE(SYSLIN) DATASET(PROG2.OBJ) NEW TRACKS SPACE(3,3)

[READY]

ALLOCATE FILE(SYSIN) DATASET(PROG2.COBOL) SHR

[READY]

CALL ’IGY.V4R1M0.SIGYCOMP(IGYCRCTL)’ ’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E),TERMINAL’

 .

 (COBOL listings and messages)

 .

[READY]

FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSUT4,SYSUT5,SYSUT6,SYSUT7,SYSPRINT,SYSTERM,+

SYSIN,SYSLIN)

[READY]

Example: CLIST for compiling under TSO

The following example shows a CLIST for compiling under TSO. The FREE

commands are not required. However, good programming practice dictates that

you free files before you allocate them.

PROC 1 MEM

CONTROL LIST

FREE (SYSUT1)

FREE (SYSUT2)

FREE (SYSUT3)

FREE (SYSUT4)

FREE (SYSUT5)

FREE (SYSUT6)

FREE (SYSUT7)

FREE (SYSPRINT)

FREE (SYSIN)

FREE (SYSLIN)

ALLOC F(SYSPRINT) SYSOUT

ALLOC F(SYSIN) DA(COBOL.SOURCE(&MEM)) SHR REUSE

ALLOC F(SYSLIN) DA(COBOL.OBJECT(&MEM)) OLD REUSE

ALLOC F(SYSUT1) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

ALLOC F(SYSUT2) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

ALLOC F(SYSUT3) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

ALLOC F(SYSUT4) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

262 Enterprise COBOL for z/OS V4.1 Programming Guide

ALLOC F(SYSUT5) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

ALLOC F(SYSUT6) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

ALLOC F(SYSUT7) NEW SPACE(5,5) TRACKS UNIT(SYSDA)

CALL ’IGY.V4R1M0.SIGYCOMP(IGYCRCTL)’

Starting the compiler from an assembler program

You can start the Enterprise COBOL compiler from within an assembler program

by using the ATTACH or the LINK macro by dynamic invocation. You must identify

the compiler options and the ddnames of the data sets to be used during

processing.

For example:

symbol {LINK|ATTACH} EP=IGYCRCTL,PARAM=(optionlist[,ddnamelist]),VL=1

EP Specifies the symbolic name of the compiler. The control program (from

the library directory entry) determines the entry point at which the

program should begin running.

PARAM Specifies, as a sublist, address parameters to be passed from the assembler

program to the compiler.

 The first fullword in the address parameter list contains the address of the

COBOL optionlist. The second fullword contains the address of the

ddnamelist. The third and fourth fullwords contain the addresses of null

parameters, or zero.

optionlist

Specifies the address of a variable-length list that contains the COBOL

options specified for compilation. This address must be written even if no

list is provided.

 The optionlist must begin on a halfword boundary. The 2 high-order bytes

contain a count of the number of bytes in the remainder of the list. If no

options are specified, the count must be zero. The optionlist is freeform,

with each field separated from the next by a comma. No blanks or zeros

should appear. The compiler recognizes only the first 100 characters.

ddnamelist

Specifies the address of a variable-length list that contains alternative

ddnames for the data sets used during compiler processing. If standard

ddnames are used, the ddnamelist can be omitted.

 The ddnamelist must begin on a halfword boundary. The 2 high-order bytes

contain a count of the number of bytes in the remainder of the list. Each

name of less than 8 bytes must be left justified and padded with blanks. If

an alternate ddname is omitted from the list, the standard name is

assumed. If the name is omitted, the 8-byte entry must contain binary

zeros. You can omit names from the end by shortening the list.

All SYSUTn data sets specified must be on direct-access storage devices

and have physical sequential organization. They must not reside in the

HFS.

The following table shows the sequence of the 8-byte entries in the

ddnamelist.

 Alternative ddname 8-byte entry Name for which alternative ddname is substituted

1 SYSLIN

Chapter 14. Compiling under z/OS 263

Alternative ddname 8-byte entry Name for which alternative ddname is substituted

2 Not applicable

3 Not applicable

4 SYSLIB

5 SYSIN

6 SYSPRINT

7 SYSPUNCH

8 SYSUT1

9 SYSUT2

10 SYSUT3

11 SYSUT4

12 SYSTERM

13 SYSUT5

14 SYSUT6

15 SYSUT7

16 SYSADATA

17 SYSJAVA

18 SYSDEBUG

19 SYSMDECK

20 SYSOPTF

21 DBRMLIB

VL Specifies that the sign bit is to be set to 1 in the last fullword of the

address parameter list.

When the compiler completes processing, it puts a return code in register 15.

RELATED TASKS

“Defining compiler input and output”

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 265

“Compiler options and compiler output under z/OS” on page 273

Defining compiler input and output

You need to define several kinds of data sets that the compiler uses to do its work.

The compiler takes input data sets and libraries and produces various types of

output, including object code, listings, and messages. The compiler also uses utility

data sets during compilation.

RELATED TASKS

“Defining the source code data set (SYSIN)” on page 267

“Defining a compiler-option data set (SYSOPTF)” on page 267

“Specifying source libraries (SYSLIB)” on page 268

“Defining the output data set (SYSPRINT)” on page 269

“Directing compiler messages to your terminal (SYSTERM)” on page 269

“Creating object code (SYSLIN or SYSPUNCH)” on page 269

264 Enterprise COBOL for z/OS V4.1 Programming Guide

||

||

“Defining an associated-data file (SYSADATA)” on page 270

“Defining the Java-source output file (SYSJAVA)” on page 270

“Defining the debug data set (SYSDEBUG)” on page 270

“Defining the library-processing output file (SYSMDECK)” on page 271

RELATED REFERENCES

“Data sets used by the compiler under z/OS”

“Compiler options and compiler output under z/OS” on page 273

Data sets used by the compiler under z/OS

The following table lists the function, device requirements, and allowable device

classes for each data set that the compiler uses.

 Table 36. Compiler data sets

Type ddname Function Required?

Device

requirements

Allowable

device

classes

Can

reside

in HFS?

Input SYSIN1 Reading source

program

Yes Card reader;

intermediate

storage

Any Yes

SYSOPTF Reading compiler

options

If OPTFILE is in effect Card reader;

intermediate

storage; direct

access

Any Yes

SYSLIB or

other copy

libraries1

Reading user source

libraries (PDSs or

PDSEs)

If program has COPY or BASIS

statements (LIB is required)

Direct access SYSDA No

Utility SYSUT1,

SYSUT2,

SYSUT3,

SYSUT4,

SYSUT62

Work data set used

by compiler during

compilation

Yes Direct access SYSDA No

SYSUT52 Work data set used

by compiler during

compilation

If program has COPY,

REPLACE, or BASIS statements

(LIB is required)

Direct access SYSDA No

SYSUT72 Work data set used

by compiler to create

listing

Yes Direct access SYSDA No

Chapter 14. Compiling under z/OS 265

||
|
||
|
|
|

||

|
|

Table 36. Compiler data sets (continued)

Type ddname Function Required?

Device

requirements

Allowable

device

classes

Can

reside

in HFS?

Output SYSPRINT1 Writing storage map,

listings, and

messages

Yes Printer;

intermediate

storage

SYSSQ, SYSDA,

standard

output class

A

Yes

SYSTERM Writing progress and

diagnostic messages

If TERM is in effect Output

device; TSO

terminal

 Yes

SYSPUNCH Creating object code If DECK is in effect Card punch;

direct access

SYSSQ, SYSDA Yes

SYSLIN Creating object

module data set as

output from compiler

and input to linkage

editor or binder

If OBJECT is in effect Direct access SYSSQ, SYSDA Yes

SYSADATA Writing associated

data file records

If ADATA is in effect Output

device

 Yes

SYSJAVA Creating generated

Java source file for a

class definition

If compiling a class

definition

(Must be an

HFS file)

 Yes

SYSUDUMP,

SYSABEND, or

SYSMDUMP

Writing dump If DUMP is in effect (should be

rarely used)

Direct access SYSDA Yes

SYSDEBUG Writing symbolic

debug information

tables to a data set

separate from the

object module

If TEST(. . .,SEP,. . .) is

in effect

Direct access SYSDA Yes

SYSMDECK Writing expansion of

COPY, BASIS, REPLACE,

and EXEC SQL

INCLUDE statements

If MDECK is in effect Direct access SYSDA Yes

1. You can use the EXIT option to provide user exits from these data sets.

2. These data sets must be single volume.

RELATED REFERENCES

“Logical record length and block size”

“EXIT” on page 319

Logical record length and block size

For compiler data sets other than the work data sets (SYSUTn) and HFS files, you

can set the block size by using the BLKSIZE subparameter of the DCB parameter. The

value must be permissible for the device on which the data set resides. The values

you set depend on whether the data sets are fixed length or variable length.

For fixed-length records (RECFM=F or RECFM=FB), LRECL is the logical record length;

and BLKSIZE equals LRECL multiplied by n where n is equal to the blocking factor.

266 Enterprise COBOL for z/OS V4.1 Programming Guide

|

The following table shows the defined values for the fixed-length data sets. In

general, you should not change these values, but you can change the value for the

following data sets:

v SYSDEBUG: You can specify any LRECL in the listed range, with 1024

recommended.

v SYSPRINT, SYSDEBUG: You can specify BLKSIZE=0, which results in a

system-determined block size.

 Table 37. Block size of fixed-length compiler data sets

Data set RECFM LRECL (bytes) BLKSIZE1

SYSDEBUG2 F or FB 80 to 10243 LRECL x n

SYSIN F or FB 80 80 x n

SYSLIB or other copy libraries F or FB 80 80 x n

SYSLIN F or FB 80 80 x n

SYSMDECK F or FB 80 80 x n

SYSOPTF F or FB 80 80 x n

SYSPRINT2 F or FB 133 133 x n

SYSPUNCH F or FB 80 80 x n

SYSTERM F or FB 80 80 x n

1. n = blocking factor

2. If you specify BLKSIZE=0, the system will determine the block size.

3. The default LRECL for SYSDEBUG is 1024.

For variable-length records (RECFM=V), LRECL is the logical record length, and

BLKSIZE equals LRECL plus 4.

 Table 38. Block size of variable-length compiler data sets

Data set RECFM

LRECL

(bytes)

BLKSIZE (bytes) minimum

acceptable value

SYSADATA VB 1020 1024

Defining the source code data set (SYSIN)

Define the data set that contains your source code by using the SYSIN DD statement

as shown below.

//SYSIN DD DSNAME=dsname,UNIT=SYSSQ,VOLUME=(subparms),DISP=SHR

You can place your source code or BASIS statement directly in the input stream. To

do so, use this SYSIN DD statement:

//SYSIN DD *

The source code or BASIS statement must follow theDD * statement. If another job

step follows the compilation, the EXEC statement for that step must follow the /*

statement or the last source statement.

Defining a compiler-option data set (SYSOPTF)

Define a data set that contains the compiler options for your COBOL program by

coding the SYSOPTF DD statement as shown below.

Chapter 14. Compiling under z/OS 267

||||

|

|
|

//SYSOPTF DD DSNAME=dsname,UNIT=SYSDA,VOLUME=(subparms),DISP=SHR

To use a compiler-option data set, specify OPTFILE either as a compiler invocation

option or in a PROCESS or CBL statement in your source program.

Within the SYSOPTF data set:

v Specify compiler options in free form between columns 2 and 72, using the same

syntax as you use for invocation options or for compiler options in a PROCESS or

CBL statement.

v Code an asterisk (*) in column 1 to cause a line to be treated as a comment.

v Optionally code sequence numbers in columns 73 through 80; those columns are

ignored.

You can optionally place the compiler options directly in the input stream after the

SYSOPTF DD statement if you compile using the OPTFILE option:

//COB EXEC PGM=IGYCRCTL,PARM=’OPTFILE’

//SYSOPTF DD DATA,DLM=@@

 SSRANGE ARITH(COMPAT)

 OPTIMIZE

 . . .

@@

//SYSIN DD . . .

You can concatenate multiple SYSOPTF DD statements if you have multiple

compiler-option data sets:

//SYSOPTF DD DSNAME=dsname1, . . .

// DD DSNAME=dsname2, . . .

Compiler options that are in later data sets in the concatenation take precedence

over options in earlier data sets in the concatenation.

RELATED REFERENCES

“Logical record length and block size” on page 266

“OPTFILE” on page 334

Specifying source libraries (SYSLIB)

Use SYSLIB DD statements if your program contains COPY or BASIS statements.

These DD statements define the libraries (partitioned data sets) that contain the data

requested by COPY statements in the source code or by BASIS statements in the

input stream.

//SYSLIB DD DSNAME=copylibname,DISP=SHR

Concatenate multiple DD statements if you have multiple copy or basis libraries:

//SYSLIB DD DSNAME=PROJECT.USERLIB,DISP=SHR

// DD DSNAME=SYSTEM.COPYX,DISP=SHR

Libraries are on direct-access storage devices. They cannot be in the HFS when you

compile with JCL or under TSO.

You do not need the SYSLIB DD statement if the NOLIB option is in effect.

268 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|

|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|

Defining the output data set (SYSPRINT)

You can use ddname SYSPRINT to produce a listing. The listing includes the results

of the default or requested options of the PARM parameter (that is, diagnostic

messages and the object-code listing).

You can direct the output to a SYSOUT data set, a printer, a direct-access storage

device, or a magnetic-tape device. For example:

//SYSPRINT DD SYSOUT=A

The SYSPRINT data set can be a sequential data set, a PDS or PDSE member, or an

HFS file. For details about how to specify the record format, record length, and

block size of the SYSPRINT data set, see the related reference below.

RELATED REFERENCES

“Logical record length and block size” on page 266

Directing compiler messages to your terminal (SYSTERM)

If you are compiling under TSO, you can define the SYSTERM data set to send

compiler messages to your terminal.

ALLOC F(SYSTERM) DA(*)

You can define SYSTERM in various other ways, for example to a SYSOUT data set,

a data set on disk, a file in the HFS, or to another print class.

Creating object code (SYSLIN or SYSPUNCH)

When using the OBJECT compiler option, you can store the object code on disk as a

traditional MVS data set or an HFS file, or on tape. The compiler uses the file that

you define in the SYSLIN or SYSPUNCH DD statement.

//SYSLIN DD DSNAME=dsname,UNIT=SYSDA,

// SPACE=(subparms),DISP=(MOD,PASS)

Use the DISP parameter of the SYSLIN DD statement to indicate whether the object

code data set is to be:

v Passed to the linkage editor or binder

v Cataloged

v Kept

v Added to an existing cataloged library

In the example above, the data is created and passed to another job step, the

linkage editor or binder job step.

Your installation might use the DECK option and the SYSPUNCH DD statement. B is the

standard output class for punch data sets:

//SYSPUNCH DD SYSOUT=B

You do not need the SYSLIN DD statement if the NOOBJECT option is in effect. You do

not need the SYSPUNCH DD statement if the NODECK option is in effect.

Chapter 14. Compiling under z/OS 269

RELATED REFERENCES

“OBJECT” on page 333

“DECK” on page 316

Defining an associated-data file (SYSADATA)

Define a SYSADATA file if you use the ADATA compiler option.

//SYSADATA DD DSNAME=dsname,UNIT=SYSDA

The SYSADATA file will be a sequential file that contains specific record types that

have information about the program that is collected during compilation. The file

can be a traditional MVS data set or an HFS file.

RELATED REFERENCES

“ADATA” on page 305

Defining the Java-source output file (SYSJAVA)

Add the SYSJAVA DD statement if you are compiling an OO program. The generated

Java source file is written to the SYSJAVA ddname.

//SYSJAVA DD PATH=’/u/userid/java/Classname.java’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU,

// FILEDATA=TEXT

The SYSJAVA file must be in the HFS.

RELATED TASKS

“Compiling OO applications in JCL or TSO/E” on page 296

Defining the debug data set (SYSDEBUG)

When you compile from JCL or from TSO and specify the TEST(. . .,SEP,. . .)

compiler option, the symbolic debug information tables are written to the data set

that you specify in the SYSDEBUG DD statement.

//SYSDEBUG DD DSNAME=dsname,UNIT=SYSDA

The SYSDEBUG data set can be a sequential data set, a PDS or PDSE member, or an

HFS file. For details about how to specify the record format, record length, and

block size of the SYSDEBUG data set, see the related reference below about logical

record length and block size.

Language Environment uses SYSDEBUG for its dump services, and you can change

the name of that data set at run time by using the SYSDEBUG COBOL debug file

user exit, IGZIUXB. You can direct Debug Tool to a renamed data set using the SET

DEFAULT LISTINGS command, user exit EQAUEDAT, or the EQADEBUG DD statement.

The data-set name that you specify in ddname SYSDEBUG might be used by several

IBM products, including Language Environment, Debug Tool, Fault Analyzer, and

Application Performance Analyzer. For details, see the documentation of those

individual products.

270 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|
|

|
|
|
|

RELATED TASKS

Language Environment Customization (Modifying the COBOL debug file name)

Debug Tool User’s Guide (How does Debug Tool locate COBOL and PL/I

 separate debug files)

RELATED REFERENCES

“Logical record length and block size” on page 266

“TEST” on page 347

Defining the library-processing output file (SYSMDECK)

Define a SYSMDECK file if you use the MDECK compiler option.

//SYSMDECK DD DSNAME=dsname,UNIT=SYSDA

The SYSMDECK file will contain the output from library processing, that is, the

expansion of COPY, BASIS, REPLACE, and EXEC SQL INCLUDE statements. The file can

be a traditional MVS data set or an HFS file.

RELATED REFERENCES

“MDECK” on page 328

Specifying compiler options under z/OS

The compiler is installed with default compiler options. While installing the

compiler, the system programmer can fix compiler option settings to, for example,

ensure better performance or maintain certain standards. You cannot override any

compiler options that are fixed.

For options that are not fixed, you can override the default settings by specifying

compiler options in any of these ways:

v Code them on the PROCESS or CBL statement in COBOL source.

v Include them when you start the compiler, either on the PARM parameter on the

EXEC statement in the JCL or on the command line under TSO.

v Include them in a SYSOPTF data set, and specify the OPTFILE compiler option in

either of the above ways.

The compiler recognizes the options in the following order of precedence from

highest to lowest:

1. Installation defaults that are fixed by your site

2. Values of the BUFSIZE, LIB, OUTDD, SIZE, and SQL compiler options in effect for

the first program in a batch

3. Options specified on PROCESS (or CBL) statements, preceding the IDENTIFICATION

DIVISION

4. Options specified on the compiler invocation (JCL PARM parameter or the TSO

CALL command)

5. Installation defaults that are not fixed

This order of precedence also determines which options are in effect when

conflicting or mutually exclusive options are specified.

The precedence of options in a SYSOPTF data set depends on where you specify the

OPTFILE compiler option. For example, if you specify OPTFILE in a PROCESS

Chapter 14. Compiling under z/OS 271

|
|

|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea5180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/eqa8ug00

statement, the SYSOPTF options supersede the options that you specify in the

compiler invocation. For further details, see the related reference below about the

OPTFILE option.

Most of the options come in pairs; you select one or the other. For example, the

option pair for a cross-reference listing is XREF|NOXREF. If you want a

cross-reference listing, specify XREF; if you do not, specify NOXREF.

Some options have subparameters. For example, if you want 44 lines per page on

your listings, specify LINECOUNT(44).

“Example: specifying compiler options using JCL” on page 273

“Example: specifying compiler options under TSO” on page 273

RELATED TASKS

“Defining a compiler-option data set (SYSOPTF)” on page 267

“Specifying compiler options with the PROCESS (CBL) statement”

“Specifying compiler options in a batch compilation” on page 276

RELATED REFERENCES

“Compiler options and compiler output under z/OS” on page 273

Chapter 17, “Compiler options,” on page 301

“Conflicting compiler options” on page 304

“OPTFILE” on page 334

Specifying compiler options with the PROCESS (CBL)

statement

You can code compiler options in the PROCESS statement in COBOL programs.

Code it before the IDENTIFICATION DIVISION header and before any comment lines

or compiler-directing statements.

CBL/PROCESS statement syntax

�� CBL

PROCESS

options-list
 ��

You can start the PROCESS statement in column 1 through 66 if you do not code a

sequence field. A sequence field is allowed in columns 1 through 6; if used, the

sequence field must contain six characters, and the first character must be numeric.

When used with a sequence field, PROCESS can start in column 8 through 66.

You can use CBL as a synonym for PROCESS. CBL can start in column 1 through 70.

When used with a sequence field, CBL can start in column 8 through 70.

Use one or more blanks to separate PROCESS from the first option in options-list.

Separate options with a comma or a blank. Do not insert spaces between

individual options and their suboptions.

272 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

You can use more than one PROCESS statement. If you do so, the PROCESS statements

must follow each another with no intervening statements. You cannot continue

options across multiple PROCESS statements.

Your programming organization can inhibit the use of PROCESS statements by using

the default options module of the COBOL compiler. When PROCESS statements are

found in a COBOL program but are not allowed by the organization, the COBOL

compiler generates error diagnostics.

RELATED REFERENCES

CBL (PROCESS) statement (Enterprise COBOL Language Reference)

Example: specifying compiler options using JCL

The following example shows how to specify compiler options under z/OS using

JCL.

. . .

//STEP1 EXEC PGM=IGYCRCTL,

// PARM=’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E)’

Example: specifying compiler options under TSO

The following example shows how to specify compiler options under TSO.

. . .

[READY]

CALL ’SYS1.LINKLIB(IGYCRCTL)’ ’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E)’

Compiler options and compiler output under z/OS

When the compiler finishes processing your source program, it will have produced

one or more outputs, depending on the compiler options that were in effect.

 Table 39. Types of compiler output under z/OS

Compiler option Compiler output Type of output

ADATA Information about the program being compiled Associated-data file

DLL Object module that is enabled for DLL support Object

DUMP System dump, if compilation ended with abnormal

termination (requires SYSUDUMP, SYSABEND, or SYSMDUMP

DD statement); should be used rarely

Listing

EXPORTALL Exported symbols for a DLL Object

FLAG List of errors that the compiler found in your program Listing

LIST Listing of object code in machine and assembler

language

Listing

MAP Map of the data items in your program Listing

MDECK Expansion of library-processing statements in your

program

Library-processing side file

NUMBER User-supplied line numbers shown in listing Listing

OBJECT or DECK with COMPILE Your object code Object

OFFSET Map of the relative addresses in your object code Listing

OPTIMIZE Optimized object code if OBJECT in effect Object

RENT Reentrant object code if OBJECT in effect Object

Chapter 14. Compiling under z/OS 273

Table 39. Types of compiler output under z/OS (continued)

Compiler option Compiler output Type of output

SOURCE Listing of your source program Listing

SQL SQL statements and host variable information for DB2

bind process

Database request module

(DBRM)

SSRANGE Extra code for checking references within tables In object

TERMINAL Progress and diagnostic messages sent to terminal Terminal

TEST(HOOK) Compiled-in hooks for Debug Tool Extra code in object

TEST(NOSEP) Information tables for Debug Tool and for formatted

dumps

Object

TEST(SEP) Information tables for Debug Tool and for formatted

dumps

Separate debug file

VBREF Cross-reference listing of verbs in your source program Listing

XREF Sorted cross-reference listing of names of procedures,

programs, and data

Listing

Listing output from compilation will be in the data set defined by SYSPRINT; object

output will be in SYSLIN or SYSPUNCH. Progress and diagnostic messages can be

directed to the SYSTERM data set as well as included in the SYSPRINT data set. The

database request module (DBRM) is the data set defined in DBRMLIB. The separate

debug file is the data set defined in SYSDEBUG.

Save the listings you produced during compilation. You can use them during the

testing of your work if you need to debug or tune.

After compilation, you next fix any errors that the compiler found in your

program. If no errors were detected, you can go to the next step in the process:

link-editing, or binding, your program. (If you used compiler options to suppress

object code generation, you must recompile to obtain object code.)

RELATED TASKS

Language Environment Programming Guide (Preparing to link-edit

 and run under Language Environment)

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 279

Chapter 17, “Compiler options,” on page 301

Compiling multiple programs (batch compilation)

You can compile a sequence of separate COBOL programs by using a single

invocation of the compiler. You can link the object program produced from this

compilation into one load module or separate load modules, controlled by the NAME

compiler option.

When you compile several programs as part of a batch job, you need to:

v Determine whether you want to create one or more load modules.

v Terminate each program in the sequence.

v Specify compiler options, with an awareness of the effect of compiler options

specified in programs within the batch job.

274 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

To create separate load modules, precede each set of modules with the NAME

compiler option. When the compiler encounters the NAME option, the first program

in the sequence and all subsequent programs until the next NAME compiler option is

encountered are link-edited into a single load module. Then each successive

program that is compiled with the NAME option is included in a separate load

module.

Use the END PROGRAM marker to terminate each program in the sequence except the

last program in the batch (for which the END PROGRAM marker is optional).

Alternatively, you can precede each program in the sequence with a CBL or PROCESS

statement.

If you omit the END PROGRAM marker from a program (other than the last program

in a sequence of separate programs), the next program in the sequence will be

nested in the preceding program. An error can occur in either of the following

situations:

v A PROCESS statement is in a program that is now nested.

v A CBL statement is not coded entirely in the sequence number area (columns 1

through 6).

If a CBL statement is coded entirely in the sequence number area (columns 1

through 6), no error message is issued for the CBL statement because it is

considered a label for the source statement line.

“Example: batch compilation”

RELATED TASKS

“Specifying compiler options in a batch compilation” on page 276

RELATED REFERENCES

“NAME” on page 329

Example: batch compilation

The following example shows a batch compilation for three programs (PROG1,

PROG2, and PROG3) and the creation of two load modules using one invocation of

the IGYWCL cataloged procedure.

The following steps occur:

v PROG1 and PROG2 are link-edited together to form one load module that has the

name PROG2. The entry point of this load module defaults to the first program in

the load module, PROG1.

v PROG3 is link-edited by itself into a load module that has the name PROG3.

Because it is the only program in the load module, the entry point is also PROG3.
//jobname JOB acctno,name,MSGLEVEL=1

//stepname EXEC IGYWCL

//COBOL.SYSIN DD *

010100 IDENTIFICATION DIVISION.

010200 PROGRAM-ID PROG1.

 . . .

019000 END PROGRAM PROG1.

020100 IDENTIFICATION DIVISION.

020200 PROGRAM-ID PROG2.

 . . .

029000 END PROGRAM PROG2.

 CBL NAME

030100 IDENTIFICATION DIVISION.

Chapter 14. Compiling under z/OS 275

030200 PROGRAM-ID PROG3.

 . . .

039000 END PROGRAM PROG3.

/*

//LKED.SYSLMOD DD DSN=&&GOSET (1)

/*

//P2 EXEC PGM=PROG2

//STEPLIB DD DSN=&&GOSET,DISP=(SHR,PASS) (2)

. . . (3)

/*

//P3 EXEC PGM=PROG3

//STEPLIB DD DSN=&&GOSET,DISP=(SHR,PASS) (2)

. . . (4)

/*

//

(1) The data-set name for the LKED step SYSLMOD is changed to the temporary

name &&GOSET, without any member name.

(2) The temporary data set &&GOSET is used as the STEPLIB for steps P2 and P3

to run the compiled programs. If the Language Environment library does

not reside in shared storage, you must also add the library data set as a DD

statement for STEPLIB.

(3) Other DD statements and input that are required to run PROG1 and PROG2

must be added.

(4) Other DD statements and input that are required to run PROG3 must be

added.

RELATED REFERENCES

Language Environment Programming Guide (IBM-supplied cataloged procedures)

Specifying compiler options in a batch compilation

You can specify compiler options for each program in the batch sequence either

with a CBL or PROCESS statement that precedes the program, or upon invocation of

the compiler.

If a CBL or PROCESS statement is specified in the current program, the compiler

resolves the CBL or PROCESS statements together with the options in effect before

the first program. If the current program does not contain CBL or PROCESS

statements, the compiler uses the settings of options in effect for the previous

program.

You should be aware of the effect of certain compiler options on the precedence of

compiler option settings for each program in the batch sequence. Compiler options

are recognized in the following order of precedence, from highest to lowest:

1. Installation defaults that are fixed at your site

2. Values of the BUFSIZE, LIB, OUTDD, SIZE, and SQL compiler options in effect for

the first program in the batch

3. Options on CBL or PROCESS statements, if any, for the current program

4. Options specified in the compiler invocation (JCL PARM or TSO CALL)

5. Installation defaults that are not fixed

If any program in the batch sequence requires the BUF, LIB, OUTDD, SIZE, or SQL

option, that option must be in effect for the first program in the batch sequence.

(When processing BASIS, COPY, or REPLACE statements, the compiler handles all

programs in the batch as a single input file.)

276 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

If you specify the LIB option for the batch, you cannot change the NUMBER and

SEQUENCE options during the batch compilation. The compiler treats all programs in

the batch as a single input file during NUMBER and SEQUENCE processing under the

LIB option; therefore, the sequence numbers of the entire input file must be in

ascending order.

If the compiler diagnoses the LANGUAGE option on the CBL or PROCESS statement as

an error, the language selection reverts to what was in effect before the compiler

encountered the first CBL or PROCESS statement. The language in effect during a

batch compilation conforms to the rules of processing CBL or PROCESS statements in

that environment.

“Example: precedence of options in a batch compilation”

“Example: LANGUAGE option in a batch compilation” on page 278

Example: precedence of options in a batch compilation

The following example listing shows the precedence of compiler options for batch

compilation.

PP 5655-S71 IBM Enterprise COBOL for z/OS 4.1.0 Date 12/30/2007. . .

Invocation parameters:

NOTERM

PROCESS(CBL) statements:

CBL CURRENCY,FLAG(I,I)

Options in effect: All options are installation defaults unless otherwise noted:

 NOADATA

 ADV

 QUOTE

 ARITH(COMPAT)

 NOAWO

 BUFSIZE(4096)

 . . .

 CURRENCY Process option PROGRAM 1

 . . .

 FLAG(I,I) Process option PROGRAM 1

 . . .

 NOTERM INVOCATION option

 . . .

End of compilation for program 1

. . .

PP 5655-S71 IBM Enterprise COBOL for z/OS 4.1.0 Date 12/30/2007. . .

PROCESS(CBL) statements:

CBL APOST

Options in effect:

 NOADATA

 ADV

 APOST Process option PROGRAM 2

 ARITH(COMPAT)

 NOAWO

 BUFSIZE(4096)

 . . .

 NOCURRENCY Installation default option for PROGRAM 2

 . . .

 FLAG(I) Installation default option

 . . .

 NOTERM INVOCATION option remains in effect

 . . .

End of compilation for program 2

Chapter 14. Compiling under z/OS 277

|

|

Example: LANGUAGE option in a batch compilation

The following example shows the behavior of the LANGUAGE compiler option in a

batch environment. The default installation option is ENGLISH (abbreviated EN), and

the invocation option is XX, a nonexistent language.

CBL LANG(JP),FLAG(I,I),APOST,SIZE(MAX) (1)

 IDENTIFICATION DIVISION. (2)

 PROGRAM-ID. COMPILE1.

 . . .

 END PROGRAM COMPILE1.

CBL LANGUAGE(YY) (3)

CBL SIZE(2048K),LANGUAGE(JP),LANG(!!) (4)

 IDENTIFICATION DIVISION. (2)

 PROGRAM-ID. COMPILE2.

 . . .

 END PROGRAM COMPILE2.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COMPILE3.

 . . .

 END PROGRAM COMPILE3.

CBL LANGUAGE(JP),LANGUAGE(YY) (5)

 . . .

(1) The installation default is EN. The invocation option was XX, a nonexistent

language. EN is the language in effect.

(2) After the CBL statement is scanned, JP is the language in effect.

(3) CBL resets the language to EN. YY is ignored because it is superseded by JP.

(4) !! is not alphanumeric and is discarded.

(5) CBL resets the language to EN. YY supersedes JP but is nonexistent.

For the program COMPILE1, the default language English (EN) is in effect when the

compiler scans the invocation options. A diagnostic message is issued in

mixed-case English because XX is a nonexistent language identifier. The default EN

remains in effect when the compiler scans the CBL statement. The unrecognized

option APOST in the CBL statement is diagnosed in mixed-case English because the

CBL statement has not completed processing and EN was the last valid language

option. After the compiler processes the CBL options, the language in effect

becomes Japanese (JP).

In the program COMPILE2, the compiler diagnoses CBL statement errors in

mixed-case English because English is the language in effect before the first

program is used. If more than one LANGUAGE option is specified, only the last valid

language specified is used. In this example, the last valid language is Japanese (JP).

Therefore Japanese becomes the language in effect when the compiler finishes

processing the CBL options. If you want diagnostics in Japanese for the options in

the CBL and PROCESS statements, the language in effect before COMPILE1 must be

Japanese.

The program COMPILE3 has no CBL statement. It inherits the language in effect,

Japanese (JP), from the previous compilation.

After compiling COMPILE3, the compiler resets the language in effect to English (EN)

because of the CBL statement. The language option in the CBL statement resolves

the last-specified two-character alphanumeric language identifier, YY. Because YY is

nonexistent, the language in effect remains English.

278 Enterprise COBOL for z/OS V4.1 Programming Guide

Correcting errors in your source program

Messages about source-code errors indicate where the error occurred (LINEID). The

text of a message tells you what the problem is. With this information, you can

correct the source program.

Although you should try to correct errors, it is not necessary to fix all of them. You

can leave a warning-level or informational-level message in a program without

much risk, and you might decide that the recoding and compilation that are

needed to remove the error are not worth the effort. Severe-level and error-level

errors, however, indicate probable program failure and should be corrected.

In contrast with the four lower levels of errors, an unrecoverable (U-level) error

might not result from a mistake in your source program. It could come from a flaw

in the compiler itself or in the operating system. In any case, the problem must be

resolved, because the compiler is forced to end early and does not produce

complete object code or listing. If the message occurs for a program that has many

S-level syntax errors, correct those errors and compile the program again. You can

also resolve job set-up problems (problems such as missing data-set definitions or

insufficient storage for compiler processing) by making changes to the compile job.

If your compile job setup is correct and you have corrected the S-level syntax

errors, you need to contact IBM to investigate other U-level errors.

After correcting the errors in your source program, recompile the program. If this

second compilation is successful, proceed to the link-editing step. If the compiler

still finds problems, repeat the above procedure until only informational messages

are returned.

RELATED TASKS

“Generating a list of compiler error messages”

RELATED REFERENCES

“Messages and listings for compiler-detected errors”

Generating a list of compiler error messages

You can generate a complete listing of compiler diagnostic messages with their

explanations by compiling a program that has the program-name ERRMSG.

You can code just the PROGRAM-ID paragraph, as shown below. Omit the rest of the

program.

Identification Division.

Program-ID. ErrMsg.

RELATED REFERENCES

“Messages and listings for compiler-detected errors”

“Format of compiler error messages” on page 280

Messages and listings for compiler-detected errors

As the compiler processes your source program, it checks for COBOL language

errors. For each error found, the compiler issues a message. These messages are

collated in the compiler listing (subject to the FLAG option).

Each message in the listing provides the following information:

Chapter 14. Compiling under z/OS 279

v Nature of the error

v Compiler phase that detected the error

v Severity level of the error

Wherever possible, the message provides specific instructions for correcting the

error.

The messages for errors found during processing of compiler options, CBL and

PROCESS statements, and BASIS, COPY, or REPLACE statements are displayed near the

top of the listing.

The messages for compilation errors found in your program (ordered by line

number) are displayed near the end of the listing for each program.

A summary of all errors found during compilation is displayed near the bottom of

the listing.

RELATED TASKS

“Correcting errors in your source program” on page 279

“Generating a list of compiler error messages” on page 279

RELATED REFERENCES

“Format of compiler error messages”

“Severity codes for compiler error messages” on page 281

“FLAG” on page 321

Format of compiler error messages

Each message issued by the compiler has a source line number, a message

identifier, and message text.

Each message has the following form:

nnnnnn IGYppxxxx-l message-text

nnnnnn

The number of the source statement of the last line that the compiler was

processing. Source statement numbers are listed on the source printout of

your program. If you specified the NUMBER option at compile time, these are

your original source program numbers. If you specified NONUMBER, the

numbers are those generated by the compiler.

IGY The prefix that identifies this message as coming from the COBOL

compiler.

pp Two characters that identify which phase or subphase of the compiler

discovered the error. As an application programmer, you can ignore this

information. If you are diagnosing a suspected compiler error, contact IBM

for support.

xxxx A four-digit number that identifies the error message.

l A character that indicates the severity level of the error: I, W, E, S, or U.

message-text

The message text, which in the case of an error message is a short

explanation of the condition that caused the error.

280 Enterprise COBOL for z/OS V4.1 Programming Guide

Tip: If you used the FLAG option to suppress messages, there might be additional

errors in your program.

RELATED REFERENCES

“Severity codes for compiler error messages”

“FLAG” on page 321

Severity codes for compiler error messages

Errors that the compiler can detect fall into five categories of severity.

 Table 40. Severity codes for compiler error messages

Level of message Return code Purpose

Informational (I) 0 To inform you. No action is required and the program

runs correctly.

Warning (W) 4 To indicate a possible error. The program probably runs

correctly as written.

Error (E) 8 To indicate a condition that is definitely an error. The

compiler attempted to correct the error, but the results of

program execution might not be what you expect. You

should correct the error.

Severe (S) 12 To indicate a condition that is a serious error. The

compiler was unable to correct the error. The program

does not run correctly, and execution should not be

attempted. Object code might not be created.

Unrecoverable

(U)

16 To indicate an error condition of such magnitude that the

compilation was terminated.

Chapter 14. Compiling under z/OS 281

282 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 15. Compiling under UNIX

Compile Enterprise COBOL programs under z/OS UNIX by using the cob2

command. Under z/OS UNIX, you can compile any COBOL program that you can

compile under z/OS. The object code generated by the COBOL compiler can run

under z/OS.

As part of the compilation step, you define the files needed for the compilation,

and specify any compiler options or compiler-directing statements that are

necessary for your program and for the output that you want.

The main job of the compiler is to translate COBOL programs into language that

the computer can process (object code). The compiler also lists errors in source

statements and provides supplementary information to help you debug and tune

programs.

RELATED TASKS

“Setting environment variables under UNIX”

“Specifying compiler options under UNIX” on page 284

“Compiling and linking with the cob2 command” on page 285

“Compiling using scripts” on page 290

“Compiling, linking, and running OO applications under UNIX” on page 291

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 265

“Compiler options and compiler output under z/OS” on page 273

Setting environment variables under UNIX

An environment variable is a name that is associated with a string of characters and

that defines some variable aspect of the program environment. You use

environment variables to set values that programs, including the compiler, need.

Set the environment variables for the compiler by using the export command. For

example, to set the SYSLIB variable, issue the export command from the shell or

from a script file:

export SYSLIB=/u/mystuff/copybooks

The value that you assign to an environment variable can include other

environment variables or the variable itself. The values of these variables apply

only when you compile from the shell where you issue the export command. If

you do not set an environment variable, either a default value is applied or the

variable is not defined. The environment-variable names must be uppercase.

The environment variables that you can set for use by the compiler are as follows:

COBOPT

Specify compiler options separated by blanks or commas. Separate

suboptions with commas. Blanks at the beginning or the end of the

variable value are ignored. Delimit the list of options with quotation marks

if it contains blanks or characters that are significant to the z/OS UNIX

shell. For example:

export COBOPT="TRUNC(OPT) XREF"

© Copyright IBM Corp. 1991, 2007 283

SYSLIB

Specify paths to directories to be used in searching for COBOL copybooks

if you do not specify an explicit library-name in the COPY statement.

Separate multiple paths with a colon. Paths are evaluated in order from the

first path to the last in the export command. If you set the variable with

multiple files of the same name, the first located copy of the file is used.

 For COPY statements in which you have not coded an explicit library-name,

the compiler searches for copybooks in this order:

1. In the current directory

2. In the paths you specify with the -I cob2 option

3. In the paths you specify in the SYSLIB environment variable

library-name

Specify the directory path from which to copy when you specify an explicit

library-name in the COPY statement. The environment-variable name is

identical to the library-name in your program. You must set an environment

variable for each library; an error will occur otherwise. The

environment-variable name library-name must be uppercase.

text-name

Specify the name of the file from which to copy text. The

environment-variable name is identical to the text-name in your program.

The environment-variable name text-name must be uppercase.

RELATED TASKS

“Specifying compiler options under UNIX”

“Compiling and linking with the cob2 command” on page 285

“Setting and accessing environment variables” on page 436

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

Chapter 17, “Compiler options,” on page 301

COPY statement (Enterprise COBOL Language Reference)

Specifying compiler options under UNIX

The compiler is installed and set up with default compiler options. While installing

the compiler, a system programmer can fix compiler option settings to ensure

better performance or maintain certain standards. You cannot override any

compiler options that your site has fixed.

For options that are not fixed, you can override the default settings by specifying

compiler options in any of three ways:

v Code them on the PROCESS or CBL statement in your COBOL source.

v Specify the -q option of the cob2 command.

v Set the COBOPT environment variable.

The compiler recognizes the options in the above order of precedence, from highest

to lowest. The order of precedence also determines which options are in effect

when conflicting or mutually exclusive options are specified. When you compile

using the cob2 command, compiler options are recognized in the following order

of precedence, from highest to lowest:

1. Installation defaults fixed as nonoverridable

284 Enterprise COBOL for z/OS V4.1 Programming Guide

2. The values of BUFSIZE, LIB, SQL, OUTDD, and SIZE options in effect for the first

program in a batch compilation

3. The values that you specify on PROCESS or CBL statements in COBOL source

programs

4. The values that you specify in the cob2 command’s -q option string

5. The values that you specify in the COBOPT environment variable

6. Installation defaults that are not fixed

Restrictions:

v Do not use the SQL compiler option under z/OS UNIX.

Neither the separate SQL precompiler nor the integrated SQL coprocessor run

under z/OS UNIX.

v The OPTFILE option is ignored when you compile using the cob2 command

under z/OS UNIX.

You can use the COBOPT environment variable, which provides a capability that

is comparable to OPTFILE, instead.

RELATED TASKS

“Specifying compiler options with the PROCESS (CBL) statement” on page 272

“Setting environment variables under UNIX” on page 283

“Compiling and linking with the cob2 command”

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 17, “Compiler options,” on page 301

Compiling and linking with the cob2 command

Use the cob2 command to compile and link COBOL programs from the z/OS

UNIX shell. You can specify the options and input file-names in any order, using

spaces to separate options and names. Any options that you specify apply to all

files on the command line.

To compile multiple files (batch compilation), specify multiple source-file names.

When you compile COBOL programs for z/OS UNIX, the RENT option is required.

The cob2 command automatically includes the COBOL compiler options RENT and

TERM.

The cob2 command invokes the COBOL compiler that is found through the

standard MVS search order. If the COBOL compiler is not installed in the LNKLST,

or if more than one level of IBM COBOL compiler is installed on your system, you

can specify in the STEPLIB environment variable the compiler PDS that you want

to use. For example, the following statement specifies IGY.V4R1M0 as the compiler

PDS:

export STEPLIB=IGY.V4R1M0.SIGYCOMP

The cob2 command implicitly uses the z/OS UNIX shell command c89 for the link

step. c89 is the shell interface to the linker (the z/OS program management

binder).

The default location for compiler input and output is the current directory.

Chapter 15. Compiling under UNIX 285

|
|

|
|

Only files with the suffix .cbl are passed to the compiler; cob2 passes all other files

to the linker.

The listing output that you request from the compilation of a COBOL source

program file.cbl is written to file.lst. The listing output that you request from the

linker is written to stdout.

The linker causes execution to begin at the first main program.

RELATED TASKS

“Creating a DLL under UNIX”

“Preparing OO applications under UNIX” on page 292

UNIX System Services User’s Guide

RELATED REFERENCES

“cob2 syntax and options” on page 287

“cob2 input and output files” on page 289

UNIX System Services Command Reference

Creating a DLL under UNIX

To create a DLL from the z/OS UNIX shell, you must specify the cob2 option

-bdll.

cob2 -o mydll -bdll mysub.cbl

When you specify cob2 -bdll:

v The COBOL compiler uses the compiler options DLL, EXPORTALL, and RENT, which

are required for DLLs.

v The link step produces a DLL definition side file that contains IMPORT control

statements for each of the names exported by the DLL.

The name of the DLL definition side file is based on the output file-name. If the

output name has a suffix, that suffix is replaced with x to form the side-file name.

For example, if the output file-name is foo.dll, the side-file name is foo.x.

To use the DLL definition side file later when you create a module that calls that

DLL, specify the side file with any other object files (file.o) that you need to link.

For example, the following command compiles myappl.cbl, uses the DLL option to

enable myappl.o to reference DLLs, and links to produce the module myappl:

cob2 -o myappl -qdll myappl.cbl mydll.x

“Example: using cob2 to compile and link under UNIX” on page 287

RELATED TASKS

Chapter 26, “Creating a DLL or a DLL application,” on page 479

“Compiling programs to create DLLs” on page 480

RELATED REFERENCES

“cob2 syntax and options” on page 287

“cob2 input and output files” on page 289

286 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA580

Example: using cob2 to compile and link under UNIX

The following examples illustrate the use of cob2.

v To compile one file called alpha.cbl, enter:

cob2 -c alpha.cbl

The compiled file is named alpha.o.

v To compile two files called alpha.cbl and beta.cbl, enter:

cob2 -c alpha.cbl beta.cbl

The compiled files are named alpha.o and beta.o.

v To link two files, compile them without the -c option. For example, to compile

and link alpha.cbl and beta.cbl and generate gamma, enter:

cob2 alpha.cbl beta.cbl -o gamma

This command creates alpha.o and beta.o, then links alpha.o, beta.o, and the

COBOL libraries. If the link step is successful, it produces an executable program

named gamma.

v To compile alpha.cbl with the LIST and NODATA options, enter:

cob2 -qlist,noadata alpha.cbl

cob2 syntax and options

cob2 command syntax

�� cob2 filenames

options
 ��

You can use the options listed below with the cob2 command. (Do not capitalize

cob2.)

-bxxx Passes the string xxx to the linker as parameters. xxx is a list of linker

options in name=value format, separated by commas. You must spell out

both the name and the value in full (except for the special cases noted

below). The name and value are case insensitive. Do not use any spaces

between -b and xxx.

 If you do not specify a value for an option, a default value of YES is used

except for the following options, which have the indicated default values:

v LIST=NOIMPORT

v ALIASES=ALL

v COMPAT=CURRENT

v DYNAM=DLL

One special value for xxx is dll, which specifies that the executable

module is to be a DLL. This string is not passed to the linker.

-c Compiles programs but does not link them.

-comprc_ok=n

Controls cob2 behavior on the return code from the compiler. If the return

code is less than or equal to n, cob2 continues to the link step or, in the

compile-only case, exits with a zero return code. If the return code

Chapter 15. Compiling under UNIX 287

returned by the compiler is greater than n, cob2 exits with the same return

code. When the c89 command is implicitly invoked by cob2 for the link

step, the exit value from the c89 command is used as the return code from

the cob2 command.

 The default is -comprc_ok=4.

-e xxx Specifies the name of a program to be used as the entry point of the

module. If you do not specify -e, the default entry point is the first

program (file.cbl) or object file (file.o) that you specify as a file name on the

cob2 command invocation.

-g Prepares the program for debugging. Equivalent to specifying the TEST

option with no suboptions.

-Ixxx Adds a path xxx to the directories to be searched for copybooks for which

you do not specify a library-name.

 To specify multiple paths, either use multiple -I options, or use a colon to

separate multiple path names within a single -I option value.

For COPY statements in which you have not coded an explicit library-name,

the compiler searches for copybooks in this order:

1. In the current directory

2. In the paths you specify with the -I cob2 option

3. In the paths you specify in the SYSLIB environment variable

If you use the COPY statement, you must ensure that the LIB compiler

option is in effect.

-L xxx Specifies the directory paths to be used to search for archive libraries

specified by the -l operand.

-l xxx Specifies the name of an archive library for the linker. The cob2 command

searches for the name libxxx.a in the directories specified in the -L option,

then in the usual search order. (This option is lowercase ″el,″ not uppercase

″eye.″)

-o xxx Names the object module xxx. If the -o option is not used, the name of the

object module is a.out.

-qxxx Passes xxx to the compiler, where xxx is a list of compiler options

separated by blanks or commas.

 Enclose xxx in quotation marks if a parenthesis is part of the option or

suboption, or if you use blanks to separate options. Do not insert spaces

between -q and xxx.

-v Displays the generated commands that are issued by cob2 for the compile

and link steps, including the options being passed, and executes them. This

is sample output:

cob2 -v -o mini -qssrange mini.cbl

compiler: ATTCRCTL PARM=RENT,TERM,SSRANGE /u/userid/cobol/mini.cbl

PP 5655-S71 IBM Enterprise COBOL for z/OS 4.1.0 in progress ...

End of compilation 1, program mini, no statements flagged.

linker: /bin/c89 -o mini -e // mini.o

-# Displays compile and link steps, but does not execute them.

RELATED TASKS

“Compiling and linking with the cob2 command” on page 285

“Creating a DLL under UNIX” on page 286

“Setting environment variables under UNIX” on page 283

288 Enterprise COBOL for z/OS V4.1 Programming Guide

cob2 input and output files

You can specify the following files as input file-names when you use the cob2

command.

 Table 41. Input files to the cob2 command

File name Description Comments

file.cbl COBOL source file to be compiled

and linked

Will not be linked if you specify the

cob2 option -c

file.a Archive file Produced by the ar command, to be

used during the link-edit phase

file.o Object file to be link-edited Can be produced by the COBOL

compiler, the C/C++ compiler, or the

assembler

file.x DLL definition side file Used during the link-edit phase of an

application that references the dynamic

link library (DLL)

When you use the cob2 command, the following files are created in the current

directory.

 Table 42. Output files from the cob2 command

File name Description Comments

file Executable module or DLL Created by the linker if you specify the

cob2 option -o file

a.out Executable module or DLL Created by the linker if you do not

specify the cob2 option -o

file.adt Associated data (ADATA) file

corresponding to input COBOL

source program file.cbl

Created by the compiler if you specify

compiler option ADATA

file.dbg Symbolic information tables for

Debug Tool corresponding to input

COBOL source program file.cbl

Created by the compiler if you specify

compiler option TEST(. . .,SEP,. . .)

file.dek Extended COBOL source output

from library processing

Created by the compiler if you specify

compiler option MDECK

file.lst Listing file corresponding to input

COBOL source program file.cbl

Created by the compiler

file.o Object file corresponding to input

COBOL source program file.cbl

Created by the compiler

file.x DLL definition side file Created during the cob2 linking phase

when creating a DLL named file.dll

class.java Java class definition (source) Created when you compile a class

definition

RELATED TASKS

“Compiling and linking with the cob2 command” on page 285

RELATED REFERENCES

“ADATA” on page 305

Chapter 15. Compiling under UNIX 289

|

“MDECK” on page 328

“TEST” on page 347

UNIX System Services Command Reference

Compiling using scripts

If you use a shell script to automate cob2 tasks, you must code option syntax

carefully to prevent the shell from passing invalid strings to cob2.

Code option strings in scripts as follows:

v Use an equal sign and colon rather than a left and right parenthesis, respectively,

to specify compiler suboptions. For example, code -qOPT=FULL:,XREF instead of

-qOPT(FULL),XREF.

v Use an underscore rather than a single quotation mark where a compiler option

requires single quotation marks for delimiting a suboption.

v Do not use blanks in the option string.

290 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA580

Chapter 16. Compiling, linking, and running OO applications

It is recommended that you compile, link, and run object-oriented (OO)

applications in the z/OS UNIX environment. However, with certain limitations

explained in the related tasks, it is possible to compile, link, and run OO COBOL

applications by using standard batch JCL or TSO/E commands.

RELATED TASKS

“Compiling, linking, and running OO applications under UNIX”

“Compiling, linking, and running OO applications in JCL or TSO/E” on page 295

“Using IBM SDK for z/OS, Java 2 Technology Edition” on page 299

Compiling, linking, and running OO applications under UNIX

When you compile, link, and run OO applications in a z/OS UNIX environment,

application components reside in the HFS. You compile and link them by using

z/OS UNIX shell commands, and run them at a shell command prompt or with

the BPXBATCH utility from JCL or TSO/E.

RELATED TASKS

“Compiling OO applications under UNIX”

“Preparing OO applications under UNIX” on page 292

“Running OO applications under UNIX” on page 293

Compiling OO applications under UNIX

When you compile OO applications in a z/OS UNIX shell, use the cob2 command

to compile COBOL client programs and class definitions, and the javac command

to compile Java class definitions to produce bytecode (suffix .class).

To compile COBOL source code that contains OO syntax such as INVOKE statements

or class definitions, or that uses Java services, you must use these compiler

options: RENT, DLL, THREAD, and DBCS. (The RENT and DBCS options are defaults.)

A COBOL source file that contains a class definition must not contain any other

class or program definitions.

When you compile a COBOL class definition, two output files are generated:

v The object file (.o) for the class definition.

v A Java source program (.java) that contains a class definition that corresponds to

the COBOL class definition. Do not edit this generated Java class definition in

any way. If you change the COBOL class definition, you must regenerate both

the object file and the Java class definition by recompiling the updated COBOL

class definition.

If a COBOL client program or class definition includes the file JNI.cpy by using a

COPY statement, specify the include subdirectory of the COBOL install directory

(typically /usr/lpp/cobol/include) in the search order for copybooks. You can

specify the include subdirectory by using the -I option of the cob2 command or

by setting the SYSLIB environment variable.

© Copyright IBM Corp. 1991, 2007 291

RELATED TASKS

Chapter 15, “Compiling under UNIX,” on page 283

“Preparing OO applications under UNIX”

“Running OO applications under UNIX” on page 293

“Setting and accessing environment variables” on page 436

“Accessing JNI services” on page 595

RELATED REFERENCES

“cob2 syntax and options” on page 287

“DBCS” on page 315

“DLL” on page 317

“RENT” on page 340

“THREAD” on page 350

Preparing OO applications under UNIX

Use the cob2 command to link OO COBOL applications.

To prepare an OO COBOL client program for execution, link the object file with

the following two DLL side files to create an executable module:

v libjvm.x, which is provided with your IBM Java 2 Software Development Kit.

v igzcjava.x, which is provided in the lib subdirectory of the cobol directory in

the HFS. The typical complete path is /usr/lpp/cobol/lib/igzcjava.x. This DLL

side file is also available as the member IGZCJAVA in the SCEELIB PDS (part of

Language Environment).

To prepare a COBOL class definition for execution:

1. Link the object file using the two DLL side files mentioned above to create an

executable DLL module.

You must name the resulting DLL module libClassname.so, where Classname is

the external class-name. If the class is part of a package and thus there are

periods in the external class-name, you must change the periods to underscores

in the DLL module name. For example, if class Account is part of the com.acme

package, the external class-name (as defined in the REPOSITORY paragraph entry

for the class) must be com.acme.Account, and the DLL module for the class

must be libcom_acme_Account.so.

2. Compile the generated Java source with the Java compiler to create a class file

(.class).

For a COBOL source file Classname.cbl that contains the class definition for

Classname, you would use the following commands to compile and link the

components of the application:

 Table 43. Commands for compiling and linking a class definition

Command Input Output

cob2 -c -qdll,thread Classname.cbl Classname.cbl Classname.o,

Classname.java

cob2 -bdll -o libClassname.so Classname.o

/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x

/usr/lpp/cobol/lib/igzcjava.x

Classname.o libClassname.so

javac Classname.java Classname.java Classname.class

292 Enterprise COBOL for z/OS V4.1 Programming Guide

After you issue the cob2 and javac commands successfully, you have the

executable components for the program: the executable DLL module

libClassname.so and the class file Classname.class. All files from these commands are

generated in the current working directory.

“Example: compiling and linking a COBOL class definition under z/OS UNIX”

RELATED TASKS

Chapter 15, “Compiling under UNIX,” on page 283

“REPOSITORY paragraph for defining a class” on page 554

RELATED REFERENCES

“cob2 syntax and options” on page 287

Example: compiling and linking a COBOL class definition

under z/OS UNIX

This example illustrates the commands that you use and the files that are produced

when you compile and link a COBOL class definition, Manager.cbl, using z/OS

UNIX shell commands.

Identification division.
Class-id Manager inherits Employee.
Environment division.
Configuration section.
Repository.

Class Manager is "Manager"

End class Manager.

...

Manager.java

Manager.class

Manager.o

libManager.so

cob2 -c -qdll,thread Manager.cbl

javac Manager.java cob2 -bdll -o libManager.so
Manager.o
/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x
/usr/lpp/cobol/lib/igzcjava.x

Manager.cbl

The class file Manager.class and the DLL module libManager.so are the executable

components of the application, and are generated in the current working directory.

Running OO applications under UNIX

It is recommended that you run object-oriented COBOL applications as z/OS

UNIX applications. You must do so if an application begins with a Java program or

the main factory method of a COBOL class.

Chapter 16. Compiling, linking, and running OO applications 293

Specify the directory that contains the DLLs for the COBOL classes in the LIBPATH

environment variable. Specify the directory paths for the Java class files that are

associated with the COBOL classes in the CLASSPATH environment variable as

follows:

v For classes that are not part of a package, end the class path with the directory

that contains the .class files.

v For classes that are part of a package, end the class path with the directory that

contains the ″root″ package (the first package in the full package name).

v For a .jar file that contains .class files, end the class path with the name of the

.jar file.

Separate multiple path entries with colons.

RELATED TASKS

“Running OO applications that start with a main method”

“Running OO applications that start with a COBOL program” on page 295

“Running J2EE COBOL clients” on page 295

Chapter 23, “Running COBOL programs under UNIX,” on page 435

“Setting and accessing environment variables” on page 436

Chapter 30, “Writing object-oriented programs,” on page 549

“Structuring OO applications” on page 591

Running OO applications that start with a main method

If the first routine of a mixed COBOL and Java application is the main method of a

Java class or the main factory method of a COBOL class, run the application by

using the java command and by specifying the name of the class that contains the

main method.

The java command initializes the Java virtual machine (JVM). To customize the

initialization of the JVM, specify options on the java command as in the following

examples:

 Table 44. java command options for customizing the JVM

Purpose Option

To set a system property -Dname=value

To request that the JVM generate verbose messages about

garbage collection

-verbose:gc

To request that the JVM generate verbose messages about class

loading

-verbose:class

To request that the JVM generate verbose messages about

native methods and other Java Native Interface activity

-verbose:jni

To set the initial Java heap size to value bytes -Xmsvalue

To set the maximum Java heap size to value bytes -Xmxvalue

See the output from the java -h command or the related references for details

about the options that the JVM supports.

RELATED REFERENCES

Persistent Reusable Java Virtual Machine User’s Guide

WebSphere for z/OS: Applications (Java Naming and Directory Interface (JNDI))

294 Enterprise COBOL for z/OS V4.1 Programming Guide

http://www.ibm.com/servers/eserver/zseries/software/java/pdf/prjvm14.pdf
http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf

Running OO applications that start with a COBOL program

If the first routine of a mixed COBOL and Java application is a COBOL program,

run the application by specifying the program name at the command prompt. If a

JVM is not already running in the process of the COBOL program, the COBOL run

time automatically initializes a JVM.

To customize the initialization of the JVM, specify options by setting the

COBJVMINITOPTIONS environment variable. Use blanks to separate options. For

example:

export COBJVMINITOPTIONS="-Xms10000000 -Xmx20000000 -verbose:gc"

RELATED TASKS

“Using IBM SDK for z/OS, Java 2 Technology Edition” on page 299

Chapter 23, “Running COBOL programs under UNIX,” on page 435

“Setting and accessing environment variables” on page 436

RELATED REFERENCES

Persistent Reusable Java Virtual Machine User’s Guide

WebSphere for z/OS: Applications (Java Naming and Directory Interface (JNDI))

Running J2EE COBOL clients:

You can use OO syntax in a COBOL program to implement a Java 2 Platform,

Enterprise Edition (J2EE) client. You can, for example, invoke methods on

enterprise beans that run in the WebSphere® for z/OS environment.

Before you run a COBOL J2EE client, you must set the Java system property

java.naming.factory.initial to access WebSphere naming services. For example:

export COBJVMINITOPTIONS

="-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory"

“Example: J2EE client written in COBOL” on page 607

Compiling, linking, and running OO applications in JCL or TSO/E

It is recommended that you compile, link, and run applications that use OO syntax

in the z/OS UNIX environment.

However, in limited circumstances it is possible to compile, prepare, and run OO

applications by using standard batch JCL or TSO/E commands. To do so, you

must follow the guidelines that are in the related tasks. For example, you might

follow this approach for applications that consist of a COBOL main program and

subprograms that:

v Access objects that are all implemented in Java

v Access enterprise beans that run in a WebSphere server

RELATED TASKS

“Compiling OO applications in JCL or TSO/E” on page 296

“Preparing and running OO applications in JCL or TSO/E” on page 296

“Compiling, linking, and running OO applications under UNIX” on page 291

Chapter 16. Compiling, linking, and running OO applications 295

http://www.ibm.com/servers/eserver/zseries/software/java/pdf/prjvm14.pdf
http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf

Compiling OO applications in JCL or TSO/E

If you use batch JCL or TSO/E to compile an OO COBOL program or class

definition, the generated object file is written, as usual, to the data set that has

ddname SYSLIN or SYSPUNCH. You must use compiler options RENT, DLL, THREAD, and

DBCS. (RENT and DBCS are defaults.)

If the COBOL program or class definition uses the JNI environment structure to

access JNI callable services, copy the file JNI.cpy from the HFS to a PDS or PDSE

member called JNI, identify that library with a SYSLIB DD statement, and use a

COPY statement of the form COPY JNI in the COBOL source.

A COBOL source file that contains a class definition must not contain any other

class or program definitions.

When you compile a COBOL class definition, a Java source program that contains

a class definition that corresponds to the COBOL class definition is generated in

addition to the object file. Use the SYSJAVA ddname to write the generated Java

source file to a file in the HFS. For example:

//SYSJAVA DD PATH=’/u/userid/java/Classname.java’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=SIRWXU,

// FILEDATA=TEXT

Do not edit this generated Java class definition in any way. If you change the

COBOL class definition, you must regenerate both the object file and the Java class

definition by recompiling the updated COBOL class definition.

Compile Java class definitions by using the javac command from a z/OS UNIX

shell command prompt, or by using the BPXBATCH utility.

“Example: compiling, linking, and running an OO application using JCL” on page

298

RELATED TASKS

“Compiling with JCL” on page 249

“Compiling under TSO” on page 261

“Specifying source libraries (SYSLIB)” on page 268

“Defining the Java-source output file (SYSJAVA)” on page 270

“Accessing JNI services” on page 595

“Compiling OO applications under UNIX” on page 291

“Preparing OO applications under UNIX” on page 292

RELATED REFERENCES

“DBCS” on page 315

“DLL” on page 317

“RENT” on page 340

“THREAD” on page 350

Appendix F, “JNI.cpy,” on page 717

UNIX System Services User’s Guide (The BPXBATCH utility)

Preparing and running OO applications in JCL or TSO/E

It is recommended that you run OO applications in a z/OS z/OS UNIX

environment. To run OO applications from batch JCL or TSO/E, you should

therefore use the BPXBATCH utility.

296 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471

In limited circumstances, however, you can run an OO application by using

standard batch JCL (EXEC PGM=COBPROG) or the TSO/E CALL command. To do so,

follow these requirements when preparing the application:

v Structure the application to start with a COBOL program. (If an application

starts with a Java program or with the main factory method of a COBOL class,

you must run the application under z/OS UNIX, and the application

components must reside in the HFS.)

v Link-edit considerations: Link the load module for the COBOL program into a

PDSE. COBOL programs that contain object-oriented syntax must be link-edited

with AMODE 31.

v Ensure that the class files and DLLs associated with the COBOL or Java classes

that are used by the application reside in the HFS. You must name the class files

and DLLs as described in the related task about preparing OO applications

under UNIX.

v Specify INCLUDE control statements for the DLL side files libjvm.x and igzcjava.x

when you bind the object deck for the main program. For example:

INCLUDE ’/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x’

INCLUDE ’/usr/lpp/cobol/lib/igzcjava.x’

v Create a file that contains the environment variable settings that are required for

Java. For example, a file /u/userid/javaenv might contain the following three

lines to set the PATH, LIBPATH, and CLASSPATH environment variables (the

LIBPATH setting is shown on two lines because of document length limitations,

but you must specify the setting on one unbroken line that has no internal

blanks):

PATH=/bin:/usr/lpp/java/IBM/J1.3/bin

LIBPATH=/lib:/usr/lib:/usr/lpp/java/IBM/J1.3/bin:

 /usr/lpp/java/IBM/J1.3/bin/classic:/u/userid/applications

CLASSPATH=/u/userid/applications

To customize the initialization of the JVM that will be used by the application,

you can set the COBJVMINITOPTIONS environment variable in the same file.

For example, to access enterprise beans that run in a WebSphere server, you

must set the Java system property java.naming.factory.initial. For details, see the

related task about running OO applications under UNIX.

When you run an OO application that starts with a COBOL program by using

standard batch JCL or the TSO/E CALL command, follow these guidelines:

v Use the _CEE_ENVFILE environment variable to indicate the location of the file

that contains the environment variable settings required by Java. Set

_CEE_ENVFILE by using the ENVAR runtime option.

v Specify the POSIX(ON) runtime option.

v Use DD statements to specify files in the HFS for the standard input, output, and

error streams for Java:

– JAVAIN DD for the input from statements such as c=System.in.read();

– JAVAOUT DD for the output from statements such as

System.out.println(string);

– JAVAERR DD for the output from statements such as

System.err.println(string);

v Ensure that the SCEERUN2 and SCEERUN load libraries are available in the

system library search order, for example, by using a STEPLIB DD statement.

“Example: compiling, linking, and running an OO application using JCL” on page

298

Chapter 16. Compiling, linking, and running OO applications 297

RELATED TASKS

“Preparing OO applications under UNIX” on page 292

“Running OO applications under UNIX” on page 293

“Structuring OO applications” on page 591

UNIX System Services User’s Guide (The BPXBATCH utility)

Language Environment Programming Guide (Running an application under batch)

RELATED REFERENCES

XL C/C++ Programming Guide (_CEE_ENVFILE)

Language Environment Programming Reference (ENVAR)

Example: compiling, linking, and running an OO application

using JCL

This example shows the JCL that you could use to compile, link, and run a COBOL

client that invokes a Java method.

The example shows:

v The JCL to compile, link, and run an OO COBOL program, TSTHELLO

v A Java class definition, HelloJ, that contains a method that the COBOL program

invokes

v An HFS file, ENV, that contains the environment variable settings that Java

requires

JCL for program TSTHELLO

//TSTHELLO JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=100M,

// NOTIFY=&SYSUID,USER=&SYSUID

//*

// SET COBPRFX=’IGY.V4R1M0’

// SET LIBPRFX=’CEE’

//*

//COMPILE EXEC PGM=IGYCRCTL,

// PARM=’SIZE(5000K)’

//SYSLIN DD DSNAME=&&OBJECT(TSTHELLO),UNIT=VIO,DISP=(NEW,PASS),

// SPACE=(CYL,(1,1,1))

//SYSPRINT DD SYSOUT=*

//STEPLIB DD DSN=&COBPRFX..SIGYCOMP,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSIN DD *

 cbl dll,thread

 Identification division.

 Program-id. "TSTHELLO" recursive.

 Environment division.

 Configuration section.

 Repository.

 Class HelloJ is "HelloJ".

 Data Division.

 Procedure division.

 Display "COBOL program TSTHELLO entered"

 Invoke HelloJ "sayHello"

 Display "Returned from java sayHello to TSTHELLO"

 Goback.

298 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CBCPG180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

End program "TSTHELLO".

/*

//LKED EXEC PGM=IEWL,PARM=’RENT,LIST,LET,DYNAM(DLL),CASE(MIXED)’

//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR

// DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSLMOD DD DSN=&&GOSET(TSTHELLO),DISP=(MOD,PASS),UNIT=VIO,

// SPACE=(CYL,(1,1,1)),DSNTYPE=LIBRARY

//SYSDEFSD DD DUMMY

//OBJMOD DD DSN=&&OBJECT,DISP=(OLD,DELETE)

//SYSLIN DD *

 INCLUDE OBJMOD(TSTHELLO)

 INCLUDE ’/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x’

 INCLUDE ’/usr/lpp/cobol/lib/igzcjava.x’

/*

//GO EXEC PGM=TSTHELLO,COND=(4,LT,LKED),

// PARM=’/ENVAR("_CEE_ENVFILE=/u/userid/ootest/tsthello/ENV")

// POSIX(ON)’

//STEPLIB DD DSN=*.LKED.SYSLMOD,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR

// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD DUMMY

//JAVAOUT DD PATH=’/u/userid/ootest/tsthello/javaout’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

Definition of class HelloJ

class HelloJ {

 public static void sayHello() {

 System.out.println("Hello World, from Java!");

 }

}

HelloJ.java is compiled with the javac command. The resulting .class file resides in

the HFS directory u/userid/ootest/tsthello, which is specified in the CLASSPATH

environment variable in the environment variable settings file.

Environment variable settings file, ENV

PATH=/bin:/usr/lpp/java/IBM/J1.3/bin:.

LIBPATH=/lib:/usr/lib:/usr/lpp/java/IBM/J1.3/bin:

 /usr/lpp/java/IBM/J1.3/bin/classic:/u/userid/ootest/tsthello

CLASSPATH=/u/userid/ootest/tsthello

(The LIBPATH setting is shown above on two lines because of document length

limitations, but you must specify the setting on one unbroken line that has no

internal blanks.)

The environment variable settings file also resides in directory

u/userid/ootest/tsthello, as specified in the _CEE_ENVFILE environment variable

in the JCL.

Using IBM SDK for z/OS, Java 2 Technology Edition

The IBM SDK for z/OS, Java 2 Technology Edition, V1.4 is based on the XPLINK

linkage convention defined by Language Environment.

Chapter 16. Compiling, linking, and running OO applications 299

If the application starts with a Java program or the main factory method of a

COBOL class, the XPLINK environment is automatically started by the java

command that starts the JVM and runs the application.

If an application starts with a COBOL program that invokes methods on COBOL

or Java classes, you must specify the XPLINK(ON) runtime option so that the

XPLINK environment is initialized. XPLINK(ON) is not recommended as a default

setting, however; you should use XPLINK(ON) only for applications that specifically

require it.

When you are running an application under z/OS UNIX, you can set the

XPLINK(ON) option by using the _CEE_RUNOPTS environment variable as follows:

_CEE_RUNOPTS="XPLINK(ON)"

Exporting _CEE_RUNOPTS="XPLINK(ON)" so that it is in effect for the entire z/OS

UNIX shell session is not recommended, however. Suppose for example that an

OO COBOL application starts with a COBOL program called App1Driver. One way

to limit the effect of the XPLINK option to the execution of the App1Driver

application is to set the _CEE_RUNOPTS variable on the command-line invocation

of App1Driver as follows:

_CEE_RUNOPTS="XPLINK(ON)" App1Driver

RELATED TASKS

“Running OO applications under UNIX” on page 293

“Setting and accessing environment variables” on page 436

RELATED REFERENCES

“Runtime environment variables” on page 437

Language Environment Programming Reference (XPLINK)

XL C/C++ Programming Guide (_CEE_RUNOPTS)

300 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CBCPG180

Chapter 17. Compiler options

You can direct and control your compilation by using compiler options or by using

compiler-directing statements (compiler directives).

Compiler options affect the aspects of your program that are listed in the table

below. The linked-to information for each option provides the syntax for specifying

the option and describes the option, its parameters, and its interaction with other

parameters.

 Table 45. Compiler options

Aspect of your

program Compiler option Default Option abbreviations

Source language “ARITH” on page 306 ARITH(COMPAT) AR(C|E)

“CICS” on page 308 NOCICS None

“CODEPAGE” on page 309 CODEPAGE(01140) CP(ccsid)

“CURRENCY” on page 312 NOCURRENCY CURR|NOCURR

“DBCS” on page 315 DBCS None

“LIB” on page 325 LIB None

“NSYMBOL” on page 330 NSYMBOL(NATIONAL) NS(DBCS|NAT)

“NUMBER” on page 331 NONUMBER NUM|NONUM

“QUOTE/APOST” on page 339 QUOTE Q|APOST

“SEQUENCE” on page 342 SEQUENCE SEQ|NOSEQ

“SQL” on page 344 NOSQL None

“SQLCCSID” on page 345 SQLCCSID SQLC|NOSQLC

“WORD” on page 355 NOWORD WD|NOWD

“XMLPARSE” on page 356 XMLPARSE(XMLSS) XP(X)|XP(C)

Date processing “DATEPROC” on page 314 NODATEPROC, or

DATEPROC(FLAG,NOTRIG) if

only DATEPROC is specified

DP|NODP

“INTDATE” on page 323 INTDATE(ANSI) None

“YEARWINDOW” on page 358 YEARWINDOW(1900) YW

Maps and listings “LANGUAGE” on page 324 LANGUAGE(ENGLISH) LANG(EN|UE|JA|JP)

“LINECOUNT” on page 326 LINECOUNT(60) LC

“LIST” on page 326 NOLIST None

“MAP” on page 327 NOMAP None

“OFFSET” on page 333 NOOFFSET OFF|NOOFF

“SOURCE” on page 343 SOURCE S|NOS

“SPACE” on page 344 SPACE(1) None

“TERMINAL” on page 347 NOTERMINAL TERM|NOTERM

“VBREF” on page 355 NOVBREF None

“XREF” on page 357 XREF(FULL) X|NOX

© Copyright IBM Corp. 1991, 2007 301

|||

Table 45. Compiler options (continued)

Aspect of your

program Compiler option Default Option abbreviations

Object deck

generation

“COMPILE” on page 311 NOCOMPILE(S) C|NOC

“DECK” on page 316 NODECK D|NOD

“NAME” on page 329 NONAME, or NAME(NOALIAS) if

only NAME is specified

None

“OBJECT” on page 333 OBJECT OBJ|NOOBJ

“PGMNAME” on page 337 PGMNAME(COMPAT) PGMN(CO|LU|LM)

Object code control “ADV” on page 305 ADV None

“AWO” on page 307 NOAWO None

“DLL” on page 317 NODLL None

“EXPORTALL” on page 320 NOEXPORTALL EXP|NOEXP

“FASTSRT” on page 320 NOFASTSRT FSRT|NOFSRT

“NUMPROC” on page 332 NUMPROC(NOPFD) None

“OPTIMIZE” on page 335 NOOPTIMIZE OPT|NOOPT

“OUTDD” on page 336 OUTDD(SYSOUT) OUT

“TRUNC” on page 352 TRUNC(STD) None

“ZWB” on page 359 ZWB None

Virtual storage

usage

“BUFSIZE” on page 307 4096 BUF

“DATA” on page 313 DATA(31) None

“DYNAM” on page 319 NODYNAM DYN|NODYN

“RENT” on page 340 RENT None

“RMODE” on page 341 AUTO None

“SIZE” on page 342 SIZE(MAX) SZ

Debugging and

diagnostics

“DIAGTRUNC” on page 316 NODIAGTRUNC DTR|NODTR

“DUMP” on page 318 NODUMP DU|NODU

“FLAG” on page 321 FLAG(I,I) F|NOF

“FLAGSTD” on page 322 NOFLAGSTD None

“SSRANGE” on page 346 NOSSRANGE SSR|NOSSR

“TEST” on page 347 NOTEST None

Other “ADATA” on page 305 NOADATA None

“EXIT” on page 319 NOEXIT EX(INX,LIBX,PRTX,ADX)

“MDECK” on page 328 NOMDECK NOMD|MD|MD(C)|MD(NOC)

“OPTFILE” on page 334 None None

“THREAD” on page 350 NOTHREAD None

Installation defaults: The default options that were set up when your compiler

was installed are in effect for your program unless you override them with other

options. (In some installations, certain compiler options are set up as fixed so that

you cannot override them. If you have problems, see your system administrator.)

To find out the default compiler options in effect, run a test compilation without

specifying any options. The output listing lists the default options specified by

your installation.

302 Enterprise COBOL for z/OS V4.1 Programming Guide

|||

Nonoverridable options: In some installations, certain compiler options are set up

so that you cannot override them. If you have problems, see your system

administrator.

Performance considerations: The ARITH, AWO, DYNAM, FASTSRT, NUMPROC, OPTIMIZE,

RENT, SQLCCSID, SSRANGE, TEST, THREAD, and TRUNC compiler options can affect

runtime performance.

RELATED TASKS

Chapter 14, “Compiling under z/OS,” on page 249

“Compiling under TSO” on page 261

Chapter 15, “Compiling under UNIX,” on page 283

Chapter 34, “Tuning your program,” on page 649

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 18, “Compiler-directing statements,” on page 361

“Option settings for Standard COBOL 85 conformance”

“Performance-related compiler options” on page 660

Option settings for Standard COBOL 85 conformance

Compiler options and runtime options are required for conformance with Standard

COBOL 85.

The following compiler options are required:

v ADV

v NOCICS

v NODATEPROC

v NODLL

v DYNAM

v NOEXPORTALL

v NOFASTSRT

v LIB

v NAME(ALIAS) or NAME(NOALIAS)

v NUMPROC(NOPFD) or NUMPROC(MIG)

v PGMNAME(COMPAT) or PGMNAME(LONGUPPER)

v QUOTE

v NOTHREAD

v TRUNC(STD)

v NOWORD

v ZWB

The following runtime options are required:

v AIXBLD

v CBLQDA(ON)

v TRAP(ON)

RELATED REFERENCES

Language Environment Programming Reference

Chapter 17. Compiler options 303

|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

Conflicting compiler options

The Enterprise COBOL compiler can encounter conflicting compiler options in

either of two ways: both the positive and negative form of an option are specified

at the same level in the hierarchy of precedence, or mutually exclusive options are

specified at the same level in the hierarchy.

When conflicting options are specified at the same level in the hierarchy (such as

specifying both DECK and NODECK in a PROCESS or CBL statement), the option

specified last takes effect.

If you specify mutually exclusive compiler options at the same level, the compiler

generates an error message and forces one of the options to a nonconflicting value.

For example, if you specify both OFFSET and LIST in a PROCESS statement in any

order, OFFSET takes effect and LIST is ignored.

However, options coded at a higher level of precedence override any options

specified at a lower level of precedence. For example, if you code OFFSET in a JCL

statement but LIST in a PROCESS statement, LIST takes effect because the options

coded in the PROCESS statement and any options forced on by an option coded in

the PROCESS statement have higher precedence.

 Table 46. Mutually exclusive compiler options

Specified Ignored1 Forced on1

CICS NOLIB LIB

DYNAM NODYNAM

NORENT RENT

DLL DYNAM NODYNAM

NORENT RENT

EXIT DUMP NODUMP

EXPORTALL NODLL DLL

DYNAM NODYNAM

NORENT RENT

MDECK NOLIB LIB

NSYMBOL(NATIONAL) NODBCS DBCS

OFFSET LIST NOLIST

SQL NOLIB LIB

TEST

TEST(HOOK)

NOOBJECT OBJECT

OPT(STD) or OPT(FULL) NOOPTIMIZE

THREAD NORENT RENT

WORD FLAGSTD NOFLAGSTD

1. Unless in conflict with a fixed installation default option.

RELATED TASKS

“Specifying compiler options under z/OS” on page 271

“Specifying compiler options in a batch compilation” on page 276

“Specifying compiler options under UNIX” on page 284

304 Enterprise COBOL for z/OS V4.1 Programming Guide

|

RELATED REFERENCES

“OPTFILE” on page 334

ADATA

Use ADATA when you want the compiler to create a SYSADATA file that contains

records of additional compilation information.

ADATA option syntax

��
 NOADATA

ADATA

��

Default is: NOADATA

Abbreviations are: None

ADATA is required for remote compilation using an IBM Windows COBOL compiler.

On z/OS, the SYSADATA file is file is written to ddname SYSADATA. The size of

the SYSADATA file generally grows with the size of the associated program.

You cannot specify ADATA in a PROCESS (CBL) statement. You can specify it only in

one of the following ways:

v In the PARM parameter of JCL

v As a cob2 command option

v As an installation default

v In the COBOPT environment variable

RELATED REFERENCES

Appendix G, “COBOL SYSADATA file contents,” on page 723

“Setting environment variables under UNIX” on page 283

“cob2 syntax and options” on page 287

ADV

ADV has meaning only if you use WRITE . . . ADVANCING in your source code. With

ADV in effect, the compiler adds 1 byte to the record length to account for the

printer control character.

ADV option syntax

��
 ADV

NOADV

��

Chapter 17. Compiler options 305

Default is: ADV

Abbreviations are: None

Use NOADV if you already adjusted record length to include 1 byte for the printer

control character.

ARITH

ARITH affects the maximum number of digits that you can code for integers, and

the number of digits used in fixed-point intermediate results.

ARITH option syntax

��
 COMPAT

ARITH(

EXTEND

)

��

Default is: ARITH(COMPAT)

Abbreviations are: AR(C), AR(E)

When you specify ARITH(EXTEND):

v The maximum number of digit positions that you can specify in the PICTURE

clause for packed-decimal, external-decimal, and numeric-edited data items is

raised from 18 to 31.

v The maximum number of digits that you can specify in a fixed-point numeric

literal is raised from 18 to 31. You can use numeric literals with large precision

anywhere that numeric literals are currently allowed, including:

– Operands of PROCEDURE DIVISION statements

– VALUE clauses (for numeric data items with large-precision PICTURE)

– Condition-name values (on numeric data items with large-precision PICTURE)
v The maximum number of digits that you can specify in the arguments to NUMVAL

and NUMVAL-C is raised from 18 to 31.

v The maximum value of the integer argument to the FACTORIAL function is 29.

v Intermediate results in arithmetic statements use extended mode.

When you specify ARITH(COMPAT):

v The maximum number of digit positions in the PICTURE clause for

packed-decimal, external-decimal, and numeric-edited data items is 18.

v The maximum number of digits in a fixed-point numeric literal is 18.

v The maximum number of digits in the arguments to NUMVAL and NUMVAL-C is 18.

v The maximum value of the integer argument to the FACTORIAL function is 28.

v Intermediate results in arithmetic statements use compatibility mode.

RELATED CONCEPTS

Appendix A, “Intermediate results and arithmetic precision,” on page 673

306 Enterprise COBOL for z/OS V4.1 Programming Guide

AWO

If you specify AWO, an implicit APPLY WRITE-ONLY clause is activated for all files in

the program that are eligible for this clause. To be eligible, a file must have

physical sequential organization and blocked variable-length records.

AWO option syntax

��
 NOAWO

AWO

��

Default is: NOAWO

Abbreviations are: None

RELATED TASKS

“Optimizing buffer and device space” on page 12

BUFSIZE

Use BUFSIZE to allocate an amount of main storage to the buffer for each compiler

work data set. Usually, a large buffer size improves the performance of the

compiler.

BUFSIZE option syntax

��
 nnnnn

BUFSIZE(

nnnK

)

��

Default is: 4096

Abbreviations are: BUF

nnnnn specifies a decimal number that must be at least 256.

nnnK specifies a decimal number in 1-KB increments, where 1 KB = 1024 bytes.

If you use both BUFSIZE and SIZE, the amount allocated to buffers is included in

the amount of main storage available for compilation via the SIZE option.

BUFSIZE cannot exceed the track capacity for the device used, nor can it exceed the

maximum allowed by data management services.

Chapter 17. Compiler options 307

CICS

The CICS compiler option enables the integrated CICS translator and allows

specification of CICS suboptions. You must use the CICS option if your COBOL

source program contains EXEC CICS or EXEC DLI statements and the program has

not been processed by the separate CICS translator.

CICS option syntax

��
 NOCICS

CICS

(″CICS-suboption-string″)

��

Default is: NOCICS

Abbreviations are: None

Use the CICS option to compile CICS programs only. Programs compiled with the

CICS option will not run in a non-CICS environment.

If you specify the CICS option, the compiler needs access to CICS Transaction

Server Version 2 or later.

If you specify the NOCICS option, any CICS statements found in the source program

are diagnosed and discarded.

Use either quotation marks or single quotation marks to delimit the string of CICS

suboptions.

You can partition a long suboption string into multiple suboption strings on

multiple CBL statements. The CICS suboptions are concatenated in the order of

their appearance. For example:

//STEP1 EXEC IGYWC, . . .

// PARM.COBOL=’CICS("string1")’

//COBOL.SYSIN DD *

 CBL CICS(’string2’)

 CBL CICS("string3")

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DRIVER1.

 . . .

The compiler passes the following suboption string to the integrated CICS

translator:

"string1 string2 string3"

The concatenated strings are delimited with single spaces as shown. If multiple

instances of the same CICS option are found, the last specification of each option

prevails. The compiler limits the length of the concatenated CICS suboptions string

to 4 KB.

308 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Compiling with the CICS option” on page 409

“Separating CICS suboptions” on page 411

CICS Application Programming Guide (Specifying CICS translator options)

RELATED REFERENCES

“Conflicting compiler options” on page 304

CODEPAGE

Use CODEPAGE to specify the coded character set identifier (CCSID) for an EBCDIC

code page for processing compile-time and runtime COBOL operations that are

sensitive to character encoding.

CODEPAGE option syntax

�� CODEPAGE(ccsid) ��

Default is: CODEPAGE(1140)

Abbreviations are: CP(ccsid)

ccsid must be an integer that represents a valid CCSID for an EBCDIC code page.

The default CCSID 1140 is the equivalent of CCSID 37 (EBCDIC Latin-1, USA), but

additionally includes the euro symbol.

ccsid specifies these encodings:

v The encoding for alphanumeric, national, and DBCS literals in a COBOL source

program

v The default encoding of the content of alphanumeric and DBCS data items at

run time

v The encoding for DBCS user-defined words when processed by an XML GENERATE

statement to create XML element and attribute names

v The default encoding of an XML document created by an XML GENERATE

statement if the receiving data item for the document is alphanumeric

v The default encoding assumed for an XML document in an alphanumeric data

item when the document is processed by an XML PARSE statement

The CODEPAGE ccsid is used when code-page-sensitive operations are performed at

compile time or run time, and an explicit CCSID that overrides the default code

page is not specified. Such operations include:

v Conversion of literal values to Unicode

v Conversion of alphanumeric data to and from national (Unicode) data as part of

move operations, comparison, or the intrinsic functions DISPLAY-OF and

NATIONAL-OF

Chapter 17. Compiler options 309

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhp3c00

v Object-oriented language such as INVOKE statements or class definitions and

method definitions

v XML parsing

v XML generation

v Processing of DBCS names as part of XML generation at run time

v Processing of SQL string host variables if the SQLCCSID option is in effect

v Processing of source code for EXEC SQL statements

However, the encoding of the following items in a COBOL source program is not

affected by the CODEPAGE compiler option:

v Data items that have USAGE NATIONAL

These items are always encoded in UTF-16BE (big-endian), CCSID 1200.

v Characters from the basic COBOL character set (see the table of these characters

in the related reference below about characters)

Though the encoding of the basic COBOL characters default currency sign ($),

quotation mark (″), and the lowercase Latin letters varies in different EBCDIC

code pages, the compiler always interprets these characters using the EBCDIC

code page 1140 encoding. In particular, the default currency sign is always the

character with value X’5B’ (unless changed by the CURRENCY compiler option or

the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph), and the quotation

mark is always the character with value X’7F’.

Some COBOL operations can override the CODEPAGE ccsid by using an explicit

encoding specification, for example:

v DISPLAY-OF and NATIONAL-OF intrinsic functions that specify a code page as the

second argument

v XML PARSE statements that specify the WITH ENCODING phrase

v XML GENERATE statements that specify the WITH ENCODING phrase

Additionally, you can use the CURRENCY compiler option or the CURRENCY SIGN

clause in the SPECIAL-NAMES paragraph to override:

v The default currency symbol used in the PICTURE character-strings for

numeric-edited data items in your source program

v The currency sign value used in the content of numeric-edited data items at run

time

DBCS code pages:

Compile your COBOL program using the CODEPAGE option with the ccsid set to one

of the EBCDIC multibyte character set (MBCS) CCSIDs shown in the table below if

the program contains any of the following items:

v User-defined words formed with DBCS characters

v DBCS (USAGE DISPLAY-1) data items

v DBCS literals

All of the CCSIDs in the table below identify mixed code pages that refer to a

combination of SBCS and DBCS coded character sets. These are also the CCSIDs

that are supported for mixed data by DB2.

310 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

|

|

|

|

|
|

|

|

|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

|
|
|

|

|

|

|
|
|

Table 47. EBCDIC multibyte coded character set identifiers

National language MBCS CCSID

SBCS CCSID

component

DBCS CCSID

component

Japanese (Katakana-Kanji) 930 290 300

Japanese (Katakana-Kanji with euro) 1390 8482 16684

Japanese (Katakana-Kanji) 5026 290 4396

Japanese (Latin-Kanji) 939 1027 300

Japanese (Latin-Kanji with euro) 1399 5123 16684

Japanese (Latin-Kanji) 5035 1027 4396

Korean 933 833 834

Korean 1364 13121 4930

Simplified Chinese 935 836 837

Simplified Chinese 1388 13124 4933

Traditional Chinese 937 28709 835

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Using currency signs” on page 67

Chapter 28, “Processing XML input,” on page 501

Chapter 29, “Producing XML output,” on page 531

RELATED REFERENCES

“CURRENCY” on page 312

“SQLCCSID” on page 345

Characters (Enterprise COBOL Language Reference)

COMPILE

Use the COMPILE option only if you want to force full compilation even in the

presence of serious errors. All diagnostics and object code will be generated. Do

not try to run the object code if the compilation resulted in serious errors: the

results could be unpredictable or an abnormal termination could occur.

COMPILE option syntax

��

 S

NOCOMPILE(

E

)

W

COMPILE

NOCOMPILE

��

Default is: NOCOMPILE(S)

Chapter 17. Compiler options 311

||

||
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

Abbreviations are: C|NOC

Use NOCOMPILE without any suboption to request a syntax check (only diagnostics

produced, no object code). If you use NOCOMPILE without any suboption, several

compiler options will have no effect because no object code will be produced, for

example: DECK, LIST, OBJECT, OFFSET, OPTIMIZE, SSRANGE, and TEST.

Use NOCOMPILE with suboption W, E, or S for conditional full compilation. Full

compilation (diagnosis and object code) will stop when the compiler finds an error

of the level you specify (or higher), and only syntax checking will continue.

RELATED TASKS

“Finding coding errors” on page 370

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 279

CURRENCY

You can use the CURRENCY option to provide an alternate default currency symbol

to be used for a COBOL program. (The default currency symbol is the dollar sign

($).)

CURRENCY option syntax

��
 NOCURRENCY

CURRENCY(literal)

��

Default is: NOCURRENCY

Abbreviations are: CURR|NOCURR

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, specify CURRENCY(literal), where literal is a

valid COBOL alphanumeric literal (optionally a hexadecimal literal) that represents

a single character. The literal must not be from the following list:

v Digits zero (0) through nine (9)

v Uppercase alphabetic characters A B C D E G N P R S V X Z or their lowercase

equivalents

v The space

v Special characters * + - / , . ; () ″ = ’

v A figurative constant

v A null-terminated literal

v A DBCS literal

v A national literal

312 Enterprise COBOL for z/OS V4.1 Programming Guide

|

If your program processes only one currency type, you can use the CURRENCY

option as an alternative to the CURRENCY SIGN clause for indicating the currency

symbol you will use in the PICTURE clause of your program. If your program

processes more than one currency type, you should use the CURRENCY SIGN clause

with the WITH PICTURE SYMBOL phrase to specify the different currency sign types.

If you use both the CURRENCY option and the CURRENCY SIGN clause in a program,

the CURRENCY option is ignored. Currency symbols specified in the CURRENCY SIGN

clause or clauses can be used in PICTURE clauses.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN clause,

the dollar sign ($) is used as the PICTURE symbol for the currency sign.

Delimiter: You can delimit the CURRENCY option literal with either quotation marks

or single quotation marks, regardless of the QUOTE|APOST compiler option setting.

RELATED TASKS

“Using currency signs” on page 67

DATA

The DATA option affects whether storage for dynamic data areas and other dynamic

runtime storage is obtained from above or below the 16-MB line.

DATA option syntax

��
 31

DATA(

24

)

��

Default is: DATA(31)

Abbreviations are: None

For reentrant programs, the DATA compiler option and the HEAP runtime option

control whether storage for dynamic data areas (such as WORKING-STORAGE and FD

record areas) is obtained from below the 16-MB line (DATA(24)) or from

unrestricted storage (DATA(31)). (DATA does not affect the location of LOCAL-STORAGE

data; the STACK runtime option controls that location instead, along with the AMODE

of the program.)

When you specify the runtime option HEAP(,,BELOW), the DATA compiler option has

no effect; the storage for all dynamic data areas is allocated from below the 16-MB

line. However, if HEAP(,,ANYWHERE) is in effect, storage for dynamic data areas is

allocated from below the line if you compiled the program with DATA(24) or from

unrestricted storage if you compiled with DATA(31).

Specify DATA(24) for programs that run in 31-bit addressing mode and that pass

data arguments to programs in 24-bit addressing mode. Doing so ensures that the

data will be addressable by the called program.

Chapter 17. Compiler options 313

External data and QSAM buffers: The DATA option interacts with other compiler

options and runtime options that affect storage and its addressability. See the

related information for details.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

Language Environment Programming Guide (Using runtime options)

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 173

DATEPROC

Use the DATEPROC option to enable the millennium language extensions of the

COBOL compiler.

DATEPROC option syntax

��
 NODATEPROC

DATEPROC

FLAG

,NOTRIG

(

)

NOFLAG

,TRIG

��

Default is: NODATEPROC, or DATEPROC(FLAG,NOTRIG) if only DATEPROC is specified

Abbreviations are: DP|NODP

DATEPROC(FLAG)

With DATEPROC(FLAG), the millennium language extensions are enabled, and

the compiler produces a diagnostic message wherever a language element

uses or is affected by the extensions. The message is usually an

information-level or warning-level message that identifies statements that

involve date-sensitive processing. Additional messages that identify errors

or possible inconsistencies in the date constructs might be generated.

 Production of diagnostic messages, and their appearance in or after the

source listing, is subject to the setting of the FLAG compiler option.

DATEPROC(NOFLAG)

With DATEPROC(NOFLAG), the millennium language extensions are in effect,

but the compiler does not produce any related messages unless there are

errors or inconsistencies in the COBOL source.

DATEPROC(TRIG)

With DATEPROC(TRIG), the millennium language extensions are enabled, and

the automatic windowing that the compiler applies to operations on

windowed date fields is sensitive to specific trigger or limit values in the

date fields and in other nondate fields that are stored into or compared

314 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

with the windowed date fields. These special values represent invalid dates

that can be tested for or used as upper or lower limits.

 Performance considerations: The DATEPROC(TRIG) option results in

slower-performing code for windowed date comparisons.

DATEPROC(NOTRIG)

With DATEPROC(NOTRIG), the millennium language extensions are enabled,

and the automatic windowing that the compiler applies to operations on

windowed dates does not recognize any special trigger values in the

operands. Only the value of the year part of dates is relevant to automatic

windowing.

 Performance considerations: The DATEPROC(NOTRIG) option is a

performance option that assumes valid date values in windowed date

fields.

NODATEPROC

NODATEPROC indicates that the extensions are not enabled for this

compilation unit. This option affects date-related program constructs as

follows:

v The DATE FORMAT clause is syntax-checked, but has no effect on the

execution of the program.

v The DATEVAL and UNDATE intrinsic functions have no effect. That is, the

value returned by the intrinsic function is exactly the same as the value

of the argument.

v The YEARWINDOW intrinsic function returns a value of zero.

Usage note: You can specify the FLAG|NOFLAG and TRIG|NOTRIG suboptions in any

order. If you omit either suboption, it defaults to the current setting. If you code a

left parenthesis after DATEPROC, however, you must code at least one suboption.

RELATED REFERENCES

“FLAG” on page 321

“YEARWINDOW” on page 358

DBCS

Using DBCS causes the compiler to recognize X’0E’ (SO) and X’0F’ (SI) as shift

codes for the double-byte portion of an alphanumeric literal.

DBCS option syntax

��
 DBCS

NODBCS

��

Default is: DBCS

Abbreviations are: None

Chapter 17. Compiler options 315

|
|

With DBCS in effect, the double-byte portion of the literal is syntax-checked and the

literal remains category alphanumeric.

RELATED REFERENCES

“Conflicting compiler options” on page 304

DECK

Use DECK to produce object code in the form of 80-column records. If you use the

DECK option, be certain that SYSPUNCH is defined in your JCL for compilation.

DECK option syntax

��
 NODECK

DECK

��

Default is: NODECK

Abbreviations are: D|NOD

RELATED TASKS

“Creating object code (SYSLIN or SYSPUNCH)” on page 269

DIAGTRUNC

DIAGTRUNC causes the compiler to issue a severity-4 (Warning) diagnostic message

for MOVE statements with numeric receivers when the receiving data item has fewer

integer positions than the sending data item or literal. In statements with multiple

receivers, the message is issued separately for each receiver that could be

truncated.

DIAGTRUNC option syntax

��
 NODIAGTRUNC

DIAGTRUNC

��

Default is: NODIAGTRUNC

Abbreviations are: DTR, NODTR

The diagnostic message is also issued for implicit moves associated with

statements such as these:

v INITIALIZE

316 Enterprise COBOL for z/OS V4.1 Programming Guide

v READ . . . INTO

v RELEASE . . . FROM

v RETURN . . . INTO

v REWRITE . . . FROM

v WRITE . . . FROM

The diagnostic is also issued for moves to numeric receivers from alphanumeric

data-names or literal senders, except when the sending field is reference modified.

There is no diagnostic for COMP-5 receivers, nor for binary receivers when you

specify the TRUNC(BIN) option.

RELATED CONCEPTS

“Formats for numeric data” on page 49

“Reference modifiers” on page 109

RELATED REFERENCES

“TRUNC” on page 352

DLL

Use DLL to instruct the compiler to generate an object module that is enabled for

dynamic link library (DLL) support. DLL enablement is required if the program

will be part of a DLL, will reference DLLs, or if the program contains

object-oriented COBOL syntax such as INVOKE statements or class definitions.

DLL option syntax

��
 NODLL

DLL

��

Default is: NODLL

Abbreviations are: None

Link-edit considerations: COBOL programs that are compiled with the DLL option

must be link-edited with the RENT and AMODE(31) link-edit options.

NODLL instructs the compiler to generate an object module that is not enabled for

DLL usage.

RELATED TASKS

“Making dynamic calls” on page 449

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 317

DUMP

Use DUMP to produce a system dump at compile time for an internal compiler error.

DUMP option syntax

��
 NODUMP

DUMP

��

Default is: NODUMP

Abbreviations are: DU|NODU

Not for general use: The DUMP option should be used only at the request of an IBM

representative.

The dump, which consists of a listing of the compiler’s registers and a storage

dump, is intended primarily for diagnostic personnel for determining errors in the

compiler.

If you use the DUMP option, include a DD statement at compile time to define

SYSABEND, SYSUDUMP, or SYSMDUMP.

With DUMP, the compiler will not issue a diagnostic message before abnormal

termination processing. Instead, a user abend will be issued with an IGYppnnnn

message. In general, a message IGYppnnnn corresponds to a compile-time user

abend nnnn. However, both IGYpp5nnn and IGYpp1nnn messages produce a user

abend of 1nnn. You can usually distinguish whether the message is really a 5nnn or

a 1nnn by recompiling with the NODUMP option.

Use NODUMP if you want normal termination processing, including:

v Diagnostic messages produced so far in compilation.

v A description of the error.

v The name of the compiler phase currently executing.

v The line number of the COBOL statement being processed when the error was

found. (If you compiled with OPTIMIZE, the line number might not always be

correct; for some errors, it will be the last line in the program.)

v The contents of the general purpose registers.

Using the DUMP and OPTIMIZE compiler options together could cause the compiler to

produce a system dump instead of the following optimizer message:

"IGYOP3124-W This statement may cause a program exception at

 execution time."

This situation does not represent a compiler error. Using the NODUMP option will

allow the compiler to issue message IGYOP3124-W and continue processing.

RELATED TASKS

Language Environment Debugging Guide (Understanding abend codes)

318 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180

RELATED REFERENCES

“Conflicting compiler options” on page 304

DYNAM

Use DYNAM to cause nonnested, separately compiled programs invoked through the

CALL literal statement to be loaded (for CALL) and deleted (for CANCEL) dynamically

at run time. (CALL identifier statements always result in a runtime load of the target

program and are not affected by this option.)

DYNAM option syntax

��
 NODYNAM

DYNAM

��

Default is: NODYNAM

Abbreviations are: DYN|NODYN

Restriction: The DYNAM compiler option must not be used in the following cases:

v COBOL programs that are processed by the CICS translator or the CICS compiler

option

v COBOL programs that have EXEC SQL statements and are run under CICS or

DB2 call attach facility (CAF)

If your COBOL program calls programs that have been linked as dynamic link

libraries (DLLs), you must not use the DYNAM option. You must instead compile the

program with the NODYNAM and DLL options.

RELATED TASKS

“Making both static and dynamic calls” on page 454

“Choosing the DYNAM or NODYNAM compiler option” on page 427

RELATED REFERENCES

“Conflicting compiler options” on page 304

EXIT

For information about the EXIT compiler option, see the first related reference

below.

RELATED REFERENCES

Appendix E, “EXIT compiler option,” on page 703

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 319

EXPORTALL

Use EXPORTALL to instruct the compiler to automatically export the PROGRAM-ID

name and each alternate entry-point name from each program definition when the

object deck is link-edited to form a DLL.

EXPORTALL option syntax

��
 NOEXPORTALL

EXPORTALL

��

Default is: NOEXPORTALL

Abbreviations are: EXP|NOEXP

With these symbols exported from the DLL, the exported program and entry-point

names can be called from programs in the root load module or in other DLL load

modules in the application, as well as from programs that are linked into the same

DLL.

Specification of the EXPORTALL option requires that the RENT linker option also be

used.

NOEXPORTALL instructs the compiler to not export any symbols. In this case the

programs are accessible only from other routines that are link-edited into the same

load module together with this COBOL program definition.

RELATED REFERENCES

“Conflicting compiler options” on page 304

FASTSRT

FASTSRT allows IBM DFSORT, or its equivalent, to perform the input and output

instead of COBOL.

FASTSRT option syntax

��
 NOFASTSRT

FASTSRT

��

Default is: NOFASTSRT

Abbreviations are: FSRT|NOFSRT

320 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Improving sort performance with FASTSRT” on page 225

FLAG

Use FLAG(x) to produce diagnostic messages at the end of the source listing for

errors of a severity level x or above.

FLAG option syntax

��

 FLAG(x)

,y

NOFLAG

��

Default is: FLAG(I,I)

Abbreviations are: F|NOF

x and y can be either I, W, E, S, or U.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or

above at the end of the source listing, with error messages of severity y and above

to be embedded directly in the source listing. The severity coded for y must not be

lower than the severity coded for x. To use FLAG(x,y), you must also specify the

SOURCE compiler option.

Error messages in the source listing are set off by the embedding of the statement

number in an arrow that points to the message code. The message code is followed

by the message text. For example:

 000413 MOVE CORR WS-DATE TO HEADER-DATE

==000413==> IGYPS2121-S " WS-DATE " was not defined as a data-name. . . .

When FLAG(x,y) is in effect, messages of severity y and above are embedded in the

listing after the line that caused the message. (See the related reference below for

information about messages for exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG does not suppress error messages for

compiler options.

Embedded messages

v Embedding level-U messages is not recommended. The specification of

embedded level-U messages is accepted, but does not produce any messages in

the source.

v The FLAG option does not affect diagnostic messages that are produced before

the compiler options are processed.

Chapter 17. Compiler options 321

v Diagnostic messages that are produced during processing of compiler options,

CBL or PROCESS statements, or BASIS, COPY, or REPLACE statements are not

embedded in the source listing. All such messages appear at the beginning of

the compiler output.

v Messages that are produced during processing of the *CONTROL or *CBL statement

are not embedded in the source listing.

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 279

FLAGSTD

Use FLAGSTD to specify the level or subset of Standard COBOL 85 to be regarded as

conforming, and to get informational messages about Standard COBOL 85

elements that are included in your program.

You can specify any of the following items for flagging:

v A selected Federal Information Processing Standard (FIPS) COBOL subset

v Any of the optional modules

v Obsolete language elements

v Any combination of subset and optional modules

v Any combination of subset and obsolete elements

v IBM extensions (these are flagged any time that FLAGSTD is specified, and

identified as ″nonconforming nonstandard″)

FLAGSTD option syntax

��
 NOFLAGSTD

FLAGSTD(x

)

yy

,O

��

Default is: NOFLAGSTD

Abbreviations are: None

x specifies the subset of Standard COBOL 85 to be regarded as conforming:

M Language elements that are not from the minimum subset are to be

flagged as ″nonconforming standard.″

I Language elements that are not from the minimum or the intermediate

subset are to be flagged as ″nonconforming standard.″

H The high subset is being used and elements will not be flagged by subset.

Elements that are IBM extensions will be flagged as ″nonconforming

Standard, IBM extension.″

yy specifies, by a single character or combination of any two, the optional modules

to be included in the subset:

322 Enterprise COBOL for z/OS V4.1 Programming Guide

D Elements from debug module level 1 are not flagged as ″nonconforming

standard.″

N Elements from segmentation module level 1 are not flagged as

″nonconforming standard.″

S Elements from segmentation module level 2 are not flagged as

″nonconforming standard.″

If S is specified, N is included (N is a subset of S).

O specifies that obsolete language elements are flagged as ″obsolete.″

The informational messages appear in the source program listing, and identify:

v The element as ″obsolete,″ ″nonconforming standard,″ or ″nonconforming

nonstandard″ (a language element that is both obsolete and nonconforming is

flagged as obsolete only)

v The clause, statement, or header that contains the element

v The source program line and beginning location of the clause, statement, or

header that contains the element

v The subset or optional module to which the element belongs

FLAGSTD requires the standard set of reserved words.

In the following example, the line number and column where a flagged clause,

statement, or header occurred are shown, as well as the message code and text. At

the bottom is a summary of the total of the flagged items and their type.

 LINE.COL CODE FIPS MESSAGE TEXT

 IGYDS8211 Comment lines before "IDENTIFICATION DIVISION":

 nonconforming nonstandard, IBM extension to

 ANS/ISO 1985.

 11.14 IGYDS8111 "GLOBAL clause": nonconforming standard, ANS/ISO

 1985 high subset.

 59.12 IGYPS8169 "USE FOR DEBUGGING statement": obsolete element

 in ANS/ISO 1985.

 FIPS MESSAGES TOTAL STANDARD NONSTANDARD OBSOLETE

 3 1 1 1

RELATED REFERENCES

“Conflicting compiler options” on page 304

INTDATE

INTDATE(ANSI) instructs the compiler to use the Standard COBOL 85 starting date

for integer dates used with date intrinsic functions. Day 1 is Jan 1, 1601.

INTDATE(LILIAN) instructs the compiler to use the Language Environment Lilian

starting date for integer dates used with date intrinsic functions. Day 1 is Oct 15,

1582.

Chapter 17. Compiler options 323

INTDATE option syntax

��
 ANSI

INTDATE(

LILIAN

)

��

Default is: INTDATE(ANSI)

Abbreviations are: None

With INTDATE(LILIAN), the date intrinsic functions return results that are

compatible with the Language Environment date callable services.

Usage note: When INTDATE(LILIAN) is in effect, CEECBLDY is not usable because

you have no way to turn an ANSI integer into a meaningful date by using either

intrinsic functions or callable services. If you code a CALL literal statement with

CEECBLDY as the target of the call when INTDATE(LILIAN) in effect, the compiler

diagnoses this and converts the call target to CEEDAYS.

RELATED TASKS

“Using date callable services” on page 62

LANGUAGE

Use the LANGUAGE option to select the language in which compiler output will be

printed. The information that will be printed in the selected language includes

diagnostic messages, source listing page and scale headers, FIPS message headers,

message summary headers, compilation summary, and headers and notations that

result from the selection of certain compiler options (MAP, XREF, VBREF, and

FLAGSTD).

LANGUAGE option syntax

�� LANGUAGE(name) ��

Default is: LANGUAGE(ENGLISH)

Abbreviations are: LANG(EN|UE|JA|JP)

name specifies the language for compiler output messages. Possible values for the

LANGUAGE option are shown in the table below.

 Table 48. Values of the LANGUAGE compiler option

Name Abbreviation1 Output language

ENGLISH EN Mixed-case English (the default)

JAPANESE JA, JP Japanese, using the Japanese character set

UENGLISH2 UE Uppercase English

324 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 48. Values of the LANGUAGE compiler option (continued)

Name Abbreviation1 Output language

1. If your installation’s system programmer has provided a language other than those

described, you must specify at least the first two characters of this other language’s

name.

2. To specify a language other than UENGLISH, the appropriate language feature must be

installed.

If the LANGUAGE option is changed at compile time (using CBL or PROCESS

statements), some initial text will be printed using the language that was in effect

at the time the compiler was started.

NATLANG: The NATLANG runtime option allows you to control the national language

to be used for the runtime environment, including error messages, month names,

and day-of-the-week names. The LANGUAGE compiler option and the NATLANG

runtime option act independently of each other. You can use them together with

neither taking precedence over the other.

LIB

If your program uses COPY, BASIS, or REPLACE statements, the LIB compiler option

must be in effect.

LIB option syntax

��
 NOLIB

LIB

��

Default is: NOLIB

Abbreviations are: None

For COPY and BASIS statements, you need additionally to define the library or

libraries from which the compiler can take the copied code. Define the libraries by

using DD statements, ALLOCATE commands, or environment variables, as appropriate

for your environment. When using JCL, also include a DD statement to allocate

SYSUT5.

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 325

LINECOUNT

Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of

the compilation listing, or use LINECOUNT(0) to suppress pagination.

LINECOUNT option syntax

�� LINECOUNT(nnn) ��

Default is: LINECOUNT(60)

Abbreviations are: LC

nnn must be an integer between 10 and 255, or 0.

If you specify LINECOUNT(0), no page ejects are generated in the compilation listing.

The compiler uses three lines of nnn for titles. For example, if you specify

LINECOUNT(60), 57 lines of source code are printed on each page of the output

listing.

LIST

Use the LIST compiler option to produce a listing of the assembler-language

expansion of your source code.

LIST option syntax

��
 NOLIST

LIST

��

Default is: NOLIST

Abbreviations are: None

These items will also be written to the output listing:

v Global tables

v Literal pools

v Information about WORKING-STORAGE and LOCAL-STORAGE

v Size of the program’s WORKING-STORAGE and LOCAL-STORAGE and its location in the

object code if the program is compiled with the NORENT option

The output is generated if:

326 Enterprise COBOL for z/OS V4.1 Programming Guide

v You specify the COMPILE option, or the NOCOMPILE(x) option is in effect and an

error of level x or higher does not occur.

v You do not specify the OFFSET option.

If you want to limit the assembler listing output, use *CONTROL (or *CBL) LIST or

NOLIST statements in the PROCEDURE DIVISION. Source statements that follow a

*CONTROL NOLIST statement are not included in the listing until a subsequent

*CONTROL LIST statement switches the output back to normal LIST format.

RELATED TASKS

“Getting listings” on page 375

RELATED REFERENCES

“Conflicting compiler options” on page 304

*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

MAP

Use MAP to produce a listing of the items defined in the DATA DIVISION.

MAP option syntax

��
 NOMAP

MAP

��

Default is: NOMAP

Abbreviations are: None

The output includes the following items:

v DATA DIVISION map

v Global tables

v Literal pools

v Nested program structure map, and program attributes

v Size of the program’s WORKING-STORAGE and LOCAL-STORAGE and its location in the

object code if the program is compiled with the NORENT option

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in the

DATA DIVISION. Source statements that follow *CONTROL NOMAP are not included in

the listing until a *CONTROL MAP statement switches the output back to normal MAP

format. For example:

*CONTROL NOMAP *CBL NOMAP

 01 A 01 A

 02 B 02 B

*CONTROL MAP *CBL MAP

By selecting the MAP option, you can also print an embedded MAP report in the

source code listing. The condensed MAP information is printed to the right of

data-name definitions in the FILE SECTION, LOCAL-STORAGE SECTION, and LINKAGE

Chapter 17. Compiler options 327

SECTION of the DATA DIVISION. When both XREF data and an embedded MAP

summary are on the same line, the embedded summary is printed first.

“Example: MAP output” on page 380

RELATED CONCEPTS

Chapter 19, “Debugging,” on page 365

RELATED TASKS

“Getting listings” on page 375

RELATED REFERENCES

*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

MDECK

The MDECK compiler option specifies that output from library processing (that is,

expansion of COPY, BASIS, REPLACE, or EXEC SQL INCLUDE statements) is written to a

file.

When Enterprise COBOL is running under z/OS UNIX, the MDECK output is written

in the current directory to a file that has the same name as the COBOL source file

and a suffix of .dek. For Enterprise COBOL running under TSO or batch, the MDECK

output is written to the data set defined by the SYSMDECK DD statement, which must

specify an MVS data set that has RECFM F or FB and an LRECL of 80 bytes.

MDECK option syntax

��
 NOMDECK

MDECK

COMPILE

(

NOCOMPILE

)

��

Default is: NOMDECK

Abbreviations are: NOMD, MD, MD(C), MD(NOC)

Suboptions:

v When MDECK(COMPILE) is in effect, compilation continues normally after library

processing and generation of the MDECK output file have completed, subject to the

settings of the COMPILE|NOCOMPILE, DECK|NODECK, and OBJECT|NOOBJECT compiler

options.

v When MDECK(NOCOMPILE) is in effect, compilation is terminated after library

processing has completed and the expanded source program file has been

written. The compiler does no further syntax checking or code generation

regardless of the settings of the COMPILE, DECK, and OBJECT compiler options.

When you specify MDECK with no suboption, MDECK(COMPILE) is implied.

328 Enterprise COBOL for z/OS V4.1 Programming Guide

Option specification:

You cannot specify MDECK in a PROCESS or CBL statement. You can specify the option

only by using:

v The PARM parameter in JCL

v A cob2 command option

v An installation default

v The COBOPT environment variable

Contents of the MDECK output file:

When you use the MDECK option with the CICS compiler option (integrated CICS

translator) or the SQL compiler option (DB2 coprocessor), in general, EXEC CICS or

EXEC SQL statements in the COBOL source program are included in the MDECK

output as is. However, EXEC SQL INCLUDE statements are expanded in the MDECK

output in the same manner as COPY statements.

CBL, PROCESS, *CONTROL, and *CBL card images are passed to the MDECK output file in

the proper locations.

For a batch compilation (multiple COBOL source programs in a single input file), a

single MDECK output file that contains the complete expanded source is created.

Any SEQUENCE compiler-option processing is reflected in the MDECK file.

COPY statements are included in the MDECK file as comments.

RELATED TASKS

“Starting the compiler from an assembler program” on page 263

“Defining the library-processing output file (SYSMDECK)” on page 271

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 18, “Compiler-directing statements,” on page 361

NAME

Use NAME to generate a link-edit NAME card for each object module. You can also use

NAME to generate names for each load module when you are doing batch

compilations.

When NAME is specified, a NAME card is appended to each object module that is

created. Load module names are formed using the rules for forming module names

from PROGRAM-ID statements.

Chapter 17. Compiler options 329

NAME option syntax

��
 NONAME

NAME

NOALIAS

(

ALIAS

)

��

Default is: NONAME, or NAME(NOALIAS) if only NAME is specified

Abbreviations are: None

If you specify NAME(ALIAS), and your program contains ENTRY statements, a

link-edit ALIAS card is generated for each ENTRY statement.

The NAME or NAME(ALIAS) option cannot be used for compiling programs that will

be prelinked with the Language Environment prelinker.

RELATED REFERENCES

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

NSYMBOL

The NSYMBOL option controls the interpretation of the N symbol used in literals and

PICTURE clauses, indicating whether national or DBCS processing is assumed.

NSYMBOL option syntax

��
 NATIONAL

NSYMBOL(

DBCS

)

��

Default is: NSYMBOL(NATIONAL)

Abbreviations are: NS(NAT|DBCS)

With NSYMBOL(NATIONAL):

v Data items defined with a PICTURE clause that consists only of the symbol N

without the USAGE clause are treated as if the USAGE NATIONAL clause is specified.

v Literals of the form N". . ." or N’. . .’ are treated as national literals.

With NSYMBOL(DBCS):

v Data items defined with a PICTURE clause that consists only of the symbol N

without the USAGE clause are treated as if the USAGE DISPLAY-1 clause is specified.

v Literals of the form N". . ." or N’. . .’ are treated as DBCS literals.

330 Enterprise COBOL for z/OS V4.1 Programming Guide

The NSYMBOL(DBCS) option provides compatibility with previous releases of IBM

COBOL, and the NSYMBOL(NATIONAL) option makes the handling of the above

language elements consistent with Standard COBOL 2002 in this regard.

NSYMBOL(NATIONAL) is recommended for applications that use Unicode data or

object-oriented syntax for Java interoperability.

RELATED REFERENCES

“Conflicting compiler options” on page 304

NUMBER

Use the NUMBER compiler option if you have line numbers in your source code and

want those numbers to be used in error messages and SOURCE, MAP, LIST, and XREF

listings.

NUMBER option syntax

��
 NONUMBER

NUMBER

��

Default is: NONUMBER

Abbreviations are: NUM|NONUM

If you request NUMBER, the compiler checks columns 1 through 6 to make sure that

they contain only numbers and that the numbers are in numeric collating

sequence. (In contrast, SEQUENCE checks the characters in these columns according

to EBCDIC collating sequence.) When a line number is found to be out of

sequence, the compiler assigns to it a line number with a value one higher than the

line number of the preceding statement. The compiler flags the new value with

two asterisks and includes in the listing a message indicating an out-of-sequence

error. Sequence-checking continues with the next statement, based on the newly

assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source

program line numbers and the copybook line numbers are coordinated.

If you are doing a batch compilation and LIB and NUMBER are in effect, all programs

in the batch compile will be treated as a single input file. The sequence numbers of

the entire input file must be in ascending order.

Use NONUMBER if you do not have line numbers in your source code, or if you want

the compiler to ignore the line numbers you do have in your source code. With

NONUMBER in effect, the compiler generates line numbers for your source statements

and uses those numbers as references in listings.

Chapter 17. Compiler options 331

NUMPROC

Use NUMPROC(NOPFD) whenever your numeric internal decimal and zoned decimal

data might use nonpreferred signs.

NUMPROC option syntax

��
 NOPFD

NUMPROC(

PFD

)

MIG

��

Default is: NUMPROC(NOPFD)

Abbreviations are: None

The compiler accepts any valid sign configuration: X’A’, X’B’, X’C’, X’D’, X’E’, or

X’F’. NUMPROC(NOPFD) is the recommended option in most cases.

NUMPROC(PFD) improves the performance of processing numeric internal decimal

and zoned decimal data. Use this option only if your program data agrees exactly

with the following IBM system standards:

Zoned decimal, unsigned: High-order 4 bits of the sign byte contain X’F’.

Zoned decimal, signed overpunch: High-order 4 bits of the sign byte contain X’C’

if the number is positive or 0, and X’D’ if it is not.

Zoned decimal, separate sign: Separate sign contains the character ’+’ if the

number is positive or 0, and ’-’ if it is not.

Internal decimal, unsigned: Low-order 4 bits of the low-order byte contain X’F’.

Internal decimal, signed: Low-order 4 bits of the low-order byte contain X’C’ if the

number is positive or 0, and X’D’ if it is not.

Data produced by COBOL arithmetic statements conforms to the above IBM

system standards. However, using REDEFINES and group moves could change data

so that it no longer conforms. If you use NUMPROC(PFD), use the INITIALIZE

statement to initialize data fields, rather than using group moves.

Using NUMPROC(PFD) can affect class tests for numeric data. You should use

NUMPROC(NOPFD) or NUMPROC(MIG) if a COBOL program calls programs written in

PL/I or FORTRAN.

Sign representation is affected not only by the NUMPROC option, but also by the

installation-time option NUMCLS.

Use NUMPROC(MIG) to aid in migrating OS/VS COBOL programs to Enterprise

COBOL. When NUMPROC(MIG) is in effect, the following processing occurs:

v Preferred signs are created only on the output of MOVE statements and arithmetic

operations.

332 Enterprise COBOL for z/OS V4.1 Programming Guide

v No explicit sign repair is done on input.

v Some implicit sign repair might occur during conversion.

v Numeric comparisons are performed by a decimal comparison, not a logical

comparison.

RELATED TASKS

“Checking for incompatible data (numeric class test)” on page 56

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 55

OBJECT

Use OBJECT to place the generated object code on disk or tape to be later used as

input for the linkage editor or binder.

OBJECT option syntax

��
 OBJECT

NOOBJECT

��

Default is: OBJECT

Abbreviations are: OBJ|NOOBJ

If you specify OBJECT, include a SYSLIN DD statement in your JCL for compilation.

The only difference between DECK and OBJECT is in the routing of the data sets:

v DECK output goes to the data set associated with ddname SYSPUNCH.

v OBJECT output goes to the data set associated with ddname SYSLIN.

Use the option that your installation guidelines recommend.

RELATED REFERENCES

“Conflicting compiler options” on page 304

OFFSET

Use OFFSET to produce a condensed PROCEDURE DIVISION listing.

Chapter 17. Compiler options 333

OFFSET option syntax

��
 NOOFFSET

OFFSET

��

Default is: NOOFFSET

Abbreviations are: OFF|NOOFF

With OFFSET, the condensed PROCEDURE DIVISION listing will contain line numbers,

statement references, and the location of the first instruction generated for each

statement. In addition, the listing also shows:

v Global tables

v Literal pools

v Size of the program’s WORKING-STORAGE, and its location in the object code if the

program is compiled with the NORENT option

RELATED REFERENCES

“Conflicting compiler options” on page 304

OPTFILE

Use OPTFILE to enable the specifying of COBOL compiler options in a data set.

Using a compiler-option data set circumvents the 100-character limit on options

specified in a JCL PARM string.

OPTFILE option syntax

�� OPTFILE ��

Default is: None

Abbreviations are: None

You can specify OPTFILE as a compiler invocation option or in the PROCESS or CBL

statement in your COBOL source program. OPTFILE cannot be specified as an

installation default.

OPTFILE is ignored if you compile using the cob2 command in the z/OS UNIX

environment. (In that environment, the COBOPT environment variable provides a

capability that is comparable to OPTFILE.)

If OPTFILE is in effect, compiler options are read from the data set that you identify

in a SYSOPTF DD statement. A SYSOPTF data set must have RECFM F or FB and an

LRECL of 80 bytes. For further details about the format of a SYSOPTF data set, see the

related task below about defining a compiler-option data set.

334 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|

|

|

|||||||
|
||

|

|

|
|
|

|
|
|

|
|
|
|

The precedence of options in the SYSOPTF data set is determined by where you

specify the OPTFILE option. For example, if you specify OPTFILE in the invocation

PARM string, an option specified later in the PARM string supersedes any option

specified in the SYSOPTF data set that conflicts with it.

(Conceptually, OPTFILE in the PARM string is replaced with the options that are in

the SYSOPTF data set; then the usual rules about precedence of compiler options

and conflicting compiler options apply.)

If you start the COBOL compiler from within an assembler program, you can use

the alternate ddname list to specify a ddname to be used instead of SYSOPTF to

identify the compiler-option data set.

RELATED TASKS

“Starting the compiler from an assembler program” on page 263

“Defining a compiler-option data set (SYSOPTF)” on page 267

“Specifying compiler options under z/OS” on page 271

Chapter 15, “Compiling under UNIX,” on page 283

RELATED REFERENCES

“Conflicting compiler options” on page 304

OPTIMIZE

Use OPTIMIZE to reduce the run time of your object program. Optimization might

also reduce the amount of storage your object program uses.

OPTIMIZE option syntax

��
 NOOPTIMIZE

OPTIMIZE

STD

(

FULL

)

��

Default is: NOOPTIMIZE

Abbreviations are: OPT|NOOPT

If OPTIMIZE is specified without any suboptions, OPTIMIZE(STD) will be in effect.

The FULL suboption requests that, in addition to the optimizations performed with

OPT(STD), the compiler discard unreferenced data items from the DATA DIVISION

and suppress generation of code to initialize these data items to the values in their

VALUE clauses. When OPT(FULL) is in effect, all unreferenced level-77 items and

elementary level-01 items are discarded. In addition, level-01 group items are

discarded if none of their subordinate items are referenced. The deleted items are

shown in the listing. If the MAP option is in effect, a BL number of XXXXX in the data

map information indicates that the data item was discarded.

Chapter 17. Compiler options 335

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

Unused data items: Do not use OPT(FULL) if your programs depend on making use

of unused data items. In the past, this was commonly done in two ways:

v A technique sometimes used in old OS/VS COBOL programs was to place an

unreferenced table after a referenced table and use out-of-range subscripts on the

first table to access the second table. To see if your programs use this technique,

use the SSRANGE compiler option with the CHECK(ON) runtime option. To work

around this problem, use the ability of newer COBOL to code large tables and

use just one table.

v Place eye-catcher data items in the WORKING-STORAGE SECTION to identify the

beginning and end of the program data or to mark a copy of a program for a

library tool that uses the data to identify the version of a program. To solve this

problem, initialize these items with PROCEDURE DIVISION statements rather than

VALUE clauses. With this method, the compiler will consider these items used and

will not delete them.

The OPTIMIZE option is turned off in the case of a severe-level error or higher.

RELATED CONCEPTS

“Optimization” on page 657

RELATED REFERENCES

“Conflicting compiler options” on page 304

“TEST” on page 347

OUTDD

Use OUTDD to specify that you want DISPLAY output that is directed to the system

logical output device to go to a specific ddname. You can specify a file in the

hierarchical file system with the ddname named in OUTDD. See the related task

about displaying data for the behavior when this ddname is not allocated.

OUTDD option syntax

�� OUTDD(ddname) ��

Default is: OUTDD(SYSOUT)

Abbreviations are: OUT

The MSGFILE runtime option allows you to specify the ddname of the file to which

all runtime diagnostics and reports generated by the RPTOPTS and RPTSTG runtime

options are written. The IBM-supplied default is MSGFILE(SYSOUT). If the OUTDD

compiler option and the MSGFILE runtime option both specify the same ddname,

the error message information and DISPLAY output directed to the system logical

output device are routed to the same destination.

Restriction: The OUTDD option has no effect under CICS.

336 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Displaying data on the system logical output device” on page 39

“Coding COBOL programs to run under CICS” on page 405

RELATED REFERENCES

Language Environment Programming Reference (MSGFILE)

PGMNAME

The PGMNAME option controls the handling of program-names and entry-point

names.

PGMNAME option syntax

��
 COMPAT

PGMNAME(

LONGMIXED

)

LONGUPPER

��

Default is: PGMNAME(COMPAT)

Abbreviations are: PGMN(LM|LU|CO)

LONGUPPER can be abbreviated as UPPER, LU, or U. LONGMIXED can be abbreviated as

MIXED, LM, or M.

PGMNAME controls the handling of names used in the following contexts:

v Program-names defined in the PROGRAM-ID paragraph

v Program entry-point names in the ENTRY statement

v Program-name references in:

– Calls to nested programs

– Static calls to separately compiled programs

– Static SET procedure-pointer TO ENTRY literal statement

– Static SET function-pointer TO ENTRY literal statement

– CANCEL of a nested program

PGMNAME(COMPAT)

With PGMNAME(COMPAT), program-names are handled in a manner compatible with

older versions of COBOL compilers:

v The program-name can be up to 30 characters in length.

v All the characters used in the name must be alphabetic, digits, or the hyphen,

except that if the program-name is entered in the literal format and is in the

outermost program, then the literal can also contain the extension characters @,

#, and $.

v At least one character must be alphabetic.

v The hyphen cannot be used as the first or last character.

Chapter 17. Compiler options 337

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

External program-names are processed by the compiler as follows:

v They are folded to uppercase.

v They are truncated to eight characters.

v Hyphens are translated to zero (0).

v If the first character is not alphabetic, it is converted as follows:

– 1-9 are translated to A-I.

– Anything else is translated to J.

PGMNAME(LONGUPPER)

With PGMNAME(LONGUPPER), program-names that are specified in the PROGRAM-ID

paragraph as COBOL user-defined words must follow the normal COBOL rules for

forming a user-defined word:

v The program-name can be up to 30 characters in length.

v All the characters used in the name must be alphabetic, digits, or the hyphen.

v At least one character must be alphabetic.

v The hyphen cannot be used as the first or last character.

When a program-name is specified as a literal, in either a definition or a reference,

then:

v The program-name can be up to 160 characters in length.

v All the characters used in the name must be alphabetic, digits, or the hyphen.

v At least one character must be alphabetic.

v The hyphen cannot be used as the first or last character.

External program-names are processed by the compiler as follows:

v They are folded to uppercase.

v Hyphens are translated to zero (0).

v If the first character is not alphabetic, it is converted as follows:

– 1-9 are translated to A-I.

– Anything else is translated to J.

Names of nested programs are folded to uppercase by the compiler but otherwise

are processed as is, without truncation or translation.

PGMNAME(LONGMIXED)

With PGMNAME(LONGMIXED), program-names are processed as is, without truncation,

translation, or folding to uppercase.

With PGMNAME(LONGMIXED), all program-name definitions must be specified using

the literal format of the program-name in the PROGRAM-ID paragraph or ENTRY

statement.

The literal used for a program-name (in any of the contexts listed above as affected

by the PGMNAME option) can contain any character in the range X’41’-X’FE’.

Usage notes

v The following elements are not affected by the PGMNAME option:

– Class-names and method-names.

338 Enterprise COBOL for z/OS V4.1 Programming Guide

– System-names (assignment-names in SELECT . . . ASSIGN, and text-names or

library-names in COPY statements).

– Dynamic calls. Dynamic calls are resolved with the target program-name

truncated to eight characters, folded to uppercase, and translation of

embedded hyphens or a leading digit.

– CANCEL of nonnested programs. Name resolution uses the same mechanism as

for a dynamic call.
v The PGMNAME option does affect nested-program calls and static calls to programs

that are linked together with the caller.

v Link-edit considerations: COBOL programs that are compiled with the

PGMNAME(LONGUPPER) or PGMNAME(LONGMIXED) option must be link-edited in AMODE

31.

v Dynamic calls are not permitted to COBOL programs compiled with the

PGMNAME(LONGMIXED) or PGMNAME(LONGUPPER) options unless the program-name is

less than or equal to 8 bytes and all uppercase. In addition, the name of the

program must be identical to the name of the module that contains it.

v When using the extended character set supported by PGMNAME(LONGMIXED), be

sure to use names that conform to the linkage-editor, binder, prelinker, or system

conventions that apply, depending on the mechanism used to resolve the names.

Using characters such as commas or parentheses is not recommended, because

these characters are used in the syntax of linkage-editor and binder control

statements.

QUOTE/APOST

Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to

represent one or more quotation mark (″) characters. Use APOST if you want the

figurative constant [ALL] QUOTE or [ALL] QUOTES to represent one or more single

quotation mark (’) characters.

QUOTE/APOST option syntax

��
 QUOTE

APOST

��

Default is: QUOTE

Abbreviations are: Q|APOST

Delimiters: You can use either quotation marks or single quotation marks as literal

delimiters regardless of whether the APOST or QUOTE option is in effect. The

delimiter character used as the opening delimiter for a literal must be used as the

closing delimiter for that literal.

Chapter 17. Compiler options 339

RENT

A program compiled as RENT is generated as a reentrant object program. A program

compiled as NORENT is generated as a nonreentrant object program. Either a

reentrant or a nonreentrant program can be invoked as a main program or as a

subprogram.

RENT option syntax

��
 RENT

NORENT

��

Default is: RENT

Abbreviations are: None

DATA and RMODE settings: The RENT option interacts with other compiler options that

affect storage and its addressability. When a reentrant program is to be run with

extended addressing, you can use the DATA(24|31) option to control whether

dynamic data areas are allocated in unrestricted storage or in storage obtained

from below 16 MB. Compile programs with RENT or RMODE(ANY) if they will be run

with extended addressing in virtual storage addresses above 16 MB.

RENT also affects the RMODE (residency mode) of your generated object program. All

Enterprise COBOL programs are AMODE ANY.

DATA: The setting of the DATA option does not affect programs compiled with

NORENT.

For information about which Enterprise COBOL programs need to be reentrant, see

the related task below about making programs reentrant.

Link-edit considerations: If all programs in a load module are compiled with RENT,

it is recommended that the load module be link-edited with the RENT linkage-editor

or binder option. (Use the REUS linkage-editor or binder option instead if the load

module will also contain any non-COBOL programs that are serially reusable.)

If any program in a load module is compiled with NORENT, the load module must

not be link-edited with the RENT or REUS link-edit attributes. The NOREUS

linkage-editor or binder option is needed to ensure that the CANCEL statement will

guarantee a fresh copy of the program on a subsequent CALL.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Making programs reentrant” on page 462

DB2 Application Programming and SQL Guide (Using reentrant code)

340 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNAPK10

RELATED REFERENCES

“Conflicting compiler options” on page 304

RMODE

The RMODE option setting influences the RMODE (residency mode) of your generated

object program.

RMODE option syntax

��
 AUTO

RMODE(

24

)

ANY

��

Default is: AUTO

Abbreviations are: None

A program compiled with the RMODE(AUTO) option will have RMODE 24 if NORENT is

specified, and RMODE ANY if RENT is specified. RMODE(AUTO) is compatible with older

compilers such as VS COBOL II, which produced RMODE 24 for programs compiled

with NORENT and RMODE ANY for programs compiled with RENT.

A program compiled with the RMODE(24) option will have RMODE 24 whether NORENT

or RENT is specified.

A program compiled with the RMODE(ANY) option will have RMODE ANY whether

NORENT or RENT is specified.

DATA and RENT: The RMODE option interacts with other compiler options and runtime

options that affect storage and its addressability. See the related concepts for

information about passing data between programs with different modes.

Link-edit considerations: When the object code that COBOL generates has an

attribute of RMODE 24, you must link-edit it with RMODE 24. When the object code

that COBOL generates has an attribute of RMODE ANY, you can link-edit it with

RMODE ANY or RMODE 24.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 173

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 341

SEQUENCE

When you use SEQUENCE, the compiler examines columns 1 through 6 to check that

the source statements are arranged in ascending order according to their EBCDIC

collating sequence. The compiler issues a diagnostic message if any statements are

not in ascending order.

Source statements with blanks in columns 1 through 6 do not participate in this

sequence check and do not result in messages.

SEQUENCE option syntax

��
 SEQUENCE

NOSEQUENCE

��

Default is: SEQUENCE

Abbreviations are: SEQ|NOSEQ

If you use COPY statements and SEQUENCE is in effect, be sure that your source

program sequence fields and the copybook sequence fields are coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to numeric,

rather than EBCDIC, collating sequence.

If you are doing a batch compilation and LIB and SEQUENCE are in effect, all

programs in the batch compilation are treated as a single input file. The sequence

numbers of the entire input file must be in ascending order.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

RELATED TASKS

“Finding line sequence problems” on page 371

SIZE

Use SIZE to indicate the amount of main storage to be made available for

compilation.

SIZE option syntax

��
 MAX

SIZE(

nnnnn

)

nnnK

��

342 Enterprise COBOL for z/OS V4.1 Programming Guide

Default is: SIZE(MAX)

Abbreviations are: SZ

nnnnn specifies a decimal number, which must be at least 851968.

nnnK specifies a decimal number in 1-KB increments, where 1 KB = 1024 bytes.

The minimum acceptable value is 832K.

MAX requests the largest available block of storage in the user region.

Do not use SIZE(MAX) if you require that the compiler leave a specific amount of

unused storage available in the user region. For example, if you are using the CICS

or SQL compiler option, use a value such as SIZE(4000K). (This value should work

for most programs.) If you compile in 31-bit mode and specify SIZE(MAX), the

compiler uses storage as follows:

v Above the 16-MB line: all the storage in the user region

v Below the 16-MB line: storage for:

– Work-file buffers

– Compiler modules that must be loaded below the line

SOURCE

Use SOURCE to get a listing of your source program. This listing will include any

statements embedded by PROCESS or COPY statements.

SOURCE option syntax

��
 SOURCE

NOSOURCE

��

Default is: SOURCE

Abbreviations are: S|NOS

You must specify SOURCE if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE

statements in your PROCEDURE DIVISION. Source statements that follow a *CONTROL

NOSOURCE statement are not included in the listing until a subsequent *CONTROL

SOURCE statement switches the output back to normal SOURCE format.

“Example: MAP output” on page 380

RELATED REFERENCES

*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

Chapter 17. Compiler options 343

SPACE

Use SPACE to select single-, double-, or triple-spacing in your source code listing.

SPACE option syntax

��
 1

SPACE(

2

)

3

��

Default is: SPACE(1)

Abbreviations are: None

SPACE has meaning only when the SOURCE compiler option is in effect.

RELATED REFERENCES

“SOURCE” on page 343

SQL

Use the SQL compiler option to enable the DB2 coprocessor capability and to

specify DB2 suboptions. You must specify the SQL option if a COBOL source

program contains SQL statements and it has not been processed by the DB2

precompiler.

SQL option syntax

��
 NOSQL

SQL

(″DB2-suboption-string″)

��

Default is: NOSQL

Abbreviations are: None

When you use the SQL option, the DB2 coprocessor writes the database request

module (DBRM) to ddname DBRMLIB. DB2 must be available on the machine on

which you compile.

If you specify the NOSQL option, any SQL statements found in the source program

are diagnosed and discarded.

Use either quotation marks or single quotation marks to delimit the string of DB2

suboptions.

344 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

You can partition a long suboption string into multiple suboption strings in

multiple CBL statements. For example:

//STEP1 EXEC IGYWC, . . .

// PARM.COBOL=’SQL("string1")’

//COBOL.SYSIN DD *

 CBL SQL("string2")

 CBL SQL(’string3’)

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DRIVER1.

 . . .

The DB2 suboptions are concatenated in the order of their appearance. Thus in the

example above, the compiler passes the following suboption string to the DB2

coprocessor:

"string1 string2 string3"

The concatenated strings are delimited with single spaces as shown. If multiple

instances of the same DB2 option are found, the last specification of each option

prevails. The compiler limits the length of the concatenated DB2 suboptions string

to 4 KB.

RELATED CONCEPTS

“DB2 coprocessor” on page 417

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Compiling with the SQL option” on page 421

“Separating DB2 suboptions” on page 422

RELATED REFERENCES

“Conflicting compiler options” on page 304

SQLCCSID

Use the SQLCCSID compiler option to control whether the CODEPAGE compiler option

will influence the processing of SQL statements in your COBOL programs.

SQLCCSID option syntax

��
 SQLCCSID

NOSQLCCSID

��

Default is: SQLCCSID

Abbreviations are: SQLC|NOSQLC

The SQLCCSID option has an effect only when you use the integrated DB2

coprocessor (SQL compiler option).

Chapter 17. Compiler options 345

RELATED CONCEPTS

“DB2 coprocessor” on page 417

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Programming with the SQLCCSID or NOSQLCCSID option” on page 424

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 424

“CODEPAGE” on page 309

“SQL” on page 344

SSRANGE

Use SSRANGE to generate code that checks whether subscripts (including ALL

subscripts) or indexes try to reference an area outside the region of the table. Each

subscript or index is not individually checked for validity; rather, the effective

address is checked to ensure that it does not cause a reference outside the region of

the table.

Variable-length items are also checked to ensure that the reference is within their

maximum defined length.

SSRANGE option syntax

��
 NOSSRANGE

SSRANGE

��

Default is: NOSSRANGE

Abbreviations are: SSR|NOSSR

Reference modification expressions are checked to ensure that:

v The starting position is greater than or equal to 1.

v The starting position is not greater than the current length of the subject data

item.

v The length value (if specified) is greater than or equal to 1.

v The starting position and length value (if specified) do not reference an area

beyond the end of the subject data item.

If SSRANGE is in effect at compile time, range-checking code is generated. You can

inhibit range checking by specifying the CHECK(OFF) runtime option. Doing so

leaves range-checking code dormant in the object code. Optionally, the

range-checking code can be used to aid in resolving unexpected errors without

recompilation.

If an out-of-range condition is detected, an error message is generated and the

program is terminated.

346 Enterprise COBOL for z/OS V4.1 Programming Guide

Remember: Range checking is done only if you compile a program with the

SSRANGE option and run it with the CHECK(ON) option.

RELATED CONCEPTS

“Reference modifiers” on page 109

RELATED TASKS

“Checking for valid ranges” on page 371

TERMINAL

Use TERMINAL to send progress and diagnostic messages to the SYSTERM ddname.

TERMINAL option syntax

��
 NOTERMINAL

TERMINAL

��

Default is: NOTERMINAL

Abbreviations are: TERM|NOTERM

Use NOTERMINAL if you do not want this additional output.

TEST

Use TEST to produce object code that enables Debug Tool to perform batch and

interactive debugging. With TEST, you can also enable the inclusion of symbolic

variables in the formatted dumps produced by Language Environment.

TEST option syntax

��
 NOTEST

TEST

HOOK

,NOSEPARATE

,NOEJPD

(

)

NOHOOK

,SEPARATE

,EJPD

��

Option default is: NOTEST

Suboption defaults are: HOOK, NOSEPARATE, NOEJPD

Abbreviations are: SEP|NOSEP

Chapter 17. Compiler options 347

|

|

||

|
||

|

|

You can specify TEST suboptions in any order, and can specify any combination of

suboptions (one, two, or all). If you code a left parenthesis after TEST, however, you

must code at least one suboption.

The amount of debugging support available depends on which TEST suboptions

you use, as explained below. Use NOTEST if you do not want to generate object code

that has debugging information and do not require that formatted dumps include

symbolic variables.

Hook suboptions (compiled-in versus dynamic hooks)

HOOK Compiled-in hooks are generated at all statements, labels, and path points,

and at all program entry and exit points (both in outermost and in

contained programs). In addition, if the DATEPROC option is in effect, hooks

are generated at all date-processing statements.

 A path point is any location in a program where the logic flow is not

necessarily sequential, or can change. Some examples of path points are

IF-THEN-ELSE constructs, PERFORM loops, ON SIZE ERROR phrases, and CALL

statements.

NOHOOK No compiled-in hooks are generated. With TEST(NOHOOK), you can use the

Dynamic Debug facility of Debug Tool (SET DYNDEBUG ON) to interactively

debug your program.

Symbolic debugging information suboptions

Information needed to enable symbolic debugging is always generated if the TEST

option is in effect.

SEPARATE

Specify the SEPARATE suboption to control module size while retaining

debugging capability. Symbolic information is written to the SYSDEBUG

data set instead of to the object module. See the section below about

controlling module size while retaining debugging capability.

NOSEPARATE

Specify the NOSEPARATE suboption to include symbolic debugging

information in the object module.

JUMPTO and GOTO enablement suboptions

The EJPD and NOEJPD suboptions control enablement of the Debug Tool commands

JUMPTO and GOTO in production debugging sessions. These suboptions have an

effect only if the TEST(NOHOOK) and OPTIMIZE compiler options are specified.

EJPD When TEST(NOHOOK,. . .,EJPD) and OPTIMIZE are specified:

v The JUMPTO and GOTO commands are enabled.

v The amount of program optimization is reduced. Optimization is done

within statements, but most optimizations do not cross statement

boundaries.

NOEJPD When TEST(NOHOOK,. . .,NOEJPD) and OPTIMIZE are specified:

v The JUMPTO and GOTO commands are not enabled.

v The normal amount of program optimization is done.

Controlling module size while retaining debugging capability:

348 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

||
|
|
|

||
|
|

|
|

|

|
|
|

||

|

|
|
|

||

|

|

The TEST option causes the compiler to generate debug information tables that

Debug Tool uses to resolve data-names, paragraph-names, and the like. This

information can take a lot of storage. You can choose either to compile this

information into the object program or to write it to the separate SYSDEBUG data

set:

v For smaller load modules, use the SEPARATE suboption and keep the separate

debugging files for use during Debug Tool sessions.

v To avoid having to manage separate debugging files, compile with the

NOSEPARATE suboption; note though that this suboption results in larger load

modules.

If you invoke the COBOL compiler from JCL or TSO and you specify

TEST(. . .,SEPARATE,. . .), the symbolic debug information tables are written to

the data set that you specify in the SYSDEBUG DD statement. For details about coding

that statement and about the SYSDEBUG data set, see the related information

below about defining the debug data set and about logical record length and block

size.

When you invoke the COBOL compiler from the z/OS UNIX shell and you specify

TEST(. . .,SEPARATE,. . .), the symbolic debug information tables are written to

file.dbg in the current directory, where file is the name of the COBOL source file.

Performance versus debugging capability:

You can control the amount of debugging capability that you get and so also the

program performance, as follows:

v For the best performance, but with some restrictions on debugging, compile

using OPTIMIZE and TEST(NOHOOK,. . .,NOEJPD).

When you use the Dynamic Debug facility of Debug Tool (SET DYNDEBUG ON),

you can interactively debug your program even if the program has no

compiled-in debug hooks.

With TEST(NOHOOK,. . .,NOEJPD), you can also compile using OPTIMIZE (either

OPT(STD) or OPT(FULL)) for a more efficient program, but with some restrictions

on debugging:

– The Debug Tool commands JUMPTO and GOTO are not supported.

– Except for the DESCRIBE ATTRIBUTES command, Debug Tool commands cannot

refer to any data item that was discarded from a program by the OPT(FULL)

option.

– The Debug Tool command AT CALL entry-name is not supported.
v For some reduction in program performance from the production-debugging

scenario above, but to enable the Debug Tool commands JUMPTO and GOTO,

specify OPTIMIZE and TEST(NOHOOK,. . .,EJPD).

The restrictions above about referring to items discarded by OPT(FULL) and

about the AT CALL command also apply when you use this combination of

options.

v For medium performance but fewer restrictions on debugging, specify NOOPT and

TEST(NOHOOK).

This combination does not run as fast as optimized code, but it provides

increased debugging capability. All Debug Tool commands are supported except

AT CALL entry-name.

v For slowest performance but maximum debugging capability, specify NOOPT and

TEST(HOOK).

Chapter 17. Compiler options 349

|

|

|

|

|

|

|
|
|

|
|
|

|

|
|

TEST(HOOK) causes the compiler to put compiled-in hooks at every statement,

resulting in slower code, but all Debug Tool commands are supported.

Language Environment:

The TEST option specified with any of its suboptions can improve your formatted

dumps from Language Environment by adding these two features to the dumps:

v A line number that indicates the failing statement, rather than just an offset

v The values of the program variables

With NOTEST, the dump will not have program variables nor the line number of the

failing statement.

Enterprise COBOL uses the Language Environment-provided dump services to

produce dumps that are consistent in content and format with those that are

produced by other Language Environment-conforming member languages.

Whether Language Environment produces a dump for unhandled conditions

depends on the setting of the runtime option TERMTHDACT. If you specify

TERMTHDACT(DUMP), a dump is generated when a condition of severity 2 or greater

goes unhandled.

SEPARATE suboption and Language Environment:

For programs that are compiled using TEST(. . .,SEPARATE,. . .), Language

Environment gets the name of the separate debug data set (which is written to

ddname SYSDEBUG) from the object program. To change the name of the separate

debug data set, use the Language Environment COBOL debug file exit.

RELATED TASKS

“Defining the debug data set (SYSDEBUG)” on page 270

Language Environment Debugging Guide (Generating a Language Environment

 dump with TERMTHDACT)

Debug Tool User’s Guide (Starting Debug Tool by using the TEST runtime

 option)

Language Environment Customization (Modifying the COBOL debug file name)

RELATED REFERENCES

“Logical record length and block size” on page 266

“cob2 input and output files” on page 289

“Conflicting compiler options” on page 304

“OPTIMIZE” on page 335

Language Environment Programming Reference (TEST | NOTEST)

THREAD

THREAD indicates that a COBOL program is to be enabled for execution in a

Language Environment enclave that has multiple POSIX threads or PL/I tasks.

350 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/eqa8ug00
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea5180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

THREAD option syntax

��
 NOTHREAD

THREAD

��

Default is: NOTHREAD

Abbreviations are: None

A program that has been compiled with the THREAD option can also be used in a

nonthreaded application. However, if a COBOL program is to be run in a threaded

application, all the COBOL programs in the Language Environment enclave must

be compiled with the THREAD option.

NOTHREAD indicates that the COBOL program is not to be enabled for execution in

an enclave that has multiple POSIX threads or PL/I tasks.

Programs compiled using compilers earlier than Enterprise COBOL are treated as if

compiled with NOTHREAD.

When the THREAD option is in effect, the following items are not supported. If

encountered, they are diagnosed as errors:

v ALTER statement

v DEBUG-ITEM special register

v GO TO statement without procedure-name

v INITIAL phrase in PROGRAM-ID clause

v Nested programs

v RERUN

v Segmentation module

v SORT or MERGE statements

v STOP literal statement

v USE FOR DEBUGGING statement

Additionally, some language constructs have different semantics than in the

nonthreaded case.

Although threaded applications are subject to a number of programming and

environment restrictions, the use of a program in nonthreaded applications is not

so restricted. For example, a program compiled with the THREAD option can run in

the CICS and IMS environments, can run AMODE 24, and can call and be called by

other programs that are not enabled for multithreading, provided that the

application does not contain multiple POSIX threads or PL/I tasks at run time.

Programs compiled with the THREAD option are supported in a reusable

environment that is created by calling the Language Environment preinitialization

routine CEEPIPI. But a reusable environment created by calling IGZERRE or

ILBOSTP0 or by using the RTEREUS runtime option is not supported for programs

compiled with the THREAD option.

Chapter 17. Compiler options 351

Performance consideration: When using the THREAD option, you can expect some

runtime performance degradation due to the overhead of serialization logic that is

automatically generated.

RELATED TASKS

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491

RELATED REFERENCES

“Conflicting compiler options” on page 304

TRUNC

TRUNC affects the way that binary data is truncated during moves and arithmetic

operations.

TRUNC option syntax

��
 STD

TRUNC(

OPT

)

BIN

��

Default is: TRUNC(STD)

Abbreviations are: None

TRUNC has no effect on COMP-5 data items; COMP-5 items are handled as if

TRUNC(BIN) were in effect regardless of the TRUNC suboption specified.

TRUNC(STD)

TRUNC(STD) applies only to USAGE BINARY receiving fields in MOVE statements

and arithmetic expressions. When TRUNC(STD) is in effect, the final result of

an arithmetic expression, or the sending field in the MOVE statement, is

truncated to the number of digits in the PICTURE clause of the BINARY

receiving field.

TRUNC(OPT)

TRUNC(OPT) is a performance option. When TRUNC(OPT) is in effect, the

compiler assumes that data conforms to PICTURE specifications in USAGE

BINARY receiving fields in MOVE statements and arithmetic expressions. The

results are manipulated in the most optimal way, either truncating to the

number of digits in the PICTURE clause, or to the size of the binary field in

storage (halfword, fullword, or doubleword).

 Tips:

v Use the TRUNC(OPT) option only if you are sure that the data being

moved into the binary areas will not have a value with larger precision

than that defined by the PICTURE clause for the binary item. Otherwise,

unpredictable results could occur. This truncation is performed in the

most efficient manner possible; therefore, the results are dependent on

the particular code sequence generated. It is not possible to predict the

truncation without seeing the code sequence generated for a particular

statement.

352 Enterprise COBOL for z/OS V4.1 Programming Guide

v There are some cases when programs compiled with the TRUNC(OPT)

option under Enterprise COBOL could give different results than the

same programs compiled under OS/VS COBOL with NOTRUNC. You must

actually lose nonzero high-order digits for this difference to appear.

TRUNC(BIN)

The TRUNC(BIN) option applies to all COBOL language that processes USAGE

BINARY data. When TRUNC(BIN) is in effect, all binary items (USAGE COMP,

COMP-4, or BINARY) are handled as native hardware binary items, that is, as

if they were each individually declared USAGE COMP-5:

v BINARY receiving fields are truncated only at halfword, fullword, or

doubleword boundaries.

v BINARY sending fields are handled as halfwords, fullwords, or

doublewords when the receiver is numeric; TRUNC(BIN) has no effect

when the receiver is not numeric.

v The full binary content of fields is significant.

v DISPLAY will convert the entire content of binary fields with no

truncation.

Recommendations: TRUNC(BIN) is the recommended option for programs

that use binary values set by other products. Other products, such as IMS,

DB2, C/C++, FORTRAN, and PL/I, might place values in COBOL binary

data items that do not conform to the PICTURE clause of the data items. You

can use TRUNC(OPT) with CICS programs provided that your data conforms

to the PICTURE clause for your BINARY data items.

USAGE COMP-5 has the effect of applying TRUNC(BIN) behavior to individual

data items. Therefore, you can avoid the performance overhead of using

TRUNC(BIN) for every binary data item by specifying COMP-5 on only some

of the binary data items, such as those data items that are passed to

non-COBOL programs or other products and subsystems. The use of

COMP-5 is not affected by the TRUNC suboption in effect.

Large literals in VALUE clauses: When you use the compiler option

TRUNC(BIN), numeric literals specified in VALUE clauses for binary data

items (COMP, COMP-4, or BINARY) can generally contain a value of magnitude

up to the capacity of the native binary representation (2, 4, or 8 bytes)

rather than being limited to the value implied by the number of 9s in the

PICTURE clause.

TRUNC example 1

01 BIN-VAR PIC S99 USAGE BINARY.

. . .

 MOVE 123451 to BIN-VAR

The following table shows values of the data items after the MOVE:

 Data item Decimal Hex Display

Sender 123451 00|01|E2|3B 123451

Receiver TRUNC(STD) 51 00|33 51

Receiver TRUNC(OPT) -7621 E2|3B 2J

Receiver TRUNC(BIN) -7621 E2|3B 762J

Chapter 17. Compiler options 353

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement if

the program is compiled with the TRUNC(STD) option is 51; the field is truncated to

conform to the PICTURE clause.

If you compile the program with TRUNC(BIN), the result of the MOVE statement is

-7621. The reason for the unusual result is that nonzero high-order digits are

truncated. Here, the generated code sequence would merely move the lower

halfword quantity X’E23B’ to the receiver. Because the new truncated value

overflows into the sign bit of the binary halfword, the value becomes a negative

number.

It is better not to compile this MOVE statement with TRUNC(OPT), because 123451 has

greater precision than the PICTURE clause for BIN-VAR. With TRUNC(OPT), the results

are again -7621. This is because the best performance was gained by not doing a

decimal truncation.

TRUNC example 2

01 BIN-VAR PIC 9(6) USAGE BINARY

. . .

 MOVE 1234567891 to BIN-VAR

The following table shows values of the data items after the MOVE:

 Data item Decimal Hex Display

Sender 1234567891 49|96|02|D3 1234567891

Receiver TRUNC(STD) 567891 00|08|AA|53 567891

Receiver TRUNC(OPT) 567891 53|AA|08|00 567891

Receiver TRUNC(BIN) 1234567891 49|96|02|D3 1234567891

When you specify TRUNC(STD), the sending data is truncated to six integer digits to

conform to the PICTURE clause of the BINARY receiver.

When you specify TRUNC(OPT), the compiler assumes the sending data is not larger

than the PICTURE clause precision of the BINARY receiver. The most efficient code

sequence in this case is truncation as if TRUNC(STD) were in effect.

When you specify TRUNC(BIN), no truncation occurs because all of the sending data

fits into the binary fullword allocated for BIN-VAR.

RELATED CONCEPTS

“Formats for numeric data” on page 49

RELATED TASKS

“Compiling with the CICS option” on page 409

RELATED REFERENCES

VALUE clause (Enterprise COBOL Language Reference)

354 Enterprise COBOL for z/OS V4.1 Programming Guide

VBREF

Use VBREF to get a cross-reference among all verb used in the source program and

the line numbers in which they are used. VBREF also produces a summary of how

many times each verb was used in the program.

VBREF option syntax

��
 NOVBREF

VBREF

��

Default is: NOVBREF

Abbreviations are: None

Use NOVBREF for more efficient compilation.

WORD

Use WORD(xxxx) to specify that an alternate reserved-word table is to be used during

compilation.

WORD option syntax

��
 NOWORD

WORD(xxxx)

��

Default is: NOWORD

Abbreviations are: WD|NOWD

xxxx specifies the ending characters of the name of the reserved-word table

(IGYCxxxx) to be used in your compilation. IGYC are the first four standard

characters of the name, and xxxx can be one to four characters in length.

Alternate reserved-word tables provide changes to the IBM-supplied default

reserved-word table. Your systems programmer might have created one or more

alternate reserved-word tables for your site. See your systems programmer for the

names of alternate reserved-word tables.

Enterprise COBOL provides an alternate reserved-word table (IGYCCICS)

specifically for CICS applications. It is set up to flag COBOL words not supported

under CICS with an error message. If you want to use this CICS reserved-word

table during your compilation, specify the compiler option WORD(CICS).

Chapter 17. Compiler options 355

RELATED TASKS

“Compiling with the CICS option” on page 409

RELATED REFERENCES

“Conflicting compiler options” on page 304

“CICS reserved-word table” on page 413

XMLPARSE

Use XMLPARSE to select the parser that you want to use for XML processing and,

therefore, the XML processing capabilities that are available to your program.

XMLPARSE option syntax

��
 XMLSS

XMLPARSE(

COMPAT

)

��

Default is: XMLSS

Abbreviations are: XP(X), XP(C)

If you specify the XMLPARSE(XMLSS) option, XML PARSE statements are processed

using the z/OS XML System Services parser. The following XML parsing

capabilities are available only when the XMLPARSE(XMLSS) option is specified:

v Enhanced namespace processing (special registers XML-NAMESPACE,

XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-PREFIX)

v The RETURNING NATIONAL phrase of the XML PARSE statement, for selecting

automatic conversion of document fragments to Unicode UTF-16

v The ENCODING phrase of the XML PARSE statement, for specifying the encoding of

the input document

v Direct parsing of XML documents encoded in UTF-8

v Parsing of XML documents, a buffer of XML at a time

v Offloading of XML parsing to System z™ Application Assist Processors (zAAPs)

If you specify the XMLPARSE(COMPAT) option, XML PARSE statements are processed

using the XML parser that is a built-in component of the COBOL run time. XML

PARSE statement results and operational behaviors are compatible with those of

Enterprise COBOL Version 3. When you specify XMLPARSE(COMPAT), Enterprise

COBOL does not support the advanced features described above for

XMLPARSE(XMLSS). The syntax for the RETURNING NATIONAL and ENCODING phrases of

the XML PARSE statement is not accepted.

RELATED TASKS

Chapter 28, “Processing XML input,” on page 501

RELATED REFERENCES

XML PARSE statement (Enterprise COBOL Language Reference)

z/OS XML System Services User’s Guide and Reference

356 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|

|

|

||||||||||||||||

|
||

|

|

|
|
|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|

|
|

|
|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/gxlza110

XREF

Use XREF to get a sorted cross-reference listing.

XREF option syntax

��

 XREF

FULL

(

SHORT

)

NOXREF

��

Default is: XREF(FULL)

Abbreviations are: X|NOX

You can choose XREF, XREF(FULL), or XREF(SHORT). If you specify XREF without any

suboptions, XREF(FULL) is in effect.

A section is included in the listing that lists all the program-names, data-names,

and procedure-names that are referenced in your program and the line numbers

where they are defined. External program-names are identified.

A section is also included that cross-references COPY or BASIS statements in the

program with the data sets or files from which associated copybooks were

obtained.

EBCDIC data-names and procedure-names are listed in alphanumeric order. DBCS

data-names and procedure-names are listed based on their physical order in the

program, and appear before the EBCDIC data-names and procedure-names unless

the DBCSXREF installation option is selected with a DBCS ordering program. In this

case, DBCS data-names and procedure-names are ordered as specified by the DBCS

ordering program.

If you use XREF and SOURCE, data-name and procedure-name cross-reference

information is printed on the same line as the original source. Line-number

references or other information appears on the right-hand side of the listing page.

On the right of source lines that reference an intrinsic function, the letters IFN are

printed with the line number of the locations where the function arguments are

defined. Information included in the embedded references lets you know if an

identifier is undefined (UND) or defined more than once (DUP), if items are implicitly

defined (IMP) (such as special registers or figurative constants), or if a

program-name is external (EXT).

If you use XREF and NOSOURCE, you get only the sorted cross-reference listing.

XREF(SHORT) prints only the explicitly referenced data items in the cross-reference

listing. XREF(SHORT) applies to DBCS data-names and procedure-names as well as

to single-byte names.

NOXREF suppresses this listing.

Chapter 17. Compiler options 357

|

|
|
|

Usage notes

v Group names used in a MOVE CORRESPONDING statement are in the XREF listing.

The elementary names in those groups are also listed.

v In the data-name XREF listing, line numbers that are preceded by the letter M

indicate that the data item is explicitly modified by a statement on that line.

v XREF listings take additional storage.

RELATED CONCEPTS

Chapter 19, “Debugging,” on page 365

RELATED TASKS

“Getting listings” on page 375

RELATED REFERENCES

Language Environment Debugging Guide (COBOL compiler options)

YEARWINDOW

Use YEARWINDOW to specify the first year of the 100-year window (the century

window) to be applied to windowed date field processing by the COBOL compiler.

YEARWINDOW option syntax

�� YEARWINDOW(base-year) ��

Default is: YEARWINDOW(1900)

Abbreviations are: YW

base-year represents the first year of the 100-year window. You must specify it with

one of the following values:

v An unsigned decimal number between 1900 and 1999.

This specifies the starting year of a fixed window. For example,

YEARWINDOW(1930) indicates a century window of 1930-2029.

v A negative integer from -1 through -99.

This indicates a sliding window. The first year of the window is calculated by

adding the negative integer to the current year. For example, YEARWINDOW(-80)

indicates that the first year of the century window is 80 years before the year at

the time the program is run.

Usage notes

v The YEARWINDOW option has no effect unless the DATEPROC option is also in effect.

v At run time, two conditions must be true:

– The century window must have its beginning year in the 1900s.

– The current year must lie within the century window for the compilation

unit.

358 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180

For example, if the current year is 2007, the DATEPROC option is in effect, and you

use the YEARWINDOW(1900) option, the program will terminate with an error

message.

ZWB

If you compile with ZWB, the compiler removes the sign from a signed zoned

decimal (DISPLAY) field before comparing this field to an alphanumeric elementary

field during execution.

ZWB option syntax

��
 ZWB

NOZWB

��

Default is: ZWB

Abbreviations are: None

If the zoned decimal item is a scaled item (that is, it contains the symbol P in its

PICTURE string), its use in comparisons is not affected by ZWB. Such items always

have their sign removed before the comparison is made to an alphanumeric field.

ZWB affects how a program runs. The same COBOL source program can give

different results, depending on this option setting.

Use NOZWB if you want to test input numeric fields for SPACES.

Chapter 17. Compiler options 359

360 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 18. Compiler-directing statements

Several statements help you to direct the compilation of your program.

These are the compiler-directing statements:

BASIS statement

This extended source program library statement provides a complete

COBOL program as the source for a compilation. For rules of formation

and processing, see the description of text-name for the COPY statement.

*CONTROL (*CBL) statement

This compiler-directing statement selectively suppresses or allows output

to be produced. The names *CONTROL and *CBL are synonymous.

COPY statement

COPY statement syntax

�� COPY text-name

literal-1

OF

library-name

IN

literal-2

SUPPRESS
 �

�

�

REPLACING

operand-1

BY

operand-2

 ��

This library statement places prewritten text into a COBOL program. A

user-defined word can be the same as a text-name or a library-name. The

uniqueness of text-name and library-name is determined after the formation

and conversion rules for a system-dependent name have been applied. If

library-name is omitted, SYSLIB is assumed.

When compiling with JCL:

text-name, library-name, and literal are processed as follows:

v The name (which can be one to 30 characters long) is truncated to eight

characters. Only the first eight characters of text-name and library-name

are used as the identifying name. These eight characters must be unique

within one COBOL library.

v The name is folded to uppercase.

v Hyphens that are not the first or last character are translated to zero (0),

and a warning message is given.

v If the first character is numeric, then the characters 1-9 are translated to

A-I, zero (0) is converted to J, and a warning message is produced.

For example:

COPY INVOICES1Q

COPY "Company-#Employees" IN Personellib

© Copyright IBM Corp. 1991, 2007 361

In the IN/OF phrase, library-name is the ddname that identifies the

partitioned data set to be copied from. Use a DD statement such as in the

following example to define library-name:

//COPYLIB DD DSNAME=ABC.COB,VOLUME=SER=111111,

// DISP=SHR,UNIT=3380

To specify more than one copy library, use either JCL or a combination of

JCL and the IN/OF phrase. Using just JCL, concatenate data sets on your DD

statement for SYSLIB. Alternatively, define multiple DD statements and

include the IN/OF phrase on your COPY statements.

The maximum block size for the copy library depends on the device on

which your data set resides.

When compiling in the z/OS UNIX shell:

When you compile with the cob2 command, copybooks are included from

the HFS. text-name, library-name, and literal are processed as follows:

v User-defined words are folded to uppercase. Literals are not. Because

UNIX is case sensitive, if your file-name is lowercase or mixed case, you

must specify it as a literal.

v When text-name is a literal and library-name is omitted, text-name is used

directly: as a file-name, a relative path name, or an absolute path name

(if the first character is /). For example:

COPY "MyInc"

COPY "x/MyInc"

COPY "/u/user1/MyInc"

v When text-name is a user-defined word and an environment variable of

that name is defined, the value of the environment variable is used as

the name of the file that contains the copybook.

If an environment variable of that name is not defined, the copybook is

searched for as the following names, in this order:

1. text-name.cpy

2. text-name.CPY

3. text-name.cbl

4. text-name.CBL

5. text-name.cob

6. text-name.COB

7. text-name

v When library-name is a literal, it is treated as the actual path, relative or

absolute, from which to copy file text-name.

v When library-name is a user-defined word, it is treated as an environment

variable. The value of the environment variable is used as the path. If

the environment variable is not set, an error occurs.

v If both library-name and text-name are specified, the compiler forms the

path name for the copybook by concatenating library-name and text-name

with a path separator (/) inserted between the two values. For example,

suppose you have the following setting for COPY MYCOPY OF MYLIB:

export MYCOPY=mystuff/today.cpy

export MYLIB=/u/user1

These settings result in:

/u/user1/mystuff/today.cpy

362 Enterprise COBOL for z/OS V4.1 Programming Guide

When library-name is an environment variable that identifies the path from

which copybooks are to be copied, use an export command such as the

following example to define library-name:

export COPYLIB=/u/mystuff/copybooks

The name of the environment variable must be uppercase. To specify more

than one copy library, set the environment variable to multiple path names

delimited by colon (:).

When library-name is omitted and text-name is not an absolute path name,

the copybook is searched for in this order:

1. In the current directory

2. In the paths specified on the -I cob2 option

3. In the paths specified in the SYSLIB environment variable

DELETE statement

This extended source library statement removes COBOL statements from

the BASIS source program.

EJECT statement

This compiler-directing statement specifies that the next source statement is

to be printed at the top of the next page.

ENTER statement

The compiler handles this statement as a comment.

INSERT statement

This library statement adds COBOL statements to the BASIS source

program.

PROCESS (CBL) statement

This statement, which is placed before the IDENTIFICATION DIVISION

header of an outermost program, indicates which compiler options are to

be used during compilation of the program.

REPLACE statement

This statement is used to replace source program text.

SERVICE LABEL statement

This statement is generated by the CICS translator to indicate control flow,

and should be used at the resume point for a call to CEE3SRP. It is not

intended for general use.

SKIP1/2/3 statement

These statements indicate lines to be skipped in the source listing.

TITLE statement

This statement specifies that a title (header) should be printed at the top of

each page of the source listing.

USE statement

The USE statement provides declaratives to specify these elements:

v Error-handling procedures: EXCEPTION/ERROR

v User label-handling procedures: LABEL

v Debugging lines and sections: DEBUGGING

RELATED TASKS

“Changing the header of a source listing” on page 7

“Specifying compiler options under z/OS” on page 271

“Specifying compiler options under UNIX” on page 284

Chapter 18. Compiler-directing statements 363

“Setting environment variables under UNIX” on page 283

“Eliminating repetitive coding” on page 665

RELATED REFERENCES

“cob2 syntax and options” on page 287

COPY statement (Enterprise COBOL Language Reference)

364 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 19. Debugging

You can choose from two approaches to determine the cause of problems in

program behavior of your application: source-language debugging or interactive

debugging.

For source-language debugging, COBOL provides several language elements,

compiler options, and listing outputs that make debugging easier.

If the problem with your program is not easily detected and you do not have a

debugger available, you might need to analyze a storage dump of your program.

For interactive debugging, you can use Debug Tool. Debug Tool offers these

productivity enhancements:

v Interactive debugging (in full-screen or line mode), or debugging in batch mode

During an interactive full-screen mode session, you can use Debug Tool’s

full-screen services and session panel windows on a 3270 device to debug your

program while it is running.

v COBOL-like commands

For each high-level language supported, commands for coding actions to be

taken at breakpoints are provided in a syntax similar to that programming

language.

v Mixed-language debugging

You can debug an application that contains programs written in a different

language. Debug Tool automatically determines the language of the program or

subprogram being run.

v COBOL-CICS debugging

Debug Tool supports the debugging of CICS applications in both interactive and

batch mode.

v Support for remote debugging

Workstation users can use the Debug Perspective of Rational® Developer for

System z for debugging programs that reside on z/OS.

RELATED TASKS

“Debugging with source language”

“Debugging using compiler options” on page 370

“Using the debugger” on page 375

“Getting listings” on page 375

Debug Tool User’s Guide

RELATED REFERENCES

Debug Tool Reference and Messages

Language Environment Debugging Guide (Formatting and analyzing system

 dumps, Debugging example COBOL programs)

Debugging with source language

You can use several COBOL language features to pinpoint the cause of a failure in

a program.

© Copyright IBM Corp. 1991, 2007 365

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/eqa8ug00
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/eqa8rm00
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180

If a failing program is part of a large application that is already in production

(precluding source updates), write a small test case to simulate the failing part of

the program. Code debugging features in the test case to help detect these

problems:

v Errors in program logic

v Input-output errors

v Mismatches of data types

v Uninitialized data

v Problems with procedures

RELATED TASKS

“Tracing program logic”

“Finding and handling input-output errors” on page 367

“Validating data” on page 367

“Finding uninitialized data” on page 368

“Generating information about procedures” on page 368

RELATED REFERENCES

Source language debugging (Enterprise COBOL Language Reference)

Tracing program logic

Trace the logic of your program by adding DISPLAY statements.

For example, if you determine that the problem is in an EVALUATE statement or in a

set of nested IF statements, use DISPLAY statements in each path to see the logic

flow. If you determine that the calculation of a numeric value is causing the

problem, use DISPLAY statements to check the value of some interim results.

If you use explicit scope terminators to end statements in your program, the logic

is more apparent and therefore easier to trace.

To determine whether a particular routine started and finished, you might insert

code like this into your program:

DISPLAY "ENTER CHECK PROCEDURE"

 .

 . (checking procedure routine)

 .

DISPLAY "FINISHED CHECK PROCEDURE"

After you are sure that the routine works correctly, disable the DISPLAY statements

in one of two ways:

v Put an asterisk in column 7 of each DISPLAY statement line to convert it to a

comment line.

v Put a D in column 7 of each DISPLAY statement to convert it to a comment line.

When you want to reactivate these statements, include a WITH DEBUGGING MODE

clause in the ENVIRONMENT DIVISION; the D in column 7 is ignored and the

DISPLAY statements are implemented.

Before you put the program into production, delete or disable the debugging aids

you used and recompile the program. The program will run more efficiently and

use less storage.

366 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS

“Scope terminators” on page 22

RELATED REFERENCES

DISPLAY statement (Enterprise COBOL Language Reference)

Finding and handling input-output errors

File status keys can help you determine whether your program errors are due to

input-output errors occurring on the storage media.

To use file status keys in debugging, check for a nonzero value in the status key

after each input-output statement. If the value is nonzero (as reported in an error

message), look at the coding of the input-output procedures in the program. You

can also include procedures to correct the error based on the value of the status

key.

If you determine that a problem lies in an input-output procedure, include the USE

EXCEPTION/ERROR declarative to help debug the problem. Then, when a file fails to

open, the appropriate EXCEPTION/ERROR declarative is performed. The appropriate

declarative might be a specific one for the file or one provided for the open

attributes INPUT, OUTPUT, I-O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a section that follows the

DECLARATIVES keyword in the PROCEDURE DIVISION.

RELATED TASKS

“Coding ERROR declaratives” on page 238

“Using file status keys” on page 239

RELATED REFERENCES

Status key (Enterprise COBOL Language Reference)

Validating data

If you suspect that your program is trying to perform arithmetic on nonnumeric

data or is receiving the wrong type of data on an input record, use the class test

(the class condition) to validate the type of data.

You can use the class test to check whether the content of a data item is

ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, DBCS, KANJI, or NUMERIC. If the

data item is described implicitly or explicitly as USAGE NATIONAL, the class test

checks the national character representation of the characters associated with the

specified character class.

RELATED TASKS

“Coding conditional expressions” on page 94

“Testing for valid DBCS characters” on page 143

RELATED REFERENCES

Class condition (Enterprise COBOL Language Reference)

Chapter 19. Debugging 367

Finding uninitialized data

Use an INITIALIZE or SET statement to initialize a table or data item when you

suspect that a problem might be caused by residual data in those fields.

If the problem happens intermittently and not always with the same data, it could

be that a switch was not initialized but is generally set to the right value (0 or 1)

by chance. By using a SET statement to ensure that the switch is initialized, you

can determine that the uninitialized switch is the cause of the problem or remove

it as a possible cause.

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)

SET statement (Enterprise COBOL Language Reference)

Generating information about procedures

Generate information about your program or test case and how it is running by

coding the USE FOR DEBUGGING declarative. This declarative lets you include

statements in the program and indicate when they should be performed when you

run your program.

For example, to determine how many times a procedure is run, you could include

a debugging procedure in the USE FOR DEBUGGING declarative and use a counter to

keep track of the number of times that control passes to that procedure. You can

use the counter technique to check items such as these:

v How many times a PERFORM statement runs, and thus whether a particular

routine is being used and whether the control structure is correct

v How many times a loop routine runs, and thus whether the loop is executing

and whether the number for the loop is accurate

You can use debugging lines or debugging statements or both in your program.

Debugging lines are statements that are identified by a D in column 7. To make

debugging lines in your program active, code the WITH DEBUGGING MODE clause on

the SOURCE-COMPUTER line in the ENVIRONMENT DIVISION. Otherwise debugging lines

are treated as comments.

Debugging statements are the statements that are coded in the DECLARATIVES section

of the PROCEDURE DIVISION. Code each USE FOR DEBUGGING declarative in a separate

section. Code the debugging statements as follows:

v Only in a DECLARATIVES section.

v Following the header USE FOR DEBUGGING.

v Only in the outermost program; they are not valid in nested programs.

Debugging statements are also never triggered by procedures that are contained

in nested programs.

To use debugging statements in your program, you must include the WITH

DEBUGGING MODE clause and use the DEBUG runtime option.

Options restrictions:

v You cannot use the USE FOR DEBUGGING declarative in a program that you

compile with the THREAD option.

368 Enterprise COBOL for z/OS V4.1 Programming Guide

v USE FOR DEBUGGING declaratives, if the WITH DEBUGGING MODE clause has been

specified, are mutually exclusive with the TEST(HOOK) compiler option. If USE FOR

DEBUGGING declaratives and the WITH DEBUGGING MODE clause are present, the TEST

option is cancelled.

“Example: USE FOR DEBUGGING”

RELATED REFERENCES

SOURCE-COMPUTER paragraph (Enterprise COBOL Language Reference)

Debugging lines (Enterprise COBOL Language Reference)

Debugging sections (Enterprise COBOL Language Reference)

DEBUGGING declarative (Enterprise COBOL Language Reference)

Example: USE FOR DEBUGGING

This example shows the kind of statements that are needed to use a DISPLAY

statement and a USE FOR DEBUGGING declarative to test a program.

The DISPLAY statement writes information to the terminal or to an output data set.

The USE FOR DEBUGGING declarative is used with a counter to show how many

times a routine runs.

Environment Division.

. . .

Data Division.

. . .

Working-Storage Section.

. . . (other entries your program needs)

01 Trace-Msg PIC X(30) Value " Trace for Procedure-Name : ".

01 Total PIC 9(9) Value 1.

. . .

Procedure Division.

Declaratives.

Debug-Declaratives Section.

 Use For Debugging On Some-Routine.

Debug-Declaratives-Paragraph.

 Display Trace-Msg, Debug-Name, Total.

End Declaratives.

Main-Program Section.

 . . . (source program statements)

 Perform Some-Routine.

 . . . (source program statements)

 Stop Run.

Some-Routine.

 . . . (whatever statements you need in this paragraph)

 Add 1 To Total.

Some-Routine-End.

The DISPLAY statement in the DECLARATIVES SECTION issues this message every time

the procedure Some-Routine runs:

 Trace For Procedure-Name : Some-Routine 22

The number at the end of the message, 22, is the value accumulated in the data

item Total; it indicates the number of times Some-Routine has run. The statements

in the debugging declarative are performed before the named procedure runs.

You can also use the DISPLAY statement to trace program execution and show the

flow through the program. You do this by dropping Total from the DISPLAY

statement and changing the USE FOR DEBUGGING declarative in the DECLARATIVES

SECTION to:

Chapter 19. Debugging 369

|
|
|
|

USE FOR DEBUGGING ON ALL PROCEDURES.

As a result, a message is displayed before each nondebugging procedure in the

outermost program runs.

Debugging using compiler options

You can use certain compiler options to help you find errors in your program, find

various elements in your program, obtain listings, and prepare your program for

debugging.

You can find the following errors by using compiler options (the options are

shown in parentheses):

v Syntax errors such as duplicate data-names (NOCOMPILE)

v Missing sections (SEQUENCE)

v Invalid subscript values (SSRANGE)

You can find the following elements in your program by using compiler options:

v Error messages and locations of the associated errors (FLAG)

v Program entity definitions and references; text-names and library-names from

COPY or BASIS statements, and the associated data sets or files from which

copybooks are obtained (XREF)

v Data items in the DATA DIVISION (MAP)

v Verb references (VBREF)

You can get a copy of your source (SOURCE) or a listing of generated code (LIST).

You prepare your program for debugging by using the TEST compiler option.

RELATED TASKS

“Finding coding errors”

“Finding line sequence problems” on page 371

“Checking for valid ranges” on page 371

“Selecting the level of error to be diagnosed” on page 372

“Finding program entity definitions and references” on page 374

“Listing data items” on page 374

“Getting listings” on page 375

RELATED REFERENCES

Chapter 17, “Compiler options,” on page 301

Finding coding errors

Use the NOCOMPILE option to compile conditionally or to only check syntax. When

used with the SOURCE option, NOCOMPILE produces a listing that will help you find

coding mistakes such as missing definitions, improperly defined data items, and

duplicate data-names.

If you are compiling in the TSO foreground, you can send the messages to your

screen by using the TERM compiler option and defining your data set as the

SYSTERM data set.

370 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

Checking syntax only: To only check the syntax of your program, and not produce

object code, use NOCOMPILE without a suboption. If you also specify the SOURCE

option, the compiler produces a listing.

When you specify NOCOMPILE, several compiler options are suppressed. See the

related reference below about the COMPILE option for details.

Compiling conditionally: To compile conditionally, use NOCOMPILE(x), where x is

one of the severity levels of errors. Your program is compiled if all the errors are of

a lower severity than x. The severity levels that you can use, from highest to

lowest, are S (severe), E (error), and W (warning).

If an error of level x or higher occurs, the compilation stops and your program is

only checked for syntax.

RELATED REFERENCES

“COMPILE” on page 311

Finding line sequence problems

Use the SEQUENCE compiler option to find statements that are out of sequence.

Breaks in sequence indicate that a section of a source program was moved or

deleted.

When you use SEQUENCE, the compiler checks the source statement numbers to

determine whether they are in ascending sequence. Two asterisks are placed beside

statement numbers that are out of sequence. The total number of these statements

is printed as the first line in the diagnostics after the source listing.

RELATED REFERENCES

“SEQUENCE” on page 342

Checking for valid ranges

Use the SSRANGE compiler option to check whether addresses fall within proper

ranges.

SSRANGE causes the following addresses to be checked:

v Subscripted or indexed data references: Is the effective address of the desired

element within the maximum boundary of the specified table?

v Variable-length data references (a reference to a data item that contains an

OCCURS DEPENDING ON clause): Is the actual length positive and within the

maximum defined length for the group data item?

v Reference-modified data references: Are the offset and length positive? Is the

sum of the offset and length within the maximum length for the data item?

If the SSRANGE option is in effect, checking is performed at run time if both of the

following conditions are true:

v The COBOL statement that contains the indexed, subscripted, variable-length, or

reference-modified data item is performed.

v The CHECK runtime option is ON.

If an address is generated outside the range of the data item that contains the

referenced data, an error message is generated and the program stops. The

Chapter 19. Debugging 371

message identifies the table or identifier that was referenced and the line number

where the error occurred. Additional information is provided depending on the

type of reference that caused the error.

If all subscripts, indices, and reference modifiers in a given data reference are

literals and they result in a reference outside the data item, the error is diagnosed

at compile time regardless of the setting of the SSRANGE option.

Performance consideration: SSRANGE can somewhat degrade performance because

of the extra overhead to check each subscripted or indexed item.

RELATED REFERENCES

“SSRANGE” on page 346

“Performance-related compiler options” on page 660

Selecting the level of error to be diagnosed

Use the FLAG compiler option to specify the level of error to be diagnosed during

compilation and to indicate whether error messages are to be embedded in the

listing. Use FLAG(I) or FLAG(I,I) to be notified of all errors.

Specify as the first parameter the lowest severity level of the syntax-error messages

to be issued. Optionally specify the second parameter as the lowest level of the

syntax-error messages to be embedded in the source listing. This severity level

must be the same or higher than the level for the first parameter. If you specify

both parameters, you must also specify the SOURCE compiler option.

 Table 49. Severity levels of compiler messages

Severity level Resulting messages

U (unrecoverable) U messages only

S (severe) All S and U messages

E (error) All E, S, and U messages

W (warning) All W, E, S, and U messages

I (informational) All messages

When you specify the second parameter, each syntax-error message (except a

U-level message) is embedded in the source listing at the point where the compiler

had enough information to detect that error. All embedded messages (except those

issued by the library compiler phase) directly follow the statement to which they

refer. The number of the statement that had the error is also included with the

message. Embedded messages are repeated with the rest of the diagnostic

messages at the end of the source listing.

When you specify the NOSOURCE compiler option, the syntax-error messages are

included only at the end of the listing. Messages for unrecoverable errors are not

embedded in the source listing, because an error of this severity terminates the

compilation.

“Example: embedded messages” on page 373

RELATED TASKS

“Generating a list of compiler error messages” on page 279

372 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

“Severity codes for compiler error messages” on page 281

“Messages and listings for compiler-detected errors” on page 279

“FLAG” on page 321

Example: embedded messages

The following example shows the embedded messages generated by specifying a

second parameter to the FLAG option. Some messages in the summary apply to

more than one COBOL statement.

 LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+ Map and Cross Reference

 ...

 090671** /

 090672** ***

 090673** *** I N I T I A L I Z E P A R A G R A P H **

 090674** *** Open files. Accept date, time and format header lines. **

 090675** *** Load location-table. **

 090676** ***

 090677** 100-initialize-paragraph.

 090678** move spaces to ws-transaction-record IMP 331

 090679** move spaces to ws-commuter-record IMP 307

 090680** move zeroes to commuter-zipcode IMP 318

 090681** move zeroes to commuter-home-phone IMP 319

 090682** move zeroes to commuter-work-phone IMP 320

 090683** move zeroes to commuter-update-date IMP 324

 090684** open input update-transaction-file 204

 ==090684==> IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The

 reference to this file was discarded.

 090685** location-file 193

 090686** i-o commuter-file 181

 090687** output print-file 217

 090688** if commuter-file-status not = "00" and not = "97" 241

 090689** 1 display "100-OPEN"

 090690** 1 move 100 to comp-code 231

 090691** 1 perform 500-vsam-error 91069

 090692** 1 perform 900-abnormal-termination 91114

 090693** end-if

 090694** accept ws-date from date UND

 ==090694==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

 090695** move corr ws-date to header-date UND 455

 ==090695==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

 090696** accept ws-time from time UND

 ==090696==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 090697** move corr ws-time to header-time UND 449

 ==090697==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 090698** read location-file 193

 ==090698==> IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This

 input/output statement was discarded.

 090699** at end

 090700** 1 set location-eof to true 256

 090701** end-read

 ...

 LineID Message code Message text

 IGYSC0090-W 1700 sequence errors were found in this program.

 IGYSC3002-I A severe error was found in the program. The "OPTIMIZE" compiler option was cancelled.

 160 IGYDS1089-S "ASSIGNN" was invalid. Scanning was resumed at the next area "A" item, level-number, or

 the start of the next clause.

 193 IGYGR1207-S The "ASSIGN" clause was missing or invalid in the "SELECT" entry for file "LOCATION-FILE".

 The file definition was discarded.

 269 IGYDS1066-S "REDEFINES" object "WS-DATE" was not the immediately preceding level-1 data item.

 The "REDEFINES" clause was discarded.

 90602 IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The reference to this file

 was discarded. Same message on line: 90684

 90694 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

 Same message on line: 90695

 90696 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 Same message on line: 90697

 90698 IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This input/output statement

 was discarded. Same message on line: 90709

 Messages Total Informational Warning Error Severe Terminating

 Printed: 13 1 1 11

 * Statistics for COBOL program IGYTCARA:

 * Source records = 1735

Chapter 19. Debugging 373

* Data Division statements = 287

 * Procedure Division statements = 471

 End of compilation 1, program IGYTCARA, highest severity 12.

 Return code 12

Finding program entity definitions and references

Use the XREF(FULL) compiler option to find out where a data-name,

procedure-name, or program-name is defined and referenced. Use it also to

produce a cross-reference of COPY or BASIS statements to the data sets or files from

which copybooks were obtained.

A sorted cross-reference includes the line number where the data-name,

procedure-name, or program-name was defined and the line numbers of all

references to it.

To include only the explicitly referenced data items, use the XREF(SHORT) option.

Use both the XREF (either FULL or SHORT) and the SOURCE options to print a modified

cross-reference to the right of the source listing. This embedded cross-reference

shows the line number where the data-name or procedure-name was defined.

For further details, see the related reference below about the XREF compiler option.

“Example: XREF output: data-name cross-references” on page 396

“Example: XREF output: program-name cross-references” on page 398

“Example: XREF output: COPY/BASIS cross-references” on page 398

“Example: embedded cross-reference” on page 399

RELATED TASKS

“Getting listings” on page 375

RELATED REFERENCES

“XREF” on page 357

Listing data items

Use the MAP compiler option to produce a listing of the DATA DIVISION items and all

implicitly declared items. Use the MAP output to locate the contents of a data item

in a system dump.

When you use the MAP option, an embedded MAP summary that contains condensed

MAP information is generated to the right of the COBOL source data declaration.

When both XREF data and an embedded MAP summary are on the same line, the

embedded summary is printed first.

You can select or inhibit parts of the MAP listing and embedded MAP summary by

using *CONTROL MAP|NOMAP (or *CBL MAP|NOMAP) statements throughout the source.

For example:

*CONTROL NOMAP

 01 A

 02 B

*CONTROL MAP

“Example: MAP output” on page 380

374 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

RELATED TASKS

“Getting listings”

RELATED REFERENCES

“MAP” on page 327

Using the debugger

You can use Debug Tool to debug your Enterprise COBOL programs. Use the TEST

compiler option to prepare your COBOL program so that you can step through the

executable program with the debugger.

For remote debugging, the Debug Perspective of Rational Developer for System z

provides the client graphical user interface to the debugging information provided

by the Debug Tool engine running under z/OS or UNIX.

You can specify the TEST suboption SEPARATE to have the symbolic information

tables for Debug Tool generated in a data set that is separate from your object

module. Also, you can enable your COBOL program for debugging using overlay

hooks (production debugging), rather than compiled-in hooks, by compiling with the

TEST(NOHOOK,. . .) option. (Compiled-in hooks cause some performance

degradation even when the runtime TEST option is off.)

Specify the NOOPTIMIZE and TEST(HOOK,. . .) compiler options to get the most

debugging function.

For details about which compiler options to use for maximum debugging

capability versus best performance, see the related reference about the TEST

compiler option.

RELATED TASKS

“Defining the debug data set (SYSDEBUG)” on page 270

Debug Tool User’s Guide (Preparing your program for debugging)

RELATED REFERENCES

“TEST” on page 347

Getting listings

Get the information that you need for debugging by requesting the appropriate

compiler listing with the use of compiler options.

Attention: The listings produced by the compiler are not a programming interface

and are subject to change.

 Table 50. Using compiler options to get listings

Use Listing Contents Compiler option

To check a list of the

options in effect for the

program, statistics about

the content of the program,

and diagnostic messages

about the compilation

Short listing v List of options in effect

for the program

v Statistics about the

content of the program

v Diagnostic messages

about the compilation1

NOSOURCE, NOXREF, NOVBREF,

NOMAP, NOOFFSET,NOLIST

Chapter 19. Debugging 375

|

|
|

|

|
|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/eqa8ug00

Table 50. Using compiler options to get listings (continued)

Use Listing Contents Compiler option

To aid in testing and

debugging your program;

to have a record after the

program has been

debugged

Source listing Copy of your source “SOURCE” on page 343

To find certain data items

in a storage dump; to see

the final storage allocation

after reentrancy or

optimization has been

accounted for; to see where

programs are defined and

check their attributes

Map of DATA DIVISION

items

All DATA DIVISION items

and all implicitly declared

items

Embedded map summary

(in the right margin of the

listing for lines in the DATA

DIVISION that contain data

declarations)

Nested program map (if the

program contains nested

programs)

“MAP” on page 3272

To find where a name is

defined, referenced, or

modified; to determine the

context (such as whether a

verb was used in a PERFORM

block) in which a procedure

is referenced; to determine

the data set or file from

which a copybook was

obtained

Sorted cross-reference

listing of names; sorted

cross-reference listing of

COPY/BASIS statements and

copybook data sets or files

Data-names,

procedure-names, and

program-names; references

to these names

COPY/BASIS text-names and

library names, and the data

sets or files from which

associated copybooks were

obtained

Embedded modified

cross-reference provides

line numbers where

data-names and

procedure-names were

defined

“XREF” on page 3572,3

To find the failing verb in a

program or the address in

storage of a data item that

was moved during the

program

PROCEDURE DIVISION code

and assembler code

produced by the compiler3

Generated code “LIST” on page 3262,4

To verify you still have a

valid logic path after you

move or add PROCEDURE

DIVISION sections

Condensed PROCEDURE

DIVISION listing

Condensed verb listing,

global tables,

WORKING-STORAGE

information, and literals

“OFFSET” on page 333

To find an instance of a

certain verb

Alphabetic listing of verbs Each verb used, number of

times each verb was used,

line numbers where each

verb was used

“VBREF” on page 355

376 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|
|
|
|
|
|
|
|
|

Table 50. Using compiler options to get listings (continued)

Use Listing Contents Compiler option

1. To eliminate messages, turn off the options (such as FLAG) that govern the level of compile diagnostic

information.

2. To use your line numbers in the compiled program, use the NUMBER compiler option. The compiler checks the

sequence of your source statement line numbers in columns 1 through 6 as the statements are read in. When it

finds a line number out of sequence, the compiler assigns to it a number with a value one higher than the line

number of the preceding statement. The new value is flagged with two asterisks. A diagnostic message

indicating an out-of-sequence error is included in the compilation listing.

3. The context of the procedure reference is indicated by the characters preceding the line number.

4. You can control the listing of generated object code by selectively placing *CONTROL LIST and *CONTROL NOLIST

(or equivalently, *CBL LIST and *CBL NOLIST) statements in your source. Note that the *CONTROL statement is

different than the PROCESS (or CBL) statement.

The output is generated if:

v You specify the COMPILE option (or the NOCOMPILE(x) option is in effect and an error level x or higher does not

occur).

v You do not specify the OFFSET option. OFFSET and LIST are mutually exclusive options with OFFSET taking

precedence.

“Example: short listing”

“Example: SOURCE and NUMBER output” on page 379

“Example: MAP output” on page 380

“Example: embedded map summary” on page 381

“Example: nested program map” on page 384

“Example: XREF output: data-name cross-references” on page 396

“Example: XREF output: program-name cross-references” on page 398

“Example: XREF output: COPY/BASIS cross-references” on page 398

“Example: embedded cross-reference” on page 399

“Example: OFFSET compiler output” on page 400

“Example: VBREF compiler output” on page 401

RELATED TASKS

“Generating a list of compiler error messages” on page 279

“Reading LIST output” on page 385

Language Environment Debugging Guide (Debugging COBOL programs)

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 279

Example: short listing

The parenthetical numbers shown in the listing below correspond to numbered

explanations that follow the listing. For illustrative purposes, some errors that

cause diagnostic messages were deliberately introduced.

Invocation parameters: (1)

 OPTFILE

PROCESS(CBL) statements: (2)

 CBL NODECK

 CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,DUMP

 CBL NOSOURCE, NOXREF, NOVBREF, NOMAP, NOOFFSET, NOLIST

Options from SYSOPTF: (3)

 C,NODU,FLAG(I),X,MAP,NOLIST,RENT,OPT,SSR

 TEST(NOHOOK,SEP) TRUNC(OPT)

Options in effect: (4)

 NOADATA

 NOADV

 QUOTE

Chapter 19. Debugging 377

|

|
|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea1180

ARITH(COMPAT)

 NOAWO

 BUFSIZE(4096)

 NOCICS

 CODEPAGE(1140)

 COMPILE

 NOCURRENCY

 DATA(31)

 NODATEPROC

 DBCS

 NODECK

 NODIAGTRUNC

 NODLL

 DUMP

 NODYNAM

 NOEXIT

 NOEXPORTALL

 NOFASTSRT

 FLAG(I)

 NOFLAGSTD

 INTDATE(ANSI)

 LANGUAGE(EN)

 NOLIB

 LINECOUNT(60)

 NOLIST

 NOMAP

 NOMDECK

 NONAME

 NSYMBOL(NATIONAL)

 NONUMBER

 NUMPROC(NOPFD)

 OBJECT

 NOOFFSET

 OPTIMIZE(STD)

 OUTDD(SYSOUT)

 PGMNAME(COMPAT)

 RENT

 RMODE(AUTO)

 SEQUENCE

 SIZE(MAX)

 NOSOURCE

 SPACE(1)

 NOSQL

 SQLCCSID

 SSRANGE

 NOTERM

 TEST(NOHOOK,SEPARATE,NOEJPD)

 NOTHREAD

 TRUNC(OPT)

 NOVBREF

 NOWORD

 XMLPARSE(XMLSS)

 NOXREF

 YEARWINDOW(1900)

 ZWB

LineID Message code Message text (5)

 IGYDS0139-W Diagnostic messages were issued during processing of compiler options.

 These messages are located at the beginning of the listing.

 IGYSC0090-W 3 sequence errors were found in this program.

 160 IGYDS1089-S "ASSIGNN" was invalid. Scanning was resumed at the next area "A" item,

 level-number,or the start of the next clause.

 193 IGYGR1207-S The "ASSIGN" clause was missing or invalid in the "SELECT" entry for file

 "LOCATION-FILE". The file definition was discarded.

 269 IGYDS1066-S "REDEFINES" object "WS-DATE" was not the immediately preceding level-1 data item.

 The "REDEFINES" clause was discarded.

 901 IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The reference to

 this file was discarded. Same message on line: 983

 993 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

 Same message on line: 994

 995 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 Same message on line: 996

 997 IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This input/output

 statement was discarded. Same message on line: 1008

Messages Total Informational Warning Error Severe Terminating (6)

Printed: 14 3 11

 * Statistics for COBOL program IGYTCARA: (7)

* Source records = 1735

* Data Division statements = 287

* Procedure Division statements = 471

End of compilation 1, program IGYTCARA, highest severity 12. (8)

Return code 12

378 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

|

(1) Message about options passed to the compiler at compiler invocation. This

message does not appear if no options were passed.

OPTFILE

Requests options from a SYSOPTF data set.

(2) Options coded in the PROCESS (or CBL) statement.

NOOFFSET

Suppresses a condensed listing of the PROCEDURE DIVISION.

NOMAP Suppresses a map report of the items defined in the DATA DIVISION.

(3) Options obtained from the SYSOPTF data set (because the OPTFILE

compiler option was specified).

NOLIST Suppresses an assembler-language expansion of the source code.

TEST(NOHOOK,SEP)

The program was compiled for use with Debug Tool or formatted

dumps.

(4) Status of options at the start of this compilation.

(5) Program diagnostics. The first message refers you to any library phase

diagnostics. Diagnostics for the library phase are presented at the

beginning of the listing.

(6) Count of diagnostic messages in this program, grouped by severity level.

(7) Program statistics for the program IGYTCARA.

(8) Program statistics for the compilation unit. When you perform a batch

compilation, the return code is the highest message severity level for the

entire compilation.

Example: SOURCE and NUMBER output

In the portion of the listing shown below, the programmer numbered two of the

statements out of sequence. The note numbers in the listing correspond to

numbered explanations that follow the listing.

 (1)

 LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Cross-Reference

 (2) (3) (4)

 087000** *

 087100*** D O M A I N L O G I C * *

 087200*** * *

 087300*** Initialization. Read and process update transactions until * *

 087400*** EOE. Close files and stop run. * *

 087500** *

 087600 procedure division.

 087700 000-do-main-logic.

 087800 display "PROGRAM IGYTCARA - Beginning"

 087900 perform 050-create-vsam-master-file. 90633

 088150 display "perform 050-create-vsam-master finished".

 088151** 088125 perform 100-initialize-paragraph 90677

 088200 display "perform 100-initialize-paragraph finished"

 088300 read update-transaction-file into ws-transaction-record 204 331

 088400 at end

 1 088500 set transaction-eof to true 254

 088600 end-read

 088700 display "READ completed"

 088800 perform until transaction-eof 254

 1 088900 display "inside perform until loop"

 1 089000 perform 200-edit-update-transaction 90733

 1 089100 display "After perform 200-edit "

 1 089200 if no-errors 365

 2 089300 perform 300-update-commuter-record 90842

 2 089400 display "After perform 300-update "

 1 089650 else

 089651** 2 089600 perform 400-print-transaction-errors 90995

 2 089700 display "After perform 400-errors "

 1 089800 end-if

 1 089900 perform 410-re-initialize-fields 91056

Chapter 19. Debugging 379

|
|

|
|

|

1 090000 display "After perform 410-reinitialize"

 1 090100 read update-transaction-file into ws-transaction-record 204 331

 1 090200 at end

 2 090300 set transaction-eof to true 254

 1 090400 end-read

 1 090500 display "After ’2nd READ’ "

 090600 end-perform

(1) Scale line, which labels Area A, Area B, and source-code column numbers

(2) Source-code line number assigned by the compiler

(3) Program (PL) and statement (SL) nesting level

(4) Columns 1 through 6 of program (the sequence number area)

Example: MAP output

The following example shows output from the MAP option. The numbers used in

the explanation below correspond to the numbers that annotate the output.

 Data Division Map

 (1)

 Data Definition Attribute codes (rightmost column) have the following meanings:

 D = Object of OCCURS DEPENDING G = GLOBAL S = Spanned file

 E = EXTERNAL O = Has OCCURS clause U = Undefined format file

 F = Fixed-length file OG= Group has own length definition V = Variable-length file

 FB= Fixed-length blocked file R = REDEFINES VB= Variable-length blocked file

 (2) (3) (4) (5) (6) (7) (8) (9) (10)

 Source Hierarchy and Base Hex-Displacement Asmblr Data Data Def

 LineID Data Name Locator Blk Structure Definition Data Type Attributes

 4 PROGRAM-ID IGYTCARA---*

 181 FD COMMUTER-FILE VSAM F

 183 1 COMMUTER-RECORD BLF=00000 000 DS 0CL80 Group

 184 2 COMMUTER-KEY BLF=00000 000 0 000 000 DS 16C Display

 185 2 FILLER BLF=00000 010 0 000 010 DS 64C Display

 187 FD COMMUTER-FILE-MST VSAM F

 189 1 COMMUTER-RECORD-MST BLF=00001 000 DS 0CL80 Group

 190 2 COMMUTER-KEY-MST BLF=00001 000 0 000 000 DS 16C Display

 191 2 FILLER BLF=00001 010 0 000 010 DS 64C Display

 193 FD LOCATION-FILE QSAM FB

 198 1 LOCATION-RECORD BLF=00002 000 DS 0CL80 Group

 199 2 LOC-CODE BLF=00002 000 0 000 000 DS 2C Display

 200 2 LOC-DESCRIPTION BLF=00002 002 0 000 002 DS 20C Display

 201 2 FILLER BLF=00002 016 0 000 016 DS 58C Display

 204 FD UPDATE-TRANSACTION-FILE QSAM FB

 209 1 UPDATE-TRANSACTION-RECORD BLF=00003 000 DS 80C Display

 217 FD PRINT-FILE QSAM FB

 222 1 PRINT-RECORD BLF=00004 000 DS 121C Display

 229 1 WORKING-STORAGE-FOR-IGYCARA BLW=00000 000 DS 1C Display

 231 77 COMP-CODE BLW=00000 008 DS 2C Binary

 232 77 WS-TYPE BLW=00000 010 DS 3C Display

 235 1 I-F-STATUS-AREA BLW=00000 018 DS 0CL2 Group

 236 2 I-F-FILE-STATUS BLW=00000 018 0 000 000 DS 2C Display

 237 88 I-O-SUCCESSFUL

 240 1 STATUS-AREA BLW=00000 020 DS 0CL8 Group

 241 2 COMMUTER-FILE-STATUS BLW=00000 020 0 000 000 DS 2C Display

 242 88 I-O-OKAY

 243 2 COMMUTER-VSAM-STATUS BLW=00000 022 0 000 002 DS 0CL6 Group

 244 3 VSAM-R15-RETURN-CODE BLW=00000 022 0 000 002 DS 2C Binary

 245 77 UNUSED-DATA-ITEM BLW=XXXXX 022 DS 10C Display (11)

(1) Explanations of the data definition attribute codes.

(2) Source line number where the data item was defined.

(3) Level definition or number. The compiler generates this number in the

following way:

v First level of any hierarchy is always 01. Increase 1 for each level (any

item you coded as level 02 through 49).

v Level-numbers 66, 77, and 88, and the indicators FD and SD, are not

changed.

(4) Data-name that is used in the source module in source order.

(5) Base locator used for this data item.

(6) Hexadecimal displacement from the beginning of the base locator value.

380 Enterprise COBOL for z/OS V4.1 Programming Guide

(7) Hexadecimal displacement from the beginning of the containing structure.

(8) Pseudoassembler code showing how the data is defined. When a structure

contains variable-length fields, the maximum length of the structure is

shown.

(9) Data type and usage.

(10) Data definition attribute codes. The definitions are explained at the top of

the DATA DIVISION map.

(11) UNUSED-DATA-ITEM was not referenced in the PROCEDURE DIVISION. Because

OPTIMIZE(FULL) was specified, UNUSED-DATA-ITEM was deleted, resulting in

the base locator being set to XXXXX.

“Example: embedded map summary”

“Example: nested program map” on page 384

RELATED REFERENCES

“Terms used in MAP output” on page 382

“Symbols used in LIST and MAP output” on page 383

Example: embedded map summary

The following example shows an embedded map summary from specifying the MAP

option. The summary appears in the right margin of the listing for lines in the DATA

DIVISION that contain data declarations.

 000002 Identification Division.

 000003

 000004 Program-id. IGYTCARA.

 . . .

 000177 Data division.

 000178 File section.

 000179

 000180

 000181 FD COMMUTER-FILE

 000182 record 80 characters. (1) (2) (3) (4)

 . . .

 000222 01 print-record pic x(121). BLF=00004+000 121C

 . . .

 000228 Working-storage section.

 000229 01 Working-storage-for-IGYCARA pic x. BLW=00000+000 1C

 000230

 000231 77 comp-code pic S9999 comp. BLW=00000+008 2C

 000232 77 ws-type pic x(3) value spaces. BLW=00000+010 3C

 000233

 000234

 000235 01 i-f-status-area. BLW=00000+018 0CL2

 000236 05 i-f-file-status pic x(2). BLW=00000+018,0000000 2C

 000237 88 i-o-successful value zeroes.

 000238

 000239

 000240 01 status-area. BLW=00000+020 0CL8

 000241 05 commuter-file-status pic x(2). BLW=00000+020,0000000 2C

 000242 88 i-o-okay value zeroes.

 000243 05 commuter-vsam-status. BLW=00000+022,0000002 0CL6

 000244 10 vsam-r15-return-code pic 9(2) comp. BLW=00000+022,0000002 2C

 000245 10 vsam-function-code pic 9(1) comp. BLW=00000+024,0000004 2C

 000246 10 vsam-feedback-code pic 9(3) comp. BLW=00000+026,0000006 2C

 000247

 000248 77 update-file-status pic xx. BLW=00000+028 2C

 000249 77 loccode-file-status pic xx. BLW=00000+030 2C

 000250 77 updprint-file-status pic xx. BLW=00000+038 2C

 000251

 000252 01 flags. BLW=00000+040 0CL3

 000253 05 transaction-eof-flag pic x value space. BLW=00000+040,0000000 1C

 000254 88 transaction-eof value "Y".

 000255 05 location-eof-flag pic x value space. BLW=00000+041,0000001 1C

 000256 88 location-eof value "Y".

 000257 05 transaction-match-flag pic x. BLW=00000+042,0000002 1C

 . . .

 000876 procedure division.

 000877 000-do-main-logic.

 000878 display "PROGRAM IGYTCARA - Beginning"

 000879 perform 050-create-vsam-master-file.

(1) Base locator used for this data item

Chapter 19. Debugging 381

(2) Hexadecimal displacement from the beginning of the base locator value

(3) Hexadecimal displacement from the beginning of the containing structure

(4) Pseudoassembler code showing how the data is defined

RELATED REFERENCES

“Symbols used in LIST and MAP output” on page 383

Terms used in MAP output

The following table describes the terms used in the listings produced by the MAP

compiler option.

 Table 51. Terms used in MAP output

Term Definition Description

ALPHABETIC DS nC Alphabetic data item (PICTURE A)

ALPHA-EDIT DS nC Alphabetic-edited data item

AN-EDIT DS nC Alphanumeric-edited data item

BINARY DS 1H2, 1F2, 2F2, 2C,

4C, or 8C

Binary data item (USAGE BINARY, COMPUTATIONAL, or

COMPUTATIONAL-5)

COMP-1 DS 4C Single-precision internal floating-point data item (USAGE

COMPUTATIONAL-1)

COMP-2 DS 8C Double-precision internal floating-point data item (USAGE

COMPUTATIONAL-2)

DBCS DS nC DBCS data item (USAGE DISPLAY-1)

DBCS-EDIT DS nC DBCS-edited data item (USAGE DISPLAY-1)

DISP-FLOAT DS nC Display floating-point data item (USAGE DISPLAY)

DISPLAY DS nC Alphanumeric data item (PICTURE X)

DISP-NUM DS nC Zoned decimal data item (USAGE DISPLAY)

DISP-NUM-EDIT DS nC Numeric-edited data item (USAGE DISPLAY)

FD File definition

FUNCTION-PTR DS nC Function pointer (USAGE FUNCTION-POINTER)

GROUP DS 0CLn1 Fixed-length alphanumeric group data item

GRP-VARLEN DS 0CLn1 Variable-length alphanumeric group data item

INDEX DS nC Index data item (USAGE INDEX)

INDEX-NAME DS nC Index name

NATIONAL DS nC Category national data item (USAGE NATIONAL)

NAT-EDIT DS nC National-edited data item (USAGE NATIONAL)

NAT-FLOAT DS nC National floating-point data item (USAGE NATIONAL)

NAT-GROUP DS 0CLn1 National group (GROUP-USAGE NATIONAL)

NAT-GRP-VARLEN DS 0CLn1 National variable-length group (GROUP-USAGE NATIONAL)

NAT-NUM DS nC National decimal data item (USAGE NATIONAL)

NAT-NUM-EDIT DS nC National numeric-edited data item (USAGE NATIONAL)

OBJECT-REF DS nC Object-reference data item (USAGE OBJECT REFERENCE)

PACKED-DEC DS nP Internal decimal data item (USAGE PACKED-DECIMAL or

COMPUTATIONAL-3)

POINTER DS nC Pointer data item (USAGE POINTER)

382 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 51. Terms used in MAP output (continued)

Term Definition Description

PROCEDURE-PTR DS nC Procedure pointer (USAGE PROCEDURE-POINTER)

SD Sort file definition

VSAM, QSAM,

LINESEQ

 File processing method

1-49, 77 Level-numbers for data descriptions

66 Level-number for RENAMES

88 Level-number for condition-names

1. n is the size in bytes for fixed-length groups and the maximum size in bytes for variable-length groups.

2. If the SYNCHRONIZED clause appears, these fields are used.

Symbols used in LIST and MAP output

The following table describes the symbols used in the listings produced by the

LIST or MAP option.

 Table 52. Symbols used in LIST and MAP output

Symbol Definition

APBdisp=n1 ALL subscript parameter block displacement

AVN=n1 Variable name cell for ALTER statement

BL=n1 Base locator for special registers

BLA=n1 Base locator for alphanumeric temporaries4

BLF=n1 Base locator for files

BLK=n1 Base locator for LOCAL-STORAGE

BLL=n1 Base locator for LINKAGE SECTION

BLM=n1 Base locator for factory data

BLO=n1 Base locator for object instance data

BLS=n1 Base locator for sort items

BLT=n1 Base locator for XML-TEXT and XML-NTEXT

BLV=n1 Base locator for variably located data

BLW=n1 Base locator for WORKING-STORAGE

BLX=n1 Base locator for external data

CBL=n1 Base locator for constant global table (CGT)

CLLE=@=n1 Load list entry address in TGT

CLO=n1 Class object cell

DOV=n1 DSA overflow cell

EVALUATE=n1 Evaluate Boolean cell

FCB=n1 File control block (FCB) address

GN=n(hhhhh)2. Generated procedure-name and its offset in hexadecimal

IDX=n1 Base locator for index-names

IDX=n1 Index cell number

ILS=n1 Index cell for LOCAL-STORAGE table or instance variable

ODOSAVE=n1 ODO save cell number

Chapter 19. Debugging 383

Table 52. Symbols used in LIST and MAP output (continued)

Symbol Definition

OPT=nnnn3 Optimizer temporary storage cell

PBL=n1 Base locator for procedure code

PFM=n1 PERFORM n times cells

PGMLIT AT + nnnn3 Displacement for program literal from beginning of literal pool

PSV=n1 Perform save cell number

PVN=n1 Variable name cell for PERFORM statement

RBKST=n1 Register backstore cell

SFCB=n1 Secondary file control block for external file

SYSLIT AT + nnnn3 Displacement for system literal from beginning of system literal pool

TGT FDMP TEST INFO. AREA +

nnnn3

FDUMP/TEST information area

TGTFIXD + nnnn3 Offset from beginning of fixed portion of task global table (TGT)

TOV=n1 TGT overflow cell number

TS1=aaaa Temporary storage cell number in subpool 1

TS2=aaaa Temporary storage cell number in subpool 2

TS3=aaaa Temporary storage cell number in subpool 3

TS4=aaaa Temporary storage cell number in subpool 4

V(routine name) Assembler VCON for external routine

VLC=n1 Variable-length name cell number (ODO)

VNI=n1 Variable name initialization

WHEN=n1 Evaluate WHEN cell number

1. n is the number of the entry. For base locators, it can also be XXXXX, indicating a data item that was deleted by

OPTIMIZE(FULL) processing.

2. (hhhhh) is the program offset in hexadecimal.

3. nnnn is the offset in decimal from the beginning of the entry.

4. Alphanumeric temporaries are temporary data values used in processing alphanumeric intrinsic function and

alphanumeric EVALUATE statement subjects.

Example: nested program map

This example shows a map of nested procedures produced by specifying the MAP

compiler option. Numbers in parentheses refer to notes that follow the example.

 Nested Program Map

 Program Attribute codes (rightmost column) have the following meanings:

 C = COMMON

 I = INITIAL (1)

 U = PROCEDURE DIVISION USING... (5)

 Source Nesting Program

 LineID Level Program Name from PROGRAM-ID paragraph Attributes

 2 0 NESTMAIN. U

 120 1 (4) SUBPRO1 I,C,U

 (2)199 2 NESTED1 I,C,U

 253 1 SUBPRO2 U

 335 2 NESTED2 C,U

 (3)

(1) Explanations of the program attribute codes

384 Enterprise COBOL for z/OS V4.1 Programming Guide

(2) Source line number where the program was defined

(3) Depth of program nesting

(4) Program-name

(5) Program attribute codes

Reading LIST output

Parts of the LIST compiler output might be useful to you for debugging a program.

The LIST compiler option produces seven pieces of output:

v An assembler listing of the initialization code for the program (program

signature information bytes) from which you can verify program characteristics

such as these:

– Compiler options in effect

– Types of data items present

– Verbs used in the PROCEDURE DIVISION

v An assembler listing of the source code for the program

From the address in storage of the instruction that was executing when an abend

occurred, you can find the COBOL verb that corresponds to that instruction.

After you find the address of the failing instruction, go to the assembler listing

and find the verb for which that instruction was generated.

v Location of compiler-generated tables in the object module

v A map of the task global table (TGT), including information about the program

global table (PGT) and constant global table (CGT)

Use the TGT to find information about the environment in which your program

is running.

v Information about the location and size of WORKING-STORAGE and control blocks

You can use the WORKING-STORAGE portion of LIST output to find the location of

data items defined in WORKING-STORAGE. (The beginning location of

WORKING-STORAGE is not shown for programs compiled with the RENT option.)

v Map of the dynamic save area (DSA)

The map of the DSA (also known as the stack frame) contains information about

the contents of the storage acquired each time a separately compiled procedure

is entered.

v Information about the location of literals and code for dynamic storage usage

You do not need to be able to program in assembler language to understand the

LIST output. The comments that accompany most of the assembler code provide

you with a conceptual understanding of the functions performed by the code.

“Example: program initialization code” on page 386

“Example: assembler code generated from source code” on page 393

“Example: TGT memory map” on page 394

“Example: DSA memory map” on page 396

“Example: location and size of WORKING-STORAGE” on page 396

RELATED REFERENCES

“Signature information bytes: compiler options” on page 387

“Signature information bytes: DATA DIVISION” on page 389

“Signature information bytes: ENVIRONMENT DIVISION” on page 390

“Signature information bytes: PROCEDURE DIVISION verbs” on page 390

Chapter 19. Debugging 385

“Signature information bytes: more PROCEDURE DIVISION items” on page 392

Language Environment Programming Guide (Stack storage overview)

Example: program initialization code

A listing of the program initialization code gives you information about the

characteristics of the COBOL source program. Interpret the program signature

information bytes to verify characteristics of your program.

 (1) (2) (3) (4)

 000000 IMIN DS 0H PROGRAM:IMIN

 USING *,15

 000000 47F0 F028 B 40(,15) BYPASS CONSTANTS. BRANCH TO @STM

 000004 00 DC AL1(0) ZERO NAME LENGTH FOR DUMPS

 000005 C3C5C5 DC CL3’CEE’ CEE EYE CATCHER (5)

 000008 00000110 DC X’00000110’ STACK FRAME SIZE

 00000C 00000014 DC A(@PPA1-IMIN) OFFSET TO PPA1 FROM PRIMARY ENTRY

 000010 47F0 F001 B 1(,15) RESERVED

 000014 @PPA1 DS 0H PPA1 STARTS HERE

 000014 98 DC X’98’ OFFSET TO LENGTH OF NAME FROM PPA1

 000015 CE DC X’CE’ CEL SIGNATURE

 000016 AC DC X’AC’ CEL FLAGS: ’10101100’B

 000017 00 DC X’00’ MEMBER FLAGS FOR COBOL

 000018 000000B6 DC A(@PPA2) ADDRESS OF PPA2

 00001C 00000000 DC F’0’ OFFSET TO THE BDI (NONE)

 000020 00000000 DC F’0’ ADDRESS OF ENTRY POINT DESCRIPTORS

 000024 0000 DC X’0000’ RESERVED

 000026 00 DC X’00’ DSA FPR 8-15 SAVE AREA OFFSET/16

 000027 00 DC X’00’ DSA FPR 8-15 SAVE AREA BIT MASK

 000028 @STM DS 0H STM STARTS HERE

 000028 90EC D00C STM 14,12,12(13) @STM: SAVE CALLER’S REGISTERS

 00002C 4110 F038 LA 1,56(,15) GET ADDRESS OF PARMLIST INTO R1

 000030 98EF F04C LM 14,15,76(15) LOAD ADDRESSES FROM @BRVAL

 000034 07FF BR 15 DO ANY NECESSARY INITIALIZATION

 000036 0000 DC AL2’0’ AVAILABLE HALF-WORD

 000038 @MAINENT DS 0H PRIMARY ENTRY POINT ADDRESS

 000038 00000000 DC A(IMIN) @PARMS: 1) PRIMARY ENTRY POINT ADDRESS

 00003C 00000000 DC AL4’0’ 2) Available

 000040 000003C0 DC A(DAB) 3) DAB ADDRESS (6)

 000044 000000AE DC A(@EPNAM) 4) ENTRY POINT NAME ADDRESS

 000048 00000000 DC A(IMIN) 5) CURRENT ENTRY POINT ADDRESS

 00004C 00000272 DC A(START) @BRVAL: 6) PROCEDURE CODE ADDRESS

 000050 00000000 DC V(IGZCBSO) 7) INITIALIZATION ROUTINE

 000054 000000CA DC A(@CEEPARM) 8) ADDRESS OF PARM LIST FOR CEEINT

 000058 00104001 DC X’00104001’ DSA WORD 0 CONSTANT

 00005C 00000000 DC AL4’0’ AVAILABLE WORD

 000060 00000000 DC AL4’0’ AVAILABLE WORD

 000064 00000000 DC AL4’0’ AVAILABLE WORD

 000068 F2F0F0F7 DC CL4’2007’ @TIMEVRS: YEAR OF COMPILATION (7)

 00006C F0F9F3F0 DC CL4’0930’ MONTH/DAY OF COMPILATION (8)

 000070 F1F0F4F8 DC CL4’1048’ HOURS/MINUTES OF COMPILATION (9)

 000074 F1F6 DC CL2’16’ SECONDS FOR COMPILATION DATE

 000076 F0F4F0F1F0F0 DC CL6’040100’ VERSION/RELEASE/MOD LEVEL OF PROD (10)

 00007C 0474 DC X’0474’ UNSIGNED BINARY CODE PAGE CCSID VALUE (11)

 00007E 0000 DC AL2’0’ AVAILABLE HALF-WORD

 000080 0000 DC X’0000’ INFO. BYTES 28-29 (12)

 000082 076C DC X’076C’ SIGNED BINARY YEARWINDOW OPTION VALUE

 000084 A0487C4C2000 DC X’A0487C4C2000’ INFO. BYTES 1-6

 00008A 000000080000 DC X’000000080000’ INFO. BYTES 7-12

 000090 000000000800 DC X’000000000800’ INFO. BYTES 13-18 (12)

 000096 0000000000 DC X’0000000000’ INFO. BYTES 19-23

 00009B 00 DC X’00’ COBOL SIGNATURE LEVEL

 00009C 00000001 DC X’00000001’ # DATA DIVISION STATEMENTS (13)

 0000A0 00000003 DC X’00000003’ # PROCEDURE DIVISION STATEMENTS (14)

 0000A4 000080 DC X’000080’ INFO. BYTES 24-26 (12)

 0000A7 00 DC X’00’ INFO. BYTE 27

 0000A8 40404040 DC C’ ’ USER LEVEL INFO (LVLINFO) (15)

 0000AC 0004 DC X’0004’ LENGTH OF PROGRAM NAME

 0000AE @EPNAM DS 0H ENTRY POINT NAME

 0000AE C9D4C9D540404040 DC C’IMIN ’ PROGRAM NAME (16)

 0000B6 @PPA2 DS 0H PPA2 STARTS HERE

 0000B6 05 DC X’05’ CEL MEMBER IDENTIFIER

 0000B7 00 DC X’00’ CEL MEMBER SUB-IDENTIFIER

 0000B8 00 DC X’00’ CEL MEMBER DEFINED BYTE

 0000B9 01 DC X’01’ CONTROL LEVEL OF PROLOG

 0000BA 00000000 DC V(CEESTART) VCON FOR LOAD MODULE

 0000BE 00000000 DC F’0’ OFFSET TO THE CDI (NONE)

 0000C2 FFFFFFB2 DC A(@TIMEVRS-@PPA2) OFFSET TO TIMESTAMP/VERSION INFO

 0000C6 00000000 DC A(IMIN) ADDRESS OF CU PRIMARY ENTRY POINT

 0000CA @CEEPARM DS 0H PARM LIST FOR CEEINT

 0000CA 00000038 DC A(@MAINENT) POINTER TO PRIMARY ENTRY PT ADDR

 0000CE 00000008 DC A(@PARMCEE-@CEEPARM) OFFSET TO PARAMETERS FOR CEEINT

 0000D2 @PARMCEE DS 0H PARAMETERS FOR CEEINT

 0000D2 00000006 DC F’6’ 1) NUMBER OF ENTRIES IN PARM LIST

 0000D6 00000038 DC A(@MAINENT) 2) POINTER TO PRIMARY ENTRY PT ADDR

 0000DA 00000000 DC V(CEESTART) 3) ADDRESS OF CEESTART

386 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

0000DE 00000000 DC V(CEEBETBL) 4) ADDRESS OF CEEBETBL

 0000E2 00000005 DC F’5’ 5) CEL MEMBER IDENTIFIER

 0000E6 00000000 DC F’0’ 6) FOR CEL MEMBER USE

 . . .

(1) Offset from the start of the COBOL program.

(2) Hexadecimal representation of assembler instructions.

(3) Pseudoassembler code generated for the COBOL program.

(4) Comments that explain the assembler code.

(5) Eye-catcher indicating that the COBOL compiler is Language

Environment-enabled.

(6) Address of the task global table (TGT), or the address of the dynamic

access block (DAB) if the program is reentrant.

(7) Four-digit year when the program was compiled.

(8) Month and the day when the program was compiled.

(9) Time when the program was compiled.

(10) Version, release, and modification level of the COBOL compiler used to

compile this program (each represented in two digits).

(11) Code page CCSID value (from CODEPAGE compiler option).

(12) Program signature information bytes. These provide information about

these elements of the program:

v Compiler options

v DATA DIVISION

v ENVIRONMENT DIVISION

v PROCEDURE DIVISION

(13) Number of statements in the DATA DIVISION.

(14) Number of statements in the PROCEDURE DIVISION.

(15) 4-byte user-controlled level information field. The value of this field is

controlled by the LVLINFO.

(16) Program-name as used in the IDENTIFICATION DIVISION.

RELATED REFERENCES

“Signature information bytes: compiler options”

“Signature information bytes: DATA DIVISION” on page 389

“Signature information bytes: ENVIRONMENT DIVISION” on page 390

“Signature information bytes: PROCEDURE DIVISION verbs” on page 390

“Signature information bytes: more PROCEDURE DIVISION items” on page 392

Signature information bytes: compiler options

This table shows program signature information that is part of the listing of

program initialization code provided when you use the LIST compiler option.

Chapter 19. Debugging 387

Table 53. Signature information bytes for compiler options

Byte Bit On Off

1 0 ADV NOADV

1 APOST QUOTE

2 DATA(31) DATA(24)

3 DECK NODECK

4 DUMP NODUMP

5 DYNAM NODYNAM

6 FASTSRT NOFASTSRT

7 Reserved

2 0 LIB NOLIB

1 LIST NOLIST

2 MAP NOMAP

3 NUM NONUM

4 OBJ NOOBJ

5 OFFSET NOOFFSET

6 OPTIMIZE NOOPTIMIZE

7 ddname supplied in OUTDD option

will be used.

OUTDD(SYSOUT) is in effect.

3 0 NUMPROC(PFD) NUMPROC(NOPFD)

1 RENT NORENT

2 Reserved

3 SEQUENCE NOSEQUENCE

4 SIZE(MAX) SIZE(value)

5 SOURCE NOSOURCE

6 SSRANGE NOSSRANGE

7 TERM NOTERM

4 0 TEST NOTEST

1 TRUNC(STD) TRUNC(OPT)

2 WORD was specified. NOWORD

3 VBREF NOVBREF

4 XREF NOXREF

5 ZWB NOZWB

6 NAME NONAME

7 Reserved

5 0 NUMPROC(MIG)

1 NUMCLS(ALT) NUMCLS(PRIM)

2 DBCS NODBCS

3 AWO NOAWO

4 TRUNC(BIN) Not TRUNC(BIN)

6 CURRENCY NOCURRENCY

7 Compilation unit is a class. Compilation unit is a program.

388 Enterprise COBOL for z/OS V4.1 Programming Guide

|||

Table 53. Signature information bytes for compiler options (continued)

Byte Bit On Off

26 0 RMODE(ANY) RMODE(24)

1–3 TEST(HOOK) TEST(NOHOOK)

4 OPT(FULL) OPT(STD) or NOOPT

5 INTDATE(LILIAN) INTDATE(ANSI)

6 TEST(SEPARATE) Not TEST(SEPARATE)

7 Reserved

27 0 PGMNAME(LONGUPPER) Not PGMNAME(LONGUPPER)

1 PGMNAME(LONGMIXED) Not PGMNAME(LONGMIXED)

2 DLL NODLL

3 EXPORTALL NOEXPORTALL

4 DATEPROC NODATEPROC

5 ARITH(EXTEND) ARITH(COMPAT)

6 THREAD NOTHREAD

7 TEST(EJPD) TEST(NOEJPD)

28 0 SQL NOSQL

1 CICS NOCICS

2 MDECK NOMDECK

3 SQLCCSID NOSQLCCSID

4 OPTFILE is in effect. OPTFILE is not in effect.

5 XMLPARSE(XMLSS) XMLPARSE(COMPAT)

Signature information bytes: DATA DIVISION

This table shows program signature information that is part of the listing of

program initialization code provided when you use the LIST compiler option.

 Table 54. Signature information bytes for the DATA DIVISION

Byte Bit Item

6 0 QSAM file descriptor

1 VSAM sequential file descriptor

2 VSAM indexed file descriptor

3 VSAM relative file descriptor

4 CODE-SET clause (ASCII files) in file descriptor

5 Spanned records

6 PIC G or PIC N (DBCS data item)

7 OCCURS DEPENDING ON clause in data description entry

Chapter 19. Debugging 389

|||

|||

|||

|

|||

|||

Table 54. Signature information bytes for the DATA DIVISION (continued)

Byte Bit Item

7 0 SYNCHRONIZED clause in data description entry

1 JUSTIFIED clause in data description entry

2 USAGE IS POINTER item

3 Complex OCCURS DEPENDING ON clause

4 External floating-point items in the DATA DIVISION

5 Internal floating-point items in the DATA DIVISION

6 Line-sequential file

7 USAGE IS PROCEDURE-POINTER or FUNCTION-POINTER item

RELATED REFERENCES

“LIST” on page 326

Signature information bytes: ENVIRONMENT DIVISION

This table shows program signature information that is part of the listing of

program initialization code provided when you use the LIST compiler option.

 Table 55. Signature information bytes for the ENVIRONMENT DIVISION

Byte Bit Item

8 0 FILE STATUS clause in FILE-CONTROL paragraph

1 RERUN clause in I-O-CONTROL paragraph of INPUT-OUTPUT

SECTION

2 UPSI switch defined in SPECIAL-NAMES paragraph

Signature information bytes: PROCEDURE DIVISION verbs

The following table shows program signature information that is part of the listing

of program initialization code provided when you use the LIST compiler option.

 Table 56. Signature information bytes for PROCEDURE DIVISION verbs

Byte Bit Item

9 0 ACCEPT

1 ADD

2 ALTER

3 CALL

4 CANCEL

6 CLOSE

10 0 COMPUTE

2 DELETE

4 DISPLAY

5 DIVIDE

390 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 56. Signature information bytes for PROCEDURE DIVISION verbs (continued)

Byte Bit Item

11 1 END-PERFORM

2 ENTER

3 ENTRY

4 EXIT

5 EXEC

6 GO TO

7 IF

12 0 INITIALIZE

1 INVOKE

2 INSPECT

3 MERGE

4 MOVE

5 MULTIPLY

6 OPEN

7 PERFORM

13 0 READ

2 RELEASE

3 RETURN

4 REWRITE

5 SEARCH

7 SET

14 0 SORT

1 START

2 STOP

3 STRING

4 SUBTRACT

7 UNSTRING

15 0 USE

1 WRITE

2 CONTINUE

3 END-ADD

4 END-CALL

5 END-COMPUTE

6 END-DELETE

7 END-DIVIDE

Chapter 19. Debugging 391

Table 56. Signature information bytes for PROCEDURE DIVISION verbs (continued)

Byte Bit Item

16 0 END-EVALUATE

1 END-IF

2 END-MULTIPLY

3 END-READ

4 END-RETURN

5 END-REWRITE

6 END-SEARCH

7 END-START

17 0 END-STRING

1 END-SUBTRACT

2 END-UNSTRING

3 END-WRITE

4 GOBACK

5 EVALUATE

7 SERVICE

18 0 END-INVOKE

1 END-EXEC

2 XML

3 END-XML

Check return code: A return code greater than 4 from the compiler could mean

that some of the verbs shown in the information bytes might have been discarded

from the program.

Signature information bytes: more PROCEDURE DIVISION items

This table shows program signature information that is part of the listing of

program initialization code provided when you use the LIST compiler option.

 Table 57. Signature information bytes for more PROCEDURE DIVISION items

Byte Bit Item

21 0 Hexadecimal literal

1 Altered GO TO

2 I-O ERROR declarative

3 LABEL declarative

4 DEBUGGING declarative

5 Program segmentation

6 OPEN . . . EXTEND

7 EXIT PROGRAM

392 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 57. Signature information bytes for more PROCEDURE DIVISION

items (continued)

Byte Bit Item

22 0 CALL literal

1 CALL identifier

2 CALL . . . ON OVERFLOW

3 CALL . . . LENGTH OF

4 CALL . . . ADDRESS OF

5 CLOSE . . . REEL/UNIT

6 Exponentiation used

7 Floating-point items used

23 0 COPY

1 BASIS

2 DBCS name in program

3 Shift-out and Shift-in in program

4-7 Highest error severity at entry to ASM2 module IGYBINIT

24 0 DBCS literal

1 REPLACE

2 Reference modification was used.

3 Nested program

4 INITIAL

5 COMMON

6 SELECT . . . OPTIONAL

7 EXTERNAL

25 0 GLOBAL

1 RECORD IS VARYING

2 ACCEPT FROM SYSIPT used in LABEL declarative

3 DISPLAY UPON SYSLST used in LABEL declarative

4 DISPLAY UPON SYSPCH used in LABEL declarative

5 Intrinsic function was used

29 0 Java-based OO syntax in program

1 FUNCTION RANDOM used in program

2 NATIONAL data used in program

RELATED REFERENCES

“LIST” on page 326

Example: assembler code generated from source code

The following example shows a listing of the assembler code that is generated

from source code when you use the LIST compiler option. You can use this listing

to find the COBOL verb that corresponds to the instruction that failed.

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 12/30/2007 Time 10:48:16

000433 MOVE

000435 READ

Chapter 19. Debugging 393

000436 SET (1)

 (2) (3) (5) (6)

 000F26 92E8 A00A MVI 10(10),X’E8’ LOCATION-EOF-FLAG

 000F2A GN=13 EQU *

 000F2A 47F0 B426 BC 15,1062(0,11) GN=75(000EFA)

 000F2E GN=74 EQU *

000439 IF

 000F2E 95E8 A00A CLI 10(10),X’E8’ LOCATION-EOF-FLAG

 000F32 4780 B490 BC 8,1168(0,11) GN=14(000F64)

000440 DISPLAY

 000F36 5820 D05C L 2,92(0,13) TGTFIXD+92

 000F3A 58F0 202C L 15,44(0,2) V(IGZCDSP)

 000F3E 4110 97FF LA 1,2047(0,9) PGMLIT AT +1999

 000F42 05EF BALR 14,15

000443 CALL

 000F44 4130 A012 LA 3,18(0,10) COMP-CODE

 000F48 5030 D21C ST 3,540(0,13) TS2=4

 000F4C 9680 D21C OI 540(13),X’80’ TS2=4

 000F50 4110 D21C LA 1,540(0,13) TS2=4

 000F54 58F0 9000 L 15,0(0,9) V(ILBOABN0)

 000F58 05EF BALR 14,15

 000F5A 50F0 D078 ST 15,120(0,13) TGTFIXD+120

 000F5E BF38 D089 ICM 3,8,137(13) TGTFIXD+137

 000F62 0430 SPM 3,0

 000F64 (4) GN=14 EQU *

 000F64 5820 D154 L 2,340(0,13) VN=3

 000F68 07F2 BCR 15,2

(1) Source line number and COBOL verb, paragraph name, or section name

 In line 000436, SET is the COBOL verb. An asterisk (*) before a name

indicates that the name is a paragraph name or a section name.

(2) Relative location of the object code instruction in the module, in

hexadecimal notation

(3) Object code instruction, in hexadecimal notation

 The first two or four hexadecimal digits are the instruction, and the

remaining digits are the instruction operands. Some instructions have two

operands.

(4) Compiler-generated names (GN) for code sequences

(5) Object code instruction in a form that closely resembles assembler

language

(6) Comments about the object code instruction:

v One or two operands that participate in the machine instructions are

displayed on the right. An asterisk immediately follows the data-names

that are defined in more than one structure (in that way made unique by

qualification in the source program).

v The relative location of any generated label that appears as an operand

is displayed in parentheses.

RELATED REFERENCES

“Symbols used in LIST and MAP output” on page 383

Example: TGT memory map

The following example shows LIST output for the task global table (TGT) with

information about the environment in which your program runs.

394 Enterprise COBOL for z/OS V4.1 Programming Guide

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 12/30/2007 Time 10:48:16

 *** TGT MEMORY MAP ***

 (1) (2)

 TGTLOC

 000000 RESERVED - 72 BYTES

 000048 TGT IDENTIFIER

 00004C RESERVED - 4 BYTES

 000050 TGT LEVEL INDICATOR

 000051 RESERVED - 3 BYTES

 000054 32 BIT SWITCH

 000058 POINTER TO RUNCOM

 00005C POINTER TO COBVEC

 000060 POINTER TO PROGRAM DYNAMIC BLOCK TABLE

 000064 NUMBER OF FCB’S

 000068 WORKING-STORAGE LENGTH

 00006C RESERVED - 4 BYTES

 000070 ADDRESS OF IGZESMG WORK AREA

 000074 ADDRESS OF 1ST GETMAIN BLOCK (SPACE MGR)

 000078 RESERVED - 2 BYTES

 00007A RESERVED - 2 BYTES

 00007C RESERVED - 2 BYTES

 00007E MERGE FILE NUMBER

 000080 ADDRESS OF CEL COMMON ANCHOR AREA

 000084 LENGTH OF TGT

 000088 RESERVED - 1 SINGLE BYTE FIELD

 000089 PROGRAM MASK USED BY THIS PROGRAM

 00008A RESERVED - 2 SINGLE BYTE FIELDS

 00008C NUMBER OF SECONDARY FCB CELLS

 000090 LENGTH OF THE ALTER VN(VNI) VECTOR

 000094 COUNT OF NESTED PROGRAMS IN COMPILE UNIT

 000098 DDNAME FOR DISPLAY OUTPUT

 0000A0 RESERVED - 8 BYTES

 0000A8 POINTER TO COM-REG SPECIAL REGISTER

 0000AC RESERVED - 52 BYTES

 0000E0 ALTERNATE COLLATING SEQUENCE TABLE PTR.

 0000E4 ADDRESS OF SORT G.N. ADDRESS BLOCK

 0000E8 ADDRESS OF PGT

 0000EC RESERVED - 4 BYTES

 0000F0 POINTER TO 1ST IPCB

 0000F4 ADDRESS OF THE CLLE FOR THIS PROGRAM

 0000F8 POINTER TO ABEND INFORMATION TABLE

 0000FC POINTER TO TEST INFO FIELDS IN THE TGT

 000100 ADDRESS OF START OF COBOL PROGRAM

 000104 POINTER TO ALTER VNI’S IN CGT

 000108 POINTER TO ALTER VN’S IN TGT

 00010C POINTER TO FIRST PBL IN THE PGT

 000110 POINTER TO FIRST FCB CELL

 000114 WORKING-STORAGE ADDRESS

 000118 POINTER TO FIRST SECONDARY FCB CELL

 00011C POINTER TO STATIC CLASS INFO BLOCK 1

 000120 POINTER TO STATIC CLASS INFO BLOCK 2

 *** VARIABLE PORTION OF TGT ***

 000124 BASE LOCATORS FOR SPECIAL REGISTERS

 00012C BASE LOCATORS FOR WORKING-STORAGE (3)

 000134 BASE LOCATORS FOR LINKAGE-SECTION

 000138 BASE LOCATORS FOR FILES

 00014C CLLE ADDR. CELLS FOR CALL LIT. SUB-PGMS.

 000170 INDEX CELLS

 000194 FCB CELLS

 0001A8 INTERNAL PROGRAM CONTROL BLOCKS

(1) Hexadecimal offset of the TGT field from the start of the TGT

(2) Explanation of the contents of the TGT field

Chapter 19. Debugging 395

(3) TGT fields for the base locators of COBOL data areas

Example: DSA memory map

The following example shows LIST output for the dynamic save area (DSA). The

DSA contains information about the contents of the storage acquired when a

separately compiled procedure is entered.

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 12/30/2007 Time 10:48:16

 *** DSA MEMORY MAP ***

 (1) (2)

 DSALOC

 000000 REGISTER SAVE AREA

 00004C STACK NAB (NEXT AVAILABLE BYTE)

 000058 ADDRESS OF INLINE-CODE PRIMARY DSA

 00005C ADDRESS OF TGT

 000060 ADDRESS OF CAA

 000084 SWITCHES

 000088 CURRENT INT. PROGRAM OR METHOD NUMBER

 00008C ADDRESS OF CALL STATEMENT PROGRAM NAME

 000090 CALC ROUTINE REGISTER SAVE AREA

 0000C4 ADDRESS OF FILE MUTEX USE COUNT CELLS

 0000C8 PROCEDURE DIVISION RETURNING VALUE

 *** VARIABLE PORTION OF DSA ***

 0000D0 BACKSTORE CELLS FOR SYMBOLIC REGISTERS

 000158 BASE LOCATORS FOR ALPHANUMERIC TEMPS

 00015C VARIABLE-LENGTH CELLS

 000170 ODO SAVE CELLS

 00017C VARIABLE NAME (VN) CELLS FOR PERFORM

 0001EC PERFORM SAVE CELLS

 000320 TEMPORARY STORAGE-1

 000330 TEMPORARY STORAGE-2

 000500 ALL PARAMETER BLOCK

 000564 ALPHANUMERIC TEMPORARY STORAGE

(1) Hexadecimal offset of the DSA field from the start of the DSA

(2) Explanation of the contents of the DSA field

Example: location and size of WORKING-STORAGE

The following example shows LIST output about the WORKING-STORAGE for a

program compiled with the RENT option.

 (1) (2)

WRK-STOR WILL BE ALLOCATED FOR 000015B0 BYTES

(1) WORKING-STORAGE identification

(2) Length of WORKING-STORAGE in hexadecimal notation

RELATED CONCEPTS

“Storage and its addressability” on page 42

Example: XREF output: data-name cross-references

The following example shows a sorted cross-reference of data-names that is

produced by the XREF compiler option. Numbers in parentheses refer to notes after

the example.

An "M" preceding a data-name reference indicates that the

data-name is modified by this reference.

396 Enterprise COBOL for z/OS V4.1 Programming Guide

(1) (2) (3)

 Defined Cross-reference of data-names References

 264 ABEND-ITEM1

 265 ABEND-ITEM2

 347 ADD-CODE 1126 1192

 381 ADDRESS-ERROR. M1156

 280 AREA-CODE. 1266 1291 1354 1375

 382 CITY-ERROR M1159

 (4)

 Context usage is indicated by the letter preceding a procedure-name

 reference. These letters and their meanings are:

 A = ALTER (procedure-name)

 D = GO TO (procedure-name) DEPENDING ON

 E = End of range of (PERFORM) through (procedure-name)

 G = GO TO (procedure-name)

 P = PERFORM (procedure-name)

 T = (ALTER) TO PROCEED TO (procedure-name)

 U = USE FOR DEBUGGING (procedure-name)

 (5) (6) (7)

 Defined Cross-reference of procedures References

 877 000-DO-MAIN-LOGIC

 943 050-CREATE-STL-MASTER-FILE . . P879

 995 100-INITIALIZE-PARAGRAPH . . . P881

 1471 1100-PRINT-I-F-HEADINGS. . . . P926

 1511 1200-PRINT-I-F-DATA. P928

 1573 1210-GET-MILES-TIME. P1540

 1666 1220-STORE-MILES-TIME. P1541

 1682 1230-PRINT-SUB-I-F-DATA. . . . P1562

 1706 1240-COMPUTE-SUMMARY P1563

 1052 200-EDIT-UPDATE-TRANSACTION. . P890

 1154 210-EDIT-THE-REST. P1145

 1189 300-UPDATE-COMMUTER-RECORD . . P893

 1237 310-FORMAT-COMMUTER-RECORD . . P1194 P1209

 1258 320-PRINT-COMMUTER-RECORD. . . P1195 P1206 P1212 P1222

 1318 330-PRINT-REPORT P1208 P1232 P1286 P1310 P1370

 1342 400-PRINT-TRANSACTION-ERRORS . P896

Cross-reference of data-names:

(1) Line number where the name was defined.

(2) Data-name.

(3) Line numbers where the name was used. If M precedes the line number, the

data item was explicitly modified at the location.

Cross-reference of procedure references:

(4) Explanations of the context usage codes for procedure references

(5) Line number where the procedure-name is defined

(6) Procedure-name

(7) Line numbers where the procedure is referenced and the context usage

code for the procedure

“Example: XREF output: program-name cross-references” on page 398

“Example: XREF output: COPY/BASIS cross-references” on page 398

“Example: embedded cross-reference” on page 399

Chapter 19. Debugging 397

Example: XREF output: program-name cross-references

The following example shows a sorted cross-reference of program-names produced

by the XREF compiler option. Numbers in parentheses refer to notes that follow the

example.

 (1) (2) (3)

Defined Cross-reference of programs References

EXTERNAL EXTERNAL1. 25

 2 X. 41

 12 X1 33 7

 20 X11. 25 16

 27 X12. 32 17

 35 X2 40 8

(1) Line number where the program-name was defined. If the program is

external, the word EXTERNAL is displayed instead of a definition line

number.

(2) Program-name.

(3) Line numbers where the program is referenced.

Example: XREF output: COPY/BASIS cross-references

The following example shows a sorted cross-reference of COPY or BASIS statements

to the data-set names of the associated copybooks, produced by the XREF compiler

option under z/OS. Numbers in parentheses refer to notes after the example.

 COPY/BASIS cross-reference of text-names, library names

 (1) (1) (2) (3) (4)

 Text-name Library File name Concat ISPF

 (Member) (DDNAME) (Data set name) Level Created

 ACTIONS OTHERLIB USERID.COBOL.COPY 0 1992/07/11

 ACTIONS SYSLIB USERID.COBOL.COPY 0 1992/07/11

 CUSTOMER ALTDDXXY USERID.COBOL.LIB3 0 2007/06/01

 CUSTOMER SYSLIB USERID.COBOL.LIB2PDSE 1 2007/06/07

 HOUSE ALTDDXXY USERID.COBOL.LIB2 1 2007/06/07

 HOUSE SYSLIB USERID.COBOL.LIB2PDSE 1

 IMOTOR SYSLIB USERID.COBOL.LIB4X 3 2007/06/07

 ISOVERFY SYSLIB USERID.COBOL.COPY 0

 NSMAP SYSLIB USERID.COBOL.LIB3 2

(1) Text-name and library (an abbreviation for library-name) are from the

statement COPY text-name OF library-name in the source, for example,

Copy ACTIONS Of OTHERLIB.

(2) The name of the data set from which the COPY member was copied.

(3) Abbreviation for concatenation level. Indicates how many levels deep a

given data set is from the first data set in the concatenation for a given

ddname.

 For example, four data sets in the example above are concatenated to

ddname SYSLIB:

DDNAME DSNAME (concatenation level)

SYSLIB DD DSN=USERID.COBOL.COPY, 0

 DD DSN=USERID.COBOL.LIB2PDSE, 1

 DD DSN=USERID.COBOL.LIB3, 2

 DD DSN=USERID.COBOL.LIB4X 3

398 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

||

||
|
|

|
|

|
|
|
|
|
|
|

Thus for example member NSMAP shown in the listing above was found

in data set USERID.COBOL.LIB3, which is two levels down from the first

data set in the SYSLIB concatenation.

(4) Creation date is shown if the PDS or PDSE was edited with STATS ON in

ISPF.

If you compile in the z/OS UNIX shell, the cross-reference looks like the excerpt

shown below.

 COPY/BASIS cross-reference of text-names, library names, and file names

 (5) (5) (6)

 Text-name Library-name File name

’/copydir/copyM.cbl’ SYSLIB /u/JSMITH/cobol//copydir/copyM.cbl

’/copyA.cpy’ SYSLIB /u/JSMITH/cobol//copyA.cpy

’cobol/copyA.cpy’ ALTDD2 /u/JSMITH/cobol/copyA.cpy

’copy/stuff.cpy’ ALTDD2 /u/JSMITH/copy/stuff.cpy

’copydir/copyM.cbl’ SYSLIB /u/JSMITH/cobol/copydir/copyM.cbl

’copydir/copyM.cbl’ SYSLIB (default) /u/JSMITH/cobol/copydir/copyM.cbl

’stuff.cpy’ ALTDD /u/JSMITH/copy/stuff.cpy

"copyA.cpy" (7) SYSLIB (default) /u/JSMITH/cobol/copyA.cpy

"reallyXXVeryLongLon> SYSLIB (default) (8)<JSMITH/cobol/reallyXXVeryLongLongName.cpy

OTHERDD ALTDD2 /u/JSMITH//copy/other.cob

. . .

Note: Some names were truncated. > = truncated on right < = truncated on left

(5) From the COPY statement in the source; for example the COPY statement

corresponding to the third item in the cross-reference above would be:

COPY ’cobol/copyA.cpy’ Of ALTDD2

(6) The fully qualified path of the file from which the COPY member was

copied

(7) Truncation of a long text-name or library-name on the right is marked by a

greater-than sign (>).

(8) Truncation of a long file name on the left is marked by a less-than sign (<).

Example: embedded cross-reference

The following example shows a modified cross-reference that is embedded in the

source listing. The cross-reference is produced by the XREF compiler option.

 LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference

 . . .

 000878 procedure division.

 000879 000-do-main-logic.

 000880 display "PROGRAM IGYTCARA - Beginning".

 000881 perform 050-create-vsam-master-file. 932 (1)

 000882 perform 100-initialize-paragraph. 984

 000883 read update-transaction-file into ws-transaction-record 204 340

 000884 at end

 000885 1 set transaction-eof to true 254

 000886 end-read.

 . . .

 000984 100-initialize-paragraph.

 000985 move spaces to ws-transaction-record IMP 340 (2)

 000986 move spaces to ws-commuter-record IMP 316

 000987 move zeroes to commuter-zipcode IMP 327

 000988 move zeroes to commuter-home-phone IMP 328

 000989 move zeroes to commuter-work-phone IMP 329

 000990 move zeroes to commuter-update-date IMP 333

 000991 open input update-transaction-file 204

 000992 location-file 193

 000993 i-o commuter-file 181

 000994 output print-file 217

 . . .

 001442 1100-print-i-f-headings.

 001443

 001444 open output print-file. 217

 001445

 001446 move function when-compiled to when-comp. IFN 698 (2)

 001447 move when-comp (5:2) to compile-month. 698 640

 001448 move when-comp (7:2) to compile-day. 698 642

 001449 move when-comp (3:2) to compile-year. 698 644

Chapter 19. Debugging 399

|
|
|

||
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

|

||
|

||
|

||

001450

 001451 move function current-date (5:2) to current-month. IFN 649

 001452 move function current-date (7:2) to current-day. IFN 651

 001453 move function current-date (3:2) to current-year. IFN 653

 001454

 001455 write print-record from i-f-header-line-1 222 635

 001456 after new-page. 138

 . . .

(1) Line number of the definition of the data-name or procedure-name in the

program

(2) Special definition symbols:

UND The user name is undefined.

DUP The user name is defined more than once.

IMP Implicitly defined name, such as special registers and figurative

constants.

IFN Intrinsic function reference.

EXT External reference.

* The program-name is unresolved because the NOCOMPILE option is

in effect.

Example: OFFSET compiler output

The following example shows a compiler listing that has a condensed verb listing,

global tables, WORKING-STORAGE information, and literals. The listing is output from

the OFFSET compiler option.

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 12/30/2007 Time 10:48:16

 . . .

 (1) (2) (3)

LINE # HEXLOC VERB LINE # HEXLOC VERB LINE # HEXLOC VERB

000880 0026F0 DISPLAY 000881 002702 PERFORM 000933 002702 OPEN

000934 002722 IF 000935 00272C DISPLAY 000936 002736 PERFORM

001389 002736 DISPLAY 001390 002740 DISPLAY 001391 00274A DISPLAY

001392 002754 DISPLAY 001393 00275E DISPLAY 001394 002768 DISPLAY

001395 002772 DISPLAY 000937 00277C PERFORM 001434 00277C DISPLAY

001435 002786 STOP 000939 0027A2 MOVE 000940 0027AC WRITE

000941 0027D6 IF 000942 0027E0 DISPLAY 000943 0027EA PERFORM

001389 0027EA DISPLAY 001390 0027F4 DISPLAY 001391 0027FE DISPLAY

001392 002808 DISPLAY 001393 002812 DISPLAY 001394 00281C DISPLAY

001395 002826 DISPLAY 000944 002830 DISPLAY 000945 00283A PERFORM

001403 00283A DISPLAY 001404 002844 DISPLAY 001405 00284E DISPLAY

001406 002858 DISPLAY 001407 002862 CALL 000947 002888 CLOSE

(1) Line number. Your line numbers or compiler-generated line numbers are

listed.

(2) Offset, from the start of the program, of the code generated for this verb

(in hexadecimal notation).

 The verbs are listed in the order in which they occur and are listed once

for each time they are used.

(3) Verb used.

RELATED REFERENCES

“OFFSET” on page 333

400 Enterprise COBOL for z/OS V4.1 Programming Guide

Example: VBREF compiler output

The following example shows an alphabetic listing of all the verbs in a program,

and shows where each is referenced. The listing is produced by the VBREF compiler

option.

 (1) (2) (3)

2 ACCEPT 101 101

2 ADD. 129 130

1 CALL 140

5 CLOSE. 90 94 97 152 153

20 COMPUTE. 150 164 164 165 166 166 166 166 167 168 168 169 169 170 171 171

 171 172 172 173

2 CONTINUE 106 107

2 DELETE 96 119

47 DISPLAY. 88 90 91 92 92 93 94 94 94 95 96 96 97 99 99 100 100 100 100

 103 109 117 117 118 119 138 139 139 139 139 139 139 140 140 140

 140 143 148 148 149 149 149 152 152 152 153 162

2 EVALUATE 116 155

47 IF 88 90 93 94 94 95 96 96 97 99 100 103 105 105 107 107 107 109

 110 111 111 112 113 113 113 113 114 114 115 115 116 118 119 124

 124 126 127 129 132 133 134 135 136 148 149 152 152

183 MOVE 90 93 95 98 98 98 98 98 99 100 101 101 102 104 105 105 106 106

 107 107 108 108 108 108 108 108 109 110 111 112 113 113 113 114

 114 114 115 115 116 116 117 117 117 118 118 118 119 119 120 121

 121 121 121 121 121 121 121 121 121 122 122 122 122 122 123 123

 123 123 123 123 123 124 124 124 125 125 125 125 125 125 125 126

 126 126 126 126 127 127 127 127 128 128 129 129 130 130 130 130

 131 131 131 131 131 132 132 132 132 132 132 133 133 133 133 133

 134 134 134 134 134 135 135 135 135 135 135 136 136 137 137 137

 137 137 138 138 138 138 141 141 142 142 144 144 144 144 145 145

 145 145 146 149 150 150 150 151 151 155 156 156 157 157 158 158

 159 159 160 160 161 161 162 162 162 168 168 168 169 169 170 171

 171 172 172 173 173

5 OPEN 93 95 99 144 148

62 PERFORM. 88 88 88 88 89 89 89 91 91 91 91 93 93 94 94 95 95 95 95 96

 96 96 97 97 97 100 100 101 102 104 109 109 111 116 116 117 117

 117 118 118 118 118 119 119 119 120 120 124 125 127 128 133 134

 135 136 136 137 150 151 151 153 153

8 READ 88 89 96 101 102 108 149 151

1 REWRITE. 118

4 SEARCH 106 106 141 142

46 SET. 88 89 101 103 104 105 106 108 108 136 141 142 149 150 151 152 154

 155 156 156 156 156 157 157 157 157 158 158 158 158 159 159 159

 159 160 160 160 160 161 161 161 161 162 162 164 164

2 STOP 92 143

4 STRING 123 126 132 134

33 WRITE. 94 116 129 129 129 129 129 130 130 130 130 145 146 146 146 146 147

 147 151 165 165 166 166 167 174 174 174 174 174 174 174 175 175

(1) Number of times the verb is used in the program

(2) Verb

(3) Line numbers where the verb is used

Chapter 19. Debugging 401

402 Enterprise COBOL for z/OS V4.1 Programming Guide

Part 3. Targeting COBOL programs for certain environments

Chapter 20. Developing COBOL programs for

CICS 405

Coding COBOL programs to run under CICS . . 405

Getting the system date under CICS 407

Calling to or from COBOL programs 407

Determining the success of ECI calls 409

Compiling with the CICS option 409

Separating CICS suboptions 411

Integrated CICS translator 411

Using the separate CICS translator 412

CICS reserved-word table 413

Handling errors by using CICS HANDLE 414

Example: handling errors by using CICS

HANDLE 415

Chapter 21. Programming for a DB2

environment 417

DB2 coprocessor 417

Coding SQL statements 418

Using SQL INCLUDE with the DB2 coprocessor 419

Using character data in SQL statements . . . 419

Using national decimal data in SQL statements 420

Using national group items in SQL statements 420

Using binary items in SQL statements 421

Determining the success of SQL statements . . 421

Compiling with the SQL option 421

Separating DB2 suboptions 422

COBOL and DB2 CCSID determination 423

Code-page determination for string host

variables in SQL statements 424

Programming with the SQLCCSID or

NOSQLCCSID option 424

Differences in how the DB2 precompiler and

coprocessor behave 425

Period at the end of EXEC SQL INCLUDE

statements 425

EXEC SQL INCLUDE and nested COPY

REPLACING 425

EXEC SQL and REPLACE or COPY

REPLACING 426

Source code after an END-EXEC statement . . 426

Multiple definitions of host variables 426

EXEC SQL statement continuation lines . . . 426

Bit-data host variables 427

SQL-INIT-FLAG 427

Choosing the DYNAM or NODYNAM compiler

option 427

Chapter 22. Developing COBOL programs for

IMS 429

Compiling and linking COBOL programs for

running under IMS 429

Using object-oriented COBOL and Java under IMS 430

Calling a COBOL method from an IMS Java

application 430

Building a mixed COBOL/Java application that

starts with COBOL 431

Writing mixed-language IMS applications . . . 432

Using the STOP RUN statement 432

Processing messages and synchronizing

transactions 432

Accessing databases 432

Using the application interface block . . . 433

Chapter 23. Running COBOL programs under

UNIX 435

Running in UNIX environments 435

Setting and accessing environment variables . . . 436

Setting environment variables that affect

execution 437

Runtime environment variables 437

Example: setting and accessing environment

variables 438

Calling UNIX/POSIX APIs 438

Accessing main program parameters 440

Example: accessing main program parameters 441

© Copyright IBM Corp. 1991, 2007 403

|
||
|
||

404 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 20. Developing COBOL programs for CICS

COBOL programs that are written for CICS can run under CICS Transaction Server.

CICS COBOL application programs that use CICS services must use the CICS

command-level interface.

When you use the CICS compiler option, the Enterprise COBOL compiler handles

both native COBOL and embedded CICS statements in the source program.

Compilers before COBOL for OS/390 & VM Version 2 Release 2 require a separate

translation step to convert EXEC CICS commands to COBOL code. You can still

translate embedded CICS statements separately, but use of the integrated CICS

translator is recommended.

To use the integrated CICS translator, CICS Transaction Server Version 2 or later is

required.

After you compile and link-edit your program, you need to do some other steps

such as updating CICS tables before you can run the COBOL program under CICS.

However, these CICS topics are beyond the scope of this COBOL information. See

the related references for further information about CICS.

You can determine how runtime errors are handled by setting the CBLPSHPOP

runtime option. See the related tasks for information about CICS HANDLE and

CBLPSHPOP.

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Coding COBOL programs to run under CICS”

“Compiling with the CICS option” on page 409

“Using the separate CICS translator” on page 412

“Handling errors by using CICS HANDLE” on page 414

Language Environment Programming Guide (Condition handling under CICS:

 using the CBLPSHPOP run-time option)

CICS Application Programming Guide

RELATED REFERENCES

“CICS” on page 308

Coding COBOL programs to run under CICS

To code a program to run under CICS, code CICS commands in the PROCEDURE

DIVISION by using the EXEC CICS command format.

EXEC CICS command-name command-options

END-EXEC

CICS commands have the basic format shown above. Within EXEC commands, use

the space as a word separator; do not use a comma or a semicolon.

© Copyright IBM Corp. 1991, 2007 405

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhp3c00

Restrictions: COBOL class definitions and methods (object-oriented COBOL)

cannot be run in a CICS environment. In addition, when you code your programs

to run under CICS, do not use the following code:

v FILE-CONTROL entry in the ENVIRONMENT DIVISION, unless the FILE-CONTROL entry

is used for a SORT statement

v FILE SECTION of the DATA DIVISION, unless the FILE SECTION is used for a SORT

statement

v User-specified parameters to the main program

v USE declaratives (except USE FOR DEBUGGING)

v These COBOL language statements:

– ACCEPT format 1: data transfer (you can use format-2 ACCEPT to retrieve the

system date and time)

– CLOSE

– DELETE

– DISPLAY UPON CONSOLE

– DISPLAY UPON SYSPUNCH

– MERGE

– OPEN

– READ

– RERUN

– REWRITE

– START

– STOP literal

– WRITE

If you plan to use the separate CICS translator, you must put any REPLACE

statements that contain EXEC commands after the PROCEDURE DIVISION header for

the program, otherwise the commands will not be translated.

Coding file input and output: You must use CICS commands for most input and

output processing. Therefore, do not describe files or code any OPEN, CLOSE, READ,

START, REWRITE, WRITE, or DELETE statements. Instead, use CICS commands to

retrieve, update, insert, and delete data.

Coding a COBOL program to run above the 16-MB line: Under Enterprise

COBOL, the following restrictions apply when you code a COBOL program to run

above the 16-MB line:

v If you use IMS/ESA® Version 6 (or later) without DBCTL, DL/I CALL statements

are supported only if all the data passed in the call resides below the 16-MB

line. Therefore, you must specify the DATA(24) compiler option. However, if you

use IMS/ESA Version 6 (or later) with DBCTL, you can use the DATA(31) compiler

option instead and pass data that resides above the 16-MB line.

If you use EXEC DLI instead of DL/I CALL statements, you can specify DATA(31)

regardless of the level of the IMS product.

v If the receiving program is link-edited with AMODE 31, addresses that are passed

must be 31 bits long, or 24 bits long with the leftmost byte set to zeros.

v If the receiving program is link-edited with AMODE 24, addresses that are passed

must be 24 bits long.

406 Enterprise COBOL for z/OS V4.1 Programming Guide

Displaying the contents of data items: DISPLAY to the system logical output device

(SYSOUT, SYSLIST, SYSLST) is supported under CICS. The DISPLAY output is

written to the Language Environment message file (transient data queue CESE).

DISPLAY . . . UPON CONSOLE and DISPLAY . . . UPON SYSPUNCH, however, are not

allowed.

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Sorting under CICS” on page 231

“Getting the system date under CICS”

“Calling to or from COBOL programs”

“Determining the success of ECI calls” on page 409

“Using the separate CICS translator” on page 412

RELATED REFERENCES

“CICS SORT application restrictions” on page 232

Getting the system date under CICS

To retrieve the system date in a CICS program, use a format-2 ACCEPT statement or

the CURRENT-DATE intrinsic function.

You can use any of these format-2 ACCEPT statements in the CICS environment to

get the system date:

v ACCEPT identifier-2 FROM DATE (two-digit year)

v ACCEPT identifier-2 FROM DATE YYYYMMDD

v ACCEPT identifier-2 FROM DAY (two-digit year)

v ACCEPT identifier-2 FROM DAY YYYYDDD

v ACCEPT identifier-2 FROM DAY-OF-WEEK (one-digit integer, where 1 represents

Monday)

You can use this format-2 ACCEPT statement in the CICS environment to get the

system time:

v ACCEPT identifier-2 FROM TIME

Alternatively, you can use the CURRENT-DATE intrinsic function, which can also

provide the time.

These methods work in both CICS and non-CICS environments.

Do not use a format-1 ACCEPT statement in a CICS program.

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 37

RELATED REFERENCES

CURRENT-DATE (Enterprise COBOL Language Reference)

Calling to or from COBOL programs

You can make calls to or from VS COBOL II, COBOL for MVS & VM, COBOL for

OS/390 & VM, and Enterprise COBOL programs by using the CALL statement.

Chapter 20. Developing COBOL programs for CICS 407

However, these programs cannot call or be called by OS/VS COBOL programs

with the CALL statement. You must use EXEC CICS LINK instead.

If you are calling a separately compiled COBOL program that was processed with

either the separate CICS translator or the integrated CICS translator, you must pass

DFHEIBLK and DFHCOMMAREA as the first two parameters in the CALL statement.

Called programs that are processed by the separate CICS translator or the

integrated CICS translator can contain any function that is supported by CICS for

the language.

You can use COBOL dynamic calls when running under CICS. When a COBOL

program has been processed with the separate CICS translator or the integrated

CICS translator, or contains EXEC SQL statements, the NODYNAM compiler option is

required. In this case you can use CALL identifier with the NODYNAM compiler option

to dynamically call a program. When a COBOL program has no EXEC SQL

statements and has not been processed by the separate CICS translator or the

integrated CICS translator, there is no requirement to compile with the NODYNAM

compiler option. In this case you can use either CALL literal with the DYNAM compiler

option or CALL identifier to dynamically call a program.

You must define dynamically called programs in the CICS program processing

table (PPT) if you are not using CICS autoinstall. Under CICS, COBOL programs

do not support dynamic calls to subprograms that have the RELOAD=YES option

coded in their CICS PROGRAM definition. Dynamic calls to programs that are defined

with RELOAD=YES can cause a storage shortage. Use the RELOAD=NO option for

programs that are to be dynamically called by COBOL.

Support for interlanguage communication (ILC) with other high-level languages is

available. Where ILC is not supported, you can use CICS LINK, XCTL, and RETURN

instead.

The following table shows the calling relationship between COBOL and assembler

programs. In the table, assembler programs that conform to the interface that is

described in the Language Environment Programming Guide are called Language

Environment-conforming assembler programs. Those that do not conform to the

interface are non-Language Environment-conforming assembler programs.

 Table 58. Calls between COBOL and assembler under CICS

Calls between COBOL and

assembler programs

Language

Environment-conforming

assembler program

Non-Language

Environment-conforming

assembler program

From an Enterprise COBOL

program to the assembler

program?

Yes Yes

From the assembler program

to an Enterprise COBOL

program?

Yes, if the assembler program

is not a main program

No

Coding nested programs: When you compile with the integrated CICS translator,

the translator generates the DFHEIBLK and DFHCOMMAREA control blocks with the

GLOBAL clause in the outermost program. Therefore when you code nested

programs, you do not have to pass these control blocks as arguments on calls to

the nested programs.

408 Enterprise COBOL for z/OS V4.1 Programming Guide

When you code nested programs and you plan to use the separate CICS translator,

pass DFHEIBLK and DFHCOMMAREA as parameters to the nested programs that contain

EXEC commands or references to the EXEC interface block (EIB). You must pass the

same parameters also to any program that forms part of the control hierarchy

between such a program and its top-level program.

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Using the separate CICS translator” on page 412

“Choosing the DYNAM or NODYNAM compiler option” on page 427

“Handling errors when calling programs” on page 244

Language Environment Writing ILC Applications (ILC under CICS)

CICS External Interfaces Guide

Language Environment Programming Guide

RELATED REFERENCES

“DYNAM” on page 319

Determining the success of ECI calls

After calls to the external CICS interface (ECI), the content of the RETURN-CODE

special register is set to an unpredictable value. Therefore, even if your COBOL

program terminates normally after successfully using the external CICS interface,

the job step could end with an undefined return code.

To ensure that a meaningful return code occurs at termination, set the RETURN-CODE

special register before you terminate your program. To make the job return code

reflect the status of the last call to CICS, set the RETURN-CODE special register based

on the response codes from the last call to the external CICS interface.

RELATED TASKS

CICS External Interfaces Guide

Compiling with the CICS option

Use the CICS compiler option to enable the integrated CICS translator and to

specify CICS suboptions.

If you specify the NOCICS option, the compiler diagnoses and discards any CICS

statements that it finds in your source program. If you have already used the

separate CICS translator, you must use NOCICS.

You can specify the CICS option in any of the compiler option sources: compiler

invocation, PROCESS or CBL statements, or installation default. When the CICS option

is the COBOL installation default, you cannot specify CICS suboptions. However,

making the CICS option the installation default is not recommended, because the

changes that are made by the integrated CICS translator are not appropriate for

non-CICS applications.

All CBL or PROCESS statements must precede any comment lines, in accordance with

the rules for Enterprise COBOL.

Chapter 20. Developing COBOL programs for CICS 409

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea4150
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhtmc00
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhtmc00

The COBOL compiler makes available to the integrated CICS translator the CICS

suboption string that you provide in the CICS compiler option. Only that translator

views the contents of the string.

When you use the integrated CICS translator, you must compile with the following

options:

 Table 59. Compiler options required for the integrated CICS translator

Compiler option Comment

CICS If you specify NOLIB, DYNAM, or NORENT, the compiler forces LIB,

NODYNAM, and RENT on.

LIB Must be in effect with CICS

NODYNAM Must be in effect with CICS

RENT Must be in effect with CICS

SIZE(xxx) xxx must be a size value (not MAX) that leaves enough storage

in your user region for the integrated CICS translation process.

In addition, IBM recommends that you use the compiler option WORD(CICS) to

cause the compiler to flag language elements that are not supported under CICS.

To compile your program with the integrated CICS translator, you can use the

standard JCL procedural statements that are supplied with COBOL. In addition to

specifying the above compiler options, you must change your JCL in two ways:

v Specify the STEPLIB override for the COBOL step.

v Add the data set that contains the integrated CICS translator services, unless

these services are in the linklist.

The default name of the data set for CICS Transaction Server V3R2 is

CICSTS32.CICS.SDFHLOAD, but your installation might have changed the name.

For example, you might have the following line in your JCL:

//STEPLIB DD DSN=CICSTS32.CICS.SDFHLOAD,DISP=SHR

The COBOL compiler listing includes the error diagnostics (such as syntax errors

in the CICS statements) that the integrated CICS translator generates. The listing

reflects the input source; it does not include the COBOL statements that the

integrated CICS translator generates.

Compiling a sequence of programs: When you use the CICS option to compile a

source file that contains a sequence of COBOL programs, the order of precedence

of the options from highest to lowest is:

v Options that are specified in the CBL or PROCESS card that initiates the unit of

compilation

v Options that are specified when the compiler is started

v CICS default options

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 405

“Separating CICS suboptions” on page 411

CICS Application Programming Guide

410 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhp3c00

RELATED REFERENCES

“CICS” on page 308

“Conflicting compiler options” on page 304

Separating CICS suboptions

You can partition the specification of CICS suboptions into multiple CBL statements.

CICS suboptions are cumulative. The compiler concatenates them from multiple

sources in the order that they are specified.

For example, suppose that a JCL file has the following code:

//STEP1 EXEC IGYWC, . . .

//PARM.COBOL="CICS("FLAG(I)")"

//COBOL.SYSIN DD *

 CBL CICS("DEBUG")

 CBL CICS("LINKAGE")

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBOL1.

During compilation, the compiler passes the following CICS suboption string to

the integrated CICS translator:

"FLAG(I) DEBUG LINKAGE"

The concatenated strings are delimited with single spaces and with a quotation

mark or single quotation mark around the group. When the compiler finds

multiple instances of the same CICS suboption, the last specification of the

suboption in the concatenated string takes effect. The compiler limits the length of

the concatenated CICS suboption string to 4 KB.

RELATED REFERENCES

“CICS” on page 308

Integrated CICS translator

When you compile a COBOL program using the CICS compiler option, the COBOL

compiler works with the integrated CICS translator to handle both native COBOL

and embedded CICS statements in the source program.

When the compiler encounters CICS statements, and at other significant points in

the source program, the compiler interfaces with the integrated CICS translator.

The translator takes appropriate actions and then returns to the compiler, typically

indicating which native language statements to generate.

Although you can still translate embedded CICS statements separately, using the

integrated CICS translator is recommended. Certain restrictions that apply when

you use the separate translator do not apply when you use the integrated

translator, and using the integrated translator provides several advantages:

v You can use Debug Tool to debug the original source instead of the expanded

source that the separate CICS translator provides.

v You do not need to separately translate the EXEC CICS or EXEC DLI statements

that are in copybooks.

v There is no intermediate data set for the translated but not compiled version of

the source program.

v Only one output listing instead of two is produced.

v Using nested programs that contain EXEC CICS statements is simpler.

DFHCOMMAREA and DFHEIBLK are generated with the GLOBAL attribute in the

Chapter 20. Developing COBOL programs for CICS 411

outermost program. You do not need to pass them as arguments on calls to

nested programs or specify them in the USING phrase of the PROCEDURE DIVISION

header of nested programs.

v You can keep nested programs that contain EXEC CICS statements in separate

files, and include those nested programs by using COPY statements.

v REPLACE statements can affect EXEC CICS statements.

v You can compile programs that contain CICS statements in batch.

v Because the compiler generates binary fields in CICS control blocks with format

COMP-5 instead of BINARY, there is no dependency on the setting of the TRUNC

compiler option. You can use any setting of the TRUNC option in CICS programs,

subject only to the requirements of the application logic and use of user-defined

binary fields.

RELATED CONCEPTS

CICS Application Programming Guide (The integrated CICS translator)

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 405

“Compiling with the CICS option” on page 409

RELATED REFERENCES

“CICS” on page 308

“TRUNC” on page 352

Using the separate CICS translator

To run a COBOL program under CICS, you can use the separate CICS translator to

convert the CICS commands to COBOL statements, and then compile and link the

program to create the executable module. However, using the CICS translator that

is integrated with Enterprise COBOL is recommended.

To translate CICS statements separately, use the COBOL3 translator option. This

option causes the following line to be inserted:

CBL RENT,NODYNAM,LIB

You can suppress the insertion of a CBL statement by using the CICS translator

option NOCBLCARD.

CICS provides the translator option ANSI85, which supports the following language

features (introduced by Standard COBOL 85):

v Blank lines intervening in literals

v Sequence numbers containing any character

v Lowercase characters supported in all COBOL words

v REPLACE statement

v Batch compilation

v Nested programs

v Reference modification

v GLOBAL variables

v Interchangeability of comma, semicolon, and space

v Symbolic character definition

412 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfhp3c00

After you use the separate CICS translator, use the following compiler options

when you compile the program:

 Table 60. Compiler options required for the separate CICS translator

Required compiler option Condition

RENT

NODYNAM The program is translated by the CICS translator.

LIB The program contains a COPY or BASIS statement.

In addition, IBM recommends that you use the compiler option WORD(CICS) to

cause the compiler to flag language elements that are not supported under CICS.

The following TRUNC compiler option recommendations are based on expected

values for binary data items:

 Table 61. TRUNC compiler options recommended for the separate CICS translator

Recommended compiler

option Condition

TRUNC(OPT) All binary data items conform to the PICTURE and USAGE clause

for those data items.

TRUNC(BIN) Not all binary data items conform to the PICTURE and USAGE

clause for those data items.

For example, if you use the separate CICS translator and have a data item defined

as PIC S9(8) BINARY that might receive a value greater than eight digits, use the

TRUNC(BIN) compiler option, change the item to USAGE COMP-5, or change the

PICTURE clause.

You might also want to avoid using these options, which have no effect:

v ADV

v FASTSRT

v OUTDD

The input data set for the compiler is the data set that you received as a result of

translation, which is SYSPUNCH by default.

RELATED CONCEPTS

“Integrated CICS translator” on page 411

RELATED TASKS

“Compiling with the CICS option” on page 409

CICS reserved-word table

COBOL provides an alternate reserved-word table (IGYCCICS) for CICS

application programs. If you use the compiler option WORD(CICS), COBOL words

that are not supported under CICS are flagged with an error message.

In addition to the COBOL words restricted by the IBM-supplied default

reserved-word table, the IBM-supplied CICS reserved-word table restricts the

following COBOL words:

Chapter 20. Developing COBOL programs for CICS 413

v CLOSE

v DELETE

v FD

v FILE

v FILE-CONTROL

v INPUT-OUTPUT

v I-O-CONTROL

v MERGE

v OPEN

v READ

v RERUN

v REWRITE

v SD

v SORT

v START

v WRITE

If you intend to use the SORT statement under CICS (COBOL supports an interface

for the SORT statement under CICS), you must change the CICS reserved-word

table to remove the words in bold above from the list of words marked as

restricted.

RELATED TASKS

“Compiling with the CICS option” on page 409

“Sorting under CICS” on page 231

RELATED REFERENCES

“WORD” on page 355

Handling errors by using CICS HANDLE

The setting of the CBLPSHPOP runtime option affects the state of the HANDLE

specifications when a program calls COBOL subprograms using a CALL statement.

When CBLPSHPOP is ON and a COBOL subprogram (not a nested program) is called

with a CALL statement, the following actions occur:

1. As part of program initialization, the run time suspends the HANDLE

specifications of the calling program (using EXEC CICS PUSH HANDLE).

2. The default actions for HANDLE apply until the called program issues its own

HANDLE commands.

3. As part of program termination, the run time reinstates the HANDLE

specifications of the calling program (using EXEC CICS POP HANDLE).

If you use the CICS HANDLE CONDITION or CICS HANDLE AID commands, the LABEL

specified for the CICS HANDLE command must be in the same PROCEDURE DIVISION

as the CICS command that causes branching to the CICS HANDLE label. You cannot

use the CICS HANDLE commands with the LABEL option to handle conditions, aids,

or abends that were caused by another program invoked with the COBOL CALL

statement. Attempts to perform cross-program branching by using the CICS HANDLE

command with the LABEL option result in a transaction abend.

414 Enterprise COBOL for z/OS V4.1 Programming Guide

If a condition, aid, or abend occurs in a nested program, the LABEL for the

condition, aid, or abend must be in the same nested program; otherwise

unpredictable results occur.

Performance considerations: When CBLPSHPOP is OFF, the run time does not

perform CICS PUSH or POP on a CALL to any COBOL subprogram. If the

subprograms do not use any of the EXEC CICS condition-handling commands, you

can run with CBLPSHPOP(OFF), thus eliminating the overhead of the PUSH HANDLE

and POP HANDLE commands. As a result, performance can be improved compared to

running with CBLPSHPOP(ON).

If you are migrating an application from the VS COBOL II run time to the

Language Environment run time, see the related reference for information about

the CBLPSHPOP option for additional considerations.

“Example: handling errors by using CICS HANDLE”

RELATED TASKS

“Running efficiently with CICS, IMS, or VSAM” on page 664

RELATED REFERENCES

Enterprise COBOL Compiler and Runtime Migration Guide (CICS HANDLE

 commands and the CBLPSHPOP runtime option)

Enterprise COBOL Version 3 Performance Tuning

Example: handling errors by using CICS HANDLE

The following example shows the use of CICS HANDLE in COBOL programs.

Program A has a CICS HANDLE CONDITION command and program B has no CICS

HANDLE commands. Program A calls program B; program A also calls nested

program A1. A condition is handled in one of three scenarios.

(1) CBLPSHPOP(ON): If the CICS READ command in program B causes a

condition, the condition is not handled by program A (the HANDLE

specifications are suspended because the run time performs a CICS PUSH

HANDLE). The condition turns into a transaction abend.

(2) CBLPSHPOP(OFF): If the CICS READ command in program B causes a

condition, the condition is not handled by program A (the run time

diagnoses the attempt to perform cross-program branching by using a CICS

HANDLE command with the LABEL option). The condition turns into a

transaction abend.

(3) If the CICS READ command in nested program A1 causes a condition, the

flow of control goes to label ERR-1, and unpredictable results occur.

* Program A *

 ID DIVISION.

 PROGRAM-ID. A.

 . . .

 PROCEDURE DIVISION.

 EXEC CICS HANDLE CONDITION

 ERROR(ERR-1)

 END-EXEC.

 CALL ’B’ USING DFHEIBLK DFHCOMMAREA.

 CALL ’A1’.

 . . .

Chapter 20. Developing COBOL programs for CICS 415

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40
http://www.ibm.com/support/docview.wss?uid=swg27001475

THE-END.

 EXEC CICS RETURN END-EXEC.

 ERR-1.

 . . .

* Nested program A1.

 ID DIVISION.

 PROGRAM-ID. A1.

 PROCEDURE DIVISION.

 EXEC CICS READ (3)

 FILE(’LEDGER’)

 INTO(RECORD)

 RIDFLD(ACCTNO)

 END-EXEC.

 END PROGRAM A1.

 END PROGRAM A.

*

* Program B *

 ID DIVISION.

 PROGRAM-ID. B.

 . . .

 PROCEDURE DIVISION.

 EXEC CICS READ (1) (2)

 FILE(’MASTER’)

 INTO(RECORD)

 RIDFLD(ACCTNO)

 END-EXEC.

 . . .

 END PROGRAM B.

416 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 21. Programming for a DB2 environment

In general, the coding for your COBOL program will be the same if you want the

program to access a DB2 database. However, to retrieve, update, insert, and delete

DB2 data and use other DB2 services, you must use SQL statements.

To communicate with DB2, do these steps:

v Code any SQL statements that you need, delimiting them with EXEC SQL and

END-EXEC statements.

v Either use the DB2 stand-alone precompiler, or compile with the SQL compiler

option and use the DB2 coprocessor.

RELATED CONCEPTS

“DB2 coprocessor”

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Coding SQL statements” on page 418

“Compiling with the SQL option” on page 421

“Choosing the DYNAM or NODYNAM compiler option” on page 427

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 425

DB2 coprocessor

When you use the DB2 coprocessor (called SQL statement coprocessor by DB2), the

compiler handles your source program that contains embedded SQL statements

without your having to use a separate precompile step.

When the compiler encounters SQL statements in the source program, it interfaces

with the DB2 coprocessor. This coprocessor takes appropriate actions for the SQL

statements and indicates to the compiler which native COBOL statements to

generate for them.

Although the use of a separate precompile step continues to be supported, use of

the coprocessor is recommended:

v Interactive debugging with Debug Tool is enhanced when you use the

coprocessor because you see the SQL statements (not the generated COBOL

source) in the listing.

v The COBOL compiler listing includes the error diagnostics (such as syntax errors

in the SQL statements) that the DB2 coprocessor generates.

v Certain restrictions on the use of COBOL language that apply when you use the

precompile step do not apply when you use the DB2 coprocessor. With the

coprocessor:

– You can use SQL statements in any nested program. (With the precompiler,

SQL statements are restricted to the outermost program.)

– You can use SQL statements in copybooks.

– REPLACE statements work in SQL statements.

© Copyright IBM Corp. 1991, 2007 417

Compiling with the DB2 coprocessor generates a DB2 database request module

(DBRM) along with the usual COBOL compiler outputs such as object module and

listing. The DBRM writes to the data set that you specified in the DBRMLIB DD

statement in the JCL for the COBOL compile step. As input to the DB2 bind

process, the DBRM data set contains information about the SQL statements and

host variables in the program.

You must specify the SQL compiler option to compile programs that use the DB2

coprocessor.

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Compiling with the SQL option” on page 421

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 425

“SQL” on page 344

Coding SQL statements

Delimit SQL statements with EXEC SQL and END-EXEC. The EXEC SQL and END-EXEC

delimiters must each be complete on one line. You cannot continue them across

multiple lines.

You also need to do these special steps:

v Code an EXEC SQL INCLUDE statement to include an SQL communication area

(SQLCA) in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION of the

outermost program. LOCAL-STORAGE is recommended for recursive programs and

programs that use the THREAD compiler option.

v Declare all host variables that you use in SQL statements in the WORKING-STORAGE

SECTION, LOCAL-STORAGE SECTION, or LINKAGE SECTION. However, you do not need

to identify them with EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END

DECLARE SECTION.

Restriction: You cannot use SQL statements in object-oriented classes or methods.

RELATED TASKS

“Using SQL INCLUDE with the DB2 coprocessor” on page 419

“Using character data in SQL statements” on page 419

“Using national decimal data in SQL statements” on page 420

“Using national group items in SQL statements” on page 420

“Using binary items in SQL statements” on page 421

“Determining the success of SQL statements” on page 421

DB2 Application Programming and SQL Guide (Coding SQL statements in a

 COBOL application)

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 424

DB2 SQL Reference

418 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNAPK10
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNSQK10

Using SQL INCLUDE with the DB2 coprocessor

An SQL INCLUDE statement is treated identically to a native COBOL COPY statement

when you use the SQL compiler option.

The following two lines are therefore treated the same way. (The period that ends

the EXEC SQL INCLUDE statement is required.)

EXEC SQL INCLUDE name END-EXEC.

COPY "name".

The processing of the name in an SQL INCLUDE statement follows the same rules as

those of the literal in a COPY literal-1 statement that does not have a REPLACING

phrase.

The library search order for SQL INCLUDE statements is the same SYSLIB

concatenation as the compiler uses to resolve COBOL COPY statements that do not

specify a library-name.

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

“Differences in how the DB2 precompiler and coprocessor behave” on page 425

COPY statement (Enterprise COBOL Language Reference)

Using character data in SQL statements

You can code any of the following USAGE clauses to describe host variables for

character data that you use in EXEC SQL statements: USAGE DISPLAY for single-byte

or UTF-8 data, USAGE DISPLAY-1 for DBCS data, or USAGE NATIONAL for UTF-16

data.

When you use the stand-alone DB2 precompiler, you must specify the code page

(CCSID) in EXEC SQL DECLARE statements for host variables that are declared with

USAGE NATIONAL. You must specify the code page for host variables that are

declared with USAGE DISPLAY or DISPLAY-1 only if the CCSID that is in effect for

the COBOL CODEPAGE compiler option does not match the CCSIDs that are used by

DB2 for character and graphic data.

Consider the following code. The two highlighted statements are unnecessary

when you use the integrated DB2 coprocessor (with the SQLCCSID compiler option,

as detailed in the related concept below), because the code-page information is

handled implicitly.

CBL CODEPAGE(1140) NSYMBOL(NATIONAL)

. . .

WORKING-STORAGE SECTION.

 EXEC SQL INCLUDE SQLCA END-EXEC.

01 INT1 PIC S9(4) USAGE COMP.

01 C1140.

 49 C1140-LEN PIC S9(4) USAGE COMP.

 49 C1140-TEXT PIC X(50).

 EXEC SQL DECLARE :C1140 VARIABLE CCSID 1140 END-EXEC.

01 G1200.

 49 G1200-LEN PIC S9(4) USAGE COMP.

 49 G1200-TEXT PIC N(50) USAGE NATIONAL.

 EXEC SQL DECLARE :G1200 VARIABLE CCSID 1200 END-EXEC.

 . . .

 EXEC SQL FETCH C1 INTO :INT1, :C1140, :G1200 END-EXEC.

Chapter 21. Programming for a DB2 environment 419

If you specify EXEC SQL DECLARE variable-name VARIABLE CCSID nnnn END-EXEC, that

specification overrides the implied CCSID. For example, the following code would

cause DB2 to treat C1208-TEXT as encoded in UTF-8 (CCSID 1208) rather than as

encoded in the CCSID in effect for the COBOL CODEPAGE compiler option:

01 C1208.

 49 C1208-LEN PIC S9(4) USAGE COMP.

 49 C1208-TEXT PIC X(50).

 EXEC SQL DECLARE :C1208 VARIABLE CCSID 1208 END-EXEC.

The NSYMBOL compiler option has no effect on a character literal inside an EXEC SQL

statement. Character literals in an EXEC SQL statement follow the SQL rules for

character constants.

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

DB2 Application Programming and SQL Guide (Coding SQL statements in a

 COBOL application)

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 425

“CODEPAGE” on page 309

DB2 SQL Reference

Using national decimal data in SQL statements

You can use national decimal host variables in EXEC SQL statements when you use

either the integrated DB2 coprocessor or the DB2 precompiler. You do not need to

specify the CCSID in EXEC SQL DECLARE statements in either case. CCSID 1200 is

used automatically.

Any national decimal host variable that you specify in an EXEC SQL statement must

have the following characteristics:

v It must be signed.

v It must be specified with the SIGN LEADING SEPARATE clause.

v USAGE NATIONAL must be in effect implicitly or explicitly.

RELATED CONCEPTS

“Formats for numeric data” on page 49

RELATED TASKS

“Defining national numeric data items” on page 129

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 425

Using national group items in SQL statements

You can use a national group item as a host variable in an EXEC SQL statement. The

national group item is treated with group semantics (that is, as shorthand for the

set of host variables that are subordinate to the group item) rather than as an

elementary item.

420 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNAPK10
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNSQK10

Because all subordinate items in a national group must have USAGE NATIONAL, a

national group item cannot describe a variable-length string.

RELATED TASKS

“Using national groups” on page 130

Using binary items in SQL statements

For binary data items that you specify in an EXEC SQL statement, you can declare

the data items as either USAGE COMP-5 or as USAGE BINARY, COMP, or COMP-4.

If you declare the binary data items as USAGE BINARY, COMP, or COMP-4, use the

TRUNC(BIN) option. (This technique might have a larger effect on performance than

using USAGE COMP-5 on individual data items.) If instead TRUNC(OPT) or TRUNC(STD)

are in effect, the compiler accepts the items but the data might not be valid

because of the decimal truncation rules. You need to ensure that truncation does

not affect the validity of the data.

RELATED CONCEPTS

“Formats for numeric data” on page 49

RELATED REFERENCES

“TRUNC” on page 352

Determining the success of SQL statements

When DB2 finishes executing an SQL statement, DB2 sends a return code in the

SQLCA structure, with one exception, to indicate whether the operation succeeded

or failed. Your program should test the return code and take any necessary action.

The exception occurs when a program runs under DSN from one of the alternate

entry points of the TSO batch mode module IKJEFT01 (IKJEFT1A or IKJEFT1B). In

this case, the return code is passed in register 15.

After execution of SQL statements, the content of the RETURN-CODE special register

might not be valid. Therefore, even if your COBOL program terminates normally

after successfully using SQL statements, the job step could end with an undefined

return code. To ensure that a meaningful return code is given at termination, set

the RETURN-CODE special register before terminating your program.

RELATED TASKS

DB2 Application Programming and SQL Guide (Coding SQL statements in a

 COBOL application)

Compiling with the SQL option

You use the SQL compiler option to enable the DB2 coprocessor and to specify DB2

suboptions.

You can specify the SQL option in any of the compiler option sources: compiler

invocation, PROCESS or CBL statements, or installation default. You cannot specify

DB2 suboptions when the SQL option is the COBOL installation default, but you

can specify default DB2 suboptions by customizing the DB2 product installation

defaults.

Chapter 21. Programming for a DB2 environment 421

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNAPK10

The DB2 suboption string that you provide in the SQL compiler option is made

available to the DB2 coprocessor. Only the DB2 coprocessor views the contents of

the string.

To use the DB2 coprocessor, you must compile with the options that are shown in

the table below, and DB2 must be available on the machine on which you compile.

 Table 62. Compiler options required with the DB2 coprocessor

Compiler option Comment

SQL If you also use NOLIB, LIB is forced on.

LIB Must be specified with SQL

SIZE(xxx) xxx is a size value (not MAX) that leaves enough storage in the user

region for the DB2 coprocessor services.

You can use standard JCL procedural statements to compile your program with the

DB2 coprocessor. In addition to specifying the above compiler options, specify the

following items in your JCL:

v DBRMLIB DD statement with the location for the generated database request

module (DBRM).

v STEPLIB override for the COBOL step, adding the data set that contains the DB2

coprocessor services, unless these services are in the LNKLST. Typically, this data

set is DSN910.SDSNLOAD, but your installation might have changed the name.

For example, you might have the following lines in your JCL:

//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR

//STEPLIB DD DSN=DSN910.SDSNLOAD,DISP=SHR

Compiling in batch: When you use the SQL option to compile a source file that

contains a sequence of COBOL programs (a batch compile sequence), the SQL

option must be in effect for the first program of the batch sequence. If the SQL

option is specified in CBL or PROCESS statements, the CBL or PROCESS statements

must precede the first program in the batch sequence.

RELATED CONCEPTS

“DB2 coprocessor” on page 417

“COBOL and DB2 CCSID determination” on page 423

RELATED TASKS

“Separating DB2 suboptions”

“Choosing the DYNAM or NODYNAM compiler option” on page 427

RELATED REFERENCES

“DYNAM” on page 319

“SQL” on page 344

DB2 Command Reference

Separating DB2 suboptions

Because of the concatenation of multiple SQL option specifications, you can

separate DB2 suboptions (which might not fit in one CBL statement) into multiple

CBL statements.

422 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNCRK10

The options that you include in the suboption string are cumulative. The compiler

concatenates these suboptions from multiple sources in the order that they are

specified. For example, suppose that your source file has the following code:

//STEP1 EXEC IGYWC, . . .

// PARM.COBOL=’SQL("string1")’

//COBOL.SYSIN DD *

 CBL SQL("string2")

 CBL SQL("string3")

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DRIVER1.

During compilation, the compiler passes the following suboption string to the DB2

coprocessor:

"string1 string2 string3"

The concatenated strings are delimited with single spaces. If the compiler finds

multiple instances of the same SQL suboption, the last specification of that

suboption in the concatenated string takes effect. The compiler limits the length of

the concatenated DB2 suboption string to 4 KB.

COBOL and DB2 CCSID determination

All DB2 string data other than BLOB, BINARY, and VARBINARY data has an

associated encoding scheme and a coded character set ID (CCSID). This is true for

fixed-length and variable-length character strings, fixed-length and variable-length

graphic character strings, CLOB host variables, and DBCLOB host variables.

When you use the integrated DB2 coprocessor, the determination of the code page

CCSID that will be associated with the string host variables used in SQL statement

processing depends on the setting of the COBOL SQLCCSID option, on the

programming techniques used, and on various DB2 configuration options.

When you use the SQL and SQLCCSID COBOL compiler options, the CCSID value

nnnnn that is specified in the CODEPAGE compiler option, or that is determined from

the COBOL data type of a host variable, is communicated automatically from

COBOL to DB2. DB2 associates the COBOL CCSID with host variables, overriding

the CCSID that would otherwise be implied by DB2 external mechanisms and

defaults. This associated CCSID is used for the processing of the SQL statements

that reference host variables.

When you use the SQL and NOSQLCCSID compiler options, the CCSID value nnnnn

that is specified in the CODEPAGE compiler option is used only for processing

COBOL statements within the COBOL program; that CCSID is not used for the

processing of SQL statements. Instead, DB2 assumes in processing SQL statements

that host variable data values are encoded according to the CCSID or CCSIDs that

are specified through DB2 external mechanisms and defaults.

RELATED CONCEPTS

“DB2 coprocessor” on page 417

RELATED TASKS

“Programming with the SQLCCSID or NOSQLCCSID option” on page 424

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 424

Chapter 21. Programming for a DB2 environment 423

“CODEPAGE” on page 309

“SQL” on page 344

“SQLCCSID” on page 345

Code-page determination for string host variables in SQL

statements

When you use the integrated DB2 coprocessor (SQL compiler option), the code page

for processing string host variables in SQL statements is determined as shown

below, in descending order of precedence.

v A host variable that has USAGE NATIONAL is always processed by DB2 using

CCSID 1200 (Unicode UTF-16). For example:

01 hostvariable pic n(10) usage national.

v An alphanumeric host variable that has an explicit FOR BIT DATA declaration is

set by DB2 to CCSID 66535, which indicates that the variable does not represent

encoded characters. For example:

EXEC SQL DECLARE hostvariable VARIABLE FOR BIT DATA END-EXEC

v A BLOB, BINARY, or VARBINARY host variable has no CCSID association.

These string types do not represent encoded characters.

v A host variable for which you specify an explicit CCSID override in the SQLDA

is processed with that CCSID.

v A host variable that you specify in a declaration with an explicit CCSID is

processed with that CCSID. For example:

EXEC SQL DECLARE hostvariable VARIABLE CCSID nnnnn END-EXEC

v An alphanumeric host variable, if the SQLCCSID compiler option is in effect, is

processed with the CCSID nnnnn from the CODEPAGE compiler option.

v A DBCS host variable, if the SQLCCSID option is in effect, is processed with the

mapped value mmmmm, which is the pure DBCS CCSID component of the

mixed (MBCS) CCSID nnnnn from the CODEPAGE(nnnnn) compiler option.

v An alphanumeric or DBCS host variable, if the NOSQLCCSID option is in effect, is

processed with the CCSID from the DB2 ENCODING bind option, if specified,

or from the APPLICATION ENCODING set in DSNHDECP through the DB2

installation panel DSNTIPF.

RELATED REFERENCES

“CODEPAGE” on page 309

“SQLCCSID” on page 345

Programming with the SQLCCSID or NOSQLCCSID option

In general, the SQLCCSID option is recommended for new applications that use the

integrated DB2 coprocessor, and as a long-term direction for existing applications.

The NOSQLCCSID option is recommended as a mechanism for migrating existing

precompiler-based applications to use the integrated DB2 coprocessor.

The SQLCCSID option is recommended for COBOL-DB2 applications that have any

of these characteristics:

v Use COBOL Unicode support

v Use other COBOL syntax that is indirectly sensitive to CCSID encoding, such as

XML support or object-oriented syntax for Java interoperability

v Process character data that is encoded in a CCSID that is different from the

default CCSID assumed by DB2

424 Enterprise COBOL for z/OS V4.1 Programming Guide

The NOSQLCCSID option is recommended for applications that require the highest

compatibility with the behavior of the DB2 precompiler.

For applications that use COBOL alphanumeric data items as host variables

interacting with DB2 string data that is defined with the FOR BIT DATA subtype,

you must either:

v Use the NOSQLCCSID compiler option

v Specify explicit FOR BIT DATA declarations for those host variables, for example:

EXEC SQL DECLARE hostvariable VARIABLE FOR BIT DATA END-EXEC

Usage notes

v If you use the DB2 DCLGEN command to generate COBOL declarations for a table,

you can optionally create FOR BIT DATA declarations automatically. To do so,

specify the DCLBIT(YES) option of the DCLGEN command.

v Performance consideration: Using the SQLCCSID compiler option could result in

some performance overhead in SQL processing, because with SQLCCSID in effect

the default DB2 CCSID association mechanism is overridden with a mechanism

that works on a per-host-variable basis.

RELATED CONCEPTS

“DB2 coprocessor” on page 417

RELATED REFERENCES

“SQLCCSID” on page 345

Differences in how the DB2 precompiler and coprocessor behave

The sections that follow enumerate the differences in behavior between the

stand-alone COBOL DB2 precompiler and the integrated COBOL DB2 coprocessor.

Period at the end of EXEC SQL INCLUDE statements

Precompiler: The DB2 precompiler does not require that a period end each EXEC

SQL INCLUDE statement. If a period is specified, the precompiler processes it as part

of the statement. If a period is not specified, the precompiler accepts the statement

as if a period had been specified.

Coprocessor: The DB2 coprocessor treats each EXEC SQL INCLUDE statement like a

COPY statement, and requires that a period end the statement. For example:

IF A = B THEN

 EXEC SQL INCLUDE some_code_here END-EXEC.

ELSE

 . . .

END-IF

Note that the period does not terminate the IF statement.

EXEC SQL INCLUDE and nested COPY REPLACING

Precompiler: With the DB2 precompiler, an EXEC SQL INCLUDE statement can

reference a copybook that contains a COPY statement that uses the REPLACING

phrase.

Chapter 21. Programming for a DB2 environment 425

|

|
|
|

Coprocessor: With the DB2 coprocessor, an EXEC SQL INCLUDE statement cannot

reference a copybook that contains a COPY statement that uses the REPLACING

phrase. The coprocessor processes each EXEC SQL INCLUDE statement identically to a

COPY statement, and nested COPY statements cannot have the REPLACING phrase.

EXEC SQL and REPLACE or COPY REPLACING

Precompiler: With the DB2 precompiler, COBOL REPLACE statements and the

REPLACING phrase of the COPY statement act on the expanded source created from

the EXEC SQL statement. COBOL rules for REPLACE and REPLACING are used.

Coprocessor: With the DB2 coprocessor, REPLACE and COPY . . . REPLACING

statements act on the original source program, including EXEC SQL statements.

Different behavior can result, as in the following example:

REPLACE == ABC == By == XYZ ==.

01 G.

 02 ABC PIC X(10).

 . . .

 EXEC SQL SELECT * INTO :G.ABC FROM TABLE1 END-EXEC

With the precompiler, the reference to G.ABC will appear as ABC of G in the

expanded source and will be replaced with XYZ of G. With the coprocessor,

replacement will not occur, because ABC is not delimited by separators in the

original source string G.ABC.

Source code after an END-EXEC statement

Precompiler: The DB2 precompiler ignores any code that follows END-EXEC

statements on the same line.

Coprocessor: The DB2 coprocessor processes code that follows END-EXEC statements

on the same line.

Multiple definitions of host variables

Precompiler: The DB2 precompiler does not require that host variable references be

unique. The first definition that maps to a valid DB2 data type is used.

Coprocessor: The DB2 coprocessor requires that each host variable reference be

unique. The coprocessor diagnoses nonunique references to host variables. You

must fully qualify host variable references to make them unique.

EXEC SQL statement continuation lines

Precompiler: The DB2 precompiler requires that EXEC SQL statements start in

columns 12 through 72. Continuation lines of the statements can start anywhere in

columns 8 through 72.

Coprocessor: The DB2 coprocessor requires that all lines of an EXEC SQL statement,

including continuation lines, be coded in columns 12 through 72.

426 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|

|
|
|

|
|

|

|
|
|
|
|

|
|
|
|

Bit-data host variables

Precompiler: With the DB2 precompiler, a COBOL alphanumeric data item can be

used as a host variable to hold DB2 character data that has subtype FOR BIT DATA.

An explicit EXEC SQL DECLARE VARIABLE statement that declares that host variable

as FOR BIT DATA is not required.

Coprocessor: With the DB2 coprocessor, a COBOL alphanumeric data item can be

used as a host variable to hold DB2 character data that has subtype FOR BIT DATA

if an explicit EXEC SQL DECLARE VARIABLE statement for that host variable is

specified in the COBOL program. For example:

EXEC SQL DECLARE :HV1 VARIABLE FOR BIT DATA END-EXEC.

As an alternative to adding EXEC SQL DECLARE . . . FOR BIT DATA statements, you

can use the NOSQLCCSID compiler option. For details, see the related reference about

code-page determination below.

SQL-INIT-FLAG

Precompiler: With the DB2 precompiler, if you pass host variables that might be

located at different addresses when the program is called more than once, the

called program must reset SQL-INIT-FLAG. Resetting this flag indicates to DB2 that

storage must be initialized when the next SQL statement runs. To reset the flag,

insert the statement MOVE ZERO TO SQL-INIT-FLAG in the PROCEDURE DIVISION of the

called program ahead of any executable SQL statements that use those host

variables.

Coprocessor: With the DB2 coprocessor, the called program does not need to reset

SQL-INIT-FLAG. An SQL-INIT-FLAG is automatically defined in the program to aid

program portability. However, statements that modify SQL-INIT-FLAG, such as MOVE

ZERO TO SQL-INIT-FLAG, have no effect on the SQL processing in the program.

RELATED CONCEPTS

“DB2 coprocessor” on page 417

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 424

“SQLCCSID” on page 345

Choosing the DYNAM or NODYNAM compiler option

For COBOL programs that have EXEC SQL statements, your choice of the compiler

option DYNAM or NODYNAM depends on the operating environment.

When you run under:

v TSO or IMS: You can use either the DYNAM or NODYNAM compiler option.

Note that IMS and DB2 share a common alias name, DSNHLI, for the language

interface module. You must concatenate your libraries as follows:

– If you use IMS with the DYNAM option, concatenate the IMS library first.

– If you run your application only under DB2, concatenate the DB2 library first.
v CICS or the DB2 call attach facility (CAF): You must use the NODYNAM compiler

option.

Chapter 21. Programming for a DB2 environment 427

Because stored procedures use CAF, you must also compile COBOL stored

procedures with the NODYNAM option.

RELATED TASKS

“Compiling with the SQL option” on page 421

DB2 Application Programming and SQL Guide (Programming for the call

 attachment facility)

RELATED REFERENCES

“DYNAM” on page 319

428 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/DSNAPK10

Chapter 22. Developing COBOL programs for IMS

Although much of the coding of a COBOL program will be the same when

running under IMS, be aware of the following recommendations and restrictions.

In COBOL, IMS message processing programs (MPPs) do not use non-IMS input or

output statements such as READ, WRITE, REWRITE, OPEN, and CLOSE.

With Enterprise COBOL, you can invoke IMS facilities using the following

interfaces:

v CBLTDLI call

v Language Environment callable service CEETDLI

You code calls to CEETDLI the same way as you code calls to CBLTDLI. CEETDLI

behaves essentially the same way as CBLTDLI.

You can also run object-oriented COBOL programs in an IMS Java dependent

region. You can mix the object-oriented COBOL and Java languages in a single

application.

RELATED TASKS

“Compiling and linking COBOL programs for running under IMS”

“Using object-oriented COBOL and Java under IMS” on page 430

“Calling a COBOL method from an IMS Java application” on page 430

“Building a mixed COBOL/Java application that starts with COBOL” on page 431

“Writing mixed-language IMS applications” on page 432

Compiling and linking COBOL programs for running under IMS

For best performance in the IMS environment, use the RENT compiler option. It

causes COBOL to generate reentrant code. You can then run your application

programs in either preloaded mode (the programs are always resident in storage) or

nonpreload mode without having to recompile with different options.

IMS allows COBOL programs to be preloaded. Preloading can boost performance

because subsequent requests for the program can be handled faster when the

program is already in storage (rather than being fetched from a library each time it

is needed).

For IMS programs, IBM recommends the RENT compiler option. You must use the

RENT compiler option for a program that is to be run preloaded or as both

preloaded and nonpreloaded. When you preload a load module that contains

COBOL programs, all of the COBOL programs in that load module must be

compiled with the RENT option.

You can place programs compiled with the RENT option in the z/OS link pack area.

There they can be shared among the IMS dependent regions.

To run above the 16-MB line, an application program must be compiled with either

RENT or NORENT RMODE(ANY). The data for IMS application programs can reside

above the 16-MB line, and you can use DATA(31) RENT or RMODE(ANY) NORENT for

programs that use IMS services.

© Copyright IBM Corp. 1991, 2007 429

The recommended link-edit attributes for proper execution of COBOL programs

under IMS are as follows:

v To link load modules that contain only COBOL programs compiled with the

RENT compiler option, link as RENT.

v To link load modules that contain a mixture of COBOL RENT programs and other

programs, use the link-edit attributes recommended for the other programs.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Choosing the DYNAM or NODYNAM compiler option” on page 427

Language Environment Programming Guide (Condition handling under IMS)

RELATED REFERENCES

“DATA” on page 313

“RENT” on page 340

Enterprise COBOL Compiler and Runtime Migration Guide (IMS considerations)

Using object-oriented COBOL and Java under IMS

You can mix object-oriented COBOL and Java in an application that runs in an IMS

Java dependent region.

For example, you can:

v Call a COBOL method from an IMS Java application. You can build the

messaging portion of your application in Java and call COBOL methods to

access IMS databases.

v Build a mixed COBOL and Java application that starts with the main method of

a COBOL class and that invokes Java routines.

You must run these applications in either a Java message processing (JMP)

dependent region or a Java batch processing (JBP) dependent region. A program

that reads from the message queue (regardless of the language) must run in a JMP

dependent region.

RELATED TASKS

“Defining a factory section” on page 582

Chapter 30, “Writing object-oriented programs,” on page 549

Chapter 31, “Communicating with Java methods,” on page 595

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

IMS Java Guide and Reference

Calling a COBOL method from an IMS Java application

You can use the object-oriented language support in Enterprise COBOL to write

COBOL methods that an IMS Java program can call.

When you define a COBOL class and compile it with the Enterprise COBOL

compiler, the compiler generates a Java class definition with native methods, and

the object code that implements those native methods. You can then create an

instance and invoke the methods of this class from an IMS Java program that runs

in an IMS Java dependent region, just as you would use any other class.

430 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6

For example, you can define a COBOL class that uses the appropriate DL/I calls to

access an IMS database. To make the implementation of this class available to an

IMS Java program, do the following steps:

1. Compile the COBOL class with the Enterprise COBOL compiler to generate a

Java source file (.java) that contains the class definition and an object module

(.o) that contains the implementation of the native methods.

2. Compile the generated Java source file with the Java compiler to create a class

file (.class).

3. Link the object code into a dynamic link library (DLL) in the HFS (.so). The

HFS directory that contains the COBOL DLLs must be listed in the LIBPATH,

as specified in the IMS.PROCLIB member that is indicated by the ENVIRON=

parameter of the IMS region procedure.

4. Update the sharable application class path in the master JVM options member

(ibm.jvm.sharable.application.class.path in the IMS.PROCLIB member that is

specified by the JVMOPMAS= parameter of the IMS region procedure) to

enable the JVM to access the Java class file.

When you write the initial routine of a mixed-language application in Java, you

must implement a class that is derived from the IMS Java IMSApplication class.

A Java program cannot call procedural COBOL programs directly. To reuse existing

COBOL IMS code, use one of the following techniques:

v Restructure the COBOL code as a method in a COBOL class.

v Write a COBOL class definition and method that serves as a wrapper for the

existing procedural code. The wrapper code can use COBOL CALL statements to

access procedural COBOL programs.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Structuring OO applications” on page 591

“Wrapping procedure-oriented COBOL programs” on page 591

IMS Java Guide and Reference

Building a mixed COBOL/Java application that starts with

COBOL

An application that runs in an IMS Java dependent region must start with the main

method of a class. A COBOL class definition with a main factory method meets this

requirement; therefore, you can use it as the first routine of a mixed COBOL and

Java IMS application.

Enterprise COBOL generates a Java class with a main method that the IMS Java

dependent region can find, instantiate, and invoke in the same way that the region

does for the main method of an IMS Java IMSApplication subclass. Although you

can code the entire application in COBOL, you would probably build this type of

application to call a Java routine. When COBOL runtime support runs within the

JVM of an IMS Java dependent region, it automatically finds and uses this JVM to

invoke methods on Java classes.

However, the COBOL application is not derived from the IMSApplication class,

and it should not use the IMS Java classes for processing messages or

synchronizing transactions. Instead, it should use DL/I calls in COBOL for

processing messages (GU and GN) and synchronizing transactions (CHKP).

Chapter 22. Developing COBOL programs for IMS 431

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6

RELATED TASKS

“Structuring OO applications” on page 591

IMS Java Guide and Reference

Persistent Reusable Java Virtual Machine User’s Guide

Writing mixed-language IMS applications

When you write mixed-language IMS applications, you need to be aware of the

effects of the STOP RUN statement, and to understand how to process messages and

synchronize transactions, access databases, and use the application interface block

(AIB).

RELATED TASKS

“Using the STOP RUN statement”

“Processing messages and synchronizing transactions”

“Accessing databases”

“Using the application interface block” on page 433

Using the STOP RUN statement

If you use the STOP RUN statement in the COBOL portion of your application, the

statement terminates all COBOL and Java routines (including the JVM).

Control is returned immediately to IMS. The program and the transaction are left

in a stopped state.

Processing messages and synchronizing transactions

IMS message-processing applications must do all message processing and

transaction synchronization either in COBOL or Java, rather than distributing this

logic between application components written in both languages.

COBOL components use CALL statements to DL/I services to process messages (GU

and GN) and synchronize transactions (CHKP). Java components use IMS Java classes

to do these functions. You can use object instances of classes derived from

IMSFieldMessage to communicate entire IMS messages between the COBOL and

Java components of the application.

RELATED TASKS

IMS Java Guide and Reference

IMS Application Programming: Transaction Manager

Accessing databases

You can use either Java, COBOL, or a mixture of the two languages to access IMS

databases.

Limitation: EXEC SQL statements for DB2 database access are not currently

supported in COBOL routines that run in IMS Java dependent regions.

Recommendation: Do not access the same database program communication block

(PCB) from both Java and COBOL. The Java and COBOL parts of the application

share the same database position. Changes in database position from calls in one

part of the application affect the database position in another part of the

application. (This problem occurs whether the affected parts of an application are

written in the same language or in different languages.)

432 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6
http://www.ibm.com/servers/eserver/zseries/software/java/pdf/prjvm14.pdf
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsaptg3

Suppose that a Java component of a mixed application builds an SQL SELECT clause

and uses Java Database Connectivity (JDBC) to query and retrieve results from an

IMS database. The IMS Java class library constructs the appropriate request to IMS

to establish the correct position in the database. If you then invoke a COBOL

method that builds a segment search argument (SSA) and issues a GU (Get Unique)

request to IMS against the same database PCB, the request probably altered the

position in the database for that PCB. If so, subsequent JDBC requests to retrieve

more records by using the initial SQL SELECT clause are incorrect because the

database position changed. If you must access the same PCB from multiple

languages, reestablish the database position after an interlanguage call before you

access more records in the database.

RELATED TASKS

IMS Java Guide and Reference

Using the application interface block

COBOL applications that run in an IMS Java dependent region normally must use

the AIB interface because the IMS Java dependent region does not provide PCB

addresses to its application.

To use the AIB interface, specify the PCB requested for the call by placing the PCB

name (which must be defined as part of the PSBGEN) in the resource name field of

the AIB. (The AIB requires that all PCBs in a program specification block (PSB)

definition have a name.) You do not specify the PCB address directly, and your

application does not need to know the relative PCB position in the PCB list. Upon

the completion of the call, the AIB returns the PCB address that corresponds to the

PCB name that the application passed.

Alternatively, you can obtain PCB addresses by making an IMS INQY call using

subfunction FIND and the PCB name as the resource name. The call returns the

address of the PCB, which you can then pass to a COBOL program. (This approach

still requires that the PCB name be defined as part of the PSBGEN, but the

application does not have to use the AIB interface.)

“Example: using the application interface block”

RELATED TASKS

IMS Java Guide and Reference

Example: using the application interface block:

The following example shows how you can use the AIB interface in a COBOL

application.

 Local-storage section.

 copy AIB.

 . . .

 Linkage section.

 01 IOPCB.

 05 logtterm pic x(08).

 05 pic x(02).

 05 tpstat pic x(02).

 05 iodate pic x(04).

 05 iotime pic x(04).

 05 pic x(02).

 05 seqnum pic x(02).

 05 mod pic x(08).

 Procedure division.

Chapter 22. Developing COBOL programs for IMS 433

|
|
|
|
|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dfsjgrg6

Move spaces to input-area

 Move spaces to AIB

 Move "DFSAIB" to AIBRID

 Move length of AIB to AIBRLEN

 Move "IOPCB" to AIBRSNM1

 Move length of input-area to AIBOALEN

 Call "CEETDLI" using GU, AIB, input-area

 Set address of IOPCB to AIBRESA1

 If tpstat = spaces

* . . process input message

434 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 23. Running COBOL programs under UNIX

To run COBOL programs in the z/OS UNIX environment, compile them with

Enterprise COBOL or COBOL for OS/390 & VM. The programs must be reentrant,

so use the compiler and linker option RENT.

If you are going to run them from the HFS, use the linker option AMODE 31. Any

AMODE 24 program that you call from within a z/OS UNIX application must reside

in an MVS PDS or PDSE.

The following restrictions apply to running under z/OS UNIX:

v SORT and MERGE statements are not supported.

v You cannot use the old COBOL interfaces for preinitialization (runtime option

RTEREUS and functions IGZERRE and ILBOSTP0) to establish a reusable

environment.

v You cannot run a COBOL program compiled with the NOTHREAD option in more

than one thread. If you start a COBOL application in a second thread, you get a

software condition from the COBOL run time. You can run NOTHREAD COBOL

programs in the initial process thread (IPT) or in one non-IPT that you create

from a C or PL/I routine.

You can run a COBOL program in more than one thread when you compile all

the COBOL programs in the application with the THREAD option.

You can use Debug Tool to debug z/OS UNIX programs in remote debug mode,

for example, by using the Debug Perspective of Rational Developer for System z,

or in full-screen mode (MFI) using a VTAM® terminal.

RELATED TASKS

Chapter 15, “Compiling under UNIX,” on page 283

“Running OO applications under UNIX” on page 293

“Running in UNIX environments”

“Setting and accessing environment variables” on page 436

“Calling UNIX/POSIX APIs” on page 438

“Accessing main program parameters” on page 440

Language Environment Programming Guide

RELATED REFERENCES

“RENT” on page 340

Running in UNIX environments

You can run COBOL programs in any of the z/OS UNIX execution environments,

either within a z/OS UNIX shell or from outside a shell.

v From a z/OS UNIX shell, you can run programs in either the OMVS shell

(OMVS) or the ISPF shell (ISHELL).

Enter the program-name at the shell prompt. The program must be in the

current directory or in your search path.

You can specify runtime options only by setting the environment variable

_CEE_RUNOPTS before starting the program.

© Copyright IBM Corp. 1991, 2007 435

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

You can run programs that reside in a cataloged MVS data set from a shell by

using the tso utility. For example:

tso "call ’my.loadlib(myprog)’"

The ISPF shell can direct stdout and stderr only to an HFS file, not to your

terminal.

v From outside a shell, you can run programs either under TSO/E or in batch.

To call a z/OS UNIX COBOL program that resides in an HFS file from the

TSO/E prompt, use the BPXBATCH utility or a spawn() syscall in a REXX exec.

To call a z/OS UNIX COBOL program that resides in an HFS file with the JCL

EXEC statement, use the BPXBATCH utility.

RELATED TASKS

“Running OO applications under UNIX” on page 293

“Setting and accessing environment variables”

“Calling UNIX/POSIX APIs” on page 438

“Accessing main program parameters” on page 440

“Defining and allocating QSAM files” on page 166

“Defining and allocating line-sequential files” on page 209

“Allocating VSAM files” on page 200

“Displaying values on a screen or in a file (DISPLAY)” on page 38

Language Environment Programming Guide (Running z/OS UNIX C/C++

 application programs: running POSIX-enabled programs)

RELATED REFERENCES

“TEST” on page 347

UNIX System Services User’s Guide (The BPXBATCH utility)

Language Environment Programming Reference

Setting and accessing environment variables

You can set environment variables for z/OS UNIX COBOL programs either from

the shell with commands export and set, or from the program.

Although setting and resetting environment variables from the shell before you

begin to run a program is a typical procedure, you can set, reset, and access

environment variables from the program while it is running.

If you are running a program with BPXBATCH, you can set environment variables

by using an STDENV DD statement.

To reset an environment variable as if it had not been set, use the z/OS UNIX shell

command unset. To reset an environment variable from a COBOL program, call

the setenv() function.

To see the values of all environment variables, use the export command with no

parameters. To access the value of an environment variable from a COBOL

program, call the getenv() function.

“Example: setting and accessing environment variables” on page 438

RELATED TASKS

“Running in UNIX environments” on page 435

“Setting environment variables that affect execution” on page 437

“Accessing main program parameters” on page 440

436 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

“Running OO applications under UNIX” on page 293

“Setting environment variables under UNIX” on page 283

RELATED REFERENCES

“Runtime environment variables”

Language Environment Programming Reference

MVS Program Management: User’s Guide and Reference

Setting environment variables that affect execution

To set environment variables for UNIX COBOL programs from a shell, use the

export or set command. To set environment variables from within the program,

call POSIX functions setenv() or putenv().

For example, to set the environment variable MYFILE:

export MYFILE=/usr/mystuff/notes.txt

“Example: setting and accessing environment variables” on page 438

RELATED TASKS

“Calling UNIX/POSIX APIs” on page 438

“Setting environment variables under UNIX” on page 283

RELATED REFERENCES

“Runtime environment variables”

Runtime environment variables

Several runtime variables are of interest for COBOL programs.

These are the runtime environment variables:

_CEE_ENVFILE

Specifies a file from which to read environment variables.

_CEE_RUNOPTS

Specifies runtime options.

CLASSPATH

Specifies directory paths of Java .class files required for an OO application.

COBJVMINITOPTIONS

Specifies Java virtual machine (JVM) options used when COBOL initializes

a JVM.

_IGZ_SYSOUT

Specifies where to direct DISPLAY output. stdout and stderr are the only

allowable values.

LIBPATH

Specifies directory paths of dynamic link libraries.

PATH Specifies directory paths of executable programs.

STEPLIB

Specifies location of programs that are not in the LNKLST.

RELATED TASKS

“Displaying data on the system logical output device” on page 39

Chapter 23. Running COBOL programs under UNIX 437

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

RELATED REFERENCES

XL C/C++ Programming Guide (_CEE_ENVFILE)

Language Environment Programming Reference

Example: setting and accessing environment variables

The following example shows how you can access and set environment variables

from a COBOL program by calling the standard POSIX functions getenv() and

putenv().

Because getenv() and putenv() are C functions, you must pass arguments BY VALUE.

Pass character strings as BY VALUE pointers that point to null-terminated strings.

Compile programs that call these functions with the NODYNAM and

PGMNAME(LONGMIXED) options.

 CBL pgmname(longmixed),nodynam

 Identification division.

 Program-id. "envdemo".

 Data division.

 Working-storage section.

 01 P pointer.

 01 PATH pic x(5) value Z"PATH".

 01 var-ptr pointer.

 01 var-len pic 9(4) binary.

 01 putenv-arg pic x(14) value Z"MYVAR=ABCDEFG".

 01 rc pic 9(9) binary.

 Linkage section.

 01 var pic x(5000).

 Procedure division.

* Retrieve and display the PATH environment variable

 Set P to address of PATH

 Call "getenv" using by value P returning var-ptr

 If var-ptr = null then

 Display "PATH not set"

 Else

 Set address of var to var-ptr

 Move 0 to var-len

 Inspect var tallying var-len

 for characters before initial X"00"

 Display "PATH = " var(1:var-len)

 End-if

* Set environment variable MYVAR to ABCDEFG

 Set P to address of putenv-arg

 Call "putenv" using by value P returning rc

 If rc not = 0 then

 Display "putenv failed"

 Stop run

 End-if

 Goback.

Calling UNIX/POSIX APIs

You can call standard UNIX/POSIX functions from z/OS UNIX programs and

from traditional z/OS COBOL programs by using the CALL literal statement. These

functions are part of Language Environment.

Because these are C functions, you must pass arguments BY VALUE. Pass character

strings as BY VALUE pointers that point to null-terminated strings. You must use the

compiler options NODYNAM and PGMNAME(LONGMIXED) when you compile programs

that call these functions.

438 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CBCPG180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

You can call the fork(), exec(), and spawn() functions from a COBOL program or

from a non-COBOL program in the same process as COBOL programs. However,

be aware of these restrictions:

v From a forked process you cannot access any COBOL sequential, indexed, or

relative files that were open when you issued the fork. File status code 92 is

returned if you attempt such access (CLOSE, READ, WRITE, REWRITE, DELETE, or

START). You can access line-sequential files that were open at the time of a fork.

v You cannot use the fork() function in a process in which any of the following

conditions are true:

– A COBOL SORT or MERGE is running.

– A declarative is running.

– The process has more than one Language Environment enclave (COBOL run

unit).

– The process has used any of the COBOL reusable environment interfaces.

– The process has ever run an OS/VS COBOL or VS COBOL II program.
v With one exception, DD allocations are not inherited from a parent process to a

child process. The exception is the local spawn, which creates a child process in

the same address space as the parent process. You request a local spawn by

setting the environment variable _BPX_ SHAREAS=YES before you invoke the

spawn() function.

The exec() and spawn() functions start a new Language Environment enclave in

the new UNIX process. Therefore the target program of the exec() or spawn()

function is a main program, and all COBOL programs in the process start in initial

state with all files closed.

Sample code for calling some of the POSIX routines is provided in the SIGYSAMP

data set.

 Table 63. Samples with POSIX function calls

Purpose Sample Functions used

Shows how to use some

of the file and directory

routines

IGYTFL1 v getcwd()

v mkdir()

v rmdir()

v access()

Shows how to use the

iconv routines to convert

data

IGYTCNV v iconv_open()

v iconv()

v iconv_close()

Shows the use of the

exec() routine to run a

new program along with

other process-related

routines

IGYTEXC, IGYTEXC1 v fork()

v getpid()

v getppid()

v execl()

v perror()

v wait()

Shows how to get the

errno value

IGYTERNO, IGYTGETE v perror()

v fopen()

Chapter 23. Running COBOL programs under UNIX 439

Table 63. Samples with POSIX function calls (continued)

Purpose Sample Functions used

Shows the use of the

interprocess

communication message

routines

IGYTMSQ, IGYTMSQ2 v ftok()

v msgget()

v msgsnd()

v perror()

v fopen()

v fclose()

v msgrcv()

v msgctl()

v perror()

RELATED TASKS

“Running in UNIX environments” on page 435

“Setting and accessing environment variables” on page 436

“Accessing main program parameters”

Language Environment Programming Guide

RELATED REFERENCES

XL C/C++ Run-Time Library Reference

UNIX System Services Programming: Assembler Callable Services Reference

Accessing main program parameters

When you run a COBOL program from the z/OS UNIX shell command line or

with an exec() or spawn() function, the parameter list consists of three parameters

passed by reference. You can access these parameters with standard COBOL

coding.

argument count

A binary fullword integer that contains the number of elements in each of

the arrays that are passed in the second and third parameters.

argument length list

An array of pointers. The nth entry in the array is the address of a

fullword binary integer that contains the length of the nth entry in the

argument list.

argument list

An array of pointers. The nth entry in the array is the address of the nth

character string passed as an argument in the spawn() or exec() function or

in the command invocation. Each character string is null-terminated.

 This array is never empty. The first argument is the character string that

represents the name of the file associated with the process being started.

“Example: accessing main program parameters” on page 441

RELATED TASKS

“Running in UNIX environments” on page 435

“Setting and accessing environment variables” on page 436

“Calling UNIX/POSIX APIs” on page 438

440 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/EDCLB180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZB180

Example: accessing main program parameters

The following example shows the three parameters that are passed by reference.

 Identification division.

 Program-id. "EXECED".

**

* This sample program displays arguments received via exec() *

* function of z/OS UNIX *

**

 Data division.

 Working-storage section.

 01 curr-arg-count pic 9(9) binary value zero.

 Linkage section.

 01 arg-count pic 9(9) binary. (1)

 01 arg-length-list. (2)

 05 arg-length-addr pointer occurs 1 to 99999

 depending on curr-arg-count.

 01 arg-list. (3)

 05 arg-addr pointer occurs 1 to 99999

 depending on curr-arg-count.

 01 arg-length pic 9(9) binary.

 01 arg pic X(65536).

 Procedure division using arg-count arg-length-list arg-list.

* Display number of arguments received *

 Display "Number of arguments received: " arg-count

* Display each argument passed to this program *

 Perform arg-count times

 Add 1 to curr-arg-count

* ***

* * Set address of arg-length to address of current *

* * argument length and display *

* ***

 Set Address of arg-length

 to arg-length-addr(curr-arg-count)

 Display

 "Length of Arg " curr-arg-count " = " arg-length

* ***

* * Set address of arg to address of current argument *

* * and display *

* ***

 Set Address of arg to arg-addr(curr-arg-count)

 Display "Arg " curr-arg-count " = " arg (1:arg-length)

 End-Perform

 Display "Display of arguments complete."

 Goback.

(1) This count contains the number of elements in the arrays that are passed in

the second and third parameters.

(2) This array includes a pointer to the length of the nth entry in the argument

list.

(3) This array includes a pointer to the nth character string passed as an

argument on the spawn() or exec() function or the command invocation.

Chapter 23. Running COBOL programs under UNIX 441

442 Enterprise COBOL for z/OS V4.1 Programming Guide

Part 4. Structuring complex applications

Chapter 24. Using subprograms 445

Main programs, subprograms, and calls 445

Ending and reentering main programs or

subprograms 446

Transferring control to another program 447

Making static calls 448

Making dynamic calls 449

Canceling a subprogram 450

When to use a dynamic call with

subprograms 450

AMODE switching 451

Performance considerations of static and

dynamic calls 453

Making both static and dynamic calls 454

Examples: static and dynamic CALL statements 454

Calling nested COBOL programs 456

Nested programs 456

Example: structure of nested programs . . . 457

Scope of names 458

Making recursive calls 459

Calling to and from object-oriented programs . . 459

Using procedure and function pointers 460

Deciding which type of pointer to use 461

Calling alternate entry points 461

Making programs reentrant 462

Chapter 25. Sharing data 463

Passing data 463

Describing arguments in the calling program 465

Describing parameters in the called program 466

Testing for OMITTED arguments 466

Coding the LINKAGE SECTION 467

Coding the PROCEDURE DIVISION for passing

arguments 467

Grouping data to be passed 468

Handling null-terminated strings 468

Using pointers to process a chained list . . . 469

Example: using pointers to process a chained

list 470

Passing return-code information 472

Understanding the RETURN-CODE special

register 472

Using PROCEDURE DIVISION RETURNING . .

. 472

Specifying CALL . . . RETURNING 473

Sharing data by using the EXTERNAL clause . . . 473

Sharing files between programs (external files) . . 473

Example: using external files 474

Input-output using external files 474

Chapter 26. Creating a DLL or a DLL application 479

Dynamic link libraries (DLLs) 479

Compiling programs to create DLLs 480

Linking DLLs 481

Example: sample JCL for a procedural DLL

application 482

Prelinking certain DLLs 483

Using CALL identifier with DLLs 483

Search order for DLLs in the HFS 484

Using DLL linkage and dynamic calls together . . 484

Using procedure or function pointers with DLLs 486

Calling DLLs from non-DLLs 486

Example: calling DLLs from non-DLLs 487

Using COBOL DLLs with C/C++ programs . . . 488

Using DLLs in OO COBOL applications 489

Chapter 27. Preparing COBOL programs for

multithreading 491

Multithreading 492

Choosing THREAD to support multithreading . . 493

Transferring control to multithreaded programs 493

Ending multithreaded programs 494

Processing files with multithreading 494

File-definition (FD) storage 495

Serializing file access with multithreading . . . 495

Example: usage patterns of file input and

output with multithreading 496

Handling COBOL limitations with multithreading 497

© Copyright IBM Corp. 1991, 2007 443

444 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 24. Using subprograms

Many applications consist of several separately compiled programs linked together.

A run unit (the COBOL term that is synonymous with the Language Environment

term enclave) includes one or more object programs and can include object

programs written in other Language Environment member languages.

Language Environment provides interlanguage support that allows your Enterprise

COBOL programs to call and be called by programs that meet the requirements of

Language Environment.

Name prefix alert: Do not use program-names that start with prefixes used by IBM

products. If you use programs whose names have any of the following prefixes,

CALL statements might resolve to IBM library or compiler routines rather than to

the intended program:

v AFB

v AFH

v CBC

v CEE

v EDC

v IBM

v IFY

v IGY

v IGZ

v ILB

RELATED CONCEPTS

“Main programs, subprograms, and calls”

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 446

“Transferring control to another program” on page 447

“Making recursive calls” on page 459

“Calling to and from object-oriented programs” on page 459

“Using procedure and function pointers” on page 460

“Making programs reentrant” on page 462

“Handling COBOL limitations with multithreading” on page 497

Language Environment Writing ILC Applications

RELATED REFERENCES

Language Environment Programming Guide (Register conventions)

Main programs, subprograms, and calls

If a COBOL program is the first program in a run unit, that COBOL program is the

main program. Otherwise, it and all other COBOL programs in the run unit are

subprograms. No specific source-code statements or options identify a COBOL

program as a main program or subprogram.

Whether a COBOL program is a main program or subprogram can be significant

for either of two reasons:

© Copyright IBM Corp. 1991, 2007 445

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea4150
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

v Effect of program termination statements

v State of the program when it is reentered after returning

In the PROCEDURE DIVISION, a program can call another program (generally called a

subprogram), and this called program can itself call other programs. The program

that calls another program is referred to as the calling program, and the program it

calls is referred to as the called program. When the processing of the called

program is completed, the called program can either transfer control back to the

calling program or end the run unit.

The called COBOL program starts running at the top of the PROCEDURE DIVISION.

RELATED TASKS

“Ending and reentering main programs or subprograms”

“Transferring control to another program” on page 447

“Making recursive calls” on page 459

RELATED REFERENCES

Language Environment Programming Guide

Ending and reentering main programs or subprograms

Whether a program is left in its last-used state or its initial state, and to what caller

it returns, can depend on the termination statements that you use.

You can use any of three termination statements in a program, but they have

different effects, as shown in the table below.

 Table 64. Effects of termination statements

Termination

statement Main program Subprogram

EXIT PROGRAM No action taken Return to calling program without

ending the run unit. An implicit EXIT

PROGRAM statement is generated if the

called program has no next executable

statement.

In a threaded environment, the thread

is not terminated unless the program is

the first (oldest) one in the thread.

STOP RUN Return to calling program.1 (Might

be the operating system, and

application will end.)

STOP RUN terminates the run unit,

and deletes all dynamically called

programs in the run unit and all

programs link-edited with them. (It

does not delete the main program.)

In a threaded environment, the

entire Language Environment

enclave is terminated, including all

threads running within the

enclave.

Return directly to the program that

called the main program.1 (Might be

the operating system, and application

will end.)

STOP RUN terminates the run unit, and

deletes all dynamically called programs

in the run unit and all programs

link-edited with them. (It does not

delete the main program.)

In a threaded environment, the entire

Language Environment enclave is

terminated, including all threads

running within the enclave.

446 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

Table 64. Effects of termination statements (continued)

Termination

statement Main program Subprogram

GOBACK Return to calling program.1 (Might

be the operating system, and

application will end.)

GOBACK terminates the run unit,

and deletes all dynamically called

programs in the run unit and all

programs link-edited with them. (It

does not delete the main program.)

In a threaded environment, the

thread is terminated.2

Return to calling program.

In a threaded environment, if the

program is the first program in a

thread, the thread is terminated.2

1. If the main program is called by a program written in another language that does not

follow Language Environment linkage conventions, return is to this calling program.

2. If the thread is the initial thread of execution in an enclave, the enclave is terminated.

A subprogram is usually left in its last-used state when it terminates with EXIT

PROGRAM or GOBACK. The next time the subprogram is called in the run unit, its

internal values are as they were left, except that return values for PERFORM

statements are reset to their initial values. (In contrast, a main program is

initialized each time it is called.)

There are some cases where programs will be in their initial state:

v A subprogram that is dynamically called and then canceled will be in the initial

state the next time it is called.

v A program that has the INITIAL attribute will be in the initial state each time it

is called.

v Data items defined in the LOCAL-STORAGE SECTION will be reset to the initial state

specified by their VALUE clauses each time the program is called.

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 16

Language Environment Programming Guide (Language Environment termination:

 thread termination)

RELATED TASKS

“Calling nested COBOL programs” on page 456

“Making recursive calls” on page 459

Transferring control to another program

You can use several different methods to transfer control to another program: static

calls, dynamic calls, calls to nested programs, and calls to dynamic link libraries

(DLLs).

In addition to making calls between Enterprise COBOL programs, you can also

make static and dynamic calls between Enterprise COBOL and programs compiled

with older compilers in all environments including CICS.

When you use OS/VS COBOL with Enterprise COBOL, there are differences in

support between non-CICS and CICS:

Chapter 24. Using subprograms 447

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

In a non-CICS environment

You can make static and dynamic calls between Enterprise COBOL and

other COBOL programs.

 Exception: You cannot call VS COBOL II or OS/VS COBOL programs in

the UNIX environment.

In a CICS environment

You cannot call OS/VS COBOL programs in the CICS environment. You

must use EXEC CICS LINK to transfer control between OS/VS COBOL

programs and other COBOL programs.

Calls to nested programs allow you to create applications using structured

programming techniques. You can use nested programs in place of PERFORM

procedures to prevent unintentional modification of data items. Call nested

programs using either the CALL literal or CALL identifier statement.

Calls to dynamic link libraries (DLLs) are an alternative to COBOL dynamic CALL,

and are well suited to object-oriented COBOL applications, UNIX programs, and

applications that interoperate with C/C++.

Under z/OS, linking two load modules together results logically in a single

program with a primary entry point and an alternate entry point, each with its

own name. Each name by which a subprogram is to be dynamically called must be

known to the system. You must specify each such name in linkage-editor or binder

control statements as either a NAME or an ALIAS of the load module that contains the

subprogram.

RELATED CONCEPTS

“AMODE switching” on page 451

“Performance considerations of static and dynamic calls” on page 453

“Nested programs” on page 456

RELATED TASKS

“Making static calls”

“Making dynamic calls” on page 449

“Making both static and dynamic calls” on page 454

“Calling nested COBOL programs” on page 456

Making static calls

When you use the CALL literal statement in a program that is compiled using the

NODYNAM and NODLL compiler options, a static call occurs. With these options, all

CALL literal calls are handled as static calls.

With static calls statement, the COBOL program and all called programs are part of

the same load module. When control is transferred, the called program already

resides in storage, and a branch to it takes place. Subsequent executions of the CALL

statement make the called program available in its last-used state unless the called

program has the INITIAL attribute. In that case, the called program and each

program directly or indirectly contained within it are placed into their initial state

each time the called program is called within a run unit.

If you specify alternate entry points, a static CALL statement can use any alternate

entry point to enter the called subprogram.

“Examples: static and dynamic CALL statements” on page 454

448 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS

“Performance considerations of static and dynamic calls” on page 453

RELATED TASKS

“Making dynamic calls”

“Making both static and dynamic calls” on page 454

“Calling to and from object-oriented programs” on page 459

RELATED REFERENCES

“DLL” on page 317

“DYNAM” on page 319

CALL statement (Enterprise COBOL Language Reference)

Making dynamic calls

When you use a CALL literal statement in a program that is compiled using the

DYNAM and the NODLL compiler options, or when you use the CALL identifier

statement in a program that is compiled using the NODLL compiler option, a

dynamic call occurs.

In these forms of the CALL statement, the called COBOL subprogram is not

link-edited with the main program. Instead, it is link-edited into a separate load

module, and is loaded at run time only when it is required (that is, when called).

The program-name in the PROGRAM-ID paragraph or ENTRY statement must be

identical to the corresponding load module name or load module alias of the load

module that contains the program.

Each subprogram that you call with a dynamic CALL statement can be part of a

different load module that is a member of either the system link library or a

private library that you supply. In either case it must be in an MVS load library; it

cannot reside in the hierarchical file system. When a dynamic CALL statement calls

a subprogram that is not resident in storage, the subprogram is loaded from

secondary storage into the region or partition that contains the main program, and

a branch to the subprogram is performed.

The first dynamic call to a subprogram within a run unit obtains a fresh copy of

the subprogram. Subsequent calls to the same subprogram (by either the original

caller or any other subprogram within the same run unit) result in a branch to the

same copy of the subprogram in its last-used state, provided the subprogram does

not possess the INITIAL attribute. Therefore, the reinitialization of either of the

following items is your responsibility:

v GO TO statements that have been altered

v Data items

If you call the same COBOL program in different run units, a separate copy of

WORKING-STORAGE is allocated for each run unit.

Restrictions: You cannot make dynamic calls to:

v COBOL DLL programs

v COBOL programs compiled with the PGMNAME(LONGMIXED) option, unless the

program-name is less than or equal to eight characters in length and is all

uppercase

v COBOL programs compiled with the PGMNAME(LONGUPPER) option, unless the

program-name is less than or equal to eight characters in length

Chapter 24. Using subprograms 449

v More than one entry point in the same COBOL program (unless an intervening

CANCEL statement was executed)

“Examples: static and dynamic CALL statements” on page 454

RELATED CONCEPTS

“When to use a dynamic call with subprograms”

“Performance considerations of static and dynamic calls” on page 453

RELATED TASKS

“Canceling a subprogram”

“Making static calls” on page 448

“Making both static and dynamic calls” on page 454

RELATED REFERENCES

“DLL” on page 317

“DYNAM” on page 319

ENTRY statement (Enterprise COBOL Language Reference)

CALL statement (Enterprise COBOL Language Reference)

Language Environment Programming Reference

Canceling a subprogram

When you issue a CANCEL statement for a subprogram, the storage that is occupied

by the subprogram is freed. A subsequent call to the subprogram functions as

though it were the first call. You can cancel a subprogram from a program other

than the original caller.

If the called subprogram has more than one entry point, ensure that an intervening

CANCEL statement is issued before you specify different entry points in a dynamic

CALL statement to that subprogram.

After a CANCEL statement is processed for a dynamically called contained program,

the program will be in its first-used state. However, the program is not loaded

with the initial call, and storage is not freed after the program is canceled.

“Examples: static and dynamic CALL statements” on page 454

RELATED CONCEPTS

“Performance considerations of static and dynamic calls” on page 453

When to use a dynamic call with subprograms

Your decision to use dynamic calls with subprograms depends on factors such as

location of the load module, frequency of calls to the subprograms, size of the

subprograms, ease of maintenance, the need to call subprograms in their unused

state, the need for AMODE switching, and when the program-names are known.

The load module that you want to dynamically call must be in an MVS load

library rather than in the hierarchical file system.

If subprograms are called in only a few conditions, you can use dynamic calls to

bring in the subprograms only when needed.

If the subprograms are very large or there are many of them, using static calls

might require too much main storage. Less total storage might be required to call

and cancel one, then call and cancel another, than to statically call both.

450 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

If you are concerned about ease of maintenance, dynamic calls can help.

Applications do not have to be link-edited again when dynamically called

subprograms are changed.

When you cannot use the INITIAL attribute to ensure that a subprogram is placed

in its unused state each time that it is called, you can set the unused state by using

a combination of dynamic CALL and CANCEL statements. When you cancel a

subprogram that was first called by a COBOL program, the next call causes the

subprogram to be reinitialized to its unused state.

Using the CANCEL statement to explicitly cancel a subprogram that was dynamically

loaded and branched to by a non-COBOL program does not result in any action

being taken to release the subprogram’s storage or to delete the subprogram.

Suppose you have an OS/VS COBOL or other AMODE 24 program in the same run

unit with Enterprise COBOL programs that you want to run in 31-bit addressing

mode. COBOL dynamic call processing includes AMODE switching for AMODE 24

programs that call AMODE 31 programs, and vice versa. To have this implicit AMODE

switching done, you must use the Language Environment runtime option

ALL31(OFF). AMODE switching is not performed when ALL31(ON) is set.

When AMODE switching is performed, control is passed from the caller to a

Language Environment library routine. After the switching is performed, control

passes to the called program; the save area for the library routine will be

positioned between the save area for the caller program and the save area for the

called program.

If you do not know the program-name to be called until run time, use the format

CALL identifier, where identifier is a data item that will contain the name of the

called program at run time. For example, you could use CALL identifier when the

program to be called varies depending on conditional processing in your program.

CALL identifier is always dynamic, even if you use the NODYNAM compiler option.

“Examples: static and dynamic CALL statements” on page 454

RELATED CONCEPTS

“AMODE switching”

“Performance considerations of static and dynamic calls” on page 453

RELATED TASKS

“Making dynamic calls” on page 449

RELATED REFERENCES

“DYNAM” on page 319

CALL statement (Enterprise COBOL Language Reference)

Language Environment Programming Reference

AMODE switching

When you have an application that has COBOL subprograms, some of the COBOL

subprograms can be AMODE 31 and some can be AMODE 24.

If your application consists of only COBOL programs, and you are using only

static and dynamic calls, each COBOL subprogram will always be entered in the

Chapter 24. Using subprograms 451

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

proper AMODE. For example, if you are using a dynamic call from an AMODE 31

COBOL program to an AMODE 24 COBOL program, the AMODE is automatically

switched.

However, if you are using procedure pointers, function pointers, or other

languages that call COBOL subprograms, you must ensure that when a COBOL

program is called more than once in an enclave, it is entered in the same AMODE

each time that it is called. The AMODE is not automatically switched in this case.

The following scenario shows that AMODE problems can arise when procedure

pointers are used to call COBOL subprograms. This scenario is not supported

because the COBOL program COBOLY is not entered in the same AMODE each time

that it is called.

1. COBOLX is AMODE 31. It uses the SET statement to set a procedure pointer to

COBOLZ. COBOLZ is a reentrant load module and is AMODE 31 and RMODE 24.

COBOLX calls COBOLZ using the procedure pointer. COBOLZ is entered in

AMODE 31.

2. COBOLZ returns to COBOLX.

3. COBOLX dynamically calls COBOLY, passing the procedure pointer for

COBOLZ. COBOLY is a reentrant load module, and is AMODE 24 and RMODE 24.

COBOLY is entered in AMODE 24.

4. COBOLY calls COBOLZ using the procedure pointer. This call causes COBOLZ

to be entered in AMODE 24, which is not the same AMODE in which COBOLZ was

entered when it was called the first time.

The following scenario uses a mix of COBOL and assembler language. This

scenario is not supported because the COBOL program COBOLB is not entered in

the same AMODE each time that it is called.

452 Enterprise COBOL for z/OS V4.1 Programming Guide

1. COBOLA is AMODE 31. COBOLA dynamically calls COBOLB. COBOLB is a

reentrant load module and is AMODE 31 and RMODE 24. COBOLB is entered in

AMODE 31.

2. COBOLB returns to COBOLA.

3. COBOLA dynamically calls ASSEM10, which is in assembler language.

ASSEM10 is a reentrant load module, and is AMODE 24 and RMODE 24. ASSEM10

is entered in AMODE 24.

4. ASSEM10 loads COBOLB. ASSEM10 does a BALR instruction to COBOLB.

COBOLB is entered in AMODE 24, which is not the same AMODE in which

COBOLB was entered when it was called the first time.

RELATED CONCEPTS

“Storage and its addressability” on page 42

“When to use a dynamic call with subprograms” on page 450

RELATED TASKS

“Making dynamic calls” on page 449

RELATED REFERENCES

Language Environment Programming Reference (ALL31)

Performance considerations of static and dynamic calls

Because a statically called program is link-edited into the same load module as the

calling program, a static call is faster than a dynamic call. A static call is the

preferred method if your application does not require the services of the dynamic

call.

Statically called programs cannot be deleted using CANCEL, so static calls might take

more main storage. If storage is a concern, think about using dynamic calls.

Storage usage of calls depends on whether:

v The subprogram is called only a few times. Regardless of whether it is called, a

statically called program is loaded into storage; a dynamically called program is

loaded only when it is called.

v You subsequently delete the dynamically called subprogram with a CANCEL

statement.

You cannot delete a statically called program, but you can delete a dynamically

called program. Using a dynamic call and then a CANCEL statement to delete the

Chapter 24. Using subprograms 453

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

dynamically called program after it is no longer needed in the application (and

not after each call to it) might require less storage than using a static call.

RELATED CONCEPTS

“When to use a dynamic call with subprograms” on page 450

RELATED TASKS

“Making static calls” on page 448

“Making dynamic calls” on page 449

Making both static and dynamic calls

You can use both static and dynamic CALL statements in the same program if you

compile the program with the NODYNAM compiler option.

In this case, with the CALL literal statement, the called subprogram will be

link-edited with the main program into one load module. The CALL identifier

statement results in the dynamic invocation of a separate load module.

When a dynamic CALL statement and a static CALL statement to the same

subprogram are issued within one program, a second copy of the subprogram is

loaded into storage. Because this arrangement does not guarantee that the

subprogram will be left in its last-used state, results can be unpredictable.

RELATED REFERENCES

“DYNAM” on page 319

Examples: static and dynamic CALL statements

This example shows how you can code static and dynamic calls.

The example has three parts:

v Code that uses a static call to call a subprogram

v Code that uses a dynamic call to call the same subprogram

v The subprogram that is called by the two types of calls

The following example shows how you would code static calls:

PROCESS NODYNAM NODLL

IDENTIFICATION DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RECORD-2 PIC X. (6)

01 RECORD-1. (2)

 05 PAY PICTURE S9(5)V99.

 05 HOURLY-RATE PICTURE S9V99.

 05 HOURS PICTURE S99V9.

. . .

PROCEDURE DIVISION.

 CALL "SUBPROG" USING RECORD-1. (1)

 CALL "PAYMASTR" USING RECORD-1 RECORD-2. (5)

 STOP RUN.

The following example shows how you would code dynamic calls:

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PGM-NAME PICTURE X(8).

01 RECORD-2 PIC x. (6)

454 Enterprise COBOL for z/OS V4.1 Programming Guide

01 RECORD-1. (2)

 05 PAY PICTURE S9(5)V99.

 05 HOURLY-RATE PICTURE S9V99.

 05 HOURS PICTURE S99V9.

. . .

PROCEDURE DIVISION.

. . .

 MOVE "SUBPROG" TO PGM-NAME.

 CALL PGM-NAME USING RECORD-1. (1)

 CANCEL PGM-NAME.

 MOVE "PAYMASTR" TO PGM-NAME. (4)

 CALL PGM-NAME USING RECORD-1 RECORD-2. (5)

 STOP RUN.

The following example shows a called subprogram that is called by each of the

two preceding calling programs:

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBPROG.

DATA DIVISION.

LINKAGE SECTION.

01 PAYREC. (2)

 10 PAY PICTURE S9(5)V99.

 10 HOURLY-RATE PICTURE S9V99.

 10 HOURS PICTURE S99V9.

77 PAY-CODE PICTURE 9. (6)

PROCEDURE DIVISION USING PAYREC. (1)

. . .

 EXIT PROGRAM. (3)

 ENTRY "PAYMASTR" USING PAYREC PAY-CODE. (5)

 . . .

 GOBACK. (7)

(1) Processing begins in the calling program. When the first CALL statement is

executed, control is transferred to the first statement of the PROCEDURE

DIVISION in SUBPROG, which is the called program.

 In each of the CALL statements, the operand of the first USING option is

identified as RECORD-1.

(2) When SUBPROG receives control, the values within RECORD-1 are made

available to SUBPROG; however, in SUBPROG they are referred to as PAYREC.

 The PICTURE character-strings within PAYREC and PAY-CODE contain the same

number of characters as RECORD-1 and RECORD-2, although the descriptions

are not identical.

(3) When processing within SUBPROG reaches the EXIT PROGRAM statement,

control is returned to the calling program. Processing continues in that

program until the second CALL statement is issued.

(4) In the example of a dynamically called program, because the second CALL

statement refers to another entry point within SUBPROG, a CANCEL statement

is issued before the second CALL statement.

(5) With the second CALL statement in the calling program, control is again

transferred to SUBPROG, but this time processing begins at the statement

following the ENTRY statement in SUBPROG.

(6) The values within RECORD-1 are again made available to PAYREC. In

addition, the value in RECORD-2 is now made available to SUBPROG through

the corresponding USING operand, PAY-CODE.

 When control is transferred the second time from the statically linked

program, SUBPROG is made available in its last-used state (that is, if any

values in SUBPROG storage were changed during the first execution, those

Chapter 24. Using subprograms 455

changed values are still in effect). When control is transferred from the

dynamically linked program, however, SUBPROG is made available in its

initial state, because of the CANCEL statement that has been executed.

(7) When processing reaches the GOBACK statement, control is returned to the

calling program at the statement immediately after the second CALL

statement.

In any given execution of the called program and either of the two calling

programs, if the values within RECORD-1 are changed between the time of the first

CALL and the second, the values passed at the time of the second CALL statement

will be the changed, not the original, values. If you want to use the original values,

you must save them.

Calling nested COBOL programs

By calling nested programs, you can create applications that use structured

programming techniques. You can also call nested programs instead of PERFORM

procedures to prevent unintentional modification of data items. Use either CALL

literal or CALL identifier statements to make calls to nested programs.

You can call a contained program only from its directly containing program unless

you identify the contained program as COMMON in its PROGRAM-ID paragraph. In that

case, you can call the common program from any program that is contained (directly

or indirectly) in the same program as the common program. Only contained

programs can be identified as COMMON. Recursive calls are not allowed.

Follow these guidelines when using nested program structures:

v Code an IDENTIFICATION DIVISION in each program. All other divisions are

optional.

v Optionally make the name of each contained program unique. Although the

names of contained programs are not required to be unique (as described in the

related reference about scope of names), making the names unique could help

make your application more maintainable. You can use any valid user-defined

word or an alphanumeric literal as the name of a contained program.

v In the outermost program, code any CONFIGURATION SECTION entries that might

be required. Contained programs cannot have a CONFIGURATION SECTION.

v Include each contained program in the containing program immediately before

the END PROGRAM marker of the containing program.

v Use an END PROGRAM marker to terminate contained and containing programs.

You cannot use the THREAD option when compiling programs that contain nested

programs.

RELATED CONCEPTS

“Nested programs”

RELATED REFERENCES

“Scope of names” on page 458

Nested programs

A COBOL program can nest, or contain, other COBOL programs. The nested

programs can themselves contain other programs. A nested program can be

directly or indirectly contained in a program.

456 Enterprise COBOL for z/OS V4.1 Programming Guide

There are four main advantages to nesting called programs:

v Nested programs provide a method for creating modular functions and

maintaining structured programming techniques. They can be used analogously

to perform procedures (using the PERFORM statement), but with more structured

control flow and with the ability to protect local data items.

v Nested programs let you debug a program before including it in an application.

v Nested programs enable you to compile an application with a single invocation

of the compiler.

v Calls to nested programs have the best performance of all the forms of COBOL

CALL statements.

The following example describes a nested structure that has directly and indirectly

contained programs:

“Example: structure of nested programs”

RELATED TASKS

“Calling nested COBOL programs” on page 456

RELATED REFERENCES

“Scope of names” on page 458

Example: structure of nested programs

The following example shows a nested structure with some contained programs

that are identified as COMMON.

Chapter 24. Using subprograms 457

The following table describes the calling hierarchy for the structure that is shown

in the example above. Programs A12, A2, and A3 are identified as COMMON, and the

calls associated with them differ.

This program Can call these programs

And can be called by these

programs

A A1, A2, A3 None

A1 A11, A12, A2, A3 A

A11 A111, A12, A2, A3 A1

A111 A12, A2, A3 A11

A12 A2, A3 A1, A11, A111

A2 A3 A, A1, A11, A111, A12, A3

A3 A2 A, A1, A11, A111, A12, A2

In this example, note that:

v A2 cannot call A1 because A1 is not common and is not contained in A2.

v A1 can call A2 because A2 is common.

Scope of names

Names in nested structures are divided into two classes: local and global. The class

determines whether a name is known beyond the scope of the program that

declares it. A specific search sequence locates the declaration of a name after it is

referenced in a program.

Local names:

Names (except the program-name) are local unless declared to be otherwise. Local

names are visible or accessible only within the program in which they are declared.

They are not visible or accessible to contained and containing programs.

Global names:

A name that is global (indicated by using the GLOBAL clause) is visible and

accessible to the program in which it is declared and to all the programs that are

directly and indirectly contained in that program. Therefore, the contained

programs can share common data and files from the containing program simply by

referencing the names of the items.

458 Enterprise COBOL for z/OS V4.1 Programming Guide

Any item that is subordinate to a global item (including condition-names and

indexes) is automatically global.

You can declare the same name with the GLOBAL clause more than one time,

provided that each declaration occurs in a different program. Be aware that you

can mask, or hide, a name in a nested structure by having the same name occur in

different programs in the same containing structure. However, such masking could

cause problems during a search for a name declaration.

Searches for name declarations:

When a name is referenced in a program, a search is made to locate the declaration

for that name. The search begins in the program that contains the reference and

continues outward to the containing programs until a match is found. The search

follows this process:

1. Declarations in the program are searched.

2. If no match is found, only global declarations are searched in successive outer

containing programs.

3. The search ends when the first matching name is found. If no match is found,

an error exists.

The search is for a global name, not for a particular type of object associated with

the name such as a data item or file connector. The search stops when any match is

found, regardless of the type of object. If the object declared is of a different type

than that expected, an error condition exists.

Making recursive calls

A called program can directly or indirectly execute its caller. For example, program

X calls program Y, program Y calls program Z, and program Z then calls program

X. This type of call is recursive.

To make a recursive call, you must code the RECURSIVE clause in the PROGRAM-ID

paragraph of the recursively called program. If you try to recursively call a

COBOL program that does not have the RECURSIVE clause in the PROGRAM-ID

paragraph, a condition is signaled. If the condition remains unhandled, the run

unit will end.

RELATED TASKS

“Identifying a program as recursive” on page 6

RELATED REFERENCES

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

Calling to and from object-oriented programs

When you create applications that contain object-oriented (OO) programs, the OO

COBOL programs are DLL programs and can be in one or more dynamic link

libraries (DLLs). Each class definition must be in a separate DLL, however.

Calls to or from COBOL DLL programs must either use DLL linkage or be static

calls. COBOL dynamic calls to or from COBOL DLL programs are not supported.

Chapter 24. Using subprograms 459

If you must call a COBOL DLL program from a COBOL non-DLL program, other

means to ensure that the DLL linkage mechanism is followed are available.

Using procedure and function pointers

You can set procedure-pointer and function-pointer data items only by using

format 6 of the SET statement.

Procedure pointers are data items defined with the USAGE IS PROCEDURE-POINTER

clause. Function pointers are data items defined with the USAGE IS

FUNCTION-POINTER clause. In this information, “pointer” refers to either a

procedure-pointer data item or a function-pointer data item. You can set either of

these data items to contain entry addresses of, or pointers to, these entry points:

v Another COBOL program that is not nested. For example, to have a user-written

error-handling routine take control when an exception condition occurs, you

must first pass the entry address of the routine to CEEHDLR, a

condition-management Language Environment callable service, so that the

routine is registered.

v A program written in another language. For example, to receive the entry

address of a C function, call the function with the CALL RETURNING statement. It

will return a pointer that you can either use as a function pointer or convert to a

procedure pointer by using a form of the SET statement.

v An alternate entry point in another COBOL program (as defined in an ENTRY

statement).

The SET statement sets the pointer to refer either to an entry point in the same load

module as your program, to a separate load module, or to an entry point that is

exported from a DLL, depending on the DYNAM|NODYNAM and DLL|NODLL compiler

options. Therefore, consider these factors when using these pointer data items:

v If you compile a program with the NODYNAM and NODLL options and set a pointer

item to a literal value (to an actual name of an entry point), the value must refer

to an entry point in the same load module. Otherwise the reference cannot be

resolved.

v If you compile a program with the NODLL option and either set a pointer item to

an identifier that will contain the name of the entry point at run time or set the

pointer item to a literal and compile with the DYNAM option, then the pointer

item, whether a literal or variable, must point to an entry point in a separate

load module. The entry point can be either the primary entry point or an

alternate entry point named in an ALIAS linkage-editor or binder statement.

v If you compile with the NODYNAM and DLL options and set a pointer item to a

literal value (the actual name of an entry point), the value must refer to an entry

point in the same load module or to an entry-point name that is exported from a

DLL module. In the latter case you must include the DLL side file for the target

DLL module in the link edit of your program load module.

v If you compile with the NODYNAM and DLL options and set a pointer item to an

identifier (a data item that contains the entry point name at run time), the

identifier value must refer to the entry-point name that is exported from a DLL

module. In this case the DLL module name must match the name of the

exported entry point.

If you set a pointer item to an entry address in a dynamically called load module,

and your program subsequently cancels that dynamically called module, then that

pointer item becomes undefined. Reference to it thereafter is not reliable.

460 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Deciding which type of pointer to use”

“Calling alternate entry points”

“Using procedure or function pointers with DLLs” on page 486

RELATED REFERENCES

“DLL” on page 317

“DYNAM” on page 319

CANCEL statement (Enterprise COBOL Language Reference)

Format 6: SET for procedure-pointer and function-pointer data items

 (Enterprise COBOL Language Reference)

ENTRY statement (Enterprise COBOL Language Reference)

Deciding which type of pointer to use

Use procedure pointers to call other COBOL programs and to call Language

Environment callable services. Use function pointers to communicate with C/C++

programs or with services provided by the Java Native Interface.

Procedure pointers are more efficient than function pointers for COBOL-to-COBOL

calls, and are required for calls to Language Environment condition-handling

services.

Many callable services written in C return function pointers. You can call such a C

function pointer from your COBOL program by using COBOL function pointers as

shown below.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DEMO.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

*

 WORKING-STORAGE SECTION.

 01 FP USAGE FUNCTION-POINTER.

*

 PROCEDURE DIVISION.

 CALL "c-function" RETURNING FP.

 CALL FP.

RELATED TASKS

“Using procedure or function pointers with DLLs” on page 486

“Accessing JNI services” on page 595

Calling alternate entry points

Static calls to alternate entry points work without restriction.

Dynamic calls to alternate entry points require the following elements:

v Either explicitly specified NAME or ALIAS linkage-editor or binder control

statements, or use of the NAME compiler option which generates them

automatically.

v An intervening CANCEL for any dynamic call to the same module at a different

entry point. CANCEL causes the program to be invoked in initial state when it is

called at a new entry point.

Chapter 24. Using subprograms 461

You can specify another entry point at which a program will begin running by

using the ENTRY label in the called program. However, this method is not

recommended in a structured program.

“Examples: static and dynamic CALL statements” on page 454

RELATED REFERENCES

“NAME” on page 329

CANCEL statement (Enterprise COBOL Language Reference)

ENTRY statement (Enterprise COBOL Language Reference)

MVS Program Management: User’s Guide and Reference

Making programs reentrant

If more than one user will run an application program at the same time (for

example, users in different address spaces accessing a program that resides in the

link pack area), you must make the program reentrant by compiling with the RENT

option.

You do not need to worry about multiple copies of variables. The compiler creates

the necessary reentrancy controls in the object module.

The following Enterprise COBOL programs must be reentrant:

v Programs to be used with CICS

v Programs to be preloaded with IMS

v Programs to be used as DB2 stored procedures

v Programs to be run in the z/OS UNIX environment

v Programs that are enabled for DLL support

v Programs that use object-oriented syntax

For reentrant programs, use the DATA compiler option and the HEAP and ALL31

runtime options to control whether dynamic data areas, such as WORKING-STORAGE,

are obtained from storage below or above the 16-MB line.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Compiling programs to create DLLs” on page 480

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

RELATED REFERENCES

“RENT” on page 340

“DATA” on page 313

Language Environment Programming Reference (ALL31, HEAP)

462 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

Chapter 25. Sharing data

When a run unit consists of several separately compiled programs that call each

other, the programs must be able to communicate with each other. They also

usually need access to common data.

This information describes how you can write programs that share data with other

programs. In this information, a subprogram is any program that is called by

another program.

RELATED TASKS

“Passing data”

“Coding the LINKAGE SECTION” on page 467

“Coding the PROCEDURE DIVISION for passing arguments” on page 467

“Passing return-code information” on page 472

“Specifying CALL . . . RETURNING” on page 473

“Sharing data by using the EXTERNAL clause” on page 473

“Sharing files between programs (external files)” on page 473

“Sharing data with Java” on page 600

Passing data

You can choose among three ways of passing data between programs: BY

REFERENCE, BY CONTENT, or BY VALUE.

BY REFERENCE

The subprogram refers to and processes the data items in the storage of the

calling program rather than working on a copy of the data. BY REFERENCE is

the assumed passing mechanism for a parameter if none of the three ways

is specified or implied for the parameter.

BY CONTENT

The calling program passes only the contents of the literal or identifier. The

called program cannot change the value of the literal or identifier in the

calling program, even if it modifies the data item in which it received the

literal or identifier.

BY VALUE

The calling program or method passes the value of the literal or identifier,

not a reference to the sending data item. The called program or invoked

method can change the parameter. However, because the subprogram or

method has access only to a temporary copy of the sending data item, any

change does not affect the argument in the calling program.

The following figure shows the differences in values passed BY REFERENCE, BY

CONTENT, and BY VALUE:

© Copyright IBM Corp. 1991, 2007 463

Determine which of these data-passing methods to use based on what you want

your program to do with the data.

 Table 65. Methods for passing data in the CALL statement

Code Purpose Comments

CALL . . . BY REFERENCE

identifier

To have the definition of the argument

of the CALL statement in the calling

program and the definition of the

parameter in the called program share

the same memory

Any changes made by the subprogram

to the parameter affect the argument in

the calling program.

CALL . . . BY REFERENCE

ADDRESS OF identifier

To pass the address of identifier to a

called program, where identifier is an

item in the LINKAGE SECTION

Any changes made by the subprogram

to the address affect the address in the

calling program.

CALL . . . BY REFERENCE

file-name

To pass a Data Control Block (DCB) to

assembler programs

The file-name must reference a QSAM

sequential file.1

CALL . . . BY CONTENT ADDRESS

OF identifier

To pass a copy of the address of

identifier to a called program

Any changes to the copy of the address

will not affect the address of identifier,

but changes to identifier using the copy

of the address will cause changes to

identifier.

CALL . . . BY CONTENT identifier To pass a copy of the identifier to the

subprogram

Changes to the parameter by the

subprogram will not affect the caller’s

identifier.

CALL . . . BY CONTENT literal To pass a copy of a literal value to a

called program

CALL . . . BY CONTENT LENGTH

OF identifier

To pass a copy of the length of a data

item

The calling program passes the length

of the identifier from its LENGTH special

register.

A combination of BY REFERENCE

and BY CONTENT such as:

CALL ’ERRPROC’

 USING BY REFERENCE A

 BY CONTENT LENGTH OF A.

To pass both a data item and a copy of

its length to a subprogram

CALL . . . BY VALUE identifier To pass data to a program, such as a

C/C++ program, that uses BY VALUE

parameter linkage conventions

A copy of the identifier is passed

directly in the parameter list.

464 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 65. Methods for passing data in the CALL statement (continued)

Code Purpose Comments

CALL . . . BY VALUE literal To pass data to a program, such as a

C/C++ program, that uses BY VALUE

parameter linkage conventions

A copy of the literal is passed directly

in the parameter list.

CALL . . . BY VALUE ADDRESS OF

identifier

To pass the address of identifier to a

called program. This is the

recommended way to pass data to a

C/C++ program that expects a pointer

to the data.

Any changes to the copy of the address

will not affect the address of identifier,

but changes to identifier using the copy

of the address will cause changes to

identifier.

CALL . . . RETURNING To call a C/C++ function with a

function return value

1. File-names as CALL operands are allowed as an IBM extension to COBOL. Any use of the extension generally

depends on the specific internal implementation of the compiler. Control block field settings might change in

future releases. Any changes made to the control block are the user’s responsibility and are not supported by

IBM.

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Describing arguments in the calling program”

“Describing parameters in the called program” on page 466

“Testing for OMITTED arguments” on page 466

“Specifying CALL . . . RETURNING” on page 473

“Sharing data by using the EXTERNAL clause” on page 473

“Sharing files between programs (external files)” on page 473

“Sharing data with Java” on page 600

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)

The USING phrase (Enterprise COBOL Language Reference)

INVOKE statement (Enterprise COBOL Language Reference)

Describing arguments in the calling program

In the calling program, describe arguments in the DATA DIVISION in the same

manner as other data items in the DATA DIVISION.

Storage for arguments is allocated only in the highest outermost program. For

example, program A calls program B, which calls program C. Data items are

allocated in program A. They are described in the LINKAGE SECTION of programs B

and C, making the one set of data available to all three programs.

If you reference data in a file, the file must be open when the data is referenced.

Code the USING phrase of the CALL statement to pass the arguments. If you pass a

data item BY VALUE, it must be an elementary item.

Do not pass parameters allocated in storage above the 16-MB line to AMODE 24

subprograms. Use the DATA(24) option if the RENT option is in effect, or the

RMODE(24) option if the NORENT option is in effect.

Chapter 25. Sharing data 465

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Coding the LINKAGE SECTION” on page 467

“Coding the PROCEDURE DIVISION for passing arguments” on page 467

RELATED REFERENCES

The USING phrase (Enterprise COBOL Language Reference)

Describing parameters in the called program

You must know what data is being passed from the calling program and describe

it in the LINKAGE SECTION of each program that is called directly or indirectly by

the calling program.

Code the USING phrase after the PROCEDURE DIVISION header to name the

parameters that receive the data that is passed from the calling program.

When arguments are passed to the subprogram BY REFERENCE, it is invalid for the

subprogram to specify any relationship between its parameters and any fields

other than those that are passed and defined in the main program. The

subprogram must not:

v Define a parameter to be larger in total number of bytes than the corresponding

argument.

v Use subscript references to refer to elements beyond the limits of tables that are

passed as arguments by the calling program.

v Use reference modification to access data beyond the length of defined

parameters.

v Manipulate the address of a parameter in order to access other data items that

are defined in the calling program.

If any of the rules above are violated, unexpected results might occur if the calling

program was compiled with the OPTIMIZE compiler option.

RELATED TASKS

“Coding the LINKAGE SECTION” on page 467

RELATED REFERENCES

The USING phrase (Enterprise COBOL Language Reference)

Testing for OMITTED arguments

You can specify that one or more BY REFERENCE arguments are not to be passed to a

called program by coding the OMITTED keyword in place of those arguments in the

CALL statement.

For example, to omit the second argument when calling program sub1, code this

statement:

Call ’sub1’ Using PARM1, OMITTED, PARM3

The arguments in the USING phrase of the CALL statement must match the

parameters of the called program in number and position.

466 Enterprise COBOL for z/OS V4.1 Programming Guide

In a called program, you can test whether an argument was passed as OMITTED by

comparing the address of the corresponding parameter to NULL. For example:

Program-ID. sub1.

. . .

Procedure Division Using RPARM1, RPARM2, RPARM3.

 If Address Of RPARM2 = Null Then

 Display ’No 2nd argument was passed this time’

 Else

 Perform Process-Parm-2

 End-If

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)

The USING phrase (Enterprise COBOL Language Reference)

Coding the LINKAGE SECTION

Code the same number of data-names in the identifier list of the called program as

the number of arguments in the calling program. Synchronize by position, because

the compiler passes the first argument from the calling program to the first

identifier of the called program, and so on.

You will introduce errors if the number of data-names in the identifier list of a

called program is greater than the number of arguments passed from the calling

program. The compiler does not try to match arguments and parameters.

The following figure shows a data item being passed from one program to another

(implicitly BY REFERENCE):

In the calling program, the code for parts (PARTCODE) and the part number (PARTNO)

are distinct data items. In the called program, by contrast, the code for parts and

the part number are combined into one data item (PART-ID). In the called program,

a reference to PART-ID is the only valid reference to these items.

Coding the PROCEDURE DIVISION for passing arguments

If you pass an argument BY VALUE, code the USING BY VALUE clause in the

PROCEDURE DIVISION header of the subprogram. If you pass an argument BY

REFERENCE or BY CONTENT, you do not need to indicate in the header how the

argument was passed.

Chapter 25. Sharing data 467

PROCEDURE DIVISION USING BY VALUE. . .

PROCEDURE DIVISION USING. . .

PROCEDURE DIVISION USING BY REFERENCE. . .

The first header above indicates that the data items are passed BY VALUE; the

second or third headers indicate that the items are passed BY REFERENCE or BY

CONTENT.

RELATED REFERENCES

The procedure division header (Enterprise COBOL Language Reference)

The USING phrase (Enterprise COBOL Language Reference)

CALL statement (Enterprise COBOL Language Reference)

Grouping data to be passed

Consider grouping all the data items that you need to pass between programs and

putting them under one level-01 item. If you do so, you can pass a single level-01

record.

Note that if you pass a data item BY VALUE, it must be an elementary item.

To lessen the possibility of mismatched records, put the level-01 record into a copy

library and copy it into both programs. That is, copy it in the WORKING-STORAGE

SECTION of the calling program and in the LINKAGE SECTION of the called program.

RELATED TASKS

“Coding the LINKAGE SECTION” on page 467

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)

Handling null-terminated strings

COBOL supports null-terminated strings when you use string-handling verbs

together with null-terminated literals and the hexadecimal literal X’00’.

You can manipulate null-terminated strings (passed from a C program, for

example) by using string-handling mechanisms such as those in the following

code:

01 L pic X(20) value z’ab’.

01 M pic X(20) value z’cd’.

01 N pic X(20).

01 N-Length pic 99 value zero.

01 Y pic X(13) value ’Hello, World!’.

To determine the length of a null-terminated string, and display the value of the

string and its length, code:

Inspect N tallying N-length for characters before initial X’00’

Display ’N: ’ N(1:N-length) ’ Length: ’ N-length

To move a null-terminated string to an alphanumeric string, but delete the null,

code:

Unstring N delimited by X’00’ into X

To create a null-terminated string, code:

468 Enterprise COBOL for z/OS V4.1 Programming Guide

String Y delimited by size

 X’00’ delimited by size

 into N.

To concatenate two null-terminated strings, code:

String L delimited by x’00’

 M delimited by x’00’

 X’00’ delimited by size

 into N.

RELATED TASKS

“Manipulating null-terminated strings” on page 106

RELATED REFERENCES

Null-terminated alphanumeric literals (Enterprise COBOL Language Reference)

Using pointers to process a chained list

When you need to pass and receive addresses of record areas, you can use pointer

data items, which are either data items that are defined with the USAGE IS POINTER

clause or are ADDRESS special registers.

A typical application for using pointer data items is in processing a chained list, a

series of records in which each record points to the next.

When you pass addresses between programs in a chained list, you can use NULL to

assign the value of an address that is not valid (nonnumeric 0) to a pointer item in

either of two ways:

v Use a VALUE IS NULL clause in its data definition.

v Use NULL as the sending field in a SET statement.

In the case of a chained list in which the pointer data item in the last record

contains a null value, you can use this code to check for the end of the list:

IF PTR-NEXT-REC = NULL

. . .

 (logic for end of chain)

If the program has not reached the end of the list, the program can process the

record and move on to the next record.

The data passed from a calling program might contain header information that you

want to ignore. Because pointer data items are not numeric, you cannot directly

perform arithmetic on them. However, to bypass header information, you can use

the SET statement to increment the passed address.

“Example: using pointers to process a chained list” on page 470

RELATED TASKS

“Coding the LINKAGE SECTION” on page 467

“Coding the PROCEDURE DIVISION for passing arguments” on page 467

RELATED REFERENCES

SET statement (Enterprise COBOL Language Reference)

Chapter 25. Sharing data 469

Example: using pointers to process a chained list

The following example shows how you might process a linked list, that is, a

chained list of data items.

For this example, picture a chained list of data that consists of individual salary

records. The following figure shows one way to visualize how the records are

linked in storage. The first item in each record except the last points to the next

record. The first item in the last record contains a null value (instead of a valid

address) to indicate that it is the last record.

The high-level logic of an application that processes these records might be:

Obtain address of first record in chained list from routine

Check for end of the list

DO UNTIL end of the list

 Process record

 Traverse to the next record

END

The following code contains an outline of the calling program, LISTS, used in this

example of processing a chained list.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. LISTS.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 PTR-FIRST POINTER VALUE IS NULL. (1)

 77 DEPT-TOTAL PIC 9(4) VALUE IS 0.

 LINKAGE SECTION.

 01 SALARY-REC.

 02 PTR-NEXT-REC POINTER. (2)

 02 NAME PIC X(20).

 02 DEPT PIC 9(4).

 02 SALARY PIC 9(6).

 01 DEPT-X PIC 9(4).

 PROCEDURE DIVISION USING DEPT-X.

* FOR EVERYONE IN THE DEPARTMENT RECEIVED AS DEPT-X,

* GO THROUGH ALL THE RECORDS IN THE CHAINED LIST BASED ON THE

* ADDRESS OBTAINED FROM THE PROGRAM CHAIN-ANCH

* AND CUMULATE THE SALARIES.

* IN EACH RECORD, PTR-NEXT-REC IS A POINTER TO THE NEXT RECORD

* IN THE LIST; IN THE LAST RECORD, PTR-NEXT-REC IS NULL.

* DISPLAY THE TOTAL.

 CALL "CHAIN-ANCH" USING PTR-FIRST (3)

 SET ADDRESS OF SALARY-REC TO PTR-FIRST (4)

 PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL (5)

470 Enterprise COBOL for z/OS V4.1 Programming Guide

IF DEPT = DEPT-X

 THEN ADD SALARY TO DEPT-TOTAL

 ELSE CONTINUE

 END-IF

 SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC (6)

 END-PERFORM

 DISPLAY DEPT-TOTAL

 GOBACK.

(1) PTR-FIRST is defined as a pointer data item with an initial value of NULL.

On a successful return from the call to CHAIN-ANCH, PTR-FIRST contains the

address of the first record in the chained list. If something goes wrong

with the call, and PTR-FIRST never receives the value of the address of the

first record in the chain, a null value remains in PTR-FIRST and, according

to the logic of the program, the records will not be processed.

(2) The LINKAGE SECTION of the calling program contains the description of the

records in the chained list. It also contains the description of the

department code that is passed, using the USING clause of the CALL

statement.

(3) To obtain the address of the first SALARY-REC record area, the LISTS

program calls the program CHAIN-ANCH:

(4) The SET statement bases the record description SALARY-REC on the address

contained in PTR-FIRST.

(5) The chained list in this example is set up so that the last record contains an

address that is not valid. This check for the end of the chained list is

accomplished with a do-while structure where the value NULL is assigned

to the pointer data item in the last record.

(6) The address of the record in the LINKAGE-SECTION is set equal to the

address of the next record by means of the pointer data item sent as the

first field in SALARY-REC. The record-processing routine repeats, processing

the next record in the chained list.

To increment addresses received from another program, you could set up the

LINKAGE SECTION and PROCEDURE DIVISION like this:

LINKAGE SECTION.

01 RECORD-A.

 02 HEADER PIC X(12).

 02 REAL-SALARY-REC PIC X(30).

. . .

01 SALARY-REC.

 02 PTR-NEXT-REC POINTER.

 02 NAME PIC X(20).

 02 DEPT PIC 9(4).

 02 SALARY PIC 9(6).

. . .

PROCEDURE DIVISION USING DEPT-X.

. . .

 SET ADDRESS OF SALARY-REC TO ADDRESS OF REAL-SALARY-REC

The address of SALARY-REC is now based on the address of REAL-SALARY-REC, or

RECORD-A + 12.

RELATED TASKS

“Using pointers to process a chained list” on page 469

Chapter 25. Sharing data 471

Passing return-code information

Use the RETURN-CODE special register to pass return codes between programs.

(Methods do not return information in the RETURN-CODE special register, but they

can check the register after a call to a program.)

You can also use the RETURNING phrase in the PROCEDURE DIVISION header of a

method to return information to an invoking program or method. If you use

PROCEDURE DIVISION . . . RETURNING with CALL . . . RETURNING, the RETURN-CODE

register will not be set.

Understanding the RETURN-CODE special register

When a COBOL program returns to its caller, the contents of the RETURN-CODE

special register are stored into register 15.

When control is returned to a COBOL program or method from a call, the contents

of register 15 are stored into the RETURN-CODE special register of the calling program

or method. When control is returned from a COBOL program to the operating

system, the special register contents are returned as a user return code.

You might need to think about this handling of the RETURN-CODE special register

when control is returned to a COBOL program from a non-COBOL program. If the

non-COBOL program does not use register 15 to pass back the return code, the

RETURN-CODE special register of the COBOL program might be updated with an

invalid value. Unless you set this special register to a meaningful value before

your Enterprise COBOL program returns to the operating system, a return code

that is invalid will be passed to the system.

For equivalent function between COBOL and C programs, have your COBOL

program call the C program with the RETURNING phrase. If the C program

(function) correctly declares a function value, the RETURNING value of the calling

COBOL program will be set.

You cannot set the RETURN-CODE special register by using the INVOKE statement.

Using PROCEDURE DIVISION RETURNING . . .

Use the RETURNING phrase in the PROCEDURE DIVISION header of a program to return

information to the calling program.

PROCEDURE DIVISION RETURNING dataname2

When the called program in the example above successfully returns to its caller,

the value in dataname2 is stored into the identifier that you specified in the

RETURNING phrase of the CALL statement:

CALL . . . RETURNING dataname2

CEEPIPI: The results of specifying PROCEDURE DIVISION RETURNING in programs that

are called with the Language Environment preinitialization service (CEEPIPI) are

undefined.

472 Enterprise COBOL for z/OS V4.1 Programming Guide

Specifying CALL . . . RETURNING

You can specify the RETURNING phrase of the CALL statement for calls to C/C++

functions or to COBOL subroutines.

The RETURNING phrase has the following format.

CALL . . . RETURNING dataname2

The return value of the called program is stored into dataname2. You must define

dataname2 in the DATA DIVISION of the calling program. The data type of the return

value that is declared in the target function must be identical to the data type of

dataname2.

Sharing data by using the EXTERNAL clause

Use the EXTERNAL clause to allow separately compiled programs and methods

(including programs in a batch sequence) to share data items. Code EXTERNAL in the

level-01 data description in the WORKING-STORAGE SECTION.

The following rules apply:

v Items that are subordinate to an EXTERNAL group item are themselves EXTERNAL.

v You cannot use the name of an EXTERNAL data item as the name for another

EXTERNAL item in the same program.

v You cannot code the VALUE clause for any group item or subordinate item that is

EXTERNAL.

In the run unit, any COBOL program or method that has the same data description

for the item as the program that contains the item can access and process that item.

For example, suppose program A has the following data description:

01 EXT-ITEM1 EXTERNAL PIC 99.

Program B can access that data item if it has the identical data description in its

WORKING-STORAGE SECTION.

Any program that has access to an EXTERNAL data item can change the value of that

item. Therefore do not use this clause for data items that you need to protect.

Sharing files between programs (external files)

To enable separately compiled programs or methods in a run unit to access a file

as a common file, use the EXTERNAL clause for the file.

It is recommended that you follow these guidelines:

v Use the same data-name in the FILE STATUS clause of all the programs that

check the file status code.

v For each program that checks the same file status field, code the EXTERNAL clause

on the level-01 data definition for the file status field.

Using an external file has these benefits:

v Even though the main program does not contain any input or output statements,

it can reference the record area of the file.

Chapter 25. Sharing data 473

v Each subprogram can control a single input or output function, such as OPEN or

READ.

v Each program has access to the file.

“Example: using external files”

RELATED TASKS

“Using data in input and output operations” on page 13

RELATED REFERENCES

EXTERNAL clause (Enterprise COBOL Language Reference)

Example: using external files

The following example shows the use of an external file in several programs. COPY

statements ensure that each subprogram contains an identical description of the

file.

The table below describes the main program and subprograms.

 Name Function

ef1 The main program, which calls all the subprograms and then verifies the

contents of a record area

ef1openo Opens the external file for output and checks the file status code

ef1write Writes a record to the external file and checks the file status code

ef1openi Opens the external file for input and checks the file status code

ef1read Reads a record from the external file and checks the file status code

ef1close Closes the external file and checks the file status code

Each program uses three copybooks:

v efselect is placed in the FILE-CONTROL paragraph.

Select ef1

Assign To ef1

File Status Is efs1

Organization Is Sequential.

v effile is placed in the FILE SECTION.

Fd ef1 Is External

 Record Contains 80 Characters

 Recording Mode F.

01 ef-record-1.

 02 ef-item-1 Pic X(80).

v efwrkstg is placed in the WORKING-STORAGE SECTION.

01 efs1 Pic 99 External.

Input-output using external files

 Identification Division.

 Program-Id.

 ef1.

*

* This main program controls external file processing.

*

 Environment Division.

 Input-Output Section.

 File-Control.

474 Enterprise COBOL for z/OS V4.1 Programming Guide

Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Call "ef1openo"

 Call "ef1write"

 Call "ef1close"

 Call "ef1openi"

 Call "ef1read"

 If ef-record-1 = "First record" Then

 Display "First record correct"

 Else

 Display "First record incorrect"

 Display "Expected: " "First record"

 Display "Found : " ef-record-1

 End-If

 Call "ef1close"

 Goback.

 End Program ef1.

 Identification Division.

 Program-Id.

 ef1openo.

*

* This program opens the external file for output.

*

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Open Output ef1

 If efs1 Not = 0

 Display "file status " efs1 " on open output"

 Stop Run

 End-If

 Goback.

 End Program ef1openo.

 Identification Division.

 Program-Id.

 ef1write.

*

* This program writes a record to the external file.

*

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Move "First record" to ef-record-1

 Write ef-record-1

 If efs1 Not = 0

 Display "file status " efs1 " on write"

 Stop Run

 End-If

Chapter 25. Sharing data 475

Goback.

 End Program ef1write.

 Identification Division.

 Program-Id.

 ef1openi.

*

* This program opens the external file for input.

*

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Open Input ef1

 If efs1 Not = 0

 Display "file status " efs1 " on open input"

 Stop Run

 End-If

 Goback.

 End Program ef1openi.

 Identification Division.

 Program-Id.

 ef1read.

*

* This program reads a record from the external file.

*

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Read ef1

 If efs1 Not = 0

 Display "file status " efs1 " on read"

 Stop Run

 End-If

 Goback.

 End Program ef1read.

 Identification Division.

 Program-Id.

 ef1close.

*

* This program closes the external file.

*

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Close ef1

 If efs1 Not = 0

 Display "file status " efs1 " on close"

476 Enterprise COBOL for z/OS V4.1 Programming Guide

Stop Run

 End-If

 Goback.

 End Program ef1close.

Chapter 25. Sharing data 477

478 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 26. Creating a DLL or a DLL application

Creating a dynamic link library (DLL) or a DLL application is similar to creating a

regular COBOL application. It involves writing, compiling, and linking your source

code.

Special considerations when writing a DLL or a DLL application include:

v Determining how the parts of the load module or the application relate to each

other or to other DLLs

v Deciding what linking or calling mechanisms to use

Depending on whether you want to create a DLL load module or a load module

that references a separate DLL, you need to use slightly different compiler and

linkage-editor or binder options.

RELATED CONCEPTS

“Dynamic link libraries (DLLs)”

RELATED TASKS

“Creating a DLL under UNIX” on page 286

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

“Using CALL identifier with DLLs” on page 483

“Using DLL linkage and dynamic calls together” on page 484

“Using COBOL DLLs with C/C++ programs” on page 488

“Using DLLs in OO COBOL applications” on page 489

“Using procedure or function pointers with DLLs” on page 486

Dynamic link libraries (DLLs)

A DLL is a load module or a program object that can be accessed from other

separate load modules.

A DLL differs from a traditional load module in that it exports definitions of

programs, functions, or variables to DLLs, DLL applications, or non-DLLs.

Therefore, you do not need to link the target routines into the same load module

as the referencing routine. When an application references a separate DLL for the

first time, the system automatically loads the DLL into memory. In other words,

calling a program in a DLL is similar to calling a load module with a dynamic

CALL.

© Copyright IBM Corp. 1991, 2007 479

A DLL application is an application that references imported definitions of

programs, functions, or variables.

Although some functions of z/OS DLLs overlap the functions provided by COBOL

dynamic CALL statements, DLLs have several advantages over regular z/OS load

modules and dynamic calls:

v DLLs are common across COBOL and C/C++, thus providing better

interoperation for applications that use multiple programming languages.

Reentrant COBOL and C/C++ DLLs can also interoperate smoothly.

v You can make calls to programs in separate DLL modules that have long

program-names. (Dynamic call resolution truncates program-names to eight

characters.) Using the COBOL option PGMNAME(LONGUPPER) or PGMNAME(LONGMIXED)

and the COBOL DLL support, you can make calls between load modules with

names of up to 160 characters.

DLLs are supported by IBM z/OS Language Environment, based on function

provided by the z/OS program management binder. DLL support is available for

applications running under z/OS in batch or in TSO, CICS, UNIX, or IMS

environments.

RELATED REFERENCES

“PGMNAME” on page 337

MVS Program Management: User’s Guide and Reference (Binder support for DLLs)

Compiling programs to create DLLs

When you compile a COBOL program with the DLL option, it becomes enabled for

DLL support. Applications that use DLL support must be reentrant. Therefore, you

must compile them with the RENT compiler option and link them with the RENT

binder option.

In an application with DLL support, use the following compiler options depending

on where the programs or classes are:

 Table 66. Compiler options for DLL applications

Programs or classes in: Compile with:

Root load module DLL, RENT, NOEXPORTALL

DLL load modules used by other load

modules

DLL, RENT, EXPORTALL

480 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

If a DLL load module includes some programs that are used only from within the

DLL module, you can hide these routines by compiling them with NOEXPORTALL.

“Example: sample JCL for a procedural DLL application” on page 482

RELATED TASKS

“Creating a DLL under UNIX” on page 286

“Linking DLLs”

“Prelinking certain DLLs” on page 483

Chapter 26, “Creating a DLL or a DLL application,” on page 479

RELATED REFERENCES

“DLL” on page 317

“EXPORTALL” on page 320

“RENT” on page 340

Linking DLLs

You can link DLL-enabled object modules into separate DLL load modules, or you

can link them together statically. You can decide whether to package the

application as one module or as several DLL modules at link time.

The DLL support in the z/OS binder is recommended for linking DLL

applications. The binder can directly receive the output of COBOL compilers, thus

eliminating the prelink step. However, you must use the Language Environment

prelinker before standard linkage editing if your DLL must reside in a PDS load

library.

A binder-based DLL must reside in a PDSE or in an HFS file rather than in a PDS.

When using the binder to link a DLL application, use the following options:

 Table 67. Binder options for DLL applications

Type of code Link using binder parameters:

DLL applications DYNAM(DLL), RENT

Applications that use mixed-case exported

program-names

Class definitions or INVOKE statements

CASE(MIXED)

You must specify a SYSDEFSD DD statement to indicate the data set in which the

binder should create a DLL definition side file. This side file contains IMPORT

control statements for each symbol exported by a DLL. The binder SYSLIN input

(the binding code that references the DLL code) must include the DLL definition

side files for DLLs that are to be referenced from the module being linked.

If there are programs in the module that you do not want to make available with

DLL linkage, you can edit the definition side file to remove these programs.

“Example: sample JCL for a procedural DLL application” on page 482

Chapter 26. Creating a DLL or a DLL application 481

RELATED TASKS

“Creating a DLL under UNIX” on page 286

Chapter 26, “Creating a DLL or a DLL application,” on page 479

“Compiling programs to create DLLs” on page 480

“Prelinking certain DLLs” on page 483

RELATED REFERENCES

MVS Program Management: User’s Guide and Reference (Binder support for DLLs)

Example: sample JCL for a procedural DLL application

The following example shows how to create an application that consists of a main

program that calls a DLL subprogram.

The first step creates the DLL load module that contains the subprogram

DemoDLLSubprogram. The second step creates the main load module that contains

the program MainProgram. The third step runs the application.

//DLLSAMP JOB ,

// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,

// NOTIFY=&SYSUID,USER=&SYSUID

// SET LEPFX=’SYS1’

//*---

//* Compile COBOL subprogram, bind to form a DLL.

//*---

//STEP1 EXEC IGYWCL,REGION=80M,GOPGM=DEMODLL,

// PARM.COBOL=’RENT,PGMN(LM),DLL,EXPORTALL’,

// PARM.LKED=’RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)’

//COBOL.SYSIN DD *

 Identification division.

 Program-id. "DemoDLLSubprogram".

 Procedure division.

 Display "Hello from DemoDLLSubprogram!".

 End program "DemoDLLSubprogram".

/*

//LKED.SYSDEFSD DD DSN=&&SIDEDECK,UNIT=SYSDA,DISP=(NEW,PASS),

// SPACE=(TRK,(1,1))

//LKED.SYSLMOD DD DSN=&&GOSET(&GOPGM),DSNTYPE=LIBRARY,DISP=(MOD,PASS)

//LKED.SYSIN DD DUMMY

//*---

//* Compile and bind COBOL main program

//*---

//STEP2 EXEC IGYWCL,REGION=80M,GOPGM=MAINPGM,

// PARM.COBOL=’RENT,PGMNAME(LM),DLL’,

// PARM.LKED=’RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)’

//COBOL.SYSIN DD *

 Identification division.

 Program-id. "MainProgram".

 Procedure division.

 Call "DemoDLLSubprogram"

 Stop Run.

 End program "MainProgram".

/*

//LKED.SYSIN DD DSN=&&SIDEDECK,DISP=(OLD,DELETE)

//*---

//* Execute the main program, calling the subprogram DLL.

//*---

//STEP3 EXEC PGM=MAINPGM,REGION=80M

//STEPLIB DD DSN=&&GOSET,DISP=(OLD,DELETE)

// DD DSN=&LEPFX..SCEERUN,DISP=SHR

//SYSOUT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

482 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Prelinking certain DLLs

You must use the Language Environment prelinker before standard linkage editing

if a DLL must reside in a PDS load library rather than in a PDSE or an HFS file.

After compiling the DLL source, prelink the object modules to form a single object

module:

1. Specify a SYSDEFSD DD statement for the prelink step to indicate the data set in

which the prelinker should create a DLL definition side file. The side file

contains IMPORT prelinker control statements for each symbol exported by the

DLL. The prelinker uses this side file to prelink other modules that reference

the new DLL.

2. Specify the DLLNAME(xxx) prelinker option to indicate the DLL load module

name for the prelinker to use in constructing the IMPORT control statements in

the side file. Alternatively, the prelinker can obtain the DLL load module name

from the NAME prelinker control statement or from the PDS member name in the

SYSMOD DD statement for the prelink step.

3. If the new DLL references any other DLLs, include the definition side files for

these DLLs together with the object decks that are input to this prelink step.

These side files instruct the prelinker to resolve the symbolic references in the

current module to the symbols exported from the other DLLs.

Use the linkage editor or binder as usual to create the DLL load module from the

object module produced by the prelinker. Specify the RENT option of the linkage

editor or binder.

RELATED TASKS

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

Using CALL identifier with DLLs

In a COBOL program that has been compiled with the DLL option, you can use

CALL identifier and CALL literal statements to make calls to DLLs. However, there are

a few additional considerations for the CALL identifier case.

For the content of the identifier or for the literal, use the name of either of the

following programs:

v A nested program in the same compilation unit that is eligible to be called from

the program that contains the CALL identifier statement.

v A program in a separately bound DLL module. The target program-name must

be exported from the DLL, and the DLL module name must match the exported

name of the target program.

In the nonnested case, the runtime environment interprets the program-name in

the identifier according to the setting of the PGMNAME compiler option of the program

that contains the CALL statement, and interprets the program-name that is exported

from the target DLL according to the setting of the PGMNAME option used when the

target program was compiled.

The search for the target DLL in the hierarchical file system (HFS) is case sensitive.

If the target DLL is a PDS or PDSE member, the DLL member name must be eight

Chapter 26. Creating a DLL or a DLL application 483

characters or less. For the purpose of the search for the DLL as a PDS or PDSE

member, the run time automatically converts the name to uppercase.

If the runtime environment cannot resolve the CALL statement in either of these

cases, control is transferred to the ON EXCEPTION or ON OVERFLOW phrase of the CALL

statement. If the CALL statement does not specify one of these phrases in this

situation, Language Environment raises a severity-3 condition.

RELATED TASKS

“Using DLL linkage and dynamic calls together”

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

RELATED REFERENCES

“DLL” on page 317

“PGMNAME” on page 337

CALL statement (Enterprise COBOL Language Reference)

“Search order for DLLs in the HFS”

Search order for DLLs in the HFS

When you use the hierarchical file system (HFS), the search order for resolving a

DLL reference in a CALL statement depends on the setting of the Language

Environment POSIX runtime option.

If the POSIX runtime option is ON, the search order is as follows:

1. The runtime environment looks for the DLL in the HFS. If the LIBPATH

environment variable is set, the run time searches each directory listed.

Otherwise, it searches just the current directory. The search for the DLL in the

HFS is case sensitive.

2. If the runtime environment does not find the DLL in the HFS, it tries to load

the DLL from the MVS load library search order of the caller. In this case, the

DLL name must be eight characters or less. The run time automatically

converts the DLL name to uppercase for this search.

If the POSIX runtime option is set to OFF, the search order is reversed:

1. The runtime environment tries to load the DLL from the search order for the

load library of the caller.

2. If the runtime environment cannot load the DLL from this load library, it tries

to load the DLL from the HFS.

RELATED TASKS

“Using CALL identifier with DLLs” on page 483

RELATED REFERENCES

Language Environment Programming Reference (POSIX)

Using DLL linkage and dynamic calls together

For applications (that is, Language Environment enclaves) that are structured as

multiple, separately bound modules, you should use exclusively one form of

linkage between modules: either dynamic call linkage or DLL linkage.

484 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

DLL linkage refers to a call in a program that is compiled with the DLL and NODYNAM

options in which the call resolves to an exported name in a separate module. DLL

linkage can also refer to an invocation of a method that is defined in a separate

module.

However, some applications require more flexibility. If so, you can use both DLL

linkage and COBOL dynamic call linkage within a Language Environment enclave

if the programs are compiled as follows:

 Program A Program B Compile both with:

Contains dynamic call Target of dynamic call NODLL

Uses DLL linkage Contains target program or

method

DLL

If a program contains a CALL statement for a separately compiled program and you

compile one program with the DLL compiler option and the other program with

NODLL, then the call is supported only if you bind the two programs together in the

same module.

The following diagram shows several separately bound modules that mix dynamic

calls and DLL linkage.

All components of a DLL application must have the same AMODE. The automatic

AMODE switching normally provided by COBOL dynamic calls is not available

for DLL linkages.

You cannot cancel programs that are called using DLL linkage.

RELATED CONCEPTS

“Dynamic link libraries (DLLs)” on page 479

RELATED TASKS

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

“Using procedure or function pointers with DLLs” on page 486

“Calling DLLs from non-DLLs” on page 486

Chapter 26. Creating a DLL or a DLL application 485

RELATED REFERENCES

“DLL” on page 317

“EXPORTALL” on page 320

Using procedure or function pointers with DLLs

In run units that contain both DLLs and non-DLLs, use procedure- and

function-pointer data items with care.

When you use the SET procedure-pointer-1 TO ENTRY entry-name or SET

function-pointer-1 TO ENTRY entry-name statement in a program that is compiled with

the NODLL option, you must not pass the pointer to a program that is compiled

with the DLL option. However, when you use this statement in a program that is

compiled with the DLL option, you can pass the pointer to a program that is in a

separately bound DLL module.

If you compile with the NODYNAM and DLL options, and entry-name is an identifier,

the identifier value must refer to the entry-point name that is exported from a DLL

module. The DLL module name must match the name of the exported entry point.

In this case, note also that:

v The program-name that is contained in the identifier is interpreted according to

the setting of the PGMNAME(COMPAT|LONGUPPER|LONGMIXED) compiler option of the

program that contains the CALL statement.

v The program-name that is exported from the target DLL is interpreted according

to the setting of the PGMNAME option used when compiling the target program.

v The search for the target DLL in the HFS is case sensitive.

v If the target DLL is a PDS or PDSE member, the DLL member name must have

eight characters or less. For the purpose of the search for the DLL as a PDS or

PDSE member, the name is automatically converted to uppercase.

RELATED TASKS

“Using CALL identifier with DLLs” on page 483

“Using procedure and function pointers” on page 460

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

RELATED REFERENCES

“DLL” on page 317

“EXPORTALL” on page 320

Calling DLLs from non-DLLs

It is possible to call a DLL from a COBOL program that is compiled with the NODLL

option, but there are restrictions.

You can use the following methods to ensure that the DLL linkage is followed:

v Put the COBOL DLL programs that you want to call from the COBOL non-DLL

programs in the load module that contains the main program. Use static calls

from the COBOL non-DLL programs to call the COBOL DLL programs.

The COBOL DLL programs in the load module that contains the main program

can call COBOL DLL programs in other DLLs.

v Put the COBOL DLL programs in DLLs and call them from COBOL non-DLL

programs with CALL function-pointer, where function-pointer is set to a function

486 Enterprise COBOL for z/OS V4.1 Programming Guide

descriptor of the target program. You can obtain the address of the function

descriptor for the program in the DLL by calling a C routine that uses dllload

and dllqueryfn.

“Example: calling DLLs from non-DLLs”

RELATED TASKS

“Using procedure and function pointers” on page 460

Example: calling DLLs from non-DLLs

The following example shows how a COBOL program that is not in a DLL

(COBOL1) can call a COBOL program that is in a DLL (program ooc05R in DLL

OOC05R).

CBL NODYNAM

 IDENTIFICATION DIVISION.

 PROGRAM-ID. ’COBOL1’.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 DATA DIVISION.

 FILE SECTION.

 WORKING-STORAGE SECTION.

 01 DLL-INFO.

 03 DLL-LOADMOD-NAME PIC X(12).

 03 DLL-PROGRAM-NAME PIC X(160).

 03 DLL-PROGRAM-HANDLE FUNCTION-POINTER.

 77 DLL-RC PIC S9(9) BINARY.

 77 DLL-STATUS PIC X(1) VALUE ’N’.

 88 DLL-LOADED VALUE ’Y’.

 88 DLL-NOT-LOADED VALUE ’N’.

 PROCEDURE DIVISION.

 IF DLL-NOT-LOADED

 THEN

 * Move the names in. They must be null terminated.

 MOVE Z’OOC05R’ TO DLL-LOADMOD-NAME

 MOVE Z’ooc05r’ TO DLL-PROGRAM-NAME

 * Call the C routine to load the DLL and to get the

 * function descriptor address.

 CALL ’A1CCDLGT’ USING BY REFERENCE DLL-INFO

 BY REFERENCE DLL-RC

 IF DLL-RC = 0

 THEN

 SET DLL-LOADED TO TRUE

 ELSE

 DISPLAY ’A1CCLDGT failed with rc = ’

 DLL-RC

 MOVE 16 TO RETURN-CODE

 STOP RUN

 END-IF

 END-IF

 * Use the function pointer on the call statement to call the

 * program in the DLL.

 * Call the program in the DLL.

 CALL DLL-PROGRAM-HANDLE

 GOBACK.

Chapter 26. Creating a DLL or a DLL application 487

#include <stdio.h>

#include <dll.h>

#pragma linkage (A1CCDLGT,COBOL)

typedef struct dll_lm {

 char dll_loadmod_name[(12]);

 char dll_func_name[(160]);

 void (*fptr) (void); /* function pointer */

 } dll_lm;

void A1CCDLGT (dll_lm *dll, int *rc)

{

 dllhandle *handle;

 void (*fptr1)(void);

 *rc = 0;

 /* Load the DLL */

 handle = dllload(dll->dll_loadmod_name);

 if (handle == NULL) {

 perror("A1CCDLGT failed on call to load DLL./n");

 *rc = 1;

 return;

 }

 /* Get the address of the function */

 fptr1 = (void (*)(void))

 dllqueryfn(handle,dll->dll_func_name);

 if (fptr1 == NULL) {

 perror("A1CCDLGT failed on retrieving function./n");

 *rc = 2;

 return;

 }

 /* Return the function pointer */

 dll->fptr = fptr1;

 return;

}

Using COBOL DLLs with C/C++ programs

COBOL support for DLLs interoperates with the DLL support in the z/OS C/C++

products, except for COBOL EXTERNAL data. In particular, COBOL applications can

call functions that are exported from C/C++ DLLs, and C/C++ applications can

call COBOL programs that are exported from COBOL DLLs.

COBOL data items that are declared with the EXTERNAL attribute are independent of

DLL support. These data items are accessible by name from any COBOL program

in the run unit that declares them, regardless of whether the programs are in DLLs.

The COBOL options DLL, RENT, and EXPORTALL work much the same way as the

C/C++ DLL, RENT, and EXPORTALL options. (The DLL option applies only to C.)

However, the C/C++ compiler produces DLL-enabled code by default.

You can pass a C/C++ DLL function pointer to COBOL and use it within COBOL,

receiving the C/C++ function pointer as a function-pointer data item. The

following example shows a COBOL call to a C function that returns a function

pointer to a service, followed by a COBOL call to the service.

Identification Division.

Program-id. Demo.

Data Division.

Working-Storage section.

488 Enterprise COBOL for z/OS V4.1 Programming Guide

01 fp usage function-pointer.

Procedure Division.

 Call "c-function" returning fp.

 Call fp.

RELATED TASKS

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

RELATED REFERENCES

“DLL” on page 317

“EXPORTALL” on page 320

“RENT” on page 340

EXTERNAL clause (Enterprise COBOL Language Reference)

Using DLLs in OO COBOL applications

You must compile each COBOL class definition using the DLL, THREAD, RENT, and

DBCS compiler options, and link-edit it into a separate DLL module using the RENT

binder option.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Compiling programs to create DLLs” on page 480

“Linking DLLs” on page 481

RELATED REFERENCES

“DLL” on page 317

“THREAD” on page 350

“RENT” on page 340

“DBCS” on page 315

Chapter 26. Creating a DLL or a DLL application 489

490 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 27. Preparing COBOL programs for multithreading

You can run COBOL programs in multiple threads within a process under batch,

TSO, IMS, or UNIX.

explicit COBOL language to use for multithreaded execution; rather, you compile

with the THREAD compiler option.

COBOL does not directly support managing program threads. However, you can

run COBOL programs that you compile with the THREAD compiler option in

multithreaded application servers, in applications that use a C/C++ driver

program to create the threads, in programs that interoperate with Java and use

Java threads, and in applications that use PL/I tasking. In other words, other

programs can call COBOL programs in such a way that the COBOL programs run

in multiple threads within a process or as multiple program invocation instances

within a thread. Your threaded application must run within a single Language

Environment enclave.

Choosing LOCAL-STORAGE or WORKING-STORAGE: Because you must code your

multithreaded programs as recursive, the persistence of data is that of any

recursive program:

v Data items in the LOCAL-STORAGE SECTION are automatically allocated for each

instance of a program invocation. When a program runs in multiple threads

simultaneously, each invocation has a separate copy of LOCAL-STORAGE data.

v Data items in the WORKING-STORAGE SECTION are allocated once for each program

and are thus available in their last-used state to all invocations of the program.

For the data that you want to isolate to an individual program invocation instance,

define the data in the LOCAL-STORAGE SECTION. In general, this choice is appropriate

for working data in threaded programs. If you declare data in WORKING-STORAGE

and your program changes the contents of the data, you must take one of the

following actions:

v Structure your application so that you do not access data in WORKING-STORAGE

simultaneously from multiple threads.

v If you do access data simultaneously from separate threads, write appropriate

serialization code.

RELATED CONCEPTS

“Multithreading” on page 492

RELATED TASKS

“Choosing THREAD to support multithreading” on page 493

“Transferring control to multithreaded programs” on page 493

“Ending multithreaded programs” on page 494

“Processing files with multithreading” on page 494

“Handling COBOL limitations with multithreading” on page 497

RELATED REFERENCES

“THREAD” on page 350

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

© Copyright IBM Corp. 1991, 2007 491

Multithreading

To use COBOL support for multithreading, you need to understand how processes,

threads, run units, and program invocation instances relate to each other.

The operating system and multithreaded applications can handle execution flow

within a process, which is the course of events when all or part of a program runs.

Programs that run within a process can share resources. Processes can be

manipulated. For example, they can have a high or low priority in terms of the

amount of time that the system devotes to running the process.

Within a process, an application can initiate one or more threads, each of which is a

stream of computer instructions that controls that thread. A multithreaded process

begins with one stream of instructions (one thread) and can later create other

instruction streams to perform tasks. These multiple threads can run concurrently.

Within a thread, control is transferred between executing programs.

In a multithreaded environment, a COBOL run unit is the portion of the process

that includes threads that have actively executing COBOL programs. The COBOL

run unit continues until no COBOL program is active in the execution stack for

any of the threads. For example, a called COBOL program contains a GOBACK

statement and returns control to a C program. Within the run unit, COBOL

programs can call non-COBOL programs, and vice versa.

Within a thread, control is transferred between separate COBOL and non-COBOL

programs. For example, a COBOL program can call another COBOL program or a

C program. Each separately called program is a program invocation instance.

Program invocation instances of a particular program can exist in multiple threads

within a given process.

The following illustration shows these relationships between processes, threads,

run units, and program invocation instances.

RELATED CONCEPTS

Language Environment Programming Guide (Program management model,

 Understanding the basics: threads)

492 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

RELATED TASKS

“Choosing THREAD to support multithreading”

“Transferring control to multithreaded programs”

“Ending multithreaded programs” on page 494

“Processing files with multithreading” on page 494

“Handling COBOL limitations with multithreading” on page 497

RELATED REFERENCES

“THREAD” on page 350

Choosing THREAD to support multithreading

Use the THREAD compiler option for multithreading support. Use THREAD if your

program will be called in more than one thread in a single process by an

application. However, THREAD might adversely affect performance because of the

serialization logic that is automatically generated.

In order to run COBOL programs in more than one thread, you must compile all

of the COBOL programs in the run unit with the THREAD compiler option. You must

also compile them with the RENT compiler option and link them with the RENT

option of the binder or linkage editor.

Use the THREAD option when you compile object-oriented (OO) clients and classes.

Language restrictions: When you use the THREAD option, you cannot use certain

language elements. For details, see the related reference below.

Recursion: Before you compile a program with the THREAD compiler option, you

must specify the RECURSIVE phrase in the PROGRAM-ID paragraph. If you do not do

so, an error will occur.

RELATED TASKS

“Sharing data in recursive or multithreaded programs” on page 19

“Compiling OO applications under UNIX” on page 291

RELATED REFERENCES

“THREAD” on page 350

Transferring control to multithreaded programs

When you write COBOL programs for a multithreaded environment, choose

appropriate program linkage statements.

As in single-threaded environments, a called program is in its initial state when it

is first called within a run unit and when it is first called after a CANCEL to the

called program. Ensure that the program that you name on a CANCEL statement is

not active on any thread. If you try to cancel an active program, a severity-3

Language Environment condition occurs.

If your threaded application requires preinitialization, use the Language

Environment services (CEEPIPI interface). You cannot use the COBOL-specific

interfaces for preinitialization (runtime option RTEREUS and functions IGZERRE and

ILBOSTP0) to establish a reusable environment from any program that has been

compiled with the THREAD option.

Chapter 27. Preparing COBOL programs for multithreading 493

RELATED CONCEPTS

Language Environment Programming Guide (Language Environment termination:

 enclave termination)

RELATED TASKS

“Ending multithreaded programs”

“Ending and reentering main programs or subprograms” on page 446

Ending multithreaded programs

You can end a multithreaded program by using GOBACK, EXIT PROGRAM, or STOP RUN.

Use GOBACK to return to the caller of the program. When you use GOBACK from the

first program in a thread, the thread is terminated. If that thread is the initial

thread in an enclave, the entire enclave is terminated.

Use EXIT PROGRAM as you would GOBACK, except from a main program where it has

no effect.

Use STOP RUN to terminate the entire Language Environment enclave and to return

control to the caller of the main program (which might be the operating system).

All threads that are executing within the enclave are terminated.

RELATED CONCEPTS

Language Environment Programming Guide (Language Environment termination:

 enclave termination)

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 446

Processing files with multithreading

In threaded applications, you can code COBOL statements for input and output in

QSAM, VSAM, and line-sequential files.

Each file definition (FD) has an implicit serialization lock. This lock is used with

automatic serialization logic during the input or output operation that is associated

with the execution of the following statements:

v OPEN

v CLOSE

v READ

v WRITE

v REWRITE

v START

v DELETE

Automatic serialization also occurs for the implicit MOVE that is associated with the

following statements:

WRITE record-name FROM identifier

READ file-name INTO identifier

Automatic serialization is not applied to any statements specified within the

following conditional phrases:

494 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

v AT END

v NOT AT END

v INVALID KEY

v NOT INVALID KEY

v AT END-OF-PAGE

v NOT AT END-OF-PAGE

RELATED CONCEPTS

“File-definition (FD) storage”

RELATED TASKS

“Closing QSAM files” on page 165

“Closing VSAM files” on page 194

“Coding ERROR declaratives” on page 238

“Serializing file access with multithreading”

File-definition (FD) storage

On all program invocations, the storage that is associated with a file definition

(such as FD records and the record area that is associated with the SAME RECORD

AREA clause) is allocated and available in its last-used state.

All threads of execution share this storage. You can depend on automatic

serialization for this storage during the execution of the OPEN, CLOSE, READ, WRITE,

REWRITE, START, and DELETE statements, but not between uses of these statements.

RELATED TASKS

“Serializing file access with multithreading”

Serializing file access with multithreading

To take full advantage of automatic serialization and to avoid explicitly writing

your own serialization logic, use one of the recommended file organizations and

usage patterns when you access files in threaded programs.

Use one of the following file organizations:

v Sequential organization

v Line-sequential organization

v Relative organization with sequential access

v Indexed organization with sequential access

Use the following pattern for input:

 OPEN INPUT fn

 . . .

 READ fn INTO local-storage-item

 . . .

* Process the record from the local-storage item

 . . .

 CLOSE fn

Use the following pattern for output:

 OPEN OUTPUT fn

 . . .

* Construct output record in local-storage item

Chapter 27. Preparing COBOL programs for multithreading 495

. . .

 WRITE rec FROM local-storage-item

 . . .

 CLOSE fn

With other usage patterns, you must take one of the following actions:

v Verify the safety of your application logic. Ensure that two instances of the

program are never simultaneously active on different threads.

v Code explicit serialization logic by using calls to POSIX services.

To avoid serialization problems when you access a file from multiple threads,

define the data items that are associated with the file (such as file-status data items

and key arguments) in the LOCAL-STORAGE SECTION.

“Example: usage patterns of file input and output with multithreading”

RELATED TASKS

“Calling UNIX/POSIX APIs” on page 438

Example: usage patterns of file input and output with

multithreading

The following examples show the need for explicit serialization logic when you

deviate from the recommended usage pattern for file input and output in your

multithreaded applications. These examples also explain the unexpected behavior

that might result if you fail to handle serialization properly.

In each example, two instances of a program that contains the sample operations

are running within one run unit on two different threads.

READ F1

. . .

REWRITE R1

In the example above, the second thread might execute the READ statement after the

READ statement is executed on the first thread but before the REWRITE statement is

executed on the first thread. The REWRITE statement might not update the record

that you intended. To ensure the results that you want, write explicit serialization

logic.

 READ F1

 . . .

* Process the data in the FD record description entry for F1

 . . .

In the example above, the second thread might execute the READ statement while

the first thread is still processing a record in the FD record description entry. The

second READ statement would overlay the record that the first thread is processing.

To avoid this problem, use the recommended technique:

READ F1 INTO LOCAL-STORAGE-item

Other cases: You must give similar consideration to other usage patterns that

involve a sequence of related input and output operations, such as START followed

by READ NEXT, or READ followed by DELETE. Take appropriate steps to ensure the

correct processing of file input and output.

496 Enterprise COBOL for z/OS V4.1 Programming Guide

Handling COBOL limitations with multithreading

Some COBOL applications depend on subsystems or other applications. In a

multithreaded environment, these dependencies and others result in some

limitations on COBOL programs.

In general, you must synchronize access to resources that are visible to the

application within a run unit. Exceptions to this requirement are DISPLAY and

ACCEPT, which you can use from multiple threads, and supported COBOL file I/O

statements that have the recommended usage pattern; all synchronization is

provided for these by the runtime environment.

CICS: You cannot run multithreaded applications in the CICS environment. In the

CICS environment you can run a COBOL program that has been compiled with

the THREAD option and that is part of an application that has no multiple threads or

PL/I tasks.

Recursive: Because you must code the programs in a multithreaded application as

recursive, you must adhere to all the restrictions and programming considerations

that apply to recursive programs, such as not coding nested programs.

Reentrancy: You must compile your multithreading programs with the RENT

compiler option and link them with the RENT option of the binder or linkage editor.

POSIX and PL/I: If you use POSIX threads in your multithreaded application, you

must specify the Language Environment runtime option POSIX(ON). If the

application uses PL/I tasking, you must specify POSIX(OFF). You cannot mix

POSIX threads and PL/I tasks in the same application.

PL/I tasking: To include COBOL programs in applications that contain multiple

PL/I tasks, follow these guidelines:

v Compile all COBOL programs that you run in multiple PL/I tasks with the

THREAD option. If you compile any COBOL program with the NOTHREAD option, all

of the COBOL programs must run in one PL/I task.

v You can call COBOL programs compiled with the THREAD option from one or

more PL/I tasks. However, calls from PL/I programs to COBOL programs

cannot include the TASK or EVENT option. The PL/I tasking call must first call a

PL/I program or function that in turn calls the COBOL program. This

indirection is required because you cannot specify the COBOL program directly

as the target of a PL/I CALL statement that includes the TASK or EVENT option.

v Be aware that issuing a STOP RUN statement from a COBOL program or a STOP

statement from a PL/I program terminates the entire Language Environment

enclave, including all the tasks of execution.

v Do not code explicit POSIX threading (calls to pthread_create()) in any run unit

that includes PL/I tasking.

C and Language Environment-enabled assembler: You can combine your

multithreaded COBOL programs with C programs and Language

Environment-enabled assembler programs in the same run unit when those

programs are also appropriately coded for multithreaded execution.

AMODE: You must run your multithreaded applications with AMODE 31. You can

run a COBOL program that has been compiled with the THREAD option with AMODE

24 as part of an application that does not have multiple threads or PL/I tasks.

Chapter 27. Preparing COBOL programs for multithreading 497

Asynchronous signals: In a threaded application your COBOL program might be

interrupted by an asynchronous signal or interrupt. If your program contains logic

that cannot tolerate such an interrupt, you must disable the interrupts for the

duration of that logic. Call a C/C++ function to set the signal mask appropriately.

Older COBOL programs: To run your COBOL programs on multiple threads of a

multithreaded application, you must compile them with Enterprise COBOL and

use the THREAD option. If you run programs that have been compiled with older

compilers, you must follow these restrictions:

v Run applications that contain OS/VS COBOL programs only on the initial

thread (IPT).

v Run applications that contain programs compiled by other older compilers only

on one thread, although it can be a thread other than the initial thread.

IGZBRDGE, IGZETUN, and IGZEOPT: Do not use IGZBRDGE, the macro for

converting static calls to dynamic calls, with programs that have been compiled

with the THREAD option; this macro is not supported. Do not use the modules

IGZETUN (for storage tuning) or IGZEOPT (for runtime options) for applications

in which the main program has been compiled with the THREAD option; these

CSECTs are ignored.

UPSI switches: All programs and all threads in an application share a single copy

of UPSI switches. If you modify switches in a threaded application, you must code

appropriate serialization logic.

RELATED TASKS

“Making recursive calls” on page 459

“Serializing file access with multithreading” on page 495

XL C/C++ Programming Guide (Using threads in z/OS UNIX System Services

 applications)

Language Environment Writing ILC Applications

498 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/CBCPG180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea4150

Part 5. Using XML and COBOL together

Chapter 28. Processing XML input 501

XML parser in COBOL 502

Accessing XML documents 503

Parsing XML documents 504

Writing procedures to process XML 506

XML-EVENT 507

XML-CODE 508

XML-TEXT and XML-NTEXT 508

XML-NAMESPACE and XML-NNAMESPACE 509

XML-NAMESPACE-PREFIX and

XML-NNAMESPACE-PREFIX 510

Transforming XML text to COBOL data items 510

Parsing XML documents one segment at a time 511

XML PARSE examples 513

Example: parsing a simple document . . . 513

Example: program for processing XML . . . 514

Example: parsing an XML document that

uses namespaces 517

Example: parsing XML documents one

segment at a time 519

Understanding the encoding of XML documents 521

Coded character sets for XML documents . . . 522

Parsing XML documents encoded in UTF-8 . . 523

Code-page-sensitive characters in XML markup 524

Specifying the code page 525

Handling XML PARSE exceptions 526

How the XML parser handles errors 527

Handling conflicts in code pages 528

Terminating XML parsing 530

Chapter 29. Producing XML output 531

Generating XML output 531

Controlling the encoding of generated XML output 535

Handling errors in generating XML output . . . 536

Example: generating XML 537

Program XGFX 537

Program Pretty 538

Output from program XGFX 541

Enhancing XML output 541

Example: enhancing XML output 542

Example: converting hyphens in element or

attribute names to underscores 545

© Copyright IBM Corp. 1991, 2007 499

||

||
|
||

||

||

|
||
|
||
||
||
||
||
||

500 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 28. Processing XML input

You can process XML input in your COBOL program by using the XML PARSE

statement.

The XML PARSE statement is the COBOL language interface to either of two

high-speed XML parsers. You use the XMLPARSE compiler option to choose the

appropriate parser for your application:

v XMLPARSE(XMLSS) selects the z/OS XML System Services parser. This option

provides enhanced features such as namespace processing and conversion of text

fragments to national character representation (Unicode UTF-16).

v XMLPARSE(COMPAT) selects the XML parser that is built into the COBOL library;

this option provides compatibility with XML parsing in Enterprise COBOL

Version 3.

Processing XML input involves passing control to and receiving control from the

XML parser. You start this exchange of control by using the XML PARSE statement,

which specifies a processing procedure that receives control from the XML parser

to handle the parser events.

You use special registers in your processing procedure to exchange information

with the parser.

Use the following COBOL facilities to process XML input:

v The XML PARSE statement to begin XML parsing and to identify the document

and your processing procedure

v The ENCODING phrase of the XML PARSE statement to specify the encoding of the

XML document

v Your processing procedure to control the parsing: receive and process XML

events and associated document fragments, and return to the parser for

continued processing

v Special registers to receive and pass information:

– XML-CODE to receive the status of XML parsing and, in some cases, to return

information to the parser

– XML-EVENT to receive the name of each XML event from the parser

– XML-NTEXT to receive XML document fragments that are returned as national

character data

– XML-TEXT to receive document fragments that are returned as alphanumeric

data

– XML-NAMESPACE or XML-NNAMESPACE to receive a namespace identifier for a

NAMESPACE-DECLARATION XML event or for an element name or attribute name

that is in a namespace

– XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX to receive a namespace

prefix for a NAMESPACE-DECLARATION XML event or for an element name or

attribute name that is prefixed

The XML namespace special registers are undefined outside the processing

procedure.

© Copyright IBM Corp. 1991, 2007 501

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

You can use the ENCODING phrase and the RETURNING NATIONAL phrase of the

XML-PARSE statement only when the XMLPARSE(XMLSS) compiler option is in effect.

Link-edit considerations: COBOL programs that contain the XML PARSE statement

must be link-edited with AMODE 31.

RELATED CONCEPTS

“XML parser in COBOL”

RELATED TASKS

“Accessing XML documents” on page 503

“Parsing XML documents” on page 504

“Understanding the encoding of XML documents” on page 521

“Handling XML PARSE exceptions” on page 526

“Terminating XML parsing” on page 530

RELATED REFERENCES

Appendix D, “XML reference material,” on page 695

“XMLPARSE” on page 356

Extensible Markup Language (XML)

XML parser in COBOL

Enterprise COBOL provides an event-based interface that enables you to parse

XML documents and transform them to COBOL data structures.

The XML parser finds fragments (associated with XML events) within the

document, and your processing procedure acts on those fragments. You code your

procedure to handle each XML event. Throughout this operation, control passes

back and forth between the parser and your procedure.

You start this exchange with the parser by using the XML PARSE statement, in which

you designate your processing procedure. Execution of the XML PARSE statement

begins the parsing and establishes your processing procedure with the parser. The

parser transfers control to your processing procedure for each XML event that it

finds in the document. After processing the event, your processing procedure

returns control to the parser. Each normal return from your procedure causes the

parser to continue analyzing the XML document to report the next event. You can

also specify in the XML PARSE statement two imperative statements to which you

want control to be passed at the end of the parsing: one when a normal end occurs

and one when an exception condition exists.

The following figure shows a high-level overview of the basic exchange of control

between the parser and your program.

502 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|
|
|
|
|

http://www.w3.org/XML/

Normally, parsing continues until the entire XML document has been parsed.

When the XML parser parses XML documents, it checks them for most aspects of

well formedness. A document is well formed if it adheres to the XML syntax in the

XML specification and follows some additional rules such as proper use of end tags

and uniqueness of attribute names.

RELATED TASKS

“Accessing XML documents”

“Parsing XML documents” on page 504

“Writing procedures to process XML” on page 506

“Understanding the encoding of XML documents” on page 521

“Handling XML PARSE exceptions” on page 526

“Terminating XML parsing” on page 530

RELATED REFERENCES

XML specification

Accessing XML documents

Before you can parse an XML document with an XML PARSE statement, you must

make the document available to your program. Common methods of acquiring the

document are by retrieval from a WebSphere MQ message, a CICS transient queue

or communication area, or an IMS message processing queue; or by reading the

XML document from a file.

If the XML document that you want to parse is held in a file, use ordinary COBOL

facilities to place the document into a data item in your program:

v A FILE-CONTROL entry to define the file to your program

v An OPEN statement to open the file

Chapter 28. Processing XML input 503

|
|

http://www.w3.org/TR/REC-xml

v READ statements to read all the records from the file into a data item (either an

elementary item of category alphanumeric or national, or an alphanumeric or

national group). You can define the data item in the WORKING-STORAGE SECTION or

the LOCAL-STORAGE SECTION

v Optionally, the STRING statement to string all of the separate records together

into one continuous stream, to remove extraneous blanks and to handle

variable-length records

When the XMLPARSE(XMLSS) option is in effect, you can parse XML documents from

a file by passing the parser one record (or segment) of text at a time. This capability

is useful for parsing very large XML documents or XML documents that reside in

a data set.

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 405

Chapter 22, “Developing COBOL programs for IMS,” on page 429

RELATED REFERENCES

“Parsing XML documents one segment at a time” on page 511

“XMLPARSE” on page 356

Parsing XML documents

To parse XML documents, use the XML PARSE statement, specifying the XML

document that is to be parsed and the procedure for handling XML events that

occur during parsing. You can optionally specify the action to be taken after

parsing finishes by coding the ON EXCEPTION phrases, as shown in the following

code fragment:

XML PARSE xml-document

 PROCESSING PROCEDURE xml-event-handler

 ON EXCEPTION

 DISPLAY ’XML document error ’ XML-CODE

 STOP RUN

 NOT ON EXCEPTION

 DISPLAY ’XML document was successfully parsed.’

END-XML

In the XML PARSE statement, you first identify the parse data item (xml-document in

the example above) that contains the XML document character stream. In the DATA

DIVISION, define the data item as an elementary data item of category national or

as a national group item if the encoding of the document is Unicode UTF-16;

otherwise, define the data item as an alphanumeric group item or an elementary

alphanumeric data item. If the parse data item is national, the XML document

must be encoded in Unicode UTF-16BE, CCSID 1200. If the parse data item is

alphanumeric, its content must be encoded with one of the supported code pages

listed in the related reference below regarding Coded characters sets for XML

documents. See the related reference below about Understanding the encoding of

XML documents for more information about code pages.

Next you specify the name of the procedure that is to handle the XML events from

the document (xml-event-handler in the example above).

When the XMLPARSE(XMLSS) compiler option is in effect, you can use the ENCODING

phrase of the XMLPARSE statement to specify the CCSID of the document. You can

504 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

also use the RETURNING NATIONAL phrase to cause the parser to automatically

convert UTF-8 or single-byte characters to national characters for return to your

processing procedure.

In addition, you can specify either or both of the following phrases to receive

control after parsing finishes:

v ON EXCEPTION, to receive control when an unhandled exception occurs during

parsing

v NOT ON EXCEPTION, to receive control otherwise

You can end the XML PARSE statement with the explicit scope terminator END-XML.

Use END-XML to nest an XML PARSE statement that uses the ON EXCEPTION or NOT ON

EXCEPTION phrase in a conditional statement.

The parser passes control to the processing procedure for each XML event. Control

returns to the parser at the end of the processing procedure. This exchange of

control between the XML parser and the processing procedure continues until one

of the following events occurs:

v The entire XML document has been parsed, as indicated by the END-OF-DOCUMENT

event

v When XMLPARSE(XMLSS) is in effect, the parser detects an error in the document

and signals an EXCEPTION event (regardless of the kind of exception)

v When XMLPARSE(XMLSS) is in effect, the parser signals an END-OF-INPUT event and

the processing procedure returns to the parser with special register XML-CODE still

set to zero, indicating that no further XML data will be provided to the parser

v When XMLPARSE(COMPAT) is in effect, the parser signals an encoding conflict

EXCEPTION event and the processing procedure does not reset special register

XML-CODE to zero or to the correct CCSID before returning to the parser

v When XMLPARSE(COMPAT) is in effect, the parser detects an error in the document

and signals an EXCEPTION event (other than an encoding conflict) and the

processing procedure does not reset special register XML-CODE to zero before

returning to the parser.

v You terminate the parsing process deliberately by setting the XML-CODE special

register to -1 before returning to the parser.

Special registers: Use the XML-EVENT special register to determine which event the

parser passed to your processing procedure. XML-EVENT contains an event name,

such as ’START-OF-ELEMENT’. The parser passes the content for the event in special

register XML-TEXT or XML-NTEXT. When the XMLPARSE(XMLSS) option is in effect, the

parser also sets special register XML-NAMESPACE or XML-NNAMESPACE to the namespace

identifier, if any, associated with the XML event. The parser sets the

XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX special register to any associated

prefix.

RELATED CONCEPTS

“XML-CODE” on page 508

RELATED TASKS

“Understanding the encoding of XML documents” on page 521

“Writing procedures to process XML” on page 506

RELATED REFERENCES

“Coded character sets for XML documents” on page 522

“XML-EVENT” on page 507

Chapter 28. Processing XML input 505

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

“XMLPARSE” on page 356

XML PARSE statement (Enterprise COBOL Language Reference)

Writing procedures to process XML

In your processing procedure, code statements to handle XML events.

For each event that the parser encounters, it passes information to your processing

procedure in several special registers, as shown in the following table. Use the

content of these special registers to populate COBOL data structures and to control

the processing.

When used in nested programs, these special registers are implicitly defined as

GLOBAL in the outermost program.

 Table 68. Special registers used by the XML parser

Special register Implicit definition and usage Content

XML-EVENT1 PICTURE X(30) USAGE DISPLAY

VALUE SPACE

The name of the XML event

XML-CODE2 PICTURE S9(9) USAGE BINARY

VALUE ZERO

An exception code or zero for each XML event

XML-TEXT1 Variable-length elementary category alphanumeric item;

size limit of 134,180,862 bytes

Text (corresponding to the event that the parser

encountered) from the XML document if you

specify an alphanumeric item for the XML PARSE

identifier3

XML-NTEXT1 Variable-length elementary category national item; size

limit of 67,090,431 national characters (134,180,862

bytes)

Text (corresponding to the event that the parser

encountered) from the XML document if you

specify a national item for the XML PARSE

identifier3

XML-NAMESPACE1, 4 Variable-length elementary category alphanumeric item;

size limit of 32,768 bytes

The namespace identifier for a

NAMESPACE-DECLARATION XML event or for an

element or attribute name that is in a

namespace, when the XML document is in an

alphanumeric data item.3

XML-NNAMESPACE1, 4 Variable-length elementary category national item; size

limit of 16,384 national characters (32,768 bytes)

The namespace identifier for a

NAMESPACE-DECLARATION XML event or for an

element or attribute name that is in a

namespace, when the XML document is in a

national data item or the RETURNING NATIONAL

phrase is specified on the XML PARSE statement.

XML-NAMESPACE-
PREFIX1, 4

Variable-length elementary category national item; size

limit of 4,096 bytes

The prefix, if any, for a NAMESPACE-DECLARATION

XML event or for an element or attribute name

that is in a nondefault namespace, when the

XML document is in an alphanumeric data

item.3

XML-NNAMESPACE-
PREFIX1, 4

Variable-length elementary category national item; size

limit of 2,048 national characters (4,096 bytes)

The prefix, if any, for a NAMESPACE-DECLARATION

XML event or for an element or attribute name

that is in a nondefault namespace, when the

XML document is in a national data item or the

RETURNING NATIONAL phrase is specified on the

XML PARSE statement.

1. You cannot use this special register as a receiving data item.

2. The XML GENERATE statement also uses XML-CODE. Therefore, if you code an XML GENERATE statement in the processing procedure,

save the value of XML-CODE before the XML GENERATE statement and restore the saved value after the XML GENERATE statement.

3. If you specify the RETURNING NATIONAL phrase on the XML PARSE statement for an alphanumeric data item, text is returned in the

corresponding national special register. The RETURNING NATIONAL phrase can be specified only when the XMLPARSE(XMLSS) option

is in effect.

4. The parser sets the namespace special registers when the XMLPARSE(XMLSS) option is in effect.

506 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Restrictions:

v A processing procedure must not directly execute an XML PARSE statement.

However, if a processing procedure passes control to a method or outermost

program by using an INVOKE or CALL statement, the target method or program

can execute the same or a different XML PARSE statement. You can also execute

the same XML statement or different XML statements simultaneously from a

program that is running on multiple threads.

v The range of the processing procedure must not cause the execution of any

GOBACK or EXIT PROGRAM statement, except to return control from a method or

program to which control was passed by an INVOKE or CALL statement,

respectively, that is executed in the range of the processing procedure.

The compiler inserts a return mechanism after the last statement in each processing

procedure. You can code a STOP RUN statement in a processing procedure to end the

run unit.

“Example: program for processing XML” on page 514

RELATED CONCEPTS

“XML-CODE” on page 508

“XML-TEXT and XML-NTEXT” on page 508

“XML-NAMESPACE and XML-NNAMESPACE” on page 509

“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 510

RELATED TASKS

“Transforming XML text to COBOL data items” on page 510

“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

“XML-EVENT”

“XML PARSE exceptions that allow continuation” on page 695

“XML PARSE exceptions that do not allow continuation” on page 699

“XMLPARSE” on page 356

XML PARSE statement (Enterprise COBOL Language Reference)

XML-EVENT

For each event that occurs during XML parsing, the parser sets the associated

event name in the XML-EVENT special register. The parser then passes the XML-EVENT

special register to your processing procedure. Depending on the event, the parser

passes other special registers that contain additional information about the event.

In most cases, the parser sets the XML-TEXT or XML-NTEXT special register to the XML

fragment that caused the event.

If the XMLPARSE(COMPAT) option is in effect, the parser sets XML-NTEXT when the

XML document is in a national data item or the parser finds a Unicode character

reference; otherwise, the parser sets XML-TEXT.

When the XMLPARSE(XMLSS) option is in effect, the parser sets XML-NTEXT when the

RETURNING NATIONAL phrase is specified in the XML PARSE statement or when the

XML document is in a national data item; otherwise, the parser sets XML-TEXT.

When the XMLPARSE(XMLSS) compiler option is in effect, the parser sets the

namespace special registers for a NAMESPACE-DECLARATION event and when a name

that is in a namespace is encountered.

Chapter 28. Processing XML input 507

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

For a detailed description of the complete set of XML events, see the related

reference below for XML-EVENT.

In some cases, such as encoding conflicts, the parser provides information about

the event in the XML-CODE special register.

“Example: parsing a simple document” on page 513

RELATED TASKS

“Parsing XML documents” on page 504

RELATED REFERENCES

“XMLPARSE” on page 356 (Compiler option)

XML-EVENT (Enterprise COBOL Language Reference)

XML-CODE

When the parser returns control to your XML PARSE statement, special register

XML-CODE contains the most recent value that was set by the parser (or by your

processing procedure, if it sets XML-CODE to -1).

For each event except the EXCEPTION event, the value of XML-CODE is zero. If your

processing procedure sets XML-CODE to -1 before returning control to the parser for

an event other than EXCEPTION, processing stops with a user-initiated COBOL

exception condition.

For the EXCEPTION event, special register XML-CODE contains the exception code.

For an encoding conflict exception when XMLPARSE(COMPAT) is in effect, your

processing procedure can reset XML-CODE to a valid value before returning to the

parser. If you reset XML-CODE to any other nonzero value or reset it for any other

exception, the parser sets XML-CODE to the original exception code.

RELATED TASKS

“Writing procedures to process XML” on page 506

“Handling XML PARSE exceptions” on page 526

RELATED REFERENCES

Appendix D, “XML reference material,” on page 695

XML-CODE (Enterprise COBOL Language Reference)

XML-TEXT and XML-NTEXT

For most XML events, the parser sets XML-TEXT or XML-NTEXT to an associated

document fragment.

Typically, the parser sets XML-TEXT when the XML document is in an alphanumeric

data item. The parser sets XML-NTEXT in the following cases:

v When the XML document is in a national data item

v When the XMLPARSE(XMLSS) option is in effect and the RETURNING NATIONAL

phrase is specified in the XML PARSE statement

v When the XMLPARSE(COMPAT) option is in effect and the ATTRIBUTE-NATIONAL-
CHARACTER or CONTENT-NATIONAL-CHARACTER event occurs

508 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|

|
|

The special registers XML-TEXT and XML-NTEXT are mutually exclusive. When the

parser sets XML-TEXT, XML-NTEXT is empty with length zero. When the parser sets

XML-NTEXT, XML-TEXT is empty with length zero.

To determine the number of national characters in XML-NTEXT, use the LENGTH

intrinsic function; for example LENGTH(XML-NTEXT). To determine the number of

bytes in XML-NTEXT, use special register LENGTH OF XML-NTEXT. The number of

national characters differs from the number of bytes.

To determine the number of bytes in XML-TEXT, use either special register LENGTH OF

XML-TEXT or the LENGTH intrinsic function; both return the number of bytes.

RELATED CONCEPTS

“XML-CODE” on page 508

“XML-EVENT” on page 507

RELATED TASKS

“Writing procedures to process XML” on page 506

RELATED REFERENCES

“XMLPARSE” on page 356

XML-NAMESPACE and XML-NNAMESPACE

When the XMLPARSE(XMLSS) option is in effect, the XML parser sets the

XML-NAMESPACE special register or the XML-NNAMESPACE special register to the

namespace identifier for:

v A NAMESPACE-DECLARATION XML event

v An element name or attribute name that is in a namespace

The parser sets XML-NNAMESPACE when the XML document is in a national data item

or the RETURNING NATIONAL phrase is specified in the XML PARSE statement;

otherwise, the parser sets XML-NAMESPACE.

The special registers XML-NAMESPACE and XML-NNAMESPACE are mutually exclusive.

When the parser sets XML-NAMESPACE, XML-NNAMESPACE is empty with length zero.

When the parser sets XML-NNAMESPACE, XML-NAMESPACE is empty with length zero.

To determine the number of national characters in XML-NNAMESPACE, use the LENGTH

intrinsic function; for example LENGTH(XML-NNAMESPACE). To determine the number

of bytes in XML-NNAMESPACE, use special register LENGTH OF XML-NNAMESPACE. The

number of national characters differs from the number of bytes.

To determine the number of bytes in XML-NAMESPACE, use either special register

LENGTH OF XML-NAMESPACE or the LENGTH intrinsic function; both return the number

of bytes.

RELATED CONCEPTS

“XML-CODE” on page 508

“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 510

“XML-TEXT and XML-NTEXT” on page 508

RELATED TASKS

“Writing procedures to process XML” on page 506

Chapter 28. Processing XML input 509

|

|
|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

RELATED REFERENCES

“XMLPARSE” on page 356

XML-EVENT (Enterprise COBOL Language Reference)

XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX

When the XMLPARSE(XMLSS) option is in effect, the XML parser sets the

XML-NAMESPACE-PREFIX special register or the XML-NNAMESPACE-PREFIX special

register in the following cases:

v For a NAMESPACE-DECLARATION XML event that also defines a namespace prefix

v When an element name or attribute name in a namespace is prefixed

The parser sets XML-NNAMESPACE-PREFIX when the XML document is in a national

data item or the RETURNING NATIONAL phrase is specified in the XML PARSE

statement; otherwise, the parser sets XML-NAMESPACE-PREFIX.

The special registers XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX are

mutually exclusive. When the parser sets XML-NAMESPACE-PREFIX,

XML-NNAMESPACE-PREFIX is empty with length zero. When the parser sets

XML-NNAMESPACE-PREFIX, XML-NAMESPACE-PREFIX is empty with length zero.

To determine the number of national characters in XML-NNAMESPACE-PREFIX, use the

LENGTH intrinsic function; for example LENGTH(XML-NNAMESPACE-PREFIX). To

determine the number of bytes in XML-NNAMESPACE-PREFIX, use special register

LENGTH OF XML-NNAMESPACE-PREFIX. The number of national characters differs from

the number of bytes.

To determine the number of bytes in XML-NAMESPACE-PREFIX, use either special

register LENGTH OF XML-NAMESPACE-PREFIX or the LENGTH intrinsic function; both

return the number of bytes.

RELATED CONCEPTS

“XML-CODE” on page 508

“XML-NAMESPACE and XML-NNAMESPACE” on page 509

“XML-TEXT and XML-NTEXT” on page 508

RELATED TASKS

“Writing procedures to process XML” on page 506

RELATED REFERENCES

“XMLPARSE” on page 356

XML-EVENT (Enterprise COBOL Language Reference)

Transforming XML text to COBOL data items

Because XML data is neither fixed length nor fixed format, you need to use special

techniques when you move XML data to COBOL data items.

For alphanumeric items, decide whether the XML data should go at the left

(default) end of a COBOL item or at the right end. If it should go at the right end,

specify the JUSTIFIED RIGHT clause in the declaration of the COBOL item.

Give special consideration to numeric XML values, particularly “decorated”

monetary values such as ’$1,234.00’ or ’$1234’. These two strings mean the same

510 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|

thing in XML, but would need completely different declarations as COBOL

sending fields. Use one of these techniques when you move XML data to COBOL

data items:

v If the format is reasonably regular, code a MOVE to an alphanumeric item that is

redefined appropriately as a numeric-edited item. Then do the final move to a

numeric (operational) item by moving from, and thus de-editing, the

numeric-edited item. (A regular format would have the same number of digits

after the decimal point, a comma separator for values greater than 999, and so

on.)

v For simplicity and vastly increased flexibility, use the following functions for

alphanumeric XML data:

– Intrinsic function NUMVAL to extract and decode simple numeric values from

XML data that represents plain numbers

– Intrinsic function NUMVAL-C to extract and decode numeric values from XML

data that represents monetary quantities

However, use of these functions is at the expense of performance.

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

“Writing procedures to process XML” on page 506

Parsing XML documents one segment at a time

You can parse XML documents by passing the parser a segment of XML text at a

time. Two major applications of this technique are:

v Processing very large documents

v Processing XML documents that reside in data sets, a record at a time

To use this feature, you must compile your program with the XMLPARSE(XMLSS)

compiler option in effect.

You parse an XML document a segment at a time by initializing the parse data item

to the first segment of the XML document, and then executing the XML PARSE

statement. The parser processes the XML text and returns XML events to your

processing procedure as usual. At the end of the text segment, the parser signals

an END-OF-INPUT XML event with XML-CODE set to zero. If there is another segment

of the document to process, in your processing procedure move the next segment

of XML data to the parse data item, set XML-CODE to one, and return to the parser.

To signal the end of XML segments to the parser, return to the parser with

XML-CODE still set to zero.

The length of the parse data item is evaluated for each segment, and determines

the segment length.

Recommendation: If the XML document segments are variable length, specify a

variable-length item for the parse data item. For example, for variable length XML

segments, the parse data item can be:

v A variable-length group item, containing an OCCURS DEPENDING ON clause

v A reference-modified item

v An FD record, where the FD specifies the RECORD IS VARYING DEPENDING ON clause

and the depending-on data item is used as the length in a reference modifier or

ODO object for the FD record

Chapter 28. Processing XML input 511

|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|

When you send an XML document to the parser in multiple segments, document

content is, in some cases, returned to the processing procedure in multiple

fragments via multiple events, rather than as one large fragment in a single event.

For example, when the document is split into two segments with the split point in

the middle of a string of content characters, the parser returns the content in two

separate CONTENT-CHARACTERS events. Your processing procedure must reassemble

the string of content as needed by the application. Start element tags, attribute

names, namespace declarations, and end element tags are always delivered to the

processing procedure with a single event, even if they are split between two

segments of a document.

If a segment split occurs between the bytes of a multibyte character, the parser

detects the split and reassembles the character for delivery in a single event.

XML documents stored in a QSAM or VSAM file can be processed as follows:

1. Open the file and read the first record of the XML document.

2. Execute the XML PARSE statement with the FD record as identifier-1.

3. In your processing procedure logic for handling the END-OF-INPUT event, read

the next record of the XML document into identifier-1. If not end-of-file (file

status code 10), set XML-CODE to one and return to the parser. If end-of-file,

return to the parser with XML-CODE still set to zero.

4. In your processing procedure logic for the END-OF-DOCUMENT event, close the file.

Usage note: The root element of an XML document might be followed by

miscellaneous information: zero or more occurrences of a comment or processing

instruction, in any order. However, when parsing the document one segment at a

time, the parser signals an END-OF-INPUT XML event after processing the end tag of

the root element only if the last item in the segment is incomplete. If the segment

ends with a complete XML item (such as the root element end tag, or following

that, a complete comment or processing instruction), the next XML event after the

event for the item itself is the END-OF-DOCUMENT XML event.

Recommendation: To provide successive segments of XML data after the end of

the root element, include at least the first nonspace character of an XML item at

the end of each segment. Include a complete item only on the last segment that

you want the parser to process. For instance, in the following sample, where each

line represents a segment of an XML document, the segment that includes the text

This comment ends this segment is the last segment to be parsed:

 <Tagline>

 COBOL is the language of the future!

 </Tagline> <

 !--First comment--

 > <?pi data?> <!-

 -This comment ends this segment-->

 <!-- This segment is not included in the parse-->

“Example: parsing XML documents one segment at a time” on page 519

RELATED REFERENCES

“XMLPARSE” on page 356 (Compiler option)

“XML-EVENT” on page 507

XML-EVENT (Enterprise COBOL Language Reference)

512 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

XML PARSE examples

The examples that follow illustrate various uses of the XML PARSE statement.

Use these examples to understand the basic use of XML PARSE and, for

XMLPARSE(XMLSS), specialized uses such as:

v Parsing documents that include namespaces

v Parsing documents one segment at a time

“Example: parsing a simple document”

“Example: program for processing XML” on page 514

“Example: parsing an XML document that uses namespaces” on page 517

“Example: parsing XML documents one segment at a time” on page 519

Example: parsing a simple document

This example shows the flow of events and the related contents of special register

XML-TEXT for parsing an elementary XML document.

Assume that the COBOL program contains the following elementary XML

document in data item Doc:

<?xml version="1.0"?><msg type="short">Hello, World!</msg>

The following code fragment shows the XML PARSE statement for parsing Doc and a

processing procedure, P, for handling XML events:

 XML Parse Doc

 Processing procedure P

 ...

P. Display XML-Event XML-Text.

The processing procedure displays the content of XML-EVENT and XML-TEXT for each

event that the parser signals during parsing. The table below shows the result.

 Table 69. XML events and special regisers

XML-EVENT XML-TEXT

START-OF-DOCUMENT

VERSION-INFORMATION 1.0

START-OF-ELEMENT msg

ATTRIBUTE-NAME type

ATTRIBUTE-CHARACTERS short

CONTENT-CHARACTERS Hello, World!

END-OF-ELEMENT msg

END-OF-DOCUMENT

RELATED CONCEPTS

“XML-TEXT and XML-NTEXT” on page 508

RELATED REFERENCES

“XML-EVENT” on page 507

“XMLPARSE” on page 356 (Compiler option)

XML PARSE (Enterprise COBOL Language Reference)

Chapter 28. Processing XML input 513

|

|

|
|

|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|

||

||

||

||

||

||

||

||

||

||
|

|
|

|
|
|
|

Example: program for processing XML

This example shows the use of an XML PARSE statement and a processing

procedure.

The XML document is shown in the source so that you can follow the flow of the

parsing. The output of the program is shown below for both the XMLPARSE(XMLSS)

compiler option and the XMLPARSE(COMPAT) compiler option. Compare the

document to the output of the program to follow the interaction of the parser and

the processing procedure, and to match events to document fragments.

 cbl codepage(1047)

 Identification division.

 Program-id. XMLSAMPL.

 Data division.

 Working-storage section.

**

* XML document, encoded as initial values of data items. *

**

 1 xml-document.

 2 pic x(39) value ’<?xml version="1.0" encoding="IBM-1047"’.

 2 pic x(19) value ’ standalone="yes"?>’.

 2 pic x(39) value ’<!--This document is just an example-->’.

 2 pic x(10) value ’<sandwich>’.

 2 pic x(35) value ’ <bread type="baker's best"/>’.

 2 pic x(41) value ’ <?spread please use real mayonnaise ?>’.

 2 pic x(31) value ’ <meat>Ham & turkey</meat>’.

 2 pic x(40) value ’ <filling>Cheese, lettuce, tomato, etc.’.

 2 pic x(10) value ’</filling>’.

 2 pic x(35) value ’ <![CDATA[We should add a <relish>’.

 2 pic x(22) value ’ element in future!]]>’.

 2 pic x(31) value ’ <listprice>$4.99 </listprice>’.

 2 pic x(27) value ’ <discount>0.10</discount>’.

 2 pic x(11) value ’</sandwich>’.

 1 xml-document-length computational pic 999.

**

* Sample data definitions for processing numeric XML content. *

**

 1 current-element pic x(30).

 1 xfr-ed pic x(9) justified.

 1 xfr-ed-1 redefines xfr-ed pic 999999.99.

 1 list-price computational pic 9v99 value 0.

 1 discount computational pic 9v99 value 0.

 1 display-price pic $$9.99.

 Procedure division.

 Mainline section.

 XML parse xml-document processing procedure xml-handler

 On exception

 Display ’XML document error ’ XML-Code

 Not on exception

 Display ’XML document successfully parsed’

 End-XML

**

* Process the transformed content and calculate promo price. *

**

 Display ’ ’

 Display ’-----+++++***** Using information from XML ’

 ’*****+++++-----’

 Display ’ ’

 Move list-price to display-price

 Display ’ Sandwich list price: ’ display-price

514 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|

Compute display-price = list-price * (1 - discount)

 Display ’ Promotional price: ’ display-price

 Display ’ Get one today!’

 Goback.

 xml-handler section.

 Evaluate XML-Event

* ==> Order XML events most frequent first

 When ’START-OF-ELEMENT’

 Display ’Start element tag: {’ XML-Text ’}’

 Move XML-Text to current-element

 When ’CONTENT-CHARACTERS’

 Display ’Content characters: {’ XML-Text ’}’

* ==> Transform XML content to operational COBOL data item...

 evaluate current-element

 When ’listprice’

* ==> Using function NUMVAL-C...

 Compute list-price = function numval-c(XML-Text)

 When ’discount’

* ==> Using de-editing of a numeric edited item...

 Move XML-Text to xfr-ed

 Move xfr-ed-1 to discount

 End-evaluate

 When ’END-OF-ELEMENT’

 Display ’End element tag: {’ XML-Text ’}’

 Move spaces to current-element

 When ’START-OF-DOCUMENT’

 Display ’Start of document’

 When ’END-OF-DOCUMENT’

 Display ’End of document.’

 When ’VERSION-INFORMATION’

 Display ’Version: {’ XML-Text ’}’

 When ’ENCODING-DECLARATION’

 Display ’Encoding: {’ XML-Text ’}’

 When ’STANDALONE-DECLARATION’

 Display ’Standalone: {’ XML-Text ’}’

 When ’ATTRIBUTE-NAME’

 Display ’Attribute name: {’ XML-Text ’}’

 When ’ATTRIBUTE-CHARACTERS’

 Display ’Attribute value characters: {’ XML-Text ’}’

 When ’ATTRIBUTE-CHARACTER’

 Display ’Attribute value character: {’ XML-Text ’}’

 When ’START-OF-CDATA-SECTION’

 Display ’Start of CData: {’ XML-Text ’}’

 When ’END-OF-CDATA-SECTION’

 Display ’End of CData: {’ XML-Text ’}’

 When ’CONTENT-CHARACTER’

 Display ’Content character: {’ XML-Text ’}’

 When ’PROCESSING-INSTRUCTION-TARGET’

 Display ’PI target: {’ XML-Text ’}’

 When ’PROCESSING-INSTRUCTION-DATA’

 Display ’PI data: {’ XML-Text ’}’

 When ’COMMENT’

 Display ’Comment: {’ XML-Text ’}’

 When ’EXCEPTION’

 Compute xml-document-length = function length (XML-Text)

 Display ’Exception ’ XML-Code ’ at offset ’

 xml-document-length ’.’

 When other

 Display ’Unexpected XML event: ’ XML-Event ’.’

 End-evaluate

 .

 End program XMLSAMPL.

Output from parse example, using XMLPARSE(XMLSS):

Chapter 28. Processing XML input 515

From the following output you can see which parsing events came from which

fragments of the document:

 Start of document

 Version: {1.0}

 Encoding: {IBM-1047}

 Standalone: {yes}

 Comment: {This document is just an example}

 Start element tag: {sandwich}

 Content characters: { }

 Start element tag: {bread}

 Attribute name: {type}

 Attribute value characters: {baker’s best}

 End element tag: {bread}

 Content characters: { }

 PI target: {spread}

 PI data: {please use real mayonnaise }

 Content characters: { }

 Start element tag: {meat}

 Content characters: {Ham & turkey}

 End element tag: {meat}

 Content characters: { }

 Start element tag: {filling}

 Content characters: {Cheese, lettuce, tomato, etc.}

 End element tag: {filling}

 Content characters: { }

 Start of CData: {}

 Content characters: {We should add a <relish> element in future!}

 End of CData: {}

 Content characters: { }

 Start element tag: {listprice}

 Content characters: {$4.99 }

 End element tag: {listprice}

 Content characters: { }

 Start element tag: {discount}

 Content characters: {0.10}

 End element tag: {discount}

 End element tag: {sandwich}

 End of document.

 XML document successfully parsed

 -----+++++***** Using information from XML *****+++++-----

 Sandwich list price: $4.99

 Promotional price: $4.49

 Get one today!

Output from parse example, using XMLPARSE(COMPAT):

From the following output you can see which parsing events came from which

fragments of the document:

 Start of document

 Version: {1.0}

 Encoding: {IBM-1047}

 Standalone: {yes}

 Comment: {This document is just an example}

 Start element tag: {sandwich}

 Content characters: { }

 Start element tag: {bread}

 Attribute name: {type}

 Attribute value characters: {baker}

 Attribute value character: {’}

 Attribute value characters: {s best}

 End element tag: {bread}

 Content characters: { }

 PI target: {spread}

516 Enterprise COBOL for z/OS V4.1 Programming Guide

PI data: {please use real mayonnaise }

 Content characters: { }

 Start element tag: {meat}

 Content characters: {Ham }

 Content character: {&}

 Content characters: { turkey}

 End element tag: {meat}

 Content characters: { }

 Start element tag: {filling}

 Content characters: {Cheese, lettuce, tomato, etc.}

 End element tag: {filling}

 Content characters: { }

 Start of CData: {<![CDATA[}

 Content characters: {We should add a <relish> element in future!}

 End of CData: {]]>}

 Content characters: { }

 Start element tag: {listprice}

 Content characters: {$4.99 }

 End element tag: {listprice}

 Content characters: { }

 Start element tag: {discount}

 Content characters: {0.10}

 End element tag: {discount}

 End element tag: {sandwich}

 End of document.

 XML document successfully parsed

 -----+++++***** Using information from XML *****+++++-----

 Sandwich list price: $4.99

 Promotional price: $4.49

 Get one today!

Example: parsing an XML document that uses namespaces

This example illustrates features for XML parsing that you can use when the

XMPARSE(XMLSS) option is in effect.

Namespace identifiers and namespace prefixes are used in the example below to

qualify element names and attribute names. This qualification allows the use of the

same name in more than one context: observe the use of title as an author’s title

(Mr) and as a book title (Writing COBOL for Fun and Profit).

Table 70 on page 518 lists the sequence of events that the processing procedure

receives from the parser, along with the content of the associated XML special

registers.

The sample XML document contains several namespace declarations: a default

namespace and three namespace identifiers with prefixes (bk, pi, and isbn). Notice

that the default namespace is set to the empty string for the element ″comment″

(xmlns=’’). This undeclares the default namespace, with the effect that there is no

default namespace.

Sample XML document

<section

 xmlns="http://www.ibm.com/events"

 xmlns:bk="urn:loc.gov:books"

 xmlns:pi="urn:personalInformation"

 xmlns:isbn=’urn:ISBN:0-395-36341-6’>

 <title>Book-Signing Event</title>

 <signing>

 <bk:author pi:title="Mr" pi:name="Tom Ross"/>

Chapter 28. Processing XML input 517

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

<book bk:title="Writing COBOL for Fun and Profit" isbn:number="0426070806"/>

 <comment xmlns=’’>What a great issue!</comment>

 </signing>

 </section>

XML PARSE results

 Table 70. XML events and special registers

XML-EVENT XML-TEXT

XML-NAMESPACE-
PREFIX XML-NAMESPACE

START-OF-DOCUMENT

START-OF-ELEMENT section http://www.ibm.com/
events

NAMESPACE-DECLARATION http://www.ibm.com/
events

NAMESPACE-DECLARATION bk urn:loc.gov:books

NAMESPACE-DECLARATION pi urn:personalInformation

NAMESPACE-DECLARATION isbn urn:ISBN:0-395-36341-6

START-OF-ELEMENT title http://www.ibm.com/
events

CONTENT-CHARACTERS Book-Signing Event

END-OF-ELEMENT title http://www.ibm.com/
events

START-OF-ELEMENT signing http://www.ibm.com/
events

START-OF-ELEMENT author bk urn:loc.gov:books

ATTRIBUTE-NAME title pi urn:personalInformation

ATTRIBUTE-CHARACTERS Mr

ATTRIBUTE-NAME name pi urn:personalInformation

ATTRIBUTE-CHARACTERS Tom Ross

END-OF-ELEMENT author bk urn:loc.gov:books

START-OF-ELEMENT book http://www.ibm.com/
events

ATTRIBUTE-NAME title bk urn:loc.gov:books

ATTRIBUTE-CHARACTERS Writing COBOL for

Fun and Profit

ATTRIBUTE-NAME number isbn urn:ISBN:0-395-36341-6

ATTRIBUTE-CHARACTERS 0426070806

END-OF-ELEMENT book http://www.ibm.com/
events

START-OF-ELEMENT comment

NAMESPACE-DECLARATION

CONTENT-CHARACTERS What a great issue!

END-OF-ELEMENT comment

END-OF-ELEMENT signing http://www.ibm.com/
events

END-OF-ELEMENT section http://www.ibm.com/
events

518 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|

||

||
|
||

||||

||||
|

||||
|

||||

||||

||||

||||
|

||||

||||
|

||||
|

||||

||||

||||

||||

||||

||||

||||
|

||||

||
|
||

||||

||||

||||
|

||||

||||

||||

||||

||||
|

||||
|

Table 70. XML events and special registers (continued)

XML-EVENT XML-TEXT

XML-NAMESPACE-
PREFIX XML-NAMESPACE

END-OF-DOCUMENT

RELATED CONCEPTS

“XML-TEXT and XML-NTEXT” on page 508

“XML-NAMESPACE and XML-NNAMESPACE” on page 509

“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 510

RELATED REFERENCES

“XML-EVENT” on page 507

“XMLPARSE” on page 356 (Compiler option)

XML-EVENT (Enterprise COBOL Language Reference)

Example: parsing XML documents one segment at a time

The sample program below shows the parsing of an XML document one segment

at a time. The example shows the XML content of a file, the program that reads

and submits XML text to the parser, and the sequence of events that result from

parsing the input records.

To use this feature, you must compile your program with the XMLPARSE(XMLSS)

compiler option in effect.

The sample program reads a record of the XML document (a segment) from a file

(INFILE), then passes the record to the parser using the XML PARSE statement. The

parser processes the XML and transfers control to the processing procedure for

each XML event . The processing procedure handles the event and returns to the

parser.

At the end of the segment, the parser sets XML-EVENT to END-OF-INPUT, sets

XML-CODE to zero, and transfers control to the processing procedure. The processing

procedure reads the next XML record into the parse data item, sets XML-CODE to

one, and returns to the parser.

To show parsing results, the processing procedure displays each record of input,

followed by the sequence of XML events and any associated text fragments in

XML-TEXT. The content of XML-TEXT is displayed in braces, {}; empty braces signify

that XML-TEXT is empty. (Notice the extra zero-length CONTENT-CHARACTERS XML

event at event number 08. Such anomalies are typical when supplying XML text

piecemeal.)

This exchange between the processing procedure and the parser continues until the

READ statement returns the end-of-file status code. The processing procedure

returns to the parser with XML-CODE still set to zero to indicate the end of segment

processing.

INFILE:

<?xml version=’1.0’?>

<Tagline>

COBOL is the language of the future!

</Tagline>

Program:

Chapter 28. Processing XML input 519

|

||
|
||

||||
|

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

Identification division.

 Program-id. PARSESEG.

 Environment division.

 Input-output section.

 File-control.

 Select Input-XML

 Assign to infile

 File status is Input-XML-status.

 Data division.

 File section.

 FD Input-XML

 Record is varying from 1 to 255 depending on Rec-length

 Recording mode V.

 1 fdrec.

 2 pic X occurs 1 to 255 depending on Rec-length .

 Working-storage section.

 1 Event-number comp pic 99.

 1 Rec-length comp-5 pic 9(4).

 1 Input-XML-status pic 99.

 Procedure division.

 Open input Input-XML

 If Input-XML-status not = 0

 Display ’Open failed, file status: ’ Input-XML-status

 Goback

 End-if

 Read Input-XML

 If Input-XML-status not = 0

 Display ’Read failed, file status: ’ Input-XML-status

 Goback

 End-if

 Move 0 to Event-number

 Display ’Starting with: ’ fdrec

 Display ’Event number and name Content of XML-text’

 XML parse fdrec processing procedure Handle-parse-events

 Close Input-XML

 Goback

 .

 Handle-parse-events.

 Add 1 to Event-number

 Display ’ ’ Event-number ’: ’ XML-event ’{’ XML-text ’}’

 Evaluate XML-event

 When ’END-OF-INPUT’

 Read Input-XML

 Evaluate Input-XML-status

 When 0

 Move 1 to XML-code

 Display ’Continuing with: ’ fdrec

 When 10

 Display ’At EOF; no more input.’

 When other

 Display ’Read failed, file status:’ Input-XML-status

 Goback

 End-evaluate

 When other

 Continue

 End-evaluate

 .

 End program PARSESEG.

Result:

Starting with: <?xml version=’1.0’?>

Event number and name Content of {XML-TEXT}

 01: START-OF-DOCUMENT {}

 02: VERSION-INFORMATION {1.0}

 03: END-OF-INPUT {}

Continuing with: <Tagline>

520 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

04: START-OF-ELEMENT {Tagline}

 05: END-OF-INPUT {}

Continuing with: COBOL is the language of the future!

 06: CONTENT-CHARACTERS {COBOL is the language of the future!}

 07: END-OF-INPUT {}

Continuing with: </Tagline>

 08: CONTENT-CHARACTERS {}

 09: END-OF-ELEMENT {Tagline}

 10: END-OF-DOCUMENT {}

Understanding the encoding of XML documents

To parse an XML document with the XML PARSE statement, the document must be

encoded using a supported encoding. The supported encodings for a particular

parse depend on:

v The category of the data item that contains the XML document

v The setting of the XMLPARSE compiler option

v The optional phrases that are specified on the XML PARSE statement.

For XML documents that are contained in a national data item, the supported code

page is Unicode UTF-16BE (big-endian), CCSID 1200.

For XML documents that are contained in an alphanumeric data item, the

supported code pages when the XMLPARSE(XMLSS) compiler option is in effect are:

v If the RETURNING NATIONAL phrase is specified on the XML PARSE: Unicode UTF-8

or any EBCDIC or ASCII code page that is supported by the z/OS Unicode

Services for conversion to Unicode UTF-16.

v If the RETURNING NATIONAL phrase is not specified: Unicode UTF-8 or any of the

single-byte EBCDIC code pages listed in the related reference about Coded

character sets for XML documents.

For XML documents that are contained in an alphanumeric data item, the

supported code pages when the XMLPARSE(COMPAT) compiler option is in effect are

specified in the related reference about Coded character sets for XML documents.

Determining the encoding of an input XML document

The parser must know the encoding for an XML document in order to process it

correctly. If the specified encoding is not one of the supported coded character sets,

the parser signals an XML exception event before beginning the parse operation. If

the actual document encoding does not match the specified encoding, the parser

signals an appropriate XML exception after beginning the parse operation.

Several sources of encoding information are used in determining the encoding of

an XML document:

v When the XMLPARSE(XMLSS) option is in effect:

– The datatype of the data item that contains the XML document

– The optional ENCODING phrase of the XML PARSE statement

– The CCSID specified by the CODEPAGE compiler option
v When the XMLPARSE(COMPAT) option is in effect:

– The datatype of the data item that contains the XML document

– The encoding declaration specified within the XML document.

– The CCSID specified by the CODEPAGE compiler option

Chapter 28. Processing XML input 521

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

– The actual encoding of the XML document, determined by examining the first

few bytes of the document

When the XMLPARSE(XMLSS) option is in effect:

v Any encoding declaration specified within the XML document is ignored.

v For XML documents that are contained in a national data item, the ENCODING

phrase of the XML PARSE statement must be omitted or must specify CCSID 1200.

The CCSID specified by the CODEPAGE compiler option is ignored. The parser

signals an XML exception event if the actual document encoding is not Unicode

UTF-16BE.

v For XML documents that are contained in an alphanumeric data item, the

CCSID specified in the ENCODING phrase of the XML PARSE statement overrides the

CODEPAGE compiler option.

v If the XML PARSE statement includes an ENCODING phrase, the specified CCSID

overrides the CCSID specified in the CODEPAGE compiler option. The parser raises

an XML exception event at the beginning of the parse if the actual document

encoding is not consistent with the specified CCSID.

RELATED TASKS

“Specifying the code page” on page 525

“Parsing XML documents encoded in UTF-8” on page 523

RELATED REFERENCES

“XMLPARSE” on page 356

“Coded character sets for XML documents”

Coded character sets for XML documents

XML documents must be encoded with one of the supported code pages described

below.

XML documents generated or parsed in national data items must be encoded with

Unicode UTF-16, CCSID 1200.

For XML GENERATE statements, documents generated in alphanumeric data items

must be encoded with Unicode UTF-8, CCSID 1208, or one of the single-byte

EBCDIC code pages shown in the table below. You can code any CCSID shown in

the table in the ENCODING phrase of the XML GENERATE statement.

For XML PARSE statements, documents in alphanumeric data items must be encoded

with:

v For XMLPARSE(XMLSS):

– When the RETURNING NATIONAL phrase is specified in the XML PARSE statement,

any EBCDIC or ASCII code page that is supported by z/OS Unicode Services

for conversion to Unicode UTF-16

– When the RETURNING NATIONAL phrase is not specified in the XML PARSE

statement, Unicode UTF-8, CCSID 1208, or one of the single-byte EBCDIC

code pages shown in the table below
v For XMLPARSE(COMPAT): One of the single-byte EBCDIC code pages shown in

the table below

You can code any supported CCSID, as described above for XML PARSE, in the

ENCODING phrase of the XML PARSE statement.

522 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|

|

|
|
|

|
|
|

|
|

|
|

You can code any CCSID shown in this table, except 1208, in the CODEPAGE

compiler option for use with XML GENERATE and XML PARSE.

 Table 71. Coded character sets for XML documents

CCSID Description

1208 Unicode UTF-81

1047 Latin 1 / Open Systems

1140, 37 USA, Canada, . . . Euro Country Extended Code Page (ECECP),

Country Extended Code Page (CECP)

1141, 273 Austria, Germany ECECP, CECP

1142, 277 Denmark, Norway ECECP, CECP

1143, 278 Finland, Sweden ECECP, CECP

1144, 280 Italy ECECP, CECP

1145, 284 Spain, Latin America (Spanish) ECECP, CECP

1146, 285 UK ECECP, CECP

1147, 297 France ECECP, CECP

1148, 500 International ECECP, CECP

1149, 871 Iceland ECECP, CECP

1. Unicode UTF-8 (CCSID 1208) is supported for the XML PARSE statement when the

XMLPARSE(XMLSS) compiler option is in effect.

To parse XML documents that are encoded in unsupported code pages, first

convert the documents to national character data (Unicode UTF-16) by using the

NATIONAL-OF intrinsic function. You can convert the individual pieces of document

text that are passed to the processing procedure in special register XML-NTEXT back

to the original code page by using the DISPLAY-OF intrinsic function.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

“Specifying the code page” on page 525

RELATED REFERENCES

“CODEPAGE” on page 309

Parsing XML documents encoded in UTF-8

When the XMLPARSE(XMLSS) compiler option is in effect, you can parse XML

documents that are encoded in UTF-8 in a manner similar to parsing other XML

documents, except that some additional requirements apply.

To parse an XML document that is encoded in UTF-8, you must specify CCSID

1208 in the ENCODING phrase of the XML PARSE statement, as shown in the following

code fragment:

XML PARSE xml-document

 WITH ENCODING 1208

 PROCESSING PROCEDURE xml-event-handler

 . . .

END-XML

You define xml-document as an alphanumeric data item or alphanumeric group

item in WORKING-STORAGE or LOCAL-STORAGE.

Chapter 28. Processing XML input 523

|
|

||

||

||

||

||
|

||

||

||

||

||

||

||

||

||

|
|
|

|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|

By default, the parser returns XML document fragments in the alphanumeric XML

special registers XML-TEXT, XML-NAMESPACE, and XML-NAMESPACE-PREFIX. UTF-8

characters are encoded using a variable number of bytes per character. Most

COBOL operations on alphanumeric data assume a single-byte encoding, where

each character is encoded in one byte. When you operate on UTF-8 characters as

alphanumeric data, you must ensure that the data is processed correctly. Avoid

operations (such as reference modification and moves that involve truncation) that

can split a multibyte character between bytes. You cannot reliably use statements

such as INSPECT to process multibyte characters in alphanumeric data.

You can more reliably process UTF-8 document fragments by specifying the

RETURNING NATIONAL phrase on the XML PARSE statement. With the RETURNING

NATIONAL phrase, XML document fragments are efficiently converted to UTF-16

encoding and are returned to the application in the national special registers

XML-NTEXT, XML-NNAMESPACE, and XMLNNAMESPACE-PREFIX. Then you can efficiently

process XML text fragments in national data items. (The UTF-16 encoding in

national data items greatly facilitates Unicode processing in COBOL.)

The following code fragment illustrates the use of both the ENCODING phrase and

the RETURNING NATIONAL phrase in parsing a UTF-8 XML document:

XML PARSE xml-document

 WITH ENCODING 1208 RETURNING NATIONAL

 PROCESSING PROCEDURE xml-event-handler

 ON EXCEPTION

 DISPLAY ’XML document error ’ XML-CODE

 STOP RUN

 NOT ON EXCEPTION

 DISPLAY ’XML document was successfully parsed.’

END-XML

RELATED REFERENCES

“XMLPARSE” on page 356

“XML-TEXT and XML-NTEXT” on page 508

“XML-NAMESPACE and XML-NNAMESPACE” on page 509

“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 510

XML PARSE statement (Enterprise COBOL Language Reference)

Code-page-sensitive characters in XML markup

Several special characters that are used in XML markup have different hexadecimal

representations in various EBCDIC code pages.

The following table shows the special characters and their hexadecimal values for

various EBCDIC code page CCSIDs.

 Table 72. Hexadecimal values of special characters for code page CCSIDs

Character 1047 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

[X’AD’ X’BA’ X’63’ X’9E’ X’B5’ X’90’ X’4A’ X’B1’ X’90’ X’4A’ X’AE’

] X’BD’ X’BB’ X’FC’ X’9F’ X’9F’ X’51’ X’5A’ X’BB’ X’B5’ X’5A’ X’9E’

! X’5A’ X’5A’ X’4F’ X’4F’ X’4F’ X’4F’ X’BB’ X’5A’ X’4F’ X’4F’ X’4F’

| X’4F’ X’4F’ X’BB’ X’BB’ X’BB’ X’BB’ X’4F’ X’4F’ X’BB’ X’BB’ X’BB’

X’7B’ X’7B’ X’7B’ X’4A’ X’63’ X’B1’ X’69’ X’7B’ X’B1’ X’7B’ X’7B’

524 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||

||||||||||||
|

Specifying the code page

The preferred way to specify the code page for parsing an XML document in an

alphanumeric data item is to omit the encoding declaration from the document

and to rely on the following encoding specification:

v When the XMLPARSE(XMLSS) option is in effect: the ENCODING phrase in the XML

PARSE statement or the CODEPAGE compiler option

v When the XMLPARSE(COMPAT) option is in effect: the CODEPAGE compiler option

Omitting the encoding declaration makes it possible to transmit an XML document

between heterogeneous systems without requiring that you update the encoding

declaration to reflect any translation imposed by the transmission process.

For details of supported code pages, see the related references about

Understanding the encoding of XML documents and Coded character sets for XML

documents.

For XMLPARSE(COMPAT):

Although not recommended, you can specify the encoding information for an XML

document in the XML declaration with which most XML documents begin. Note

that the XML parser generates an exception if it encounters an XML declaration

that does not begin in the first byte of an XML document.

This is an example of an XML declaration that includes an encoding declaration:

<?xml version="1.0" encoding="ibm-1140" ?>

Specify the encoding declaration in either of the following ways:

v Specify the CCSID number (with or without any number of leading zeros)

optionally prefixed by any of the following strings (in any mixture of uppercase

and lowercase letters):

– IBM-

– IBM_

– CCSID-

– CCSID_
v Use one of the aliases shown in the table below. You can code the aliases in any

mixture of uppercase and lowercase letters.

 Table 73. Aliases for XML encoding declarations

Code page Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT, EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

1200 UTF-16

1208 UTF-8

RELATED TASKS

“Understanding the encoding of XML documents” on page 521

“Parsing XML documents encoded in UTF-8” on page 523

RELATED REFERENCES

“Coded character sets for XML documents” on page 522

Chapter 28. Processing XML input 525

|

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|

|
|

||

||

||

||

||

||
|

|
|
|

|
|

Handling XML PARSE exceptions

The parser sets an exception code in the XML-CODE special register when it

encounters an anomaly or error during parsing. The specific exception codes and

subsequent actions that you can take vary depending on the setting of the

XMLPARSE compiler option.

For XMLPARSE(XMLSS)

The exception code that the parser returns in the XML-CODE special register is

formed from the return code and reason code that the z/OS XML System Services

parser generates. The return code and the reason code are each a halfword binary

value. The value in XML-CODE is a concatenation of those two values. For example,

the following XML document is not well formed because the element end tag mmsg

does not match the element start tag msg:

<msg>Hello</mmsg>

The return code from the z/OS XML System Services parser for this document is

12 (hexadecimal 000C). The reason code is hexadecimal 3035

(XRSN_ENDTAG_NAME_MISMATCH). The concatenation of these two values, hexadecimal

000C3035, is returned to the processing procedure in special register XML-CODE.

The parser return codes and reason codes are documented as hexadecimal values

in the appendices of the z/OS XML System Services Users Guide and Reference.

Your processing procedure cannot handle the exception event and cannot resume

parsing. When the processing procedure returns to the parser from an EXCEPTION

event, the parser signals no further events. The parser transfers control to the

statement that you specify in the ON EXCEPTION phrase of the XML PARSE statement.

If you do not code an ON EXCEPTION phrase, control is transferred to the end of the

XML PARSE statement. XML-CODE contains the original exception code set by the

parser.

For XMLPARSE(COMPAT)

If the exception code that the XML parser passes in XML-CODE is within a certain

range, you might be able to handle the exception event within your processing

procedure and resume parsing.

To handle an exception event in your processing procedure, do these steps:

1. Check the contents of XML-CODE.

2. Handle the exception as appropriate.

3. Set XML-CODE to zero to indicate that you handled the exception.

4. Return control to the parser. The exception condition then no longer exists.

You can handle exceptions this way only if the exception code that is passed in

XML-CODE is within one of the following ranges, which indicate that an encoding

conflict was detected:

v 50-99

v 100,001-165,535

You can do limited handling of exceptions for which the exception code passed in

XML-CODE is within the range 1-49. After an exception in this range occurs, the

526 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

|

parser does not signal any further normal events, except the END-OF-DOCUMENT

event, even if you set XML-CODE to zero before returning. If you set XML-CODE to

zero, the parser continues parsing the document and signals any exceptions that it

finds. (Doing so can be useful as a way of discovering multiple errors in the

document.

At the end of parsing after an exception in this range, control is passed to the

statement that you specify in the ON EXCEPTION phrase, if any; otherwise to the end

of the XML PARSE statement. The special register XML-CODE contains the code for the

most recent exception set by the parser.

For all other exceptions, the parser signals no further events, and passes control to

the statement that you specify in the ON EXCEPTION phrase. In this case, XML-CODE

contains the original exception number even if you reset XML-CODE in the processing

procedure before returning control to the parser.

If you do not want to handle an exception, return control to the parser without

changing the value of XML-CODE. The parser transfers control to the statement that

you specify in the ON EXCEPTION phrase. If you do not code an ON EXCEPTION

phrase, control is transferred to the end of the XML PARSE statement.

If no unhandled exceptions occur before the end of parsing, control is passed to

the statement that you specify in the NOT ON EXCEPTION phrase (normal end of

parsing). If you do not code a NOT ON EXCEPTION phrase, control is passed to the

end of the XML PARSE statement. The special register XML-CODE contains zero.

RELATED CONCEPTS

“How the XML parser handles errors”

“XML-CODE” on page 508

RELATED TASKS

“Writing procedures to process XML” on page 506

“Understanding the encoding of XML documents” on page 521

“Handling conflicts in code pages” on page 528

RELATED REFERENCES

“XML PARSE exceptions that allow continuation” on page 695

“XML PARSE exceptions that do not allow continuation” on page 699

“XMLPARSE” on page 356

How the XML parser handles errors

When the XML parser detects an error in an XML document, it generates an XML

exception event and passes control to your processing procedure.

The parser provides the following information in special registers:

v XML-EVENT contains ’EXCEPTION’.

v XML-CODE contains a numeric exception code.

For XMLPARSE(XMLSS), the exception codes are described in the related reference

below for z/OS XML System Services. For XMLPARSE(COMPAT), the exception

codes are described in the related references below for XML PARSE exceptions.

v When XMLPARSE(COMPAT) is in effect, XML-TEXT or XML-NTEXT contains the

document text up to and including the point where the exception was detected.

Chapter 28. Processing XML input 527

|

|
|

|
|

v When XMLPARSE(XMLSS) is in effect, XML-TEXT or XML-NTEXT contains the document

text up to the point where the error or anomaly was detected. If you process the

XML document one segment at a time, the applicable special register contains

only the current segment.

All other XML special registers are empty with length zero.

For XMLPARSE(XMLSS)

When XMLPARSE(XMLSS) is in effect, you cannot continue parsing after an exception,

even if you set XML-CODE to zero before returning to the parser. Upon return to the

parser from your processing procedure, the parser transfers control to the ON

EXCEPTION phrase in the XML PARSE statement, if specified; otherwise the parser

transfers control to the end of the XML PARSE statement. XML-CODE contains the

original exception code set by the parser.

For XMLPARSE(COMPAT)

When XMLPARSE(COMPAT) is in effect, you might be able to handle the exception in

your processing procedure and continue parsing if the numeric exception code is

within one of the following ranges:

v 1-99

v 100,001-165,535

If the exception code has any other nonzero value, parsing cannot continue. The

exceptions for encoding conflicts (50-99 and 300-399) are signaled before the

parsing of the document begins. For these exceptions, XML-TEXT or XML-NTEXT either

is of length zero or contains only the encoding declaration value from the

document.

Exceptions in the range 1-49 are fatal errors according to the XML specification.

Therefore the parser does not continue normal parsing even if you handle the

exception. However, the parser does continue scanning for further errors until it

reaches the end of the document or encounters an error that does not allow

continuation. For these exceptions, the parser does not signal any further normal

events except the END-OF-DOCUMENT event.

RELATED CONCEPTS

“XML-CODE” on page 508

RELATED TASKS

“Understanding the encoding of XML documents” on page 521

“Handling XML PARSE exceptions” on page 526

“Handling conflicts in code pages”

“Terminating XML parsing” on page 530

RELATED REFERENCES

“XML PARSE exceptions that allow continuation” on page 695

“XML PARSE exceptions that do not allow continuation” on page 699

“XMLPARSE” on page 356

Handling conflicts in code pages

The way that you handle encoding conflict exceptions depends on the setting of

the XMLPARSE compiler option.

528 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|

|

|
|
|
|
|
|

|

|
|

For XMLPARSE(XMLSS)

When the XMLPARSE(XMLSS) compiler option is in effect, the parser does not

continue for an encoding conflict or for any other type of exception. Any changes

that you make to the value of XML-CODE are ignored. The value in XML-CODE when

the parser returns to the XML PARSE statement is the original exception code.

Tip: When an encoding conflict exception occurs, the z/OS XML System Services

reason code is usually XRSN_PARM_ENCODING_SPEC_INVALID. However, you might get

a different reason code (such as one that indicates a bad character) if the conflict is

detected after parsing begins.

For XMLPARSE(COMPAT)

When the XMLPARSE(COMPAT) compiler option is in effect, your processing procedure

might be able to handle exceptions for document encoding conflicts. Exception

events in which the document item is alphanumeric and the exception code in

XML-CODE is between 100,001 and 165,535 indicate that the code page of the

document (as specified by its encoding declaration) conflicts with the external

code-page information.

In this special case, you can choose to parse with the code page of the document

by subtracting 100,000 from the value in XML-CODE. For instance, if XML-CODE

contains 101,140, the code page of the document is 1140. Alternatively, you can

choose to parse with the external code page by setting XML-CODE to zero before

returning to the parser.

The parser takes one of three actions after returning from a processing procedure

for a code-page conflict exception event:

v If you set XML-CODE to zero, the parser uses the external code page: the CODEPAGE

compiler option value.

v If you set XML-CODE to the code page of the document (that is, the original

XML-CODE value minus 100,000), the parser uses the code page of the document.

This is the only case where the parser continues when XML-CODE has a nonzero

value upon returning from a processing procedure.

v Otherwise, the parser stops processing the document and returns control to the

XML PARSE statement with an exception condition. XML-CODE contains the

exception code that was originally passed to the exception event.

RELATED CONCEPTS

“XML-CODE” on page 508

“How the XML parser handles errors” on page 527

RELATED TASKS

“Understanding the encoding of XML documents” on page 521

“Handling XML PARSE exceptions” on page 526

RELATED REFERENCES

“XML PARSE exceptions that allow continuation” on page 695

“XML PARSE exceptions that do not allow continuation” on page 699

“XMLPARSE” on page 356

Chapter 28. Processing XML input 529

|

|
|
|
|

|
|
|
|

|

|
|

Terminating XML parsing

You can terminate parsing immediately, without processing any remaining XML

document text, by setting XML-CODE to -1 in your processing procedure before

returning to the parser from any normal XML event (that is, any event other than

EXCEPTION). You can use this technique when you have seen enough of the

document or have detected some irregularity in the document that precludes

further meaningful processing.

In this case, the parser does not signal any further events, including the XML

exception event. Control transfers to the ON EXCEPTION phrase of the XML PARSE

statement, if specified. In the imperative statement of the ON EXCEPTION phrase, you

can test whether XML-CODE is -1, which indicates that you terminated parsing

deliberately. If you do not specify an ON EXCEPTION phrase, control transfers to the

end of the XML PARSE statement.

When the XMLPARSE(COMPAT) option is in effect, you can also terminate parsing after

any XML EXCEPTION event by returning to the parser without changing XML-CODE.

The result is similar to the result of deliberate termination except that the parser

returns to the XML PARSE statement with XML-CODE containing the original exception

code.

When the XMLPARSE(XMLSS) option is in effect, parsing always terminates after any

exception event.

RELATED CONCEPTS

“XML-CODE” on page 508

“How the XML parser handles errors” on page 527

RELATED TASKS

“Handling XML PARSE exceptions” on page 526

RELATED REFERENCES

XML-CODE (Enterprise COBOL Language Reference)

530 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|
|

|

|
|

Chapter 29. Producing XML output

You can produce XML output from a COBOL program by using the XML GENERATE

statement.

In the XML GENERATE statement, you identify the source and the output data items.

You can optionally also identify:

v A field to receive a count of the XML characters generated

v A code page in which the generated XML document is to be encoded

v A namespace for the generated document

v A namespace prefix to qualify the start and end tag of each element, if you

specify a namespace

v A statement to receive control if an exception occurs

Optionally, you can generate an XML declaration for the document, and can cause

eligible source data items to be expressed as attributes in the output rather than as

elements.

You can use the XML-CODE special register to determine the status of XML

generation.

After you transform COBOL data items to XML, you can use the resulting XML

output in various ways, such as deploying it in a Web service, passing it as a

message to WebSphere MQ, or transmitting it for subsequent conversion to a CICS

communication area.

Link-edit considerations: COBOL programs that contain the XML GENERATE

statement must be link-edited with AMODE 31.

RELATED TASKS

“Generating XML output”

“Controlling the encoding of generated XML output” on page 535

“Handling errors in generating XML output” on page 536

“Enhancing XML output” on page 541

RELATED REFERENCES

Extensible Markup Language (XML)

Generating XML output

To transform COBOL data to XML, use the XML GENERATE statement as in the

example below.

XML GENERATE XML-OUTPUT FROM SOURCE-REC

 COUNT IN XML-CHAR-COUNT

 ON EXCEPTION

 DISPLAY ’XML generation error ’ XML-CODE

 STOP RUN

 NOT ON EXCEPTION

 DISPLAY ’XML document was successfully generated.’

END-XML

© Copyright IBM Corp. 1991, 2007 531

|

|

|
|

|
|
|

http://www.w3.org/XML/

In the XML GENERATE statement, you first identify the data item (XML-OUTPUT in the

example above) that is to receive the XML output. Define the data item to be large

enough to contain the generated XML output, typically five to 10 times the size of

the COBOL source data depending on the length of its data-name or data-names.

In the DATA DIVISION, you can declare the receiving identifier as alphanumeric

(either an alphanumeric group item or an elementary item of category

alphanumeric) or as national (either a national group item or an elementary item

of category national).

Next you identify the source data item that is to be transformed to XML format

(SOURCE-REC in the example). The source data item can be an alphanumeric group

item, national group item, or elementary data item of class alphanumeric or

national.

Some COBOL data items are not transformed to XML, but are ignored. Subordinate

data items of an alphanumeric group item or national group item that you

transform to XML are ignored if they:

v Specify the REDEFINES clause, or are subordinate to such a redefining item

v Specify the RENAMES clause

These items in the source data item are also ignored when you generate XML:

v Elementary FILLER (or unnamed) data items

v Slack bytes inserted for SYNCHRONIZED data items

No extra white space (for example, new lines or indentation) is inserted to make

the generated XML more readable.

Optionally, you can code the COUNT IN phrase to obtain the number of XML

character encoding units that are filled during generation of the XML output. If the

receiving identifier has category national, the count is in UTF-16 character

encoding units. For all other encodings (including UTF-8), the count is in bytes.

You can use the count field as a reference modification length to obtain only that

portion of the receiving data item that contains the generated XML output. For

example, XML-OUTPUT(1:XML-CHAR-COUNT) references the first XML-CHAR-COUNT

character positions of XML-OUTPUT.

Consider the following program excerpt:

01 doc pic x(512).

01 docSize pic 9(9) binary.

01 G.

 05 A pic x(3) value "aaa".

 05 B.

 10 C pic x(3) value "ccc".

 10 D pic x(3) value "ddd".

 05 E pic x(3) value "eee".

 . . .

 XML Generate Doc from G

The code above generates the following XML document, in which A, B, and E are

expressed as child elements of element G, and C and D become child elements of

element B:

<G><A>aaa<C>ccc</C><D>ddd</D><E>eee</E></G>

532 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

Alternatively, you can specify the ATTRIBUTES phrase of the XML GENERATE

statement. The ATTRIBUTES phrase causes each elementary data item included in

the generated XML document (provided that such a data item has a name other

than FILLER and does not have an OCCURS clause in its data description entry) to be

expressed as an attribute of the XML element that corresponds to its immediately

superordinate data item, rather than as a child element.

For example, suppose that the XML GENERATE statement in the program excerpt

above had instead been coded as follows:

XML Generate Doc from G with attributes

The code would then generate the following XML document, in which A and E are

expressed as attributes of element G, and C and D become attributes of element B:

<G A="aaa" E="eee"><B C="ccc" D="ddd"></G>

Optionally, you can code the ENCODING phrase to specify the CCSID of the

generated XML document. If you do not use the ENCODING phrase, the document

encoding is determined by the category of the receiving data item and by the

CODEPAGE compiler option. For details, see the related task below about controlling

the encoding of generated XML output.

Optionally, you can code the XML-DECLARATION phrase to cause the generated XML

document to have an XML declaration that includes version information and an

encoding declaration. If the receiving data item is of category:

v National: The encoding declaration has the value UTF-16 (encoding="UTF-16").

v Alphanumeric: The encoding declaration is derived from the ENCODING phrase, if

specified, or from the CODEPAGE compiler option in effect for the program if the

ENCODING phrase is not specified.

For example, the program excerpt below specifies the XML-DECLARATION phrase of

XML GENERATE, and specifies encoding with CCSID 1208 (UTF-8):

01 Greeting.

 05 msg pic x(80) value ’Hello, world!’.

 . . .

 XML Generate Doc from Greeting

 with Encoding 1208

 with XML-declaration

 End-XML

The code above generates the following XML document:

<?xml version="1.0" encoding="UTF-8"?><Greeting><msg>Hello, world!</msg></Greeting>

If you do not code the XML-DECLARATION phrase, an XML declaration is not

generated.

Optionally, you can code the NAMESPACE phrase to specify a namespace for the

generated XML document. The namespace value must be a valid Uniform Resource

Identifier (URI), for example, a URL (Uniform Resource Locator); for further details,

see the related concept about URI syntax below.

Specify the namespace in an identifier or literal of either category national or

alphanumeric.

If you specify a namespace, but do not specify a namespace prefix (described

below), the namespace becomes the default namespace for the document. That is, the

Chapter 29. Producing XML output 533

|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|

|

|

|
|
|
|

|
|

|
|

namespace declared on the root element applies by default to each element name

in the document, including the root element.

For example, consider the following data definitions and XML GENERATE statement:

01 Greeting.

 05 msg pic x(80) value ’Hello, world!’.

01 NS pic x(20) value ’http://example’.

 . . .

 XML Generate Doc from Greeting

 namespace is NS

The resulting XML document has a default namespace (http://example), as

follows:

<Greeting xmlns="http://example"><msg>Hello, world!</msg></Greeting>

If you do not specify a namespace, the element names in the generated XML

document are not in any namespace.

Optionally, you can code the NAMESPACE-PREFIX phrase to specify a prefix to be

applied to the start and end tag of each element in the generated document. You

can specify a prefix only if you have specified a namespace as described above.

When the XML GENERATE statement is executed, the prefix value must be a valid

XML name, but without the colon (:); see the related reference about namespaces

for details. The value can have trailing spaces, which are removed before the prefix

is used.

Specify the namespace prefix in an identifier or literal of either category national or

alphanumeric.

It is recommended that the prefix be short, because it qualifies the start and end

tag of each element.

For example, consider the following data definitions and XML GENERATE statement:

01 Greeting.

 05 msg pic x(80) value ’Hello, world!’.

01 NS pic x(20) value ’http://example’.

01 NP pic x(5) value ’pre’.

 . . .

 XML Generate Doc from Greeting

 namespace is NS

 namespace-prefix is NP

The resulting XML document has an explicit namespace (http://example), and the

prefix pre is applied to the start and end tag of the elements Greeting and msg, as

follows:

<pre:Greeting xmlns:pre="http://example"><pre:msg>Hello, world!</pre:msg></pre:Greeting>

In addition, you can specify either or both of the following phrases to receive

control after generation of the XML document:

v ON EXCEPTION, to receive control if an error occurs during XML generation

v NOT ON EXCEPTION, to receive control if no error occurs

You can end the XML GENERATE statement with the explicit scope terminator

END-XML. Code END-XML to nest an XML GENERATE statement that has the ON

EXCEPTION or NOT ON EXCEPTION phrase in a conditional statement.

534 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

XML generation continues until either the COBOL source record has been

transformed to XML or an error occurs. If an error occurs, the results are as

follows:

v The XML-CODE special register contains a nonzero exception code.

v Control is passed to the ON EXCEPTION phrase, if specified, otherwise to the end

of the XML GENERATE statement.

If no error occurs during XML generation, the XML-CODE special register contains

zero, and control is passed to the NOT ON EXCEPTION phrase if specified or to the

end of the XML GENERATE statement otherwise.

“Example: generating XML” on page 537

RELATED CONCEPTS

Uniform Resource Identifier (URI): Generic Syntax

RELATED TASKS

“Controlling the encoding of generated XML output”

“Handling errors in generating XML output” on page 536

“Processing UTF-8 data” on page 137

RELATED REFERENCES

Classes and categories of data (Enterprise COBOL Language Reference)

XML GENERATE statement (Enterprise COBOL Language Reference)

Extensible Markup Language (XML)

Namespaces in XML 1.0

Controlling the encoding of generated XML output

When you generate XML output by using the XML GENERATE statement, you can

control the encoding of the output by the category of the data item that receives

the output, and by identifying the code page using the WITH ENCODING phrase of

the XML GENERATE statement.

If you specify the WITH ENCODING codepage phrase to designate the coded character

set identifer (CCSID) of the output document, codepage must specify an unsigned

integer data item or unsigned integer literal that identifies one of the code pages

supported for COBOL XML processing as shown in the related reference below

about coded character sets for XML documents:

v If the data item that receives the generated XML is of category national, the WITH

ENCODING phrase must specify 1200, the CCSID for Unicode UTF-16.

v If the receiving identifier is of category alphanumeric, the WITH ENCODING phrase

must specify CCSID 1208 or the CCSID of a supported EBCDIC code page.

If you do not code the WITH ENCODING phrase, the generated XML output is

encoded as shown in the table below.

 Table 74. Encoding of generated XML if the ENCODING phrase is omitted

If you define the receiving

XML identifier as: The generated XML output is encoded in:

Alphanumeric The code page specified by the CODEPAGE compiler option

in effect when the source was compiled

National UTF-16 big-endian (UTF-16BE, CCSID 1200)

Chapter 29. Producing XML output 535

|

|
|
|
|
|

|
|

|
|

|
|

|

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/XML/
http://www.w3.org/TR/REC-xml-names/

A byte order mark is not generated.

For details about how data items are converted to XML and how the XML element

names and attributes names are formed from the COBOL data-names, see the

related reference below about the operation of the XML GENERATE statement.

RELATED REFERENCES

“CODEPAGE” on page 309

“Coded character sets for XML documents” on page 522

Operation of XML GENERATE (Enterprise COBOL Language Reference)

Handling errors in generating XML output

When an error is detected during generation of XML output, an exception

condition exists. You can write code to check the XML-CODE special register, which

contains a numeric exception code that indicates the error type.

To handle errors, use either or both of the following phrases of the XML GENERATE

statement:

v ON EXCEPTION

v COUNT IN

If you code the ON EXCEPTION phrase in the XML GENERATE statement, control is

transferred to the imperative statement that you specify. You might code an

imperative statement, for example, to display the XML-CODE value. If you do not

code an ON EXCEPTION phrase, control is transferred to the end of the XML GENERATE

statement.

When an error occurs, one problem might be that the data item that receives the

XML output is not large enough. In that case, the XML output is not complete, and

the XML-CODE special register contains error code 400.

You can examine the generated XML output by doing these steps:

1. Code the COUNT IN phrase in the XML GENERATE statement.

The count field that you specify holds a count of the XML character encoding

units that are filled during XML generation. If you define the XML output as

national, the count is in UTF-16 character encoding units; for all other

encodings (including for UTF-8), the count is in bytes.

2. Use the count field as a reference modification length to refer to the substring

of the receiving data item that contains the XML characters that were generated

until the point when the error occurred.

For example, if XML-OUTPUT is the data item that receives the XML output, and

XML-CHAR-COUNT is the count field, then XML-OUTPUT(1:XML-CHAR-COUNT)

references the XML output.

Use the contents of XML-CODE to determine what corrective action to take. For a list

of the exceptions that can occur during XML generation, see the related reference

below.

RELATED TASKS

“Referring to substrings of data items” on page 107

RELATED REFERENCES

“XML GENERATE exceptions” on page 702

536 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|
|

|
|

Example: generating XML

The following example simulates the building of a purchase order in a group data

item, and generates an XML version of that purchase order.

Program XGFX uses XML GENERATE to produce XML output in elementary data item

xmlPO from the source record, group data item purchaseOrder. Elementary data

items in the source record are converted to character format as necessary, and the

characters are inserted as the values of XML attributes whose names are derived

from the data-names in the source record.

XGFX calls program Pretty, which uses the XML PARSE statement with processing

procedure p to format the XML output with new lines and indentation so that the

XML content can more easily be verified.

Program XGFX

Identification division.

 Program-id. XGFX.

Data division.

 Working-storage section.

 01 numItems pic 99 global.

 01 purchaseOrder global.

 05 orderDate pic x(10).

 05 shipTo.

 10 country pic xx value ’US’.

 10 name pic x(30).

 10 street pic x(30).

 10 city pic x(30).

 10 state pic xx.

 10 zip pic x(10).

 05 billTo.

 10 country pic xx value ’US’.

 10 name pic x(30).

 10 street pic x(30).

 10 city pic x(30).

 10 state pic xx.

 10 zip pic x(10).

 05 orderComment pic x(80).

 05 items occurs 0 to 20 times depending on numItems.

 10 item.

 15 partNum pic x(6).

 15 productName pic x(50).

 15 quantity pic 99.

 15 USPrice pic 999v99.

 15 shipDate pic x(10).

 15 itemComment pic x(40).

 01 numChars comp pic 999.

 01 xmlPO pic x(999).

Procedure division.

 m.

 Move 20 to numItems

 Move spaces to purchaseOrder

 Move ’1999-10-20’ to orderDate

 Move ’US’ to country of shipTo

 Move ’Alice Smith’ to name of shipTo

 Move ’123 Maple Street’ to street of shipTo

 Move ’Mill Valley’ to city of shipTo

 Move ’CA’ to state of shipTo

 Move ’90952’ to zip of shipTo

Chapter 29. Producing XML output 537

|

Move ’US’ to country of billTo

 Move ’Robert Smith’ to name of billTo

 Move ’8 Oak Avenue’ to street of billTo

 Move ’Old Town’ to city of billTo

 Move ’PA’ to state of billTo

 Move ’95819’ to zip of billTo

 Move ’Hurry, my lawn is going wild!’ to orderComment

 Move 0 to numItems

 Call ’addFirstItem’

 Call ’addSecondItem’

 Move space to xmlPO

 Xml generate xmlPO from purchaseOrder count in numChars

 xml-declaration attributes

 namespace ’http://www.example.com’ namespace-prefix ’po’

 Call ’pretty’ using xmlPO value numChars

 Goback

 .

Identification division.

 Program-id. ’addFirstItem’.

Procedure division.

 Add 1 to numItems

 Move ’872-AA’ to partNum(numItems)

 Move ’Lawnmower’ to productName(numItems)

 Move 1 to quantity(numItems)

 Move 148.95 to USPrice(numItems)

 Move ’Confirm this is electric’ to itemComment(numItems)

 Goback.

End program ’addFirstItem’.

Identification division.

 Program-id. ’addSecondItem’.

Procedure division.

 Add 1 to numItems

 Move ’926-AA’ to partNum(numItems)

 Move ’Baby Monitor’ to productName(numItems)

 Move 1 to quantity(numItems)

 Move 39.98 to USPrice(numItems)

 Move ’1999-05-21’ to shipDate(numItems)

 Goback.

End program ’addSecondItem’.

End program XGFX.

Program Pretty

Process xmlparse(xmlss), codepage(37)

Identification division.

 Program-id. Pretty.

Data division.

 Working-storage section.

 01 prettyPrint.

 05 pose pic 999.

 05 posd pic 999.

 05 depth pic 99.

 05 inx pic 999.

 05 elementName pic x(30).

 05 indent pic x(40).

 05 buffer pic x(998).

 05 lastitem pic 9.

 88 unknown value 0.

 88 xml-declaration value 1.

 88 element value 2.

 88 attribute value 3.

 88 charcontent value 4.

 Linkage section.

538 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 doc.

 2 pic x occurs 16384 times depending on len.

 1 len comp-5 pic 9(9).

Procedure division using doc value len.

 m.

 Move space to prettyPrint

 Move 0 to depth

 Move 1 to posd pose

 Xml parse doc processing procedure p

 Goback

 .

 p.

 Evaluate xml-event

 When ’VERSION-INFORMATION’

 String ’<?xml version="’ xml-text ’"’ delimited by size

 into buffer with pointer posd

 Set xml-declaration to true

 When ’ENCODING-DECLARATION’

 String ’ encoding="’ xml-text ’"’ delimited by size

 into buffer with pointer posd

 When ’STANDALONE-DECLARATION’

 String ’ standalone="’ xml-text ’"’ delimited by size

 into buffer with pointer posd

 When ’START-OF-ELEMENT’

 Evaluate true

 When xml-declaration

 String ’?>’ delimited by size into buffer

 with pointer posd

 Set unknown to true

 Perform printline

 Move 1 to posd

 When element

 String ’>’ delimited by size into buffer

 with pointer posd

 When attribute

 String ’">’ delimited by size into buffer

 with pointer posd

 End-evaluate

 If elementName not = space

 Perform printline

 End-if

 Move xml-text to elementName

 Add 1 to depth

 Move 1 to pose

 Set element to true

 If xml-namespace-prefix = space

 String ’<’ xml-text delimited by size

 into buffer with pointer pose

 Else

 String ’<’ xml-namespace-prefix ’:’ xml-text

 delimited by size into buffer with pointer pose

 End-if

 Move pose to posd

 When ’ATTRIBUTE-NAME’

 If element

 String ’ ’ delimited by size into buffer

 with pointer posd

 Else

 String ’" ’ delimited by size into buffer

 with pointer posd

 End-if

 If xml-namespace-prefix = space

 String xml-text ’="’ delimited by size into buffer

 with pointer posd

 Else

 String xml-namespace-prefix ’:’ xml-text ’="’

 delimited by size into buffer with pointer posd

Chapter 29. Producing XML output 539

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

End-if

 Set attribute to true

 When ’NAMESPACE-DECLARATION’

 If element

 String ’ ’ delimited by size into buffer

 with pointer posd

 Else

 String ’" ’ delimited by size into buffer

 with pointer posd

 End-if

 If xml-namespace-prefix = space

 String ’xmlns="’ xml-namespace delimited by size

 into buffer with pointer posd

 Else

 String ’xmlns:’ xml-namespace-prefix ’="’ xml-namespace

 delimited by size into buffer with pointer posd

 End-if

 Set attribute to true

 When ’ATTRIBUTE-CHARACTERS’

 String xml-text delimited by size into buffer

 with pointer posd

 When ’ATTRIBUTE-CHARACTER’

 String xml-text delimited by size into buffer

 with pointer posd

 When ’CONTENT-CHARACTERS’

 Evaluate true

 When element

 String ’>’ delimited by size into buffer

 with pointer posd

 When attribute

 String ’">’ delimited by size into buffer

 with pointer posd

 End-evaluate

 String xml-text delimited by size into buffer

 with pointer posd

 Set charcontent to true

 When ’CONTENT-CHARACTER’

 Evaluate true

 When element

 String ’>’ delimited by size into buffer

 with pointer posd

 When attribute

 String ’">’ delimited by size into buffer

 with pointer posd

 End-evaluate

 String xml-text delimited by size into buffer

 with pointer posd

 Set charcontent to true

 When ’END-OF-ELEMENT’

 Move space to elementName

 Evaluate true

 When element

 String ’/>’ delimited by size into buffer

 with pointer posd

 When attribute

 String ’"/>’ delimited by size into buffer

 with pointer posd

 When other

 If xml-namespace-prefix = space

 String ’</’ xml-text ’>’ delimited by size

 into buffer with pointer posd

 Else

 String ’</’ xml-namespace-prefix ’:’ xml-text ’>’

 delimited by size into buffer with pointer posd

 End-if

 End-evaluate

 Set unknown to true

540 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Perform printline

 Subtract 1 from depth

 Move 1 to posd

 When other

 Continue

 End-evaluate

 .

 printline.

 Compute inx = function max(0 2 * depth - 2) + posd - 1

 If inx > 120

 compute inx = 117 - function max(0 2 * depth - 2)

 If depth > 1

 Display indent(1:2 * depth - 2) buffer(1:inx) ’...’

 Else

 Display buffer(1:inx) ’...’

 End-if

 Else

 If depth > 1

 Display indent(1:2 * depth - 2) buffer(1:posd - 1)

 Else

 Display buffer(1:posd - 1)

 End-if

 End-if

 .

End program Pretty.

Output from program XGFX

<?xml version="1.0" encoding="IBM-037"?>

<po:purchaseOrder xmlns:po="http://www.example.com" orderDate="1999-10-20" orderComment="Hurry, my lawn is going wild!">

 <po:shipTo country="US" name="Alice Smith" street="123 Maple Street" city="Mill Valley" state="CA" zip="90952"/>

 <po:billTo country="US" name="Robert Smith" street="8 Oak Avenue" city="Old Town" state="PA" zip="95819"/>

 <po:items>

 <po:item partNum="872-AA" productName="Lawnmower" quantity="1" USPrice="148.95" shipDate=" " itemComment="Confirm...

 </po:items>

 <po:items>

 <po:item partNum="926-AA" productName="Baby Monitor" quantity="1" USPrice="39.98" shipDate="1999-05-21" itemComme...

 </po:items>

</po:purchaseOrder>

RELATED TASKS

Chapter 28, “Processing XML input,” on page 501

RELATED REFERENCES

“XMLPARSE” on page 356

Operation of XML GENERATE (Enterprise COBOL Language Reference)

Enhancing XML output

It might happen that the information that you want to express in XML format

already exists in a group item in the DATA DIVISION, but you are unable to use that

item directly to generate an XML document because of one or more factors.

For example:

v In addition to the required data, the item has subordinate data items that

contain values that are irrelevant to the XML output document.

v The names of the required data items are unsuitable for external presentation,

and are possibly meaningful only to programmers.

v The definition of the data is not of the required data type. Perhaps only the

redefinitions (which are ignored by the XML GENERATE statement) have the

appropriate format.

Chapter 29. Producing XML output 541

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

v The required data items are nested too deeply within irrelevant subordinate

groups. The XML output should be “flattened” rather than hierarchical as it

would be by default.

v The required data items are broken up into too many components, and should

be output as the content of the containing group.

v The group item contains the required information but in the wrong order.

There are various ways that you can deal with such situations. One possible

technique is to define a new data item that has the appropriate characteristics, and

move the required data to the appropriate fields of this new data item. However,

this approach is somewhat laborious and requires careful maintenance to keep the

original and new data items synchronized.

An alternative approach that has some advantages is to provide a redefinition of

the original group data item, and to generate the XML output from that

redefinition. To do so, start from the original set of data descriptions, and make

these changes:

v Exclude elementary data items from the generated XML either by renaming

them to FILLER or by deleting their names.

v Provide more meaningful and appropriate names for the selected elementary

items and for the group items that contain them.

v Remove unneeded intermediate group items to flatten the hierarchy.

v Specify different data types to obtain the desired trimming behavior.

v Choose a different order for the output by using a sequence of XML GENERATE

statements.

The safest way to accomplish these changes is to use another copy of the original

declarations accompanied by one or more REPLACE compiler-directing statements.

The example that is referenced below shows a way to do so.

“Example: enhancing XML output”

You might also find when you generate an XML document that some of the

element or attribute names and values contain hyphens. You might want to convert

the hyphens in the element and attribute names to underscores without changing

the hyphens that are in the element and attribute values. The example that is

referenced below shows a way to do so.

“Example: converting hyphens in element or attribute names to underscores” on

page 545

RELATED REFERENCES

Operation of XML GENERATE (Enterprise COBOL Language Reference)

Example: enhancing XML output

The following example shows how you can modify XML output.

Consider the following data structure. The XML that is generated from the

structure suffers from several problems that can be corrected.

01 CDR-LIFE-BASE-VALUES-BOX.

 15 CDR-LIFE-BASE-VAL-DATE PIC X(08).

 15 CDR-LIFE-BASE-VALUE-LINE OCCURS 2 TIMES.

 20 CDR-LIFE-BASE-DESC.

542 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|

25 CDR-LIFE-BASE-DESC1 PIC X(15).

 25 FILLER PIC X(01).

 25 CDR-LIFE-BASE-LIT PIC X(08).

 25 CDR-LIFE-BASE-DTE PIC X(08).

 20 CDR-LIFE-BASE-PRICE.

 25 CDR-LIFE-BP-SPACE PIC X(02).

 25 CDR-LIFE-BP-DASH PIC X(02).

 25 CDR-LIFE-BP-SPACE1 PIC X(02).

 20 CDR-LIFE-BASE-PRICE-ED REDEFINES

 CDR-LIFE-BASE-PRICE PIC $$$.$$.

 20 CDR-LIFE-BASE-QTY.

 25 CDR-LIFE-QTY-SPACE PIC X(08).

 25 CDR-LIFE-QTY-DASH PIC X(02).

 25 CDR-LIFE-QTY-SPACE1 PIC X(02).

 25 FILLER PIC X(02).

 20 CDR-LIFE-BASE-QTY-ED REDEFINES

 CDR-LIFE-BASE-QTY PIC ZZ,ZZZ,ZZZ.ZZZ.

 20 CDR-LIFE-BASE-VALUE PIC X(15).

 20 CDR-LIFE-BASE-VALUE-ED REDEFINES

 CDR-LIFE-BASE-VALUE

 PIC $(4),$$$,$$9.99.

 15 CDR-LIFE-BASE-TOT-VALUE-LINE.

 20 CDR-LIFE-BASE-TOT-VALUE PIC X(15).

When this data structure is populated with some sample values, and XML is

generated directly from it and then formatted using program Pretty (shown in

“Example: generating XML” on page 537), the result is as follows:

<CDR-LIFE-BASE-VALUES-BOX>

 <CDR-LIFE-BASE-VAL-DATE>01/02/03</CDR-LIFE-BASE-VAL-DATE>

 <CDR-LIFE-BASE-VALUE-LINE>

 <CDR-LIFE-BASE-DESC>

 <CDR-LIFE-BASE-DESC1>First</CDR-LIFE-BASE-DESC1>

 <CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>

 <CDR-LIFE-BASE-DTE>01/01/01</CDR-LIFE-BASE-DTE>

 </CDR-LIFE-BASE-DESC>

 <CDR-LIFE-BASE-PRICE>

 <CDR-LIFE-BP-SPACE>$2</CDR-LIFE-BP-SPACE>

 <CDR-LIFE-BP-DASH>3.</CDR-LIFE-BP-DASH>

 <CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>

 </CDR-LIFE-BASE-PRICE>

 <CDR-LIFE-BASE-QTY>

 <CDR-LIFE-QTY-SPACE> 1</CDR-LIFE-QTY-SPACE>

 <CDR-LIFE-QTY-DASH>23</CDR-LIFE-QTY-DASH>

 <CDR-LIFE-QTY-SPACE1>.0</CDR-LIFE-QTY-SPACE1>

 </CDR-LIFE-BASE-QTY>

 <CDR-LIFE-BASE-VALUE> $765.00</CDR-LIFE-BASE-VALUE>

 </CDR-LIFE-BASE-VALUE-LINE>

 <CDR-LIFE-BASE-VALUE-LINE>

 <CDR-LIFE-BASE-DESC>

 <CDR-LIFE-BASE-DESC1>Second</CDR-LIFE-BASE-DESC1>

 <CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>

 <CDR-LIFE-BASE-DTE>02/02/02</CDR-LIFE-BASE-DTE>

 </CDR-LIFE-BASE-DESC>

 <CDR-LIFE-BASE-PRICE>

 <CDR-LIFE-BP-SPACE>$3</CDR-LIFE-BP-SPACE>

 <CDR-LIFE-BP-DASH>4.</CDR-LIFE-BP-DASH>

 <CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>

 </CDR-LIFE-BASE-PRICE>

 <CDR-LIFE-BASE-QTY>

 <CDR-LIFE-QTY-SPACE> 2</CDR-LIFE-QTY-SPACE>

 <CDR-LIFE-QTY-DASH>34</CDR-LIFE-QTY-DASH>

 <CDR-LIFE-QTY-SPACE1>.0</CDR-LIFE-QTY-SPACE1>

 </CDR-LIFE-BASE-QTY>

 <CDR-LIFE-BASE-VALUE> $654.00</CDR-LIFE-BASE-VALUE>

 </CDR-LIFE-BASE-VALUE-LINE>

Chapter 29. Producing XML output 543

<CDR-LIFE-BASE-TOT-VALUE-LINE>

 <CDR-LIFE-BASE-TOT-VALUE>Very high!</CDR-LIFE-BASE-TOT-VALUE>

 </CDR-LIFE-BASE-TOT-VALUE-LINE>

</CDR-LIFE-BASE-VALUES-BOX>

This generated XML suffers from several problems:

v The element names are long and not very meaningful.

v There is unwanted data, for example, CDR-LIFE-BASE-LIT and

CDR-LIFE-BASE-DTE.

v Required data has an unnecessary parent. For example, CDR-LIFE-BASE-DESC1 has

parent CDR-LIFE-BASE-DESC.

v Other required fields are split into too many subcomponents. For example,

CDR-LIFE-BASE-PRICE has three subcomponents for one amount.

These and other characteristics of the XML output can be remedied by redefining

the storage as follows:

1 BaseValues redefines CDR-LIFE-BASE-VALUES-BOX.

 2 BaseValueDate pic x(8).

 2 BaseValueLine occurs 2 times.

 3 Description pic x(15).

 3 pic x(9).

 3 BaseDate pic x(8).

 3 BasePrice pic x(6) justified.

 3 BaseQuantity pic x(14) justified.

 3 BaseValue pic x(15) justified.

 2 TotalValue pic x(15).

The result of generating and formatting XML from the set of definitions of the data

values shown above is more usable:

<BaseValues>

 <BaseValueDate>01/02/03</BaseValueDate>

 <BaseValueLine>

 <Description>First</Description>

 <BaseDate>01/01/01</BaseDate>

 <BasePrice>$23.00</BasePrice>

 <BaseQuantity>123.000</BaseQuantity>

 <BaseValue>$765.00</BaseValue>

 </BaseValueLine>

 <BaseValueLine>

 <Description>Second</Description>

 <BaseDate>02/02/02</BaseDate>

 <BasePrice>$34.00</BasePrice>

 <BaseQuantity>234.000</BaseQuantity>

 <BaseValue>$654.00</BaseValue>

 </BaseValueLine>

 <TotalValue>Very high!</TotalValue>

</BaseValues>

You can redefine the original data definition directly, as shown above. However, it

is generally safer to use the original definition but to modify it suitably using the

text-manipulation capabilities of the compiler. An example is shown in the REPLACE

compiler-directing statement below. This REPLACE statement might appear

complicated, but it has the advantage of being self-maintaining if the original data

definitions are modified.

replace ==CDR-LIFE-BASE-VALUES-BOX== by

 ==BaseValues redefines CDR-LIFE-BASE-VALUES-BOX==

 ==CDR-LIFE-BASE-VAL-DATE== by ==BaseValueDate==

 ==CDR-LIFE-BASE-VALUE-LINE== by ==BaseValueLine==

 ==20 CDR-LIFE-BASE-DESC.== by ====

 ==CDR-LIFE-BASE-DESC1== by ==Description==

544 Enterprise COBOL for z/OS V4.1 Programming Guide

==CDR-LIFE-BASE-LIT== by ====

 ==CDR-LIFE-BASE-DTE== by ==BaseDate==

 ==20 CDR-LIFE-BASE-PRICE.== by ====

 ==25 CDR-LIFE-BP-SPACE PIC X(02).== by ====

 ==25 CDR-LIFE-BP-DASH PIC X(02).== by ====

 ==25 CDR-LIFE-BP-SPACE1 PIC X(02).== by ====

 ==CDR-LIFE-BASE-PRICE-ED== by ==BasePrice==

 ==REDEFINES CDR-LIFE-BASE-PRICE PIC $$$.$$.== by

 ==pic x(6) justified.==

 ==20 CDR-LIFE-BASE-QTY.

 25 CDR-LIFE-QTY-SPACE PIC X(08).

 25 CDR-LIFE-QTY-DASH PIC X(02).

 25 CDR-LIFE-QTY-SPACE1 PIC X(02).

 25 FILLER PIC X(02).== by ====

 ==CDR-LIFE-BASE-QTY-ED== by ==BaseQuantity==

 ==REDEFINES CDR-LIFE-BASE-QTY PIC ZZ,ZZZ,ZZZ.ZZZ.== by

 ==pic x(14) justified.==

 ==CDR-LIFE-BASE-VALUE-ED== by ==BaseValue==

 ==20 CDR-LIFE-BASE-VALUE PIC X(15).== by ====

 ==REDEFINES CDR-LIFE-BASE-VALUE PIC $(4),$$$,$$9.99.==

 by ==pic x(15) justified.==

 ==CDR-LIFE-BASE-TOT-VALUE-LINE. 20== by ====

 ==CDR-LIFE-BASE-TOT-VALUE== by ==TotalValue==.

The result of this REPLACE statement followed by a second instance of the original

set of definitions is similar to the suggested redefinition of group item BaseValues

shown above. This REPLACE statement illustrates a variety of techniques for

eliminating unwanted definitions and for modifying the definitions that should be

retained. Use whichever technique is appropriate for your situation.

RELATED REFERENCES

Operation of XML GENERATE (Enterprise COBOL Language Reference)

REPLACE statement (Enterprise COBOL Language Reference)

Example: converting hyphens in element or attribute names to

underscores

When you generate an XML document from a data structure whose items have

data-names that contain hyphens, the generated XML has element or attribute

names that contain hyphens. This example shows a way to convert such hyphens

to underscores without changing hyphens that occur in element or attribute values.

1 Customer-Record.

 2 Customer-Number pic 9(9).

 2 First-Name pic x(10).

 2 Last-Name pic x(20).

When the data structure above is populated with some sample values, and XML is

generated from it and then formatted using program Pretty (shown in “Example:

generating XML” on page 537), the result might be as follows:

<Customer-Record>

 <Customer-Number>12345</Customer-Number>

 <First-Name>John</First-Name>

 <Last-Name>Smith-Jones</Last-Name>

</Customer-Record>

The element names contain hyphens, and the content of the element Last-Name also

contains a hyphen.

Chapter 29. Producing XML output 545

|

|

Assuming that this XML document is the content of data item xmldoc, and that

charcnt has been set to the length of the XML document, you can change all the

hyphens in the element names to underscores but leave the element values

unchanged by using the following code:

1 xmldoc pic x(16384).

1 charcnt comp-5 pic 9(5).

1 pos comp-5 pic 9(5).

1 tagstate comp-5 pic 9 value zero.

1 quotestate comp-5 pic 9 value zero.

. . .

dash-to-underscore.

 perform varying pos from 1 by 1

 until pos > charcnt

 if xmldoc(pos:1) = ’<’

 move 1 to tagstate

 end-if

 if tagstate = 1

 if xmldoc(pos:1) = ’"’

 if quotestate = 0

 move 1 to quotestate

 else

 move 0 to quotestate

 end-if

 end-if

 end-if

 if tagstate = 1 and quotestate = 0 and xmldoc(pos:1) = ’-’

 move ’_’ to xmldoc(pos:1)

 else

 if xmldoc(pos:1) = ’>’

 move 0 to tagstate

 end-if

 end-if

 end-perform.

The revised XML document in data item xmldoc has underscores instead of

hyphens in the element names, but hyphens in the element values have been

preserved, as shown below:

<Customer_Record>

 <Customer_Number>12345</Customer_Number>

 <First_Name>John</First_Name>

 <Last_Name>Smith-Jones</Last_Name>

</Customer_Record>

546 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|
|
|
|
|
|
|
|
|
|

Part 6. Developing object-oriented programs

Chapter 30. Writing object-oriented programs 549

Example: accounts 550

Subclasses 551

Defining a class 552

CLASS-ID paragraph for defining a class . . . 554

REPOSITORY paragraph for defining a class 554

Example: external class-names and Java

packages 555

WORKING-STORAGE SECTION for defining

class instance data 556

Example: defining a class 557

Defining a class instance method 557

METHOD-ID paragraph for defining a class

instance method 558

INPUT-OUTPUT SECTION for defining a class

instance method 559

DATA DIVISION for defining a class instance

method 559

PROCEDURE DIVISION for defining a class

instance method 560

Overriding an instance method 561

Overloading an instance method 562

Coding attribute (get and set) methods 563

Example: coding a get method 563

Example: defining a method 564

Account class 564

Check class 565

Defining a client 566

REPOSITORY paragraph for defining a client 567

DATA DIVISION for defining a client 568

Choosing LOCAL-STORAGE or

WORKING-STORAGE 569

Comparing and setting object references . . . 569

Invoking methods (INVOKE) 570

USING phrase for passing arguments . . . 571

Example: passing conforming object-reference

arguments from a COBOL client 572

RETURNING phrase for obtaining a returned

value 573

Invoking overridden superclass methods . . 574

Creating and initializing instances of classes . . 574

Instantiating Java classes 575

Instantiating COBOL classes 576

Freeing instances of classes 576

Example: defining a client 577

Defining a subclass 577

CLASS-ID paragraph for defining a subclass 578

REPOSITORY paragraph for defining a subclass 579

WORKING-STORAGE SECTION for defining

subclass instance data 580

Defining a subclass instance method 580

Example: defining a subclass (with methods) 580

CheckingAccount class (subclass of Account) 581

Defining a factory section 582

WORKING-STORAGE SECTION for defining

factory data 582

Defining a factory method 583

Hiding a factory or static method 584

Invoking factory or static methods 585

Example: defining a factory (with methods) . . 585

Account class 586

CheckingAccount class (subclass of Account) 588

Check class 589

TestAccounts client program 590

Output produced by the TestAccounts client

program 590

Wrapping procedure-oriented COBOL programs 591

Structuring OO applications 591

Examples: COBOL applications that run using

the java command 592

Displaying a message 592

Echoing the input strings 592

Chapter 31. Communicating with Java methods 595

Accessing JNI services 595

Handling Java exceptions 596

Example: handling Java exceptions 597

Managing local and global references 598

Deleting, saving, and freeing local references 598

Java access controls 599

Sharing data with Java 600

Coding interoperable data types in COBOL and

Java 600

Declaring arrays and strings for Java 601

Manipulating Java arrays 602

Example: processing a Java int array . . . 604

Manipulating Java strings 604

Example: J2EE client written in COBOL 607

COBOL client (ConverterClient.cbl) 607

Java client (ConverterClient.java) 609

© Copyright IBM Corp. 1991, 2007 547

548 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 30. Writing object-oriented programs

When you write an object-oriented (OO) program, you have to determine what

classes you need and the methods and data that the classes need to do their work.

OO programs are based on objects (entities that encapsulate state and behavior) and

their classes, methods, and data. A class is a template that defines the state and the

capabilities of an object. Usually a program creates and works with multiple object

instances (or simply, instances) of a class, that is, multiple objects that are members

of that class. The state of each instance is stored in data known as instance data,

and the capabilities of each instance are called instance methods. A class can define

data that is shared by all instances of the class, known as factory or static data, and

methods that are supported independently of any object instance, known as factory

or static methods.

Using Enterprise COBOL, you can:

v Define classes, with methods and data implemented in COBOL.

v Create instances of Java and COBOL classes.

v Invoke methods on Java and COBOL objects.

v Write classes that inherit from Java classes or other COBOL classes.

v Define and invoke overloaded methods.

In Enterprise COBOL programs, you can call the services provided by the Java

Native Interface (JNI) to obtain Java-oriented capabilities in addition to the basic

OO capabilities available directly in the COBOL language.

In Enterprise COBOL classes, you can code CALL statements to interface with

procedural COBOL programs. Thus COBOL class definition syntax can be

especially useful for writing wrapper classes for procedural COBOL logic, enabling

existing COBOL code to be accessed from Java.

Java code can create instances of COBOL classes, invoke methods of these classes,

and can extend COBOL classes.

It is recommended that you develop and run OO COBOL programs and Java

programs in the z/OS UNIX environment.

Restrictions:

v COBOL class definitions and methods cannot contain EXEC SQL statements and

cannot be compiled using the SQL compiler option.

v COBOL class definitions and methods cannot contain EXEC CICS statements, and

cannot be run in a CICS environment. They cannot be compiled using the CICS

compiler option.

“Example: accounts” on page 550

RELATED TASKS

“Defining a class” on page 552

“Defining a class instance method” on page 557

“Defining a client” on page 566

“Defining a subclass” on page 577

© Copyright IBM Corp. 1991, 2007 549

“Defining a factory section” on page 582

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Enterprise COBOL Compiler and Runtime Migration Guide (Upgrading IBM

 COBOL source programs)

RELATED REFERENCES

The Java Language Specification

Example: accounts

Consider the example of a bank in which customers can open accounts and make

deposits to and withdrawals from their accounts. You could represent an account

by a general-purpose class, called Account. Because there are many customers,

multiple instances of the Account class could exist simultaneously.

After you determine the classes that you need, the next step is to determine the

methods that the classes need to do their work. An Account class must provide the

following services:

v Open the account.

v Get the current balance.

v Deposit to the account.

v Withdraw from the account.

v Report account status.

The following methods for an Account class meet those needs:

init Open an account and assign it an account number.

getBalance

Return the current balance of the account.

credit Deposit a given sum to the account.

debit Withdraw a given sum from the account.

print Display account number and account balance.

As you design an Account class and its methods, you discover the need for the

class to keep some instance data. Typically, an Account object needs the following

instance data:

v Account number

v Account balance

v Customer information: name, address, home phone, work phone, social security

number, and so forth

To keep the example simple, however, it is assumed that the account number and

account balance are the only instance data that the Account class needs.

Diagrams are helpful when you design classes and methods. The following

diagram depicts a first attempt at a design of the Account class:

550 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

The words in parentheses in the diagrams are the names of the instance data, and

the words that follow a number and colon are the names of the instance methods.

The structure below shows how the classes relate to each other, and is known as

the inheritance hierarchy. The Account class inherits directly from the class

java.lang.Object.

Subclasses

In the account example, Account is a general-purpose class. However, a bank could

have many different types of accounts: checking accounts, savings accounts,

mortgage loans, and so forth, all of which have all the general characteristics of

accounts but could have additional characteristics not shared by all types of

accounts.

For example, a CheckingAccount class could have, in addition to the account

number and account balance that all accounts have, a check fee that applies to each

check written on the account. A CheckingAccount class also needs a method to

process checks (that is, to read the amount, debit the payer, credit the payee, and

so forth). So it makes sense to define CheckingAccount as a subclass of Account,

and to define in the subclass the additional instance data and instance methods

that the subclass needs.

As you design the CheckingAccount class, you discover the need for a class that

models checks. An instance of class Check needs, at a minimum, instance data for

payer, payee, and the check amount.

Many additional classes (and database and transaction-processing logic) would

need to be designed in a real-world OO account system, but have been omitted to

keep the example simple. The updated inheritance diagram is shown below.

Chapter 30. Writing object-oriented programs 551

A number and colon with no method-name following them indicate that the

method with that number is inherited from the superclass.

Multiple inheritance: You cannot use multiple inheritance in OO COBOL

applications. All classes that you define must have exactly one parent, and

java.lang.Object must be at the root of every inheritance hierarchy. The class

structure of any object-oriented system defined in an OO COBOL application is

thus a tree.

“Example: defining a method” on page 564

RELATED TASKS

“Defining a class”

“Defining a class instance method” on page 557

“Defining a subclass” on page 577

Defining a class

A COBOL class definition consists of an IDENTIFICATION DIVISION and ENVIRONMENT

DIVISION, followed by an optional factory definition and optional object definition,

followed by an END CLASS marker.

 Table 75. Structure of class definitions

Section Purpose Syntax

IDENTIFICATION

DIVISION

(required)

Name the class. Provide

inheritance information

for it.

“CLASS-ID paragraph for defining a class”

on page 554 (required)
AUTHOR paragraph (optional)

INSTALLATION paragraph (optional)

DATE-WRITTEN paragraph (optional)

DATE-COMPILED paragraph (optional)

552 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 75. Structure of class definitions (continued)

Section Purpose Syntax

ENVIRONMENT

DIVISION

(required)

Describe the computing

environment. Relate

class-names used within

the class definition to the

corresponding external

class-names known

outside the compilation

unit.

CONFIGURATION SECTION (required)

“REPOSITORY paragraph for defining a

class” on page 554 (required)
SOURCE-COMPUTER paragraph (optional)

OBJECT-COMPUTER paragraph (optional)

SPECIAL-NAMES paragraph (optional)

Factory definition

(optional)

Define data to be shared

by all instances of the

class, and methods

supported independently

of any object instance.

 IDENTIFICATION DIVISION.

 FACTORY.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

* (Factory data here)

 PROCEDURE DIVISION.

* (Factory methods here)

 END FACTORY.

Object definition

(optional)

Define instance data and

instance methods.

 IDENTIFICATION DIVISION.

 OBJECT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

* (Instance data here)

 PROCEDURE DIVISION.

* (Instance methods here)

 END OBJECT.

If you specify the SOURCE-COMPUTER, OBJECT-COMPUTER, or SPECIAL-NAMES paragraphs

in a class CONFIGURATION SECTION, they apply to the entire class definition

including all methods that the class introduces.

A class CONFIGURATION SECTION can consist of the same entries as a program

CONFIGURATION SECTION, except that a class CONFIGURATION SECTION cannot contain

an INPUT-OUTPUT SECTION. You define an INPUT-OUTPUT SECTION only in the

individual methods that require it rather than defining it at the class level.

As shown above, you define instance data and methods in the DATA DIVISION and

PROCEDURE DIVISION, respectively, within the OBJECT paragraph of the class

definition. In classes that require data and methods that are to be associated with

the class itself rather than with individual object instances, define a separate DATA

DIVISION and PROCEDURE DIVISION within the FACTORY paragraph of the class

definition.

Each COBOL class definition must be in a separate source file.

“Example: defining a class” on page 557

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 556

“Defining a class instance method” on page 557

“Defining a subclass” on page 577

“Defining a factory section” on page 582

“Describing the computing environment” on page 7

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

RELATED REFERENCES

COBOL class definition structure (Enterprise COBOL Language Reference)

Chapter 30. Writing object-oriented programs 553

CLASS-ID paragraph for defining a class

Use the CLASS-ID paragraph in the IDENTIFICATION DIVISION to name a class and

provide inheritance information for it.

Identification Division. Required

Class-id. Account inherits Base. Required

Use the CLASS-ID paragraph to identify these classes:

v The class that you are defining (Account in the example above).

v The immediate superclass from which the class that you are defining inherits its

characteristics. The superclass can be implemented in Java or COBOL.

In the example above, inherits Base indicates that the Account class inherits

methods and data from the class known within the class definition as Base. It is

recommended that you use the name Base in your OO COBOL programs to refer

to java.lang.Object.

A class-name must use single-byte characters and must conform to the normal

rules of formation for a COBOL user-defined word.

Use the REPOSITORY paragraph in the CONFIGURATION SECTION of the ENVIRONMENT

DIVISION to associate the superclass name (Base in the example) with the name of

the superclass as it is known externally (java.lang.Object for Base). You can

optionally also specify the name of the class that you are defining (Account in the

example) in the REPOSITORY paragraph and associate it with its corresponding

external class-name.

You must derive all classes directly or indirectly from the java.lang.Object class.

RELATED TASKS

“REPOSITORY paragraph for defining a class”

RELATED REFERENCES

CLASS-ID paragraph (Enterprise COBOL Language Reference)

User-defined words (Enterprise COBOL Language Reference)

REPOSITORY paragraph for defining a class

Use the REPOSITORY paragraph to declare to the compiler that the specified words

are class-names when you use them within a class definition, and to optionally

relate the class-names to the corresponding external class-names (the class-names

as they are known outside the compilation unit).

External class-names are case sensitive and must conform to Java rules of

formation. For example, in the Account class definition you might code this:

Environment Division. Required

Configuration Section. Required

Repository. Required

 Class Base is "java.lang.Object" Required

 Class Account is "Account". Optional

The REPOSITORY paragraph entries indicate that the external class-names of the

classes referred to as Base and Account within the class definition are

java.lang.Object and Account, respectively.

554 Enterprise COBOL for z/OS V4.1 Programming Guide

In the REPOSITORY paragraph, you must code an entry for each class-name that you

explicitly reference in the class definition. For example:

v Base

v A superclass from which the class that you are defining inherits

v The classes that you reference in methods within the class definition

In a REPOSITORY paragraph entry, you must specify the external class-name if the

name contains non-COBOL characters. You must also specify the external

class-name for any referenced class that is part of a Java package. For such a class,

specify the external class-name as the fully qualified name of the package,

followed by period (.), followed by the simple name of the Java class. For

example, the Object class is part of the java.lang package, so specify its external

name as java.lang.Object as shown above.

An external class-name that you specify in the REPOSITORY paragraph must be an

alphanumeric literal that conforms to the rules of formation for a fully qualified

Java class-name.

If you do not include the external class-name in a REPOSITORY paragraph entry, the

external class-name is formed from the class-name in the following manner:

v The class-name is converted to uppercase.

v Each hyphen is changed to zero.

v The first character, if a digit, is changed:

– 1-9 are changed to A-I.

– 0 is changed to J.

In the example above, class Account is known externally as Account (in mixed

case) because the external name is spelled using mixed case.

You can optionally include in the REPOSITORY paragraph an entry for the class that

you are defining (Account in this example). You must include an entry for the class

that you are defining if the external class-name contains non-COBOL characters, or

to specify a fully package-qualified class-name if the class is to be part of a Java

package.

“Example: external class-names and Java packages”

RELATED TASKS

“Declaring arrays and strings for Java” on page 601

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

The Java Language Specification (Identifiers)

The Java Language Specification (Packages)

Example: external class-names and Java packages

The following example shows how external class-names are determined from

entries in a REPOSITORY paragraph.

Environment division.

Configuration section.

Repository.

 Class Employee is "com.acme.Employee"

 Class JavaException is "java.lang.Exception"

 Class Orders.

Chapter 30. Writing object-oriented programs 555

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#40625
http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384

The local class-names (the class-names as used within the class definition), the Java

packages that contain the classes, and the associated external class-names are as

shown in the table below.

 Local class-name Java package External class-name

Employee com.acme com.acme.Employee

JavaException java.lang java.lang.Exception

Orders (unnamed) ORDERS

The external class-name (the name after the class-name and optional IS in the

REPOSITORY paragraph entry) is composed of the fully qualified name of the

package (if any) followed by a period, followed by the simple name of the class.

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 554

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

WORKING-STORAGE SECTION for defining class instance

data

Use the WORKING-STORAGE SECTION in the DATA DIVISION of the OBJECT paragraph to

describe the instance data that a COBOL class needs, that is, the data to be allocated

for each instance of the class.

The OBJECT keyword, which you must immediately precede with an

IDENTIFICATION DIVISION declaration, indicates the beginning of the definitions of

the instance data and instance methods for the class. For example, the definition of

the instance data for the Account class might look like this:

Identification division.

Object.

 Data division.

 Working-storage section.

 01 AccountNumber pic 9(6).

 01 AccountBalance pic S9(9) value zero.

 . . .

End Object.

The instance data is allocated when an object instance is created, and exists until

garbage collection of the instance by the Java run time.

You can initialize simple instance data by using VALUE clauses as shown above. You

can initialize more complex instance data by coding customized methods to create

and initialize instances of classes.

COBOL instance data is equivalent to Java private nonstatic member data. No

other class or subclass (nor factory method in the same class, if any) can reference

COBOL instance data directly. Instance data is global to all instance methods that

the OBJECT paragraph defines. If you want to make instance data accessible from

outside the OBJECT paragraph, define attribute (get or set) instance methods for

doing so.

The syntax of the WORKING-STORAGE SECTION for instance data declaration is

generally the same as in a program, with these exceptions:

556 Enterprise COBOL for z/OS V4.1 Programming Guide

v You cannot use the EXTERNAL attribute.

v You can use the GLOBAL attribute, but it has no effect.

RELATED TASKS

“Creating and initializing instances of classes” on page 574

“Freeing instances of classes” on page 576

“Defining a factory method” on page 583

“Coding attribute (get and set) methods” on page 563

Example: defining a class

The following example shows a first attempt at the definition of the Account class,

excluding method definitions.

 cbl dll,thread,pgmname(longmixed)

 Identification Division.

 Class-id. Account inherits Base.

 Environment Division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class Account is "Account".

*

 Identification division.

 Object.

 Data division.

 Working-storage section.

 01 AccountNumber pic 9(6).

 01 AccountBalance pic S9(9) value zero.

*

 Procedure Division.

*

* (Instance method definitions here)

*

 End Object.

*

 End class Account.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Defining a client” on page 566

Defining a class instance method

Define COBOL instance methods in the PROCEDURE DIVISION of the OBJECT paragraph

of a class definition. An instance method defines an operation that is supported for

each object instance of a class.

A COBOL instance method definition consists of four divisions (like a COBOL

program), followed by an END METHOD marker.

Chapter 30. Writing object-oriented programs 557

Table 76. Structure of instance method definitions

Division Purpose Syntax

IDENTIFICATION

(required)

Name a method. “METHOD-ID paragraph for defining a

class instance method” (required)
AUTHOR paragraph (optional)

INSTALLATION paragraph (optional)

DATE-WRITTEN paragraph (optional)

DATE-COMPILED paragraph (optional)

ENVIRONMENT

(optional)

Relate the file-names used

in a method to the

corresponding file-names

known to the operating

system.

“INPUT-OUTPUT SECTION for defining a

class instance method” on page 559

(optional)

DATA (optional) Define external files.

Allocate a copy of the

data.

“DATA DIVISION for defining a class

instance method” on page 559 (optional)

PROCEDURE

(optional)

Code the executable

statements to complete

the service provided by

the method.

“PROCEDURE DIVISION for defining a

class instance method” on page 560

(optional)

Definition: The signature of a method consists of the name of the method and the

number and type of its formal parameters. (You define the formal parameters of a

COBOL method in the USING phrase of the method’s PROCEDURE DIVISION header.)

Within a class definition, you do not need to make each method-name unique, but

you do need to give each method a unique signature. (You overload methods by

giving them the same name but a different signature.)

COBOL instance methods are equivalent to Java public nonstatic methods.

“Example: defining a method” on page 564

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 560

“Overloading an instance method” on page 562

“Overriding an instance method” on page 561

“Invoking methods (INVOKE)” on page 570

“Defining a subclass instance method” on page 580

“Defining a factory method” on page 583

METHOD-ID paragraph for defining a class instance method

Use the METHOD-ID paragraph to name an instance method. Immediately precede

the METHOD-ID paragraph with an IDENTIFICATION DIVISION declaration to indicate

the beginning of the method definition.

For example, the definition of the credit method in the Account class begins like

this:

Identification Division.

Method-id. "credit".

558 Enterprise COBOL for z/OS V4.1 Programming Guide

Code the method-name as an alphanumeric or national literal. The method-name is

processed in a case-sensitive manner and must conform to the rules of formation

for a Java method-name.

Other Java or COBOL methods or programs (that is, clients) use the method-name

to invoke a method.

RELATED TASKS

“Invoking methods (INVOKE)” on page 570

“Using national data (Unicode) in COBOL” on page 126

RELATED REFERENCES

The Java Language Specification (Meaning of method names)

The Java Language Specification (Identifiers)

METHOD-ID paragraph (Enterprise COBOL Language Reference)

INPUT-OUTPUT SECTION for defining a class instance method

The ENVIRONMENT DIVISION of an instance method can have only one section, the

INPUT-OUTPUT SECTION. This section relates the file-names used in a method

definition to the corresponding file-names as they are known to the operating

system.

For example, if the Account class defined a method that read information from a

file, the Account class might have an INPUT-OUTPUT SECTION that is coded like this:

Environment Division.

Input-Output Section.

File-Control.

 Select account-file Assign AcctFile.

The syntax for the INPUT-OUTPUT SECTION of a method is the same as the syntax for

the INPUT-OUTPUT SECTION of a program.

RELATED TASKS

“Describing the computing environment” on page 7

RELATED REFERENCES

INPUT-OUTPUT section (Enterprise COBOL Language Reference)

DATA DIVISION for defining a class instance method

The DATA DIVISION of an instance method consists of any of the following four

sections: FILE SECTION, LOCAL-STORAGE SECTION, WORKING-STORAGE SECTION, and

LINKAGE SECTION.

FILE SECTION

The same as a program FILE SECTION, except that a method FILE SECTION

can define EXTERNAL files only.

LOCAL-STORAGE SECTION

A separate copy of the LOCAL-STORAGE data is allocated for each invocation

of the method, and is freed on return from the method. The method

LOCAL-STORAGE SECTION is similar to a program LOCAL-STORAGE SECTION.

 If you specify the VALUE clause on a data item, the item is initialized to that

value on each invocation of the method.

Chapter 30. Writing object-oriented programs 559

http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#21652
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#40625

WORKING-STORAGE SECTION

A single copy of the WORKING-STORAGE data is allocated. The data persists in

its last-used state until the run unit ends. The same copy of the data is

used whenever the method is invoked, regardless of the invoking object or

thread. The method WORKING-STORAGE SECTION is similar to a program

WORKING-STORAGE SECTION.

 If you specify the VALUE clause on a data item, the item is initialized to that

value on the first invocation of the method. You can specify the EXTERNAL

clause for the data items.

LINKAGE SECTION

The same as a program LINKAGE SECTION.

If you define a data item with the same name in both the DATA DIVISION of an

instance method and the DATA DIVISION of the OBJECT paragraph, a reference in the

method to that data-name refers only to the method data item. The method DATA

DIVISION takes precedence.

RELATED TASKS

“Describing the data” on page 13

“Sharing data by using the EXTERNAL clause” on page 473

RELATED REFERENCES

DATA DIVISION overview (Enterprise COBOL Language Reference)

PROCEDURE DIVISION for defining a class instance method

Code the executable statements to implement the service that an instance method

provides in the PROCEDURE DIVISION of the instance method.

You can code most COBOL statements in the PROCEDURE DIVISION of a method that

you can code in the PROCEDURE DIVISION of a program. You cannot, however, code

the following statements in a method:

v ENTRY

v EXIT PROGRAM

v The following obsolete elements of Standard COBOL 85:

– ALTER

– GOTO without a specified procedure-name

– SEGMENT-LIMIT

– USE FOR DEBUGGING

Additionally, because you must compile all COBOL class definitions with the

THREAD compiler option, you cannot use SORT or MERGE statements in a COBOL

method.

You can code the EXIT METHOD or GOBACK statement in an instance method to return

control to the invoking client. Both statements have the same effect. If you specify

the RETURNING phrase upon invocation of the method, the EXIT METHOD or GOBACK

statement returns the value of the data item to the invoking client.

An implicit EXIT METHOD is generated as the last statement in the PROCEDURE

DIVISION of each method.

560 Enterprise COBOL for z/OS V4.1 Programming Guide

You can specify STOP RUN in a method; doing so terminates the entire run unit

including all threads executing within it.

You must terminate a method definition with an END METHOD marker. For example,

the following statement marks the end of the credit method:

End method "credit".

USING phrase for obtaining passed arguments: Specify the formal parameters to

a method, if any, in the USING phrase of the method’s PROCEDURE DIVISION header.

You must specify that the arguments are passed BY VALUE. Define each parameter

as a level-01 or level-77 item in the method’s LINKAGE SECTION. The data type of

each parameter must be one of the types that are interoperable with Java.

RETURNING phrase for returning a value: Specify the data item to be returned

as the method result, if any, in the RETURNING phrase of the method’s PROCEDURE

DIVISION header. Define the data item as a level-01 or level-77 item in the method’s

LINKAGE SECTION. The data type of the return value must be one of the types that

are interoperable with Java.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

“Overriding an instance method”

“Overloading an instance method” on page 562

“Comparing and setting object references” on page 569

“Invoking methods (INVOKE)” on page 570

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

RELATED REFERENCES

“THREAD” on page 350

The procedure division header (Enterprise COBOL Language Reference)

Overriding an instance method

An instance method that is defined in a subclass is said to override an inherited

instance method that would otherwise be accessible in the subclass if the two

methods have the same signature.

To override a superclass instance method m1 in a COBOL subclass, define an

instance method m1 in the subclass that has the same name and whose PROCEDURE

DIVISION USING phrase (if any) has the same number and type of formal

parameters as the superclass method has. (If the superclass method is implemented

in Java, you must code formal parameters that are interoperable with the data

types of the corresponding Java parameters.) When a client invokes m1 on an

instance of the subclass, the subclass method rather than the superclass method is

invoked.

For example, the Account class defines a method debit whose LINKAGE SECTION

and PROCEDURE DIVISION header look like this:

Linkage section.

01 inDebit pic S9(9) binary.

Procedure Division using by value inDebit.

If you define a CheckingAccount subclass and want it to have a debit method that

overrides the debit method defined in the Account superclass, define the subclass

method with exactly one input parameter also specified as pic S9(9) binary. If a

Chapter 30. Writing object-oriented programs 561

client invokes debit using an object reference to a CheckingAccount instance, the

CheckingAccount debit method (rather than the debit method in the Account

superclass) is invoked.

The presence or absence of a method return value and the data type of the return

value used in the PROCEDURE DIVISION RETURNING phrase (if any) must be identical

in the subclass instance method and the overridden superclass instance method.

An instance method must not override a factory method in a COBOL superclass

nor a static method in a Java superclass.

“Example: defining a method” on page 564

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 560

“Coding interoperable data types in COBOL and Java” on page 600

“Invoking methods (INVOKE)” on page 570

“Invoking overridden superclass methods” on page 574

“Defining a subclass” on page 577

“Hiding a factory or static method” on page 584

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)

Overloading an instance method

Two methods that are supported in a class (whether defined in the class or

inherited from a superclass) are said to be overloaded if they have the same name

but different signatures.

You overload methods when you want to enable clients to invoke different

versions of a method, for example, to initialize data using different sets of

parameters.

To overload a method, define a method whose PROCEDURE DIVISION USING phrase

(if any) has a different number or type of formal parameters than an identically

named method that is supported in the same class. For example, the Account class

defines an instance method init that has exactly one formal parameter. The

LINKAGE SECTION and PROCEDURE DIVISION header of the init method look like this:

Linkage section.

01 inAccountNumber pic S9(9) binary.

Procedure Division using by value inAccountNumber.

Clients invoke this method to initialize an Account instance with a given account

number (and a default account balance of zero) by passing exactly one argument

that matches the data type of inAccountNumber.

But the Account class could define, for example, a second instance method init

that has an additional formal parameter that allows the opening account balance to

also be specified. The LINKAGE SECTION and PROCEDURE DIVISION header of this init

method could look like this:

Linkage section.

01 inAccountNumber pic S9(9) binary.

01 inBalance pic S9(9) binary.

Procedure Division using by value inAccountNumber

 inBalance.

562 Enterprise COBOL for z/OS V4.1 Programming Guide

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745

Clients could invoke either init method by passing arguments that match the

signature of the desired method.

The presence or absence of a method return value does not have to be consistent in

overloaded methods, and the data type of the return value given in the PROCEDURE

DIVISION RETURNING phrase (if any) does not have to be identical in overloaded

methods.

You can overload factory methods in exactly the same way that you overload

instance methods.

The rules for overloaded method definition and resolution of overloaded method

invocations are based on the corresponding rules for Java.

RELATED TASKS

“Invoking methods (INVOKE)” on page 570

“Defining a factory method” on page 583

RELATED REFERENCES

The Java Language Specification (Overloading)

Coding attribute (get and set) methods

You can provide access to an instance variable X from outside the class in which X

is defined by coding accessor (get) and mutator (set) methods for X.

Instance variables in COBOL are private: the class that defines instance variables

fully encapsulates them, and only the instance methods defined in the same OBJECT

paragraph can access them directly. Normally a well-designed object-oriented

application does not need to access instance variables from outside the class.

COBOL does not directly support the concept of a public instance variable as

defined in Java and other object-oriented languages, nor the concept of a class

attribute as defined by CORBA. (A CORBA attribute is an instance variable that has

an automatically generated get method for accessing the value of the variable, and

an automatically generated set method for modifying the value of the variable if

the variable is not read-only.)

“Example: coding a get method”

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 556

“Processing the data” on page 19

Example: coding a get method

The following example shows the definition in the Account class of an instance

method, getBalance, to return the value of the instance variable AccountBalance to

a client. getBalance and AccountBalance are defined in the OBJECT paragraph of the

Account class definition.

 Identification Division.

 Class-id. Account inherits Base.

* (ENVIRONMENT DIVISION not shown)

* (FACTORY paragraph not shown)

*

 Identification division.

 Object.

Chapter 30. Writing object-oriented programs 563

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#227768

Data division.

 Working-storage section.

 01 AccountBalance pic S9(9) value zero.

* (Other instance data not shown)

*

 Procedure Division.

*

 Identification Division.

 Method-id. "getBalance".

 Data division.

 Linkage section.

 01 outBalance pic S9(9) binary.

*

 Procedure Division returning outBalance.

 Move AccountBalance to outBalance.

 End method "getBalance".

*

* (Other instance methods not shown)

 End Object.

*

 End class Account.

Example: defining a method

The following example adds to the previous example the instance method

definitions of the Account class, and shows the definition of the Java Check class.

(The previous example was “Example: defining a class” on page 557.)

Account class

 cbl dll,thread,pgmname(longmixed)

 Identification Division.

 Class-id. Account inherits Base.

 Environment Division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class Account is "Account".

*

* (FACTORY paragraph not shown)

*

 Identification division.

 Object.

 Data division.

 Working-storage section.

 01 AccountNumber pic 9(6).

 01 AccountBalance pic S9(9) value zero.

*

 Procedure Division.

*

* init method to initialize the account:

 Identification Division.

 Method-id. "init".

 Data division.

 Linkage section.

 01 inAccountNumber pic S9(9) binary.

 Procedure Division using by value inAccountNumber.

 Move inAccountNumber to AccountNumber.

 End method "init".

*

* getBalance method to return the account balance:

 Identification Division.

 Method-id. "getBalance".

 Data division.

 Linkage section.

564 Enterprise COBOL for z/OS V4.1 Programming Guide

01 outBalance pic S9(9) binary.

 Procedure Division returning outBalance.

 Move AccountBalance to outBalance.

 End method "getBalance".

*

* credit method to deposit to the account:

 Identification Division.

 Method-id. "credit".

 Data division.

 Linkage section.

 01 inCredit pic S9(9) binary.

 Procedure Division using by value inCredit.

 Add inCredit to AccountBalance.

 End method "credit".

*

* debit method to withdraw from the account:

 Identification Division.

 Method-id. "debit".

 Data division.

 Linkage section.

 01 inDebit pic S9(9) binary.

 Procedure Division using by value inDebit.

 Subtract inDebit from AccountBalance.

 End method "debit".

*

* print method to display formatted account number and balance:

 Identification Division.

 Method-id. "print".

 Data division.

 Local-storage section.

 01 PrintableAccountNumber pic ZZZZZZ999999.

 01 PrintableAccountBalance pic $$$$,$$$,$$9CR.

 Procedure Division.

 Move AccountNumber to PrintableAccountNumber

 Move AccountBalance to PrintableAccountBalance

 Display " Account: " PrintableAccountNumber

 Display " Balance: " PrintableAccountBalance.

 End method "print".

*

 End Object.

*

 End class Account.

Check class

/**

 * A Java class for check information

 */

public class Check {

 private CheckingAccount payer;

 private Account payee;

 private int amount;

 public Check(CheckingAccount inPayer, Account inPayee, int inAmount) {

 payer=inPayer;

 payee=inPayee;

 amount=inAmount;

 }

 public int getAmount() {

 return amount;

 }

 public Account getPayee() {

 return payee;

 }

}

Chapter 30. Writing object-oriented programs 565

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Defining a client

A program or method that requests services from one or more methods in a class

is called a client of that class.

In a COBOL or Java client, you can:

v Create object instances of Java and COBOL classes.

v Invoke instance methods on Java and COBOL objects.

v Invoke COBOL factory methods and Java static methods.

In a COBOL client, you can also call services provided by the Java Native Interface

(JNI).

A COBOL client program consists of the usual four divisions:

 Table 77. Structure of COBOL clients

Division Purpose Syntax

IDENTIFICATION

(required)

Name a client. Code as usual, except that a client program

must be:

v Recursive (declared RECURSIVE in the

PROGRAM-ID paragraph)

v Thread-enabled (compiled with the

THREAD option, and conforming to the

coding guidelines for threaded

applications)

ENVIRONMENT

(required)

Describe the computing

environment. Relate

class-names used in the

client to the

corresponding external

class-names known

outside the compilation

unit.

CONFIGURATION SECTION (required)

“REPOSITORY paragraph for defining a

client” on page 567 (required)

DATA (optional) Describe the data that the

client needs.

“DATA DIVISION for defining a client” on

page 568 (optional)

PROCEDURE

(optional)

Create instances of classes,

manipulate object

reference data items, and

invoke methods.

Code using INVOKE, IF, and SET statements.

Because you must compile all COBOL programs that contain object-oriented syntax

or that interoperate with Java with the THREAD compiler option, you cannot use the

following language elements in a COBOL client:

v SORT or MERGE statements

v Nested programs

Any programs that you compile with the THREAD compiler option must be

recursive. You must specify the RECURSIVE clause in the PROGRAM-ID paragraph of

each OO COBOL client program.

566 Enterprise COBOL for z/OS V4.1 Programming Guide

“Example: defining a client” on page 577

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491

Chapter 31, “Communicating with Java methods,” on page 595

“Coding interoperable data types in COBOL and Java” on page 600

“Creating and initializing instances of classes” on page 574

“Comparing and setting object references” on page 569

“Invoking methods (INVOKE)” on page 570

“Invoking factory or static methods” on page 585

RELATED REFERENCES

“THREAD” on page 350

REPOSITORY paragraph for defining a client

Use the REPOSITORY paragraph to declare to the compiler that the specified words

are class-names when you use them in a COBOL client, and to optionally relate the

class-names to the corresponding external class-names (the class-names as they are

known outside the compilation unit).

External class-names are case sensitive, and must conform to Java rules of

formation. For example, in a client program that uses the Account and Check

classes you might code this:

Environment division. Required

Configuration section. Required

 Source-Computer. IBM-390.

 Object-Computer. IBM-390.

Repository. Required

 Class Account is "Account"

 Class Check is "Check".

The REPOSITORY paragraph entries indicate that the external class-names of the

classes referred to as Account and Check within the client are Account and Check,

respectively.

In the REPOSITORY paragraph, you must code an entry for each class-name that you

explicitly reference in the client. In a REPOSITORY paragraph entry, you must specify

the external class-name if the name contains non-COBOL characters.

You must specify the external class-name for any referenced class that is part of a

Java package. For such a class, specify the external class-name as the fully qualified

name of the package, followed by period (.), followed by the simple name of the

Java class.

An external class-name that you specify in the REPOSITORY paragraph must be an

alphanumeric literal that conforms to the rules of formation for a fully qualified

Java class-name.

If you do not include the external class-name in a REPOSITORY paragraph entry, the

external class-name is formed from the class-name in the same manner as it is

when an external class-name is not included in a REPOSITORY paragraph entry in a

class definition. In the example above, class Account and class Check are known

externally as Account and Check (in mixed case), respectively, because the external

names are spelled using mixed case.

Chapter 30. Writing object-oriented programs 567

The SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES paragraphs of the

CONFIGURATION SECTION are optional.

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 554

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

The Java Language Specification (Identifiers)

The Java Language Specification (Packages)

DATA DIVISION for defining a client

You can use any of the sections of the DATA DIVISION to describe the data that the

client needs.

Data Division.

Local-storage section.

01 anAccount usage object reference Account.

01 aCheckingAccount usage object reference CheckingAccount.

01 aCheck usage object reference Check.

01 payee usage object reference Account.

. . .

Because a client references classes, it needs one or more special data items called

object references, that is, references to instances of those classes. All requests to

instance methods require an object reference to an instance of a class in which the

method is supported (that is, either defined or available by inheritance). You code

object references to refer to instances of Java classes using the same syntax as you

use to refer to instances of COBOL classes. In the example above, the phrase usage

object reference indicates an object reference data item.

All four object references in the code above are called typed object references

because a class-name appears after the OBJECT REFERENCE phrase. A typed object

reference can refer only to an instance of the class named in the OBJECT REFERENCE

phrase or to one of its subclasses. Thus anAccount can refer to instances of the

Account class or one of its subclasses, but cannot refer to instances of any other

class. Similarly, aCheck can refer only to instances of the Check class or any

subclasses that it might have.

Another type of object reference, not shown above, does not have a class-name

after the OBJECT REFERENCE phrase. Such a reference is called a universal object

reference, which means that it can refer to instances of any class. Avoid coding

universal object references, because they are interoperable with Java in only very

limited circumstances (when used in the RETURNING phrase of the INVOKE

class-name NEW . . . statement).

You must define, in the REPOSITORY paragraph of the CONFIGURATION SECTION,

class-names that you use in the OBJECT REFERENCE phrase.

RELATED TASKS

“Choosing LOCAL-STORAGE or WORKING-STORAGE” on page 569

“Coding interoperable data types in COBOL and Java” on page 600

“Invoking methods (INVOKE)” on page 570

“REPOSITORY paragraph for defining a client” on page 567

568 Enterprise COBOL for z/OS V4.1 Programming Guide

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#40625
http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#60384

RELATED REFERENCES

RETURNING phrase (Enterprise COBOL Language Reference)

Choosing LOCAL-STORAGE or WORKING-STORAGE

You can in general use the WORKING-STORAGE SECTION to define working data that a

client program needs. However, if the program could simultaneously run on

multiple threads, you might instead want to define the data in the LOCAL-STORAGE

SECTION.

Each thread has access to a separate copy of LOCAL-STORAGE data but shares access

to a single copy of WORKING-STORAGE data. If you define the data in the

WORKING-STORAGE SECTION, you need to synchronize access to the data or ensure

that no two threads can access it simultaneously.

RELATED TASKS

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491

Comparing and setting object references

You can compare object references by coding conditional statements or a call to the

JNI service IsSameObject, and you can set object references by using the SET

statement.

For example, code either IF statement below to check whether the object reference

anAccount refers to no object instance:

If anAccount = Null . . .

If anAccount = Nulls . . .

You can code a call to IsSameObject to check whether two object references, object1

and object2, refer to the same object instance or whether each refers to no object

instance. To ensure that the arguments and return value are interoperable with

Java and to establish addressability to the callable service, code the following data

definitions and statements before the call to IsSameObject:

Local-storage Section.

. . .

01 is-same Pic X.

 88 is-same-false Value X’00’.

 88 is-same-true Value X’01’ Through X’FF’.

Linkage Section.

 Copy JNI.

Procedure Division.

 Set Address Of JNIEnv To JNIEnvPtr

 Set Address Of JNINativeInterface To JNIEnv

 Call IsSameObject Using By Value JNIEnvPtr object1 object2

 Returning is-same

 If is-same-true . . .

Within a method you can check whether an object reference refers to the object

instance on which the method was invoked by coding a call to IsSameObject that

compares the object reference and SELF.

You can instead invoke the Java equals method (inherited from java.lang.Object) to

determine whether two object references refer to the same object instance.

You can make an object reference refer to no object instance by using the SET

statement. For example:

Set anAccount To Null.

Chapter 30. Writing object-oriented programs 569

You can also make one object reference refer to the same instance as another object

reference does by using the SET statement. For example:

Set anotherAccount To anAccount.

This SET statement causes anotherAccount to refer to the same object instance as

anAccount does. If the receiver (anotherAccount) is a universal object reference, the

sender (anAccount) can be either a universal or a typed object reference. If the

receiver is a typed object reference, the sender must be a typed object reference

bound to the same class as the receiver or to one of its subclasses.

Within a method you can make an object reference refer to the object instance on

which the method was invoked by setting it to SELF. For example:

Set anAccount To Self.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

“Accessing JNI services” on page 595

RELATED REFERENCES

The Java Native Interface (IsSameObject)

Invoking methods (INVOKE)

In a Java client, you can create object instances of classes that were implemented in

COBOL and invoke methods on those objects using standard Java syntax. In a

COBOL client, you can invoke methods that are defined in Java or COBOL classes

by coding the INVOKE statement.

Invoke Account "createAccount"

 using by value 123456

 returning anAccount

Invoke anAccount "credit" using by value 500.

The first example INVOKE statement above uses the class-name Account to invoke a

method called createAccount. This method must be either defined or inherited in

the Account class, and must be one of the following types:

v A Java static method

v A COBOL factory method

The phrase using by value 123456 indicates that 123456 is an input argument to

the method, and is passed by value. The input argument 123456 and the returned

data item anAccount must conform to the definition of the formal parameters and

return type, respectively, of the (possibly overloaded) createAccount method.

The second INVOKE statement uses the returned object reference anAccount to

invoke the instance method credit, which is defined in the Account class. The

input argument 500 must conform to the definition of the formal parameters of the

(possibly overloaded) credit method.

Code the name of the method to be invoked either as a literal or as an identifier

whose value at run time matches the method-name in the signature of the target

method. The method-name must be an alphanumeric or national literal or a

category alphabetic, alphanumeric, or national data item, and is interpreted in a

case-sensitive manner.

570 Enterprise COBOL for z/OS V4.1 Programming Guide

http://java.sun.com/j2se/1.3/docs/guide/jni/spec/functions.doc.html#16514

When you code an INVOKE statement using an object reference (as in the second

example statement above), the statement begins with one of the following two

forms:

Invoke objRef "literal-name" . . .

Invoke objRef identifier-name . . .

When the method-name is an identifier, you must define the object reference

(objRef) as USAGE OBJECT REFERENCE with no specified type, that is, as a universal

object reference.

If an invoked method is not supported in the class to which the object reference

refers, a severity-3 Language Environment condition is raised at run time unless

you code the ON EXCEPTION phrase in the INVOKE statement.

You can use the optional scope terminator END-INVOKE with the INVOKE statement.

The INVOKE statement does not set the RETURN-CODE special register.

RELATED TASKS

“USING phrase for passing arguments”

“RETURNING phrase for obtaining a returned value” on page 573

“PROCEDURE DIVISION for defining a class instance method” on page 560

“Coding interoperable data types in COBOL and Java” on page 600

“Invoking overridden superclass methods” on page 574

“Invoking factory or static methods” on page 585

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

USING phrase for passing arguments

If you pass arguments to a method, specify the arguments in the USING phrase of

the INVOKE statement. Code the data type of each argument so that it conforms to

the type of the corresponding formal parameter in the intended target method.

 Table 78. Conformance of arguments in a COBOL client

Programming

language of the

target method

Is the argument

an object

reference?

Then code the DATA

DIVISION definition of

the argument as: Restriction

COBOL No The same as the

definition of the

corresponding formal

parameter

Java No Interoperable with the

corresponding Java

parameter

COBOL or Java Yes An object reference that is

typed to the same class as

the corresponding

parameter in the target

method

In a COBOL client (unlike

in a Java client), the class

of an argument cannot be

a subclass of the class of

the corresponding

parameter.

Chapter 30. Writing object-oriented programs 571

See the example referenced below for a way to make an object-reference argument

conform to the type of a corresponding formal parameter by using the SET

statement or the REDEFINES clause.

“Example: passing conforming object-reference arguments from a COBOL client”

If the target method is overloaded, the data types of the arguments are used to

select from among the methods that have the same name.

You must specify that the arguments are passed BY VALUE. In other words, the

arguments are not affected by any change to the corresponding formal parameters

in the invoked method.

The data type of each argument must be one of the types that are interoperable

with Java.

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 560

“Overloading an instance method” on page 562

“Coding interoperable data types in COBOL and Java” on page 600

“Passing data” on page 463

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

SET statement (Enterprise COBOL Language Reference)

REDEFINES clause (Enterprise COBOL Language Reference)

Example: passing conforming object-reference arguments from a

COBOL client

The following example shows a way to make an object-reference argument in a

COBOL client conform to the expected class of the corresponding formal parameter

in an invoked method.

Class C defines a method M that has one parameter, a reference to an object of

class java.lang.Object:

 . . .

 Class-id. C inherits Base.

 . . .

 Repository.

 Class Base is "java.lang.Object"

 Class JavaObject is "java.lang.Object".

 Identification division.

 Factory.

 . . .

 Procedure Division.

 Identification Division.

 Method-id. "M".

 Data division.

 Linkage section.

 01 obj object reference JavaObject.

 Procedure Division using by value obj.

 . . .

To invoke method M, a COBOL client must pass an argument that is a reference to

an object of class java.lang.Object. The client below defines a data item aString,

which cannot be passed as an argument to M because aString is a reference to an

object of class java.lang.String. The client first uses a SET statement to assign

572 Enterprise COBOL for z/OS V4.1 Programming Guide

aString to a data item, anObj, that is a reference to an object of class

java.lang.Object. (This SET statement is legal because java.lang.String is a subclass

of java.lang.Object.) The client then passes anObj as the argument to M.

 . . .

 Repository.

 Class jstring is "java.lang.String"

 Class JavaObject is "java.lang.Object".

 Data division.

 Local-storage section.

 01 aString object reference jstring.

 01 anObj object reference JavaObject.

*

 Procedure division.

 . . . (statements here assign a value to aString)

 Set anObj to aString

 Invoke C "M"

 using by value anObj

Instead of using a SET statement to obtain anObj as a reference to an object of class

java.lang.Object, the client could define aString and anObj with the REDEFINES

clause as follows:

 . . .

 01 aString object reference jstring.

 01 anObj redefines aString object reference JavaObject.

After the client assigns a value to data item aString (that is, a valid reference to an

object of class java.lang.String), anObj can be passed as the argument to M. For an

example of the use of the REDEFINES clause to obtain argument conformance, see

the example referenced below.

“Example: J2EE client written in COBOL” on page 607

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

“PROCEDURE DIVISION for defining a class instance method” on page 560

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

SET statement (Enterprise COBOL Language Reference)

REDEFINES clause (Enterprise COBOL Language Reference)

RETURNING phrase for obtaining a returned value

If a data item is to be returned as the method result, specify the item in the

RETURNING phrase of the INVOKE statement. Define the returned item in the DATA

DIVISION of the client.

The item that you specify in the RETURNING phrase of the INVOKE statement must

conform to the type returned by the target method, as shown in the table below.

 Table 79. Conformance of the returned data item in a COBOL client

Programming

language of the

target method

Is the returned item

an object reference?

Then code the DATA DIVISION definition of

the returned item as:

COBOL No The same as the definition of the RETURNING

item in the target method

Java No Interoperable with the returned Java data

item

Chapter 30. Writing object-oriented programs 573

Table 79. Conformance of the returned data item in a COBOL client (continued)

Programming

language of the

target method

Is the returned item

an object reference?

Then code the DATA DIVISION definition of

the returned item as:

COBOL or Java Yes An object reference that is typed to the

same class as the object reference that is

returned by the target method

In all cases, the data type of the returned value must be one of the types that are

interoperable with Java.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Invoking overridden superclass methods

Sometimes within a class you need to invoke an overridden superclass method

instead of invoking a method that has the same signature and is defined in the

current class.

For example, suppose that the CheckingAccount class overrides the debit instance

method defined in its immediate superclass, Account. You could invoke the

Account debit method within a method in the CheckingAccount class by coding

this statement:

Invoke Super "debit" Using By Value amount.

You would define amount as PIC S9(9) BINARY to match the signature of the debit

methods.

The CheckingAccount class overrides the print method that is defined in the

Account class. Because the print method has no formal parameters, a method in

the CheckingAccount class could invoke the superclass print method with this

statement:

Invoke Super "print".

The keyword SUPER indicates that you want to invoke a superclass method rather

than a method in the current class. (SUPER is an implicit reference to the object used

in the invocation of the currently executing method.)

“Example: accounts” on page 550

RELATED TASKS

“Overriding an instance method” on page 561

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Creating and initializing instances of classes

Before you can use the instance methods that are defined in a Java or COBOL

class, you must first create an instance of the class.

574 Enterprise COBOL for z/OS V4.1 Programming Guide

To create a new instance of class class-name and to obtain a reference object-reference

to the created object, code a statement of the following form, where object-reference

is defined in the DATA DIVISION of the client:

INVOKE class-name NEW . . . RETURNING object-reference

When you code the INVOKE . . . NEW statement within a method, and the use of

the returned object reference is not limited to the duration of the method

invocation, you must convert the returned object reference to a global reference by

calling the JNI service NewGlobalRef:

Call NewGlobalRef using by value JNIEnvPtr object-reference

 returning object-reference

If you do not call NewGlobalRef, the returned object reference is only a local

reference, which means that it is automatically freed after the method returns.

RELATED TASKS

“Instantiating Java classes”

“Instantiating COBOL classes” on page 576

“Accessing JNI services” on page 595

“Managing local and global references” on page 598

“DATA DIVISION for defining a client” on page 568

“Invoking methods (INVOKE)” on page 570

“Coding interoperable data types in COBOL and Java” on page 600

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Instantiating Java classes

To instantiate a Java class, invoke any parameterized constructor that the class

supports by coding the USING phrase in the INVOKE . . . NEW statement

immediately before the RETURNING phrase, passing BY VALUE the number and types

of arguments that match the signature of the constructor.

The data type of each argument must be one of the types that are interoperable

with Java. To invoke the default (parameterless) constructor, omit the USING phrase.

For example, to create an instance of the Check class, initialize its instance data,

and obtain reference aCheck to the Check instance created, you could code this

statement in a COBOL client:

Invoke Check New

 using by value aCheckingAccount, payee, 125

 returning aCheck

RELATED TASKS

“Invoking methods (INVOKE)” on page 570

“Coding interoperable data types in COBOL and Java” on page 600

RELATED REFERENCES

VALUE clause (Enterprise COBOL Language Reference)

INVOKE statement (Enterprise COBOL Language Reference)

Chapter 30. Writing object-oriented programs 575

Instantiating COBOL classes

To instantiate a COBOL class, you can specify either a typed or universal object

reference in the RETURNING phrase of the INVOKE . . . NEW statement. However,

you cannot code the USING phrase: the instance data is initialized as specified in the

VALUE clauses in the class definition.

Thus the INVOKE . . . NEW statement is useful for instantiating COBOL classes that

have only simple instance data. For example, the following statement creates an

instance of the Account class, initializes the instance data as specified in VALUE

clauses in the WORKING-STORAGE SECTION of the OBJECT paragraph of the Account

class definition, and provides reference outAccount to the new instance:

Invoke Account New returning outAccount

To make it possible to initialize COBOL instance data that cannot be initialized

using VALUE clauses alone, when designing a COBOL class you must define a

parameterized creation method in the FACTORY paragraph and a parameterized

initialization method in the OBJECT paragraph:

1. In the parameterized factory creation method, do these steps:

a. Code INVOKE class-name NEW RETURNING objectRef to create an instance of

class-name and to give initial values to the instance data items that have

VALUE clauses.

b. Invoke the parameterized initialization method on the instance (objectRef),

passing BY VALUE the arguments that were supplied to the factory method.
2. In the initialization method, code logic to complete the instance data

initialization using the values supplied through the formal parameters.

To create an instance of the COBOL class and properly initialize it, the client

invokes the parameterized factory method, passing BY VALUE the desired

arguments. The object reference returned to the client is a local reference. If the

client code is within a method, and the use of the returned object reference is not

limited to the duration of that method, the client code must convert the returned

object reference to a global reference by calling the JNI service NewGlobalRef.

“Example: defining a factory (with methods)” on page 585

RELATED TASKS

“Accessing JNI services” on page 595

“Managing local and global references” on page 598

“Invoking methods (INVOKE)” on page 570

“Defining a factory section” on page 582

RELATED REFERENCES

VALUE clause (Enterprise COBOL Language Reference)

INVOKE statement (Enterprise COBOL Language Reference)

Freeing instances of classes

You do not need to take any action to free individual object instances of any class.

No syntax is available for doing so. The Java runtime system automatically

performs garbage collection, that is, it reclaims the memory for objects that are no

longer in use.

576 Enterprise COBOL for z/OS V4.1 Programming Guide

There could be times, however, when you need to explicitly free local or global

references to objects within a native COBOL client in order to permit garbage

collection of the referenced objects to occur.

RELATED TASKS

“Managing local and global references” on page 598

Example: defining a client

The following example shows a small client program of the Account class.

The program does this:

v Invokes a factory method createAccount to create an Account instance with a

default balance of zero

v Invokes the instance method credit to deposit $500 to the new account

v Invokes the instance method print to display the account status

(The Account class was shown in “Example: defining a method” on page 564.)

 cbl dll,thread,pgmname(longmixed)

 Identification division.

 Program-id. "TestAccounts" recursive.

 Environment division.

 Configuration section.

 Repository.

 Class Account is "Account".

 Data Division.

* Working data is declared in LOCAL-STORAGE instead of

* WORKING-STORAGE so that each thread has its own copy:

 Local-storage section.

 01 anAccount usage object reference Account.

*

 Procedure division.

 Test-Account-section.

 Display "Test Account class"

* Create account 123456 with 0 balance:

 Invoke Account "createAccount"

 using by value 123456

 returning anAccount

* Deposit 500 to the account:

 Invoke anAccount "credit" using by value 500

 Invoke anAccount "print"

 Display space

*

 Stop Run.

 End program "TestAccounts".

“Example: defining a factory (with methods)” on page 585

RELATED TASKS

“Defining a factory method” on page 583

“Invoking factory or static methods” on page 585

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Defining a subclass

You can make a class (called a subclass, derived class, or child class) a

specialization of another class (called a superclass, base class, or parent class).

Chapter 30. Writing object-oriented programs 577

A subclass inherits the methods and instance data of its superclasses, and is related

to its superclasses by an is-a relationship. For example, if subclass P inherits from

superclass Q, and subclass Q inherits from superclass S, then an instance of P is an

instance of Q and also (by transitivity) an instance of S. An instance of P inherits

the methods and data of Q and S.

Using subclasses has several advantages:

v Reuse of code: Through inheritance, a subclass can reuse methods that already

exist in a superclass.

v Specialization: In a subclass you can add new methods to handle cases that the

superclass does not handle. You can also add new data items that the superclass

does not need.

v Change in action: A subclass can override a method that it inherits from a

superclass by defining a method of the same signature as that in the superclass.

When you override a method, you might make only a few minor changes or

completely change what the method does.

Restriction: You cannot use multiple inheritance in your COBOL programs. Each

COBOL class that you define must have exactly one immediate superclass that is

implemented in Java or COBOL, and each class must be derived directly or

indirectly from java.lang.Object. The semantics of inheritance are as defined by

Java.

The structure and syntax of a subclass definition are identical to those of a class

definition: Define instance data and methods in the DATA DIVISION and PROCEDURE

DIVISION, respectively, within the OBJECT paragraph of the subclass definition. In

subclasses that require data and methods that are to be associated with the

subclass itself rather than with individual object instances, define a separate DATA

DIVISION and PROCEDURE DIVISION within the FACTORY paragraph of the subclass

definition.

COBOL instance data is private. A subclass can access the instance data of a

COBOL superclass only if the superclass defines attribute (get or set) instance

methods for doing so.

“Example: accounts” on page 550

“Example: defining a subclass (with methods)” on page 580

RELATED TASKS

“Defining a class” on page 552

“Overriding an instance method” on page 561

“Coding attribute (get and set) methods” on page 563

“Defining a subclass instance method” on page 580

“Defining a factory section” on page 582

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)

COBOL class definition structure (Enterprise COBOL Language Reference)

CLASS-ID paragraph for defining a subclass

Use the CLASS-ID paragraph to name the subclass and indicate from which

immediate Java or COBOL superclass it inherits its characteristics.

Identification Division. Required

Class-id. CheckingAccount inherits Account. Required

578 Enterprise COBOL for z/OS V4.1 Programming Guide

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745

In the example above, CheckingAccount is the subclass being defined.

CheckingAccount inherits all the methods of the class known within the subclass

definition as Account. CheckingAccount methods can access Account instance data

only if the Account class provides attribute (get or set) methods for doing so.

You must specify the name of the immediate superclass in the REPOSITORY

paragraph in the CONFIGURATION SECTION of the ENVIRONMENT DIVISION. You can

optionally associate the superclass name with the name of the class as it is known

externally. You can also specify the name of the subclass that you are defining

(here, CheckingAccount) in the REPOSITORY paragraph and associate it with its

corresponding external class-name.

RELATED TASKS

“CLASS-ID paragraph for defining a class” on page 554

“Coding attribute (get and set) methods” on page 563

“REPOSITORY paragraph for defining a subclass”

REPOSITORY paragraph for defining a subclass

Use the REPOSITORY paragraph to declare to the compiler that the specified words

are class-names when you use them within a subclass definition, and to optionally

relate the class-names to the corresponding external class-names (the class-names

as they are known outside the compilation unit).

For example, in the CheckingAccount subclass definition, these REPOSITORY

paragraph entries indicate that the external class-names of the classes referred to as

CheckingAccount, Check, and Account within the subclass definition are

CheckingAccount, Check, and Account, respectively.

Environment Division. Required

Configuration Section. Required

Repository. Required

 Class CheckingAccount is "CheckingAccount" Optional

 Class Check is "Check" Required

 Class Account is "Account". Required

In the REPOSITORY paragraph, you must code an entry for each class-name that you

explicitly reference in the subclass definition. For example:

v A user-defined superclass from which the subclass that you are defining inherits

v The classes that you reference in methods within the subclass definition

The rules for coding REPOSITORY paragraph entries in a subclass are identical to

those for coding REPOSITORY paragraph entries in a class.

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 554

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

Chapter 30. Writing object-oriented programs 579

WORKING-STORAGE SECTION for defining subclass instance

data

Use the WORKING-STORAGE SECTION in the DATA DIVISION of the subclass OBJECT

paragraph to describe any instance data that the subclass needs in addition to the

instance data defined in its superclasses. Use the same syntax that you use to

define instance data in a class.

For example, the definition of the instance data for the CheckingAccount subclass

of the Account class might look like this:

Identification division.

Object.

 Data division.

 Working-storage section.

 01 CheckFee pic S9(9) value 1.

 . . .

End Object.

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 556

Defining a subclass instance method

A subclass inherits the methods of its superclasses. In a subclass definition, you

can override any instance method that the subclass inherits by defining an instance

method with the same signature as the inherited method. You can also define new

methods that the subclass needs.

The structure and syntax of a subclass instance method are identical to those of a

class instance method. Define subclass instance methods in the PROCEDURE DIVISION

of the OBJECT paragraph of the subclass definition.

“Example: defining a subclass (with methods)”

RELATED TASKS

“Defining a class instance method” on page 557

“Overriding an instance method” on page 561

“Overloading an instance method” on page 562

Example: defining a subclass (with methods)

The following example shows the instance method definitions for the

CheckingAccount subclass of the Account class.

The processCheck method invokes the Java instance methods getAmount and

getPayee of the Check class to get the check data. It invokes the credit and debit

instance methods inherited from the Account class to credit the payee and debit

the payer of the check.

The print method overrides the print instance method defined in the Account

class. It invokes the overridden print method to display account status, and also

displays the check fee. CheckFee is an instance data item defined in the subclass.

(The Account class was shown in “Example: defining a method” on page 564.)

580 Enterprise COBOL for z/OS V4.1 Programming Guide

CheckingAccount class (subclass of Account)

 cbl dll,thread,pgmname(longmixed)

 Identification Division.

 Class-id. CheckingAccount inherits Account.

 Environment Division.

 Configuration section.

 Repository.

 Class CheckingAccount is "CheckingAccount"

 Class Check is "Check"

 Class Account is "Account".

*

* (FACTORY paragraph not shown)

*

 Identification division.

 Object.

 Data division.

 Working-storage section.

 01 CheckFee pic S9(9) value 1.

 Procedure Division.

*

* processCheck method to get the check amount and payee,

* add the check fee, and invoke inherited methods debit

* to debit the payer and credit to credit the payee:

 Identification Division.

 Method-id. "processCheck".

 Data division.

 Local-storage section.

 01 amount pic S9(9) binary.

 01 payee usage object reference Account.

 Linkage section.

 01 aCheck usage object reference Check.

*

 Procedure Division using by value aCheck.

 Invoke aCheck "getAmount" returning amount

 Invoke aCheck "getPayee" returning payee

 Invoke payee "credit" using by value amount

 Add checkFee to amount

 Invoke self "debit" using by value amount.

 End method "processCheck".

*

* print method override to display account status:

 Identification Division.

 Method-id. "print".

 Data division.

 Local-storage section.

 01 printableFee pic $$,$$$,$$9.

 Procedure Division.

 Invoke super "print"

 Move CheckFee to printableFee

 Display " Check fee: " printableFee.

 End method "print".

*

 End Object.

*

 End class CheckingAccount.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Invoking methods (INVOKE)” on page 570

“Overriding an instance method” on page 561

“Invoking overridden superclass methods” on page 574

Chapter 30. Writing object-oriented programs 581

Defining a factory section

Use the FACTORY paragraph in a class definition to define data and methods that

are to be associated with the class itself rather than with individual object

instances.

COBOL factory data is equivalent to Java private static data. A single copy of the

data is instantiated for the class and is shared by all object instances of the class.

You most commonly use factory data when you want to gather data from all the

instances of a class. For example, you could define a factory data item to keep a

running total of the number of instances of the class that are created.

COBOL factory methods are equivalent to Java public static methods. The methods

are supported by the class independently of any object instance. You most

commonly use factory methods to customize object creation when you cannot use

VALUE clauses alone to initialize instance data.

By contrast, you use the OBJECT paragraph in a class definition to define data that

is created for each object instance of the class, and methods that are supported for

each object instance of the class.

A factory definition consists of three divisions, followed by an END FACTORY

statement:

 Table 80. Structure of factory definitions

Division Purpose Syntax

IDENTIFICATION

(required)

Identify the start of the

factory definition.

IDENTIFICATION DIVISION.

FACTORY.

DATA (optional) Describe data that is

allocated once for the

class (as opposed to data

allocated for each instance

of a class).

“WORKING-STORAGE SECTION for

defining factory data” (optional)

PROCEDURE

(optional)

Define factory methods. Factory method definitions: “Defining a

factory method” on page 583

“Example: defining a factory (with methods)” on page 585

RELATED TASKS

“Defining a class” on page 552

“Instantiating COBOL classes” on page 576

“Wrapping procedure-oriented COBOL programs” on page 591

“Structuring OO applications” on page 591

WORKING-STORAGE SECTION for defining factory data

Use the WORKING-STORAGE SECTION in the DATA DIVISION of the FACTORY paragraph

to describe the factory data that a COBOL class needs, that is, statically allocated

data to be shared by all object instances of the class.

The FACTORY keyword, which you must immediately precede with an

IDENTIFICATION DIVISION declaration, indicates the beginning of the definitions of

the factory data and factory methods for the class. For example, the definition of

the factory data for the Account class might look like this:

582 Enterprise COBOL for z/OS V4.1 Programming Guide

Identification division.

Factory.

 Data division.

 Working-storage section.

 01 NumberOfAccounts pic 9(6) value zero.

 . . .

End Factory.

You can initialize simple factory data by using VALUE clauses as shown above.

COBOL factory data is equivalent to Java private static data. No other class or

subclass (nor instance method in the same class, if any) can reference COBOL

factory data directly. Factory data is global to all factory methods that the FACTORY

paragraph defines. If you want to make factory data accessible from outside the

FACTORY paragraph, define factory attribute (get or set) methods for doing so.

RELATED TASKS

“Coding attribute (get and set) methods” on page 563

“Instantiating COBOL classes” on page 576

Defining a factory method

Define COBOL factory methods in the PROCEDURE DIVISION of the FACTORY paragraph

of a class definition. A factory method defines an operation that is supported by a

class independently of any object instance of the class. COBOL factory methods are

equivalent to Java public static methods.

You typically define factory methods for classes whose instances require complex

initialization, that is, to values that you cannot assign by using VALUE clauses alone.

Within a factory method you can invoke instance methods to initialize the instance

data. A factory method cannot directly access instance data.

You can code factory attribute (get and set) methods to make factory data

accessible from outside the FACTORY paragraph, for example, to make the data

accessible from instance methods in the same class or from a client program. For

example, the Account class could define a factory method getNumberOfAccounts

to return the current tally of the number of accounts.

You can use factory methods to wrap procedure-oriented COBOL programs so that

they are accessible from Java programs. You can code a factory method called main

to enable you to run an OO application by using the java command, and to

structure your applications in keeping with standard Java practice. See the related

tasks for details.

In defining factory methods, you use the same syntax that you use to define

instance methods. A COBOL factory method definition consists of four divisions

(like a COBOL program), followed by an END METHOD marker:

 Table 81. Structure of factory method definitions

Division Purpose Syntax

IDENTIFICATION

(required)

Same as for a class

instance method

Same as for a class instance method

(required)

ENVIRONMENT

(optional)

Same as for a class

instance method

Same as for a class instance method

DATA (optional) Same as for a class

instance method

Same as for a class instance method

Chapter 30. Writing object-oriented programs 583

Table 81. Structure of factory method definitions (continued)

Division Purpose Syntax

PROCEDURE

(optional)

Same as for a class

instance method

Same as for a class instance method

Within a class definition, you do not need to make each factory method-name

unique, but you do need to give each factory method a unique signature. You can

overload factory methods in exactly the same way that you overload instance

methods. For example, the CheckingAccount subclass provides two versions of the

factory method createCheckingAccount: one that initializes the account to have a

default balance of zero, and one that allows the opening balance to be passed in.

Clients can invoke either createCheckingAccount method by passing arguments

that match the signature of the intended method.

If you define a data item with the same name in both the DATA DIVISION of a

factory method and the DATA DIVISION of the FACTORY paragraph, a reference in the

method to that data-name refers only to the method data item. The method DATA

DIVISION takes precedence.

“Example: defining a factory (with methods)” on page 585

RELATED TASKS

“Structuring OO applications” on page 591

“Wrapping procedure-oriented COBOL programs” on page 591

“Instantiating COBOL classes” on page 576

“Defining a class instance method” on page 557

“Coding attribute (get and set) methods” on page 563

“Overloading an instance method” on page 562

“Hiding a factory or static method”

“Invoking factory or static methods” on page 585

“Using object-oriented COBOL and Java under IMS” on page 430

Hiding a factory or static method

A factory method defined in a subclass is said to hide an inherited COBOL or Java

method that would otherwise be accessible in the subclass if the two methods have

the same signature.

To hide a superclass factory method f1 in a COBOL subclass, define a factory

method f1 in the subclass that has the same name and whose PROCEDURE DIVISION

USING phrase (if any) has the same number and type of formal parameters as the

superclass method has. (If the superclass method is implemented in Java, you must

code formal parameters that are interoperable with the data types of the

corresponding Java parameters.) When a client invokes f1 using the subclass name,

the subclass method rather than the superclass method is invoked.

The presence or absence of a method return value and the data type of the return

value used in the PROCEDURE DIVISION RETURNING phrase (if any) must be identical

in the subclass factory method and the hidden superclass method.

A factory method must not hide an instance method in a Java or COBOL

superclass.

“Example: defining a factory (with methods)” on page 585

584 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

“Overriding an instance method” on page 561

“Invoking methods (INVOKE)” on page 570

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)

The procedure division header (Enterprise COBOL Language Reference)

Invoking factory or static methods

To invoke a COBOL factory method or Java static method in a COBOL method or

client program, code the class-name as the first operand of the INVOKE statement.

For example, a client program could invoke one of the overloaded

CheckingAccount factory methods called createCheckingAccount to create a

checking account with account number 777777 and an opening balance of $300 by

coding this statement:

Invoke CheckingAccount "createCheckingAccount"

 using by value 777777 300

 returning aCheckingAccount

To invoke a factory method from within the same class in which you define the

factory method, you also use the class-name as the first operand in the INVOKE

statement.

Code the name of the method to be invoked either as a literal or as an identifier

whose value at run time is the method-name. The method-name must be an

alphanumeric or national literal or a category alphabetic, alphanumeric, or national

data item, and is interpreted in a case-sensitive manner.

If an invoked method is not supported in the class that you name in the INVOKE

statement, a severity-3 Language Environment condition is raised at run time

unless you code the ON EXCEPTION phrase in the INVOKE statement.

The conformance requirements for passing arguments to a COBOL factory method

or Java static method in the USING phrase, and receiving a return value in the

RETURNING phrase, are the same as those for invoking instance methods.

“Example: defining a factory (with methods)”

RELATED TASKS

“Invoking methods (INVOKE)” on page 570

“Using national data (Unicode) in COBOL” on page 126

“Coding interoperable data types in COBOL and Java” on page 600

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Example: defining a factory (with methods)

The following example updates the previous examples to show the definition of

factory data and methods.

These updates are shown:

Chapter 30. Writing object-oriented programs 585

http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#228745

v The Account class adds factory data and a parameterized factory method,

createAccount, which allows an Account instance to be created using an account

number that is passed in.

v The CheckingAccount subclass adds factory data and an overloaded

parameterized factory method, createCheckingAccount. One implementation of

createCheckingAccount initializes the account with a default balance of zero, and

the other allows the opening balance to be passed in. Clients can invoke either

method by passing arguments that match the signature of the desired method.

v The TestAccounts client invokes the services provided by the factory methods of

the Account and CheckingAccount classes, and instantiates the Java Check class.

v The output from the TestAccounts client program is shown.

(The previous examples were “Example: defining a method” on page 564,

“Example: defining a client” on page 577, and “Example: defining a subclass (with

methods)” on page 580.)

You can also find the complete source code for this example in the

cobol/demo/oosample subdirectory in the HFS. Typically the complete path for

the source is /usr/lpp/cobol/demo/oosample. You can use the makefile there to

compile and link the code.

Account class

 cbl dll,thread,pgmname(longmixed),lib

 Identification Division.

 Class-id. Account inherits Base.

 Environment Division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class Account is "Account".

*

 Identification division.

 Factory.

 Data division.

 Working-storage section.

 01 NumberOfAccounts pic 9(6) value zero.

*

 Procedure Division.

*

* createAccount method to create a new Account

* instance, then invoke the OBJECT paragraph’s init

* method on the instance to initialize its instance data:

 Identification Division.

 Method-id. "createAccount".

 Data division.

 Linkage section.

 01 inAccountNumber pic S9(6) binary.

 01 outAccount object reference Account.

* Facilitate access to JNI services:

 Copy JNI.

 Procedure Division using by value inAccountNumber

 returning outAccount.

* Establish addressability to JNI environment structure:

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 Invoke Account New returning outAccount

 Invoke outAccount "init" using by value inAccountNumber

 Add 1 to NumberOfAccounts.

 End method "createAccount".

*

 End Factory.

*

586 Enterprise COBOL for z/OS V4.1 Programming Guide

Identification division.

 Object.

 Data division.

 Working-storage section.

 01 AccountNumber pic 9(6).

 01 AccountBalance pic S9(9) value zero.

*

 Procedure Division.

*

* init method to initialize the account:

 Identification Division.

 Method-id. "init".

 Data division.

 Linkage section.

 01 inAccountNumber pic S9(9) binary.

 Procedure Division using by value inAccountNumber.

 Move inAccountNumber to AccountNumber.

 End method "init".

*

* getBalance method to return the account balance:

 Identification Division.

 Method-id. "getBalance".

 Data division.

 Linkage section.

 01 outBalance pic S9(9) binary.

 Procedure Division returning outBalance.

 Move AccountBalance to outBalance.

 End method "getBalance".

*

* credit method to deposit to the account:

 Identification Division.

 Method-id. "credit".

 Data division.

 Linkage section.

 01 inCredit pic S9(9) binary.

 Procedure Division using by value inCredit.

 Add inCredit to AccountBalance.

 End method "credit".

*

* debit method to withdraw from the account:

 Identification Division.

 Method-id. "debit".

 Data division.

 Linkage section.

 01 inDebit pic S9(9) binary.

 Procedure Division using by value inDebit.

 Subtract inDebit from AccountBalance.

 End method "debit".

*

* print method to display formatted account number and balance:

 Identification Division.

 Method-id. "print".

 Data division.

 Local-storage section.

 01 PrintableAccountNumber pic ZZZZZZ999999.

 01 PrintableAccountBalance pic $$$$,$$$,$$9CR.

 Procedure Division.

 Move AccountNumber to PrintableAccountNumber

 Move AccountBalance to PrintableAccountBalance

 Display " Account: " PrintableAccountNumber

 Display " Balance: " PrintableAccountBalance.

 End method "print".

*

 End Object.

*

 End class Account.

Chapter 30. Writing object-oriented programs 587

CheckingAccount class (subclass of Account)

 cbl dll,thread,pgmname(longmixed),lib

 Identification Division.

 Class-id. CheckingAccount inherits Account.

 Environment Division.

 Configuration section.

 Repository.

 Class CheckingAccount is "CheckingAccount"

 Class Check is "Check"

 Class Account is "Account".

*

 Identification division.

 Factory.

 Data division.

 Working-storage section.

 01 NumberOfCheckingAccounts pic 9(6) value zero.

*

 Procedure Division.

*

* createCheckingAccount overloaded method to create a new

* CheckingAccount instance with a default balance, invoke

* inherited instance method init to initialize the account

* number, and increment factory data tally of checking accounts:

 Identification Division.

 Method-id. "createCheckingAccount".

 Data division.

 Linkage section.

 01 inAccountNumber pic S9(6) binary.

 01 outCheckingAccount object reference CheckingAccount.

* Facilitate access to JNI services:

 Copy JNI.

 Procedure Division using by value inAccountNumber

 returning outCheckingAccount.

* Establish addressability to JNI environment structure:

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 Invoke CheckingAccount New returning outCheckingAccount

 Invoke outCheckingAccount "init"

 using by value inAccountNumber

 Add 1 to NumberOfCheckingAccounts.

 End method "createCheckingAccount".

*

* createCheckingAccount overloaded method to create a new

* CheckingAccount instance, invoke inherited instance methods

* init to initialize the account number and credit to set the

* balance, and increment factory data tally of checking accounts:

 Identification Division.

 Method-id. "createCheckingAccount".

 Data division.

 Linkage section.

 01 inAccountNumber pic S9(6) binary.

 01 inInitialBalance pic S9(9) binary.

 01 outCheckingAccount object reference CheckingAccount.

 Copy JNI.

 Procedure Division using by value inAccountNumber

 inInitialBalance

 returning outCheckingAccount.

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 Invoke CheckingAccount New returning outCheckingAccount

 Invoke outCheckingAccount "init"

 using by value inAccountNumber

 Invoke outCheckingAccount "credit"

 using by value inInitialBalance

 Add 1 to NumberOfCheckingAccounts.

 End method "createCheckingAccount".

*

588 Enterprise COBOL for z/OS V4.1 Programming Guide

End Factory.

*

 Identification division.

 Object.

 Data division.

 Working-storage section.

 01 CheckFee pic S9(9) value 1.

 Procedure Division.

*

* processCheck method to get the check amount and payee,

* add the check fee, and invoke inherited methods debit

* to debit the payer and credit to credit the payee:

 Identification Division.

 Method-id. "processCheck".

 Data division.

 Local-storage section.

 01 amount pic S9(9) binary.

 01 payee usage object reference Account.

 Linkage section.

 01 aCheck usage object reference Check.

 Procedure Division using by value aCheck.

 Invoke aCheck "getAmount" returning amount

 Invoke aCheck "getPayee" returning payee

 Invoke payee "credit" using by value amount

 Add checkFee to amount

 Invoke self "debit" using by value amount.

 End method "processCheck".

*

* print method override to display account status:

 Identification Division.

 Method-id. "print".

 Data division.

 Local-storage section.

 01 printableFee pic $$,$$$,$$9.

 Procedure Division.

 Invoke super "print"

 Move CheckFee to printableFee

 Display " Check fee: " printableFee.

 End method "print".

*

 End Object.

*

 End class CheckingAccount.

Check class

/**

 * A Java class for check information

 */

public class Check {

 private CheckingAccount payer;

 private Account payee;

 private int amount;

 public Check(CheckingAccount inPayer, Account inPayee, int inAmount) {

 payer=inPayer;

 payee=inPayee;

 amount=inAmount;

 }

 public int getAmount() {

 return amount;

 }

 public Account getPayee() {

 return payee;

 }

}

Chapter 30. Writing object-oriented programs 589

TestAccounts client program

 cbl dll,thread,pgmname(longmixed)

 Identification division.

 Program-id. "TestAccounts" recursive.

 Environment division.

 Configuration section.

 Repository.

 Class Account is "Account"

 Class CheckingAccount is "CheckingAccount"

 Class Check is "Check".

 Data Division.

* Working data is declared in Local-storage

* so that each thread has its own copy:

 Local-storage section.

 01 anAccount usage object reference Account.

 01 aCheckingAccount usage object reference CheckingAccount.

 01 aCheck usage object reference Check.

 01 payee usage object reference Account.

*

 Procedure division.

 Test-Account-section.

 Display "Test Account class"

* Create account 123456 with 0 balance:

 Invoke Account "createAccount"

 using by value 123456

 returning anAccount

* Deposit 500 to the account:

 Invoke anAccount "credit" using by value 500

 Invoke anAccount "print"

 Display space

*

 Display "Test CheckingAccount class"

* Create checking account 777777 with balance of 300:

 Invoke CheckingAccount "createCheckingAccount"

 using by value 777777 300

 returning aCheckingAccount

* Set account 123456 as the payee:

 Set payee to anAccount

* Initialize check for 125 to be paid by account 777777 to payee:

 Invoke Check New

 using by value aCheckingAccount, payee, 125

 returning aCheck

* Debit the payer, and credit the payee:

 Invoke aCheckingAccount "processCheck"

 using by value aCheck

 Invoke aCheckingAccount "print"

 Invoke anAccount "print"

*

 Stop Run.

 End program "TestAccounts".

Output produced by the TestAccounts client program

Test Account class

 Account: 123456

 Balance: $500

Test CheckingAccount class

 Account: 777777

 Balance: $174

 Check fee: $1

 Account: 123456

 Balance: $625

RELATED TASKS

“Creating and initializing instances of classes” on page 574

590 Enterprise COBOL for z/OS V4.1 Programming Guide

“Defining a factory method” on page 583

“Invoking factory or static methods” on page 585

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Wrapping procedure-oriented COBOL programs

A wrapper is a class that provides an interface between object-oriented code and

procedure-oriented code. Factory methods provide a convenient means for writing

wrappers for existing procedural COBOL code to make it accessible from Java

programs.

To wrap COBOL code, do these steps:

1. Create a simple COBOL class that contains a FACTORY paragraph.

2. In the FACTORY paragraph, code a factory method that uses a CALL statement to

call the procedural program.

A Java program can invoke the factory method by using a static method invocation

expression, thus invoking the COBOL procedural program.

RELATED TASKS

“Defining a class” on page 552

“Defining a factory section” on page 582

“Defining a factory method” on page 583

Structuring OO applications

You can structure applications that use object-oriented COBOL syntax in one of

three ways.

An OO application can begin with:

v A COBOL program, which can have any name.

Under UNIX, you can run the application by specifying the name of the linked

module (which should match the program name) at the command prompt. You

can also bind the program as a module in a PDSE and run it in JCL using the

EXEC PGM statement.

v A Java class definition that contains a method called main. Declare main as

public, static, and void, with a single parameter of type String[].

You can run the application with the java command, specifying the name of the

class that contains main and zero or more strings as command-line arguments.

v A COBOL class definition that contains a factory method called main. Declare

main with no RETURNING phrase and a single USING parameter, an object reference

to a class that is an array with elements of type java.lang.String. (Thus main is in

effect public, static, and void, with a single parameter of type String[].)

You can run the application with the java command, specifying the name of the

class that contains main and zero or more strings as command-line arguments.

Structure an OO application this way if you want to:

– Run the application by using the java command.

– Run the application in an environment where applications must start with the

main method of a Java class file (such as an IMS Java dependent region).

– Follow standard Java programming practice.

“Examples: COBOL applications that run using the java command” on page 592

Chapter 30. Writing object-oriented programs 591

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Defining a factory method” on page 583

“Declaring arrays and strings for Java” on page 601

Chapter 22, “Developing COBOL programs for IMS,” on page 429

Examples: COBOL applications that run using the java

command

The following examples show COBOL class definitions that contain a factory

method called main.

In each case, main has no RETURNING phrase and has a single USING parameter, an

object reference to a class that is an array with elements of type java.lang.String.

You can run these applications by using the java command.

Displaying a message

 cbl dll,thread

 Identification Division.

 Class-id. CBLmain inherits Base.

 Environment Division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class stringArray is "jobjectArray:java.lang.String"

 Class CBLmain is "CBLmain".

*

 Identification Division.

 Factory.

 Procedure division.

*

 Identification Division.

 Method-id. "main".

 Data division.

 Linkage section.

 01 SA usage object reference stringArray.

 Procedure division using by value SA.

 Display " >> COBOL main method entered"

 .

 End method "main".

 End factory.

 End class CBLmain.

Echoing the input strings

 cbl dll,thread,lib,pgmname(longmixed),ssrange

 Identification Division.

 Class-id. Echo inherits Base.

 Environment Division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class stringArray is "jobjectArray:java.lang.String"

 Class jstring is "java.lang.String"

 Class Echo is "Echo".

*

 Identification Division.

 Factory.

 Procedure division.

*

 Identification Division.

 Method-id. "main".

 Data division.

592 Enterprise COBOL for z/OS V4.1 Programming Guide

Local-storage section.

 01 SAlen pic s9(9) binary.

 01 I pic s9(9) binary.

 01 SAelement object reference jstring.

 01 SAelementlen pic s9(9) binary.

 01 Sbuffer pic X(65535).

 01 P pointer.

 Linkage section.

 01 SA object reference stringArray.

 Copy "JNI.cpy" suppress.

 Procedure division using by value SA.

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 Call GetArrayLength using by value JNIEnvPtr SA

 returning SAlen

 Display "Input string array length: " SAlen

 Display "Input strings:"

 Perform varying I from 0 by 1 until I = SAlen

 Call GetObjectArrayElement

 using by value JNIEnvPtr SA I

 returning SAelement

 Call "GetStringPlatformLength"

 using by value JNIEnvPtr

 SAelement

 address of SAelementlen

 0

 Call "GetStringPlatform"

 using by value JNIEnvPtr

 SAelement

 address of Sbuffer

 length of Sbuffer

 0

 Display Sbuffer(1:SAelementlen)

 End-perform

 .

 End method "main".

 End factory.

 End class Echo.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

“Defining a factory method” on page 583

Chapter 31, “Communicating with Java methods,” on page 595

Chapter 30. Writing object-oriented programs 593

594 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 31. Communicating with Java methods

To achieve interlanguage interoperability with Java, you need to follow certain

rules and guidelines for using services in the Java Native Interface (JNI), coding

data types, and compiling COBOL programs.

You can invoke methods that are written in Java from COBOL programs, and you

can invoke methods that are written in COBOL from Java programs. You need to

code COBOL object-oriented language for basic Java object capabilities. For

additional Java capabilities, you can call JNI services.

Because Java programs might be multithreaded and use asynchronous signals,

compile COBOL programs with the THREAD option.

“Example: J2EE client written in COBOL” on page 607

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

“Accessing JNI services”

“Sharing data with Java” on page 600

Chapter 30, “Writing object-oriented programs,” on page 549

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491

RELATED REFERENCES

Java 2 Enterprise Edition Developer’s Guide

Accessing JNI services

Interface (JNI) provides many callable services that you can use when you develop

applications that mix COBOL and Java. To facilitate access to these services, copy

JNI.cpy into the LINKAGE SECTION of your COBOL program.

The JNI.cpy copybook contains these definitions:

v COBOL data definitions that correspond to the Java JNI types

v JNINativeInterface, the JNI environment structure that contains function pointers

for accessing the callable service functions

You obtain the JNI environment structure by two levels of indirection from the JNI

environment pointer, as the following illustration shows:

JNIEnvPtr

pointer pointer

pointer

pointer

Private per-
thread data

...

JNI function

JNI function

JNI function

© Copyright IBM Corp. 1991, 2007 595

http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/DevGuideTOC.html

Use the special register JNIEnvPtr to reference the JNI environment pointer to

obtain the address for the JNI environment structure. JNIEnvPtr is implicitly

defined as USAGE POINTER; do not use it as a receiving data item. Before you

reference the contents of the JNI environment structure, you must code the

following statements to establish its addressability:

Linkage section.

COPY JNI

. . .

Procedure division.

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 . . .

The code above sets the addresses of the following items:

v JNIEnv, a pointer data item that JNI.cpy provides. JNIEnvPtr is the COBOL

special register that contains the environment pointer.

v JNINativeInterface, the COBOL group structure that JNI.cpy contains. This

structure maps the JNI environment structure, which contains an array of

function pointers for the JNI callable services.

After you code the statements above, you can access the JNI callable services with

CALL statements that reference the function pointers. You can pass the JNIEnvPtr

special register as the first argument to the services that require the environment

pointer, as shown in the following example:

01 InputArrayObj usage object reference jlongArray.

01 ArrayLen pic S9(9) comp-5.

. . .

 Call GetArrayLength using by value JNIEnvPtr InputArrayObj

 returning ArrayLen

Important: Pass all arguments to the JNI callable services by value.

Some JNI callable services require a Java class-object reference as an argument. To

obtain a reference to the class object that is associated with a class, use one of the

following JNI callable services:

v GetObjectClass

v FindClass

Restriction: The JNI environment pointer is thread specific. Do not pass it from

one thread to another.

RELATED TASKS

“Managing local and global references” on page 598

“Handling Java exceptions”

“Coding interoperable data types in COBOL and Java” on page 600

“Defining a client” on page 566

RELATED REFERENCES

Appendix F, “JNI.cpy,” on page 717

The Java Native Interface

Handling Java exceptions

Use JNI services to throw and catch Java exceptions.

596 Enterprise COBOL for z/OS V4.1 Programming Guide

http://java.sun.com/j2se/1.3/docs/guide/jni/

Throwing an exception: Use one of the following services to throw a Java

exception from a COBOL method:

v Throw

v ThrowNew

You must make the thrown object an instance of a subclass of java.lang.Throwable.

The Java virtual machine (JVM) does not recognize and process the thrown

exception until the method that contains the call has completed and returned to

the JVM.

Catching an exception: After you invoke a method that might have thrown a Java

exception, you can do these steps:

1. Test whether an exception occurred.

2. If an exception occurred, process the exception.

3. Clear the exception, if clearing is appropriate.

Use the following JNI services:

v ExceptionOccurred

v ExceptionCheck

v ExceptionDescribe

v ExceptionClear

To do error analysis, use the methods supported by the exception object that is

returned. This object is an instance of the java.lang.Throwable class.

“Example: handling Java exceptions”

Example: handling Java exceptions

The following example shows the use of JNI services for catching an exception

from Java and the use of the PrintStackTrace method of java.lang.Throwable for

error analysis.

Repository.

 Class JavaException is "java.lang.Exception".

. . .

Local-storage section.

01 ex usage object reference JavaException.

Linkage section.

COPY "JNI.cpy".

. . .

Procedure division.

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 . . .

 Invoke anObj "someMethod"

 Perform ErrorCheck

. . .

ErrorCheck.

 Call ExceptionOccurred

 using by value JNIEnvPtr

 returning ex

 If ex not = null then

 Call ExceptionClear using by value JNIEnvPtr

 Display "Caught an unexpected exception"

 Invoke ex "printStackTrace"

 Stop run

 End-if

Chapter 31. Communicating with Java methods 597

Managing local and global references

The Java virtual machine tracks the object references that you use in native

methods, such as COBOL methods. This tracking ensures that the objects are not

prematurely released during garbage collection.

There are two classes of such references:

Local references

Local references are valid only while the method that you invoke runs.

Automatic freeing of the local references occurs after the native method

returns.

Global references

Global references remain valid until you explicitly delete them. You can

create global references from local references by using the JNI service

NewGlobalRef.

The following object references are always local:

v Object references that are received as method parameters

v Object references that are returned as the method RETURNING value from a

method invocation

v Object references that are returned by a call to a JNI function

v Object references that you create by using the INVOKE . . . NEW statement

You can pass either a local reference or a global reference as an object reference

argument to a JNI service.

You can code methods to return either local or global references as RETURNING

values. However, in either case, the reference that is received by the invoking

program is a local reference.

You can pass either local or global references as USING arguments in a method

invocation. However, in either case, the reference that is received by the invoked

method is a local reference.

Local references are valid only in the thread in which you create them. Do not pass

them from one thread to another.

RELATED TASKS

“Accessing JNI services” on page 595

“Deleting, saving, and freeing local references”

Deleting, saving, and freeing local references

You can manually delete local references at any point within a method. Save local

references only in object references that you define in the LOCAL-STORAGE SECTION

of a method.

Use a SET statement to convert a local reference to a global reference if you want to

save a reference in any of these data items:

v An object instance variable

v A factory variable

v A data item in the WORKING-STORAGE SECTION of a method

598 Enterprise COBOL for z/OS V4.1 Programming Guide

Otherwise, an error occurs. These storage areas persist when a method returns;

therefore a local reference is no longer valid.

In most cases you can rely on the automatic freeing of local references that occurs

when a method returns. However, in some cases you should explicitly free a local

reference within a method by using the JNI service DeleteLocalRef. Here are two

situations where explicit freeing is appropriate:

v In a method you access a large object, thereby creating a local reference to the

object. After extensive computations, the method returns. Free the large object if

you do not need it for the additional computations, because the local reference

prevents the object from being released during garbage collection.

v You create a large number of local references in a method, but do not use all of

them at the same time. Because the Java virtual machine requires space to keep

track of each local reference, you should free those that you no longer need.

Freeing the local references helps prevent the system from running out of

memory.

For example, in a COBOL method you loop through a large array of objects,

retrieve the elements as local references, and operate on one element at each

iteration. You can free the local reference to the array element after each

iteration.

Use the following callable services to manage local references and global

references.

 Table 82. JNI services for local and global references

Service Input arguments Return value Purpose

NewGlobalRef v The JNI environment

pointer

v A local or global object

reference

The global reference, or

NULL if the system is out of

memory

To create a new global

reference to the object that

the input object reference

refers to

DeleteGlobalRef v The JNI environment

pointer

v A global object reference

None To delete a global reference

to the object that the input

object reference refers to

DeleteLocalRef v The JNI environment

pointer

v A local object reference

None To delete a local reference

to the object that the input

object reference refers to

RELATED TASKS

“Accessing JNI services” on page 595

Java access controls

The Java access modifiers protected and private are not enforced when you use

the Java Native Interface. Therefore a COBOL program could invoke a protected or

private Java method that is not invocable from a Java client. This usage is not

recommended.

Chapter 31. Communicating with Java methods 599

Sharing data with Java

You can share the COBOL data types that have Java equivalents. (Some COBOL

data types have Java equivalents, but others do not.)

Share data items with Java in these ways:

v Pass them as arguments in the USING phrase of an INVOKE statement.

v Receive them as parameters in the USING phrase from a Java method.

v Receive them as the RETURNING value in an INVOKE statement.

v Return them as the value in the RETURNING phrase of the PROCEDURE DIVISION

header in a COBOL method.

To pass or receive arrays and strings, declare them as object references:

v Declare an array as an object reference that contains an instance of one of the

special array classes.

v Declare a string as an object reference that contains an instance of the jstring

class.

RELATED TASKS

“Coding interoperable data types in COBOL and Java”

“Declaring arrays and strings for Java” on page 601

“Manipulating Java arrays” on page 602

“Manipulating Java strings” on page 604

“Invoking methods (INVOKE)” on page 570

Chapter 25, “Sharing data,” on page 463

Coding interoperable data types in COBOL and Java

Your COBOL program can use only certain data types when communicating with

Java.

 Table 83. Interoperable data types in COBOL and Java

Primitive Java data

type Corresponding COBOL data type

boolean1 PIC X followed by exactly two condition-names of this form:

level-number data-name PIC X.

88 data-name-false value X’00’.

88 data-name-true value X’01’ through X’FF’.

byte1 Single-byte alphanumeric: PIC X or PIC A

short USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the

form S9(n), where 1<=n<=4

int USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the

form S9(n), where 5<=n<=9

long USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the

form S9(n), where 10<=n<=18

float2 USAGE COMP-1

double2 USAGE COMP-2

char Single-character elementary national: PIC N USAGE NATIONAL.

(Cannot be a national group.)

class types (object

references)

USAGE OBJECT REFERENCE class-name

600 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 83. Interoperable data types in COBOL and Java (continued)

Primitive Java data

type Corresponding COBOL data type

1. You must distinguish boolean from byte, because they each correspond to PIC X. PIC X

is interpreted as boolean only when you define an argument or a parameter with the

two condition-names as shown. Otherwise, a PIC X data item is interpreted as the Java

byte type.

2. Java floating-point data is represented in IEEE floating point. Enterprise COBOL,

however, uses hexadecimal floating-point representation. When you pass floating-point

arguments by using an INVOKE statement or you receive floating-point data from a Java

method, the arguments and data are automatically converted as needed.

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 126

Declaring arrays and strings for Java

When you communicate with Java, declare arrays by using the special array

classes, and declare strings by using jstring. Code the COBOL data types shown in

the table below.

 Table 84. Interoperable arrays and strings in COBOL and Java

Java data type Corresponding COBOL data type

boolean[] object reference jbooleanArray

byte[] object reference jbyteArray

short[] object reference jshortArray

int[] object reference jintArray

long[] object reference jlongArray

char[] object reference jcharArray

Object[] object reference jobjectArray

String object reference jstring

To use one of these classes for interoperability with Java, you must code an entry

in the REPOSITORY paragraph. For example:

Configuration section.

Repository.

 Class jbooleanArray is "jbooleanArray".

The REPOSITORY paragraph entry for an object array type must specify an external

class-name in one of these forms:

"jobjectArray"

"jobjectArray:external-classname-2"

In the first case, the REPOSITORY entry specifies an array class in which the elements

of the array are objects of type java.lang.Object. In the second case, the REPOSITORY

entry specifies an array class in which the elements of the array are objects of type

external-classname-2. Code a colon as the separator between the specification of the

jobjectArray type and the external class-name of the array elements.

Chapter 31. Communicating with Java methods 601

The following example shows both cases. In the example, oa defines an array of

elements that are objects of type java.lang.Object. aDepartment defines an array of

elements that are objects of type com.acme.Employee.

Environment Division.

Configuration Section.

Repository.

 Class jobjectArray is "jobjectArray"

 Class Employee is "com.acme.Employee"

 Class Department is "jobjectArray:com.acme.Employee".

. . .

Linkage section.

01 oa usage object reference jobjectArray.

01 aDepartment usage object reference Department.

. . .

Procedure division using by value aDepartment.

. . .

“Examples: COBOL applications that run using the java command” on page 592

The following Java array types are currently not supported for interoperation with

COBOL programs.

 Table 85. Noninteroperable array types in COBOL and Java

Java data type Corresponding COBOL data type

float[] object reference jfloatArray

double[] object reference jdoubleArray

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 554

Manipulating Java arrays

To represent an array in a COBOL program, code a group item that contains a

single elementary item that is of the data type that corresponds to the Java type of

the array. Specify an OCCURS or OCCURS DEPENDING ON clause that is appropriate for

the array.

For example, the following code specifies a structure to receive 500 or fewer

integer values from a jlongArray object:

01 longArray.

 02 X pic S9(10) comp-5 occurs 1 to 500 times depending on N.

To operate on objects of the special Java-array classes, call the services that the JNI

provides. You can use services to access and set individual elements of an array

and for the following purposes, using the services cited:

 Table 86. JNI array services

Service Input arguments Return value Purpose

GetArrayLength v The JNI environment pointer

v The array object reference

The array length as

a binary fullword

integer

To get the number of

elements in a Java

array object

NewBooleanArray,

NewByteArray, NewCharArray,

NewShortArray, NewIntArray,

NewLongArray

v The JNI environment pointer

v The number of elements in the

array, as a binary fullword

integer

The array object

reference, or NULL if

the array cannot be

constructed

To create a new Java

array object

602 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 86. JNI array services (continued)

Service Input arguments Return value Purpose

GetBooleanArrayElements,

GetByteArrayElements,

GetCharArrayElements,

GetShortArrayElements,

GetIntArrayElements,

GetLongArrayElements

v The JNI environment pointer

v The array object reference

v A pointer to a boolean item. If

the pointer is not null, the

boolean item is set to true if a

copy of the array elements was

made. If a copy was made, the

corresponding

ReleasexxxArrayElements service

must be called if changes are to

be written back to the array

object.

A pointer to the

storage buffer

To extract the array

elements from a Java

array into a storage

buffer. The services

return a pointer to the

storage buffer, which

you can use as the

address of a COBOL

group data item

defined in the LINKAGE

SECTION.

ReleaseBooleanArrayElements,

ReleaseByteArrayElements,

ReleaseCharArrayElements,

ReleaseShortArrayElements,

ReleaseIntArrayElements,

ReleaseLongArrayElements

v The JNI environment pointer

v The array object reference

v A pointer to the storage buffer

v The release mode, as a binary

fullword integer. See Java JNI

documentation for details.

(Recommendation: Specify 0 to

copy back the array content and

free the storage buffer.)

None; the storage

for the array is

released.

To release the storage

buffer that contains

elements that have

been extracted from a

Java array, and

conditionally map the

updated array values

back into the array

object

NewObjectArray v The JNI environment pointer

v The number of elements in the

array, as a binary fullword

integer

v An object reference for the array

element class

v An object reference for the initial

element value. All array elements

are set to this value.

The array object

reference, or NULL if

the array cannot be

constructed1

To create a new Java

object array

GetObjectArrayElement v The JNI environment pointer

v The array object reference

v An array element index, as a

binary fullword integer using

origin zero

An object reference2 To return the element

at a given index within

an object array

SetObjectArrayElement v The JNI environment pointer

v The array object reference

v The array element index, as a

binary fullword integer using

origin zero

v The object reference for the new

value

None3 To set an element

within an object array

1. NewObjectArray throws an exception if the system runs out of memory.

2. GetObjectArrayElement throws an exception if the index is not valid.

3. SetObjectArrayElement throws an exception if the index is not valid or if the new value is not a subclass of the

element class of the array.

“Examples: COBOL applications that run using the java command” on page 592

“Example: processing a Java int array” on page 604

Chapter 31. Communicating with Java methods 603

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 600

“Declaring arrays and strings for Java” on page 601

“Accessing JNI services” on page 595

Example: processing a Java int array

The following example shows the use of the Java-array classes and JNI services to

process a Java array in COBOL.

 cbl lib,thread,dll

 Identification division.

 Class-id. OOARRAY inherits Base.

 Environment division.

 Configuration section.

 Repository.

 Class Base is "java.lang.Object"

 Class jintArray is "jintArray".

 Identification division.

 Object.

 Procedure division.

 Identification division.

 Method-id. "ProcessArray".

 Data Division.

 Local-storage section.

 01 intArrayPtr pointer.

 01 intArrayLen pic S9(9) comp-5.

 Linkage section.

 COPY JNI.

 01 inIntArrayObj usage object reference jintArray.

 01 intArrayGroup.

 02 X pic S9(9) comp-5

 occurs 1 to 1000 times depending on intArrayLen.

 Procedure division using by value inIntArrayObj.

 Set address of JNIEnv to JNIEnvPtr

 Set address of JNINativeInterface to JNIEnv

 Call GetArrayLength

 using by value JNIEnvPtr inIntArrayObj

 returning intArrayLen

 Call GetIntArrayElements

 using by value JNIEnvPtr inIntArrayObj 0

 returning IntArrayPtr

 Set address of intArrayGroup to intArrayPtr

* . . . process the array elements X(I) . . .

 Call ReleaseIntArrayElements

 using by value JNIEnvPtr inIntArrayObj intArrayPtr 0.

 End method "ProcessArray".

 End Object.

 End class OOARRAY.

Manipulating Java strings

COBOL represents Java String data in Unicode. To represent a Java String in a

COBOL program, declare the string as an object reference of the jstring class. Then

use JNI services to set or extract COBOL alphanumeric or national (Unicode) data

from the object.

Services for Unicode: Use the following standard services to convert between

jstring object references and COBOL USAGE NATIONAL data items. Access these

services by using function pointers in the JNINativeInterface environment

structure.

604 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 87. Services that convert between jstring references and national data

Service Input arguments Return value

NewString1

v The JNI environment pointer

v A pointer to a Unicode string, such

as a COBOL national data item

v The number of characters in the

string; binary fullword

jstring object reference

GetStringLength v The JNI environment pointer

v A jstring object reference

The number of Unicode characters in the jstring

object reference; binary fullword

GetStringChars1

v The JNI environment pointer

v A jstring object reference

v A pointer to a boolean data item, or

NULL

v A pointer to the array of Unicode characters

extracted from the jstring object, or NULL if the

operation fails. The pointer is valid until it is

released with ReleaseStringChars.

v When the pointer to the boolean data item is

not null, the boolean value is set to true if a

copy is made of the string and to false if no

copy is made.

ReleaseStringChars v The JNI environment pointer

v A jstring object reference

v A pointer to the array of Unicode

characters that was returned from

GetStringChars

None; the storage for the array is released.

1. This service throws an exception if the system runs out of memory.

Services for EBCDIC: Use the following z/OS services, an extension of the JNI, to

convert between jstring object references and COBOL alphanumeric data (PIC

X(n)). Access these services by using function pointers in the JNI environment

structure JNINativeInterface.

 Table 88. Services that convert between jstring references and alphanumeric data

Service Input arguments Return value

NewStringPlatform v The JNI environment pointer

v Pointer to the null-terminated EBCDIC

character string that you want to convert

to a jstring object

v Pointer to the jstring object reference in

which you want the result

v Pointer to the Java encoding name for the

string, represented as a null-terminated

EBCDIC character string1

Return code as a binary fullword

integer:

 0 Success.

-1 Malformed input or illegal

input character.

-2 Unsupported encoding; the

jstring object reference pointer

is set to NULL.

Chapter 31. Communicating with Java methods 605

Table 88. Services that convert between jstring references and alphanumeric data (continued)

Service Input arguments Return value

GetStringPlatformLength v The JNI environment pointer

v jstring object reference for which you want

the length

v Pointer to a binary fullword integer for the

result

v Pointer to the Java encoding name for the

string, represented as a null-terminated

EBCDIC character string1

Return code as a binary fullword

integer:

 0 Success.

-1 Malformed input or illegal

input character.

-2 Unsupported encoding; the

jstring object reference pointer

is set to NULL.

Returns, in the third argument, the

needed length in bytes of the output

buffer to hold the converted Java

string, including the terminating null

byte referenced by the second

argument.

GetStringPlatform v The JNI environment pointer

v jstring object reference that you want to

convert to a null-terminated string

v Pointer to the output buffer in which you

want the converted string

v Length of the output buffer as a binary

fullword integer

v Pointer to the Java encoding name for the

string, represented as a null-terminated

EBCDIC character string1

Return code as a binary fullword

integer:

 0 Success.

-1 Malformed input or illegal

input character.

-2 Unsupported encoding; the

output string is set to a null

string.

-3 Conversion buffer is full.

1. If the pointer is NULL, the encoding from the Java file.encoding property is used.

These EBCDIC services are packaged as a DLL that is part of your IBM Java 2

Software Development Kit. For details about the services, see jni_convert.h in the

IBM Java 2 Software Development Kit.

Use CALL literal statements to call the services. The calls are resolved through the

libjvm.x DLL side file, which you must include in the link step of any COBOL

program that uses object-oriented language.

For example, the following code creates a Java String object from the EBCDIC

string ’MyConverter’. (This code fragment is from the J2EE client program, which

is shown in full in “Example: J2EE client written in COBOL” on page 607.)

Move z"MyConverter" to stringBuf

Call "NewStringPlatform"

 using by value JNIEnvPtr

 address of stringBuf

 address of jstring1

 0

 returning rc

If the EBCDIC services are the only JNI services that you call from a COBOL

program, you do not need to copy the JNI.cpy copybook. You also do not need to

establish addressability with the JNI environment pointer.

606 Enterprise COBOL for z/OS V4.1 Programming Guide

Services for UTF-8: The Java Native Interface also provides services for conversion

between jstring object references and UTF-8 strings. These services are not

recommended for use in COBOL programs due to the difficulty in handling UTF-8

character strings on the z/OS platform.

RELATED TASKS

“Accessing JNI services” on page 595

“Coding interoperable data types in COBOL and Java” on page 600

“Declaring arrays and strings for Java” on page 601

“Using national data (Unicode) in COBOL” on page 126

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Example: J2EE client written in COBOL

The following example shows a COBOL client program that can access enterprise

beans that run on a J2EE-compliant EJB server.

The COBOL client is equivalent to the J2EE client program in the Getting Started

chapter of Java 2 Enterprise Edition Developer’s Guide. For your convenience in

comparing implementations, the second example shows the equivalent Java client

from the guide. (The enterprise bean is the Java implementation of the simple

currency-converter enterprise bean, and is in the same guide.)

COBOL client (ConverterClient.cbl)

 Process pgmname(longmixed),lib,dll,thread

* Demo J2EE client written in COBOL. *

* *

* Based on the sample J2EE client written in Java, which is *

* given in the "Getting Started" chapter of "The Java(TM) 2 *

* Enterprise Edition Developer’s Guide." *

* *

* The client: *

* - Locates the home interface of a session enterprise bean *

* (a simple currency converter bean) *

* - Creates an enterprise bean instance *

* - Invokes a business method (currency conversion) *

 Identification division.

 Program-id. "ConverterClient" is recursive.

 Environment Division.

 Configuration section.

 Repository.

 Class InitialContext is "javax.naming.InitialContext"

 Class PortableRemoteObject

 is "javax.rmi.PortableRemoteObject"

 Class JavaObject is "java.lang.Object"

 Class JavaClass is "java.lang.Class"

 Class JavaException is "java.lang.Exception"

 Class jstring is "jstring"

 Class Converter is "Converter"

 Class ConverterHome is "ConverterHome".

 Data division.

 Working-storage section.

 01 initialCtx object reference InitialContext.

 01 obj object reference JavaObject.

 01 classObj object reference JavaClass.

 01 ex object reference JavaException.

 01 currencyConverter object reference Converter.

 01 home object reference ConverterHome.

 01 homeObject redefines home object reference JavaObject.

Chapter 31. Communicating with Java methods 607

01 jstring1 object reference jstring.

 01 stringBuf pic X(500) usage display.

 01 len pic s9(9) comp-5.

 01 rc pic s9(9) comp-5.

 01 amount comp-2.

 Linkage section.

 Copy JNI.

 Procedure division.

 Set address of JNIenv to JNIEnvPtr

 Set address of JNINativeInterface to JNIenv

* Create JNDI naming context. *

 Invoke InitialContext New returning initialCtx

 Perform JavaExceptionCheck

* Create a jstring object for the string "MyConverter" for use *

* as argument to the lookup method. *

 Move z"MyConverter" to stringBuf

 Call "NewStringPlatform"

 using by value JNIEnvPtr

 address of stringBuf

 address of jstring1

 0

 returning rc

 If rc not = zero then

 Display "Error occurred creating jstring object"

 Stop run

 End-if

* Use the lookup method to obtain a reference to the home *

* object bound to the name "MyConverter". (This is the JNDI *

* name specified when deploying the J2EE application.) *

 Invoke initialCtx "lookup" using by value jstring1

 returning obj

 Perform JavaExceptionCheck

* Narrow the home object to be of type ConverterHome. *

* First obtain class object for the ConverterHome class, by *

* passing the null-terminated ASCII string "ConverterHome" to *

* the FindClass API. Then use this class object as the *

* argument to the static method "narrow". *

 Move z"ConverterHome" to stringBuf

 Call "__etoa"

 using by value address of stringBuf

 returning len

 If len = -1 then

 Display "Error occurred on ASCII conversion"

 Stop run

 End-if

 Call FindClass

 using by value JNIEnvPtr

 address of stringBuf

 returning classObj

 If classObj = null

 Display "Error occurred locating ConverterHome class"

 Stop run

 End-if

 Invoke PortableRemoteObject "narrow"

 using by value obj

608 Enterprise COBOL for z/OS V4.1 Programming Guide

classObj

 returning homeObject

 Perform JavaExceptionCheck

* Create the ConverterEJB instance and obtain local object *

* reference for its remote interface *

 Invoke home "create" returning currencyConverter

 Perform JavaExceptionCheck

* Invoke business methods *

 Invoke currencyConverter "dollarToYen"

 using by value +100.00E+0

 returning amount

 Perform JavaExceptionCheck

 Display amount

 Invoke currencyConverter "yenToEuro"

 using by value +100.00E+0

 returning amount

 Perform JavaExceptionCheck

 Display amount

* Remove the object and return. *

 Invoke currencyConverter "remove"

 Perform JavaExceptionCheck

 Goback

 .

* Check for thrown Java exceptions *

 JavaExceptionCheck.

 Call ExceptionOccurred using by value JNIEnvPtr

 returning ex

 If ex not = null then

 Call ExceptionClear using by value JNIEnvPtr

 Display "Caught an unexpected exception"

 Invoke ex "PrintStackTrace"

 Stop run

 End-if

 .

 End program "ConverterClient".

Java client (ConverterClient.java)

/*

 *

 * Copyright 2000 Sun Microsystems, Inc. All Rights Reserved.

 *

 * This software is the proprietary information of Sun Microsystems, Inc.

 * Use is subject to license terms.

 *

 */

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

Chapter 31. Communicating with Java methods 609

import Converter;

import ConverterHome;

public class ConverterClient {

 public static void main(String[] args) {

 try {

 Context initial = new InitialContext();

 Object objref = initial.lookup("MyConverter");

 ConverterHome home =

 (ConverterHome)PortableRemoteObject.narrow(objref,

 ConverterHome.class);

 Converter currencyConverter = home.create();

 double amount = currencyConverter.dollarToYen(100.00);

 System.out.println(String.valueOf(amount));

 amount = currencyConverter.yenToEuro(100.00);

 System.out.println(String.valueOf(amount));

 currencyConverter.remove();

 } catch (Exception ex) {

 System.err.println("Caught an unexpected exception!");

 ex.printStackTrace();

 }

 }

}

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

WebSphere for z/OS: Applications

RELATED REFERENCES

Java 2 Enterprise Edition Developer’s Guide

610 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf
http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/DevGuideTOC.html

Part 7. Specialized processing

Chapter 32. Interrupts and checkpoint/restart 613

Setting checkpoints 613

Designing checkpoints 614

Testing for a successful checkpoint 615

DD statements for defining checkpoint data sets 615

Examples: defining checkpoint data sets . . 615

Messages generated during checkpoint 616

Restarting programs 616

Requesting automatic restart 617

Requesting deferred restart 617

Formats for requesting deferred restart 618

Example: requesting a deferred restart . . . 619

Resubmitting jobs for restart 619

Example: restarting a job at a specific

checkpoint step 619

Example: requesting a step restart 619

Example: resubmitting a job for a step restart 620

Example: resubmitting a job for a checkpoint

restart 620

Chapter 33. Processing two-digit-year dates 623

Millennium language extensions (MLE) 624

Principles and objectives of these extensions . . 624

Resolving date-related logic problems 625

Using a century window 626

Example: century window 627

Using internal bridging 627

Example: internal bridging 628

Moving to full field expansion 629

Example: converting files to expanded date

form 629

Using year-first, year-only, and year-last date fields 631

Compatible dates 631

Example: comparing year-first date fields . . . 632

Using other date formats 632

Example: isolating the year 633

Manipulating literals as dates 633

Assumed century window 634

Treatment of nondates 635

Setting triggers and limits 636

Example: using limits 637

Using sign conditions 638

Sorting and merging by date 638

Example: sorting by date and time 639

Performing arithmetic on date fields 639

Allowing for overflow from windowed date

fields 640

Specifying the order of evaluation 641

Controlling date processing explicitly 641

Using DATEVAL 642

Using UNDATE 642

Example: DATEVAL 643

Example: UNDATE 643

Analyzing and avoiding date-related diagnostic

messages 644

Avoiding problems in processing dates 645

Avoiding problems with packed-decimal fields 645

Moving from expanded to windowed date fields 646

© Copyright IBM Corp. 1991, 2007 611

612 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 32. Interrupts and checkpoint/restart

When programs run for an extended period of time, interruptions might halt

processing before the end of a job. The checkpoint/restart functions of z/OS allow

an interrupted program to be restarted at the beginning of a job step or at a

checkpoint that you have set.

Because the checkpoint/restart functions cause a lot of extra processing, use them

only when you anticipate interruptions caused by machine malfunctions, input or

output errors, or intentional operator intervention.

The checkpoint routine starts from the COBOL load module that contains your

program. While your program is running, the checkpoint routine creates records at

points that you have designated using the COBOL RERUN clause. A checkpoint

record contains a snapshot of the information in the registers and main storage

when the program reached the checkpoint.

The restart routine restarts an interrupted program. You can perform a restart at

any time after the program was interrupted: either immediately (automatic restart),

or later (deferred restart).

RELATED TASKS

“Setting checkpoints”

“Restarting programs” on page 616

“Resubmitting jobs for restart” on page 619

z/OS DFSMS: Checkpoint/Restart

RELATED REFERENCES

“DD statements for defining checkpoint data sets” on page 615

“Messages generated during checkpoint” on page 616

“Formats for requesting deferred restart” on page 618

Setting checkpoints

To set checkpoints, use job control statements and use the RERUN clause in the

ENVIRONMENT DIVISION. Associate each RERUN clause with a particular COBOL file.

The RERUN clause indicates that a checkpoint record is to be written onto a

checkpoint data set whenever a specified number of records in the COBOL file has

been processed or when END OF VOLUME is reached. You cannot use the RERUN clause

with files that have been defined with the EXTERNAL attribute.

You can write checkpoint records from several COBOL files onto one checkpoint

data set, but you must use a separate data set exclusively for checkpoint records.

You cannot embed checkpoint records in one of your program data sets.

Restrictions: A checkpoint data set must have sequential organization. You cannot

write checkpoints on VSAM data sets or on data sets that are allocated to

extended-format QSAM data sets. Also, a checkpoint cannot be taken if any

program in the run unit has an extended-format QSAM data set that is open.

© Copyright IBM Corp. 1991, 2007 613

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2c420

Checkpoint records are written on the checkpoint data set defined by a DD

statement. In the DD statement, you also choose the checkpoint method:

Single (store single checkpoints)

Only one checkpoint record exists at any given time. After the first

checkpoint record is written, any succeeding checkpoint record overlays

the previous one.

 This method is acceptable for most programs. You save space on the

checkpoint data set, and you can restart your program at the latest

checkpoint.

Multiple (store multiple contiguous checkpoints)

Checkpoints are recorded and numbered sequentially. Each checkpoint is

saved.

 Use this method when you want to restart a program at a checkpoint other

than the latest one taken.

You must use the multiple checkpoint method for complete compliance to

Standard COBOL 85.

Checkpoints during sort operations have the following requirements:

v If checkpoints are to be taken during a sort operation, add a DD statement for

SORTCKPT in the job control procedure for execution.

v You can take checkpoint records on ASCII-collated sorts, but the system-name that

indicates the checkpoint data set must not specify an ASCII file.

RELATED TASKS

“Using checkpoint/restart with DFSORT” on page 231

“Designing checkpoints”

“Testing for a successful checkpoint” on page 615

RELATED REFERENCES

“DD statements for defining checkpoint data sets” on page 615

Designing checkpoints

Design your checkpoints at critical points in your program so that data can be

easily reconstructed. Do not change the contents of files between the time of a

checkpoint and the time of the restart.

In a program that uses disk files, design the program so that you can identify

previously processed records. For example, consider a disk file that contains loan

records that are periodically updated for interest due. If a checkpoint is taken,

records are updated, and then the program is interrupted, you would want to test

that the records that are updated after the last checkpoint are not updated again

when the program is restarted. To do this, set up a date field in each record, and

update the field each time the record is processed. Then, after the restart, test the

field to determine whether the record was already processed.

For efficient repositioning of a print file, take checkpoints on the file only after

printing the last line of a page.

614 Enterprise COBOL for z/OS V4.1 Programming Guide

Testing for a successful checkpoint

After each input or output statement that issues a checkpoint, the RETURN-CODE

special register is updated with the return code from the checkpoint routine.

Therefore, you can test whether the checkpoint was successful and decide whether

conditions are right to allow a restart.

If the return code is greater than 4, an error has occurred in the checkpoint. Check

the return code to prevent a restart that could cause incorrect output.

RELATED REFERENCES

z/OS DFSMS: Checkpoint/Restart (Return codes)

DD statements for defining checkpoint data sets

To define checkpoint data sets, use DD statements.

For tape:

//ddname DD DSNAME=data-set-name,

// [VOLUME=SER=volser,]UNIT=device-type,

// DISP=({NEW|MOD},PASS)

For direct-access devices:

//ddname DD DSNAME=data-set-name,

// [VOLUME=(PRIVATE,RETAIN,SER=volser),]

// UNIT=device-type,SPACE=(subparms),

// DISP=({NEW|MOD},PASS,KEEP)

ddname

Provides a link to the DD statement. The same as the ddname portion of the

assignment-name used in the COBOL RERUN clause.

data-set-name

Identifies the checkpoint data set to the restart procedure. The name given

to the data set used to record checkpoint records.

volser Identifies the volume by serial number.

device-type

Identifies the device.

subparms

Specifies the amount of track space needed for the data set.

MOD Specifies the multiple contiguous checkpoint method.

NEW Specifies the single checkpoint method.

PASS Prevents deletion of the data set at successful completion of the job step,

unless the job step is the last in the job. If it is the last step, the data set is

deleted.

KEEP Keeps the data set if the job step abnormally ends.

“Examples: defining checkpoint data sets”

Examples: defining checkpoint data sets

The following examples show the JCL and COBOL coding you can use to define

checkpoint data sets.

Chapter 32. Interrupts and checkpoint/restart 615

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2c420

Writing single checkpoint records, using tape:

//CHECKPT DD DSNAME=CHECK1,VOLUME=SER=ND0003,

// UNIT=TAPE,DISP=(NEW,KEEP),LABEL=(,NL)

 . . .

 ENVIRONMENT DIVISION.

 . . .

 RERUN ON CHECKPT EVERY

 5000 RECORDS OF ACCT-FILE.

Writing single checkpoint records, using disk:

//CHEK DD DSNAME=CHECK2,

// VOLUME=(PRIVATE,RETAIN,SER=DB0030),

// UNIT=3380,DISP=(NEW,KEEP),SPACE=(CYL,5)

 . . .

 ENVIRONMENT DIVISION.

 . . .

 RERUN ON CHEK EVERY

 20000 RECORDS OF PAYCODE.

 RERUN ON CHEK EVERY

 30000 RECORDS OF IN-FILE.

Writing multiple contiguous checkpoint records, using tape:

//CHEKPT DD DSNAME=CHECK3,VOLUME=SER=111111,

// UNIT=TAPE,DISP=(MOD,PASS),LABEL=(,NL)

 . . .

 ENVIRONMENT DIVISION.

 . . .

 RERUN ON CHEKPT EVERY

 10000 RECORDS OF PAY-FILE.

Messages generated during checkpoint

The system checkpoint routine advises the operator of the status of the checkpoints

taken by displaying informative messages on the console.

Each time a checkpoint is successfully completed, a message is displayed that

associates the jobname (ddname, unit, volser) with the checkpoint taken (checkid).

The control program assigns checkid as an eight-character string. The first character

is the letter C, followed by a decimal number that indicates the checkpoint. For

example, the following message indicates the fourth checkpoint taken in the job

step:

checkid C0000004

Restarting programs

The system restart routine retrieves the information recorded in a checkpoint

record, restores the contents of main storage and all registers, and restarts the

program.

You can begin the restart routine in one of two ways:

v Automatically at the time an interruption stopped the program

v At a later time as a deferred restart

The RD parameter of the job control language determines the type of restart. You

can use the RD parameter on either the JOB or the EXEC statement. If coded on the

JOB statement, the parameter overrides any RD parameters on the EXEC statement.

616 Enterprise COBOL for z/OS V4.1 Programming Guide

To suppress both restart and writing checkpoints, code RD=NC.

Restriction: If you try to restart at a checkpoint taken by a COBOL program

during a SORT or MERGE operation, an error message is issued and the restart is

canceled. Only checkpoints taken by DFSORT are valid.

Data sets that have the SYSOUT parameter coded in their DD statements are handled

in various ways depending on the type of restart.

If the checkpoint data set is multivolume, include in the VOLUME parameter the

sequence number of the volume on which the checkpoint entry was written. If the

checkpoint data set is on a 7-track tape with nonstandard labels or no labels, the

SYSCHK DD statement must contain DCB=(TRTCH=C,. . .).

RELATED TASKS

“Using checkpoint/restart with DFSORT” on page 231

“Requesting automatic restart”

“Requesting deferred restart”

Requesting automatic restart

Automatic restart occurs only at the latest checkpoint taken. If no checkpoint was

taken before interruption, automatic restart occurs at the beginning of the job step.

Whenever automatic restart is to occur, the system repositions all devices except

unit-record devices.

If you want automatic restart, code RD=R or RD=RNC:

v RD=R indicates that restart is to occur at the latest checkpoint. Code the RERUN

clause for at least one data set in the program in order to record checkpoints. If

no checkpoint is taken before interruption, restart occurs at the beginning of the

job step.

v RD=RNC indicates that no checkpoint is to be written, and that any restart is to

occur at the beginning of the job step. In this case, RERUN clauses are

unnecessary; if any are present, they are ignored.

If you omit the RD parameter, the CHKPT macro instruction remains active, and

checkpoints can be taken during processing. If an interrupt occurs after the first

checkpoint, automatic restart will occur.

To restart automatically, a program must satisfy the following conditions:

v In the program you must request restart by using the RD parameter or by taking

a checkpoint.

v An abend that terminated the job must return a code that allows restart.

v The operator must authorize the restart.

“Example: requesting a step restart” on page 619

Requesting deferred restart

Deferred restart can occur at any checkpoint, not necessarily the latest one taken.

You can restart your program at a checkpoint other than at the beginning of the job

step.

Chapter 32. Interrupts and checkpoint/restart 617

When a deferred restart has been successfully completed, the system displays a

message on the console stating that the job has been restarted. Control is then

given to your program.

If you want deferred restart, code the RD parameter as RD=NR. This form of the

parameter suppresses automatic restart but allows a checkpoint record to be

written provided that a RERUN clause was coded.

Request a deferred restart by using the RESTART parameter on the JOB card and a

SYSCHK DD statement to identify the checkpoint data set. If a SYSCHK DD statement is

present in a job and the JOB statement does not contain the RESTART parameter, the

SYSCHK DD statement is ignored. If a RESTART parameter without the CHECKID

subparameter is included in a job, a SYSCHK DD statement must not appear before

the first EXEC statement for the job.

“Example: restarting a job at a specific checkpoint step” on page 619

RELATED REFERENCES

“Formats for requesting deferred restart”

Formats for requesting deferred restart

The formats for the RESTART parameter of the JOB statement and the SYSCHK DD

statements are as shown below.

//jobname JOB MSGLEVEL=1,RESTART=(request[,checkid])

//SYSCHK DD DSNAME=data-set-name,

// DISP=OLD[,UNIT=device-type,

// VOLUME=SER=volser]

MSGLEVEL=1 (or MSGLEVEL=(1,y))

MSGLEVEL is required.

RESTART=(request,[checkid])

Identifies the particular checkpoint at which restart is to occur.

request

Takes one of the following forms:

* Indicates restart at the beginning of the job.

stepname

Indicates restart at the beginning of a job step.

stepname.procstep

Indicates restart at a procedure step within the job step.

checkid

Identifies the checkpoint where restart is to occur.

SYSCHK The ddname used to identify a checkpoint data set to the control program.

The SYSCHK DD statement must immediately precede the first EXEC

statement of the resubmitted job, and must follow any JOBLIB statement.

data-set-name

Identifies the checkpoint data set. It must be the same name that

was used when the checkpoint was taken.

device-type and volser

Identify the device type and the serial number of the volume that

contains the checkpoint data set.

618 Enterprise COBOL for z/OS V4.1 Programming Guide

“Example: requesting a deferred restart”

Example: requesting a deferred restart

This example shows JCL to restart the GO step of an IGYWCLG procedure at

checkpoint identifier (CHECKID) C0000003.

//jobname JOB MSGLEVEL=1,RESTART=(stepname.GO,C0000003)

//SYSCHK DD DSNAME=CHEKPT,

// DISP=OLD[,UNIT=3380,VOLUME=SER=111111]

 . . .

Resubmitting jobs for restart

When you resubmit a job for restart, be careful with any DD statements that might

affect the execution of the restarted job step. The restart routine uses information

from DD statements in the resubmitted job to reset files for use after restart.

If you want a data set to be deleted at the end of a job step, give it a conditional

disposition of PASS or KEEP (rather than DELETE). This disposition allows the data

set to be available if an interruption forces a restart. If you want to restart a job at

the beginning of a step, you must first discard any data set created (defined as NEW

in a DD statement) in the previous run, or change the DD statement to mark the data

set as OLD.

The system automatically repositions input data sets that are on tape or disk.

“Example: resubmitting a job for a step restart” on page 620

“Example: resubmitting a job for a checkpoint restart” on page 620

Example: restarting a job at a specific checkpoint step

This example shows a sequence of job control statements for restarting a job at a

specific step.

//PAYROLL JOB MSGLEVEL=1,REGION=80K,

// RESTART=(STEP1,CHECKPT4)

//JOBLIB DD DSNAME=PRIV.LIB3,DISP=OLD

//SYSCHK DD DSNAME=CHKPTLIB,

// [UNIT=TAPE,VOL=SER=456789,]

// DISP=(OLD,KEEP)

//STEP1 EXEC PGM=PROG4,TIME=5

Example: requesting a step restart

This example shows the use of the RD parameter, which requests step restart for

any abnormally terminated job step.

//J1234 JOB 386,SMITH,MSGLEVEL=1,RD=R

//S1 EXEC PGM=MYPROG

//INDATA DD DSNAME=INVENT[,UNIT=TAPE],DISP=OLD,

// [VOLUME=SER=91468,]

// LABEL=RETPD=14

//REPORT DD SYSOUT=A

//WORK DD DSNAME=T91468,DISP=(,,KEEP),

// UNIT=SYSDA,SPACE=(3000,(5000,500)),

// VOLUME=(PRIVATE,RETAIN,,6)

//DDCKPNT DD UNIT=TAPE,DISP=(MOD,PASS,CATLG),

// DSNAME=C91468,LABEL=(,NL)

Chapter 32. Interrupts and checkpoint/restart 619

The DDCKPNT DD statement defines a checkpoint data set. For this step, after a RERUN

clause is performed, only automatic checkpoint restart can occur unless a CHKPT

cancel is issued.

Example: resubmitting a job for a step restart

This example shows the changes that you might make to the JCL before you

resubmit a job for step restart.

//J3412 JOB 386,SMITH,MSGLEVEL=1,RD=R,RESTART=*

//S1 EXEC PGM=MYPROG

//INDATA DD DSNAME=INVENT[,UNIT=TAPE],DISP=OLD,

// [VOLUME=SER=91468,]LABEL=RETPD=14

//REPORT DD SYSOUT=A

//WORK DD DSNAME=S91468,

// DISP=(,,KEEP),UNIT=SYSDA,

// SPACE=(3000,(5000,500)),

// VOLUME=(PRIVATE,RETAIN,,6)

//DDCHKPNT DD UNIT=TAPE,DISP=(MOD,PASS,CATLG),

// DSNAME=R91468,LABEL=(,NL)

The following changes were made in the example above:

v The job name has been changed (from J1234 to J3412) to distinguish the original

job from the restarted job.

v The RESTART parameter has been added to the JOB statement, and indicates that

restart is to begin with the first job step.

v The WORK DD statement was originally assigned a conditional disposition of KEEP

for this data set:

– If the step terminated normally in the previous run of the job, the data set

was deleted, and no changes need to be made to this statement.

– If the step abnormally terminated, the data set was kept. In that case, define a

new data set (S91468 instead of T91468, as shown), or change the status of the

data set to OLD before resubmitting the job.
v A new data set (R91468 instead of C91468) has also been defined as the

checkpoint data set.

“Example: requesting a step restart” on page 619

Example: resubmitting a job for a checkpoint restart

This example shows the changes that you might make to JCL before you resubmit

a job for checkpoint restart.

//J3412 JOB 386,SMITH,MSGLEVEL=1,RD=R,

// RESTART=(*,C0000002)

//SYSCHK DD DSNAME=C91468,DISP=OLD

//S1 EXEC PGM=MYPROG

//INDATA DD DSNAME=INVENT,UNIT=TAPE,DISP=OLD,

// VOLUME=SER=91468,LABEL=RETPD=14

//REPORT DD SYSOUT=A

//WORK DD DSNAME=T91468,DISP=(,,KEEP),

// UNIT=SYSDA,SPACE=(3000,(5000,500)),

// VOLUME=(PRIVATE,RETAIN,,6)

//DDCKPNT DD UNIT=TAPE,DISP=(MOD,KEEP,CATLG),

// DSNAME=C91468,LABEL=(,NL)

The following changes were made in the example above:

v The job name has been changed (from J1234 to J3412) to distinguish the original

job from the restarted job.

620 Enterprise COBOL for z/OS V4.1 Programming Guide

v The RESTART parameter has been added to the JOB statement, and indicates that

restart is to begin with the first step at the checkpoint entry named C0000002.

v The DD statement DDCKPNT was originally assigned a conditional disposition of

CATLG for the checkpoint data set:

– If the step terminated normally in the previous run of the job, the data set

was kept. In that case, the SYSCHK DD statement must contain all of the

information necessary for retrieving the checkpoint data set.

– If the job abnormally terminated, the data set was cataloged. In that case, the

only parameters required on the SYSCHK DD statement are DSNAME and DISP as

shown.

If a checkpoint is taken in a job that is running when V=R is specified, the job

cannot be restarted until adequate nonpageable dynamic storage becomes

available.

Chapter 32. Interrupts and checkpoint/restart 621

622 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 33. Processing two-digit-year dates

With the millennium language extensions (MLE), you can make simple changes in

your COBOL programs to define date fields. The compiler recognizes and acts on

these dates by using a century window to ensure consistency.

Use the following steps to implement automatic date recognition in a COBOL

program:

1. Add the DATE FORMAT clause to the data description entries of the data items in

the program that contain dates. You must identify all dates with DATE FORMAT

clauses, even those that are not used in comparisons.

2. To expand dates, use MOVE or COMPUTE statements to copy the contents of

windowed date fields to expanded date fields.

3. If necessary, use the DATEVAL and UNDATE intrinsic functions to convert between

date fields and nondates.

4. Use the YEARWINDOW compiler option to set the century window as either a fixed

window or a sliding window.

5. Compile the program with the DATEPROC(FLAG) compiler option, and review the

diagnostic messages to see if date processing has produced any unexpected

side effects.

6. When the compilation has only information-level diagnostic messages, you can

recompile the program with the DATEPROC(NOFLAG) compiler option to produce

a clean listing.

You can use certain programming techniques to take advantage of date processing

and control the effects of using date fields such as when comparing dates, sorting

and merging by date, and performing arithmetic operations involving dates. The

millennium language extensions support year-first, year-only, and year-last date

fields for the most common operations on date fields: comparisons, moving and

storing, and incrementing and decrementing.

RELATED CONCEPTS

“Millennium language extensions (MLE)” on page 624

RELATED TASKS

“Resolving date-related logic problems” on page 625

“Using year-first, year-only, and year-last date fields” on page 631

“Manipulating literals as dates” on page 633

“Setting triggers and limits” on page 636

“Sorting and merging by date” on page 638

“Performing arithmetic on date fields” on page 639

“Controlling date processing explicitly” on page 641

“Analyzing and avoiding date-related diagnostic messages” on page 644

“Avoiding problems in processing dates” on page 645

RELATED REFERENCES

“DATEPROC” on page 314

“YEARWINDOW” on page 358

DATE FORMAT clause (Enterprise COBOL Language Reference)

© Copyright IBM Corp. 1991, 2007 623

Millennium language extensions (MLE)

The term millennium language extensions (MLE) refers to the features of Enterprise

COBOL that the DATEPROC compiler option activates to help with logic problems

that involve dates in the year 2000 and beyond.

When enabled, the extensions include:

v The DATE FORMAT clause. Add this clause to items in the DATA DIVISION to

identify date fields and to specify the location of the year component within the

date.

There are several restrictions on use of the DATE FORMAT clause; for example, you

cannot specify it for items that have USAGE NATIONAL. See the related references

below for details.

v The reinterpretation as a date field of the function return value for the following

intrinsic functions:

– DATE-OF-INTEGER

– DATE-TO-YYYYMMDD

– DAY-OF-INTEGER

– DAY-TO-YYYYDDD

– YEAR-TO-YYYY

v The reinterpretation as a date field of the conceptual data items DATE, DATE

YYYYMMDD, DAY, and DAY YYYYDDD in the following forms of the ACCEPT statement:

– ACCEPT identifier FROM DATE

– ACCEPT identifier FROM DATE YYYYMMDD

– ACCEPT identifier FROM DAY

– ACCEPT identifier FROM DAY YYYYDDD

v The intrinsic functions UNDATE and DATEVAL, used for selective reinterpretation of

date fields and nondates.

v The intrinsic function YEARWINDOW, which retrieves the starting year of the

century window set by the YEARWINDOW compiler option.

The DATEPROC compiler option enables special date-oriented processing of identified

date fields. The YEARWINDOW compiler option specifies the 100-year window (the

century window) to use for interpreting two-digit windowed years.

RELATED CONCEPTS

“Principles and objectives of these extensions”

RELATED REFERENCES

“DATEPROC” on page 314

“YEARWINDOW” on page 358

Restrictions on using date fields (Enterprise COBOL Language Reference)

Principles and objectives of these extensions

To gain the most benefit from the millennium language extensions, you need to

understand the reasons for their introduction into the COBOL language.

The millennium language extensions focus on a few key principles:

v Programs to be recompiled with date semantics are fully tested and valuable

assets of the enterprise. Their only relevant limitation is that two-digit years in

the programs are restricted to the range 1900-1999.

624 Enterprise COBOL for z/OS V4.1 Programming Guide

v No special processing is done for the nonyear part of dates. That is why the

nonyear part of the supported date formats is denoted by Xs. To do otherwise

might change the meaning of existing programs. The only date-sensitive

semantics that are provided involve automatically expanding (and contracting)

the two-digit year part of dates with respect to the century window for the

program.

v Dates with four-digit year parts are generally of interest only when used in

combination with windowed dates. Otherwise there is little difference between

four-digit year dates and nondates.

Based on these principles, the millennium language extensions are designed to

meet several objectives. You should evaluate the objectives that you need to meet

in order to resolve your date-processing problems, and compare them with the

objectives of the millennium language extensions, to determine how your

application can benefit from them. You should not consider using the extensions in

new applications or in enhancements to existing applications, unless the

applications are using old data that cannot be expanded until later.

The objectives of the millennium language extensions are as follows:

v Extend the useful life of your application programs as they are currently

specified.

v Keep source changes to a minimum, preferably limited to augmenting the

declarations of date fields in the DATA DIVISION. To implement the century

window solution, you should not need to change the program logic in the

PROCEDURE DIVISION.

v Preserve the existing semantics of the programs when adding date fields. For

example, when a date is expressed as a literal, as in the following statement, the

literal is considered to be compatible (windowed or expanded) with the date

field to which it is compared:

If Expiry-Date Greater Than 980101 . . .

Because the existing program assumes that two-digit-year dates expressed as

literals are in the range 1900-1999, the extensions do not change this assumption.

v The windowing feature is not intended for long-term use. It can extend the

useful life of applications as a start toward a long-term solution that can be

implemented later.

v The expanded date field feature is intended for long-term use, as an aid for

expanding date fields in files and databases.

The extensions do not provide fully specified or complete date-oriented data types,

with semantics that recognize, for example, the month and day parts of Gregorian

dates. They do, however, provide special semantics for the year part of dates.

Resolving date-related logic problems

You can adopt any of three approaches to assist with date-processing problems:

use a century window, internal bridging, or full field expansion.

Century window

You define a century window and specify the fields that contain windowed

dates. The compiler then interprets the two-digit years in these data fields

according to the century window.

Internal bridging

If your files and databases have not yet been converted to four-digit-year

Chapter 33. Processing two-digit-year dates 625

dates, but you prefer to use four-digit expanded-year logic in your

programs, you can use an internal bridging technique to process the dates

as four-digit-year dates.

Full field expansion

This solution involves explicitly expanding two-digit-year date fields to

contain full four-digit years in your files and databases and then using

these fields in expanded form in your programs. This is the only method

that assures reliable date processing for all applications.

You can use the millennium language extensions with each approach to achieve a

solution, but each has advantages and disadvantages, as shown below.

 Table 89. Advantages and disadvantages of Year 2000 solutions

Aspect Century window Internal bridging Full field expansion

Implementation Fast and easy but

might not suit all

applications

Some risk of

corrupting data

Must ensure that changes

to databases, copybooks,

and programs are

synchronized

Testing Less testing is

required because no

changes to program

logic

Testing is easy

because changes to

program logic are

straightforward

Duration of fix Programs can

function beyond

2000, but not a

long-term solution

Programs can

function beyond

2000, but not a

permanent solution

Permanent solution

Performance Might degrade

performance

Good performance Best performance

Maintenance Maintenance is easier.

“Example: century window” on page 627

“Example: internal bridging” on page 628

“Example: converting files to expanded date form” on page 629

RELATED TASKS

“Using a century window”

“Using internal bridging” on page 627

“Moving to full field expansion” on page 629

Using a century window

A century window is a 100-year interval, such as 1950-2049, within which any

two-digit year is unique. For windowed date fields, you specify the century

window start date by using the YEARWINDOW compiler option.

When the DATEPROC option is in effect, the compiler applies this window to

two-digit date fields in the program. For example, with a century window of

1930-2029, COBOL interprets two-digit years as follows:

v Year values from 00 through 29 are interpreted as years 2000-2029.

v Year values from 30 through 99 are interpreted as years 1930-1999.

626 Enterprise COBOL for z/OS V4.1 Programming Guide

To implement this century window, you use the DATE FORMAT clause to identify the

date fields in your program and use the YEARWINDOW compiler option to define the

century window as either a fixed window or a sliding window:

v For a fixed window, specify a four-digit year between 1900 and 1999 as the

YEARWINDOW option value. For example, YEARWINDOW(1950) defines a fixed window

of 1950-2049.

v For a sliding window, specify a negative integer from -1 through -99 as the

YEARWINDOW option value. For example, YEARWINDOW(-50) defines a sliding

window that starts 50 years before the year in which the program is running. So

if the program is running in 2007, the century window is 1957-2056, and in 2008

it automatically becomes 1958-2057, and so on.

The compiler automatically applies the century window to operations on the date

fields that you have identified. You do not need any extra program logic to

implement the windowing.

“Example: century window”

RELATED REFERENCES

“DATEPROC” on page 314

“YEARWINDOW” on page 358

DATE FORMAT clause (Enterprise COBOL Language Reference)

Restrictions on using date fields (Enterprise COBOL Language Reference)

Example: century window

The following example shows (in bold) how to modify a program with the DATE

FORMAT clause to use the automatic date windowing capability.

CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-60)

. . .

01 Loan-Record.

 05 Member-Number Pic X(8).

 05 DVD-ID Pic X(8).

 05 Date-Due-Back Pic X(6) Date Format yyxxxx.

 05 Date-Returned Pic X(6) Date Format yyxxxx.

. . .

 If Date-Returned > Date-Due-Back Then

 Perform Fine-Member.

There are no changes to the PROCEDURE DIVISION. The addition of the DATE FORMAT

clause on the two date fields means that the compiler recognizes them as

windowed date fields, and therefore applies the century window when processing

the IF statement. For example, if Date-Due-Back contains 070102 (January 2, 2007)

and Date-Returned contains 061231 (December 31, 2006), Date-Returned is less than

(earlier than) Date-Due-Back, so the program does not perform the Fine-Member

paragraph. (The program checks whether a DVD was returned on time.)

Using internal bridging

For internal bridging, you need to structure your program appropriately.

Do the following steps:

1. Read the input files with two-digit-year dates.

2. Declare these two-digit dates as windowed date fields and move them to

expanded date fields, so that the compiler automatically expands them to

four-digit-year dates.

Chapter 33. Processing two-digit-year dates 627

3. In the main body of the program, use the four-digit-year dates for all date

processing.

4. Window the dates back to two-digit years.

5. Write the two-digit-year dates to the output files.

This process provides a convenient migration path to a full expanded-date

solution, and can have performance advantages over using windowed dates.

When you use this technique, your changes to the program logic are minimal. You

simply add statements to expand and contract the dates, and change the

statements that refer to dates to use the four-digit-year date fields in

WORKING-STORAGE instead of the two-digit-year fields in the records.

Because you are converting the dates back to two-digit years for output, you

should allow for the possibility that the year is outside the century window. For

example, if a date field contains the year 2020, but the century window is

1920-2019, then the date is outside the window. Simply moving the year to a

two-digit-year field will be incorrect. To protect against this problem, you can use a

COMPUTE statement to store the date, with the ON SIZE ERROR phrase to detect

whether the date is outside the century window.

“Example: internal bridging”

RELATED TASKS

“Using a century window” on page 626

“Performing arithmetic on date fields” on page 639

“Moving to full field expansion” on page 629

Example: internal bridging

The following example shows (in bold) how a program can be changed to

implement internal bridging.

CBL DATEPROC(FLAG),YEARWINDOW(-60)

 . . .

 File Section.

 FD Customer-File.

 01 Cust-Record.

 05 Cust-Number Pic 9(9) Binary.

 . . .

 05 Cust-Date Pic 9(6) Date Format yyxxxx.

 Working-Storage Section.

 77 Exp-Cust-Date Pic 9(8) Date Format yyyyxxxx.

 . . .

 Procedure Division.

 Open I-O Customer-File.

 Read Customer-File.

 Move Cust-Date to Exp-Cust-Date.

 . . .

 ===

 * Use expanded date in the rest of the program logic *

 ===

 . . .

 Compute Cust-Date = Exp-Cust-Date

 On Size Error

 Display "Exp-Cust-Date outside century window"

 End-Compute

 Rewrite Cust-Record.

628 Enterprise COBOL for z/OS V4.1 Programming Guide

Moving to full field expansion

Using the millennium language extensions, you can move gradually toward a

solution that fully expands the date field.

Do the following steps:

1. Apply the century window solution, and use this solution until you have the

resources to implement a more permanent solution.

2. Apply the internal bridging solution. This way you can use expanded dates in

your programs while your files continue to hold dates in two-digit-year form.

You can progress more easily to a full-field-expansion solution because there

will be no further changes to the logic in the main body of the programs.

3. Change the file layouts and database definitions to use four-digit-year dates.

4. Change your COBOL copybooks to reflect these four-digit-year date fields.

5. Run a utility program (or special-purpose COBOL program) to copy files from

the old format to the new format.

6. Recompile your programs and do regression testing and date testing.

After you have completed the first two steps, you can repeat the remaining steps

any number of times. You do not need to change every date field in every file at

the same time. Using this method, you can select files for progressive conversion

based on criteria such as business needs or interfaces with other applications.

When you use this method, you need to write special-purpose programs to convert

your files to expanded-date form.

“Example: converting files to expanded date form”

Example: converting files to expanded date form

The following example shows a simple program that copies from one file to

another while expanding the date fields. The record length of the output file is

larger than that of the input file because the dates are expanded.

CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-80)

 **

 ** CONVERT - Read a file, convert the date **

 ** fields to expanded form, write **

 ** the expanded records to a new **

 ** file. **

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CONVERT.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT INPUT-FILE

 ASSIGN TO INFILE

 FILE STATUS IS INPUT-FILE-STATUS.

 SELECT OUTPUT-FILE

 ASSIGN TO OUTFILE

 FILE STATUS IS OUTPUT-FILE-STATUS.

 DATA DIVISION.

 FILE SECTION.

 FD INPUT-FILE

Chapter 33. Processing two-digit-year dates 629

RECORDING MODE IS F.

 01 INPUT-RECORD.

 03 CUST-NAME.

 05 FIRST-NAME PIC X(10).

 05 LAST-NAME PIC X(15).

 03 ACCOUNT-NUM PIC 9(8).

 03 DUE-DATE PIC X(6) DATE FORMAT YYXXXX. (1)

 03 REMINDER-DATE PIC X(6) DATE FORMAT YYXXXX.

 03 DUE-AMOUNT PIC S9(5)V99 COMP-3.

 FD OUTPUT-FILE

 RECORDING MODE IS F.

 01 OUTPUT-RECORD.

 03 CUST-NAME.

 05 FIRST-NAME PIC X(10).

 05 LAST-NAME PIC X(15).

 03 ACCOUNT-NUM PIC 9(8).

 03 DUE-DATE PIC X(8) DATE FORMAT YYYYXXXX. (2)

 03 REMINDER-DATE PIC X(8) DATE FORMAT YYYYXXXX.

 03 DUE-AMOUNT PIC S9(5)V99 COMP-3.

 WORKING-STORAGE SECTION.

 01 INPUT-FILE-STATUS PIC 99.

 01 OUTPUT-FILE-STATUS PIC 99.

 PROCEDURE DIVISION.

 OPEN INPUT INPUT-FILE.

 OPEN OUTPUT OUTPUT-FILE.

 READ-RECORD.

 READ INPUT-FILE

 AT END GO TO CLOSE-FILES.

 MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD. (3)

 WRITE OUTPUT-RECORD.

 GO TO READ-RECORD.

 CLOSE-FILES.

 CLOSE INPUT-FILE.

 CLOSE OUTPUT-FILE.

 EXIT PROGRAM.

 END PROGRAM CONVERT.

Notes:

(1) The fields DUE-DATE and REMINDER-DATE in the input record are Gregorian

dates with two-digit year components. They are defined with a DATE

FORMAT clause so that the compiler recognizes them as windowed date

fields.

(2) The output record contains the same two fields in expanded date format.

They are defined with a DATE FORMAT clause so that the compiler treats

them as four-digit-year date fields.

(3) The MOVE CORRESPONDING statement moves each item in INPUT-RECORD to its

matching item in OUTPUT-RECORD. When the two windowed date fields are

moved to the corresponding expanded date fields, the compiler expands

the year values using the current century window.

630 Enterprise COBOL for z/OS V4.1 Programming Guide

Using year-first, year-only, and year-last date fields

A year-first date field is a date field whose DATE FORMAT specification consists of YY

or YYYY, followed by one or more Xs. The date format of a year-only date field has

just the YY or YYYY. A year-last date field is a date field whose DATE FORMAT clause

specifies one or more Xs preceding YY or YYYY.

When you compare two date fields of either year-first or year-only types, the two

dates must be compatible; that is, they must have the same number of nonyear

characters. The number of digits for the year component need not be the same.

Year-last date formats are commonly used to display dates, but are less useful

computationally because the year, which is the most significant part of the date, is

in the least significant position of the date representation.

If your version of DFSORT (or equivalent) has the appropriate capabilities,

year-last dates are supported as windowed keys in SORT or MERGE statements. Apart

from sort and merge operations, functional support for year-last date fields is

limited to equal or unequal comparisons and certain kinds of assignment. The

operands must be either dates with identical (year-last) date formats, or a date and

a nondate. The compiler does not provide automatic windowing for operations on

year-last dates. When an unsupported usage (such as arithmetic on year-last dates)

occurs, the compiler provides an error-level message.

If you need more general date-processing capability for year-last dates, you should

isolate and operate on the year part of the date.

“Example: comparing year-first date fields” on page 632

RELATED CONCEPTS

“Compatible dates”

RELATED TASKS

“Sorting and merging by date” on page 638

“Using other date formats” on page 632

Compatible dates

The meaning of the term compatible dates depends on whether the usage occurs in

the DATA DIVISION or the PROCEDURE DIVISION.

The DATA DIVISION usage deals with the declaration of date fields, and the rules

that govern COBOL language elements such as subordinate data items and the

REDEFINES clause. In the following example, Review-Date and Review-Year are

compatible because Review-Year can be declared as a subordinate data item to

Review-Date:

01 Review-Record.

 03 Review-Date Date Format yyxxxx.

 05 Review-Year Pic XX Date Format yy.

 05 Review-M-D Pic XXXX.

The PROCEDURE DIVISION usage deals with how date fields can be used together in

operations such as comparisons, moves, and arithmetic expressions. For year-first

and year-only date fields to be considered compatible, date fields must have the

Chapter 33. Processing two-digit-year dates 631

same number of nonyear characters. For example, a field with DATE FORMAT YYXXXX

is compatible with another field that has the same date format and with a YYYYXXXX

field, but not with a YYXXX field.

Year-last date fields must have identical DATE FORMAT clauses. In particular,

operations between windowed date fields and expanded year-last date fields are

not allowed. For example, you can move a date field that has a date format of

XXXXYY to another XXXXYY date field, but not to a date field that has a format of

XXXXYYYY.

You can perform operations on date fields, or on a combination of date fields and

nondates, provided that the date fields in the operation are compatible. For

example, assume the following definitions:

01 Date-Gregorian-Win Pic 9(6) Packed-Decimal Date Format yyxxxx.

01 Date-Julian-Win Pic 9(5) Packed-Decimal Date Format yyxxx.

01 Date-Gregorian-Exp Pic 9(8) Packed-Decimal Date Format yyyyxxxx.

The following statement is inconsistent because the number of nonyear digits is

different between the two fields:

If Date-Gregorian-Win Less than Date-Julian-Win . . .

The following statement is accepted because the number of nonyear digits is the

same for both fields:

If Date-Gregorian-Win Less than Date-Gregorian-Exp . . .

In this case the century window is applied to the windowed date field

(Date-Gregorian-Win) to ensure that the comparison is meaningful.

When a nondate is used in conjunction with a date field, the nondate is either

assumed to be compatible with the date field or is treated as a simple numeric

value.

Example: comparing year-first date fields

The following example shows a windowed date field that is compared with an

expanded date field.

77 Todays-Date Pic X(8) Date Format yyyyxxxx.

01 Loan-Record.

 05 Date-Due-Back Pic X(6) Date Format yyxxxx.

. . .

 If Date-Due-Back > Todays-Date Then . . .

The century window is applied to Date-Due-Back. Todays-Date must have a DATE

FORMAT clause to define it as an expanded date field. If it did not, it would be

treated as a nondate field and would therefore be considered to have the same

number of year digits as Date-Due-Back. The compiler would apply the assumed

century window of 1900-1999, which would create an inconsistent comparison.

Using other date formats

To be eligible for automatic windowing, a date field should contain a two-digit

year as the first or only part of the field. The remainder of the field, if present,

must contain between one and four characters, but its content is not important.

632 Enterprise COBOL for z/OS V4.1 Programming Guide

If there are date fields in your application that do not fit these criteria, you might

have to make some code changes to define just the year part of the date as a date

field with the DATE FORMAT clause. Some examples of these types of date formats

are:

v A seven-character field that consists of a two-digit year, three characters that

contain an abbreviation of the month, and two digits for the day of the month.

This format is not supported because date fields can have only one through four

nonyear characters.

v A Gregorian date of the form DDMMYY. Automatic windowing is not provided

because the year component is not the first part of the date. Year-last dates such

as these are fully supported as windowed keys in SORT or MERGE statements, and

are also supported in a limited number of other COBOL operations.

If you need to use date windowing in cases like these, you will need to add some

code to isolate the year portion of the date.

Example: isolating the year

The following example shows how you can isolate the year portion of a data field

that is in the form DDMMYY.

03 Last-Review-Date Pic 9(6).

03 Next-Review-Date Pic 9(6).

. . .

Add 1 to Last-Review-Date Giving Next-Review-Date.

In the code above, if Last-Review-Date contains 230107 (January 23, 2007), then

Next-Review-Date will contain 230108 (January 23, 2008) after the ADD statement is

executed. This is a simple method for setting the next date for an annual review.

However, if Last-Review-Date contains 230199, then adding 1 yields 230200, which

is not the desired result.

Because the year is not the first part of these date fields, the DATE FORMAT clause

cannot be applied without some code to isolate the year component. In the next

example, the year component of both date fields has been isolated so that COBOL

can apply the century window and maintain consistent results:

03 Last-Review-Date Date Format xxxxyy.

 05 Last-R-DDMM Pic 9(4).

 05 Last-R-YY Pic 99 Date Format yy.

03 Next-Review-Date Date Format xxxxyy.

 05 Next-R-DDMM Pic 9(4).

 05 Next-R-YY Pic 99 Date Format yy.

. . .

Move Last-R-DDMM to Next-R-DDMM.

Add 1 to Last-R-YY Giving Next-R-YY.

Manipulating literals as dates

If a windowed date field has a level-88 condition-name associated with it, the

literal in the VALUE clause is windowed against the century window of the compile

unit rather than against the assumed century window of 1900-1999.

For example, suppose you have these data definitions:

05 Date-Due Pic 9(6) Date Format yyxxxx.

 88 Date-Target Value 081220.

Chapter 33. Processing two-digit-year dates 633

If the century window is 1950-2049, and the contents of Date-Due are 081220

(representing December 20, 2008), then the first condition below evaluates to true,

but the second condition evaluates to false:

If Date-Target. . .

If Date-Due = 081220

The literal 081220 is treated as a nondate; therefore it is windowed against the

assumed century window of 1900-1999, and represents December 20, 1908. But

where the literal is specified in the VALUE clause of a level-88 condition-name, the

literal becomes part of the data item to which it is attached. Because this data item

is a windowed date field, the century window is applied whenever it is referenced.

You can also use the DATEVAL intrinsic function in a comparison expression to

convert a literal to a date field. The resulting date field will be treated as either a

windowed date field or an expanded date field to ensure a consistent comparison.

For example, using the above definitions, both of the following conditions evaluate

to true:

If Date-Due = Function DATEVAL (081220 "YYXXXX")

If Date-Due = Function DATEVAL (20081220 "YYYYXXXX")

With a level-88 condition-name, you can specify the THRU option on the VALUE

clause, but you must specify a fixed century window on the YEARWINDOW compiler

option rather than a sliding window. For example:

05 Year-Field Pic 99 Date Format yy.

 88 In-Range Value 98 Thru 06.

With this form, the windowed value of the second item in the range must be

greater than the windowed value of the first item. However, the compiler can

verify this difference only if the YEARWINDOW compiler option specifies a fixed

century window (for example, YEARWINDOW(1940) rather than YEARWINDOW(-60)).

The windowed order requirement does not apply to year-last date fields. If you

specify a condition-name VALUE clause with the THROUGH phrase for a year-last date

field, the two literals must follow normal COBOL rules. That is, the first literal

must be less than the second literal.

RELATED CONCEPTS

“Assumed century window”

“Treatment of nondates” on page 635

RELATED TASKS

“Controlling date processing explicitly” on page 641

Assumed century window

When a program uses windowed date fields, the compiler applies the century

window that is defined by the YEARWINDOW compiler option to the compilation unit.

When a windowed date field is used in conjunction with a nondate, and the

context demands that the nondate be treated as a windowed date, the compiler

uses an assumed century window to resolve the nondate field.

The assumed century window is 1900-1999, which typically is not the same as the

century window for the compilation unit.

634 Enterprise COBOL for z/OS V4.1 Programming Guide

In many cases, particularly for literal nondates, this assumed century window is

the correct choice. In the following construct, the literal should retain its original

meaning of January 1, 1972, and not change to 2072 if the century window is, for

example, 1975-2074:

01 Manufacturing-Record.

 03 Makers-Date Pic X(6) Date Format yyxxxx.

. . .

 If Makers-Date Greater than "720101" . . .

Even if the assumption is correct, it is better to make the year explicit and

eliminate the warning-level diagnostic message (which results from applying the

assumed century window) by using the DATEVAL intrinsic function:

If Makers-Date Greater than

 Function Dateval("19720101" "YYYYXXXX") . . .

In some cases, the assumption might not be correct. For the following example,

assume that Project-Controls is in a copy member that is used by other

applications that have not yet been upgraded for year 2000 processing, and

therefore Date-Target cannot have a DATE FORMAT clause:

01 Project-Controls.

 03 Date-Target Pic 9(6).

. . .

01 Progress-Record.

 03 Date-Complete Pic 9(6) Date Format yyxxxx.

. . .

 If Date-Complete Less than Date-Target . . .

In the example above, the following three conditions need to be true to make

Date-Complete earlier than (less than) Date-Target:

v The century window is 1910-2009.

v Date-Complete is 991202 (Gregorian date: December 2, 1999).

v Date-Target is 000115 (Gregorian date: January 15, 2000).

However, because Date-Target does not have a DATE FORMAT clause, it is a nondate.

Therefore, the century window applied to it is the assumed century window of

1900-1999, and it is processed as January 15, 1900. So Date-Complete will be greater

than Date-Target, which is not the desired result.

In this case, you should use the DATEVAL intrinsic function to convert Date-Target

to a date field for this comparison. For example:

If Date-Complete Less than

 Function Dateval (Date-Target "YYXXXX") . . .

RELATED TASKS

“Controlling date processing explicitly” on page 641

Treatment of nondates

How the compiler treats a nondate depends upon its context.

The following items are nondates:

v A literal value.

v A data item whose data description does not include a DATE FORMAT clause.

v The results (intermediate or final) of some arithmetic expressions. For example,

the difference of two date fields is a nondate, whereas the sum of a date field

and a nondate is a date field.

Chapter 33. Processing two-digit-year dates 635

v The output from the UNDATE intrinsic function.

When you use a nondate in conjunction with a date field, the compiler interprets

the nondate either as a date whose format is compatible with the date field or as a

simple numeric value. This interpretation depends on the context in which the date

field and nondate are used, as follows:

v Comparison

When a date field is compared with a nondate, the nondate is considered to be

compatible with the date field in the number of year and nonyear characters. In

the following example, the nondate literal 971231 is compared with a windowed

date field:

01 Date-1 Pic 9(6) Date Format yyxxxx.

. . .

 If Date-1 Greater than 971231 . . .

The nondate literal 971231 is treated as if it had the same DATE FORMAT as Date-1,

but with a base year of 1900.

v Arithmetic operations

In all supported arithmetic operations, nondate fields are treated as simple

numeric values. In the following example, the numeric value 10000 is added to

the Gregorian date in Date-2, effectively adding one year to the date:

01 Date-2 Pic 9(6) Date Format yyxxxx.

. . .

 Add 10000 to Date-2.

v MOVE statement

Moving a date field to a nondate is not supported. However, you can use the

UNDATE intrinsic function to do this.

When you move a nondate to a date field, the sending field is assumed to be

compatible with the receiving field in the number of year and nonyear

characters. For example, when you move a nondate to a windowed date field,

the nondate field is assumed to contain a compatible date with a two-digit year.

Setting triggers and limits

Triggers and limits are special values that never match valid dates because either

their value is nonnumeric or the nonyear part of the value cannot occur in an

actual date. Triggers and limits are recognized in date fields and also in nondates

used in combination with date fields.

 Type of date field Special value

Alphanumeric windowed date or year fields HIGH-VALUE, LOW-VALUE, and SPACE

Alphanumeric and numeric windowed date

fields with at least one X in the DATE FORMAT

clause (that is, date fields other than just a

year)

All nines or all zeros

The difference between a trigger and a limit is not in the particular value, but in

the way you use it. You can use any of the special values as either a trigger or a

limit.

When used as triggers, special values can indicate a specific condition such as

″date not initialized″ or ″account past due.″ When used as limits, special values are

intended to act as dates earlier or later than any valid date. LOW-VALUE, SPACE and

zeros are lower limits; HIGH-VALUE and nines are upper limits.

636 Enterprise COBOL for z/OS V4.1 Programming Guide

You activate trigger and limit support by specifying the TRIG suboption of the

DATEPROC compiler option. If the DATEPROC(TRIG) compiler option is in effect,

automatic expansion of windowed date fields (before their use as operands in

comparisons, arithmetic, and so on) is sensitive to these special values.

The DATEPROC(TRIG) option results in slower-performing code when windowed

dates are compared. The DATEPROC(NOTRIG) option is a performance option that

assumes valid date values in all windowed date fields.

When an actual or assumed windowed date field contains a trigger, the compiler

expands the trigger as if the value were propagated to the century part of the

expanded date result, rather than inferring 19 or 20 as the century value as in

normal windowing. In this way, your application can test for special values or use

them as upper or lower date limits. Specifying DATEPROC(TRIG) also enables SORT

and MERGE statement support of the DFSORT special indicators, which correspond

to triggers and limits.

“Example: using limits”

RELATED TASKS

“Using sign conditions” on page 638

RELATED REFERENCES

“DATEPROC” on page 314

Example: using limits

This example shows how you can use an expiration date field to hold either a

normal expiration date or else a high limit that allows an “everlasting”

subscription.

Suppose that your application checks subscriptions for expiration, but you want

some subscriptions to last indefinitely. Consider the following code fragment:

Process Dateproc(Flag,Trig). . .

. . .

01 SubscriptionRecord.

 03 ExpirationDate PIC 9(6) Date Format yyxxxx.

. . .

77 TodaysDate Pic 9(6) Date Format yyxxxx.

. . .

 If TodaysDate >= ExpirationDate

 Perform SubscriptionExpired

Suppose that the application encounters the following values:

v Today’s date is January 4, 2007, represented in TodaysDate as 070104.

v One subscription record has a normal expiration date of December 31, 1999,

represented in ExpirationDate as 991231.

v Another subscription record has a special expiration date coded in

ExpirationDate as 999999.

Because both dates are windowed, the first subscription is tested as if 20070104

were compared with 19991231, and so the test succeeds. However, when the

compiler detects the special value, it uses trigger expansion instead of windowing.

Therefore, the test proceeds as if 20070104 were compared with 99999999. This test

will always fail.

Chapter 33. Processing two-digit-year dates 637

Using sign conditions

Some applications use special values such as zeros in date fields to act as a trigger,

that is, to signify that some special processing is required.

For example, in an Orders file, a value of zero in Order-Date might signify that the

record is a customer totals record rather than an order record. The program

compares the date to zero, as follows:

01 Order-Record.

 05 Order-Date Pic S9(5) Comp-3 Date Format yyxxx.

. . .

 If Order-Date Equal Zero Then . . .

However, if you are compiling with the NOTRIG suboption of the DATEPROC compiler

option, this comparison is not valid because the literal value Zero is a nondate, and

is therefore windowed against the assumed century window to give a value of

1900000.

Alternatively, you can use a sign condition instead of a literal comparison as

follows. With a sign condition, Order-Date is treated as a nondate, and the century

window is not considered.

If Order-Date Is Zero Then . . .

This approach applies only if the operand in the sign condition is a simple

identifier rather than an arithmetic expression. If an expression is specified, the

expression is evaluated first, with the century window being applied where

appropriate. The sign condition is then compared with the results of the

expression.

You could use the UNDATE intrinsic function instead or the TRIG suboption of the

DATEPROC compiler option to achieve the same result.

RELATED CONCEPTS

“Treatment of nondates” on page 635

RELATED TASKS

“Setting triggers and limits” on page 636

“Controlling date processing explicitly” on page 641

RELATED REFERENCES

“DATEPROC” on page 314

Sorting and merging by date

If your sort product supports the Y2PAST option and the windowed year identifiers

(Y2B, Y2C, Y2D, Y2S, and Y2Z), you can perform sort and merge operations using

windowed date fields as sort keys. Virtually all date fields that can be specified

with a DATE FORMAT clause are supported, including binary year fields and year-last

date fields.

The fields are sorted in windowed year sequence according to the century window

that you specify in the YEARWINDOW compiler option. If your sort product also

supports the date field identifiers Y2T, Y2U, Y2W, Y2X, and Y2Y, you can use the TRIG

suboption of the DATEPROC compiler option.

638 Enterprise COBOL for z/OS V4.1 Programming Guide

The special indicators that DFSORT recognizes match exactly those supported by

COBOL: LOW-VALUE, HIGH-VALUE, and SPACE for alphanumeric date or year fields,

and all zeros and all nines for numeric and alphanumeric date fields that have at

least one nonyear digit.

DFSORT is the IBM licensed program for sorting and merging. Wherever DFSORT

is mentioned here, you can use any equivalent product.

“Example: sorting by date and time”

RELATED TASKS

“Sorting on windowed date fields” on page 223

DFSORT Application Programming Guide (OPTION control statement: Y2PAST)

RELATED REFERENCES

“DATEPROC” on page 314

“YEARWINDOW” on page 358

Restrictions on using date fields (Enterprise COBOL Language Reference)

Example: sorting by date and time

The following example shows a transaction file that has the transaction records

sorted by date and time within account number. Trans-Date is a windowed Julian

date field.

SD Transaction-File

 Record Contains 29 Characters

 Data Record is Transaction-Record

01 Transaction-Record.

 05 Trans-Account PIC 9(8).

 05 Trans-Type PIC X.

 05 Trans-Date PIC 9(5) Date Format yyxxx.

 05 Trans-Time PIC 9(6).

 05 Trans-Amount PIC 9(7)V99.

. . .

 Sort Transaction-File

 On Ascending Key Trans-Account

 Trans-Date

 Trans-Time

 Using Input-File

 Giving Sorted-File.

COBOL passes the relevant information to DFSORT for it to perform the sort. In

addition to the information COBOL always passes to DFSORT, COBOL also passes

the following information, which DFSORT also uses:

v Century window as the Y2PAST sort option

v Windowed year field and date format of Trans-Date

Performing arithmetic on date fields

You can perform arithmetic operations on numeric date fields in the same manner

as on any numeric data item. Where appropriate, the century window will be used

in the calculation.

However, there are some restrictions on where date fields can be used in arithmetic

expressions and statements. Arithmetic operations that include date fields are

restricted to:

v Adding a nondate to a date field

Chapter 33. Processing two-digit-year dates 639

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

v Subtracting a nondate from a date field

v Subtracting a date field from a compatible date field to give a nondate result

The following arithmetic operations are not allowed:

v Any operation between incompatible date fields

v Adding two date fields

v Subtracting a date field from a nondate

v Unary minus applied to a date field

v Multiplication, division, or exponentiation of or by a date field

v Arithmetic expressions that specify a year-last date field

v Arithmetic expressions that specify a year-last date field, except as a receiving

data item when the sending field is a nondate

Date semantics are provided for the year parts of date fields but not for the

nonyear parts. For example, adding 1 to a windowed Gregorian date field that

contains the value 980831 gives a result of 980832, not 980901.

RELATED TASKS

“Allowing for overflow from windowed date fields”

“Specifying the order of evaluation” on page 641

Allowing for overflow from windowed date fields

A (nonyear-last) windowed date field that participates in an arithmetic operation is

processed as if the value of the year component of the field were first incremented

by 1900 or 2000, depending on the century window.

01 Review-Record.

 03 Last-Review-Year Pic 99 Date Format yy.

 03 Next-Review-Year Pic 99 Date Format yy.

. . .

 Add 10 to Last-Review-Year Giving Next-Review-Year.

In the example above, if the century window is 1910-2009, and the value of

Last-Review-Year is 98, then the computation proceeds as if Last-Review-Year is

first incremented by 1900 to give 1998. Then the ADD operation is performed, giving

a result of 2008. This result is stored in Next-Review-Year as 08.

However, the following statement would give a result of 2018:

Add 20 to Last-Review-Year Giving Next-Review-Year.

This result falls outside the range of the century window. If the result is stored in

Next-Review-Year, it will be incorrect because later references to Next-Review-Year

will interpret it as 1918. In this case, the result of the operation depends on

whether the ON SIZE ERROR phrase is specified on the ADD statement:

v If SIZE ERROR is specified, the receiving field is not changed, and the SIZE ERROR

imperative statement is executed.

v If SIZE ERROR is not specified, the result is stored in the receiving field with the

left-hand digits truncated.

This consideration is important when you use internal bridging. When you

contract a four-digit-year date field back to two digits to write it to the output file,

you need to ensure that the date falls within the century window. Then the

two-digit-year date will be represented correctly in the field.

640 Enterprise COBOL for z/OS V4.1 Programming Guide

To ensure appropriate calculations, use a COMPUTE statement to do the contraction,

with a SIZE ERROR phrase to handle the out-of-window condition. For example:

Compute Output-Date-YY = Work-Date-YYYY

On Size Error Perform CenturyWindowOverflow.

SIZE ERROR processing for windowed date receivers recognizes any year value that

falls outside the century window. That is, a year value less than the starting year of

the century window raises the SIZE ERROR condition, as does a year value greater

than the ending year of the century window.

If the DATEPROC(TRIG) compiler option is in effect, trigger values of zeros or nines

in the result also cause the SIZE ERROR condition, even though the year part of the

result (00 or 99, respectively) falls within the century window.

RELATED TASKS

“Using internal bridging” on page 627

Specifying the order of evaluation

Because of the restrictions on date fields in arithmetic expressions, you might find

that programs that previously compiled successfully now produce diagnostic

messages when some of the data items are changed to date fields.

01 Dates-Record.

 03 Start-Year-1 Pic 99 Date Format yy.

 03 End-Year-1 Pic 99 Date Format yy.

 03 Start-Year-2 Pic 99 Date Format yy.

 03 End-Year-2 Pic 99 Date Format yy.

. . .

 Compute End-Year-2 = Start-Year-2 + End-Year-1 - Start-Year-1.

In the example above, the first arithmetic expression evaluated is:

Start-Year-2 + End-Year-1

However, the addition of two date fields is not permitted. To resolve these date

fields, you should use parentheses to isolate the parts of the arithmetic expression

that are allowed. For example:

Compute End-Year-2 = Start-Year-2 + (End-Year-1 - Start-Year-1).

In this case, the first arithmetic expression evaluated is:

End-Year-1 - Start-Year-1

The subtraction of one date field from another is permitted and gives a nondate

result. This nondate result is then added to the date field End-Year-1, giving a date

field result that is stored in End-Year-2.

Controlling date processing explicitly

There might be times when you want COBOL data items to be treated as date

fields only under certain conditions or only in specific parts of the program. Or

your application might contain two-digit-year date fields that cannot be declared

as windowed date fields because of some interaction with another software

product.

Chapter 33. Processing two-digit-year dates 641

For example, if a date field is used in a context where it is recognized only by its

true binary contents without further interpretation, the date in that field cannot be

windowed. Such date fields include:

v A key in a VSAM file

v A search field in a database system such as DB2

v A key field in a CICS command

Conversely, there might be times when you want a date field to be treated as a

nondate in specific parts of the program.

COBOL provides two intrinsic functions to deal with these conditions:

DATEVAL

Converts a nondate to a date field

UNDATE Converts a date field to a nondate

RELATED TASKS

“Using DATEVAL”

“Using UNDATE”

Using DATEVAL

You can use the DATEVAL intrinsic function to convert a nondate to a date field, so

that COBOL will apply the relevant date processing to the field.

The first argument in the function is the nondate to be converted, and the second

argument specifies the date format. The second argument is a literal string with a

specification similar to that of the date pattern in the DATE FORMAT clause.

In most cases, the compiler makes the correct assumption about the interpretation

of a nondate but accompanies this assumption with a warning-level diagnostic

message. This message typically happens when a windowed date is compared

with a literal:

03 When-Made Pic x(6) Date Format yyxxxx.

. . .

If When-Made = "850701" Perform Warranty-Check.

The literal is assumed to be a compatible windowed date but with a century

window of 1900-1999, thus representing July 15, 1985. You can use the DATEVAL

intrinsic function to make the year of the literal date explicit and eliminate the

warning message:

If When-Made = Function Dateval("19850701" "YYYYXXXX")

 Perform Warranty-Check.

“Example: DATEVAL” on page 643

Using UNDATE

You can use the UNDATE intrinsic function to convert a date field to a nondate so

that it can be referenced without any date processing.

Attention: Avoid using UNDATE except as a last resort, because the compiler will

lose the flow of date fields in your program. This problem could result in date

comparisons not being windowed properly.

642 Enterprise COBOL for z/OS V4.1 Programming Guide

Use more DATE FORMAT clauses instead of function UNDATE for MOVE and COMPUTE.

“Example: UNDATE”

Example: DATEVAL

This example shows a case where it is better to leave a field as a nondate, and use

the DATEVAL intrinsic function in a comparison statement.

Assume that a field Date-Copied is referenced many times in a program, but that

most of the references just move the value between records or reformat it for

printing. Only one reference relies on it to contain a date (for comparison with

another date). In this case, it is better to leave the field as a nondate, and use the

DATEVAL intrinsic function in the comparison statement. For example:

03 Date-Distributed Pic 9(6) Date Format yyxxxx.

03 Date-Copied Pic 9(6).

. . .

If Function DATEVAL(Date-Copied "YYXXXX") Less than Date-Distributed . . .

In this example, DATEVAL converts Date-Copied to a date field so that the

comparison will be meaningful.

RELATED REFERENCES

DATEVAL (Enterprise COBOL Language Reference)

Example: UNDATE

The following example shows a case where you might want to convert a date field

to a nondate.

The field Invoice-Date is a windowed Julian date. In some records, it contains the

value 00999 to indicate that the record is not a true invoice record, but instead

contains file-control information.

Invoice-Date has a DATE FORMAT clause because most of its references in the

program are date-specific. However, when it is checked for the existence of a

control record, the value 00 in the year component will lead to some confusion. A

year value of 00 in Invoice-Date could represent either 1900 or 2000, depending on

the century window. This is compared with a nondate (the literal 00999 in the

example), which will always be windowed against the assumed century window

and therefore always represents the year 1900.

To ensure a consistent comparison, you should use the UNDATE intrinsic function to

convert Invoice-Date to a nondate. Therefore, if the IF statement is not comparing

date fields, it does not need to apply windowing. For example:

01 Invoice-Record.

 03 Invoice-Date Pic x(5) Date Format yyxxx.

. . .

 If FUNCTION UNDATE(Invoice-Date) Equal "00999" . . .

RELATED REFERENCES

UNDATE (Enterprise COBOL Language Reference)

Chapter 33. Processing two-digit-year dates 643

Analyzing and avoiding date-related diagnostic messages

When the DATEPROC(FLAG) compiler option is in effect, the compiler produces

diagnostic messages for every statement that defines or references a date field.

As with all compiler-generated messages, each date-related message has one of the

following severity levels:

v Information-level, to draw your attention to the definition or use of a date field.

v Warning-level, to indicate that the compiler has had to make an assumption

about a date field or nondate because of inadequate information coded in the

program, or to indicate the location of date logic that should be manually

checked for correctness. Compilation proceeds, with any assumptions continuing

to be applied.

v Error-level, to indicate that the usage of the date field is incorrect. Compilation

continues, but runtime results are unpredictable.

v Severe-level, to indicate that the usage of the date field is incorrect. The

statement that caused this error is discarded from the compilation.

The easiest way to use the MLE messages is to compile with a FLAG option setting

that embeds the messages in the source listing after the line to which the messages

refer. You can choose to see all MLE messages or just certain severities.

To see all MLE messages, specify the FLAG(I,I) and DATEPROC(FLAG) compiler

options. Initially, you might want to see all of the messages to understand how

MLE is processing the date fields in your program. For example, if you want to do

a static analysis of the date usage in a program by using the compile listing, use

FLAG (I,I).

However, it is recommended that you specify FLAG(W,W) for MLE-specific compiles.

You must resolve all severe-level (S-level) error messages, and you should resolve

all error-level (E-level) messages as well. For the warning-level (W-level) messages,

you need to examine each message and use the following guidelines to either

eliminate the message or, for unavoidable messages, ensure that the compiler

makes correct assumptions:

v The diagnostic messages might indicate some date data items that should have

had a DATE FORMAT clause. Either add DATE FORMAT clauses to these items or use

the DATEVAL intrinsic function in references to them.

v Pay particular attention to literals in relation conditions that involve date fields

or in arithmetic expressions that include date fields. You can use the DATEVAL

function on literals (as well as nondate data items) to specify a DATE FORMAT

pattern to be used. As a last resort, you can use the UNDATE function to enable a

date field to be used in a context where you do not want date-oriented behavior.

v With the REDEFINES and RENAMES clauses, the compiler might produce a

warning-level diagnostic message if a date field and a nondate occupy the same

storage location. You should check these cases carefully to confirm that all uses

of the aliased data items are correct, and that none of the perceived nondate

redefinitions actually is a date or can adversely affect the date logic in the

program.

In some cases, a the W-level message might be acceptable, but you might want to

change the code to get a compile with a return code of zero.

To avoid warning-level diagnostic messages, follow these guidelines:

644 Enterprise COBOL for z/OS V4.1 Programming Guide

v Add DATE FORMAT clauses to any data items that will contain dates, even if the

items are not used in comparisons. But see the related references below about

restrictions on using date fields. For example, you cannot use the DATE FORMAT

clause on a data item that is described implicitly or explicitly as USAGE NATIONAL.

v Do not specify a date field in a context where a date field does not make sense,

such as a FILE STATUS, PASSWORD, ASSIGN USING, LABEL RECORD, or LINAGE item. If

you do, you will get a warning-level message and the date field will be treated

as a nondate.

v Ensure that implicit or explicit aliases for date fields are compatible, such as in a

group item that consists solely of a date field.

v Ensure that if a date field is defined with a VALUE clause, the value is compatible

with the date field definition.

v Use the DATEVAL intrinsic function if you want a nondate treated as a date field,

such as when moving a nondate to a date field or when comparing a windowed

date with a nondate and you want a windowed date comparison. If you do not

use DATEVAL, the compiler will make an assumption about the use of the nondate

and produce a warning-level diagnostic message. Even if the assumption is

correct, you might want to use DATEVAL to eliminate the message.

v Use the UNDATE intrinsic function if you want a date field treated as a nondate,

such as moving a date field to a nondate, or comparing a nondate and a

windowed date field when you do not want a windowed comparison.

RELATED TASKS

“Controlling date processing explicitly” on page 641

COBOL Millennium Language Extensions Guide (Analyzing date-related

 diagnostic messages)

RELATED REFERENCES

Restrictions on using date fields (Enterprise COBOL Language Reference)

Avoiding problems in processing dates

When you change a COBOL program to use the millennium language extensions,

you might find that some parts of the program need special attention to resolve

unforeseen changes in behavior. For example, you might need to avoid problems

with packed-decimal fields and problems that occur if you move from expanded to

windowed date fields.

RELATED TASKS

“Avoiding problems with packed-decimal fields”

“Moving from expanded to windowed date fields” on page 646

Avoiding problems with packed-decimal fields

COMPUTATIONAL-3 fields (packed-decimal format) are often defined as having an odd

number of digits even if the field will not be used to hold a number of that

magnitude. The internal representation of packed-decimal numbers always allows

for an odd number of digits.

A field that holds a six-digit Gregorian date, for example, can be declared as PIC

S9(6) COMP-3. This declaration will reserve 4 bytes of storage. But a programmer

might have declared the field as PIC S9(7), knowing that this would reserve 4

bytes with the high-order digit always containing a zero.

Chapter 33. Processing two-digit-year dates 645

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igyml204

If you add a DATE FORMAT YYXXXX clause to this field, the compiler will issue a

diagnostic message because the number of digits in the PICTURE clause does not

match the size of the date format specification. In this case, you need to carefully

check each use of the field. If the high-order digit is never used, you can simply

change the field definition to PIC S9(6). If it is used (for example, if the same field

can hold a value other than a date), you need to take some other action, such as:

v Using a REDEFINES clause to define the field as both a date and a nondate (this

usage will also produce a warning-level diagnostic message)

v Defining another WORKING-STORAGE field to hold the date, and moving the

numeric field to the new field

v Not adding a DATE FORMAT clause to the data item, and using the DATEVAL

intrinsic function when referring to it as a date field

Moving from expanded to windowed date fields

When you move an expanded alphanumeric date field to a windowed date field,

the move does not follow the normal COBOL conventions for alphanumeric

moves. When both the sending and receiving fields are date fields, the move is

right justified, not left justified as normal. For an expanded-to-windowed

(contracting) move, the leading two digits of the year are truncated.

Depending on the contents of the sending field, the results of such a move might

be incorrect. For example:

77 Year-Of-Birth-Exp Pic x(4) Date Format yyyy.

77 Year-Of-Birth-Win Pic xx Date Format yy.

. . .

 Move Year-Of-Birth-Exp to Year-Of-Birth-Win.

If Year-Of-Birth-Exp contains ’1925’, Year-Of-Birth-Win will contain ’25’.

However, if the century window is 1930-2029, subsequent references to

Year-Of-Birth-Win will treat it as 2025, which is incorrect.

646 Enterprise COBOL for z/OS V4.1 Programming Guide

Part 8. Improving performance and productivity

Chapter 34. Tuning your program 649

Using an optimal programming style 650

Using structured programming 650

Factoring expressions 650

Using symbolic constants 651

Grouping constant computations 651

Grouping duplicate computations 651

Choosing efficient data types 652

Choosing efficient computational data items . . 652

Using consistent data types 653

Making arithmetic expressions efficient 653

Making exponentiations efficient 653

Handling tables efficiently 653

Optimization of table references 655

Optimization of constant and variable items 655

Optimization of duplicate items 656

Optimization of variable-length items . . . 656

Comparison of direct and relative indexing 656

Optimizing your code 657

Optimization 657

Contained program procedure integration 658

PERFORM procedure integration 658

Example: PERFORM procedure integration 658

Choosing compiler features to enhance

performance 659

Performance-related compiler options 660

Evaluating performance 663

Running efficiently with CICS, IMS, or VSAM . . 664

Chapter 35. Simplifying coding 665

Eliminating repetitive coding 665

Example: using the COPY statement 666

Using Language Environment callable services . . 667

Sample list of Language Environment callable

services 668

Calling Language Environment services . . . 669

Example: Language Environment callable

services 670

© Copyright IBM Corp. 1991, 2007 647

648 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 34. Tuning your program

When a program is comprehensible, you can assess its performance. A program

that has a tangled control flow is difficult to understand and maintain. The tangled

control flow also inhibits the optimization of the code.

Therefore, before you try to improve the performance directly, you need to assess

certain aspects of your program:

1. Examine the underlying algorithms for your program. For top performance, a

sound algorithm is essential. For example, a sophisticated algorithm for sorting

a million items can be hundreds of thousands times faster than a simple

algorithm.

2. Look at the data structures. They should be appropriate for the algorithm.

When your program frequently accesses data, reduce the number of steps

needed to access the data wherever possible.

3. After you have improved the algorithm and data structures, look at other

details of the COBOL source code that affect performance.

You can write programs that result in better generated code sequences and use

system services better. These areas affect program performance:

v Coding techniques. These include using a programming style that helps the

optimizer, choosing efficient data types, and handling tables efficiently.

v Optimization. You can optimize your code by using the OPTIMIZE compiler

option.

v Compiler options and USE FOR DEBUGGING ON ALL PROCEDURES. Certain compiler

options and language affect the efficiency of your program.

v Runtime environment. Carefully consider your choice of runtime options and

other runtime considerations that control how your compiled program runs.

v Running under CICS, IMS, or using VSAM. Various tips can help make these

programs run efficiently.

RELATED CONCEPTS

“Optimization” on page 657

Enterprise COBOL Version 3 Performance Tuning

RELATED TASKS

“Using an optimal programming style” on page 650

“Choosing efficient data types” on page 652

“Handling tables efficiently” on page 653

“Optimizing your code” on page 657

“Choosing compiler features to enhance performance” on page 659

“Running efficiently with CICS, IMS, or VSAM” on page 664

Language Environment Programming Guide (Specifying run-time options)

RELATED REFERENCES

“Performance-related compiler options” on page 660

Language Environment Programming Guide (Storage performance considerations)

© Copyright IBM Corp. 1991, 2007 649

http://www.ibm.com/support/docview.wss?uid=swg27001475
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

Using an optimal programming style

The coding style you use can affect how the optimizer handles your code. You can

improve optimization by using structured programming techniques, factoring

expressions, using symbolic constants, and grouping constant and duplicate

computations.

RELATED TASKS

“Using structured programming”

“Factoring expressions”

“Using symbolic constants” on page 651

“Grouping constant computations” on page 651

“Grouping duplicate computations” on page 651

Using structured programming

Using structured programming statements, such as EVALUATE and inline PERFORM,

makes your program more comprehensible and generates a more linear control

flow. As a result, the optimizer can operate over larger regions of the program,

which gives you more efficient code.

Use top-down programming constructs. Out-of-line PERFORM statements are a

natural means of doing top-down programming. Out-of-line PERFORM statements

can often be as efficient as inline PERFORM statements, because the optimizer can

simplify or remove the linkage code.

Avoid using the following constructs:

v ALTER statement

v Backward branches (except as needed for loops for which PERFORM is unsuitable)

v PERFORM procedures that involve irregular control flow (such as preventing

control from passing to the end of the procedure and returning to the PERFORM

statement)

Factoring expressions

By factoring expressions in your programs, you can potentially eliminate a lot of

unnecessary computation.

For example, the first block of code below is more efficient than the second block

of code:

MOVE ZERO TO TOTAL

PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10

 COMPUTE TOTAL = TOTAL + ITEM(I)

END-PERFORM

COMPUTE TOTAL = TOTAL * DISCOUNT

MOVE ZERO TO TOTAL

PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10

 COMPUTE TOTAL = TOTAL + ITEM(I) * DISCOUNT

END-PERFORM

The optimizer does not factor expressions.

650 Enterprise COBOL for z/OS V4.1 Programming Guide

Using symbolic constants

To have the optimizer recognize a data item as a constant throughout the program,

initialize it with a VALUE clause and do not change it anywhere in the program.

If you pass a data item to a subprogram BY REFERENCE, the optimizer treats it as an

external data item and assumes that it is changed at every subprogram call.

If you move a literal to a data item, the optimizer recognizes the data item as a

constant only in a limited area of the program after the MOVE statement.

Grouping constant computations

When several items in an expression are constant, ensure that the optimizer is able

to optimize them. The compiler is bound by the left-to-right evaluation rules of

COBOL. Therefore, either move all the constants to the left side of the expression

or group them inside parentheses.

For example, if V1, V2, and V3 are variables and C1, C2, and C3 are constants, the

expressions on the left below are preferable to the corresponding expressions on

the right:

 More efficient Less efficient

V1 * V2 * V3 * (C1 * C2 * C3) V1 * V2 * V3 * C1 * C2 * C3

C1 + C2 + C3 + V1 + V2 + V3 V1 + C1 + V2 + C2 + V3 + C3

In production programming, there is often a tendency to place constant factors on

the right-hand side of expressions. However, such placement can result in less

efficient code because optimization is lost.

Grouping duplicate computations

When components of different expressions are duplicates, ensure that the compiler

is able to optimize them. For arithmetic expressions, the compiler is bound by the

left-to-right evaluation rules of COBOL. Therefore, either move all the duplicates to

the left side of the expressions or group them inside parentheses.

If V1 through V5 are variables, the computation V2 * V3 * V4 is a duplicate (known

as a common subexpression) in the following two statements:

COMPUTE A = V1 * (V2 * V3 * V4)

COMPUTE B = V2 * V3 * V4 * V5

In the following example, V2 + V3 is a common subexpression:

COMPUTE C = V1 + (V2 + V3)

COMPUTE D = V2 + V3 + V4

In the following example, there is no common subexpression:

COMPUTE A = V1 * V2 * V3 * V4

COMPUTE B = V2 * V3 * V4 * V5

COMPUTE C = V1 + (V2 + V3)

COMPUTE D = V4 + V2 + V3

The optimizer can eliminate duplicate computations. You do not need to introduce

artificial temporary computations; a program is often more comprehensible without

them.

Chapter 34. Tuning your program 651

Choosing efficient data types

Choosing the appropriate data type and PICTURE clause can produce more efficient

code, as can avoiding USAGE DISPLAY and USAGE NATIONAL data items in areas that

are heavily used for computations.

Consistent data types can reduce the need for conversions during operations on

data items. You can also improve program performance by carefully determining

when to use fixed-point and floating-point data types.

RELATED CONCEPTS

“Formats for numeric data” on page 49

RELATED TASKS

“Choosing efficient computational data items”

“Using consistent data types” on page 653

“Making arithmetic expressions efficient” on page 653

“Making exponentiations efficient” on page 653

Choosing efficient computational data items

When you use a data item mainly for arithmetic or as a subscript, code USAGE

BINARY on the data description entry for the item. The operations for manipulating

binary data are faster than those for manipulating decimal data.

However, if a fixed-point arithmetic statement has intermediate results with a large

precision (number of significant digits), the compiler uses decimal arithmetic

anyway, after converting the operands to packed-decimal form. For fixed-point

arithmetic statements, the compiler normally uses binary arithmetic for simple

computations with binary operands if the precision is eight or fewer digits. Above

18 digits, the compiler always uses decimal arithmetic. With a precision of nine to

18 digits, the compiler uses either form.

To produce the most efficient code for a BINARY data item, ensure that it has:

v A sign (an S in its PICTURE clause)

v Eight or fewer digits

For a data item that is larger than eight digits or is used with DISPLAY or NATIONAL

data items, use PACKED-DECIMAL. The code generated for PACKED-DECIMAL data items

can be as fast as that for BINARY data items in some cases, especially if the

statement is complicated or specifies rounding.

To produce the most efficient code for a PACKED-DECIMAL data item, ensure that it

has:

v A sign (an S in its PICTURE clause)

v An odd number of digits (9s in the PICTURE clause), so that it occupies an exact

number of bytes without a half byte left over

v 15 or fewer digits in the PICTURE specification to avoid using library routines for

multiplication and division

652 Enterprise COBOL for z/OS V4.1 Programming Guide

Using consistent data types

In operations on operands of different types, one of the operands must be

converted to the same type as the other. Each conversion requires several

instructions. For example, one of the operands might need to be scaled to give it

the appropriate number of decimal places.

You can largely avoid conversions by using consistent data types and by giving

both operands the same usage and also appropriate PICTURE specifications. That is,

you should ensure that two numbers to be compared, added, or subtracted not

only have the same usage but also the same number of decimal places (9s after the

V in the PICTURE clause).

Making arithmetic expressions efficient

Computation of arithmetic expressions that are evaluated in floating point is most

efficient when the operands need little or no conversion. Use operands that are

COMP-1 or COMP-2 to produce the most efficient code.

Declare integer items as BINARY or PACKED-DECIMAL with nine or fewer digits to

afford quick conversion to floating-point data. Also, conversion from a COMP-1 or

COMP-2 item to a fixed-point integer with nine or fewer digits, without SIZE ERROR

in effect, is efficient when the value of the COMP-1 or COMP-2 item is less than

1,000,000,000.

Making exponentiations efficient

Use floating point for exponentiations for large exponents to achieve faster

evaluation and more accurate results.

For example, the first statement below is computed more quickly and accurately

than the second statement:

COMPUTE fixed-point1 = fixed-point2 ** 100000.E+00

COMPUTE fixed-point1 = fixed-point2 ** 100000

A floating-point exponent causes floating-point arithmetic to be used to compute

the exponentiation.

Handling tables efficiently

You can use several techniques to improve the efficiency of table-handling

operations, and to influence the optimizer. The return for your efforts can be

significant, particularly when table-handling operations are a major part of an

application.

The following two guidelines affect your choice of how to refer to table elements:

v Use indexing rather than subscripting.

Although the compiler can eliminate duplicate indexes and subscripts, the

original reference to a table element is more efficient with indexes (even if the

subscripts were BINARY). The value of an index has the element size factored into

it, whereas the value of a subscript must be multiplied by the element size when

the subscript is used. The index already contains the displacement from the start

Chapter 34. Tuning your program 653

of the table, and this value does not have to be calculated at run time. However,

subscripting might be easier to understand and maintain.

v Use relative indexing.

Relative index references (that is, references in which an unsigned numeric

literal is added to or subtracted from the index-name) are executed at least as

fast as direct index references, and sometimes faster. There is no merit in

keeping alternative indexes with the offset factored in.

Whether you use indexes or subscripts, the following coding guidelines can help

you get better performance:

v Put constant and duplicate indexes or subscripts on the left.

You can reduce or eliminate runtime computations this way. Even when all the

indexes or subscripts are variable, try to use your tables so that the rightmost

subscript varies most often for references that occur close to each other in the

program. This practice also improves the pattern of storage references and also

paging. If all the indexes or subscripts are duplicates, then the entire index or

subscript computation is a common subexpression.

v Specify the element length so that it matches that of related tables.

When you index or subscript tables, it is most efficient if all the tables have the

same element length. That way, the stride for the last dimension of the tables is

the same, and the optimizer can reuse the rightmost index or subscript

computed for one table. If both the element lengths and the number of

occurrences in each dimension are equal, then the strides for dimensions other

than the last are also equal, resulting in greater commonality between their

subscript computations. The optimizer can then reuse indexes or subscripts other

than the rightmost.

v Avoid errors in references by coding index and subscript checks into your

program.

If you need to validate indexes and subscripts, it might be faster to code your

own checks than to use the SSRANGE compiler option.

You can also improve the efficiency of tables by using these guidelines:

v Use binary data items for all subscripts.

When you use subscripts to address a table, use a BINARY signed data item with

eight or fewer digits. In some cases, using four or fewer digits for the data item

might also improve processing time.

v Use binary data items for variable-length table items.

For tables with variable-length items, you can improve the code for OCCURS

DEPENDING ON (ODO). To avoid unnecessary conversions each time the

variable-length items are referenced, specify BINARY for OCCURS . . . DEPENDING

ON objects.

v Use fixed-length data items whenever possible.

Copying variable-length data items into a fixed-length data item before a period

of high-frequency use can reduce some of the overhead associated with using

variable-length data items.

v Organize tables according to the type of search method used.

If the table is searched sequentially, put the data values most likely to satisfy the

search criteria at the beginning of the table. If the table is searched using a

binary search algorithm, put the data values in the table sorted alphabetically on

the search key field.

654 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS

“Optimization of table references”

RELATED TASKS

“Referring to an item in a table” on page 72

“Choosing efficient data types” on page 652

RELATED REFERENCES

“SSRANGE” on page 346

Optimization of table references

The COBOL compiler optimizes table references in several ways.

For the table element reference ELEMENT(S1 S2 S3), where S1, S2, and S3 are

subscripts, the compiler evaluates the following expression:

comp_s1 * d1 + comp_s2 * d2 + comp_s3 * d3 + base_address

Here comp_s1 is the value of S1 after conversion to binary, comp-s2 is the value of

S2 after conversion to binary, and so on. The strides for each dimension are d1, d2,

and d3. The stride of a given dimension is the distance in bytes between table

elements whose occurrence numbers in that dimension differ by 1 and whose other

occurrence numbers are equal. For example, the stride d2 of the second dimension

in the above example is the distance in bytes between ELEMENT(S1 1 S3) and

ELEMENT(S1 2 S3).

Index computations are similar to subscript computations, except that no

multiplication needs to be done. Index values have the stride factored into them.

They involve loading the indexes into registers, and these data transfers can be

optimized, much as the individual subscript computation terms are optimized.

Because the compiler evaluates expressions from left to right, the optimizer finds

the most opportunities to eliminate computations when the constant or duplicate

subscripts are the leftmost.

Optimization of constant and variable items

Assume that C1, C2, . . . are constant data items and that V1, V2, . . . are variable

data items. Then, for the table element reference ELEMENT(V1 C1 C2) the compiler

can eliminate only the individual terms comp_c1 * d2 and comp_c2 * d3 as

constant from the expression:

comp_v1 * d1 + comp_c1 * d2 + comp_c2 * d3 + base_address

However, for the table element reference ELEMENT(C1 C2 V1) the compiler can

eliminate the entire subexpression comp_c1 * d1 + comp_c2 * d2 as constant from

the expression:

comp_c1 * d1 + comp_c2 * d2 + comp_v1 * d3 + base_address

In the table element reference ELEMENT(C1 C2 C3), all the subscripts are constant,

and so no subscript computation is done at run time. The expression is:

comp_c1 * d1 + comp_c2 * d2 + comp_c3 * d3 + base_address

With the optimizer, this reference can be as efficient as a reference to a scalar

(nontable) item.

Chapter 34. Tuning your program 655

Optimization of duplicate items

In the table element references ELEMENT(V1 V3 V4) and ELEMENT(V2 V3 V4) only the

individual terms comp_v3 * d2 and comp_v4 * d3 are common subexpressions in

the expressions needed to reference the table elements:

comp_v1 * d1 + comp_v3 * d2 + comp_v4 * d3 + base_address

comp_v2 * d1 + comp_v3 * d2 + comp_v4 * d3 + base_address

However, for the two table element references ELEMENT(V1 V2 V3) and ELEMENT(V1

V2 V4) the entire subexpression comp_v1 * d1 + comp_v2 * d2 is common between

the two expressions needed to reference the table elements:

comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address

comp_v1 * d1 + comp_v2 * d2 + comp_v4 * d3 + base_address

In the two references ELEMENT(V1 V2 V3) and ELEMENT(V1 V2 V3), the expressions

are the same:

comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address

comp_v1 * d1 + comp_v2 * d2 + comp_v3 * d3 + base_address

With the optimizer, the second (and any subsequent) reference to the same element

can be as efficient as a reference to a scalar (nontable) item.

Optimization of variable-length items

A group item that contains a subordinate OCCURS DEPENDING ON data item has a

variable length. The program must perform special code every time a

variable-length data item is referenced.

Because this code is out-of-line, it might interrupt optimization. Furthermore, the

code to manipulate variable-length data items is much less efficient than that for

fixed-size data items and can significantly increase processing time. For instance,

the code to compare or move a variable-length data item might involve calling a

library routine and is much slower than the same code for fixed-length data items.

Comparison of direct and relative indexing

Relative index references are as fast as or faster than direct index references.

The direct indexing in ELEMENT (I5, J3, K2) requires this preprocessing:

SET I5 TO I

SET I5 UP BY 5

SET J3 TO J

SET J3 DOWN BY 3

SET K2 TO K

SET K2 UP BY 2

This processing makes the direct indexing less efficient than the relative indexing

in ELEMENT (I + 5, J - 3, K + 2).

RELATED CONCEPTS

“Optimization” on page 657

RELATED TASKS

“Handling tables efficiently” on page 653

656 Enterprise COBOL for z/OS V4.1 Programming Guide

Optimizing your code

When your program is ready for final testing, specify the OPTIMIZE compiler option

so that the tested code and the production code are identical.

You might also want to use this compiler option during development if a program

is used frequently without recompilation. However, the overhead for OPTIMIZE

might outweigh its benefits if you recompile frequently, unless you are using the

assembler language expansion (LIST compiler option) to fine-tune the program.

For unit-testing a program, you will probably find it easier to debug code that has

not been optimized.

To see how the optimizer works on a program, compile it with and without the

OPTIMIZE option and compare the generated code. (Use the LIST compiler option to

request the assembler listing of the generated code.)

RELATED CONCEPTS

“Optimization”

RELATED REFERENCES

“LIST” on page 326

“OPTIMIZE” on page 335

Optimization

To improve the efficiency of the generated code, you can use the OPTIMIZE compiler

option.

OPTIMIZE causes the COBOL optimizer to do the following optimizations:

v Eliminate unnecessary transfers of control and inefficient branches, including

those generated by the compiler that are not evident from looking at the source

program.

v Simplify the compiled code for both a PERFORM statement and a CALL statement to

a contained (nested) program. Where possible, the optimizer places the

statements inline, eliminating the need for linkage code. This optimization is

known as procedure integration. If procedure integration cannot be done, the

optimizer uses the simplest linkage possible (perhaps as few as two instructions)

to get to and from the called program.

v Eliminate duplicate computations (such as subscript computations and repeated

statements) that have no effect on the results of the program.

v Eliminate constant computations by performing them when the program is

compiled.

v Eliminate constant conditional expressions.

v Aggregate moves of contiguous items (such as those that often occur with the

use of MOVE CORRESPONDING) into a single move. Both the source and target must

be contiguous for the moves to be aggregated.

v Delete from the program, and identify with a warning message, code that can

never be performed (unreachable code elimination).

v Discard unreferenced data items from the DATA DIVISION, and suppress

generation of code to initialize these data items to their VALUE clauses. (The

optimizer takes this action only when you use the FULL suboption.)

Chapter 34. Tuning your program 657

Contained program procedure integration

In contained program procedure integration, the contained program code replaces

a CALL to a contained program. The resulting program runs faster without the

overhead of CALL linkage and with more linear control flow.

Program size: If several CALL statements call contained programs and these

programs replace each such statement, the containing program can become large.

The optimizer limits this increase to no more than 50 percent, after which it no

longer integrates the programs. The optimizer then chooses the next best

optimization for the CALL statement. The linkage overhead can be as few as two

instructions.

Unreachable code: As a result of this integration, one contained program might be

repeated several times. As further optimization proceeds on each copy of the

program, portions might be found to be unreachable, depending on the context

into which the code was copied.

RELATED CONCEPTS

“Optimization of table references” on page 655

“PERFORM procedure integration”

RELATED REFERENCES

“OPTIMIZE” on page 335

PERFORM procedure integration

PERFORM procedure integration is the process whereby a PERFORM statement is

replaced by its performed procedures. The advantage is that the resulting program

runs faster without the overhead of PERFORM linkage and with more linear control

flow.

Program size: If the performed procedures are invoked by several PERFORM

statements and replace each such statement, the program could become large. The

optimizer limits this increase to no more than 50 percent, after which it no longer

integrates these procedures. If you are concerned about program size, you can

prevent procedure integration in specific instances by using a priority number on

section names.

If you do not want a PERFORM statement to be replaced by its performed

procedures, put the PERFORM statement in one section and put the performed

procedures in another section with a different priority number. The optimizer then

chooses the next best optimization for the PERFORM statement. The linkage overhead

can be as few as two instructions.

Unreachable code: Because of procedure integration, one PERFORM procedure might

be repeated several times. As further optimization proceeds on each copy of the

procedure, portions might be found to be unreachable, depending on the context

into which the code was copied.

“Example: PERFORM procedure integration”

Example: PERFORM procedure integration

The following example shows code that will be transformed by procedure

integration.

All the PERFORM statements in the following program will be transformed:

658 Enterprise COBOL for z/OS V4.1 Programming Guide

1 SECTION 5.

11. PERFORM 12

 STOP RUN.

12. PERFORM 21

 PERFORM 21.

2 SECTION 5.

21. IF A < 5 THEN

 ADD 1 TO A

 DISPLAY A

 END-IF.

The program will be compiled as if it had originally been written as follows:

1 SECTION 5.

11.

12. IF A < 5 THEN

 ADD 1 TO A

 DISPLAY A

 END-IF.

 IF A < 5 THEN

 ADD 1 TO A

 DISPLAY A

 END-IF.

 STOP RUN.

By contrast, in the following program only the first PERFORM statement, PERFORM 12,

will be optimized by procedure integration:

1 SECTION.

11. PERFORM 12

 STOP RUN.

12. PERFORM 21

 PERFORM 21.

2 SECTION 5.

21. IF A < 5 THEN

 ADD 1 TO A

 DISPLAY A

 END-IF.

RELATED CONCEPTS

“Optimization of table references” on page 655

RELATED TASKS

“Optimizing your code” on page 657

Chapter 34, “Tuning your program,” on page 649

Choosing compiler features to enhance performance

Your choice of performance-related compiler options and your use of the USE FOR

DEBUGGING ON ALL PROCEDURES statement can affect how well your program is

optimized.

You might have a customized system that requires certain options for optimum

performance. Do these steps:

1. To see what your system defaults are, get a short listing for any program and

review the listed option settings.

2. Determine which options are fixed as nonoverridable at your installation by

checking with your system programmer.

3. For the options not fixed at installation, select performance-related options for

compiling your programs.

Chapter 34. Tuning your program 659

Important: Confer with your system programmer about how to tune COBOL

programs. Doing so will ensure that the options you choose are appropriate for

programs at your site.

Another compiler feature to consider is the USE FOR DEBUGGING ON ALL PROCEDURES

statement. It can greatly affect the compiler optimizer. The ON ALL PROCEDURES

option generates extra code at each transfer to a procedure name. Although very

useful for debugging, it can make the program significantly larger and inhibit

optimization substantially.

Although COBOL allows segmentation language, you will not improve storage

allocation by using it, because COBOL does not perform overlay.

RELATED CONCEPTS

“Optimization” on page 657

RELATED TASKS

“Optimizing your code” on page 657

“Getting listings” on page 375

RELATED REFERENCES

“Performance-related compiler options”

Performance-related compiler options

In the table below you can see a description of the purpose of each option, its

performance advantages and disadvantages, and usage notes where applicable.

 Table 90. Performance-related compiler options

Compiler

option Purpose

Performance

advantages

Performance

disadvantages Usage notes

ARITH(EXTEND)

(see “ARITH”

on page 306)

To increase the

maximum number

of digits allowed

for decimal

numbers

In general, none ARITH(EXTEND) causes

some degradation in

performance for all

decimal data types

due to larger

intermediate results.

The amount of degradation

that you experience depends

directly on the amount of

decimal data that you use.

“AWO” on

page 307

To get optimum

use of buffer and

device space

Can result in

performance savings,

because this option

results in fewer calls to

data management

services to handle

input and output

In general, none When you use AWO, the APPLY

WRITE-ONLY clause is in effect

for all files in the program that

are physical sequential with

V-mode records.

DATA(31)

(see “DATA”

on page 313)

To have DFSMS

allocate QSAM

buffers above the

16-MB line (by

using the RENT

and DATA(31)

compiler options)

Because

extended-format

QSAM data sets can

require many buffers,

allocating the buffers

in unrestricted storage

avoids virtual storage

constraint problems.

In general, none On a z/OS system with

DFSMS, if your application

processes striped

extended-format QSAM data

sets, use the RENT and

DATA(31) compiler options to

have the input-output buffers

for your QSAM files allocated

from storage above the 16-MB

line.

660 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 90. Performance-related compiler options (continued)

Compiler

option Purpose

Performance

advantages

Performance

disadvantages Usage notes

“DYNAM” on

page 319

To have

subprograms

(called through

the CALL

statement)

dynamically

loaded at run time

Subprograms are

easier to maintain,

because the application

does not have to be

link-edited again if a

subprogram is

changed.

There is a slight

performance penalty,

because the call must

go through a

Language

Environment routine.

To free virtual storage that is

no longer needed, issue the

CANCEL statement.

“FASTSRT” on

page 320

To specify that the

IBM DFSORT

product (or

equivalent) will

handle all of the

input and output

Eliminates the

overhead of returning

to Enterprise COBOL

after each record is

processed

None FASTSRT is recommended

when direct work files are

used for the sort work files.

Not all sorts are eligible for

this option.

NUMPROC(PFD)

(see

“NUMPROC”

on page 332)

To have invalid

sign processing

bypassed for

numeric

operations

Generates significantly

more efficient code for

numeric comparisons

For most references to

COMP-3 and DISPLAY

numeric data items,

NUMPROC(PFD) inhibits

extra code from being

generated to ″fix up″

signs. This extra code

might also inhibit

some other types of

optimizations. The

extra code is

generated with

NUMPROC(MIG) and

NUMPROC(NOPFD).

When you use NUMPROC(PFD),

the compiler assumes that the

data has the correct sign and

bypasses the sign ″fix-up″

process. Because not all

external data files contain the

proper sign for COMP-3 or

DISPLAY signed numeric data,

NUMPROC(PFD) might not be

applicable for all programs.

For performance-sensitive

applications, NUMPROC(PFD) is

recommended.

OPTIMIZE(STD)

(see

“OPTIMIZE”

on page 335)

To optimize

generated code for

better

performance

Generally results in

more efficient runtime

code

Longer compile time:

OPTIMIZE requires

more processing time

for compiles than

NOOPTIMIZE.

NOOPTIMIZE is generally used

during program development

when frequent compiles are

needed; it also allows for

symbolic debugging. For

production runs, OPTIMIZE is

recommended.

OPTIMIZE(FULL)

(see

“OPTIMIZE”

on page 335)

To optimize

generated code for

better

performance and

also optimize the

DATA DIVISION

Generally results in

more efficient runtime

code and less storage

usage

Longer compile time:

OPTIMIZE requires

more processing time

for compiles than

NOOPTIMIZE.

OPT(FULL) deletes unused data

items, which might be

undesirable in the case of time

stamps or data items that are

used only as markers for

dump reading.

“RENT” on

page 340

To generate a

reentrant program

Enables the program

to be placed in shared

storage (LPA/ELPA)

for faster execution

Generates additional

code to ensure that

the program is

reentrant

RMODE(ANY)

(see “RMODE”

on page 341)

To let the program

be loaded

anywhere

RMODE(ANY) with

NORENT lets the

program and its

WORKING-STORAGE be

located above the

16-MB line, relieving

storage below the line.

In general, none

Chapter 34. Tuning your program 661

Table 90. Performance-related compiler options (continued)

Compiler

option Purpose

Performance

advantages

Performance

disadvantages Usage notes

NOSSRANGE

(see

“SSRANGE”

on page 346)

To verify that all

table references

and reference

modification

expressions are in

proper bounds

SSRANGE generates

additional code for

verifying table

references. Using

NOSSRANGE causes that

code not to be

generated.

None In general, if you need to

verify the table references only

a few times instead of at every

reference, coding your own

checks might be faster than

using SSRANGE. You can turn

off SSRANGE at run time by

using the CHECK(OFF) runtime

option. For

performance-sensitive

applications, NOSSRANGE is

recommended.

TEST(NOHOOK)

or NOTEST

(see “TEST” on

page 347)

To avoid the

additional object

code that is

needed to take full

advantage of

Debug Tool, use

TEST(NOHOOK) or

NOTEST. With

TEST(NOHOOK), you

can also use the

SEP suboption to

further reduce the

size of your object

code.

Because TEST(HOOK)

generates additional

code, it can cause

significant

performance

degradation when

used in a production

environment.

None TEST without the suboption

NOHOOK forces compiler option

NOOPT into effect. For

production runs, using NOTEST

or TEST(NOHOOK) with or

without the SEP suboption is

recommended. This results in

overlay hooks rather than

compiled-in hooks.

If during a production run,

you want a symbolic dump of

the data items in a formatted

dump if the program abends,

compile using TEST(NOHOOK)

with or without the SEP

suboption.

“THREAD” on

page 350

To enable

programs for

execution in a

Language

Environment

enclave that has

multiple POSIX

threads or PL/I

tasks

None There is a slight

performance penalty

because of the

overhead of

serialization logic.

This is true for a threaded or a

nonthreaded environment.

TRUNC(OPT)

(see “TRUNC”

on page 352)

To avoid having

code generated to

truncate the

receiving fields of

arithmetic

operations

Does not generate

extra code and

generally improves

performance

Both TRUNC(BIN) and

TRUNC(STD) generate

extra code whenever

a BINARY data item is

changed. TRUNC(BIN)

is usually the slowest

of these options,

though its

performance was

improved in COBOL

for OS/390 & VM

V2R2.

TRUNC(STD) conforms to

Standard COBOL 85, but

TRUNC(BIN) and TRUNC(OPT) do

not. With TRUNC(OPT), the

compiler assumes that the

data conforms to the PICTURE

and USAGE specifications.

TRUNC(OPT) is recommended

where possible.

RELATED CONCEPTS

“Optimization” on page 657

“Storage and its addressability” on page 42

662 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

|

|
|

|

|

RELATED TASKS

“Generating a list of compiler error messages” on page 279

“Evaluating performance”

“Optimizing buffer and device space” on page 12

“Choosing compiler features to enhance performance” on page 659

“Improving sort performance with FASTSRT” on page 225

“Using striped extended-format QSAM data sets” on page 172

“Handling tables efficiently” on page 653

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 55

“Allocation of buffers for QSAM files” on page 173

Chapter 17, “Compiler options,” on page 301

“Conflicting compiler options” on page 304

Evaluating performance

Fill in the following worksheet to help you evaluate the performance of your

program. If you answer yes to each question, you are probably improving the

performance.

In thinking about the performance tradeoff, be sure you understand the function of

each option as well as the performance advantages and disadvantages. You might

prefer function over increased performance in many instances.

 Table 91. Performance-tuning worksheet

Compiler option Consideration Yes?

AWO Do you use the AWO option when possible?

DATA When you use QSAM striped data sets, do you use the

RENT and DATA(31) options? Is the load module AMODE 31?

Are you running with ALL31(ON)?

DYNAM Can you use NODYNAM? Consider the performance

tradeoffs.

FASTSRT When you use direct work files for the sort work files,

did you use the FASTSRT option?

NUMPROC Do you use NUMPROC(PFD) when possible?

OPTIMIZE Do you use OPTIMIZE for production runs? Can you use

OPTIMIZE(FULL)?

RENT Consider the performance tradeoffs of RENT versus

NORENT.

RMODE(ANY) Do you use RMODE(ANY) with your NORENT programs?

Consider the performance tradeoffs with storage usage.

SSRANGE Do you use NOSSRANGE for production runs?

TEST Do you use NOTEST, TEST(NOHOOK), or TEST(NOHOOK,SEP)

for production runs?

TRUNC Do you use TRUNC(OPT) when possible?

RELATED CONCEPTS

“Storage and its addressability” on page 42

RELATED TASKS

“Choosing compiler features to enhance performance” on page 659

Chapter 34. Tuning your program 663

|
|

|
|

|

RELATED REFERENCES

“Performance-related compiler options” on page 660

Running efficiently with CICS, IMS, or VSAM

You can improve performance for online programs running under CICS or IMS, or

programs that use VSAM, by following these tips.

CICS: If your application runs under CICS, convert EXEC CICS LINK commands to

COBOL CALL statements to improve transaction response time.

IMS: If your application runs under IMS, preloading the application program and

the library routines can help reduce the overhead of loading and searching. It can

also reduce the input-output activity.

For better system performance, use the RENT compiler option and preload the

applications and library routines when possible. You can also use the Language

Environment library routine retention (LRR) function to improve performance in

IMS/TM regions.

VSAM: When you use VSAM files, increase the number of data buffers for

sequential access or index buffers for random access. Also, select a control interval

size (CISZ) that is appropriate for the application. A smaller CISZ results in faster

retrieval for random processing at the expense of inserts. A larger CISZ is more

efficient for sequential processing.

For better performance, access the records sequentially and avoid using multiple

alternate indexes when possible. If you use alternate indexes, access method

services builds them more efficiently than the AIXBLD runtime option.

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 405

Chapter 22, “Developing COBOL programs for IMS,” on page 429

“Improving VSAM performance” on page 203

Language Environment Customization

RELATED REFERENCES

Language Environment Programming Guide (Specifying run-time options)

664 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea5180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

Chapter 35. Simplifying coding

You can use coding techniques to improve your productivity. By using the COPY

statement, COBOL intrinsic functions, and Language Environment callable services,

you can avoid repetitive coding and having to code many arithmetic calculations

or other complex tasks.

If your program contains frequently used code sequences (such as blocks of

common data items, input-output routines, error routines, or even entire COBOL

programs), write the code sequences once and put them in a COBOL copy library.

You can use the COPY statement to retrieve these code sequences and have them

included in your program at compile time. Using copybooks in this manner

eliminates repetitive coding.

COBOL provides various capabilities for manipulating strings and numbers. These

capabilities can help you simplify your coding.

The Language Environment date and time callable services store dates as fullword

binary integers and store timestamps as long (64-bit) floating-point values. These

formats let you do arithmetic calculations on date and time values simply and

efficiently. You do not need to write special subroutines that use services outside

the language library to perform such calculations.

RELATED TASKS

“Using numeric intrinsic functions” on page 59

“Using math-oriented callable services” on page 60

“Using date callable services” on page 62

“Eliminating repetitive coding”

“Converting data items (intrinsic functions)” on page 112

“Evaluating data items (intrinsic functions)” on page 115

“Using Language Environment callable services” on page 667

Eliminating repetitive coding

Use the COPY statement in any program division and at any code sequence level to

include stored source statements in a program. You can nest COPY statements to any

depth.

To specify more than one copy library, use either multiple system definitions or a

combination of multiple definitions and the IN/OF phrase (IN/OF library-name):

z/OS batch

Use JCL to concatenate data sets in your SYSLIB DD statement.

Alternatively, define multiple DD statements and use the IN/OF phrase of

the COPY statement.

TSO Use the ALLOCATE command to concatenate data sets for SYSLIB.

Alternatively, issue multiple ALLOCATE statements and use the IN/OF phrase

of the COPY statement.

UNIX Use the SYSLIB environment variable to define multiple paths to your

copybooks. Alternatively, use multiple environment variables and use the

IN/OF phrase of the COPY statement.

© Copyright IBM Corp. 1991, 2007 665

For example:

COPY MEMBER1 OF COPYLIB

If you omit this qualifying phrase, the default is SYSLIB.

COPY and debugging line: In order for the text copied to be treated as debug lines,

for example, as if there were a D inserted in column 7, put the D on the first line of

the COPY statement. A COPY statement itself cannot be a debugging line; if it

contains a D and WITH DEBUGGING mode is not specified, the COPY statement is

nevertheless processed.

“Example: using the COPY statement”

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

Example: using the COPY statement

These examples show how you can use the COPY statement to include library text

in a program.

Suppose the library entry CFILEA consists of the following FD entries:

 BLOCK CONTAINS 20 RECORDS

 RECORD CONTAINS 120 CHARACTERS

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS FILE-OUT.

01 FILE-OUT PIC X(120).

You can retrieve the text-name CFILEA by using the COPY statement in a source

program as follows:

FD FILEA

 COPY CFILEA.

The library entry is copied into your program, and the resulting program listing

looks like this:

FD FILEA

 COPY CFILEA.

C BLOCK CONTAINS 20 RECORDS

C RECORD CONTAINS 120 CHARACTERS

C LABEL RECORDS ARE STANDARD

C DATA RECORD IS FILE-OUT.

C 01 FILE-OUT PIC X(120).

In the compiler source listing, the COPY statement prints on a separate line. C

precedes copied lines.

Assume that a copybook with the text-name DOWORK is stored by using the

following statements:

COMPUTE QTY-ON-HAND = TOTAL-USED-NUMBER-ON-HAND

MOVE QTY-ON-HAND to PRINT-AREA

To retrieve the copybook identified as DOWORK, code:

paragraph-name.

 COPY DOWORK.

The statements that are in the DOWORK procedure will follow paragraph-name.

666 Enterprise COBOL for z/OS V4.1 Programming Guide

If you use the EXIT compiler option to provide a LIBEXIT module, your results

might differ from those shown here.

RELATED TASKS

“Eliminating repetitive coding” on page 665

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 361

Using Language Environment callable services

Language Environment callable services make many types of programming tasks

easier. You call them by using the CALL statement.

Language Environment services help you with the following tasks:

v Handling conditions

The Language Environment condition-handling facilities enable COBOL

applications to react to unexpected errors. You can use language constructs or

runtime options to select the level at which to handle each condition. For

example, you can handle a particular error in your COBOL program, let

Language Environment take care of it, or have the operating system handle it.

In support of Language Environment condition handling, COBOL provides

procedure-pointer data items.

v Managing dynamic storage

These services enable you to get, free, and reallocate storage. You can also create

your own storage pools.

v Calculating dates and times

With the date and time services, you can get the current local time and date in

several formats, and perform date and time conversions. Two callable services,

CEEQCEN and CEESCEN, provide a predictable way to handle two-digit years,

such as 91 for 1991 or 07 for 2007.

v Making math calculations

Calculations that are easy to perform with mathematical callable services include

logarithmic, exponential, trigonometric, square root, and integer functions.

COBOL also supports a set of intrinsic functions that include some of the same

mathematical and date functions as those provided by the callable services. The

Language Environment callable services and intrinsic functions provide

equivalent results, with a few exceptions. You should be familiar with these

differences before deciding which to use.

v Handling messages

Message-handling services include services for getting, dispatching, and

formatting messages. Messages for non-CICS applications can be directed to files

or printers. CICS messages are directed to a CICS transient data queue.

Language Environment splits messages to accommodate the record length of the

destination, and presents messages in the correct national language such as

Japanese or English.

v Supporting national languages

These services make it easy for your applications to support the language

desired by application users. You can set the language and country, and obtain

default date, time, number, and currency formats. For example, you might want

dates to appear as 23 June 07 or as 6,23,07.

Chapter 35. Simplifying coding 667

v General services such as starting Debug Tool and obtaining a Language

Environment formatted dump

Debug Tool provides advanced debugging functions for COBOL applications,

including both batch and interactive debugging of COBOL-CICS programs.

Debug Tool enables you to debug a COBOL application from the host or, in

conjunction with the Debug Perspective of Rational Developer for System z,

from a Windows-based workstation.

Depending on the options that you select, the Language Environment formatted

dump might contain the names and values of data items, and information about

conditions, program tracebacks, control blocks, storage, and files. All Language

Environment dumps have a common, well-labeled, easy-to-read format.

“Example: Language Environment callable services” on page 670

RELATED CONCEPTS

“Sample list of Language Environment callable services”

RELATED TASKS

“Using numeric intrinsic functions” on page 59

“Using math-oriented callable services” on page 60

“Using date callable services” on page 62

“Calling Language Environment services” on page 669

“Using procedure and function pointers” on page 460

Sample list of Language Environment callable services

The following table shows some examples of the callable services that are available

with Language Environment. Many more services are available than those listed.

 Table 92. Language Environment callable services

Function type Service Purpose

Condition

handling

CEEHDLR To register a user condition handler

CEESGL To raise or signal a condition

CEEMRCR To indicate where the program will resume running after

the condition handler has finished

Dynamic storage CEEGTST To get storage

CEECZST To change the size of a previously allocated storage block

CEEFRST To free storage

Date and time CEECBLDY To convert a string that represents a date into COBOL

integer date format, which represents a date as the

number of days since 31 December 1600

CEEQCEN,

CEESCEN

To query and set the Language Environment century

window, which is valuable when a program uses two

digits to express a year

CEEGMTO To calculate the difference between the local system time

and Greenwich Mean Time

CEELOCT To get the current local time in your choice of three

formats

Math CEESIABS To calculate the absolute value of an integer

CEESSNWN To calculate the nearest whole number for a

single-precision floating-point number

CEESSCOS To calculate the cosine of an angle

668 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 92. Language Environment callable services (continued)

Function type Service Purpose

Message

handling

CEEMOUT To dispatch a message

CEEMGET To retrieve a message

National

language support

CEE3LNG To change or query the current national language

CEE3CTY To change or query the current national country

CEE3MCS To obtain the default currency symbol for a given

country

General CEE3DMP To obtain a Language Environment formatted dump

CEETEST To start a debugging tool, such as Debug Tool

RELATED REFERENCES

Language Environment Programming Reference

Calling Language Environment services

To invoke a Language Environment service, use a CALL statement with the correct

parameters for that service. Define the variables for the CALL statement in the DATA

DIVISION with the definitions that are required by that service.

77 argument comp-1.

77 feedback-code pic x(12) display.

77 result comp-1.

. . .

CALL "CEESSSQT" using argument, feedback-code, result

In the example above, Language Environment service CEESSSQT calculates the

value of the square root of the variable argument and returns this value in the

variable result.

You can choose whether to specify the feedback code parameter. If you specify it,

the value returned in feedback-code indicates whether the service completed

successfully. If you specify OMITTED instead of the feedback code, and the service is

not successful, a Language Environment condition is automatically signaled to the

Language Environment condition manager. You can handle such a condition by

recovery logic implemented in a user-written condition handler, or allow the

default Language Environment processing for unhandled conditions to occur. In

either case, you avoid having to write logic to check the feedback code explicitly

after each call.

If you call a Language Environment callable service and specify OMITTED for the

feedback code, the RETURN-CODE special register is set to 0 if the service is

successful.It is not altered if the service is unsuccessful. If you do not specify

OMITTED for the feedback code, the RETURN-CODE special register is always set to 0

regardless of whether the service completed successfully.

“Example: Language Environment callable services” on page 670

RELATED CONCEPTS

Language Environment Programming Guide (General callable services)

RELATED REFERENCES

Language Environment Programming Reference (General callable services)

CALL statement (Enterprise COBOL Language Reference)

Chapter 35. Simplifying coding 669

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

Example: Language Environment callable services

This example shows a COBOL program that uses Language Environment services

CEEDAYS and CEEDATE to format and display a date from the results of a

COBOL ACCEPT statement.

Using CEEDAYS and CEEDATE reduces the coding that would be required

without Language Environment.

 ID DIVISION.

 PROGRAM-ID. HOHOHO.

**

* FUNCTION: DISPLAY TODAY’S DATE IN THE FOLLOWING FORMAT: *

* WWWWWWWWW, MMMMMMMM DD, YYYY *

* *

* For example: TUESDAY, SEPTEMBER 18, 2007 *

* *

**

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 CHRDATE.

 05 CHRDATE-LENGTH PIC S9(4) COMP VALUE 10.

 05 CHRDATE-STRING PIC X(10).

 01 PICSTR.

 05 PICSTR-LENGTH PIC S9(4) COMP.

 05 PICSTR-STRING PIC X(80).

*

 77 LILIAN PIC S9(9) COMP.

 77 FORMATTED-DATE PIC X(80).

*

 PROCEDURE DIVISION.

* USE LANGUAGE ENVIRONMENT CALLABLE SERVICES TO PRINT OUT *

* TODAY’S DATE FROM COBOL ACCEPT STATEMENT. *

 ACCEPT CHRDATE-STRING FROM DATE.

*

 MOVE "YYMMDD" TO PICSTR-STRING.

 MOVE 6 TO PICSTR-LENGTH.

 CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , OMITTED.

*

 MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING.

 MOVE 50 TO PICSTR-LENGTH.

 CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE ,

 OMITTED.

*

 DISPLAY "******************************".

 DISPLAY FORMATTED-DATE.

 DISPLAY "******************************".

*

 STOP RUN.

670 Enterprise COBOL for z/OS V4.1 Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1991, 2007 671

672 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix A. Intermediate results and arithmetic precision

The compiler handles arithmetic statements as a succession of operations

performed according to operator precedence, and sets up intermediate fields to

contain the results of those operations. The compiler uses algorithms to determine

the number of integer and decimal places to reserve.

Intermediate results are possible in the following cases:

v In an ADD or SUBTRACT statement that contains more than one operand

immediately after the verb

v In a COMPUTE statement that specifies a series of arithmetic operations or multiple

result fields

v In an arithmetic expression contained in a conditional statement or in a

reference-modification specification

v In an ADD, SUBTRACT, MULTIPLY, or DIVIDE statement that uses the GIVING option

and multiple result fields

v In a statement that uses an intrinsic function as an operand

“Example: calculation of intermediate results” on page 675

The precision of intermediate results depends on whether you compile using the

default option ARITH(COMPAT) (referred to as compatibility mode) or using

ARITH(EXTEND) (referred to as extended mode).

In compatibility mode, evaluation of arithmetic operations is unchanged from that

in releases of IBM COBOL before COBOL for OS/390 & VM Version 2 Release 2:

v A maximum of 30 digits is used for fixed-point intermediate results.

v Floating-point intrinsic functions return long-precision (64-bit) floating-point

results.

v Expressions that contain floating-point operands, fractional exponents, or

floating-point intrinsic functions are evaluated as if all operands that are not in

floating point are converted to long-precision floating point and floating-point

operations are used to evaluate the expression.

v Floating-point literals and external floating-point data items are converted to

long-precision floating point for processing.

In extended mode, evaluation of arithmetic operations has the following

characteristics:

v A maximum of 31 digits is used for fixed-point intermediate results.

v Floating-point intrinsic functions return extended-precision (128-bit)

floating-point results.

v Expressions that contain floating-point operands, fractional exponents, or

floating-point intrinsic functions are evaluated as if all operands that are not in

floating point are converted to extended-precision floating point and

floating-point operations are used to evaluate the expression.

v Floating-point literals and external floating-point data items are converted to

extended-precision floating point for processing.

© Copyright IBM Corp. 1991, 2007 673

RELATED CONCEPTS

“Formats for numeric data” on page 49

“Fixed-point contrasted with floating-point arithmetic” on page 64

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 675

“Floating-point data and intermediate results” on page 680

“Arithmetic expressions in nonarithmetic statements” on page 681

“ARITH” on page 306

Terminology used for intermediate results

To understand this information about intermediate results, you need to understand

the following terminology.

i The number of integer places carried for an intermediate result. (If you use

the ROUNDED phrase, one more integer place might be carried for accuracy if

necessary.)

d The number of decimal places carried for an intermediate result. (If you

use the ROUNDED phrase, one more decimal place might be carried for

accuracy if necessary.)

dmax In a particular statement, the largest of the following items:

v The number of decimal places needed for the final result field or fields

v The maximum number of decimal places defined for any operand,

except divisors or exponents

v The outer-dmax for any function operand

inner-dmax

In reference to a function, the largest of the following items:

v The number of decimal places defined for any of its elementary

arguments

v The dmax for any of its arithmetic expression arguments

v The outer-dmax for any of its embedded functions

outer-dmax

The number of decimal places that a function result contributes to

operations outside of its own evaluation (for example, if the function is an

operand in an arithmetic expression, or an argument to another function).

op1 The first operand in a generated arithmetic statement (in division, the

divisor).

op2 The second operand in a generated arithmetic statement (in division, the

dividend).

i1, i2 The number of integer places in op1 and op2, respectively.

d1, d2 The number of decimal places in op1 and op2, respectively.

ir The intermediate result when a generated arithmetic statement or

operation is performed. (Intermediate results are generated either in

registers or storage locations.)

ir1, ir2 Successive intermediate results. (Successive intermediate results might have

the same storage location.)

674 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

ROUNDED phrase (Enterprise COBOL Language Reference)

Example: calculation of intermediate results

The following example shows how the compiler performs an arithmetic statement

as a succession of operations, storing intermediate results as needed.

COMPUTE Y = A + B * C - D / E + F ** G

The result is calculated in the following order:

1. Exponentiate F by G yielding ir1.

2. Multiply B by C yielding ir2.

3. Divide E into D yielding ir3.

4. Add A to ir2 yielding ir4.

5. Subtract ir3 from ir4 yielding ir5.

6. Add ir5 to ir1 yielding Y.

RELATED TASKS

“Using arithmetic expressions” on page 58

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

Fixed-point data and intermediate results

The compiler determines the number of integer and decimal places in an

intermediate result.

Addition, subtraction, multiplication, and division

The following table shows the precision theoretically possible as the result of

addition, subtraction, multiplication, or division.

 Operation Integer places Decimal places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever is

greater

You must define the operands of any arithmetic statements with enough decimal

places to obtain the accuracy you want in the final result.

The following table shows the number of places the compiler carries for

fixed-point intermediate results of arithmetic operations that involve addition,

subtraction, multiplication, or division in compatibility mode (that is, when the

default compiler option ARITH(COMPAT) is in effect):

Value of i + d Value of d

Value of i +

dmax Number of places carried for ir

<30 or =30 Any value Any value i integer and d decimal places

Appendix A. Intermediate results and arithmetic precision 675

Value of i + d Value of d

Value of i +

dmax Number of places carried for ir

>30 <dmax or =dmax Any value 30-d integer and d decimal places

>dmax <30 or =30 i integer and 30-i decimal places

>30 30-dmax integer and dmax decimal

places

The following table shows the number of places the compiler carries for

fixed-point intermediate results of arithmetic operations that involve addition,

subtraction, multiplication, or division in extended mode (that is, when the compiler

option ARITH(EXTEND) is in effect):

Value of i + d Value of d

Value of i +

dmax Number of places carried for ir

<31 or =31 Any value Any value i integer and d decimal places

>31 <dmax or =dmax Any value 31-d integer and d decimal places

>dmax <31 or =31 i integer and 31-i decimal places

>31 31-dmax integer and dmax decimal

places

Exponentiation

Exponentiation is represented by the expression op1 ** op2. Based on the

characteristics of op2, the compiler handles exponentiation of fixed-point numbers

in one of three ways:

v When op2 is expressed with decimals, floating-point instructions are used.

v When op2 is an integral literal or constant, the value d is computed as

d = d1 * |op2|

and the value i is computed based on the characteristics of op1:

– When op1 is a data-name or variable,

i = i1 * |op2|

– When op1 is a literal or constant, i is set equal to the number of integers in

the value of op1 ** |op2|.

In compatibility mode (compilation using ARITH(COMPAT)), the compiler having

calculated i and d takes the action indicated in the table below to handle the

intermediate results ir of the exponentiation.

 Value of i + d Other conditions Action taken

<30 Any i integer and d decimal places are carried for ir.

=30 op1 has an odd

number of digits.

i integer and d decimal places are carried for ir.

op1 has an even

number of digits.

Same action as when op2 is an integral data-name or

variable (shown below). Exception: for a 30-digit

integer raised to the power of literal 1, i integer and

d decimal places are carried for ir.

>30 Any Same action as when op2 is an integral data-name or

variable (shown below)

676 Enterprise COBOL for z/OS V4.1 Programming Guide

In extended mode (compilation using ARITH(EXTEND)), the compiler having

calculated i and d takes the action indicated in the table below to handle the

intermediate results ir of the exponentiation.

 Value of i + d Other conditions Action taken

<31 Any i integer and d decimal places are carried for ir.

=31 or >31 Any Same action as when op2 is an integral data-name or

variable (shown below). Exception: for a 31-digit

integer raised to the power of literal 1, i integer and

d decimal places are carried for ir.

If op2 is negative, the value of 1 is then divided by the result produced by the

preliminary computation. The values of i and d that are used are calculated

following the division rules for fixed-point data already shown above.

v When op2 is an integral data-name or variable, dmax decimal places and 30-dmax

(compatibility mode) or 31-dmax (extended mode) integer places are used. op1 is

multiplied by itself (|op2| - 1) times for nonzero op2.

If op2 is equal to 0, the result is 1. Division-by-0 and exponentiation SIZE ERROR

conditions apply.

Fixed-point exponents with more than nine significant digits are always truncated

to nine digits. If the exponent is a literal or constant, an E-level compiler diagnostic

message is issued; otherwise, an informational message is issued at run time.

“Example: exponentiation in fixed-point arithmetic”

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

“Truncated intermediate results” on page 678

“Binary data and intermediate results” on page 678

“Floating-point data and intermediate results” on page 680

“Intrinsic functions evaluated in fixed-point arithmetic” on page 678

“ARITH” on page 306

SIZE ERROR phrases (Enterprise COBOL Language Reference)

Example: exponentiation in fixed-point arithmetic

The following example shows how the compiler performs an exponentiation to a

nonzero integer power as a succession of multiplications, storing intermediate

results as needed.

COMPUTE Y = A ** B

If B is equal to 4, the result is computed as shown below. The values of i and d that

are used are calculated according to the multiplication rules for fixed-point data

and intermediate results (referred to below).

1. Multiply A by A yielding ir1.

2. Multiply ir1 by A yielding ir2.

3. Multiply ir2 by A yielding ir3.

4. Move ir3 to ir4.

ir4 has dmax decimal places. Because B is positive, ir4 is moved to Y. If B were

equal to -4, however, an additional fifth step would be performed:

5. Divide ir4 into 1 yielding ir5.

Appendix A. Intermediate results and arithmetic precision 677

ir5 has dmax decimal places, and would then be moved to Y.

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

“Fixed-point data and intermediate results” on page 675

Truncated intermediate results

Whenever the number of digits in an intermediate result exceeds 30 in

compatibility mode or 31 in extended mode, the compiler truncates to 30

(compatibility mode) or 31 (extended mode) digits and issues a warning. If

truncation occurs at run time, a message is issued and the program continues

running.

If you want to avoid the truncation of intermediate results that can occur in

fixed-point calculations, use floating-point operands (COMP-1 or COMP-2) instead.

RELATED CONCEPTS

“Formats for numeric data” on page 49

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 675

“ARITH” on page 306

Binary data and intermediate results

If an operation that involves binary operands requires intermediate results longer

than 18 digits, the compiler converts the operands to internal decimal before

performing the operation. If the result field is binary, the compiler converts the

result from internal decimal to binary.

Binary operands are most efficient when intermediate results will not exceed nine

digits.

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 675

“ARITH” on page 306

Intrinsic functions evaluated in fixed-point arithmetic

The compiler determines the inner-dmax and outer-dmax values for an intrinsic

function from the characteristics of the function.

Integer functions

Integer intrinsic functions return an integer; thus their outer-dmax is always zero.

For those integer functions whose arguments must all be integers, the inner-dmax is

thus also always zero.

The following table summarizes the inner-dmax and the precision of the function

result.

 Function Inner-dmax Digit precision of function result

DATE-OF-INTEGER 0 8

678 Enterprise COBOL for z/OS V4.1 Programming Guide

Function Inner-dmax Digit precision of function result

DATE-TO-YYYYMMDD 0 8

DAY-OF-INTEGER 0 7

DAY-TO-YYYYDDD 0 7

FACTORIAL 0 30 in compatibility mode, 31 in extended mode

INTEGER-OF-DATE 0 7

INTEGER-OF-DAY 0 7

LENGTH n/a 9

MOD 0 min(i1 i2)

ORD n/a 3

ORD-MAX 9

ORD-MIN 9

YEAR-TO-YYYY 0 4

INTEGER For a fixed-point argument: one more digit than in

the argument. For a floating-point argument: 30 in

compatibility mode, 31 in extended mode.

INTEGER-PART For a fixed-point argument: same number of digits

as in the argument. For a floating-point argument: 30

in compatibility mode, 31 in extended mode.

Mixed functions

A mixed intrinsic function is a function whose result type depends on the type of

its arguments. A mixed function is fixed point if all of its arguments are numeric

and none of its arguments is floating point. (If any argument of a mixed function is

floating point, the function is evaluated with floating-point instructions and returns

a floating-point result.) When a mixed function is evaluated with fixed-point

arithmetic, the result is integer if all of the arguments are integer; otherwise, the

result is fixed point.

For the mixed functions MAX, MIN, RANGE, REM, and SUM, the outer-dmax is always

equal to the inner-dmax (and both are thus zero if all the arguments are integer). To

determine the precision of the result returned for these functions, apply the rules

for fixed-point arithmetic and intermediate results (as referred to below) to each

step in the algorithm.

MAX

1. Assign the first argument to the function result.

2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the

argument.

b. Assign the greater of the two to the function result.

MIN

1. Assign the first argument to the function result.

2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the

argument.

b. Assign the lesser of the two to the function result.

Appendix A. Intermediate results and arithmetic precision 679

RANGE

1. Use the steps for MAX to select the maximum argument.

2. Use the steps for MIN to select the minimum argument.

3. Subtract the minimum argument from the maximum.

4. Assign the difference to the function result.

REM

1. Divide argument one by argument two.

2. Remove all noninteger digits from the result of step 1.

3. Multiply the result of step 2 by argument two.

4. Subtract the result of step 3 from argument one.

5. Assign the difference to the function result.

SUM

1. Assign the value 0 to the function result.

2. For each argument, do the following steps:

a. Add the argument to the function result.

b. Assign the sum to the function result.

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

“Fixed-point data and intermediate results” on page 675

“Floating-point data and intermediate results”

“ARITH” on page 306

Floating-point data and intermediate results

If any operation in an arithmetic expression is computed in floating-point

arithmetic, the entire expression is computed as if all operands were converted to

floating point and the operations were performed using floating-point instructions.

Floating-point instructions are used to compute an arithmetic expression if any of

the following conditions is true of the expression:

v A receiver or operand is COMP-1, COMP-2, external floating point, or a

floating-point literal.

v An exponent contains decimal places.

v An exponent is an expression that contains an exponentiation or division

operator, and dmax is greater than zero.

v An intrinsic function is a floating-point function.

In compatibility mode, if an expression is computed in floating-point arithmetic,

the precision used to evaluate the arithmetic operations is determined as follows:

v Single precision is used if all receivers and operands are COMP-1 data items and

the expression contains no multiplication or exponentiation operations.

v In all other cases, long precision is used.

Whenever long-precision floating point is used for one operation in an arithmetic

expression, all operations in the expression are computed as if long floating-point

instructions were used.

In extended mode, if an expression is computed in floating-point arithmetic, the

precision used to evaluate the arithmetic operations is determined as follows:

680 Enterprise COBOL for z/OS V4.1 Programming Guide

v Single precision is used if all receivers and operands are COMP-1 data items and

the expression contains no multiplication or exponentiation operations.

v Long precision is used if all receivers and operands are COMP-1 or COMP-2 data

items, at least one receiver or operand is a COMP-2 data item, and the expression

contains no multiplication or exponentiation operations.

v In all other cases, extended precision is used.

Whenever extended-precision floating point is used for one operation in an

arithmetic expression, all operations in the expression are computed as if

extended-precision floating-point instructions were used.

Alert: If a floating-point operation has an intermediate result field in which

exponent overflow occurs, the job is abnormally terminated.

Exponentiations evaluated in floating-point arithmetic

In compatibility mode, floating-point exponentiations are always evaluated using

long floating-point arithmetic. In extended mode, floating-point exponentiations

are always evaluated using extended-precision floating-point arithmetic.

The value of a negative number raised to a fractional power is undefined in

COBOL. For example, (-2) ** 3 is equal to -8, but (-2) ** (3.000001) is undefined.

When an exponentiation is evaluated in floating point and there is a possibility

that the result is undefined, the exponent is evaluated at run time to determine if it

has an integral value. If not, a diagnostic message is issued.

Intrinsic functions evaluated in floating-point arithmetic

In compatibility mode, floating-point intrinsic functions always return a long

(64-bit) floating-point value. In extended mode, floating-point intrinsic functions

always return an extended-precision (128-bit) floating-point value.

Mixed functions that have at least one floating-point argument are evaluated using

floating-point arithmetic.

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

“ARITH” on page 306

Arithmetic expressions in nonarithmetic statements

Arithmetic expressions can appear in contexts other than arithmetic statements. For

example, you can use an arithmetic expression with the IF or EVALUATE statement.

In such statements, the rules for intermediate results with fixed-point data and for

intermediate results with floating-point data apply, with the following changes:

v Abbreviated IF statements are handled as though the statements were not

abbreviated.

v In an explicit relation condition where at least one of the comparands is an

arithmetic expression, dmax is the maximum number of decimal places for any

operand of either comparand, excluding divisors and exponents. The rules for

floating-point arithmetic apply if any of the following conditions is true:

Appendix A. Intermediate results and arithmetic precision 681

– Any operand in either comparand is COMP-1, COMP-2, external floating point,

or a floating-point literal.

– An exponent contains decimal places.

– An exponent is an expression that contains an exponentiation or division

operator, and dmax is greater than zero.

For example:

IF operand-1 = expression-1 THEN . . .

If operand-1 is a data-name defined to be COMP-2, the rules for floating-point

arithmetic apply to expression-1 even if it contains only fixed-point operands,

because it is being compared to a floating-point operand.

v When the comparison between an arithmetic expression and another data item

or arithmetic expression does not use a relational operator (that is, there is no

explicit relation condition), the arithmetic expression is evaluated without regard

to the attributes of its comparand. For example:

EVALUATE expression-1

 WHEN expression-2 THRU expression-3

 WHEN expression-4

 . . .

END-EVALUATE

In the statement above, each arithmetic expression is evaluated in fixed-point or

floating-point arithmetic based on its own characteristics.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 64

RELATED REFERENCES

“Terminology used for intermediate results” on page 674

“Fixed-point data and intermediate results” on page 675

“Floating-point data and intermediate results” on page 680

IF statement (Enterprise COBOL Language Reference)

EVALUATE statement (Enterprise COBOL Language Reference)

Conditional expressions (Enterprise COBOL Language Reference)

682 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix B. Complex OCCURS DEPENDING ON

Several types of complex OCCURS DEPENDING ON (complex ODO) are possible.

Complex ODO is supported as an extension to Standard COBOL 85.

The basic forms of complex ODO permitted by the compiler are as follows:

v Variably located item or group: A data item described by an OCCURS clause with

the DEPENDING ON phrase is followed by a nonsubordinate elementary or group

data item.

v Variably located table: A data item described by an OCCURS clause with the

DEPENDING ON phrase is followed by a nonsubordinate data item described by an

OCCURS clause.

v Table that has variable-length elements: A data item described by an OCCURS

clause contains a subordinate data item described by an OCCURS clause with the

DEPENDING ON phrase.

v Index name for a table that has variable-length elements.

v Element of a table that has variable-length elements.

“Example: complex ODO”

RELATED TASKS

“Preventing index errors when changing ODO object value” on page 685

“Preventing overlay when adding elements to a variable table” on page 685

RELATED REFERENCES

“Effects of change in ODO object value” on page 684

OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Example: complex ODO

The following example illustrates the possible types of occurrence of complex

ODO.

01 FIELD-A.

 02 COUNTER-1 PIC S99.

 02 COUNTER-2 PIC S99.

 02 TABLE-1.

 03 RECORD-1 OCCURS 1 TO 5 TIMES

 DEPENDING ON COUNTER-1 PIC X(3).

 02 EMPLOYEE-NUMBER PIC X(5). (1)

 02 TABLE-2 OCCURS 5 TIMES (2)(3)

 INDEXED BY INDX. (4)

 03 TABLE-ITEM PIC 99. (5)

 03 RECORD-2 OCCURS 1 TO 3 TIMES

 DEPENDING ON COUNTER-2.

 04 DATA-NUM PIC S99.

Definition: In the example, COUNTER-1 is an ODO object, that is, it is the object of

the DEPENDING ON clause of RECORD-1. RECORD-1 is said to be an ODO subject.

Similarly, COUNTER-2 is the ODO object of the corresponding ODO subject,

RECORD-2.

The types of complex ODO occurrences shown in the example above are as

follows:

© Copyright IBM Corp. 1991, 2007 683

(1) A variably located item: EMPLOYEE-NUMBER is a data item that follows, but is

not subordinate to, a variable-length table in the same level-01 record.

(2) A variably located table: TABLE-2 is a table that follows, but is not

subordinate to, a variable-length table in the same level-01 record.

(3) A table with variable-length elements: TABLE-2 is a table that contains a

subordinate data item, RECORD-2, whose number of occurrences varies

depending on the content of its ODO object.

(4) An index-name, INDX, for a table that has variable-length elements.

(5) An element, TABLE-ITEM, of a table that has variable-length elements.

How length is calculated

The length of the variable portion of each record is the product of its ODO object

and the length of its ODO subject. For example, whenever a reference is made to

one of the complex ODO items shown above, the actual length, if used, is

computed as follows:

v The length of TABLE-1 is calculated by multiplying the contents of COUNTER-1 (the

number of occurrences of RECORD-1) by 3 (the length of RECORD-1).

v The length of TABLE-2 is calculated by multiplying the contents of COUNTER-2 (the

number of occurrences of RECORD-2) by 2 (the length of RECORD-2), and adding

the length of TABLE-ITEM.

v The length of FIELD-A is calculated by adding the lengths of COUNTER-1,

COUNTER-2, TABLE-1, EMPLOYEE-NUMBER, and TABLE-2 times 5.

Setting values of ODO objects

You must set every ODO object in a group item before you reference any complex

ODO item in the group. For example, before you refer to EMPLOYEE-NUMBER in the

code above, you must set COUNTER-1 and COUNTER-2 even though EMPLOYEE-NUMBER

does not directly depend on either ODO object for its value.

Restriction: An ODO object cannot be variably located.

Effects of change in ODO object value

If a data item that is described by an OCCURS clause with the DEPENDING ON phrase

is followed in the same group by one or more nonsubordinate data items (a form

of complex ODO), any change in value of the ODO object affects subsequent

references to complex ODO items in the record.

For example:

v The size of any group that contains the relevant ODO clause reflects the new

value of the ODO object.

v A MOVE to a group that contains the ODO subject is made based on the new

value of the ODO object.

v The location of any nonsubordinate items that follow the item described with

the ODO clause is affected by the new value of the ODO object. (To preserve the

contents of the nonsubordinate items, move them to a work area before the

value of the ODO object changes, then move them back.)

684 Enterprise COBOL for z/OS V4.1 Programming Guide

The value of an ODO object can change when you move data to the ODO object or

to the group in which it is contained. The value can also change if the ODO object

is contained in a record that is the target of a READ statement.

RELATED TASKS

“Preventing index errors when changing ODO object value”

“Preventing overlay when adding elements to a variable table”

Preventing index errors when changing ODO object value

Be careful if you reference a complex-ODO index-name, that is, an index-name for

a table that has variable-length elements, after having changed the value of the

ODO object for a subordinate data item in the table.

When you change the value of an ODO object, the byte offset in an associated

complex-ODO index is no longer valid because the table length has changed.

Unless you take precautions, you will have unexpected results if you then code a

reference to the index-name such as:

v A reference to an element of the table

v A SET statement of the form SET integer-data-item TO index-name (format 1)

v A SET statement of the form SET index-name UP|DOWN BY integer (format 2)

To avoid this type of error, do these steps:

1. Save the index in an integer data item. (Doing so causes an implicit conversion:

the integer item receives the table element occurrence number that corresponds

to the offset in the index.)

2. Change the value of the ODO object.

3. Immediately restore the index from the integer data item. (Doing so causes an

implicit conversion: the index-name receives the offset that corresponds to the

table element occurrence number in the integer item. The offset is computed

according to the table length then in effect.)

The following code shows how to save and restore the index-name (shown in

“Example: complex ODO” on page 683) when the ODO object COUNTER-2 changes.

 77 INTEGER-DATA-ITEM-1 PIC 99.

 . . .

 SET INDX TO 5.

* INDX is valid at this point.

 SET INTEGER-DATA-ITEM-1 TO INDX.

* INTEGER-DATA-ITEM-1 now has the

* occurrence number that corresponds to INDX.

 MOVE NEW-VALUE TO COUNTER-2.

* INDX is not valid at this point.

 SET INDX TO INTEGER-DATA-ITEM-1.

* INDX is now valid, containing the offset

* that corresponds to INTEGER-DATA-ITEM-1, and

* can be used with the expected results.

RELATED REFERENCES

SET statement (Enterprise COBOL Language Reference)

Preventing overlay when adding elements to a variable table

Be careful if you increase the number of elements in a variable-occurrence table

that is followed by one or more nonsubordinate data items in the same group.

Appendix B. Complex OCCURS DEPENDING ON 685

When you increment the value of the ODO object and add an element to a table,

you can inadvertently overlay the variably located data items that follow the table.

To avoid this type of error, do these steps:

1. Save the variably located data items that follow the table in another data area.

2. Increment the value of the ODO object.

3. Move data into the new table element (if needed).

4. Restore the variably located data items from the data area where you saved

them.

In the following example, suppose you want to add an element to the table

VARY-FIELD-1, whose number of elements depends on the ODO object CONTROL-1.

VARY-FIELD-1 is followed by the nonsubordinate variably located data item

GROUP-ITEM-1, whose elements could potentially be overlaid.

WORKING-STORAGE SECTION.

01 VARIABLE-REC.

 05 FIELD-1 PIC X(10).

 05 CONTROL-1 PIC S99.

 05 CONTROL-2 PIC S99.

 05 VARY-FIELD-1 OCCURS 1 TO 10 TIMES

 DEPENDING ON CONTROL-1 PIC X(5).

 05 GROUP-ITEM-1.

 10 VARY-FIELD-2

 OCCURS 1 TO 10 TIMES

 DEPENDING ON CONTROL-2 PIC X(9).

01 STORE-VARY-FIELD-2.

 05 GROUP-ITEM-2.

 10 VARY-FLD-2

 OCCURS 1 TO 10 TIMES

 DEPENDING ON CONTROL-2 PIC X(9).

Each element of VARY-FIELD-1 has 5 bytes, and each element of VARY-FIELD-2 has 9

bytes. If CONTROL-1 and CONTROL-2 both contain the value 3, you can picture storage

for VARY-FIELD-1 and VARY-FIELD-2 as follows:

VARY-FIELD-1(1)
VARY-FIELD-1(2)
VARY-FIELD-1(3)
VARY-FIELD-2(1)
VARY-FIELD-2(2)
VARY-FIELD-2(3)

To add a fourth element to VARY-FIELD-1, code as follows to prevent overlaying the

first 5 bytes of VARY-FIELD-2. (GROUP-ITEM-2 serves as temporary storage for the

variably located GROUP-ITEM-1.)

MOVE GROUP-ITEM-1 TO GROUP-ITEM-2.

ADD 1 TO CONTROL-1.

MOVE five-byte-field TO

 VARY-FIELD-1 (CONTROL-1).

MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

You can picture the updated storage for VARY-FIELD-1 and VARY-FIELD-2 as follows:

686 Enterprise COBOL for z/OS V4.1 Programming Guide

VARY-FIELD-1(1)
VARY-FIELD-1(2)
VARY-FIELD-1(3)
VARY-FIELD-1(4)
VARY-FIELD-2(1)
VARY-FIELD-2(2)
VARY-FIELD-2(3)

Note that the fourth element of VARY-FIELD-1 did not overlay the first element of

VARY-FIELD-2.

Appendix B. Complex OCCURS DEPENDING ON 687

688 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix C. Converting double-byte character set (DBCS)

data

The Language Environment service routines IGZCA2D and IGZCD2A were

intended for converting alphanumeric data items that contain DBCS data to and

from pure DBCS data items in order to reliably perform operations such as STRING,

UNSTRING, and reference modification.

These service routines continue to be provided for compatibility; however, using

national data items and the national conversion operations is now recommended

instead for this purpose.

The service routines do not support a code-page argument and are not sensitive to

the code page specified by the CODEPAGE compiler option. The DBCS compiler option

does not affect their operation.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134

“Processing alphanumeric data items that contain DBCS data” on page 143

RELATED REFERENCES

“DBCS notation”

“Alphanumeric to DBCS data conversion (IGZCA2D)”

“DBCS to alphanumeric data conversion (IGZCD2A)” on page 692

“CODEPAGE” on page 309

DBCS notation

The symbols shown below are used in the DBCS data conversion examples to

describe DBCS items.

 Symbols Meaning

< and > Shift-out (SO) and shift-in (SI), respectively

D0, D1, D2, . . ., Dn Any DBCS character except for double-byte EBCDIC

characters that correspond to single-byte EBCDIC

characters

.A, .B, .C, . . . Any double-byte EBCDIC character that corresponds

to a single-byte EBCDIC character. The period (.)

represents the value X’42’.

A single letter, such as A, B, or s Any single-byte EBCDIC character

Alphanumeric to DBCS data conversion (IGZCA2D)

The Language Environment IGZCA2D service routine converts alphanumeric data

that contains double-byte characters to pure DBCS data.

© Copyright IBM Corp. 1991, 2007 689

IGZCA2D syntax

To use the IGZCA2D service routine, pass the following four parameters to the

routine by using the CALL statement:

parameter-1

The sending field for the conversion, handled as an alphanumeric data

item.

parameter-2

The receiving field for the conversion, handled as a DBCS data item.

 You cannot use reference modification with parameter-2.

parameter-3

The number of bytes in parameter-1 to be converted.

 It can be the LENGTH OF special register of parameter-1, or a 4-byte USAGE IS

BINARY data item containing the number of bytes of parameter-1 to be

converted. Shift codes count as 1 byte each.

parameter-4

The number of bytes in parameter-2 that will receive the converted data.

 It can be the LENGTH OF special register of parameter-2, or a 4-byte USAGE IS

BINARY data item containing the number of bytes of parameter-2 to receive

the converted data.

Usage notes

v You can pass parameter-1, parameter-3, and parameter-4 to the routine BY

REFERENCE or BY CONTENT, but you must pass parameter-2 BY REFERENCE.

v The compiler does not perform syntax checking on these parameters. Ensure that

the parameters are correctly set and passed in the CALL statement to the

conversion routine. Otherwise, results are unpredictable.

v When creating parameter-2 from parameter-1, IGZCA2D makes these changes:

– Removes the shift codes, leaving the DBCS data unchanged

– Converts the single-byte (nonspace) EBCDIC character X’nn’ to a character

represented by X’42nn’

– Converts the single-byte space (X’40’) to DBCS space (X’4040’), instead of

X’4240’
v IGZCA2D does not change the contents of parameter-1, parameter-3, or

parameter-4.

v The valid range for the contents of parameter-3 and for the contents of

parameter-4 is 1 to 134,217,727.

“Example: IGZCA2D” on page 691

RELATED REFERENCES

“IGZCA2D return codes”

IGZCA2D return codes

IGZCA2D sets the RETURN-CODE special register to reflect the status of the conversion.

690 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 93. IGZCA2D return codes

Return code Explanation

0 parameter-1 was converted and the results were placed in parameter-2.

2 parameter-1 was converted and the results were placed in parameter-2.

parameter-2 was padded on the right with DBCS spaces.

4 parameter-1 was converted and the results were placed in parameter-2. The

DBCS data placed in parameter-2 was truncated on the right.

6 parameter-1 was converted and the results were placed in parameter-2. A

single-byte character in the range X’00’ to X’3F’ or X’FF’ was

encountered. The valid single-byte character was converted into an

out-of-range DBCS character.

8 parameter-1 was converted and the results were placed in parameter-2. A

single-byte character in the range X’00’ to X’3F’ or X’FF’ was

encountered. The valid single-byte character was converted into an

out-of-range DBCS character.

parameter-2 was padded on the right with DBCS spaces.

10 parameter-1 was converted and the results were placed in parameter-2. A

single-byte character in the range X’00’ to X’3F’ or X’FF’ was

encountered. The valid single-byte character was converted into an

out-of-range DBCS character.

The DBCS data in parameter-2 was truncated on the right.

12 An odd number of bytes was found between paired shift codes in

parameter-1. No conversion occurred.

13 Unpaired or nested shift codes were found in parameter-1. No conversion

occurred.

14 parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value provided for parameter-3 or parameter-4 was out of range. No

conversion occurred.

16 An odd number of bytes was coded in parameter-4. No conversion

occurred.

Example: IGZCA2D

This example CALL statement converts the alphanumeric data in alpha-item to

DBCS data. The results of the conversion are placed in dbcs-item.

CALL "IGZCA2D" USING BY REFERENCE alpha-item dbcs-item

 BY CONTENT LENGTH OF alpha-item LENGTH OF dbcs-item

Suppose the contents of alpha-item and dbcs-item and the lengths before the

conversion are:

alpha-item = AB<D1D2D3>CD

dbcs-item = D4D5D6D7D8D9D0

LENGTH OF alpha-item = 12

LENGTH OF dbcs-item = 14

Then after the conversion, alpha-item and dbcs-item will contain:

alpha-item = AB<D1D2D3>CD

dbcs-item = .A.BD1D2D3.C.D

The content of the RETURN-CODE register is 0.

Appendix C. Converting double-byte character set (DBCS) data 691

RELATED REFERENCES

“DBCS notation” on page 689

DBCS to alphanumeric data conversion (IGZCD2A)

The Language Environment IGZCD2A routine converts pure DBCS data to

alphanumeric data that can contain double-byte characters.

IGZCD2A syntax

To use the IGZCD2A service routine, pass the following four parameters to the

routine using the CALL statement:

parameter-1

The sending field for the conversion, handled as a DBCS data item.

parameter-2

The receiving field for the conversion, handled as an alphanumeric data

item.

parameter-3

The number of bytes in parameter-1 to be converted.

 It can be the LENGTH OF special register of parameter-1, or a 4-byte USAGE IS

BINARY data item containing the number of bytes of parameter-1 to be

converted.

parameter-4

The number of bytes in parameter-2 that will receive the converted data.

 It can be the LENGTH OF special register of parameter-2, or a 4-byte USAGE IS

BINARY data item containing the number of bytes of parameter-2 to receive

the converted data. Shift codes count as 1 byte each.

Usage notes

v You can pass parameter-1, parameter-3, and parameter-4 to the routine BY

REFERENCE or BY CONTENT, but you must pass parameter-2 BY REFERENCE.

v The compiler does not perform syntax checking on these parameters. Ensure that

the parameters are correctly set and passed to the conversion routine. Otherwise,

results are unpredictable.

v When creating parameter-2 from parameter-1, IGZCD2A makes these changes:

– Inserts shift codes around DBCS characters that do not correspond to

single-byte EBCDIC characters

– Converts DBCS characters to single-byte characters when the DBCS characters

correspond to single-byte EBCDIC characters

– Converts the DBCS space (X’4040’) to a single-byte space (X’40’)
v IGZCD2A does not change the contents of parameter-1, parameter-3, or

parameter-4.

v If the converted data contains double-byte characters, shift codes are counted in

the length of parameter-2.

v The valid range for the contents of parameter-3 and for the contents of

parameter-4 is 1 to 134,217,727.

“Example: IGZCD2A” on page 693

692 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES

“IGZCD2A return codes”

IGZCD2A return codes

IGZCD2A sets the RETURN-CODE special register to reflect the status of the conversion.

 Table 94. IGZCD2A return codes

Return code Explanation

0 parameter-1 was converted and the results were placed in parameter-2.

2 parameter-1 was converted and the results were placed in parameter-2.

parameter-2 was padded on the right with single-byte spaces.

4 parameter-1 was converted and the results were placed in parameter-2.

parameter-2 was truncated on the right.1

14 parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value of parameter-3 or parameter-4 was out of range. No conversion

occurred.

16 An odd number of bytes was coded in parameter-3. No conversion

occurred.

1. If a truncation occurs within the DBCS characters, the truncation is on an even-byte

boundary and a shift-in (SI) is inserted. If necessary, the alphanumeric data is padded

with a single-byte space after the shift-in.

Example: IGZCD2A

This example CALL statement converts the DBCS data in dbcs-item to alphanumeric

data with double-byte characters. The results of the conversion are placed in

alpha-item.

CALL "IGZCD2A" USING BY REFERENCE dbcs-item alpha-item

 BY CONTENT LENGTH OF dbcs-item LENGTH OF alpha-item

Suppose the contents of dbcs-item and alpha-item and the lengths before the

conversion are:

dbcs-item = .A.BD1D2D3.C.D

alpha-item = ssssssssssss

LENGTH OF dbcs-item = 14

LENGTH OF alpha-item = 12

Then after the conversion, dbcs-item and alpha-item will contain:

dbcs-item = .A.BD1D2D3.C.D

alpha-item = AB<D1D2D3>CD

The content of the RETURN-CODE register is 0.

RELATED REFERENCES

“DBCS notation” on page 689

Appendix C. Converting double-byte character set (DBCS) data 693

694 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix D. XML reference material

This information describes the XML exception codes that the XML parser and the

XML GENERATE statement return in special register XML-CODE.

RELATED REFERENCES

“XML PARSE exceptions that allow continuation”

“XML PARSE exceptions that do not allow continuation” on page 699

“XML GENERATE exceptions” on page 702

XML specification

XML PARSE exceptions that allow continuation

When an exception event occurs, the parser sets special register XML-CODE to a

value that identifies the exception. Depending on the setting of the XMLPARSE

compiler option and the value of XML-CODE, the parser might be able to continue

processing.

For XMLPARSE(XMLSS)

When the XMLPARSE(XMLSS) compiler option is in effect, the parser does not

continue processing after an exception event. The parser ignores any changes that

you make to the XML-CODE special register in your processing procedure. The value

in XML-CODE at the end of the XML PARSE statement is the value set by the parser

representing the original exception code. When your processing procedure returns

to the parser after the exception event, control transfers to the statement that you

specify in the ON EXCEPTION phrase, or to the end of the XML PARSE statement if you

did not code an ON EXCEPTION phrase. See the related reference below regarding

z/OS XML System Services for specification of the exceptions that are possible

when the XMLPARSE(XMLSS) option is in effect.

For XMLPARSE(COMPAT)

When the XMLPARSE(COMPAT) compiler option is in effect, the parser can continue

processing after some exception events. For example, the parser can continue when

the associated exception code is within one of the following ranges:

v 1-99

v 100,001-165,535

Table 95 on page 696 shows the exception codes that allow the parser to continue

processing.

The table describes each exception and the actions that the parser takes when you

request that it continue after the exception. Some of the descriptions use the

following terms:

v actual document encoding

v Document encoding declaration

For definitions of the terms, see the related task below about understanding the

encoding of XML documents.

© Copyright IBM Corp. 1991, 2007 695

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

http://www.w3.org/TR/REC-xml

Table 95. XML PARSE exceptions that allow continuation (for XMLPARSE(COMPAT))

Code Description Parser action on continuation

1 The parser found an invalid character

while scanning white space outside

element content.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

2 The parser found an invalid start of a

processing instruction, element,

comment, or document type

declaration outside element content.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

3 The parser found a duplicate attribute

name.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

4 The parser found the markup

character ’<’ in an attribute value.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

5 The start and end tag names of an

element did not match.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

6 The parser found an invalid character

in element content.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

7 The parser found an invalid start of an

element, comment, processing

instruction, or CDATA section in

element content.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

8 The parser found in element content

the CDATA closing character sequence

’]]>’ without the matching opening

character sequence ’<![CDATA[’.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

9 The parser found an invalid character

in a comment.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

696 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 95. XML PARSE exceptions that allow continuation (for

XMLPARSE(COMPAT)) (continued)

Code Description Parser action on continuation

10 The parser found in a comment the

character sequence ’--’ (two hyphens)

not followed by ’>’.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

11 The parser found an invalid character

in a processing instruction data

segment.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

12 A processing instruction target name

was ’xml’ in lowercase, uppercase, or

mixed case.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

13 The parser found an invalid digit in a

hexadecimal character reference (of the

form �).

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

14 The parser found an invalid digit in a

decimal character reference (of the

form &#dddd;).

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

15 The encoding declaration value in the

XML declaration did not begin with

lowercase or uppercase A through Z.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

16 A character reference did not refer to a

legal XML character.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

17 The parser found an invalid character

in an entity reference name.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

Appendix D. XML reference material 697

Table 95. XML PARSE exceptions that allow continuation (for

XMLPARSE(COMPAT)) (continued)

Code Description Parser action on continuation

18 The parser found an invalid character

in an attribute value.

The parser continues detecting errors

until it reaches the end of the document

or encounters an error that does not

allow continuation. The parser does not

signal any further normal events, except

for the END-OF-DOCUMENT event.

70 The actual document encoding was

EBCDIC, and the CODEPAGE compiler

option specified a supported EBCDIC

code page, but the document encoding

declaration did not specify a

supported EBCDIC code page.

The parser uses the encoding specified

by the CODEPAGE compiler option.

71 The actual document encoding was

EBCDIC, and the document encoding

declaration specified a supported

EBCDIC encoding, but the CODEPAGE

compiler option did not specify a

supported EBCDIC code page.

The parser uses the encoding specified

by the document encoding declaration.

72 The actual document encoding was

EBCDIC, the CODEPAGE compiler option

did not specify a supported EBCDIC

code page, and the document did not

contain an encoding declaration.

The parser uses EBCDIC code page 1140

(USA, Canada, . . . Euro Country

Extended Code Page).

73 The actual document encoding was

EBCDIC, but neither the CODEPAGE

compiler option nor the document

encoding declaration specified a

supported EBCDIC code page.

The parser uses EBCDIC code page 1140

(USA, Canada, . . . Euro Country

Extended Code Page).

82 The actual document encoding was

ASCII, but the document did not

contain an encoding declaration.

The parser uses ASCII code page 819

(ISO-8859-1 Latin 1/Open Systems).

83 The actual document encoding was

ASCII, but the document encoding

declaration did not specify code page

813, 819, or 920.

The parser uses ASCII code page 819

(ISO-8859-1 Latin 1/Open Systems).

92 The document data item was

alphanumeric, but the actual

document encoding was Unicode

UTF-16.

The parser uses code page 1200

(Unicode UTF-16).

100,001 -

165,535

The CODEPAGE compiler option and the

document encoding declaration

specified different supported EBCDIC

code pages. XML-CODE contains the

code page CCSID for the encoding

declaration plus 100,000.

If you set XML-CODE to zero before

returning from the EXCEPTION event, the

parser uses the encoding specified by

the CODEPAGE compiler option. If you set

XML-CODE to the CCSID for the document

encoding declaration (by subtracting

100,000), the parser uses this encoding.

RELATED CONCEPTS

“XML-CODE” on page 508

698 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Understanding the encoding of XML documents” on page 521

“Handling XML PARSE exceptions” on page 526

RELATED REFERENCES

“XMLPARSE” on page 356

z/OS XML System Services User’s Guide and Reference (SA23-1350)

XML PARSE exceptions that do not allow continuation

For XMLPARSE(XMLSS)

When the XMLPARSE(XMLSS) compiler option is in effect, the parser terminates

processing after any exception event. When your processing procedure returns to

the parser after the event, the parser transfers control to the statement that you

specify in the ON EXCEPTION phrase, or to the end of the XML PARSE statement if you

did not code an ON EXCEPTION phrase.

For XMLPARSE(COMPAT)

When the XMLPARSE(COMPAT) compiler option is in effect, no further events are

returned from the parser for the exceptions shown in the table below, even if you

set XML-CODE to zero and return control to the parser after processing the exception.

The parser transfers control to the statement that you specify in the ON EXCEPTION

phrase, or to the end of the XML PARSE statement if you did not code an ON

EXCEPTION phrase.

 Table 96. XML PARSE exceptions that do not allow continuation

Code Description

100 The parser reached the end of the document while scanning the start of the

XML declaration.

101 The parser reached the end of the document while looking for the end of the

XML declaration.

102 The parser reached the end of the document while looking for the root

element.

103 The parser reached the end of the document while looking for the version

information in the XML declaration.

104 The parser reached the end of the document while looking for the version

information value in the XML declaration.

106 The parser reached the end of the document while looking for the encoding

declaration value in the XML declaration.

108 The parser reached the end of the document while looking for the

standalone declaration value in the XML declaration.

109 The parser reached the end of the document while scanning an attribute

name.

110 The parser reached the end of the document while scanning an attribute

value.

111 The parser reached the end of the document while scanning a character

reference or entity reference in an attribute value.

112 The parser reached the end of the document while scanning an empty

element tag.

Appendix D. XML reference material 699

|

|
|
|
|
|

|

|

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/gxlza110

Table 96. XML PARSE exceptions that do not allow continuation (continued)

Code Description

113 The parser reached the end of the document while scanning the root element

name.

114 The parser reached the end of the document while scanning an element

name.

115 The parser reached the end of the document while scanning character data in

element content.

116 The parser reached the end of the document while scanning a processing

instruction in element content.

117 The parser reached the end of the document while scanning a comment or

CDATA section in element content.

118 The parser reached the end of the document while scanning a comment in

element content.

119 The parser reached the end of the document while scanning a CDATA

section in element content.

120 The parser reached the end of the document while scanning a character

reference or entity reference in element content.

121 The parser reached the end of the document while scanning after the close of

the root element.

122 The parser found a possible invalid start of a document type declaration.

123 The parser found a second document type declaration.

124 The first character of the root element name was not a letter, ’_’, or ’:’.

125 The first character of the first attribute name of an element was not a letter,

’_’, or ’:’.

126 The parser found an invalid character either in or following an element

name.

127 The parser found a character other than ’=’ following an attribute name.

128 The parser found an invalid attribute value delimiter.

130 The first character of an attribute name was not a letter, ’_’, or ’:’.

131 The parser found an invalid character either in or following an attribute

name.

132 An empty element tag was not terminated by a ’>’ following the ’/’.

133 The first character of an element end tag name was not a letter, ’_’, or ’:’.

134 An element end tag name was not terminated by a ’>’.

135 The first character of an element name was not a letter, ’_’, or ’:’.

136 The parser found an invalid start of a comment or CDATA section in element

content.

137 The parser found an invalid start of a comment.

138 The first character of a processing instruction target name was not a letter,

’_’, or ’:’.

139 The parser found an invalid character in or following a processing

instruction target name.

140 A processing instruction was not terminated by the closing character

sequence ’?>’.

141 The parser found an invalid character following ’&’ in a character reference

or entity reference.

700 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 96. XML PARSE exceptions that do not allow continuation (continued)

Code Description

142 The version information was not present in the XML declaration.

143 ’version’ in the XML declaration was not followed by ’=’.

144 The version declaration value in the XML declaration is either missing or

improperly delimited.

145 The version information value in the XML declaration specified a bad

character, or the start and end delimiters did not match.

146 The parser found an invalid character following the version information

value closing delimiter in the XML declaration.

147 The parser found an invalid attribute instead of the optional encoding

declaration in the XML declaration.

148 ’encoding’ in the XML declaration was not followed by ’=’.

149 The encoding declaration value in the XML declaration is either missing or

improperly delimited.

150 The encoding declaration value in the XML declaration specified a bad

character, or the start and end delimiters did not match.

151 The parser found an invalid character following the encoding declaration

value closing delimiter in the XML declaration.

152 The parser found an invalid attribute instead of the optional standalone

declaration in the XML declaration.

153 standalone in the XML declaration was not followed by =.

154 The standalone declaration value in the XML declaration is either missing or

improperly delimited.

155 The standalone declaration value was neither ’yes’ nor ’no’ only.

156 The standalone declaration value in the XML declaration specified a bad

character, or the start and end delimiters did not match.

157 The parser found an invalid character following the standalone declaration

value closing delimiter in the XML declaration.

158 The XML declaration was not terminated by the proper character sequence

’?>’, or contained an invalid attribute.

159 The parser found the start of a document type declaration after the end of

the root element.

160 The parser found the start of an element after the end of the root element.

315 The actual document encoding was UTF-16 little-endian, which the parser does

not support on this platform.

316 The actual document encoding was UCS4, which the parser does not

support.

317 The parser cannot determine the document encoding. The document might

be damaged.

318 The actual document encoding was UTF-8, which the parser does not

support.

320 The document data item was national, but the actual document encoding

was EBCDIC.

321 The document data item was national, but the actual document encoding

was ASCII.

500-599 Internal error. Please report the error to your service representative.

Appendix D. XML reference material 701

RELATED CONCEPTS

“XML-CODE” on page 508

RELATED TASKS

“Handling XML PARSE exceptions” on page 526

RELATED REFERENCES

“XMLPARSE” on page 356

XML GENERATE exceptions

One of several exception codes might be returned in the XML-CODE special register

during XML generation. If one of these exceptions occurs, control is passed to the

statement in the ON EXCEPTION phrase, or to the end of the XML GENERATE statement

if you did not code an ON EXCEPTION phrase.

 Table 97. XML GENERATE exceptions

Code Description

400 The receiver was too small to contain the generated XML document. The

COUNT IN data item, if specified, contains the count of character positions that

were actually generated.

401 A DBCS data-name contained a character that, when converted to Unicode,

was not valid in an XML element or attribute name.

402 The first character of a DBCS data-name, when converted to Unicode, was

not valid as the first character of an XML element or attribute name.

403 The value of an OCCURS DEPENDING ON variable exceeded 16,777,215.

410 The CCSID page specified by the CODEPAGE compiler option is not supported

for conversion to Unicode.

411 The CCSID specified by the CODEPAGE compiler option is not a supported

single-byte EBCDIC CCSID.

414 The CCSID specified for the XML document was invalid or was not

supported.

416 The XML namespace identifier contained invalid XML characters.

417 Element character content or an attribute value contained characters that are

illegal in XML content. XML generation has continued, with the element tag

name or the attribute name prefixed with ’hex.’ and the original data value

represented in the document in hexadecimal.

418 Substitution characters were generated by encoding conversion.

419 The XML namespace prefix was invalid.

600-699 Internal error. Report the error to your service representative.

RELATED TASKS

“Handling errors in generating XML output” on page 536

702 Enterprise COBOL for z/OS V4.1 Programming Guide

|

|

||
|

||

||
|
|
|

||

||

Appendix E. EXIT compiler option

Use the EXIT option to allow the compiler to accept user-supplied modules in place

of SYSIN, SYSLIB (or copy library), and SYSPRINT.

For SYSADATA, the ADEXIT suboption provides a module that will be called for

each SYSADATA record immediately after the record has been written out to the

file.

EXIT option syntax

��

�

 NOEXIT

EXIT(

)

INEXIT(

mod1)

str1,

NOINEXIT

LIBEXIT(

mod2)

str2,

NOLIBEXIT

PRTEXIT(

mod3)

str3,

NOPRTEXIT

ADEXIT(

mod4)

str4,

NOADEXIT

��

Default is: NOEXIT

Abbreviations are: EX(INX|NOINX, LIBX|NOLIBX, PRTX|NOPRTX, ADX|NOADX)

If you specify the EXIT option without providing at least one suboption, NOEXIT

will be in effect. You can specify the suboptions in any order and separate them by

either commas or spaces. If you specify both the positive and negative form of a

suboption (INEXIT|NOINEXT, LIBEXIT|NOLIBEXIT, PRTEXIT|NOPRTEXIT, or

ADEXIT|NOADEXIT), the form specified last takes effect. If you specify the same

suboption more than once, the last one specified takes effect.

You can specify the EXIT option only at invocation in the JCL PARM field (under

TSO/E, in a command argument) or at installation time. Do not specify the EXIT

option in a PROCESS (CBL) statement.

INEXIT([’str1’,]mod1)

The compiler reads source code from a user-supplied load module (where

mod1 is the module name) instead of SYSIN.

© Copyright IBM Corp. 1991, 2007 703

LIBEXIT([’str2’,]mod2)

The compiler obtains copybooks from a user-supplied load module (where

mod2 is the module name) instead of library-name or SYSLIB. For use with

either COPY or BASIS statements.

PRTEXIT([’str3’,]mod3)

The compiler passes printer-destined output to the user-supplied load

module (where mod3 is the module name) instead of SYSPRINT.

ADEXIT([’str4’,]mod4)

The compiler passes the SYSADATA output to the user-supplied load

module (where mod4 is the module name).

The module names mod1, mod2, mod3, and mod4 can refer to the same module.

The suboptions str1, str2, str3, and str4 are character strings that are passed to the

load module. These strings are optional. They can be up to 64 characters in length,

and you must enclose them in single quotation marks. Any character is allowed,

but included single quotation marks must be doubled. Lowercase characters are

folded to uppercase.

If one of str1, str2, str3, or str4 is specified, the string is passed to the appropriate

user-exit module with the following format:

 LL string

where LL is a halfword (on a halfword boundary) that contains the length of the

string.

“Example: INEXIT user exit” on page 713

RELATED TASKS

“Using the user-exit work area”

“Calling from exit modules” on page 705

“Using the EXIT compiler option with CICS and SQL statements” on page 712

RELATED REFERENCES

“Processing of INEXIT” on page 705

“Processing of LIBEXIT” on page 706

“Processing of PRTEXIT” on page 709

“Processing of ADEXIT” on page 710

“Error handling for exit modules” on page 712

Using the user-exit work area

When you use an exit, the compiler provides a user-exit work area where you can

save the address of GETMAIN storage obtained by the exit module. This work area

allows the module to be reentrant.

The user-exit work area is 4 fullwords residing on a fullword boundary. These

fullwords are initialized to binary zeros before the first exit routine is invoked. The

address of the work area is passed to the exit module in a parameter list. After

initialization, the compiler makes no further reference to the work area.

You need to establish your own conventions for using the work area if more than

one exit is active during the compilation. For example, the INEXIT module uses

704 Enterprise COBOL for z/OS V4.1 Programming Guide

the first word in the work area, the LIBEXIT module uses the second word, the

PRTEXIT module uses the third word, and the ADEXIT module uses the fourth

word.

RELATED REFERENCES

“Processing of INEXIT”

“Processing of LIBEXIT” on page 706

“Processing of PRTEXIT” on page 709

“Processing of ADEXIT” on page 710

Calling from exit modules

Use COBOL standard linkage in your exit modules to call COBOL programs or

library routines. You need to be aware of these conventions in order to trace the

call chain correctly.

When a call is made to a program or to a routine, the registers are set up as

follows:

R1 Points to the parameter list passed to the called program or library routine

R13 Points to the register save area provided by the calling program or routine

R14 Holds the return address of the calling program or routine

R15 Holds the address of the called program or routine

Exit modules must have the RMODE attribute of 24 and the AMODE attribute of ANY.

RELATED CONCEPTS

“Storage and its addressability” on page 42

Processing of INEXIT

The exit module is used to read source code from a user-supplied load module in

place of SYSIN.

 Table 98. INEXIT processing

Action by compiler Resulting action by exit module

Loads the exit module (mod1) during

initialization

Calls the exit module with an OPEN

operation code (op code)

Prepares its source for processing. Passes the

status of the OPEN request back to the

compiler.

Calls the exit module with a GET op code

when a source statement is needed

Returns either the address and length of the

next statement or the end-of-data indication

(if no more source statements exist)

Calls the exit module with a CLOSE op code

when the end-of-data is presented

Releases any resources that are related to its

output

INEXIT parameters

The compiler uses a parameter list to communicate with the exit module. The

parameter list consists of 10 fullwords containing addresses, and register 1 contains

the address of the parameter list. The return code, data length, and data

Appendix E. EXIT compiler option 705

parameters are placed by the exit module for return to the compiler, and the other

items are passed from the compiler to the exit module. The following table

describes the contents of the parameter list.

 Table 99. INEXIT parameters

Offset Contains address of Description of item

00 User-exit type Halfword identifying which user exit is to

perform the operation.

1=INEXIT

04 Operation code Halfword indicating the type of operation.

0=OPEN; 1=CLOSE; 2=GET

08 Return code Fullword, placed by the exit module, indicating

the success of the requested operation.

0=Operation was successful; 4=End-of-data;

12=Operation failed

12 User-exit work area Four-fullword work area provided by the

compiler, for use by the user-exit module

16 Data length Fullword, placed by the exit module, specifying

the length of the record being returned by the

GET operation (must be 80)

20 Data or str1 Fullword, placed by the exit module, containing

the address of the record in a user-owned buffer,

for the GET operation.

str1 applies only to OPEN. The first halfword (on

a halfword boundary) contains the length of the

string, followed by the string.

24 Not used (Used only by LIBEXIT)

28 Not used (Used only by LIBEXIT)

32 Not used (Used only by LIBEXIT)

36 Not used (Used only by LIBEXIT)

“Example: INEXIT user exit” on page 713

RELATED TASKS

“Using the EXIT compiler option with CICS and SQL statements” on page 712

RELATED REFERENCES

“Processing of LIBEXIT”

Processing of LIBEXIT

The exit module is used in place of the SYSLIB, or library-name, data set. Calls are

made to the module by the compiler to obtain copybooks whenever COPY or BASIS

statements are encountered.

If LIBEXIT is specified, the LIB compiler option must be in effect.

706 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 100. LIBEXIT processing

Action by compiler Resulting action by exit module

Loads the exit module (mod2) during

initialization

Calls the exit module with an OPEN

operation code (op code)

Prepares the specified library-name for

processing. Passes the status of the OPEN

request to the compiler.

Calls the exit module with a FIND op code

if the library-name was successfully opened

Establishes positioning at the requested

text-name (or basis-name) in the specified

library-name; this place becomes the active

copybook. Passes an appropriate return code

to the compiler when positioning is

complete.

Calls the exit module with a GET op code Passes the compiler either the length and

address of the record to be copied from the

active copybook or the end-of-data indicator

Calls the exit module with a CLOSE op code

when the end-of-data is presented

Releases any resources that are related to its

input

Processing of LIBEXIT with nested COPY statements

Any record from the active copybook can contain a COPY statement. (However,

nested COPY statements cannot contain the REPLACING phrase, and a COPY statement

with the REPLACING phrase cannot contain nested COPY statements.)

The compiler does not allow recursive calls to text-name. That is, a copybook can

be named only once in a set of nested COPY statements until the end-of-data for

that copybook is reached.

The following table shows how the processing of LIBEXIT changes when there are

one or more valid COPY statements that are not nested:

 Table 101. LIBEXIT processing with nonnested COPY statements

Action by compiler Resulting action by exit module

Loads the exit module (mod2) during

initialization

Calls the exit module with an OPEN

operation code (op code)

Prepares the specified library-name for processing.

Passes the status of the OPEN request to the

compiler.

Calls the exit module with a FIND op

code if the library-name was successfully

opened

Establishes positioning at the requested text-name

(or basis-name) in the specified library-name; this

place becomes the active copybook. Passes an

appropriate return code to the compiler when

positioning is complete.

Calls the exit module with a FIND op

code if the library-name was successfully

opened

Reestablishes positioning at the previous active

copybook. Passes an appropriate return code to

the compiler when positioning is complete.

Calls the exit module with a GET op

code.

Verifies that the same record was

passed.

Passes the compiler the same record as was

passed previously from this copybook. After

verification, passes either the length and address

of the record to be copied from the active

copybook or the end-of-data indicator.

Appendix E. EXIT compiler option 707

Table 101. LIBEXIT processing with nonnested COPY statements (continued)

Action by compiler Resulting action by exit module

Calls the exit module with a CLOSE op

code when the end-of-data is presented

Releases any resources that are related to its

input

The following table shows how the processing of LIBEXIT changes when the

compiler encounters a valid nested COPY statement.

 Table 102. LIBEXIT processing with nested COPY statements

Action by compiler Resulting action by exit module

If the requested

library-name from the

nested COPY statement

was not previously

opened, calls the exit

module with an

OPEN op code

Pushes its control information about the active copybook onto a

stack. Completes the requested action (OPEN). The newly

requested text-name (or basis-name) becomes the active copybook.

Calls the exit module

with a FIND op code

for the requested new

text-name

Pushes its control information about the active copybook onto a

stack. Completes the requested action (FIND). The newly requested

text-name (or basis-name) becomes the active copybook.

Calls the exit module

with a GET op code

Passes the compiler either the length and address of the record to

be copied from the active copybook or the end-of-data indicator. At

end-of-data, pops its control information from the stack.

LIBEXIT parameters

The compiler uses a parameter list to communicate with the exit module. The

parameter list consists of 10 fullwords that contain addresses, and register 1

contains the address of the parameter list. The return code, data length, and data

parameters are placed by the exit module for return to the compiler; and the other

items are passed from the compiler to the exit module.

 Table 103. LIBEXIT parameters

Offset Contains address of Description of item

00 User-exit type Halfword identifying which user exit is to

perform the operation.

2=LIBEXIT

04 Operation code Halfword indicating the type of operation.

0=OPEN; 1=CLOSE; 2=GET; 4=FIND

08 Return code Fullword, placed by the exit module, indicating

the success of the requested operation.

0=Operation was successful; 4=End-of-data;

12=Operation failed

12 User-exit work area Four-fullword work area provided by the

compiler for use by the user-exit module

16 Data length Fullword, placed by the exit module, specifying

the length of the record being returned by the

GET operation (must be 80)

708 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 103. LIBEXIT parameters (continued)

Offset Contains address of Description of item

20 Data or str2 Fullword, placed by the exit module, containing

the address of the record in a user-owned buffer,

for the GET operation.

str2 applies only to OPEN. The first halfword (on

a halfword boundary) contains the length of the

string, followed by the string.

24 System library-name Eight-character area containing the library-name

from the COPY statement. Processing and

conversion rules for a program-name are applied.

Padded with blanks if required. Applies to

OPEN, CLOSE, and FIND.

28 System text-name Eight-character area containing the text-name

from the COPY statement (basis-name from BASIS

statement). Processing and conversion rules for a

program name are applied. Padded with blanks if

required. Applies only to FIND.

32 Library-name Thirty-character area containing the full

library-name from the COPY statement. Padded

with blanks if required, and used as-is (not

folded to uppercase). Applies to OPEN, CLOSE,

and FIND.

36 Text-name Thirty-character area containing the full text-name

from the COPY statement. Padded with blanks if

required, and used as-is (not folded to

uppercase). Applies only to FIND.

RELATED TASKS

“Using the EXIT compiler option with CICS and SQL statements” on page 712

Processing of PRTEXIT

The exit module is used in place of the SYSPRINT data set.

 Table 104. PRTEXIT processing

Action by compiler Resulting action by exit module

Loads the exit module (mod3) during

initialization

Calls the exit module with an OPEN

operation code (op code)

Prepares its output destination for

processing. Passes the status of the OPEN

request to the compiler.

Calls the exit modules with a PUT op code

when a line is to be printed, supplying the

address and length of the record that is to be

printed

Passes the status of the PUT request to the

compiler by a return code. The first byte of

the record to be printed contains an ANSI

printer control character.

Calls the exit module with a CLOSE op code

when the end-of-data is presented

Releases any resources that are related to its

output destination

Appendix E. EXIT compiler option 709

PRTEXIT parameters

The compiler uses a parameter list to communicate with the exit module. The

parameter list consists of 10 fullwords that contain addresses, and register 1

contains the address of the parameter list. The return code, data length, and data

buffer parameters are placed by the exit module for return to the compiler; and the

other items are passed from the compiler to the exit module.

 Table 105. PRTEXIT parameters

Offset Contains address of Description of item

00 User-exit type Halfword identifying which user exit is to

perform the operation.

3=PRTEXIT

04 Operation code Halfword indicating the type of operation.

0=OPEN; 1=CLOSE; 3=PUT

08 Return code Fullword, placed by the exit module, indicating

the success of the requested operation.

0=Operation was successful; 12=Operation failed

12 User-exit work area Four-fullword work area provided by the

compiler, for use by the user-exit module

16 Data length Fullword specifying the length of the record

being supplied by the PUT operation (the

compiler sets this value to 133)

20 Data buffer or str3 Fullword containing the address of the data

buffer where the compiler has placed the record

to be printed by the PUT operation.

str3 applies only to OPEN. The first halfword (on

a halfword boundary) contains the length of the

string, followed by the string.

24 Not used (Used only by LIBEXIT)

28 Not used (Used only by LIBEXIT)

32 Not used (Used only by LIBEXIT)

36 Not used (Used only by LIBEXIT)

RELATED TASKS

“Using the EXIT compiler option with CICS and SQL statements” on page 712

RELATED REFERENCES

“Processing of LIBEXIT” on page 706

Processing of ADEXIT

Use of the ADEXIT module requires the compiler option ADATA to produce

SYSADATA output, and the DD statement SYSADATA.

710 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 106. ADEXIT processing

Action by compiler Resulting action by exit module

Loads the exit module (mod4) during

initialization

Calls the exit module with an OPEN

operation code (op code)

Prepares its output destination for

processing. Passes the status of the OPEN

request to the compiler.

Calls the exit modules with a PUT op code

when the compiler has written a SYSADATA

record, supplying the address and length of

the SYSADATA record

Passes the status of the PUT request to the

compiler by a return code

Calls the exit module with a CLOSE op code

when the end-of-data is presented

Releases any resources

ADEXIT parameters

The compiler uses a parameter list to communicate with the exit module. The

parameter list consists of 10 fullwords that contain addresses, and register 1

contains the address of the parameter list. The return code, data length, and data

buffer parameters are placed by the exit module for return to the compiler; and the

other items are passed from the compiler to the exit module.

 Table 107. ADEXIT parameters

Offset Contains address of Description of item

00 User-exit type Halfword identifying which user exit is to

perform the operation.

4=ADEXIT

04 Operation code Halfword indicating the type of operation.

0=OPEN; 1=CLOSE; 3=PUT

08 Return code Fullword, placed by the exit module, indicating

the success of the requested operation.

0=Operation was successful; 12=Operation failed

12 User-exit work area Four-fullword work area provided by the

compiler, for use by the user-exit module

16 Data length Fullword specifying the length of the record

being supplied by the PUT operation

20 Data buffer or str4 Fullword containing the address of the data

buffer where the compiler has placed the record

to be printed by the PUT operation.

str4 applies only to OPEN. The first halfword (on

a halfword boundary) contains the length of the

string, followed by the string.

24 Not used (Used only by LIBEXIT)

28 Not used (Used only by LIBEXIT)

32 Not used (Used only by LIBEXIT)

36 Not used (Used only by LIBEXIT)

Appendix E. EXIT compiler option 711

RELATED TASKS

“Using the EXIT compiler option with CICS and SQL statements”

RELATED REFERENCES

“Processing of LIBEXIT” on page 706

Error handling for exit modules

The compiler reports an error message whenever an exit module cannot be loaded

or an exit module returns an “operation failed” message or nonzero return code.

Message IGYSI5008 is written to the operator and the compiler terminates with

return code 16 when any of the following events occurs:

v An exit module cannot be loaded.

v A nonzero return code is received from INEXIT during an OPEN request.

v A nonzero return code is received from PRTEXIT during an OPEN request.

The exit type and operation (OPEN or LOAD) are identified in the message. Any

other error from INEXIT or PRTEXIT causes the compiler to terminate.

The compiler detects and reports the following conditions:

5203 PUT request to SYSPRINT user exit failed with return code nn.

5204 Record address not set by exit-name user exit.

5205 GET request from SYSIN user exit failed with return code nn.

5206 Record length not set by exit-name user exit.

Using the EXIT compiler option with CICS and SQL statements

When you compile using suboptions of the EXIT compiler option and you need to

translate CICS or SQL statements, the actions that you can take in the exit modules

depend on whether you use the separate CICS translator and DB2 precompiler or

the integrated CICS translator and DB2 coprocessor.

When you use the integrated translators, you can process EXEC CICS and EXEC SQL

statements in the exit modules. The following table shows your alternatives for the

four exit modules.

 Table 108. Actions allowed on CICS and SQL statements in exit modules

Compile

with

suboption

Translate with

integrated

CICS

translator and

DB2

coprocessor

Translate with

separate CICS

translator and

DB2

coprocessor Actions allowed in module Comments

INEXIT Yes No Can process EXEC CICS and EXEC

SQL statements in the INEXIT

module

The INEXIT module does not get

control of the COBOL statements

that are generated for the EXEC

statements.

No Yes Can process the COBOL

statements that are generated for

the EXEC statements in the

INEXIT module

You can change the generated

statements in the INEXIT

module, but doing so is not

supported by IBM.

712 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 108. Actions allowed on CICS and SQL statements in exit modules (continued)

Compile

with

suboption

Translate with

integrated

CICS

translator and

DB2

coprocessor

Translate with

separate CICS

translator and

DB2

coprocessor Actions allowed in module Comments

LIBEXIT Yes No Can process in the LIBEXIT

module the statements that are

brought in by the EXEC SQL

INCLUDE statements. Can process

EXEC CICS source statements in

the LIBEXIT module.

EXEC SQL INCLUDE statements are

processed like COBOL COPY

statements.

No Yes Can process the COBOL

statements that are generated for

the EXEC CICS statements in the

LIBEXIT module

You can process the input

statements that are brought in by

the EXEC SQL INCLUDE statements

only by using the INEXIT

suboption.

PRTEXIT Yes No Can process the EXEC CICS and

EXEC SQL source statements from

the SOURCE listing in the

PRTEXIT module

The PRTEXIT module does not

have access to the COBOL

source statements that are

generated.

No Yes Can process the COBOL SOURCE

listing statements that are

generated for the EXEC

statements in the PRTEXIT

module

ADEXIT Yes No Can process the EXEC CICS and

EXEC SQL source statements in

the ADEXIT module

The ADEXIT module does not

have access to the COBOL

source statements that are

generated.

No Yes Can process the COBOL

SYSADATA source statements

that are generated for the EXEC

statements in the ADEXIT

module

RELATED CONCEPTS

“DB2 coprocessor” on page 417

“Integrated CICS translator” on page 411

RELATED TASKS

“Compiling with the SQL option” on page 421

“Compiling with the CICS option” on page 409

RELATED REFERENCES

“Processing of INEXIT” on page 705

“Processing of LIBEXIT” on page 706

“Processing of PRTEXIT” on page 709

“Processing of ADEXIT” on page 710

Example: INEXIT user exit

The following example shows an INEXIT user-exit module in COBOL.

Appendix E. EXIT compiler option 713

* *

* Name: SKELINX *

* *

* Function: Example of an INEXIT user exit written *

* in the COBOL language. *

* *

 Identification Division.

 Program-ID. Skelinx.

 Environment Division.

 Data Division.

 WORKING-STORAGE Section.

* ***

* * *

* * Local variables. *

* * *

* ***

 01 Record-Variable Pic X(80).

* ***

* * *

* * Definition of the User-Exit Parameter List, which *

* * is passed from the COBOL compiler to the user exit *

* * module. *

* * *

* ***

 Linkage Section.

 01 Exit-Type Pic 9(4) Binary.

 01 Exit-Operation Pic 9(4) Binary.

 01 Exit-ReturnCode Pic 9(9) Binary.

 01 Exit-WorkArea.

 05 INEXIT-Slot Pic 9(9) Binary.

 05 LIBEXIT-Slot Pic 9(9) Binary.

 05 PRTEXIT-Slot Pic 9(9) Binary.

 05 Reserved-Slot Pic 9(9) Binary.

 01 Exit-DataLength Pic 9(9) Binary.

 01 Exit-DataArea Pointer.

 01 Exit-Open-Parm Redefines Exit-DataArea.

 05 String-Len Pic 9(4) Binary.

 05 Open-String Pic X(64).

 01 Exit-Print-Line Redefines Exit-DataArea Pic X(133).

 01 Exit-LIBEXIT Pic X(8).

 01 Exit-Systext Pic X(8).

 01 Exit-CBLLibrary Pic X(30).

 01 Exit-CBLText Pic X(30).

* *

* Begin PROCEDURE DIVISION *

* *

* Invoke the section to handle the exit. *

* *

 Procedure Division Using Exit-Type Exit-Operation

 Exit-ReturnCode Exit-WorkArea

 Exit-DataLength Exit-DataArea

 Exit-LIBEXIT Exit-Systext

 Exit-CBLLibrary Exit-CBLText.

714 Enterprise COBOL for z/OS V4.1 Programming Guide

Evaluate Exit-type

 When (1) Perform Handle-INEXIT

 When (2) Perform Handle-LIBEXIT

 When (3) Perform Handle-PRTEXIT

 End-Evaluate

 Move 16 To Exit-ReturnCode

 Goback.

* I N E X I T E X I T P R O C E S S O R *

 Handle-INEXIT.

 Evaluate Exit-Operation

 When (0) Perform INEXIT-Open

 When (1) Perform INEXIT-Close

 When (2) Perform INEXIT-Get

 End-Evaluate

 Move 16 To Exit-ReturnCode

 Goback.

 INEXIT-Open.

* --

* Prepare for reading source

* --

 Goback.

 INEXIT-Close.

* --

* Release resources

* --

 Goback.

 INEXIT-Get.

* --

* Retrieve next source record

* --

* --

* Return the address of the record to the compiler.

* --

 Set Exit-DataArea to Address of Record-Variable

* --

* Set length of record in User-Exit Parameter List

* --

 Move 80 To Exit-DataLength

 Goback.

* L I B E X I T P R O C E S S O R *

 Handle-LIBEXIT.

 Display "**** This module for INEXIT only"

 Move 16 To Exit-ReturnCode

 Goback.

* P R I N T E X I T P R O C E S S O R *

 Handle-PRTEXIT.

 Display "**** This module for INEXIT only"

 Move 16 To Exit-ReturnCode

Appendix E. EXIT compiler option 715

Goback.

 End Program Skelinx.

716 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix F. JNI.cpy

This listing shows the copybook JNI.cpy, which you can use to access the Java

Native Interface (JNI) services from your COBOL programs.

JNI.cpy contains sample COBOL data definitions that correspond to the Java JNI

types, and contains JNINativeInterface, the JNI environment structure that contains

function pointers for accessing the JNI callable services.

JNI.cpy is in the HFS in the include subdirectory of the COBOL install directory

(typically /usr/lpp/cobol/include). JNI.cpy is analogous to the header file jni.h

that C programmers use to access the JNI.

* COBOL declarations for Java native method interoperation *

* *

* To use the Java Native Interface callable services from a *

* COBOL program: *

* 1) Use a COPY statement to include this file into the *

* the Linkage Section of the program, e.g. *

* Linkage Section. *

* Copy JNI *

* 2) Code the following statements at the beginning of the *

* Procedure Division: *

* Set address of JNIEnv to JNIEnvPtr *

* Set address of JNINativeInterface to JNIEnv *

*

* Sample JNI type definitions in COBOL

*

*01 jboolean1 pic X.

* 88 jboolean1-true value X’01’ through X’FF’.

* 88 jboolean1-false value X’00’.

*

*01 jbyte1 pic X.

*

*01 jchar1 pic N usage national.

*

*01 jshort1 pic s9(4) comp-5.

*01 jint1 pic s9(9) comp-5.

*01 jlong1 pic s9(18) comp-5.

*

*01 jfloat1 comp-1.

*01 jdouble1 comp-2.

*

*01 jobject1 object reference.

*01 jclass1 object reference.

*01 jstring1 object reference jstring.

*01 jarray1 object reference jarray.

*

*01 jbooleanArray1 object reference jbooleanArray.

*01 jbyteArray1 object reference jbyteArray.

*01 jcharArray1 object reference jcharArray.

*01 jshortArray1 object reference jshortArray.

*01 jintArray1 object reference jintArray.

*01 jlongArray1 object reference jlongArray.

*01 floatArray1 object reference floatArray.

*01 jdoubleArray1 object reference jdoubleArray.

*01 jobjectArray1 object reference jobjectArray.

* Possible return values for JNI functions.

© Copyright IBM Corp. 1991, 2007 717

01 JNI-RC pic S9(9) comp-5.

* success

 88 JNI-OK value 0.

* unknown error

 88 JNI-ERR value -1.

* thread detached from the VM

 88 JNI-EDETACHED value -2.

* JNI version error

 88 JNI-EVERSION value -3.

* not enough memory

 88 JNI-ENOMEM value -4.

* VM already created

 88 JNI-EEXIST value -5.

* invalid arguments

 88 JNI-EINVAL value -6.

* Used in ReleaseScalarArrayElements

 01 releaseMode pic s9(9) comp-5.

 88 JNI-COMMIT value 1.

 88 JNI-ABORT value 2.

 01 JNIenv pointer.

* JNI Native Method Interface - environment structure.

 01 JNINativeInterface.

 02 pointer.

 02 pointer.

 02 pointer.

 02 pointer.

 02 GetVersion function-pointer.

 02 DefineClass function-pointer.

 02 FindClass function-pointer.

 02 FromReflectedMethod function-pointer.

 02 FromReflectedField function-pointer.

 02 ToReflectedMethod function-pointer.

 02 GetSuperclass function-pointer.

 02 IsAssignableFrom function-pointer.

 02 ToReflectedField function-pointer.

 02 Throw function-pointer.

 02 ThrowNew function-pointer.

 02 ExceptionOccurred function-pointer.

 02 ExceptionDescribe function-pointer.

 02 ExceptionClear function-pointer.

 02 FatalError function-pointer.

 02 PushLocalFrame function-pointer.

 02 PopLocalFrame function-pointer.

 02 NewGlobalRef function-pointer.

 02 DeleteGlobalRef function-pointer.

 02 DeleteLocalRef function-pointer.

 02 IsSameObject function-pointer.

 02 NewLocalRef function-pointer.

 02 EnsureLocalCapacity function-pointer.

 02 AllocObject function-pointer.

 02 NewObject function-pointer.

 02 NewObjectV function-pointer.

 02 NewObjectA function-pointer.

 02 GetObjectClass function-pointer.

 02 IsInstanceOf function-pointer.

 02 GetMethodID function-pointer.

 02 CallObjectMethod function-pointer.

 02 CallObjectMethodV function-pointer.

 02 CallObjectMethodA function-pointer.

 02 CallBooleanMethod function-pointer.

 02 CallBooleanMethodV function-pointer.

 02 CallBooleanMethodA function-pointer.

 02 CallByteMethod function-pointer.

 02 CallByteMethodV function-pointer.

718 Enterprise COBOL for z/OS V4.1 Programming Guide

02 CallByteMethodA function-pointer.

 02 CallCharMethod function-pointer.

 02 CallCharMethodV function-pointer.

 02 CallCharMethodA function-pointer.

 02 CallShortMethod function-pointer.

 02 CallShortMethodV function-pointer.

 02 CallShortMethodA function-pointer.

 02 CallIntMethod function-pointer.

 02 CallIntMethodV function-pointer.

 02 CallIntMethodA function-pointer.

 02 CallLongMethod function-pointer.

 02 CallLongMethodV function-pointer.

 02 CallLongMethodA function-pointer.

 02 CallFloatMethod function-pointer.

 02 CallFloatMethodV function-pointer.

 02 CallFloatMethodA function-pointer.

 02 CallDoubleMethod function-pointer.

 02 CallDoubleMethodV function-pointer.

 02 CallDoubleMethodA function-pointer.

 02 CallVoidMethod function-pointer.

 02 CallVoidMethodV function-pointer.

 02 CallVoidMethodA function-pointer.

 02 CallNonvirtualObjectMethod function-pointer.

 02 CallNonvirtualObjectMethodV function-pointer.

 02 CallNonvirtualObjectMethodA function-pointer.

 02 CallNonvirtualBooleanMethod function-pointer.

 02 CallNonvirtualBooleanMethodV function-pointer.

 02 CallNonvirtualBooleanMethodA function-pointer.

 02 CallNonvirtualByteMethod function-pointer.

 02 CallNonvirtualByteMethodV function-pointer.

 02 CallNonvirtualByteMethodA function-pointer.

 02 CallNonvirtualCharMethod function-pointer.

 02 CallNonvirtualCharMethodV function-pointer.

 02 CallNonvirtualCharMethodA function-pointer.

 02 CallNonvirtualShortMethod function-pointer.

 02 CallNonvirtualShortMethodV function-pointer.

 02 CallNonvirtualShortMethodA function-pointer.

 02 CallNonvirtualIntMethod function-pointer.

 02 CallNonvirtualIntMethodV function-pointer.

 02 CallNonvirtualIntMethodA function-pointer.

 02 CallNonvirtualLongMethod function-pointer.

 02 CallNonvirtualLongMethodV function-pointer.

 02 CallNonvirtualLongMethodA function-pointer.

 02 CallNonvirtualFloatMethod function-pointer.

 02 CallNonvirtualFloatMethodV function-pointer.

 02 CallNonvirtualFloatMethodA function-pointer.

 02 CallNonvirtualDoubleMethod function-pointer.

 02 CallNonvirtualDoubleMethodV function-pointer.

 02 CallNonvirtualDoubleMethodA function-pointer.

 02 CallNonvirtualVoidMethod function-pointer.

 02 CallNonvirtualVoidMethodV function-pointer.

 02 CallNonvirtualVoidMethodA function-pointer.

 02 GetFieldID function-pointer.

 02 GetObjectField function-pointer.

 02 GetBooleanField function-pointer.

 02 GetByteField function-pointer.

 02 GetCharField function-pointer.

 02 GetShortField function-pointer.

 02 GetIntField function-pointer.

 02 GetLongField function-pointer.

 02 GetFloatField function-pointer.

 02 GetDoubleField function-pointer.

 02 SetObjectField function-pointer.

 02 SetBooleanField function-pointer.

 02 SetByteField function-pointer.

 02 SetCharField function-pointer.

 02 SetShortField function-pointer.

Appendix F. JNI.cpy 719

02 SetIntField function-pointer.

 02 SetLongField function-pointer.

 02 SetFloatField function-pointer.

 02 SetDoubleField function-pointer.

 02 GetStaticMethodID function-pointer.

 02 CallStaticObjectMethod function-pointer.

 02 CallStaticObjectMethodV function-pointer.

 02 CallStaticObjectMethodA function-pointer.

 02 CallStaticBooleanMethod function-pointer.

 02 CallStaticBooleanMethodV function-pointer.

 02 CallStaticBooleanMethodA function-pointer.

 02 CallStaticByteMethod function-pointer.

 02 CallStaticByteMethodV function-pointer.

 02 CallStaticByteMethodA function-pointer.

 02 CallStaticCharMethod function-pointer.

 02 CallStaticCharMethodV function-pointer.

 02 CallStaticCharMethodA function-pointer.

 02 CallStaticShortMethod function-pointer.

 02 CallStaticShortMethodV function-pointer.

 02 CallStaticShortMethodA function-pointer.

 02 CallStaticIntMethod function-pointer.

 02 CallStaticIntMethodV function-pointer.

 02 CallStaticIntMethodA function-pointer.

 02 CallStaticLongMethod function-pointer.

 02 CallStaticLongMethodV function-pointer.

 02 CallStaticLongMethodA function-pointer.

 02 CallStaticFloatMethod function-pointer.

 02 CallStaticFloatMethodV function-pointer.

 02 CallStaticFloatMethodA function-pointer.

 02 CallStaticDoubleMethod function-pointer.

 02 CallStaticDoubleMethodV function-pointer.

 02 CallStaticDoubleMethodA function-pointer.

 02 CallStaticVoidMethod function-pointer.

 02 CallStaticVoidMethodV function-pointer.

 02 CallStaticVoidMethodA function-pointer.

 02 GetStaticFieldID function-pointer.

 02 GetStaticObjectField function-pointer.

 02 GetStaticBooleanField function-pointer.

 02 GetStaticByteField function-pointer.

 02 GetStaticCharField function-pointer.

 02 GetStaticShortField function-pointer.

 02 GetStaticIntField function-pointer.

 02 GetStaticLongField function-pointer.

 02 GetStaticFloatField function-pointer.

 02 GetStaticDoubleField function-pointer.

 02 SetStaticObjectField function-pointer.

 02 SetStaticBooleanField function-pointer.

 02 SetStaticByteField function-pointer.

 02 SetStaticCharField function-pointer.

 02 SetStaticShortField function-pointer.

 02 SetStaticIntField function-pointer.

 02 SetStaticLongField function-pointer.

 02 SetStaticFloatField function-pointer.

 02 SetStaticDoubleField function-pointer.

 02 NewString function-pointer.

 02 GetStringLength function-pointer.

 02 GetStringChars function-pointer.

 02 ReleaseStringChars function-pointer.

 02 NewStringUTF function-pointer.

 02 GetStringUTFLength function-pointer.

 02 GetStringUTFChars function-pointer.

 02 ReleaseStringUTFChars function-pointer.

 02 GetArrayLength function-pointer.

 02 NewObjectArray function-pointer.

 02 GetObjectArrayElement function-pointer.

 02 SetObjectArrayElement function-pointer.

 02 NewBooleanArray function-pointer.

720 Enterprise COBOL for z/OS V4.1 Programming Guide

02 NewByteArray function-pointer.

 02 NewCharArray function-pointer.

 02 NewShortArray function-pointer.

 02 NewIntArray function-pointer.

 02 NewLongArray function-pointer.

 02 NewFloatArray function-pointer.

 02 NewDoubleArray function-pointer.

 02 GetBooleanArrayElements function-pointer.

 02 GetByteArrayElements function-pointer.

 02 GetCharArrayElements function-pointer.

 02 GetShortArrayElements function-pointer.

 02 GetIntArrayElements function-pointer.

 02 GetLongArrayElements function-pointer.

 02 GetFloatArrayElements function-pointer.

 02 GetDoubleArrayElements function-pointer.

 02 ReleaseBooleanArrayElements function-pointer.

 02 ReleaseByteArrayElements function-pointer.

 02 ReleaseCharArrayElements function-pointer.

 02 ReleaseShortArrayElements function-pointer.

 02 ReleaseIntArrayElements function-pointer.

 02 ReleaseLongArrayElements function-pointer.

 02 ReleaseFloatArrayElements function-pointer.

 02 ReleaseDoubleArrayElements function-pointer.

 02 GetBooleanArrayRegion function-pointer.

 02 GetByteArrayRegion function-pointer.

 02 GetCharArrayRegion function-pointer.

 02 GetShortArrayRegion function-pointer.

 02 GetIntArrayRegion function-pointer.

 02 GetLongArrayRegion function-pointer.

 02 GetFloatArrayRegion function-pointer.

 02 GetDoubleArrayRegion function-pointer.

 02 SetBooleanArrayRegion function-pointer.

 02 SetByteArrayRegion function-pointer.

 02 SetCharArrayRegion function-pointer.

 02 SetShortArrayRegion function-pointer.

 02 SetIntArrayRegion function-pointer.

 02 SetLongArrayRegion function-pointer.

 02 SetFloatArrayRegion function-pointer.

 02 SetDoubleArrayRegion function-pointer.

 02 RegisterNatives function-pointer.

 02 UnregisterNatives function-pointer.

 02 MonitorEnter function-pointer.

 02 MonitorExit function-pointer.

 02 GetJavaVM function-pointer.

 02 GetStringRegion function-pointer.

 02 GetStringUTFRegion function-pointer.

 02 GetPrimitiveArrayCritical function-pointer.

 02 ReleasePrimitiveArrayCritical function-pointer.

 02 GetStringCritical function-pointer.

 02 ReleaseStringCritical function-pointer.

 02 NewWeakGlobalRef function-pointer.

 02 DeleteWeakGlobalRef function-pointer.

 02 ExceptionCheck function-pointer.

RELATED TASKS

“Compiling OO applications under UNIX” on page 291

“Accessing JNI services” on page 595

Appendix F. JNI.cpy 721

722 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix G. COBOL SYSADATA file contents

When you use the ADATA compiler option, the compiler produces a file that

contains program data. You can use this file instead of the compiler listing to

extract information about the program. For example, you can extract information

about the program for symbolic debugging tools or cross-reference tools.

“Example: SYSADATA” on page 725

RELATED REFERENCES

“ADATA” on page 305

“Existing compiler options that affect the SYSADATA file”

“SYSADATA record types” on page 724

“SYSADATA record descriptions” on page 726

Existing compiler options that affect the SYSADATA file

Several compiler options could affect the contents of the SYSADATA file.

COMPILE

NOCOMPILE(W|E|S) might stop compilation prematurely, resulting in the loss

of specific messages.

EXIT INEXIT prohibits identification of the compilation source file.

LANGUAGE

LANGUAGE controls the message text (Uppercase English, Mixed-Case

English, or Japanese). Selection of Japanese could result in DBCS characters

written to Error Identification records.

TEST TEST causes additional object text records to be created that also affect the

contents of the SYSADATA file.

NUM NUM causes the compiler to use the contents of columns 1-6 in the source

records for line numbering, rather than using generated sequence numbers.

Any invalid (nonnumeric) or out-of-sequence numbers are replaced with a

number one higher than that of the previous record.

The following SYSADATA fields contain line numbers whose contents differ

depending on the NUM|NONUM setting:

 Type Field Record

0020 AE_LINE External Symbol record

0030 ATOK_LINE Token record

0032 AF_STMT Source Error record

0038 AS_STMT Source record

0039 AS_REP_EXP_SLIN COPY REPLACING record

0039 AS_REP_EXP_ELIN COPY REPLACING record

0042 ASY_STMT Symbol record

0044 AX_DEFN Symbol Cross Reference record

0044 AX_STMT Symbol Cross Reference record

© Copyright IBM Corp. 1991, 2007 723

Type Field Record

0046 AN_STMT Nested Program record

The Type 0038 Source record contains two fields that relate to line numbers and

record numbers:

v AS_STMT contains the compiler line number in both the NUM and NONUM cases.

v AS_CUR_REC# contains the physical source record number.

These two fields can always be used to correlate the compiler line numbers, used

in all the above fields, with physical source record numbers.

The remaining compiler options have no direct effect on the SYSADATA file, but

might trigger generation of additional error messages associated with the specific

option, such as FLAGSAA, FLAGSTD, or SSRANGE.

“Example: SYSADATA” on page 725

RELATED REFERENCES

“SYSADATA record types”

“COMPILE” on page 311

“LANGUAGE” on page 324

“NUMBER” on page 331

“TEST” on page 347

SYSADATA record types

The SYSADATA file contains records classified into different record types. Each

type of record provides information about the COBOL program being compiled.

Each record consists of two parts:

v A 12-byte header section, which has the same structure for all record types, and

contains the record code that identifies the type of record

v A variable-length data section, which varies by record type

 Table 109. SYSADATA record types

Record type What it does

“Job identification record: X’0000’” on page

728

Provides information about the environment

used to process the source data

“ADATA identification record: X’0001’” on

page 729

Provides common information about the

records in the SYSADATA file

“Compilation unit start|end record:

X’0002’” on page 729

Marks the beginning and ending of

compilation units in a source file

“Options record: X’0010’” on page 730 Describes the compiler options used for the

compilation

“External symbol record: X’0020’” on page

739

Describes all external names in the program,

definitions, and references

“Parse tree record: X’0024’” on page 740 Defines a node in the parse tree of the

program

“Token record: X’0030’” on page 755 Defines a source token

“Source error record: X’0032’” on page 768 Describes errors in source program statements

724 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 109. SYSADATA record types (continued)

Record type What it does

“Source record: X’0038’” on page 769 Describes a single source line

“COPY REPLACING record: X’0039’” on

page 770

Describes an instance of text replacement as a

result of a match of COPY. . .REPLACING

operand-1 with text in the copybook

“Symbol record: X’0042’” on page 770 Describes a single symbol defined in the

program. There is one symbol record for each

symbol defined in the program.

“Symbol cross-reference record: X’0044’”

on page 783

Describes references to a single symbol

“Nested program record: X’0046’” on page

784

Describes the name and nesting level of a

program

“Library record: X’0060’” on page 785 Describes the library files and members used

from each library

“Statistics record: X’0090’” on page 785 Describes the statistics about the compilation

“EVENTS record: X’0120’” on page 786 EVENTS records provide compatibility with

COBOL/370™. The record format is identical

with that in COBOL/370, with the addition of

the standard ADATA header at the beginning

of the record and a field indicating the length

of the EVENTS record data.

Example: SYSADATA

The following sample shows part of the listing of a COBOL program. If this

COBOL program were compiled with the ADATA option, the records produced in

the associated data file would be in the sequence shown in the table below.

 000001 IDENTIFICATION DIVISION. AD000020

 000002 PROGRAM-ID. AD04202. AD000030

 000003 ENVIRONMENT DIVISION. AD000040

 000004 DATA DIVISION. AD000050

 000005 WORKING-STORAGE SECTION. AD000060

 000006 77 COMP3-FLD2 pic S9(3)v9. AD000070

 000007 PROCEDURE DIVISION. AD000080

 000008 STOP RUN.

 Type Description

X’0120’ EVENTS Timestamp record

X’0120’ EVENTS Processor record

X’0120’ EVENTS File-ID record

X’0120’ EVENTS Program record

X’0001’ ADATA Identification record

X’0000’ Job Identification record

X’0010’ Options record

X’0038’ Source record for statement 1

X’0038’ Source record for statement 2

X’0038’ Source record for statement 3

X’0038’ Source record for statement 4

Appendix G. COBOL SYSADATA file contents 725

Type Description

X’0038’ Source record for statement 5

X’0038’ Source record for statement 6

X’0038’ Source record for statement 7

X’0038’ Source record for statement 8

X’0020’ External Symbol record for AD04202

X’0044’ Symbol Cross Reference record for STOP

X’0044’ Symbol Cross Reference record for COMP3-FLD2

X’0044’ Symbol Cross Reference record for AD04202

X’0042’ Symbol record for AD04202

X’0042’ Symbol record for COMP3-FLD2

X’0090’ Statistics record

X’0120’ EVENTS FileEnd record

RELATED REFERENCES

“SYSADATA record descriptions”

SYSADATA record descriptions

The formats of the records written to the associated data file are shown in the

related references below.

In the fields described in each of the record types, these symbols occur:

C Indicates character (EBCDIC or ASCII) data

H Indicates 2-byte binary integer data

F Indicates 4-byte binary integer data

A Indicates 4-byte binary integer address and offset data

X Indicates hexadecimal (bit) data or 1-byte binary integer data

No boundary alignments are implied by any data type, and the implied lengths

above might be changed by the presence of a length indicator (Ln). All integer data

is in big-endian or little-endian format depending on the indicator bit in the header

flag byte. Big-endian format means that bit 0 is always the most significant bit and

bit n is the least significant bit. Little-endian refers to “byte-reversed” integers as

seen on Intel® processors.

All undefined fields and unused values are reserved.

RELATED REFERENCES

“Common header section” on page 727

“Job identification record: X’0000’” on page 728

“ADATA identification record: X’0001’” on page 729

“Compilation unit start|end record: X’0002’” on page 729

“Options record: X’0010’” on page 730

“External symbol record: X’0020’” on page 739

“Parse tree record: X’0024’” on page 740

“Token record: X’0030’” on page 755

“Source error record: X’0032’” on page 768

726 Enterprise COBOL for z/OS V4.1 Programming Guide

“Source record: X’0038’” on page 769

“COPY REPLACING record: X’0039’” on page 770

“Symbol record: X’0042’” on page 770

“Symbol cross-reference record: X’0044’” on page 783

“Nested program record: X’0046’” on page 784

“Library record: X’0060’” on page 785

“Statistics record: X’0090’” on page 785

“EVENTS record: X’0120’” on page 786

Common header section

The table below shows the format of the header section that is common for all

record types. For MVS and VSE, each record is preceded by a 4-byte RDW

(record-descriptor word) that is normally used only by access methods and

stripped off by download utilities.

 Table 110. SYSADATA common header section

Field Size Description

Language code XL1

16 High Level Assembler

17 COBOL on all platforms

40 PL/I on supported platforms

Record type HL2 The record type, which can be one of the following:

X’0000’ Job Identification record1

X’0001’ ADATA Identification record

X’0002’ Compilation unit start/end record

X’0010’ Options record1

X’0020’ External Symbol record

X’0024’ Parse Tree record

X’0030’ Token record

X’0032’ Source Error record

X’0038’ Source record

X’0039’ COPY REPLACING record

X’0042’ Symbol record

X’0044’ Symbol Cross-Reference record

X’0046’ Nested Program record

X’0060’ Library record

X’0090’ Statistics record1

X’0120’ EVENTS record

Associated data

architecture level

XL1

3 Definition level for the header structure

Appendix G. COBOL SYSADATA file contents 727

Table 110. SYSADATA common header section (continued)

Field Size Description

Flag XL1

.... ..1.

ADATA record integers are in little-endian

(Intel) format

.... ...1

This record is continued in the next record

1111 11..

Reserved for future use

Associated data

record edition level

XL1 Used to indicate a new format for a specific record type,

usually 0

Reserved CL4 Reserved for future use

Associated data field

length

HL2 The length in bytes of the data following the header

1. When a batch compilation (sequence of programs) is run with the ADATA option, there

will be multiple Job Identification, Options, and Statistics records for each compilation.

The mapping of the 12-byte header does not include the area used for the

variable-length record-descriptor word required by the access method on MVS and

VSE.

Job identification record: X’0000’

The following table shows the contents of the job identification record.

 Table 111. SYSADATA job identification record

Field Size Description

Date CL8 The date of the compilation in the format YYYYMMDD

Time CL4 The time of the compilation in the format HHMM

Product number CL8 The product number of the compiler that produced the

associated data file

Product version CL8 The version number of the product that produced the

associated data file, in the form V.R.M

PTF level CL8 The PTF level number of the product that produced the

associated data file. (This field is blank if the PTF

number is not available.)

System ID CL24 The system identification of the system on which the

compilation was run

Job name CL8 The MVS job name of the compilation job

Step name CL8 The MVS step name of the compilation step

Proc step CL8 The MVS procedure step name of the compilation

procedure

Number of input

files1

HL2 The number of input files recorded in this record.

The following group of seven fields will occur n times

depending on the value in this field.

...Input file number HL2 The assigned sequence number of the file

728 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 111. SYSADATA job identification record (continued)

Field Size Description

...Input file name

length

HL2 The length of the following input file name

...Volume serial

number length

HL2 The length of the volume serial number

...Member name

length

HL2 The length of the member name

...Input file name CL(n) The name of the input file for the compilation

...Volume serial

number

CL(n) The volume serial number of the (first) volume on which

the input file resides

...Member name CL(n) Where applicable, the name of the member in the input

file

1. Where the number of input files would exceed the record size for the associated data

file, the record is continued on the next record. The current number of input files (for

that record) is stored in the record, and the record is written to the associated data file.

The next record contains the rest of the input files. The count of the number of input

files is a count for the current record.

ADATA identification record: X’0001’

The following table shows the contents of the ADATA identification record.

 Table 112. ADATA identification record

Field Size Description

Time (binary) XL8 Universal Time (UT) as a binary number of microseconds

since midnight Greenwich Mean Time, with the

low-order bit representing 1 microsecond. This time can

be used as a time-zone-independent time stamp.

On Windows and AIX systems, only bytes 5-8 of the field

are used as a fullword binary field that contains the time.

CCSID1 XL2 Coded Character Set Identifier

Character-set flags XL1

X’80’ EBCDIC (IBM-037)

X’40’ ASCII (IBM-1252)

Code-page name

length

XL2 Length of the code-page name that follows

Code-page name CL(n) Name of the code page

1. The appropriate CCS flag will always be set. If the CCSID is set to nonzero, the

code-page name length will be zero. If the CCSID is set to zero, the code-page name

length will be nonzero and the code-page name will be present.

Compilation unit start|end record: X’0002’

The following table shows the contents of the compilation unit start|end record.

Appendix G. COBOL SYSADATA file contents 729

Table 113. SYSADATA compilation unit start|end record

Field Size Description

Type HL2 Compilation unit type, which can be one of the

following:

X’0000’ Start compilation unit

X’0001’ End compilation unit

Reserved CL2 Reserved for future use

Reserved FL4 Reserved for future use

Options record: X’0010’

The following table shows the contents of the options record.

 Table 114. SYSADATA options record

Field Size Description

Option byte 0 XL1

1111 1111

Reserved for future use

Option byte 1 XL1

1...

Bit 1 = DECK, Bit 0 = NODECK

.1..

Bit 1 = ADATA, Bit 0 = NOADATA

..1.

Bit 1 = COLLSEQ(EBCDIC), Bit 0 =

COLLSEQ(LOCALE|BINARY) (Windows and

AIX only)

...1

Bit 1 = SEPOBJ, Bit 0 = NOSEPOBJ (Windows

and AIX only)

.... 1...

Bit 1 = NAME, Bit 0 = NONAME

.... .1..

Bit 1 = OBJECT, Bit 0 = NOOBJECT

.... ..1.

Bit 1 = SQL, Bit 0 = NOSQL

.... ...1

Bit 1 = CICS, Bit 0 = NOCICS

730 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 114. SYSADATA options record (continued)

Field Size Description

Option byte 2 XL1

1...

Bit 1 = OFFSET, Bit 0 = NOOFFSET

.1..

Bit 1 = MAP, Bit 0 = NOMAP

..1.

Bit 1 = LIST, Bit 0 = NOLIST

...1

Bit 1 = DBCSXREF, Bit 0 = NODBCSXREF

.... 1...

Bit 1 = XREF(SHORT), Bit 0 = not

XREF(SHORT). This flag should be used in

combination with the flag at bit 7. XREF(FULL)

is indicated by this flag being off and the flag at

bit 7 being on.

.... .1..

Bit 1 = SOURCE, Bit 0 = NOSOURCE

.... ..1.

Bit 1 = VBREF, Bit 0 = NOVBREF

.... ...1

Bit 1 = XREF, Bit 0 = not XREF. See also flag at

bit 4 above.

Option byte 3 XL1

1...

Bit 1 = FLAG imbedded diagnostics level

specified (a value y is specified as in FLAG(x,y))

.1..

Bit 1 = FLAGSTD, Bit 0 = NOFLAGSTD

..1.

Bit 1 = NUM, Bit 0 = NONUM

...1

Bit 1 = SEQUENCE, Bit 0 = NOSEQUENCE

.... 1...

Bit 1 = SOSI, Bit 0 = NOSOSI (Windows and

AIX only)

.... .1..

Bit 1 = NSYMBOL(NATIONAL), Bit 0 =

NSYMBOL(DBCS)

.... ..1.

Bit 1 = PROFILE, Bit 0 = NOPROFILE (AIX

only)

.... ...1

Bit 1 = WORD, Bit 0 = NOWORD

Appendix G. COBOL SYSADATA file contents 731

Table 114. SYSADATA options record (continued)

Field Size Description

Option byte 4 XL1

1...

Bit 1 = ADV, Bit 0 = NOADV

.1..

Bit 1 = APOST, Bit 0 = QUOTE

..1.

Bit 1 = DYNAM, Bit 0 = NODYNAM

...1

Bit 1 = AWO, Bit 0 = NOAWO

.... 1...

Bit 1 = RMODE specified, Bit 0 =

RMODE(AUTO)

.... .1..

Bit 1 = RENT, Bit 0 = NORENT

.... ..1.

Bit 1 = RES: this flag will always be set on for

COBOL.

.... ...1

Bit 1 = RMODE(24), Bit 0 = RMODE(ANY)

Option byte 5 XL1

1...

Bit 1 = SQLCCSID, Bit 0 = NOSQLCCSID

.1..

Bit 1 = OPT, Bit 0 = NOOPT

..1.

Bit 1 = LIB, Bit 0 = NOLIB

...1

Bit 1 = DBCS, Bit 0 = NODBCS

.... 1...

Bit 1 = OPT(FULL), Bit 0 = not OPT(FULL)

.... .1..

Bit 1 = SSRANGE, Bit 0 = NOSSRANGE

.... ..1.

Bit 1 = TEST, Bit 0 = NOTEST

.... ...1

Bit 1 = PROBE, Bit 0 = NOPROBE (Windows

only)

732 Enterprise COBOL for z/OS V4.1 Programming Guide

|

Table 114. SYSADATA options record (continued)

Field Size Description

Option byte 6 XL1

..1.

Bit 1 = NUMPROC(PFD), Bit 0 =

NUMPROC(NOPFD)

...1

Bit 1 = NUMCLS(ALT), Bit 0 = NUMCLS(PRIM)

.... .1..

Bit 1 = BINARY(S390), Bit 0 =

BINARY(NATIVE) (Windows and AIX only)

.... ..1.

Bit 1 = TRUNC(STD), Bit 0 = TRUNC(OPT)

.... ...1

Bit 1 = ZWB, Bit 0 = NOZWB

11.. 1...

Reserved for future use

Option byte 7 XL1

1...

Bit 1 = ALOWCBL, Bit 0 = NOALOWCBL

.1..

Bit 1 = TERM, Bit 0 = NOTERM

..1.

Bit 1 = DUMP, Bit 0 = NODUMP

.... ..1.

Bit 1 = CURRENCY, Bit 0 = NOCURRENCY

...1 11.1

Reserved for future use

Option byte 8 XL1

1...

Bit 1 = XMLPARSE(XMLSS), Bit 0 =

XMLPARSE(COMPAT)

.1..

Bit 1 = OPTFILE, Bit 0 = not OPTFILE

..11 1111

Reserved for future use

Option byte 9 XL1

1...

Bit 1 = DATA(24), Bit 0 = DATA(31)

.1..

Bit 1 = FASTSRT, Bit 0 = NOFASTSRT

..1.

Bit 1 = SIZE(MAX), Bit 0 = SIZE(nnnn) or

SIZE(nnnnK)

.... .1..

Bit 1 = THREAD, Bit 0 = NOTHREAD

...1 1.11

Reserved for future use

Option byte A XL1

1111 1111

Reserved for future use

Appendix G. COBOL SYSADATA file contents 733

|
|
|

|
|

|

Table 114. SYSADATA options record (continued)

Field Size Description

Option byte B XL1

1111 1111

Reserved for future use

Option byte C XL1

1...

Bit 1 = NCOLLSEQ(LOCALE) (Windows and

AIX only)

.1..

Reserved for future use

..1.

Bit 1 = INTDATE(LILIAN), Bit 0 =

INTDATE(ANSI)

...1

Bit 1 = NCOLLSEQ(BINARY) (Windows and

AIX only)

.... 1...

Bit 1 = CHAR(EBCDIC), Bit 0 =

CHAR(NATIVE) (Windows and AIX only)

.... .1..

Bit 1 = FLOAT(HEX), Bit 0 = FLOAT(NATIVE)

(Windows and AIX only)

.... ..1.

Bit 1 = COLLSEQ(BINARY) (Windows and AIX

only)

.... ...1

Bit 1 = COLLSEQ(LOCALE) (Windows and AIX

only)

Option byte D XL1

1...

Bit 1 = DLL Bit 0 = NODLL

.1..

Bit 1 = EXPORTALL, Bit 0 = NOEXPORTALL

..1.

Bit 1 = CODEPAGE

...1

Bit 1 = DATEPROC, Bit 0 = NODATEPROC

.... 1...

Bit 1 = DATEPROC(FLAG), Bit 0 =

DATEPROC(NOFLAG)

.... .1..

Bit 1 = YEARWINDOW

.... ..1.

Bit 1 = WSCLEAR, Bit 0 = NOWSCLEAR

(Windows and AIX only)

.... ...1

Bit 1 = BEOPT, Bit 0 = NOBEOPT (Windows

and AIX only)

734 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 114. SYSADATA options record (continued)

Field Size Description

Option byte E XL1

1...

Bit 1 = DATEPROC(TRIG), Bit 0 =

DATEPROC(NOTRIG)

.1..

Bit 1 = DIAGTRUNC, Bit 0 = NODIAGTRUNC

.... .1..

Bit 1 = LSTFILE(UTF-8), Bit 0 =

LSTFILE(LOCALE) (Windows and AIX only)

.... ..1.

Bit 1 = MDECK, Bit 0 = NOMDECK

.... ...1

Bit 1 = MDECK(NOCOMPILE)

..11 1...

Reserved for future use

Option byte F XL1

1111 1111

Reserved for future use

Flag level XL1

X’00’ Flag(I)

X’04’ Flag(W)

X’08’ Flag(E)

X’0C’ Flag(S)

X’10’ Flag(U)

X’FF’ Noflag

Imbedded diagnostic

level

XL1

X’00’ Flag(I)

X’04’ Flag(W)

X’08’ Flag(E)

X’0C’ Flag(S)

X’10’ Flag(U)

X’FF’ Noflag

Appendix G. COBOL SYSADATA file contents 735

|
|

|
|

|

Table 114. SYSADATA options record (continued)

Field Size Description

FLAGSTD (FIPS)

specification

XL1

1...

Minimum

.1..

Intermediate

..1.

High

...1

IBM extensions

.... 1...

Level-1 segmentation

.... .1..

Level-2 segmentation

.... ..1.

Debugging

.... ...1

Obsolete

Reserved for flagging XL1

1111 1111

Reserved for future use

Compiler mode XL1

X’00’ Unconditional Nocompile, Nocompile(I)

X’04’ Nocompile(W)

X’08’ Nocompile(E)

X’0C’ Nocompile(S)

X’FF’ Compile

Space value CL1

Data for 3-valued

options

XL1

1...

NAME(ALIAS) specified

.1..

NUMPROC(MIG) specified

..1.

TRUNC(BIN) specified

...1 1111

Reserved for future use

TEST suboptions XL1

1...

TEST(HOOK)

.1..

TEST(SEP)

..1.

TEST(EJPD)

...1 1111

Reserved for TEST suboptions

OUTDD name length HL2 Length of OUTDD name

RWT ID Length HL2 Length of Reserved Word Table identifier

736 Enterprise COBOL for z/OS V4.1 Programming Guide

||
|
|

|
|

|
|

|
|

Table 114. SYSADATA options record (continued)

Field Size Description

LVLINFO CL4 User-specified LVLINFO data

PGMNAME

suboptions

XL1

1...

Bit 1 = PGMNAME(COMPAT)

.1..

Bit 1 = PGMNAME(LONGUPPER)

..1.

Bit 1 = PGMNAME(LONGMIXED)

...1 1111

Reserved for future use

Entry interface

suboptions

XL1

1...

Bit 1 = EntryInterface(System) (Windows only)

.1..

Bit 1 = EntryInterface(OptLink) (Windows only)

..11 1111

Reserved for future use

CallInterface

suboptions

XL1

1...

Bit 1 = CallInterface(System) (Windows and AIX

only)

.1..

Bit 1 = CallInterface(OptLink) (Windows only)

...1

Bit 1 = CallInterface(Cdecl) (Windows only)

.... 1...

Bit 1 = CallInterface(System(Desc)) (Windows

and AIX only)

..1. .111

Reserved for future use

ARITH suboption XL1

1...

Bit 1 = ARITH(COMPAT)

.1..

Bit 1 = ARITH(EXTEND)

11 1111

Reserved for future use

DBCS Req FL4 DBCS XREF storage requirement

DBCS ORDPGM

length

HL2 Length of name of DBCS Ordering Program

DBCS ENCTBL

length

HL2 Length of name of DBCS Encode Table

DBCS ORD TYPE CL2 DBCS Ordering type

Reserved CL6 Reserved for future use

Converted SO CL1 Converted SO hexadecimal value

Converted SI CL1 Converted SI hexadecimal value

Language id CL2 This field holds the two-character abbreviation (one of

EN, UE, JA, or JP) from the LANGUAGE option.

Appendix G. COBOL SYSADATA file contents 737

Table 114. SYSADATA options record (continued)

Field Size Description

Reserved CL8 Reserved for future use

INEXIT name length HL2 Length of SYSIN user-exit name

PRTEXIT name length HL2 Length of SYSPRINT user-exit name

LIBEXIT name length HL2 Length of ’Library’ user-exit name

ADEXIT name length HL2 Length of ADATA user-exit name

CURROPT CL5 CURRENCY option value

Reserved CL1 Reserved for future use

YEARWINDOW HL2 YEARWINDOW option value

CODEPAGE HL2 CODEPAGE CCSID option value

Reserved CL50 Reserved for future use

LINECNT HL2 LINECOUNT value

Reserved CL2 Reserved for future use

BUFSIZE FL4 BUFSIZE option value

Size value FL4 SIZE option value

Reserved FL4 Reserved for future use

Phase residence bits

byte 1

XL1

1...

Bit 1 = IGYCLIBR in user region

.1..

Bit 1 = IGYCSCAN in user region

..1.

Bit 1 = IGYCDSCN in user region

...1

Bit 1 = IGYCGROU in user region

.... 1...

Bit 1 = IGYCPSCN in user region

.... .1..

Bit 1 = IGYCPANA in user region

.... ..1.

Bit 1 = IGYCFGEN in user region

.... ...1

Bit 1 = IGYCPGEN in user region

738 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 114. SYSADATA options record (continued)

Field Size Description

Phase residence bits

byte 2

XL1

1...

Bit 1 = IGYCOPTM in user region

.1..

Bit 1 = IGYCLSTR in user region

..1.

Bit 1 = IGYCXREF in user region

...1

Bit 1 = IGYCDMAP in user region

.... 1...

Bit 1 = IGYCASM1 in user region

.... .1..

Bit 1 = IGYCASM2 in user region

.... ..1.

Bit 1 = IGYCDIAG in user region

.... ...1

Reserved for future use

Phase residence bits

bytes 3 and 4

XL2 Reserved

Reserved CL8 Reserved for future use

OUTDD name CL(n) OUTDD name

RWT CL(n) Reserved word table identifier

DBCS ORDPGM CL(n) DBCS Ordering program name

DBCS ENCTBL CL(n) DBCS Encode table name

INEXIT name CL(n) SYSIN user-exit name

PRTEXIT name CL(n) SYSPRINT user-exit name

LIBEXIT name CL(n) ’Library’ user-exit name

ADEXIT name CL(n) ADATA user-exit name

External symbol record: X’0020’

The following table shows the contents of the external symbol record.

Appendix G. COBOL SYSADATA file contents 739

Table 115. SYSADATA external symbol record

Field Size Description

Section type XL1

X’00’ PROGRAM-ID name (main entry point name)

X’01’ ENTRY name (secondary entry point name)

X’02’ External reference (referenced external entry

point)

X’04’ Not applicable for COBOL

X’05’ Not applicable for COBOL

X’06’ Not applicable for COBOL

X’0A’ Not applicable for COBOL

X’12’ Internal reference (referenced internal

subprogram)

X’C0’ External class-name (OO COBOL class

definition)

X’C1’ METHOD-ID name (OO COBOL method definition)

X’C6’ Method reference (OO COBOL method

reference)

X’FF’ Not applicable for COBOL

Types X’12’, X’C0’, X’C1’ and X’C6’ are for COBOL only.

Flags XL1 Not applicable for COBOL

Reserved HL2 Reserved for future use

Symbol-ID FL4 Symbol-ID of program that contains the reference (only

for types x’02’ and x’12’)

Line number FL4 Line number of statement that contains the reference

(only for types x’02’ and x’12’)

Section length FL4 Not applicable for COBOL

LD ID FL4 Not applicable for COBOL

Reserved CL8 Reserved for future use

External name length HL2 Number of characters in the external name

Alias name length HL2 Not applicable for COBOL

External name CL(n) The external name

Alias section name CL(n) Not applicable for COBOL

Parse tree record: X’0024’

The following table shows the contents of the parse tree record.

 Table 116. SYSADATA parse tree record

Field Size Description

Node number FL4 The node number generated by the compiler, starting at

1

740 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

Node type HL2 The type of the node:

001 Program

002 Class

003 Method

101 Identification Division

102 Environment Division

103 Data Division

104 Procedure Division

105 End Program/Method/Class

201 Declaratives body

202 Nondeclaratives body

301 Section

302 Procedure section

401 Paragraph

402 Procedure paragraph

501 Sentence

502 File definition

503 Sort file definition

504 Program-name

505 Program attribute

508 ENVIRONMENT DIVISION clause

509 CLASS attribute

510 METHOD attribute

511 USE statement

601 Statement

602 Data description clause

603 Data entry

604 File description clause

605 Data entry name

606 Data entry level

607 EXEC entry

Appendix G. COBOL SYSADATA file contents 741

Table 116. SYSADATA parse tree record (continued)

Field Size Description

701 EVALUATE subject phrase

702 EVALUATE WHEN phrase

703 EVALUATE WHEN OTHER phrase

704 SEARCH WHEN phrase

705 INSPECT CONVERTING phrase

706 INSPECT REPLACING phrase

707 INSPECT TALLYING phrase

708 PERFORM UNTIL phrase

709 PERFORM VARYING phrase

710 PERFORM AFTER phrase

711 Statement block

712 Scope terminator

713 INITIALIZE REPLACING phrase

714 EXEC CICS Command

720 DATA DIVISION phrase

801 Phrase

802 ON phrase

803 NOT phrase

804 THEN phrase

805 ELSE phrase

806 Condition

807 Expression

808 Relative indexing

809 EXEC CICS Option

810 Reserved word

811 INITIALIZE REPLACING category

742 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

901 Section or paragraph name

902 Identifier

903 Alphabet-name

904 Class-name

905 Condition-name

906 File-name

907 Index-name

908 Mnemonic-name

910 Symbolic-character

911 Literal

912 Function identifier

913 Data-name

914 Special register

915 Procedure reference

916 Arithmetic operator

917 All procedures

918 INITIALIZE literal (no tokens)

919 ALL literal or figcon

920 Keyword class test name

921 Reserved word at identifier level

922 Unary operator

923 Relational operator

1001 Subscript

1002 Reference modification

Node subtype HL2 The subtype of the node.

For Section type:

0001 CONFIGURATION Section

0002 INPUT-OUTPUT Section

0003 FILE Section

0004 WORKING-STORAGE Section

0005 LINKAGE Section

0006 LOCAL-STORAGE Section

0007 REPOSITORY Section

Appendix G. COBOL SYSADATA file contents 743

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Paragraph type:

0001 PROGRAM-ID paragraph

0002 AUTHOR paragraph

0003 INSTALLATION paragraph

0004 DATE-WRITTEN paragraph

0005 SECURITY paragraph

0006 SOURCE-COMPUTER paragraph

0007 OBJECT-COMPUTER paragraph

0008 SPECIAL-NAMES paragraph

0009 FILE-CONTROL paragraph

0010 I-O-CONTROL paragraph

0011 DATE-COMPILED paragraph

0012 CLASS-ID paragraph

0013 METHOD-ID paragraph

0014 REPOSITORY paragraph

 For Environment Division clause type:

0001 WITH DEBUGGING MODE

0002 MEMORY-SIZE

0003 SEGMENT-LIMIT

0004 CURRENCY-SIGN

0005 DECIMAL POINT

0006 PROGRAM COLLATING SEQUENCE

0007 ALPHABET

0008 SYMBOLIC-CHARACTER

0009 CLASS

0010 ENVIRONMENT NAME

0011 SELECT

744 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Data description clause type:

0001 BLANK WHEN ZERO

0002 DATA-NAME OR FILLER

0003 JUSTIFIED

0004 OCCURS

0005 PICTURE

0006 REDEFINES

0007 RENAMES

0008 SIGN

0009 SYNCHRONIZED

0010 USAGE

0011 VALUE

0023 GLOBAL

0024 EXTERNAL

Appendix G. COBOL SYSADATA file contents 745

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For File Description clause type:

0001 FILE STATUS

0002 ORGANIZATION

0003 ACCESS MODE

0004 RECORD KEY

0005 ASSIGN

0006 RELATIVE KEY

0007 PASSWORD

0008 PROCESSING MODE

0009 RECORD DELIMITER

0010 PADDING CHARACTER

0011 BLOCK CONTAINS

0012 RECORD CONTAINS

0013 LABEL RECORDS

0014 VALUE OF

0015 DATA RECORDS

0016 LINAGE

0017 ALTERNATE KEY

0018 LINES AT TOP

0019 LINES AT BOTTOM

0020 CODE-SET

0021 RECORDING MODE

0022 RESERVE

0023 GLOBAL

0024 EXTERNAL

0025 LOCK

746 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Statement type:

0002 NEXT SENTENCE

0003 ACCEPT

0004 ADD

0005 ALTER

0006 CALL

0007 CANCEL

0008 CLOSE

0009 COMPUTE

0010 CONTINUE

0011 DELETE

0012 DISPLAY

0013 DIVIDE (INTO)

0113 DIVIDE (BY)

0014 ENTER

0015 ENTRY

0016 EVALUATE

0017 EXIT

0018 GO

0019 GOBACK

0020 IF

0021 INITIALIZE

0022 INSPECT

Appendix G. COBOL SYSADATA file contents 747

Table 116. SYSADATA parse tree record (continued)

Field Size Description

0023 INVOKE

0024 MERGE

0025 MOVE

0026 MULTIPLY

0027 OPEN

0028 PERFORM

0029 READ

0030 READY

0031 RELEASE

0032 RESET

0033 RETURN

0034 REWRITE

0035 SEARCH

0036 SERVICE

0037 SET

0038 SORT

0039 START

0040 STOP

0041 STRING

0042 SUBTRACT

0043 UNSTRING

0044 EXEC SQL

0144 EXEC CICS

0045 WRITE

0046 XML

748 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Phrase type:

0001 INTO

0002 DELIMITED

0003 INITIALIZE. . .REPLACING

0004 INSPECT. . .ALL

0005 INSPECT. . .LEADING

0006 SET. . .TO

0007 SET. . .UP

0008 SET. . .DOWN

0009 PERFORM. . .TIMES

0010 DIVIDE. . .REMAINDER

0011 INSPECT. . .FIRST

0012 SEARCH. . .VARYING

0013 MORE-LABELS

0014 SEARCH ALL

0015 SEARCH. . .AT END

0016 SEARCH. . .TEST INDEX

0017 GLOBAL

0018 LABEL

0019 DEBUGGING

0020 SEQUENCE

0021 Reserved for future use

0022 Reserved for future use

0023 Reserved for future use

0024 TALLYING

0025 Reserved for future use

0026 ON SIZE ERROR

0027 ON OVERFLOW

0028 ON ERROR

0029 AT END

0030 INVALID KEY

Appendix G. COBOL SYSADATA file contents 749

Table 116. SYSADATA parse tree record (continued)

Field Size Description

0031 END-OF-PAGE

0032 USING

0033 BEFORE

0034 AFTER

0035 EXCEPTION

0036 CORRESPONDING

0037 Reserved for future use

0038 RETURNING

0039 GIVING

0040 THROUGH

0041 KEY

0042 DELIMITER

0043 POINTER

0044 COUNT

0045 METHOD

0046 PROGRAM

0047 INPUT

0048 OUTPUT

0049 I-O

0050 EXTEND

0051 RELOAD

0052 ASCENDING

0053 DESCENDING

0054 DUPLICATES

0055 NATIVE (USAGE)

0056 INDEXED

0057 FROM

0058 FOOTING

0059 LINES AT BOTTOM

0060 LINES AT TOP

0061 XML ENCODING

0062 XML GENERATE XML-DECLARATION

0063 XML GENERATE ATTRIBUTES

0064 XML GENERATE NAMESPACE

0065 XML PARSE PROCESSING

750 Enterprise COBOL for z/OS V4.1 Programming Guide

||

||

||

||

||

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Function identifier type:

0001 COS

0002 LOG

0003 MAX

0004 MIN

0005 MOD

0006 ORD

0007 REM

0008 SIN

0009 SUM

0010 TAN

0011 ACOS

0012 ASIN

0013 ATAN

0014 CHAR

0015 MEAN

0016 SQRT

0017 LOG10

0018 RANGE

0019 LENGTH

0020 MEDIAN

0021 NUMVAL

0022 RANDOM

0023 ANNUITY

0024 INTEGER

0025 ORD-MAX

0026 ORD-MIN

0027 REVERSE

0028 MIDRANGE

0029 NUMVAL-C

0030 VARIANCE

0031 FACTORIAL

0032 LOWER-CASE

Appendix G. COBOL SYSADATA file contents 751

Table 116. SYSADATA parse tree record (continued)

Field Size Description

0033 UPPER-CASE

0034 CURRENT-DATE

0035 INTEGER-PART

0036 PRESENT-VALUE

0037 WHEN-COMPILED

0038 DAY-OF-INTEGER

0039 INTEGER-OF-DAY

0040 DATE-OF-INTEGER

0041 INTEGER-OF-DATE

0042 STANDARD-DEVIATION

0043 YEAR-TO-YYYY

0044 DAY-TO-YYYYDDD

0045 DATE-TO-YYYYMMDD

0046 UNDATE

0047 DATEVAL

0048 YEARWINDOW

0049 DISPLAY-OF

0050 NATIONAL-OF

 For Special Register type:

0001 ADDRESS OF

0002 LENGTH OF

 For Keyword Class Test Name type:

0001 ALPHABETIC

0002 ALPHABETIC-LOWER

0003 ALPHABETIC-UPPER

0004 DBCS

0005 KANJI

0006 NUMERIC

0007 NEGATIVE

0008 POSITIVE

0009 ZERO

 For Reserved Word type:

0001 TRUE

0002 FALSE

0003 ANY

0004 THRU

752 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Identifier, Data-name, Index-name, Condition-name

or Mnemonic-name type:

0001 REFERENCED

0002 CHANGED

0003 REFERENCED & CHANGED

 For Initialize literal type:

0001 ALPHABETIC

0002 ALPHANUMERIC

0003 NUMERIC

0004 ALPHANUMERIC-EDITED

0005 NUMERIC-EDITED

0006 DBCS/EGCS

0007 NATIONAL

0008 NATIONAL-EDITED

 For Procedure-name type:

0001 SECTION

0002 PARAGRAPH

 For Reserved word at identifier level type:

0001 ROUNDED

0002 TRUE

0003 ON

0004 OFF

0005 SIZE

0006 DATE

0007 DAY

0008 DAY-OF-WEEK

0009 TIME

0010 WHEN-COMPILED

0011 PAGE

0012 DATE YYYYMMDD

0013 DAY YYYYDDD

Appendix G. COBOL SYSADATA file contents 753

Table 116. SYSADATA parse tree record (continued)

Field Size Description

 For Arithmetic Operator type:

0001 PLUS

0002 MINUS

0003 TIMES

0004 DIVIDE

0005 DIVIDE REMAINDER

0006 EXPONENTIATE

0007 NEGATE

 For Relational Operator type:

0008 LESS

0009 LESS OR EQUAL

0010 EQUAL

0011 NOT EQUAL

0012 GREATER

0013 GREATER OR EQUAL

0014 AND

0015 OR

0016 CLASS CONDITION

0017 NOT CLASS CONDITION

Parent node number FL4 The node number of the parent of the node

Left sibling node

number

FL4 The node number of the left sibling of the node, if any. If

none, the value is zero.

Symbol ID FL4 The Symbol ID of the node, if it is a user-name of one of

the following types:

v Data entry

v Identifier

v File-name

v Index-name

v Procedure-name

v Condition-name

v Mnemonic-name

This value corresponds to the Symbol ID in a Symbol

(Type 42) record, except for procedure-names where it

corresponds to the Paragraph ID.

For all other node types this value is zero.

Section Symbol ID FL4 The Symbol ID of the section containing the node, if it is

a qualified paragraph-name reference. This value

corresponds to the Section ID in a Symbol (Type 42)

record.

For all other node types this value is zero.

First token number FL4 The number of the first token associated with the node

754 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 116. SYSADATA parse tree record (continued)

Field Size Description

Last token number FL4 The number of the last token associated with the node

Reserved FL4 Reserved for future use

Flags CL1 Information about the node:

X’80’ Reserved

X’40’ Generated node, no tokens

Reserved CL3 Reserved for future use

Token record: X’0030’

The compiler does not generate token records for any lines that are treated as

comment lines, which include, but are not limited to, items in the following list.

v Comment lines, which are lines that have an asterisk (*) or a slash (/) in column

7

v The following compiler-directing statements:

– *CBL (*CONTROL)

– BASIS

– COPY

– DELETE

– EJECT

– INSERT

– REPLACE

– SKIP1

– SKIP2

– SKIP3

– TITLE

v Debugging lines, which are lines that have a D in column 7, if WITH DEBUGGING

MODE is not specified

 Table 117. SYSADATA token record

Field Size Description

Token number FL4 The token number within the source file generated by

the compiler, starting at 1. Any copybooks have already

been included in the source.

Appendix G. COBOL SYSADATA file contents 755

Table 117. SYSADATA token record (continued)

Field Size Description

Token code HL2 The type of token (user-name, literal, reserved word, and

so forth).

For reserved words, the compiler reserved-word table

values are used.

For PICTURE strings, the special code 0000 is used.

For each piece (other than the last) of a continued token,

the special code 3333 is used.

Otherwise, the following codes are used:

0001 ACCEPT

0002 ADD

0003 ALTER

0004 CALL

0005 CANCEL

0007 CLOSE

0009 COMPUTE

0011 DELETE

0013 DISPLAY

0014 DIVIDE

0017 READY

0018 END-PERFORM

0019 ENTER

0020 ENTRY

0021 EXIT

0022 EXEC

 EXECUTE

0023 GO

0024 IF

0025 INITIALIZE

0026 INVOKE

0027 INSPECT

0028 MERGE

0029 MOVE

756 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0030 MULTIPLY

0031 OPEN

0032 PERFORM

0033 READ

0035 RELEASE

0036 RETURN

0037 REWRITE

0038 SEARCH

0040 SET

0041 SORT

0042 START

0043 STOP

0044 STRING

0045 SUBTRACT

0048 UNSTRING

0049 USE

0050 WRITE

0051 CONTINUE

0052 END-ADD

0053 END-CALL

0054 END-COMPUTE

0055 END-DELETE

0056 END-DIVIDE

0057 END-EVALUATE

0058 END-IF

0059 END-MULTIPLY

0060 END-READ

0061 END-RETURN

0062 END-REWRITE

0063 END-SEARCH

0064 END-START

0065 END-STRING

0066 END-SUBTRACT

0067 END-UNSTRING

0068 END-WRITE

0069 GOBACK

Appendix G. COBOL SYSADATA file contents 757

Table 117. SYSADATA token record (continued)

Field Size Description

0070 EVALUATE

0071 RESET

0072 SERVICE

0073 END-INVOKE

0074 END-EXEC

0075 XML

0076 END-XML

0099 FOREIGN-VERB

0101 DATA-NAME

0105 DASHED-NUM

0106 DECIMAL

0107 DIV-SIGN

0108 EQ

0109 EXPONENTIATION

0110 GT

0111 INTEGER

0112 LT

0113 LPAREN

0114 MINUS-SIGN

0115 MULT-SIGN

0116 NONUMLIT

0117 PERIOD

0118 PLUS-SIGN

0121 RPAREN

0122 SIGNED-INTEGER

0123 QUID

0124 COLON

0125 IEOF

0126 EGCS-LIT

0127 COMMA-SPACE

0128 SEMICOLON-SPACE

0129 PROCEDURE-NAME

0130 FLT-POINT-LIT

0131 Language Environment

758 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0132 GE

0133 IDREF

0134 EXPREF

0136 CICS

0137 NEW

0138 NATIONAL-LIT

0200 ADDRESS

0201 ADVANCING

0202 AFTER

0203 ALL

0204 ALPHABETIC

0205 ALPHANUMERIC

0206 ANY

0207 AND

0208 ALPHANUMERIC-EDITED

0209 BEFORE

0210 BEGINNING

0211 FUNCTION

0212 CONTENT

0213 CORR

 CORRESPONDING

0214 DAY

0215 DATE

0216 DEBUG-CONTENTS

0217 DEBUG-ITEM

0218 DEBUG-LINE

0219 DEBUG-NAME

0220 DEBUG-SUB-1

0221 DEBUG-SUB-2

0222 DEBUG-SUB-3

0223 DELIMITED

0224 DELIMITER

0225 DOWN

Appendix G. COBOL SYSADATA file contents 759

Table 117. SYSADATA token record (continued)

Field Size Description

0226 NUMERIC-EDITED

0227 XML-EVENT

0228 END-OF-PAGE

 EOP

0229 EQUAL

0230 ERROR

0231 XML-NTEXT

0232 EXCEPTION

0233 EXTEND

0234 FIRST

0235 FROM

0236 GIVING

0237 GREATER

0238 I-O

0239 IN

0240 INITIAL

0241 INTO

0242 INVALID

0243 SQL

0244 LESS

0245 LINAGE-COUNTER

0246 XML-TEXT

0247 LOCK

0248 GENERATE

0249 NEGATIVE

0250 NEXT

0251 NO

0252 NOT

0253 NUMERIC

0254 KANJI

0255 OR

0256 OTHER

0257 OVERFLOW

0258 PAGE

0259 CONVERTING

760 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0260 POINTER

0261 POSITIVE

0262 DBCS

0263 PROCEDURES

0264 PROCEED

0265 REFERENCES

0266 DAY-OF-WEEK

0267 REMAINDER

0268 REMOVAL

0269 REPLACING

0270 REVERSED

0271 REWIND

0272 ROUNDED

0273 RUN

0274 SENTENCE

0275 STANDARD

0276 RETURN-CODE

 SORT-CORE-SIZE

SORT-FILE-SIZE

SORT-MESSAGE

SORT-MODE-SIZE

SORT-RETURN

TALLY

XML-CODE

0277 TALLYING

0278 SUM

0279 TEST

0280 THAN

0281 UNTIL

0282 UP

0283 UPON

0284 VARYING

0285 RELOAD

0286 TRUE

Appendix G. COBOL SYSADATA file contents 761

Table 117. SYSADATA token record (continued)

Field Size Description

0287 THEN

0288 RETURNING

0289 ELSE

0290 SELF

0291 SUPER

0292 WHEN-COMPILED

0293 ENDING

0294 FALSE

0295 REFERENCE

0296 NATIONAL-EDITED

0297 COM-REG

0298 ALPHABETIC-LOWER

0299 ALPHABETIC-UPPER

0301 REDEFINES

0302 OCCURS

0303 SYNC

 SYNCHRONIZED

0304 MORE-LABELS

0305 JUST

 JUSTIFIED

0306 SHIFT-IN

0307 BLANK

0308 VALUE

0309 COMP

 COMPUTATIONAL

0310 COMP-1

 COMPUTATIONAL-1

0311 COMP-3

 COMPUTATIONAL-3

0312 COMP-2

 COMPUTATIONAL-2

0313 COMP-4

 COMPUTATIONAL-4

0314 DISPLAY-1

0315 SHIFT-OUT

762 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0316 INDEX

0317 USAGE

0318 SIGN

0319 LEADING

0320 SEPARATE

0321 INDEXED

0322 LEFT

0323 RIGHT

0324 PIC

 PICTURE

0325 VALUES

0326 GLOBAL

0327 EXTERNAL

0328 BINARY

0329 PACKED-DECIMAL

0330 EGCS

0331 PROCEDURE-POINTER

0332 COMP-5

 COMPUTATIONAL-5

0333 FUNCTION-POINTER

0334 TYPE

0335 JNIENVPTR

0336 NATIONAL

0337 GROUP-USAGE

0401 HIGH-VALUE

 HIGH-VALUES

0402 LOW-VALUE

 LOW-VALUES

0403 QUOTE

 QUOTES

0404 SPACE

 SPACES

0405 ZERO

Appendix G. COBOL SYSADATA file contents 763

Table 117. SYSADATA token record (continued)

Field Size Description

0406 ZEROES

 ZEROS

0407 NULL

 NULLS

0501 BLOCK

0502 BOTTOM

0505 CHARACTER

0506 CODE

0507 CODE-SET

0514 FILLER

0516 FOOTING

0520 LABEL

0521 LENGTH

0524 LINAGE

0526 OMITTED

0531 RENAMES

0543 TOP

0545 TRAILING

0549 RECORDING

0601 INHERITS

0603 RECURSIVE

0701 ACCESS

0702 ALSO

0703 ALTERNATE

0704 AREA

 AREAS

0705 ASSIGN

0707 COLLATING

0708 COMMA

0709 CURRENCY

0710 CLASS

0711 DECIMAL-POINT

0712 DUPLICATES

0713 DYNAMIC

0714 EVERY

764 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0716 MEMORY

0717 MODE

0718 MODULES

0719 MULTIPLE

0720 NATIVE

0721 OFF

0722 OPTIONAL

0723 ORGANIZATION

0724 POSITION

0725 PROGRAM

0726 RANDOM

0727 RELATIVE

0728 RERUN

0729 RESERVE

0730 SAME

0731 SEGMENT-LIMIT

0732 SELECT

0733 SEQUENCE

0734 SEQUENTIAL

0736 SORT-MERGE

0737 STANDARD-1

0738 TAPE

0739 WORDS

0740 PROCESSING

0741 APPLY

0742 WRITE-ONLY

0743 COMMON

0744 ALPHABET

0745 PADDING

0746 SYMBOLIC

0747 STANDARD-2

0748 OVERRIDE

0750 PASSWORD

Appendix G. COBOL SYSADATA file contents 765

Table 117. SYSADATA token record (continued)

Field Size Description

0801 ARE

 IS

0802 ASCENDING

0803 AT

0804 BY

0805 CHARACTERS

0806 CONTAINS

0808 COUNT

0809 DEBUGGING

0810 DEPENDING

0811 DESCENDING

0812 DIVISION

0814 FOR

0815 ORDER

0816 INPUT

0817 REPLACE

0818 KEY

0819 LINE

 LINES

0821 OF

0822 ON

0823 OUTPUT

0825 RECORD

0826 RECORDS

0827 REEL

0828 SECTION

0829 SIZE

0830 STATUS

0831 THROUGH

 THRU

0832 TIME

0833 TIMES

0834 TO

0836 UNIT

766 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 117. SYSADATA token record (continued)

Field Size Description

0837 USING

0838 WHEN

0839 WITH

0901 PROCEDURE

0902 DECLARATIVES

0903 END

1001 DATA

1002 FILE

1003 FD

1004 SD

1005 WORKING-STORAGE

1006 LOCAL-STORAGE

1007 LINKAGE

1101 ENVIRONMENT

1102 CONFIGURATION

1103 SOURCE-COMPUTER

1104 OBJECT-COMPUTER

1105 SPECIAL-NAMES

1106 REPOSITORY

1107 INPUT-OUTPUT

1108 FILE-CONTROL

1109 I-O-CONTROL

1201 ID

 IDENTIFICATION

1202 PROGRAM-ID

1203 AUTHOR

1204 INSTALLATION

1205 DATE-WRITTEN

1206 DATE-COMPILED

1207 SECURITY

1208 CLASS-ID

1209 METHOD-ID

1210 METHOD

1211 FACTORY

Appendix G. COBOL SYSADATA file contents 767

Table 117. SYSADATA token record (continued)

Field Size Description

1212 OBJECT

2020 TRACE

3000 DATADEF

3001 F-NAME

3002 UPSI-SWITCH

3003 CONDNAME

3004 CONDVAR

3005 BLOB

3006 CLOB

3007 DBCLOB

3008 BLOB-LOCATOR

3009 CLOB-LOCATOR

3010 DBCLOB-LOCATOR

3011 BLOB-FILE

3012 CLOB-FILE

3013 DBCLOB-FILE

3014 DFHRESP

5001 PARSE

5002 AUTOMATIC

5003 PREVIOUS

9999 COBOL

Token length HL2 The length of the token

Token column FL4 The starting column number of the token in the source

listing

Token line FL4 The line number of the token in the source listing

Flags CL1 Information about the token:

X’80’ Token is continued

X’40’ Last piece of continued token

Note that for PICTURE strings, even if the source token is

continued, there will be only one Token record

generated. It will have a token code of 0000, the token

column and line of the first piece, the length of the

complete string, no continuation flags set, and the token

text of the complete string.

Reserved CL7 Reserved for future use

Token text CL(n) The actual token string

Source error record: X’0032’

The following table shows the contents of the source error record.

768 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|

|

Table 118. SYSADATA source error record

Field Size Description

Statement number FL4 The statement number of the statement in error

Error identifier CL16 The error message identifier (left-justified and padded

with blanks)

Error severity HL2 The severity of the error

Error message length HL2 The length of the error message text

Line position XL1 The line position indicator provided in FIPS messages

Reserved CL7 Reserved for future use

Error message CL(n) The error message text

Source record: X’0038’

The following table shows the contents of the source record.

 Table 119. SYSADATA source record

Field Size Description

Line number FL4 The listing line number of the source record

Input record number FL4 The input source record number in the current input file

Primary file number HL2 The input file’s assigned sequence number if this record

is from the primary input file. (Refer to the Input file n

field in the Job identification record).

Library file number HL2 The library input file’s assigned sequence number if this

record is from a COPY|BASIS input file. (Refer to the

Member File ID n field in the Library record.)

Reserved CL8 Reserved for future use

Parent record number FL4 The parent source record number. This will be the record

number of the COPY|BASIS statement.

Parent primary file

number

HL2 The parent file’s assigned sequence number if the parent

of this record is from the primary input file. (Refer to the

Input file n field in the Job Identification Record.)

Parent library

assigned file number

HL2 The parent library file’s assigned sequence number if this

record’s parent is from a COPY|BASIS input file. (Refer to

the COPY/BASIS Member File ID n field in the Library

record.)

Reserved CL8 Reserved for future use

Length of source

record

HL2 The length of the actual source record following

Reserved CL10 Reserved for future use

Source record CL(n)

Appendix G. COBOL SYSADATA file contents 769

COPY REPLACING record: X’0039’

One COPY REPLACING type record will be emitted each time a REPLACING action takes

place. That is, whenever operand-1 of the REPLACING phrase is matched with text in

the copybook, a COPY REPLACING TEXT record will be written.

The following table shows the contents of the COPY REPLACING record.

 Table 120. SYSADATA COPY REPLACING record

Field Size Description

Starting line number

of replaced string

FL4 The listing line number of the start of the text that

resulted from REPLACING

Starting column

number of replaced

string

FL4 The listing column number of the start of the text that

resulted from REPLACING

Ending line number

of replaced string

FL4 The listing line number of the end of the text that

resulted from REPLACING

Ending column

number of replaced

string

FL4 The listing column number of the end of the text that

resulted from REPLACING

Starting line number

of original string

FL4 The source file line number of the start of the text that

was changed by REPLACING

Starting column

number of original

string

FL4 The source file column number of the start of the text

that was changed by REPLACING

Ending line number

of original string

FL4 The source file line number of the end of the text that

was changed by REPLACING

Ending column

number of original

string

FL4 The source file column number of the end of the text that

was changed by REPLACING

Symbol record: X’0042’

The following table shows the contents of the symbol record.

 Table 121. SYSADATA symbol record

Field Size Description

Symbol ID FL4 Unique ID of symbol

Line number FL4 The listing line number of the source record in which the

symbol is defined or declared

Level XL1 True level-number of symbol (or relative level-number of

a data item within a structure). For COBOL, this can be

in the range 01-49, 66 (for RENAMES items), 77, or 88 (for

condition items).

Qualification

indicator

XL1

X’00’ Unique name; no qualification needed.

X’01’ This data item needs qualification. The name is

not unique within the program. This field

applies only when this data item is not the

level-01 name.

770 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

Symbol type XL1

X’68’ Class-name (Class-ID)

X’58’ Method-name

X’40’ Data-name

X’20’ Procedure-name

X’10’ Mnemonic-name

X’08’ Program-name

X’81’ Reserved

The following are ORed into the above types, when

applicable:

X’04’ External

X’02’ Global

Symbol attribute XL1

X’01’ Numeric

X’02’ Elementary character of one of these classes:

v Alphabetic

v Alphanumeric

v DBCS

v National

X’03’ Group

X’04’ Pointer

X’05’ Index data item

X’06’ Index-name

X’07’ Condition

X’0F’ File

X’10’ Sort file

X’17’ Class-name (repository)

X’18’ Object reference

Appendix G. COBOL SYSADATA file contents 771

Table 121. SYSADATA symbol record (continued)

Field Size Description

Clauses XL1 Clauses specified in symbol definition.

For symbols that have a symbol attribute of Numeric

(X’01’), Elementary character (X’02’), Group (X’03’),

Pointer (X’04’), Index data item (X’05’), or Object

reference (X’18’):

1...

Value

.1..

Indexed

..1.

Redefines

...1

Renames

.... 1...

Occurs

.... .1..

Has Occurs keys

.... ..1.

Occurs Depending On

.... ...1

Occurs in parent

For both file types:

1...

Select

.1..

Assign

..1.

Rerun

...1

Same area

.... 1...

Same record area

.... .1..

Recording mode

.... ..1.

Reserved

.... ...1

Record

772 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

 For mnemonic-name symbols:

01 CSP

02 C01

03 C02

04 C03

05 C04

06 C05

07 C06

08 C07

09 C08

10 C09

11 C10

12 C11

13 C12

14 S01

15 S02

16 S03

17 S04

18 S05

19 CONSOLE

20 SYSIN|SYSIPT

22 SYSOUT|SYSLST|SYSLIST

24 SYSPUNCH|SYSPCH

26 UPSI-0

27 UPSI-1

28 UPSI-2

29 UPSI-3

30 UPSI-4

31 UPSI-5

32 UPSI-6

33 UPSI-7

34 AFP-5A

Appendix G. COBOL SYSADATA file contents 773

Table 121. SYSADATA symbol record (continued)

Field Size Description

Data flags 1 XL1 For both file types, and for symbols that have a symbol

attribute of Numeric (X’01’), Elementary character

(X’02’), Group (X’03’), Pointer (X’04’), Index data item

(X’05’), or Object reference (X’18’):

1...

Redefined

.1..

Renamed

..1.

Synchronized

...1

Implicitly redefined

.... 1...

Date field

.... .1..

Implicit redefines

.... ..1.

FILLER

.... ...1

Level 77

774 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

Data flags 2 XL1 For symbols that have a symbol attribute of Numeric

(X’01’):

1...

Binary

.1..

External floating point (of USAGE DISPLAY or

USAGE NATIONAL)

..1.

Internal floating point

...1

Packed

.... 1...

External decimal (of USAGE DISPLAY or USAGE

NATIONAL)

.... .1..

Scaled negative

.... ..1.

Numeric edited (of USAGE DISPLAY or USAGE

NATIONAL)

.... ...1

Reserved for future use

For symbols that have a symbol attribute of Elementary

character (X’02’) or Group (X’03’):

1...

Alphabetic

.1..

Alphanumeric

..1.

Alphanumeric edited

...1

Group contains its own ODO object

.... 1...

DBCS item

.... .1..

Group variable length

.... ..1.

EGCS item

.... ...1

EGCS edited

Appendix G. COBOL SYSADATA file contents 775

Table 121. SYSADATA symbol record (continued)

Field Size Description

 For both file types:

1...

Object of ODO in record

.1..

Subject of ODO in record

..1.

Sequential access

...1

Random access

.... 1...

Dynamic access

.... .1..

Locate mode

.... ..1.

Record area

.... ...1

Reserved for future use

Field will be zero for all other data types.

Data flags 3 XL1 For both file types:

1...

All records are the same length

.1..

Fixed length

..1.

Variable length

...1

Undefined

.... 1...

Spanned

.... .1..

Blocked

.... ..1.

Apply write only

.... ...1

Same sort merge area

Field will be zero for all other data types.

776 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

File organization XL1 For both file types:

1...

QSAM

.1..

ASCII

..1.

Standard label

...1

User label

.... 1...

VSAM sequential

.... .1..

VSAM indexed

.... ..1.

VSAM relative

.... ...1

Line sequential

Field will be zero for all other data types.

USAGE clause FL1

X’00’ USAGE IS DISPLAY

X’01’ USAGE IS COMP-1

X’02’ USAGE IS COMP-2

X’03’ USAGE IS PACKED-DECIMAL or USAGE IS COMP-3

X’04’ USAGE IS BINARY, USAGE IS COMP, or USAGE IS

COMP-4

X’05’ USAGE IS DISPLAY-1

X’06’ USAGE IS POINTER

X’07’ USAGE IS INDEX

X’08’ USAGE IS PROCEDURE-POINTER

X’09’ USAGE IS OBJECT-REFERENCE

X’0B’ NATIONAL

X’0A’ FUNCTION-POINTER

Sign clause FL1

X’00’ No SIGN clause

X’01’ SIGN IS LEADING

X’02’ SIGN IS LEADING SEPARATE CHARACTER

X’03’ SIGN IS TRAILING

X’04’ SIGN IS TRAILING SEPARATE CHARACTER

Indicators FL1

X’01’ Has JUSTIFIED clause. Right-justified attribute is

in effect.

X’02’ Has BLANK WHEN ZERO clause.

Appendix G. COBOL SYSADATA file contents 777

Table 121. SYSADATA symbol record (continued)

Field Size Description

Size FL4 The size of this data item. The actual number of bytes

this item occupies in storage. If a DBCS item, the number

is in bytes, not characters. For variable-length items, this

field will reflect the maximum size of storage reserved

for this item by the compiler. Also known as the ″Length

attribute.″

Precision FL1 The precision of a fixed or float data item

Scale FL1 The scale factor of a fixed data item. This is the number

of digits to the right of the decimal point.

778 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

Base locator type FL1 For host:

01 Base Locator File

02 Base Locator Working-Storage

03 Base Locator Linkage Section

05 Base Locator special regs

07 Indexed by variable

09 COMREG special reg

10 UPSI switch

13 Base Locator for Varloc items

14 Base Locator for Extern data

15 Base Locator alphanumeric FUNC

16 Base Locator alphanumeric EVAL

17 Base Locator for Object data

19 Base Locator for Local-Storage

20 Factory data

21 XML-TEXT and XML-NTEXT

For Windows and AIX:

01 Base Locator File

02 Base Locator Linkage Section

03 Base Locator for Varloc items

04 Base Locator for Extern data

05 Base Locator for Object data

06 XML-TEXT and XML-NTEXT

10 Base Locator Working-Storage

11 Base Locator special regs

12 Base Locator alphanumeric FUNC

13 Base Locator alphanumeric EVAL

14 Indexed by variable

16 COMREG special reg

17 UPSI switch

18 Factory data

22 Base Locator for Local-Storage

Appendix G. COBOL SYSADATA file contents 779

Table 121. SYSADATA symbol record (continued)

Field Size Description

Date format FL1 Date format:

01 YY

02 YYXX

03 YYXXXX

04 YYXXX

05 YYYY

06 YYYYXX

07 YYYYXXXX

08 YYYYXXX

09 YYX

10 YYYYX

22 XXYY

23 XXXXYY

24 XXXYY

26 XXYYYY

27 XXXXYYYY

28 XXXYYYY

29 XYY

30 XYYYY

Data flags 4 XL1 For symbols that have a symbol attribute of Numeric

(X’01’):

1...

Numeric national

For symbols that have a symbol attribute of Elementary

character (X’02’):

1...

National

.1..

National edited

For symbols that have a symbol attribute of Group

(X’03’):

1...

Group-Usage National

Reserved FL3 Reserved for future use

780 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

Addressing

information

FL4 For host, the Base Locator number and displacement:

Bits 0-4

Unused

Bits 5-19

Base Locator (BL) number

Bits 20-31

Displacement off Base Locator

For Windows and AIX, the W-code SymId.

Structure

displacement

AL4 Offset of symbol within structure. This offset is set to 0

for variably located items.

Parent displacement AL4 Byte offset from immediate parent of the item being

defined.

Parent ID FL4 The symbol ID of the immediate parent of the item being

defined.

Redefined ID FL4 The symbol ID of the data item that this item redefines,

if applicable.

Start-renamed ID FL4 If this item is a level-66 item, the symbol ID of the

starting COBOL data item that this item renames. If not a

level-66 item, this field is set to 0.

End-renamed ID FL4 If this item is a level-66 item, the symbol ID of the

ending COBOL data item that this item renames. If not a

level-66 item, this field is set to 0.

Program-name

symbol ID

FL4 ID of the program-name of the program or the

class-name of the class where this symbol is defined.

OCCURS minimum

Paragraph ID

FL4 Minimum value for OCCURS

Proc-name ID for a paragraph-name

OCCURS maximum

Section ID

FL4 Maximum value for OCCURS

Proc-name ID for a section-name

Dimensions FL4 Number of dimensions

Case bit vector XL4 The case of the characters in the symbol name is

represented with one bit per character. Each bit has the

following meaning:

0 Uppercase

1 Lowercase

Bit 0 represents the case of the first character, bit 1

represents the case of the second character, and so forth.

Reserved CL8 Reserved for future use

Value pairs count HL2 Count of value pairs

Symbol name length HL2 Number of characters in the symbol name

Appendix G. COBOL SYSADATA file contents 781

|||
|
|
||
||

|
|

|

Table 121. SYSADATA symbol record (continued)

Field Size Description

Picture data length

for data-name

or

Assignment-name

length for file-name

HL2 Number of characters in the picture data; zero if symbol

has no associated PICTURE clause. (Length of the PICTURE

field.) Length represents the field as it is found in the

source input. This length does not represent the

expanded field for PICTURE items that contain a

replication factor. The maximum COBOL length for a

PICTURE string is 50 bytes. Zero in this field indicates no

PICTURE specified.

Number of characters in the external file-name if this is a

file-name. This is the DD name part of the

assignment-name. Zero if file-name and ASSIGN USING

specified.

Initial Value length

for data-name

External class-name

length for CLASS-ID

HL2 Number of characters in the symbol value; zero if

symbol has no initial value

Number of characters in the external class-name for

CLASS-ID

ODO symbol name

ID for data-name

ID of ASSIGN

data-name if

file-name

FL4 If data-name, ID of the ODO symbol name; zero if ODO

not specified

If file-name, Symbol-ID for ASSIGN USING data-name; zero

if ASSIGN TO specified

Keys count HL2 The number of keys defined

Index count HL2 Count of Index symbol IDs; zero if none specified

Symbol name CL(n)

Picture data string for

data-name

or

Assignment-name for

file-name

CL(n) The PICTURE character string exactly as the user types it

in. The character string includes all symbols, parentheses,

and replication factor.

The external file-name if this is a file-name. This is the DD

name part of the assignment-name.

Index ID list (n)FL4 ID of each index symbol name

Keys (n)XL8 This field contains data describing keys specified for an

array. The following three fields are repeated as many

times as specified in the ’Keys count’ field.

...Key Sequence FL1 Ascending or descending indicator.

X’00’ DESCENDING

X’01’ ASCENDING

...Filler CL3 Reserved

...Key ID FL4 The symbol ID of the data item that is the key field in

the array

Initial Value data for

data-name

External class-name

for CLASS-ID

CL(n) This field contains the data specified in the INITIAL

VALUE clause for this symbol. The following four

subfields are repeated according to the count in the

’Value pairs count’ field. The total length of the data in

this field is contained in the ’Initial value length’ field.

The external class-name for CLASS-ID.

...1st value length HL2 Length of first value

782 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 121. SYSADATA symbol record (continued)

Field Size Description

...1st value data CL(n) 1st value.

This field contains the literal (or figurative constant) as it

is specified in the VALUE clause in the source file. It

includes any beginning and ending delimiters, embedded

quotation marks, and SHIFT IN and SHIFT OUT

characters. If the literal spans multiple lines, the lines are

concatenated into one long string. If a figurative constant

is specified, this field contains the actual reserved word,

not the value associated with that word.

...2nd value length HL2 Length of second value, zero if not a THRU value pair

...2nd value data CL(n) 2nd value.

This field contains the literal (or figurative constant) as it

is specified in the VALUE clause in the source file. It

includes any beginning and ending delimiters, embedded

quotation marks, and SHIFT IN and SHIFT OUT

characters. If the literal spans multiple lines, the lines are

concatenated into one long string. If a figurative constant

is specified, this field contains the actual reserved word,

not the value associated with that word.

Symbol cross-reference record: X’0044’

The following table shows the contents of the symbol cross-reference record.

 Table 122. SYSADATA symbol cross-reference record

Field Size Description

Symbol length HL2 The length of the symbol

Statement definition FL4 The statement number where the symbol is defined or

declared

For VERB XREF only:

Verb count - total number of references to this verb.

Number of

references1

HL2 The number of references in this record to the symbol

following

Cross-reference type XL1

X’01’ Program

X’02’ Procedure

X’03’ Verb

X’04’ Symbol or data-name

X’05’ Method

X’06’ Class

Reserved CL7 Reserved for future use

Symbol name CL(n) The symbol. Variable length.

Appendix G. COBOL SYSADATA file contents 783

Table 122. SYSADATA symbol cross-reference record (continued)

Field Size Description

...Reference flag CL1 For symbol or data-name references:

C’ ’ Blank means reference only

C’M’ Modification reference flag

For Procedure type symbol references:

C’A’ ALTER (procedure-name)

C’D’ GO TO (procedure-name) DEPENDING ON

C’E’ End of range of (PERFORM) through

(procedure-name)

C’G’ GO TO (procedure-name)

C’P’ PERFORM (procedure-name)

C’T’ (ALTER) TO PROCEED TO (procedure-name)

C’U’ Use for debugging (procedure-name)

...Statement number XL4 The statement number on which the symbol or verb is

referenced

1. The reference flag field and the statement number field occur as many times as the

number of references field dictates. For example, if there is a value of 10 in the number

of references field, there will be 10 occurrences of the reference flag and statement

number pair for data-name, procedure, or program symbols, or 10 occurrences of the

statement number for verbs.

Where the number of references would exceed the record size for the SYSADATA file,

the record is continued on the next record. The continuation flag is set in the common

header section of the record.

Nested program record: X’0046’

The following table shows the contents of the nested program record.

 Table 123. SYSADATA nested program record

Field Size Description

Statement definition FL4 The statement number where the symbol is defined or

declared

Nesting level XL1 Program nesting level

Program attributes XL1

1...

Initial

.1..

Common

..1.

PROCEDURE DIVISION using

...1 1111

Reserved for future use

Reserved XL1 Reserved for future use

Program-name length XL1 Length of the following field

Program-name CL(n) The program-name

784 Enterprise COBOL for z/OS V4.1 Programming Guide

Library record: X’0060’

The following table shows the contents of the SYSADATA library record.

 Table 124. SYSADATA library record

Field Size Description

Number of members1 HL2 Count of the number of COPY/INCLUDE code members

described in this record

Library name length HL2 The length of the library name

Library volume

length

HL2 The length of the library volume ID

Concatenation

number

XL2 Concatenation number of the library

Library ddname

length

HL2 The length of the library ddname

Reserved CL4 Reserved for future use

Library name CL(n) The name of the library from which the COPY/INCLUDE

member was retrieved

Library volume CL(n) The volume identification of the volume where the

library resides

Library ddname CL(n) The ddname (or equivalent) used for this library

...COPY/BASIS member

file ID2

HL2 The library file ID of the name following

...COPY/BASIS name

length

HL2 The length of the name following

...COPY/BASIS name CL(n) The name of the COPY/BASIS member that has been used

1. If 10 COPY members are retrieved from a library, the ″Number of members″ field will

contain 10 and there will be 10 occurrences of the ″COPY/BASIS member file ID″ field,

the ″COPY/BASIS name length″ field, and the ″COPY/BASIS name″ field.

2. If COPY/BASIS members are retrieved from different libraries, a library record is written

to the SYSADATA file for each unique library.

Statistics record: X’0090’

The following table shows the contents of the statistics record.

 Table 125. SYSADATA statistics record

Field Size Description

Source records FL4 The number of source records processed

DATA DIVISION

statements

FL4 The number of DATA DIVISION statements processed

PROCEDURE DIVISION

statements

FL4 The number of PROCEDURE DIVISION statements processed

Compilation number HL2 Batch compilation number

Error severity XL1 The highest error message severity

Appendix G. COBOL SYSADATA file contents 785

Table 125. SYSADATA statistics record (continued)

Field Size Description

Flags XL1

1...

End of Job indicator

.1..

Class definition indicator

..11 1111

Reserved for future use

EOJ severity XL1 The maximum return code for the compile job

Program-name length XL1 The length of the program-name

Program-name CL(n) Program-name

EVENTS record: X’0120’

Events records are included in the ADATA file to provide compatibility with

previous levels of the compiler.

Events records are of the following types:

v Time stamp

v Processor

v File end

v Program

v File ID

v Error

 Table 126. SYSADATA EVENTS TIMESTAMP record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

EVENTS record type

TIMESTAMP record

CL12 C’TIMESTAMP’

Blank separator CL1

Revision level XL1

Blank separator CL1

Date XL8 YYYYMMDD

Hour XL2 HH

Minutes XL2 MI

Seconds XL2 SS

 Table 127. SYSADATA EVENTS PROCESSOR record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

786 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 127. SYSADATA EVENTS PROCESSOR record layout (continued)

Field Size Description

EVENTS record type

PROCESSOR record

CL9 C’PROCESSOR’

Blank separator CL1

Revision level XL1

Blank separator CL1

Output file ID XL1

Blank separator CL1

Line-class indicator XL1

 Table 128. SYSADATA EVENTS FILE END record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

EVENTS record type

FILE END record

CL7 C’FILEEND’

Blank separator CL1

Revision level XL1

Blank separator CL1

Input file ID XL1

Blank separator CL1

Expansion indicator XL1

 Table 129. SYSADATA EVENTS PROGRAM record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

EVENTS record type

PROGRAM record

CL7 C’PROGRAM’

Blank separator CL1

Revision level XL1

Blank separator CL1

Output file ID XL1

Blank separator CL1

Program input record

number

XL1

 Table 130. SYSADATA EVENTS FILE ID record layout

Field Size Description

Header CL12 Standard ADATA record header

Appendix G. COBOL SYSADATA file contents 787

Table 130. SYSADATA EVENTS FILE ID record layout (continued)

Field Size Description

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

EVENTS record type

FILE ID record

CL7 C’FILEID’

Blank separator CL1

Revision level XL1

Blank separator CL1

Input source file ID XL1 File ID of source file

Blank separator CL1

Reference indicator XL1

Blank separator CL1

Source file name

length

H2

Blank separator CL1

Source file name CL(n)

 Table 131. SYSADATA EVENTS ERROR record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this

halfword)

EVENTS record type

ERROR record

CL5 C’ERROR’

Blank separator CL1

Revision level XL1

Blank separator CL1

Input source file ID XL1 File ID of source file

Blank separator CL1

Annot class XL1 Annot-class message placement

Blank separator CL1

Error input record

number

XL10

Blank separator CL1

Error start line

number

XL10

Blank separator CL1

Error token start

number

XL1 Column number of error token start

Blank separator CL1

Error end line

number

XL10

Blank separator CL1

788 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 131. SYSADATA EVENTS ERROR record layout (continued)

Field Size Description

Error token end

number

XL1 Column number of error token end

Blank separator CL1

Error message ID

number

XL9

Blank separator CL1

Error message

severity code

XL1

Blank separator CL1

Error message

severity level number

XL2

Blank separator CL1

Error message length HL3

Blank separator CL1

Error message text CL(n)

Appendix G. COBOL SYSADATA file contents 789

790 Enterprise COBOL for z/OS V4.1 Programming Guide

Appendix H. Using sample programs

The sample programs, which are included on your product tape, demonstrate

many language elements and concepts of COBOL.

This information contains the following items:

v Overview of the programs, including program charts for two of the samples

v Format and sample of the input data

v Sample of reports produced

v Information about how to run the programs

v List of the language elements and concepts that are illustrated

Pseudocode and other comments about the programs are included in the program

prologue, which you can obtain in a program listing.

There are three sample programs:

v IGYTCARA is an example of using QSAM files and VSAM indexed files, and

shows how to use many COBOL intrinsic functions.

v IGYTCARB is an example of using IBM Interactive System Product Facility

(ISPF).

v IGYTSALE is an example of using several of the features of the Language

Environment callable services.

RELATED CONCEPTS

“IGYTCARA: batch application”

“IGYTCARB: interactive program” on page 795

“IGYTSALE: nested program application” on page 798

IGYTCARA: batch application

A company that has several local offices wants to establish employee carpools.

Application IGYTCARA validates the transaction-file entries (QSAM sequential file

processing) and updates a master file (VSAM indexed file processing).

This batch application does two tasks:

v Produces reports of employees who can share rides from the same home

location to the same work location

v Updates the carpool data:

– Adds data for new employees

– Changes information for participating employees

– Deletes employee records

– Lists update requests that are not valid

The following diagram shows the parts of the application and how they are

organized:

© Copyright IBM Corp. 1991, 2007 791

RELATED TASKS

“Preparing to run IGYTCARA” on page 794

RELATED REFERENCES

“Input data for IGYTCARA”

“Report produced by IGYTCARA” on page 793

“Language elements and concepts that are illustrated” on page 805

Input data for IGYTCARA

As input to the program, the company collected information from interested

employees, coded the information, and produced an input file. Here is an example

of the format of the input file (spaces between fields are left out, as they would be

in your input file) with an explanation of each item.

 1. Transaction code

 2. Shift

 3. Home code

792 Enterprise COBOL for z/OS V4.1 Programming Guide

4. Work code

 5. Commuter name

 6. Home address

 7. Home phone

 8. Work phone

 9. Home location code

10. Work location code

11. Driving status code

This sample below shows a section of the input file:

A10111ROBERTS AB1021 CRYSTAL COURTSAN FRANCISCOCA9990141555501904155551387H1W1D

A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D

P48899 99ASDFG0005557890123ASDFGHJ T

R10111ROBERTS AB1221 CRYSTAL COURTSAN FRANCISCOCA9990141555501904155551387H1W1D

A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D

D20212KAHN DE

D20212KAHN DE

A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D

A10111BONNICK FD1025 FIFTH AVENUE SAN FRANCISCOCA9990541555595904155557895H8W3

A10111PETERSON SW435 THIRD AVENUE SAN FRANCISCOCA9990541555546904155553717H3W4

 . . .

Report produced by IGYTCARA

The following sample shows the first page of the output report produced by

IGYTCARA. Your actual output might vary slightly in appearance, depending on

your system.

1REPORT #: IGYTCAR1 COMMUTER FILE UPDATE LIST PAGE #: 1

 -PROGRAM #: IGYTCAR1 RUN TIME: 01:40 RUN DATE: 11/24/2003

 -==

 | RE-| SHIFT | | | | |STA-|

 TRANS|CORD|HOME CODE| COMMUTER | HOME | HOME PHONE | HOME LOCATION JUNCTION |TUS | TRANS. ERROR

 CODE |TYPE|WORK CODE| NAME | ADDRESS | WORK PHONE | WORK LOCATION JUNCTION |CODE|

 ==

 A NEW 1 01 11 ROBERTS AB 1021 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

 SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA

 --

 A NEW 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

 SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE

 --

 P 4 88 99 (000) 555-7890 HOME CODE ’ ’ NOT FOUND. T

 99 ASDFG (123) ASD-FGHJ WORK CODE ’ ’ NOT FOUND. TRANSACT. CODE

 SHIFT CODE

 HOME LOC. CODE

 WORK LOC. CODE

 LAST NAME

 INITIALS

 ADDRESS

 CITY

 STATE CODE

 ZIPCODE

 HOME PHONE

 WORK PHONE

 HOME JUNCTION

 WORK JUNCTION

 DRIVING STATUS

 --

 R OLD 1 01 11 ROBERTS AB 1021 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

 SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA

 NEW 1 01 11 ROBERTS AB 1221 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

 SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA

 --

 A 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

 SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE DUPLICATE REC.

 --

 D OLD 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

 SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE

 --

 D 2 02 12 KAHN DE REC. NOT FOUND

 --

 A NEW 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

 SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE

 --

 A NEW 1 01 11 BONNICK FD 1025 FIFTH AVENUE (415) 555-9590 RODNEY

 SAN FRANCISCO CA 99905 (415) 555-7895 17TH FREEWAY SAN LEANDRO

 --

 A NEW 1 01 11 PETERSON SW 435 THIRD AVENUE (415) 555-4690 RODNEY/THIRD AVENUE

Appendix H. Using sample programs 793

Preparing to run IGYTCARA

All files required by the IGYTCARA program (IGYTCARA, IGYTCODE, and

IGYTRANX) are supplied on the product installation tape. These files are located

in the IGY.V4R1M0.SIGYSAMP data set.

Data set and procedure names might be changed at installation time. You should

check with your system programmer to verify these names.

Do not change these options on the CBL statement in the source file for

IGYTCARA:

v NOADV

v NODYNAM

v NONAME

v NONUMBER

v QUOTE

v SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to

be issued. You can use the sequence number string in the source file to search for

the language elements used.

RELATED CONCEPTS

“IGYTCARA: batch application” on page 791

RELATED TASKS

“Running IGYTCARA”

RELATED REFERENCES

“Input data for IGYTCARA” on page 792

“Report produced by IGYTCARA” on page 793

“Language elements and concepts that are illustrated” on page 805

Running IGYTCARA

The following procedure compiles, link-edits, and runs the IGYTCARA program. If

you want only to compile or only to compile and link-edit the program, you need

to change the IGYWCLG cataloged procedure.

To run IGYTCARA under z/OS, use JCL to define a VSAM cluster and compile the

program. Insert the information specific to your system and installation in the

fields that are shown in lowercase letters (accounting information, volume serial

number, unit name, cluster prefix). These examples use the name

IGYTCAR.MASTFILE; you can use another name if you want to.

1. Use this JCL to create the required VSAM cluster:

//CREATE JOB (acct-info),’IGYTCAR CREATE VSAM’,MSGLEVEL=(1,1),

// TIME=(0,29)

//CREATE EXEC PGM=IDCAMS

//VOL1 DD VOL=SER=your-volume-serial,UNIT=your-unit,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 DELETE your-prefix.IGYTCAR.MASTFILE -

 FILE(VOL1) -

 PURGE

 DEFINE CLUSTER -

 (NAME(your-prefix.IGYTCAR.MASTFILE) -

794 Enterprise COBOL for z/OS V4.1 Programming Guide

VOLUME(your-volume-serial) -

 FILE(VOL1) -

 INDEXED -

 RECSZ(80 80) -

 KEYS(16 0) -

 CYLINDERS(2))

/*

To remove any existing cluster, a DELETE is issued before the VSAM cluster is

created.

2. Use the following JCL to compile, link-edit, and run the IGYTCARA program:

//IGYTCARA JOB (acct-info),’IGYTCAR’,MSGLEVEL=(1,1),TIME=(0,29)

//TEST EXEC IGYWCLG

//COBOL.SYSLIB DD DSN=IGY.V4R1M0.SIGYSAMP,DISP=SHR

//COBOL.SYSIN DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTCARA),DISP=SHR

//GO.SYSOUT DD SYSOUT=A

//GO.COMMUTR DD DSN=your-prefix.IGYTCAR.MASTFILE,DISP=SHR

//GO.LOCCODE DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTCODE),DISP=SHR

//GO.UPDTRANS DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTRANX),DISP=SHR

//GO.UPDPRINT DD SYSOUT=A,DCB=BLKSIZE=133

//

RELATED TASKS

Chapter 10, “Processing VSAM files,” on page 179

RELATED REFERENCES

“Compile, link-edit, and run procedure (IGYWCLG)” on page 253

IGYTCARB: interactive program

IGYTCARB contains an interactive program for entering carpool data by using IBM

Interactive System Productivity Facility (ISPF) to invoke Dialog Manager and

Enterprise COBOL. IGYTCARB creates a file that can be used as input for a

carpool listing or matching program such as IGYTCARA.

The input data for IGYTCARB is the same as that for IGYTCARA. IGYTCARB lets

you append to the information in your input file by using an ISPF panel. An

example of the panel used by IGYTCARB is shown below:

--------------------------- CARPOOL DATA ENTRY -------------------------------

 New Data Entry Previous Entry

Type =======> - A, R, or D A

Shift ======> - 1, 2, or 3 1

Home Code ==> -- 2 Chars 01

Work Code ==> -- 2 Chars 11

Name =======> --------- 9 Chars POPOWICH

Initials ===> -- 2 Chars AD

Address ====> ------------------ 18 Chars 134 SIXTH AVENUE

City =======> ------------- 13 Chars SAN FRANCISCO

State ======> -- 2 Chars CA

Zip Code ===> ----- 5 Chars 99903

Home Phone => ---------- 10 Chars 4155553390

Work Phone => ---------- 10 Chars 4155557855

Home Jnc code > -- 2 Chars H3

Work Jnc Code > -- 2 Chars W7

Commuter Stat > - D, R or blank

RELATED TASKS

“Preparing to run IGYTCARB” on page 796

Appendix H. Using sample programs 795

Preparing to run IGYTCARB

Run the IGYTCARB program under Interactive System Productivity Facility (ISPF).

All files required by IGYTCARB (IGYTCARB, IGYTRANB, and IGYTPNL) are

supplied on the product installation tape in the IGY.V4R1M0.SIGYSAMP data set.

Data-set names and procedure-names might be changed at installation time. Check

with your system programmer to verify the names.

Do not change the following options in the CBL statement in the source file for

IGYTCARB:

v NONUMBER

v QUOTE

v SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to

be issued. You can use the sequence number string in the source file to search for

language elements.

RELATED CONCEPTS

“IGYTCARB: interactive program” on page 795

RELATED TASKS

“Running IGYTCARB”

RELATED REFERENCES

“Language elements and concepts that are illustrated” on page 805

Running IGYTCARB

The following procedure compiles, link-edits, and runs the IGYTCARB program. If

you want only to compile or only to compile and link-edit the program, you need

to change the procedure.

To run IGYTCARB under z/OS, do the following steps:

1. Using the ISPF editor, change the ISPF/PDF Primary Option Panel (ISR@PRIM)

or some other panel to include the IGYTCARB invocation. Panel ISR@PRIM is

in your site’s PDF panel data set (normally ISRPLIB).

The following example shows an ISR@PRIM panel modified, in two identified

locations, to include the IGYTCARB invocation. If you add or change an option

in the upper portion of the panel definition, you must also add or change the

corresponding line on the lower portion of the panel.

%---------------------- ISPF/PDF PRIMARY OPTION PANEL ------------------------

%OPTION ===>_ZCMD +

% +USERID - &ZUSER

% 0 +ISPF PARMS - Specify terminal and user parameters +TIME - &ZTIME

% 1 +BROWSE - Display source data or output listings +TERMINAL - &ZTERM

% 2 +EDIT - Create or change source data +PF KEYS - &ZKEYS

% 3 +UTILITIES - Perform utility functions

% 4 +FOREGROUND - Invoke language processors in foreground

% 5 +BATCH - Submit to batch for language processing

% 6 +COMMAND - Enter TSO or Workstation commands

% 7 +DIALOG TEST - Perform dialog testing

% 8 +LM UTILITIES- Perform library management utility functions

% C +IGYTCARB - Run IGYTCARB UPDATE TRANSACTION PROGRAM (1)

% T +TUTORIAL - Display information about ISPF/PDF

% X +EXIT - Terminate using console, log, and list defaults

796 Enterprise COBOL for z/OS V4.1 Programming Guide

%

%

+Enter%END+command to terminate ISPF.

%

)INIT

 .HELP = ISR00003

 &ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */

 &ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */

 &ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */

 VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC

 &Z1 = TRUNC(&ZCMD,1)

 IF (&Z1 ¬sym.= ’.’)

 &ZSEL = TRANS(TRUNC (&ZCMD,’.’)

 0,’PANEL(ISPOPTA)’

 1,’PGM(ISRBRO) PARM(ISRBRO01)’

 2,’PGM(ISREDIT) PARM(P,ISREDM01)’

 3,’PANEL(ISRUTIL)’

 4,’PANEL(ISRFPA)’

 5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’

 6,’PGM(ISRPCC)’

 7,’PGM(ISRYXDR) NOCHECK’

 8,’PANEL(ISRLPRIM)’

 C,’PGM(IGYTCARB)’ (2)

 T,’PGM(ISPTUTOR) PARM(ISR00000)’

 ’ ’,’ ’

 X,’EXIT’

 *,’?’)

 &ZTRAIL = .TRAIL

 IF (&Z1 = ’.’) .msg = ISPD141

)END

As indicated by (1) in this example, you add IGYTCARB to the upper portion

of the panel by entering:

% C +IGYTCARB - Run IGYTCARB UPDATE TRANSACTION PROGRAM

You add the corresponding line on the lower portion of the panel, indicated by

(2), by entering:

C,’PGM(IGYTCARB)’

2. Place ISR@PRIM (or your other modified panel) and IGYTPNL in a library and

make this library the first library in the ISPPLIB concatenation.

3. Comment sequence line IB2200 and uncomment sequence line IB2210 in

IGYTCARB. (The OPEN EXTEND verb is supported under z/OS.)

4. Compile and link-edit IGYTCARB and place the resulting load module in your

LOADLIB.

5. Allocate ISPLLIB by using the following command:

ALLOCATE FILE(ISPLLIB) DATASET(DSN1, SYS1.COBLIB, DSN2) SHR REUSE

Here DSN1 is the library name of the LOADLIB from step 4. DSN2 is your

installed ISPLLIB.

6. Allocate the input and output data sets by using the following command:

ALLOCATE FILE(UPDTRANS) DA(’IGY.V4R1M0.SIGYSAMP(IGYTRANB)’) SHR REUSE

7. Allocate ISPPLIB by using the following command:

ALLOCATE FILE(ISPPLIB) DATASET(DSN3, DSN4) SHR REUSE

Here DSN3 is the library containing the modified panels. DSN4 is the ISPF panel

library.

8. Invoke IGYTCARB by using your modified panel.

RELATED REFERENCES

ISPF Dialog Developer’s Guide and Reference

Appendix H. Using sample programs 797

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzdg60

IGYTSALE: nested program application

Application IGYTSALE tracks product sales and sales commissions for a

sporting-goods distributor.

This nested program application does the following tasks:

1. Keeps a record of the product line, customers, and number of salespeople. This

data is stored in a file called IGYTABLE.

2. Maintains a file that records valid transactions and transaction errors. All

transactions that are not valid are flagged, and the results are printed in a

report. Transactions to be processed are in a file called IGYTRANA.

3. Processes transactions and report sales by location.

4. Records an individual’s sales performance and commission, and prints the

results in a report.

5. Reports the sale and shipment dates in local time and UTC (Universal Time

Coordinate), and calculates the response time.

The following diagram shows the parts of the application as a hierarchy:

The following diagram shows how the parts are nested:

798 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Preparing to run IGYTSALE” on page 804

RELATED REFERENCES

“Input data for IGYTSALE”

“Reports produced by IGYTSALE” on page 801

“Language elements and concepts that are illustrated” on page 805

Input data for IGYTSALE

As input to our program, the distributor collected information about its customers,

salespeople, and products, coded the information, and produced an input file.

This input file, called IGYTABLE, is loaded into three separate tables for use

during transaction processing. The format of the file is as follows, with an

explanation of the items below:

 1. Record type

 2. Customer code

 3. Customer name

 4. Product code

Appendix H. Using sample programs 799

5. Product description

 6. Product unit price

 7. Salesperson number

 8. Salesperson name

 9. Date of hire

10. Commission rate

The value of field 1 (C, P, or S) determines the format of the input record. The

following sample shows a section of IGYTABLE:

S1111Edyth Phillips 062484042327

S1122Chuck Morgan 052780084425

S1133Art Tung 022882061728

S1144Billy Jim Bob 010272121150

S1155Chris Preston 122083053377

S1166Al Willie Roz 111276100000

P01Footballs 0000620

P02Football Equipment 0032080

P03Football Uniform 0004910

P04Basketballs 0002220

P05Basketball Rim/Board0008830

P06Basketball Uniform 0004220

C01L. A. Sports

C02Gear Up

C03Play Outdoors

C04Sports 4 You

C05Sports R US

C06Stay Active

C07Sport Shop

C08Stay Sporty

C09Hot Sports

C10The Sportsman

C11Playing Ball

C12Sports Play

. . .

In addition, the distributor collected information about sales transactions. Each

transaction represents an individual salesperson’s sales to a particular customer.

The customer can purchase from one to five items during each transaction. The

transaction information is coded and put into an input file, called IGYTRANA. The

format of this file is as follows, with an explanation of the items below:

1. Sales order number

2. Invoiced items (number of different items ordered)

3. Date of sale (year month day hour minutes seconds)

4. Sales area

5. Salesperson number

6. Customer code

7. Date of shipment (year month day hour minutes seconds)

8. Product code

9. Quantity sold

800 Enterprise COBOL for z/OS V4.1 Programming Guide

Fields 8 and 9 occur one to eight times depending on the number of different items

ordered (field 2). The following sample shows a section of IGYTRANA:

A00001119900227010101CNTRL VALLEY11442019900228259999

A00004119900310100530CNTRL VALLEY11441019900403150099

A00005119900418222409CNTRL VALLEY11441219900419059900

A00006119900523151010CNTRL VALLEY11442019900623250004

 419990324591515SAN DIEGO 11615 60200132200110522045100

B11114419901111003301SAN DIEGO 11661519901114260200132200110522041100

A00007119901115003205CNTRL VALLEY11332019901117120023

C00125419900118101527SF BAY AREA 11331519900120160200112200250522145111

B11116419901201132013SF BAY AREA 11331519901203060200102200110522045102

B11117319901201070833SAN Diego 1165661990120333020o132200120522041100

B11118419901221191544SAN DIEGO 11661419901223160200142200130522040300

B11119419901210211544SAN DIEGO 11221219901214060200152200160522050500

B11120419901212000816SAN DIEGO 11220419901213150200052200160522040100

B11121419901201131544SAN DIEGO 11330219901203120200112200140522250100

B11122419901112073312SAN DIEGO 11221019901113100200162200260522250100

B11123919901110123314SAN DIEGO 11660919901114260200270500110522250100140010

B11124219901313510000SAN DIEGO 116611 1 0200042200120a22141100

B11125419901215012510SAN DIEGO 11661519901216110200162200130522141111

B11126119901111000034SAN DIEGO 11331619901113260022

B11127119901110154100SAN DIEGO 11221219901113122000

B11128419901110175001SAN DIEGO 11661519901113260200132200160521041104

. . .

Reports produced by IGYTSALE

The figures referenced below are samples of IGYTSALE output.

The program records the following data in reports:

v Transaction errors

v Sales by product and area

v Individual sales performance and commissions

v Response time between the sale date and the date the sold products are shipped

Your output might vary slightly in appearance, depending on your system.

“Example: IGYTSALE transaction errors”

“Example: IGYTSALE sales analysis by product by area” on page 802

“Example: IGYTSALE sales and commissions” on page 803

“Example: IGYTSALE response time from sale to ship” on page 803

Example: IGYTSALE transaction errors

The following sample of IGYTSALE output shows transaction errors in the last

column.

Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

 Invalid Edited Transactions

 Sales Inv. Sales Sales Sales Cust. Product And Quantity Sold Ship

 Order Items Time Stamp Area Pers Code Date Stamp

 ----- ----- -------------- ----------- ----- ----- ------------------------- ------------

 4 19990324591515 SAN DIEGO 116 15 60200132200110522045100 Error Descriptions

 -Sales order number is missing

 -Date of sale time stamp is invalid

 -Salesperson number not numeric

 -Product code not in product-table

 -Date of ship time stamp is invalid

 B11117 3 19901201070833 SAN Diego 1165 66 33020o132200120522041100 19901203 Error Descriptions

 -Sales area not in area-table

 -Salesperson not in sales-per-table

 -Customer code not in customer-table

 -Product code not in product-table

 -Quantity sold not numeric

 B11123 9 19901110123314 SAN DIEGO 1166 09 260200270500110522250100140010 19901114 Error Descriptions

 -Invoiced items is invalid

 -Product and quantity not checked

 -Date of ship time stamp is invalid

 B11124 2 19901313510000 SAN DIEGO 1166 11 1 0200042200120a22141100 Error Descriptions

 -Date of sale time stamp is invalid

Appendix H. Using sample programs 801

-Product code is invalid

 -Date of ship time stamp is invalid

 133 81119110000 LOS ANGELES 1166 10 040112110210160321251104 Error Descriptions

 -Sales order number is invalid

 -Invoiced items is invalid

 -Date of sale time stamp is invalid

 -Product and quantity not checked

 -Date of ship time stamp is invalid

 C11133 4 1990111944 1166 10 040112110210160321251104 Error Descriptions

 -Date of sale time stamp is invalid

 -Sales area is missing

 -Date of ship time stamp is invalid

 C11138 4 19901117091530 LOS ANGELES 1155 113200102010260321250004 19901119 Error Descriptions

 -Customer code is invalid

 D00009 9 19901201222222 CNTRL COAST 115 19 141 1131221 19901202 Error Descriptions

 -Invoiced items is invalid

Example: IGYTSALE sales analysis by product by area

The following sample of IGYTSALE output shows sales by product and area.

Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

 Sales Analysis By Product By Area

 Areas of Sale

 | | CNTRL COAST | CNTRL VALLEY | LOS ANGELES | NORTH COAST | SAN DIEGO | SF BAY AREA | |

 | Product Codes | | | | | | | Product Totals |

 ==

 |Product Number 04 | | | | | | | |

 |Basketballs | | | | | | | |

 | Units Sold | | | 433 | | 2604 | 5102 | 8139 |

 | Unit Price | | | 22.20 | | 22.20 | 22.20 | |

 | Amount of Sale | | | $9,612.60 | | $57,808.80 | $113,264.40 | $180,685.80 |

 --

 |Product Number 05 | | | | | | | |

 |Basketball Rim/Board| | | | | | | |

 | Units Sold | | 9900 | 2120 | 11 | 2700 | | 14731 |

 | Unit Price | | 88.30 | 88.30 | 88.30 | 88.30 | | |

 | Amount of Sale | | $874,170.00 | $187,196.00 | $971.30 | $238,410.00 | | $1,300,747.30 |

 --

 |Product Number 06 | | | | | | | |

 |Basketball Uniform | | | | | | | |

 | Units Sold | | | | 990 | 200 | 200 | 1390 |

 | Unit Price | | | | 42.20 | 42.20 | 42.20 | |

 | Amount of Sale | | | | $41,778.00 | $8,440.00 | $8,440.00 | $58,658.00 |

 --

 |Product Number 10 | | | | | | | |

 |Baseball Cage | | | | | | | |

 | Units Sold | 45 | | 3450 | 16 | 200 | 3320 | 7031 |

 | Unit Price | 890.00 | | 890.00 | 890.00 | 890.00 | 890.00 | |

 | Amount of Sale | $40,050.00 | |$3,070,500.00 | $14,240.00 | $178,000.00 |$2,954,800.00 | $6,257,590.00 |

 --

 |Product Number 11 | | | | | | | |

 |Baseball Uniform | | | | | | | |

 | Units Sold | 10003 | | 3578 | | 2922 | 2746 | 19249 |

 | Unit Price | 45.70 | | 45.70 | | 45.70 | 45.70 | |

 | Amount of Sale | $457,137.10 | | $163,514.60 | | $133,535.40 | $125,492.20 | $879,679.30 |

 --

 |Product Number 12 | | | | | | | |

 |Softballs | | | | | | | |

 | Units Sold | 10 | 137 | 2564 | 13 | 2200 | 22 | 4946 |

 | Unit Price | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | 1.40 | |

 | Amount of Sale | $14.00 | $191.80 | $3,589.60 | $18.20 | $3,080.00 | $30.80 | $6,924.40 |

 --

 |Product Number 13 | | | | | | | |

 |Softball Bats | | | | | | | |

 | Units Sold | 3227 | | 3300 | 1998 | 5444 | 99 | 14068 |

 | Unit Price | 12.60 | | 12.60 | 12.60 | 12.60 | 12.60 | |

 | Amount of Sale | $40,660.20 | | $41,580.00 | $25,174.80 | $68,594.40 | $1,247.40 | $177,256.80 |

 --

 |Product Number 14 | | | | | | | |

 |Softball Gloves | | | | | | | |

 | Units Sold | 1155 | | 136 | 3119 | 3833 | 5152 | 13395 |

 | Unit Price | 12.00 | | 12.00 | 12.00 | 12.00 | 12.00 | |

 | Amount of Sale | $13,860.00 | | $1,632.00 | $37,428.00 | $45,996.00 | $61,824.00 | $160,740.00 |

 --

 |Product Number 15 | | | | | | | |

 |Softball Cage | | | | | | | |

 | Units Sold | 997 | 99 | 2000 | | 2400 | | 5496 |

 | Unit Price | 890.00 | 890.00 | 890.00 | | 890.00 | | |

 | Amount of Sale | $887,330.00 | $88,110.00 |$1,780,000.00 | |$2,136,000.00 | | $4,891,440.00 |

 --

 |Product Number 16 | | | | | | | |

 |Softball Uniform | | | | | | | |

 | Units Sold | 44 | | 465 | 16 | 6165 | 200 | 6890 |

 | Unit Price | 45.70 | | 45.70 | 45.70 | 45.70 | 45.70 | |

 | Amount of Sale | $2,010.80 | | $21,250.50 | $731.20 | $281,740.50 | $9,140.00 | $314,873.00 |

 --

 |Product Number 25 | | | | | | | |

 |RacketBalls | | | | | | | |

 | Units Sold | 1001 | 10003 | 1108 | 8989 | 200 | 522 | 21823 |

 | Unit Price | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | |

 | Amount of Sale | $600.60 | $6,001.80 | $664.80 | $5,393.40 | $120.00 | $313.20 | $13,093.80 |

 --

 |Product Number 26 | | | | | | | |

 |Racketball Rackets | | | | | | | |

 | Units Sold | 21 | | 862 | 194 | 944 | 31 | 2052 |

 | Unit Price | 12.70 | | 12.70 | 12.70 | 12.70 | 12.70 | |

 | Amount of Sale | $266.70 | | $10,947.40 | $2,463.80 | $11,988.80 | $393.70 | $26,060.40 |

 --

 ==

 | Total Units Sold | 16503 | 20139 | 20016 | 15346 | 29812 | 17394 * 119210 *

 | Total Sales |$1,441,929.40 | $968,473.60 |$5,290,487.50 | $128,198.70 |$3,163,713.90 |$3,274,945.70 * $14,267,748.80 *

802 Enterprise COBOL for z/OS V4.1 Programming Guide

Example: IGYTSALE sales and commissions

The following sample of IGYTSALE output shows sales performance and

commissions by salesperson.

 Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

 Sales and Commission Report

 Salesperson: Billy Jim Bob

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Stop 3 10117 $6,161.40 2.25% $138.63 $746.45

 The Sportsman 1 99 $88,110.00 5.06% $4,458.36 $10,674.52

 Sports Play 1 9900 $874,170.00 7.59% $66,349.50 $105,905.69

 --------- -------- -------------- ----------- -----------

 Totals: 5 20116 $968,441.40 $70,946.49 $117,326.66

 Salesperson: Willie Al Roz

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Winners Club 4 13998 $1,572,775.90 7.59% $119,373.69 $157,277.59

 Winning Sports 1 3222 $48,777.20 3.38% $1,648.66 $4,877.72

 The Sportsman 1 1747 $27,415.50 3.38% $926.64 $2,741.55

 Play Outdoors 1 2510 $18,579.60 3.38% $627.99 $1,857.96

 --------- -------- -------------- ----------- -----------

 Totals: 7 21477 $1,667,548.20 $122,576.98 $166,754.82

 Salesperson: Art Tung

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Stop 1 23 $32.20 2.25% $.72 $1.98

 Winners Club 2 16057 $2,274,885.00 7.59% $172,663.77 $140,424.10

 Gear Up 1 3022 $107,144.00 7.59% $8,132.22 $6,613.78

 Sports Club 1 22 $279.40 2.25% $6.28 $17.24

 Sports Fans Shop 1 1044 $20,447.30 3.38% $691.11 $1,262.17

 L. A. Sports 1 1163 $979,198.10 7.59% $74,321.13 $60,443.94

 --------- -------- -------------- ----------- -----------

 Totals: 7 21331 $3,381,986.00 $255,815.23 $208,763.21

 Salesperson: Chuck Morgan

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Play 3 7422 $3,817,245.40 7.59% $289,728.92 $322,270.94

 Sports 4 You 1 3022 $398,335.40 7.59% $30,233.65 $33,629.46

 The Sportsman 1 3022 $285,229.40 7.59% $21,648.91 $24,080.49

 Sports 4 Winners 1 1100 $68,509.40 5.06% $3,466.57 $5,783.90

 Sports Club 1 12027 $1,324,256.10 7.59% $100,511.03 $111,800.32

 --------- -------- -------------- ----------- -----------

 Totals: 7 26593 $5,893,575.70 $445,589.08 $497,565.11

 Salesperson: Chris Preston

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Playing Ball 1 5535 $1,939,219.10 7.59% $147,186.72 $103,509.69

 Play Sports 1 5675 $225,130.80 7.59% $17,087.42 $12,016.80

 Winners Club 1 631 $14,069.70 2.25% $316.56 $750.99

 The Jock Shop 1 2332 $28,716.60 3.38% $970.62 $1,532.80

 --------- -------- -------------- ----------- -----------

 Totals: 4 14173 $2,207,136.20 $165,561.32 $117,810.28

 Salesperson: Edyth Phillips

 Customers: Number of Products Total for Discount Discount Commission

 Orders Ordered Order (if any) Amount Earned

 -------------------- --------- -------- -------------- -------- ----------- -----------

 Sports Play 2 3575 $92,409.90 5.06% $4,675.94 $3,911.43

 Winning Sports 1 11945 $56,651.40 5.06% $2,866.56 $2,397.88

 --------- -------- -------------- ----------- -----------

 Totals: 3 15520 $149,061.30 $7,542.50 $6,309.31

 Grand Totals: 33 119210 $14,267,748.80 $1,068,031.60 $1,114,529.39

Example: IGYTSALE response time from sale to ship

The following sample of IGYTSALE output shows response time between the sale

date in the United States and the date the sold products are shipped to Europe.

 Day of Report: Monday COBOL SPORTS 11/24/2003 03:12 Page: 1

 Response Time from USA Sale to European Ship

 Prod Units Sale Date/Time(PST) Ship Date Ship Response Time

 Code Sold YYYYMMDD HHMMSS YYYYMMDD Day Days

 ---- ----- -------- ------ -------- ---- -------------

 25 9999 19900226 010101 19900228 WED .95

 15 99 19900310 100530 19900403 TUE 23.57

 05 9900 19900418 222409 19900419 THU .06

 25 4 19900523 151010 19900623 SAT 30.36

Appendix H. Using sample programs 803

04 1100 19901110 003301 19901114 WED 2.97

 12 23 19901114 003205 19901117 SAT 1.97

 14 5111 19900118 101527 19900120 SAT 1.57

 04 5102 19901201 132013 19901203 MON 1.44

 04 300 19901221 191544 19901223 SUN 1.19

 05 500 19901210 211544 19901214 FRI 3.11

 04 100 19901211 000816 19901213 THU .99

 25 100 19901201 131544 19901203 MON 1.44

 25 100 19901112 073312 19901113 TUE .68

 14 1111 19901214 012510 19901216 SUN .94

 26 22 19901110 000034 19901113 TUE 1.99

 12 2000 19901110 154100 19901113 TUE 2.34

 04 1104 19901110 175001 19901113 TUE 2.25

 12 114 19901229 115522 19901230 SUN .50

 15 2000 19901110 190113 19901114 WED 3.20

 10 1440 19901112 001500 19901115 THU 1.98

 25 1104 19901118 120101 19901119 MON .49

 25 4 19901118 110030 19901119 MON .54

 12 144 19901114 010510 19901119 MON 3.95

 14 112 19901119 010101 19901122 THU 1.95

 26 321 19901117 173945 19901119 MON 1.26

 13 1221 19901101 135133 19901102 FRI .42

 10 22 19901029 210000 19901030 TUE .12

 14 35 19901130 160500 19901201 SAT .32

 11 9005 19901211 050505 19901212 WED .78

 06 990 19900511 214409 19900515 TUE 3.09

 13 1998 19900712 150100 19900716 MON 3.37

 26 31 19901010 185559 19901011 THU .21

 14 30 19901210 195500 19901212 WED 1.17

Preparing to run IGYTSALE

All files required by the IGYTSALE program (IGYTSALE, IGYTCRC, IGYTPRC,

IGYTSRC, IGYTABLE, and IGYTRANA) are on the product installation tape in the

IGY.V4R1M0.SIGYSAMP data set.

You can change data-set names and procedure-names at installation time. Check

with your system programmer to verify these names.

Do not change these options in the CBL statement in the source file for IGYTSALE:

v LIB

v NONUMBER

v SEQUENCE

v NONUMBER

v QUOTE

With these options in effect, the program might not cause any diagnostic messages

to be issued. You can use the sequence number string in the source file to search

for the language elements used.

When you run IGYTSALE, the following messages are printed to the SYSOUT data

set:

Program IGYTSALE Begins

There were 00041 records processed in this program

Program IGYTSALE Normal End

RELATED CONCEPTS

“IGYTSALE: nested program application” on page 798

804 Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Running IGYTSALE”

RELATED REFERENCES

“Input data for IGYTSALE” on page 799

“Reports produced by IGYTSALE” on page 801

“Language elements and concepts that are illustrated”

Running IGYTSALE

Use the following JCL to compile, link-edit, and run the IGYTSALE program. If

you want only to compile or only to compile and link-edit the program, change the

IGYWCLG cataloged procedure.

Insert the information for your system or installation in the fields that are shown

in lowercase letters (accounting information).

//IGYTSALE JOB (acct-info),’IGYTSALE’,MSGLEVEL=(1,1),TIME=(0,29)

//TEST EXEC IGYWCLG

//COBOL.SYSLIB DD DSN=IGY.V4R1M0.SIGYSAMP,DISP=SHR

//COBOL.SYSIN DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTSALE),DISP=SHR

//GO.SYSOUT DD SYSOUT=A

//GO.IGYTABLE DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTABLE),DISP=SHR

//GO.IGYTRANS DD DSN=IGY.V4R1M0.SIGYSAMP(IGYTRANA),DISP=SHR

//GO.IGYPRINT DD SYSOUT=A,DCB=BLKSIZE=133

//GO.IGYPRT2 DD SYSOUT=A,DCB=BLKSIZE=133

//

Language elements and concepts that are illustrated

The sample programs illustrate several COBOL language elements and concepts.

To find the applicable language element for a sample program, locate the

abbreviation for that program in the sequence string:

 Sample program Abbreviation

IGYTCARA IA

IGYTCARB IB

IGYTSALE IS

The following table lists the language elements and programming concepts that the

sample programs illustrate. The language element or concept is described, and the

sequence string is shown. The sequence string is the special character string that

appears in the sequence field of the source file. You can use this string as a search

argument for locating the elements in the listing.

 Language element or concept Sequence string

ACCEPT . . . FROM DAY-OF-WEEK IS0900

ACCEPT . . . FROM DATE IS0901

ACCEPT . . . FROM TIME IS0902

ADD . . . TO IS4550

AFTER ADVANCING IS2700

AFTER PAGE IS2600

ALL IS4200

Appendix H. Using sample programs 805

Language element or concept Sequence string

ASSIGN IS1101

AUTHOR IA0040

CALL IS0800

Callable services (Language Environment):

1. CEEDATM: format date or time output

2. CEEDCOD: feedback code check

3. CEEGMTO: UTC offset from local time

4. CEELOCT: local date and time

5. CEESECS: convert timestamp to seconds

1. IS0875, IS2575

2. IS0905

3. IS0904

4. IS0850

5. IS2350, IS2550

CLOSE files IS1900

Comma, semicolon, and space interchangeable IS3500, IS3600

COMMON statement for nested programs IS4600

Complex OCCURS DEPENDING ON IS0700, IS3700

COMPUTE IS4501

COMPUTE ROUNDED IS4500

CONFIGURATION SECTION IA0970

CONFIGURATION SECTION (optional) IS0200

CONTINUE statement IA5310, IA5380

COPY statement IS0500

DATA DIVISION (optional) IS5100

Data validation IA5130-6190

Do-until (PERFORM . . . TEST AFTER) IA4900-5010, IA7690-7770

Do-while (PERFORM . . . TEST BEFORE) IS1660

END-ADD IS2900

END-COMPUTE IS4510

END-EVALUATE IA6590, IS2450

END-IF IS1680

END-MULTIPLY IS3100

END-PERFORM IS1700

END PROGRAM IA9990

END-READ IS1800

END-SEARCH IS3400

ENVIRONMENT DIVISION (optional) IS0200

Error handling, termination of program IA4620, IA5080, IA7800-7980

EVALUATE statement IA6270-6590

EVALUATE . . . ALSO IS2400

EXIT PROGRAM not only statement in paragraph IS2000

Exponentiation IS4500

EXTERNAL clause IS1200

FILE-CONTROL entry for sequential file IA1190-1300

FILE-CONTROL entry for VSAM indexed file IA1070-1180

806 Enterprise COBOL for z/OS V4.1 Programming Guide

Language element or concept Sequence string

FILE SECTION (optional) IS0200

FILE STATUS code check IA4600-4630, IA4760-4790

FILLER (optional) IS0400

Flags, level-88, definition IA1730-1800, IA2440-2480, IA2710

Flags, level-88, testing IA4430, IA5200-5250

FLOATING POINT IS4400

GLOBAL statement IS0300

INITIAL statement for nested programs IS2300

INITIALIZE IS2500

Initializing a table in the DATA DIVISION IA2920-4260

Inline PERFORM statement IA4410-4520

I-O-CONTROL paragraphs (optional) IS0200

INPUT-OUTPUT SECTION (optional) IS0200

Intrinsic functions:

1. CURRENT-DATE

2. MAX

3. MEAN

4. MEDIAN

5. MIN

6. STANDARD-DEVIATION

7. UPPER-CASE

8. VARIANCE

9. WHEN-COMPILED

1. IA9005

2. IA9235

3. IA9215

4. IA9220

5. IA9240

6. IA9230

7. IA9015

8. IA9225

9. IA9000

IS (optional in all clauses) IS0700

LABEL RECORDS (optional) IS1150

LINKAGE SECTION IS4900

Mixing of indexes and subscripts IS3500

Mnemonic names IA1000

MOVE IS0903

MOVE CORRESPONDING statement IA4810, IA4830

MULTIPLY . . . GIVING IS3000

Nested IF statement, using END-IF IA5460-5830

Nested program IS1000

NEXT SENTENCE IS4300

NOT AT END IS1600

NULL IS4800

OBJECT-COMPUTER (optional) IS0200

OCCURS DEPENDING ON IS0710

ODO uses maximum length for receiving item IS1550

OPEN EXTEND IB2210

OPEN INPUT IS1400

OPEN OUTPUT IS1500

Appendix H. Using sample programs 807

Language element or concept Sequence string

ORGANIZATION (optional) IS1100

Page eject IA7180-7210

Parenthesis in abbreviated conditions IS4850

PERFORM . . . WITH TEST AFTER (Do-until) IA4900-5010, IA7690-7770

PERFORM . . . WITH TEST BEFORE (Do-while) IS1660

PERFORM . . . UNTIL IS5000

PERFORM . . . VARYING statement IA7690-7770

POINTER function IS4700

Print file FD entry IA1570-1620

Print report IA7100-7360

PROCEDURE DIVISION . . . USING IB1320-IB1650

PROGRAM-ID (30 characters allowed) IS0120

READ . . . INTO . . . AT END IS1550

REDEFINES statement IA1940, IA2060, IA2890, IA3320

Reference modification IS2425

Relational operator <= (less than or equal) IS4400

Relational operator >= (greater than or equal) IS2425

Relative subscripting IS4000

REPLACE IS4100

SEARCH statement IS3300

SELECT IS1100

Sequence number can contain any character IA, IB, IS

Sequential file processing IA4480-4510, IA4840-4870

Sequential table search, using PERFORM IA7690-7770

Sequential table search, using SEARCH IA5270-5320, IA5340-5390

SET INDEX IS3200

SET . . . TO TRUE statement IA4390, IA4500, IA4860, IA4980

SOURCE-COMPUTER (optional) IS0200

SPECIAL-NAMES paragraph (optional) IS0200

STRING statement IA6950, IA7050

Support for lowercase letters IS0100

TALLY IS1650

TITLE statement for nested programs IS0100

Update commuter record IA6200-6610

Update transaction work value spaces IB0790-IB1000

USAGE BINARY IS1300

USAGE PACKED-DECIMAL IS1301

Validate elements IB0810, IB0860, IB1000

VALUE with OCCURS IS0600

VALUE SPACE (S) IS0601

VALUE ZERO (S) (ES) IS0600

808 Enterprise COBOL for z/OS V4.1 Programming Guide

Language element or concept Sequence string

Variable-length table control variable IA5100

Variable-length table definition IA2090-2210

Variable-length table loading IA4840-4990

VSAM indexed file key definition IA1170

VSAM return-code display IA7800-7900

WORKING-STORAGE SECTION IS0250

Appendix H. Using sample programs 809

810 Enterprise COBOL for z/OS V4.1 Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2007 811

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

812 Enterprise COBOL for z/OS V4.1 Programming Guide

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

IBM

The IBM logo

ibm.com

AIX

BookManager

CICS

COBOL/370

DB2

DFSMS

DFSORT

IMS

IMS/ESA

Language Environment

MVS

MVS/ESA

MVS/XA

OS/390

RACF

Rational

REXX

System z

VTAM

WebSphere

z/Architecture

z/OS

zSeries

 Intel is a registered trademark of Intel Corporation in the United States and other

countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be the trademarks or service marks

of others.

Notices 813

814 Enterprise COBOL for z/OS V4.1 Programming Guide

Glossary

The terms in this glossary are defined in

accordance with their meaning in COBOL. These

terms might or might not have the same meaning

in other languages.

This glossary includes terms and definitions from

the following publications:

v ANSI INCITS 23-1985, Programming languages -

COBOL, as amended by ANSI INCITS 23a-1989,

Programming Languages - COBOL - Intrinsic

Function Module for COBOL, and ANSI INCITS

23b-1993, Programming Languages - Correction

Amendment for COBOL

v ANSI X3.172-2002, American National Standard

Dictionary for Information Systems

American National Standard definitions are

preceded by an asterisk (*).

This glossary includes definitions developed by

Sun Microsystems, Inc. for their Java and J2EE

glossaries. When Sun is the source of a definition,

that is indicated.

A

* abbreviated combined relation condition

The combined condition that results from

the explicit omission of a common subject

or a common subject and common

relational operator in a consecutive

sequence of relation conditions.

abend Abnormal termination of a program.

above the 16-MB line

Storage above the so-called 16-MB line (or

boundary) but below the 2-GB bar. This

storage is addressable only in 31-bit

mode. Before IBM introduced the

MVS/XA™ architecture in the 1980s, the

virtual storage for a program was limited

to 16 MB. Programs that have been

compiled with a 24-bit mode can address

only 16 MB of space, as though they were

kept under an imaginary storage line.

Since VS COBOL II, a program that has

been compiled with a 31-bit mode can be

above the 16-MB line.

* access mode

The manner in which records are to be

operated upon within a file.

* actual decimal point

The physical representation, using the

decimal point characters period (.) or

comma (,), of the decimal point position

in a data item.

actual document encoding

For an XML document, one of the

following encoding categories that the

XML parser determines by examining the

first few bytes of the document:

v ASCII

v EBCDIC

v Unicode UTF-16, either big-endian or

little-endian

v Other unsupported encoding

v No recognizable encoding

* alphabet-name

A user-defined word, in the

SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION, that assigns a

name to a specific character set or

collating sequence or both.

* alphabetic character

A letter or a space character.

alphabetic data item

A data item that is described with a

PICTURE character string that contains

only the symbol A. An alphabetic data

item has USAGE DISPLAY.

* alphanumeric character

Any character in the single-byte character

set of the computer.

alphanumeric data item

A general reference to a data item that is

described implicitly or explicitly as USAGE

DISPLAY, and that has category

alphanumeric, alphanumeric-edited, or

numeric-edited.

alphanumeric-edited data item

A data item that is described by a PICTURE

character string that contains at least one

instance of the symbol A or X and at least

one of the simple insertion symbols B, 0,

or /. An alphanumeric-edited data item

has USAGE DISPLAY.

© Copyright IBM Corp. 1991, 2007 815

* alphanumeric function

A function whose value is composed of a

string of one or more characters from the

alphanumeric character set of the

computer.

alphanumeric group item

A group item that is defined without a

GROUP-USAGE NATIONAL clause. For

operations such as INSPECT, STRING, and

UNSTRING, an alphanumeric group item is

processed as though all its content were

described as USAGE DISPLAY regardless of

the actual content of the group. For

operations that require processing of the

elementary items within a group, such as

MOVE CORRESPONDING, ADD CORRESPONDING,

or INITIALIZE, an alphanumeric group

item is processed using group semantics.

alphanumeric literal

A literal that has an opening delimiter

from the following set: ’, ", X’, X", Z’, or

Z". The string of characters can include

any character in the character set of the

computer.

* alternate record key

A key, other than the prime record key,

whose contents identify a record within

an indexed file.

ANSI (American National Standards Institute)

An organization that consists of

producers, consumers, and

general-interest groups and establishes the

procedures by which accredited

organizations create and maintain

voluntary industry standards in the

United States.

argument

(1) An identifier, a literal, an arithmetic

expression, or a function-identifier that

specifies a value to be used in the

evaluation of a function. (2) An operand

of the USING phrase of a CALL or INVOKE

statement, used for passing values to a

called program or an invoked method.

* arithmetic expression

An identifier of a numeric elementary

item, a numeric literal, such identifiers

and literals separated by arithmetic

operators, two arithmetic expressions

separated by an arithmetic operator, or an

arithmetic expression enclosed in

parentheses.

* arithmetic operation

The process caused by the execution of an

arithmetic statement, or the evaluation of

an arithmetic expression, that results in a

mathematically correct solution to the

arguments presented.

* arithmetic operator

A single character, or a fixed

two-character combination that belongs to

the following set:

 Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

* arithmetic statement

A statement that causes an arithmetic

operation to be executed. The arithmetic

statements are ADD, COMPUTE, DIVIDE,

MULTIPLY, and SUBTRACT.

array An aggregate that consists of data objects,

each of which can be uniquely referenced

by subscripting. An array is roughly

analogous to a COBOL table.

* ascending key

A key upon the values of which data is

ordered, starting with the lowest value of

the key up to the highest value of the key,

in accordance with the rules for

comparing data items.

ASCII

American National Standard Code for

Information Interchange. The standard

code uses a coded character set that is

based on 7-bit coded characters (8 bits

including parity check). The standard is

used for information interchange between

data processing systems, data

communication systems, and associated

equipment. The ASCII set consists of

control characters and graphic characters.

 IBM has defined an extension to ASCII

(characters 128-255).

assignment-name

A name that identifies the organization of

a COBOL file and the name by which it is

known to the system.

* assumed decimal point

A decimal point position that does not

816 Enterprise COBOL for z/OS V4.1 Programming Guide

involve the existence of an actual

character in a data item. The assumed

decimal point has logical meaning but no

physical representation.

AT END condition

A condition that is caused during the

execution of a READ, RETURN, or SEARCH

statement under certain conditions:

v A READ statement runs on a sequentially

accessed file when no next logical

record exists in the file, or when the

number of significant digits in the

relative record number is larger than

the size of the relative key data item, or

when an optional input file is not

available.

v A RETURN statement runs when no next

logical record exists for the associated

sort or merge file.

v A SEARCH statement runs when the

search operation terminates without

satisfying the condition specified in any

of the associated WHEN phrases.

B

big-endian

The default format that the mainframe

and the AIX workstation use to store

binary data and UTF-16 characters. In this

format, the least significant byte of a

binary data item is at the highest address

and the least significant byte of a UTF-16

character is at the highest address.

Compare with little-endian.

binary item

A numeric data item that is represented in

binary notation (on the base 2 numbering

system). The decimal equivalent consists

of the decimal digits 0 through 9, plus an

operational sign. The leftmost bit of the

item is the operational sign.

binary search

A dichotomizing search in which, at each

step of the search, the set of data elements

is divided by two; some appropriate

action is taken in the case of an odd

number.

* block

A physical unit of data that is normally

composed of one or more logical records.

For mass storage files, a block can contain

a portion of a logical record. The size of a

block has no direct relationship to the size

of the file within which the block is

contained or to the size of the logical

records that are either contained within

the block or that overlap the block.

Synonymous with physical record.

breakpoint

A place in a computer program, usually

specified by an instruction, where external

intervention or a monitor program can

interrupt the program as it runs.

buffer

A portion of storage that is used to hold

input or output data temporarily.

built-in function

See intrinsic function.

business method

A method of an enterprise bean that

implements the business logic or rules of

an application. (Sun)

byte A string that consists of a certain number

of bits, usually eight, treated as a unit,

and representing a character or a control

function.

byte order mark (BOM)

A Unicode character that can be used at

the start of UTF-16 or UTF-32 text to

indicate the byte order of subsequent text;

the byte order can be either big-endian or

little-endian.

bytecode

Machine-independent code that is

generated by the Java compiler and

executed by the Java interpreter. (Sun)

C

callable services

In Language Environment, a set of

services that a COBOL program can

invoke by using the conventional

Language Environment-defined call

interface. All programs that share the

Language Environment conventions can

use these services.

called program

A program that is the object of a CALL

statement. At run time the called program

and calling program are combined to

produce a run unit.

* calling program

A program that executes a CALL to another

program.

Glossary 817

case structure

A program-processing logic in which a

series of conditions is tested in order to

choose between a number of resulting

actions.

cataloged procedure

A set of job control statements that are

placed in a partitioned data set called the

procedure library (SYS1.PROCLIB). You

can use cataloged procedures to save time

and reduce errors in coding JCL.

CCSID

See coded character set identifier.

century window

A 100-year interval within which any

two-digit year is unique. Several types of

century window are available to COBOL

programmers:

v For windowed date fields, you use the

YEARWINDOW compiler option.

v For the windowing intrinsic functions

DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and

YEAR-TO-YYYY, you specify the century

window with argument-2.

v For Language Environment callable

services, you specify the century

window in CEESCEN.

* character

The basic indivisible unit of the language.

character encoding unit

A unit of data that corresponds to one

code point in a coded character set. One

or more character encoding units are used

to represent a character in a coded

character set. Also known as encoding unit.

 For USAGE NATIONAL, a character encoding

unit corresponds to one 2-byte code point

of UTF-16.

For USAGE DISPLAY, a character encoding

unit corresponds to a byte.

For USAGE DISPLAY-1, a character

encoding unit corresponds to a 2-byte

code point in the DBCS character set.

character position

The amount of physical storage or

presentation space required to hold or

present one character. The term applies to

any class of character. For specific classes

of characters, the following terms apply:

v Alphanumeric character position, for

characters represented in USAGE DISPLAY

v DBCS character position, for DBCS

characters represented in USAGE

DISPLAY-1

v National character position, for characters

represented in USAGE NATIONAL;

synonymous with character encoding unit

for UTF-16

character set

A collection of elements that are used to

represent textual information, but for

which no coded representation is

assumed. See also coded character set.

character string

A sequence of contiguous characters that

form a COBOL word, a literal, a PICTURE

character string, or a comment-entry. A

character string must be delimited by

separators.

checkpoint

A point at which information about the

status of a job and the system can be

recorded so that the job step can be

restarted later.

* class

The entity that defines common behavior

and implementation for zero, one, or

more objects. The objects that share the

same implementation are considered to be

objects of the same class. Classes can be

defined hierarchically, allowing one class

to inherit from another.

* class condition

The proposition (for which a truth value

can be determined) that the content of an

item is wholly alphabetic, is wholly

numeric, is wholly DBCS, is wholly Kanji,

or consists exclusively of the characters

that are listed in the definition of a

class-name.

* class definition

The COBOL source unit that defines a

class.

class hierarchy

A tree-like structure that shows

relationships among object classes. It

places one class at the top and one or

more layers of classes below it.

Synonymous with inheritance hierarchy.

818 Enterprise COBOL for z/OS V4.1 Programming Guide

* class identification entry

An entry in the CLASS-ID paragraph of the

IDENTIFICATION DIVISION; this entry

contains clauses that specify the

class-name and assign selected attributes

to the class definition.

class-name (object-oriented)

The name of an object-oriented COBOL

class definition.

* class-name (of data)

A user-defined word that is defined in the

SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION; this word assigns

a name to the proposition (for which a

truth value can be defined) that the

content of a data item consists exclusively

of the characters that are listed in the

definition of the class-name.

class object

The runtime object that represents a class.

* clause

An ordered set of consecutive COBOL

character strings whose purpose is to

specify an attribute of an entry.

client In object-oriented programming, a

program or method that requests services

from one or more methods in a class.

* COBOL character set

The set of characters used in writing

COBOL syntax. The complete COBOL

character set consists of the characters

listed below:

 Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (virgule, slash)

= Equal sign

$ Currency sign

, Comma (decimal point)

; Semicolon

. Period (decimal point, full stop)

″ Quotation mark

(Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol

: Colon

* COBOL word

See word.

code page

An assignment of graphic characters and

control function meanings to all code

points. For example, one code page could

assign characters and meanings to 256

code points for 8-bit code, and another

code page could assign characters and

meanings to 128 code points for 7-bit

code. For example, one of the IBM code

pages for English on the workstation is

IBM-1252 and on the host is IBM-1047. A

coded character set.

code point

A unique bit pattern that is defined in a

coded character set (code page). Graphic

symbols and control characters are

assigned to code points.

coded character set

A set of unambiguous rules that establish

a character set and the relationship

between the characters of the set and their

coded representation. Examples of coded

character sets are the character sets as

represented by ASCII or EBCDIC code

pages or by the UTF-16 encoding scheme

for Unicode.

coded character set identifier (CCSID)

An IBM-defined number in the range 1 to

65,535 that identifies a specific code page.

* collating sequence

The sequence in which the characters that

are acceptable to a computer are ordered

for purposes of sorting, merging,

comparing, and for processing indexed

files sequentially.

* column

A byte position within a print line or

within a reference format line. The

columns are numbered from 1, by 1,

starting at the leftmost position of the line

and extending to the rightmost position of

the line. A column holds one single-byte

character.

* combined condition

A condition that is the result of

connecting two or more conditions with

the AND or the OR logical operator. See also

condition and negated combined condition.

Glossary 819

* comment-entry

An entry in the IDENTIFICATION DIVISION

that can be any combination of characters

from the character set of the computer.

* comment line

A source program line represented by an

asterisk (*) in the indicator area of the line

and any characters from the character set

of the computer in area A and area B of

that line. The comment line serves only

for documentation. A special form of

comment line represented by a slant (/)

in the indicator area of the line and any

characters from the character set of the

computer in area A and area B of that line

causes page ejection before printing the

comment.

* common program

A program that, despite being directly

contained within another program, can be

called from any program directly or

indirectly contained in that other

program.

compatible date field

The meaning of the term compatible, when

applied to date fields, depends on the

COBOL division in which the usage

occurs:

v DATA DIVISION: Two date fields are

compatible if they have identical USAGE

and meet at least one of the following

conditions:

– They have the same date format.

– Both are windowed date fields,

where one consists only of a

windowed year, DATE FORMAT YY.

– Both are expanded date fields, where

one consists only of an expanded

year, DATE FORMAT YYYY.

– One has DATE FORMAT YYXXXX, and

the other has YYXX.

– One has DATE FORMAT YYYYXXXX, and

the other has YYYYXX.
A windowed date field can be

subordinate to a data item that is an

expanded date group. The two date

fields are compatible if the subordinate

date field has USAGE DISPLAY, starts two

bytes after the start of the group

expanded date field, and the two fields

meet at least one of the following

conditions:

– The subordinate date field has a

DATE FORMAT pattern with the same

number of Xs as the DATE FORMAT

pattern of the group date field.

– The subordinate date field has DATE

FORMAT YY.

– The group date field has DATE

FORMAT YYYYXXXX and the

subordinate date field has DATE

FORMAT YYXX.
v PROCEDURE DIVISION: Two date fields

are compatible if they have the same

date format except for the year part,

which can be windowed or expanded.

For example, a windowed date field

with DATE FORMAT YYXXX is compatible

with:

– Another windowed date field with

DATE FORMAT YYXXX

– An expanded date field with DATE

FORMAT YYYYXXX

* compile

(1) To translate a program expressed in a

high-level language into a program

expressed in an intermediate language,

assembly language, or a computer

language. (2) To prepare a

machine-language program from a

computer program written in another

programming language by making use of

the overall logic structure of the program,

or generating more than one computer

instruction for each symbolic statement,

or both, as well as performing the

function of an assembler.

* compile time

The time at which COBOL source code is

translated, by a COBOL compiler, to a

COBOL object program.

compiler

A program that translates source code

written in a higher-level language into

machine-language object code.

compiler-directing statement

A statement that causes the compiler to

take a specific action during compilation.

The standard compiler-directing

statements are COPY, REPLACE, and USE.

* complex condition

A condition in which one or more logical

operators act upon one or more

820 Enterprise COBOL for z/OS V4.1 Programming Guide

conditions. See also condition, negated

simple condition, and negated combined

condition.

complex ODO

Certain forms of the OCCURS DEPENDING ON

clause:

v Variably located item or group: A data

item described by an OCCURS clause

with the DEPENDING ON option is

followed by a nonsubordinate data

item or group. The group can be an

alphanumeric group or a national

group.

v Variably located table: A data item

described by an OCCURS clause with the

DEPENDING ON option is followed by a

nonsubordinate data item described by

an OCCURS clause.

v Table with variable-length elements: A

data item described by an OCCURS

clause contains a subordinate data item

described by an OCCURS clause with the

DEPENDING ON option.

v Index name for a table with

variable-length elements.

v Element of a table with variable-length

elements.

component

(1) A functional grouping of related files.

(2) In object-oriented programming, a

reusable object or program that performs

a specific function and is designed to

work with other components and

applications. JavaBeans is Sun

Microsystems, Inc.’s architecture for

creating components.

* computer-name

A system-name that identifies the

computer where the program is to be

compiled or run.

condition

An exception that has been enabled, or

recognized, by Language Environment

and thus is eligible to activate user and

language condition handlers. Any

alteration to the normal programmed flow

of an application. Conditions can be

detected by the hardware or the operating

system and result in an interrupt. They

can also be detected by language-specific

generated code or language library code.

* condition

A status of a program at run time for

which a truth value can be determined.

When used in these language

specifications in or in reference to

“condition” (condition-1, condition-2,. . .) of

a general format, the term refers to a

conditional expression that consists of

either a simple condition optionally

parenthesized or a combined condition

(consisting of the syntactically correct

combination of simple conditions, logical

operators, and parentheses) for which a

truth value can be determined. See also

simple condition, complex condition, negated

simple condition, combined condition, and

negated combined condition.

* conditional expression

A simple condition or a complex

condition specified in an EVALUATE, IF,

PERFORM, or SEARCH statement. See also

simple condition and complex condition.

* conditional phrase

A phrase that specifies the action to be

taken upon determination of the truth

value of a condition that results from the

execution of a conditional statement.

* conditional statement

A statement that specifies that the truth

value of a condition is to be determined

and that the subsequent action of the

object program depends on this truth

value.

* conditional variable

A data item one or more values of which

has a condition-name assigned to it.

* condition-name

A user-defined word that assigns a name

to a subset of values that a conditional

variable can assume; or a user-defined

word assigned to a status of an

implementor-defined switch or device.

* condition-name condition

The proposition (for which a truth value

can be determined) that the value of a

conditional variable is a member of the

set of values attributed to a

condition-name associated with the

conditional variable.

* CONFIGURATION SECTION

A section of the ENVIRONMENT DIVISION

Glossary 821

that describes overall specifications of

source and object programs and class

definitions.

CONSOLE

A COBOL environment-name associated

with the operator console.

contained program

A COBOL program that is nested within

another COBOL program.

* contiguous items

Items that are described by consecutive

entries in the DATA DIVISION, and that

bear a definite hierarchic relationship to

each other.

copybook

A file or library member that contains a

sequence of code that is included in the

source program at compile time using the

COPY statement. The file can be created by

the user, supplied by COBOL, or supplied

by another product. Synonymous with

copy file.

* counter

A data item used for storing numbers or

number representations in a manner that

permits these numbers to be increased or

decreased by the value of another

number, or to be changed or reset to zero

or to an arbitrary positive or negative

value.

cross-reference listing

The portion of the compiler listing that

contains information on where files,

fields, and indicators are defined,

referenced, and modified in a program.

currency-sign value

A character string that identifies the

monetary units stored in a numeric-edited

item. Typical examples are $, USD, and

EUR. A currency-sign value can be

defined by either the CURRENCY compiler

option or the CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION. If the CURRENCY

SIGN clause is not specified and the

NOCURRENCY compiler option is in effect,

the dollar sign ($) is used as the default

currency-sign value. See also currency

symbol.

currency symbol

A character used in a PICTURE clause to

indicate the position of a currency sign

value in a numeric-edited item. A

currency symbol can be defined by either

the CURRENCY compiler option or the

CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph of the

ENVIRONMENT DIVISION. If the CURRENCY

SIGN clause is not specified and the

NOCURRENCY compiler option is in effect,

the dollar sign ($) is used as the default

currency sign value and currency symbol.

Multiple currency symbols and currency

sign values can be defined. See also

currency sign value.

* current record

In file processing, the record that is

available in the record area associated

with a file.

* current volume pointer

A conceptual entity that points to the

current volume of a sequential file.

D

* data clause

A clause, appearing in a data description

entry in the DATA DIVISION of a COBOL

program, that provides information

describing a particular attribute of a data

item.

* data description entry

An entry in the DATA DIVISION of a

COBOL program that is composed of a

level-number followed by a data-name, if

required, and then followed by a set of

data clauses, as required.

DATA DIVISION

The division of a COBOL program or

method that describes the data to be

processed by the program or method: the

files to be used and the records contained

within them; internal working-storage

records that will be needed; data to be

made available in more than one program

in the COBOL run unit.

* data item

A unit of data (excluding literals) defined

by a COBOL program or by the rules for

function evaluation.

* data-name

A user-defined word that names a data

item described in a data description entry.

When used in the general formats,

data-name represents a word that must

822 Enterprise COBOL for z/OS V4.1 Programming Guide

not be reference-modified, subscripted, or

qualified unless specifically permitted by

the rules for the format.

date field

Any of the following:

v A data item whose data description

entry includes a DATE FORMAT clause.

v A value returned by one of the

following intrinsic functions:

DATE-OF-INTEGER

DATE-TO-YYYYMMDD

DATEVAL

DAY-OF-INTEGER

DAY-TO-YYYYDDD

YEAR-TO-YYYY

YEARWINDOW

v The conceptual data items DATE,

DATE YYYYMMDD, DAY, and DAY

YYYYDDD of the ACCEPT statement.

v The result of certain arithmetic

operations. For details, see Arithmetic

with date fields (Enterprise COBOL

Language Reference).

The term date field refers to both expanded

date field and windowed date field. See also

nondate.

date format

The date pattern of a date field, specified

in either of the following ways:

v Explicitly, by the DATE FORMAT clause or

DATEVAL intrinsic function argument-2

v Implicitly, by statements and intrinsic

functions that return date fields. For

details, see Date field (Enterprise

COBOL Language Reference).

DBCS

See double-byte character set (DBCS).

DBCS character

Any character defined in IBM’s

double-byte character set.

DBCS character position

See character position.

DBCS data item

A data item that is described by a PICTURE

character string that contains at least one

symbol G, or, when the NSYMBOL(DBCS)

compiler option is in effect, at least one

symbol N. A DBCS data item has USAGE

DISPLAY-1.

* debugging line

Any line with a D in the indicator area of

the line.

* debugging section

A section that contains a USE FOR

DEBUGGING statement.

* declarative sentence

A compiler-directing sentence that

consists of a single USE statement

terminated by the separator period.

* declaratives

A set of one or more special-purpose

sections, written at the beginning of the

PROCEDURE DIVISION, the first of which is

preceded by the key word DECLARATIVE

and the last of which is followed by the

key words END DECLARATIVES. A

declarative is composed of a section

header, followed by a USE

compiler-directing sentence, followed by a

set of zero, one, or more associated

paragraphs.

* de-edit

The logical removal of all editing

characters from a numeric-edited data

item in order to determine the unedited

numeric value of the item.

* delimited scope statement

Any statement that includes its explicit

scope terminator.

* delimiter

A character or a sequence of contiguous

characters that identify the end of a string

of characters and separate that string of

characters from the following string of

characters. A delimiter is not part of the

string of characters that it delimits.

dependent region

In IMS, the MVS virtual storage region

that contains message-driven programs,

batch programs, or online utilities.

* descending key

A key upon the values of which data is

ordered starting with the highest value of

key down to the lowest value of key, in

accordance with the rules for comparing

data items.

digit Any of the numerals from 0 through 9. In

COBOL, the term is not used to refer to

any other symbol.

Glossary 823

* digit position

The amount of physical storage required

to store a single digit. This amount can

vary depending on the usage specified in

the data description entry that defines the

data item.

* direct access

The facility to obtain data from storage

devices or to enter data into a storage

device in such a way that the process

depends only on the location of that data

and not on a reference to data previously

accessed.

display floating-point data item

A data item that is described implicitly or

explicitly as USAGE DISPLAY and that has a

PICTURE character string that describes an

external floating-point data item.

* division

A collection of zero, one, or more sections

or paragraphs, called the division body,

that are formed and combined in

accordance with a specific set of rules.

Each division consists of the division

header and the related division body.

There are four divisions in a COBOL

program: Identification, Environment,

Data, and Procedure.

* division header

A combination of words followed by a

separator period that indicates the

beginning of a division. The division

headers are:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

DLL See dynamic link library (DLL).

DLL application

An application that references imported

programs, functions, or variables.

DLL linkage

A CALL in a program that has been

compiled with the DLL and NODYNAM

options; the CALL resolves to an exported

name in a separate module, or to an

INVOKE of a method that is defined in a

separate module.

do construct

In structured programming, a DO

statement is used to group a number of

statements in a procedure. In COBOL, an

inline PERFORM statement functions in the

same way.

do-until

In structured programming, a do-until

loop will be executed at least once, and

until a given condition is true. In COBOL,

a TEST AFTER phrase used with the

PERFORM statement functions in the same

way.

do-while

In structured programming, a do-while

loop will be executed if, and while, a

given condition is true. In COBOL, a TEST

BEFORE phrase used with the PERFORM

statement functions in the same way.

document type definition (DTD)

The grammar for a class of XML

documents. See XML type definition.

double-byte character set (DBCS)

A set of characters in which each

character is represented by 2 bytes.

Languages such as Japanese, Chinese, and

Korean, which contain more symbols than

can be represented by 256 code points,

require double-byte character sets.

Because each character requires 2 bytes,

entering, displaying, and printing DBCS

characters requires hardware and

supporting software that are

DBCS-capable.

* dynamic access

An access mode in which specific logical

records can be obtained from or placed

into a mass storage file in a nonsequential

manner and obtained from a file in a

sequential manner during the scope of the

same OPEN statement.

dynamic CALL

A CALL literal statement in a program that

has been compiled with the DYNAM option

and the NODLL option, or a CALL identifier

statement in a program that has been

compiled with the NODLL option.

dynamic link library (DLL)

A file that contains executable code and

data that are bound to a program at load

time or run time, rather than during

linking. Several applications can share the

code and data in a DLL simultaneously.

Although a DLL is not part of the

824 Enterprise COBOL for z/OS V4.1 Programming Guide

executable file for a program, it can be

required for an executable file to run

properly.

dynamic storage area (DSA)

Dynamically acquired storage composed

of a register save area and an area

available for dynamic storage allocation

(such as program variables). A DSA is

allocated upon invocation of a program or

function and persists for the duration of

the invocation instance. DSAs are

generally allocated within stack segments

managed by Language Environment.

* EBCDIC (Extended Binary-Coded Decimal

Interchange Code)

A coded character set based on 8-bit

coded characters.

EBCDIC character

Any one of the symbols included in the

EBCDIC (Extended Binary-Coded-Decimal

Interchange Code) set.

edited data item

A data item that has been modified by

suppressing zeros or inserting editing

characters or both.

* editing character

A single character or a fixed two-character

combination belonging to the following

set:

 Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (virgule, slash)

EJB See Enterprise JavaBeans.

EJB container

A container that implements the EJB

component contract of the J2EE

architecture. This contract specifies a

runtime environment for enterprise beans

that includes security, concurrency, life

cycle management, transaction,

deployment, and other services. An EJB

container is provided by an EJB or J2EE

server. (Sun)

EJB server

Software that provides services to an EJB

container. An EJB server can host one or

more EJB containers. (Sun)

element (text element)

One logical unit of a string of text, such

as the description of a single data item or

verb, preceded by a unique code

identifying the element type.

* elementary item

A data item that is described as not being

further logically subdivided.

encapsulation

In object-oriented programming, the

technique that is used to hide the inherent

details of an object. The object provides

an interface that queries and manipulates

the data without exposing its underlying

structure. Synonymous with information

hiding.

enclave

When running under Language

Environment, an enclave is analogous to a

run unit. An enclave can create other

enclaves by a LINK and the use of the

system() function of C.

encoding unit

See character encoding unit.

end class marker

A combination of words, followed by a

separator period, that indicates the end of

a COBOL class definition. The end class

marker is:

END CLASS class-name.

end method marker

A combination of words, followed by a

separator period, that indicates the end of

a COBOL method definition. The end

method marker is:

END METHOD method-name.

* end of PROCEDURE DIVISION

The physical position of a COBOL source

program after which no further

procedures appear.

* end program marker

A combination of words, followed by a

Glossary 825

separator period, that indicates the end of

a COBOL source program. The end

program marker is:

END PROGRAM program-name.

enterprise bean

A component that implements a business

task and resides in an EJB container. (Sun)

Enterprise JavaBeans

A component architecture defined by Sun

Microsystems, Inc. for the development

and deployment of object-oriented,

distributed, enterprise-level applications.

* entry

Any descriptive set of consecutive clauses

terminated by a separator period and

written in the IDENTIFICATION DIVISION,

ENVIRONMENT DIVISION, or DATA DIVISION

of a COBOL program.

* environment clause

A clause that appears as part of an

ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION

One of the four main component parts of

a COBOL program, class definition, or

method definition. The ENVIRONMENT

DIVISION describes the computers where

the source program is compiled and those

where the object program is run. It

provides a linkage between the logical

concept of files and their records, and the

physical aspects of the devices on which

files are stored.

environment-name

A name, specified by IBM, that identifies

system logical units, printer and card

punch control characters, report codes,

program switches or all of these. When an

environment-name is associated with a

mnemonic-name in the ENVIRONMENT

DIVISION, the mnemonic-name can be

substituted in any format in which such

substitution is valid.

environment variable

Any of a number of variables that define

some aspect of the computing

environment, and are accessible to

programs that operate in that

environment. Environment variables can

affect the behavior of programs that are

sensitive to the environment in which

they operate.

execution time

See run time.

execution-time environment

See runtime environment.

expanded date field

A date field containing an expanded

(four-digit) year. See also date field and

expanded year.

expanded year

A date field that consists only of a

four-digit year. Its value includes the

century: for example, 1998. Compare with

windowed year.

* explicit scope terminator

A reserved word that terminates the scope

of a particular PROCEDURE DIVISION

statement.

exponent

A number that indicates the power to

which another number (the base) is to be

raised. Positive exponents denote

multiplication; negative exponents denote

division; and fractional exponents denote

a root of a quantity. In COBOL, an

exponential expression is indicated with

the symbol ** followed by the exponent.

* expression

An arithmetic or conditional expression.

* extend mode

The state of a file after execution of an

OPEN statement, with the EXTEND phrase

specified for that file, and before the

execution of a CLOSE statement, without

the REEL or UNIT phrase for that file.

Extensible Markup Language

See XML.

extensions

COBOL syntax and semantics supported

by IBM compilers in addition to those

described in Standard COBOL 85.

external code page

For XML documents, the value specified

by the CODEPAGE compiler option.

* external data

The data that is described in a program as

external data items and external file

connectors.

* external data item

A data item that is described as part of an

external record in one or more programs

826 Enterprise COBOL for z/OS V4.1 Programming Guide

of a run unit and that can be referenced

from any program in which it is

described.

* external data record

A logical record that is described in one

or more programs of a run unit and

whose constituent data items can be

referenced from any program in which

they are described.

external decimal data item

See zoned decimal data item and national

decimal data item.

* external file connector

A file connector that is accessible to one

or more object programs in the run unit.

external floating-point data item

See display floating-point data item and

national floating-point data item.

external program

The outermost program. A program that

is not nested.

* external switch

A hardware or software device, defined

and named by the implementor, which is

used to indicate that one of two alternate

states exists.

F

factory data

Data that is allocated once for a class and

shared by all instances of the class.

Factory data is declared in the

WORKING-STORAGE SECTION of the DATA

DIVISION in the FACTORY paragraph of the

class definition, and is equivalent to Java

private static data.

factory method

A method that is supported by a class

independently of an object instance.

Factory methods are declared in the

FACTORY paragraph of the class definition,

and are equivalent to Java public static

methods. They are typically used to

customize the creation of objects.

* figurative constant

A compiler-generated value referenced

through the use of certain reserved

words.

* file A collection of logical records.

* file attribute conflict condition

An unsuccessful attempt has been made

to execute an input-output operation on a

file and the file attributes, as specified for

that file in the program, do not match the

fixed attributes for that file.

* file clause

A clause that appears as part of any of

the following DATA DIVISION entries: file

description entry (FD entry) and

sort-merge file description entry (SD

entry).

* file connector

A storage area that contains information

about a file and is used as the linkage

between a file-name and a physical file

and between a file-name and its

associated record area.

* file control entry

A SELECT clause and all its subordinate

clauses that declare the relevant physical

attributes of a file.

FILE-CONTROL paragraph

A paragraph in the ENVIRONMENT DIVISION

in which the data files for a given source

unit are declared.

* file description entry

An entry in the FILE SECTION of the DATA

DIVISION that is composed of the level

indicator FD, followed by a file-name, and

then followed by a set of file clauses as

required.

* file-name

A user-defined word that names a file

connector described in a file description

entry or a sort-merge file description

entry within the FILE SECTION of the DATA

DIVISION.

* file organization

The permanent logical file structure

established at the time that a file is

created.

file position indicator

A conceptual entity that contains the

value of the current key within the key of

reference for an indexed file, or the record

number of the current record for a

sequential file, or the relative record

number of the current record for a

relative file, or indicates that no next

logical record exists, or that an optional

input file is not available, or that the AT

Glossary 827

END condition already exists, or that no

valid next record has been established.

* FILE SECTION

The section of the DATA DIVISION that

contains file description entries and

sort-merge file description entries together

with their associated record descriptions.

file system

The collection of files that conform to a

specific set of data-record and

file-description protocols, and a set of

programs that manage these files.

* fixed file attributes

Information about a file that is established

when a file is created and that cannot

subsequently be changed during the

existence of the file. These attributes

include the organization of the file

(sequential, relative, or indexed), the

prime record key, the alternate record

keys, the code set, the minimum and

maximum record size, the record type

(fixed or variable), the collating sequence

of the keys for indexed files, the blocking

factor, the padding character, and the

record delimiter.

* fixed-length record

A record associated with a file whose file

description or sort-merge description

entry requires that all records contain the

same number of bytes.

fixed-point item

A numeric data item defined with a

PICTURE clause that specifies the location

of an optional sign, the number of digits

it contains, and the location of an optional

decimal point. The format can be either

binary, packed decimal, or external

decimal.

floating point

A format for representing numbers in

which a real number is represented by a

pair of distinct numerals. In a

floating-point representation, the real

number is the product of the fixed-point

part (the first numeral) and a value

obtained by raising the implicit

floating-point base to a power denoted by

the exponent (the second numeral). For

example, a floating-point representation of

the number 0.0001234 is 0.1234 -3, where

0.1234 is the mantissa and -3 is the

exponent.

floating-point data item

A numeric data item that contains a

fraction and an exponent. Its value is

obtained by multiplying the fraction by

the base of the numeric data item raised

to the power that the exponent specifies.

* format

A specific arrangement of a set of data.

* function

A temporary data item whose value is

determined at the time the function is

referenced during the execution of a

statement.

* function-identifier

A syntactically correct combination of

character strings and separators that

references a function. The data item

represented by a function is uniquely

identified by a function-name with its

arguments, if any. A function-identifier

can include a reference-modifier. A

function-identifier that references an

alphanumeric function can be specified

anywhere in the general formats that an

identifier can be specified, subject to

certain restrictions. A function-identifier

that references an integer or numeric

function can be referenced anywhere in

the general formats that an arithmetic

expression can be specified.

function-name

A word that names the mechanism whose

invocation, along with required

arguments, determines the value of a

function.

function-pointer data item

A data item in which a pointer to an

entry point can be stored. A data item

defined with the USAGE IS

FUNCTION-POINTER clause contains the

address of a function entry point.

Typically used to communicate with C

and Java programs.

G

garbage collection

The automatic freeing by the Java runtime

system of the memory for objects that are

no longer referenced.

* global name

A name that is declared in only one

program but that can be referenced from

828 Enterprise COBOL for z/OS V4.1 Programming Guide

the program and from any program

contained within the program.

Condition-names, data-names, file-names,

record-names, report-names, and some

special registers can be global names.

global reference

A reference to an object that is outside the

scope of a method.

group item

(1) A data item that is composed of

subordinate data items. See alphanumeric

group item and national group item. (2)

When not qualified explicitly or by

context as a national group or an

alphanumeric group, the term refers to

groups in general.

grouping separator

A character used to separate units of

digits in numbers for ease of reading. The

default is the character comma.

H

header label

(1) A file label or data-set label that

precedes the data records on a unit of

recording media. (2) Synonym for

beginning-of-file label.

hide To redefine a factory or static method

(inherited from a parent class) in a

subclass.

hierarchical file system

A collection of files and directories that

are organized in a hierarchical structure

and can be accessed by using z/OS

UNIX.

* high-order end

The leftmost character of a string of

characters.

hiperspace

In a z/OS environment, a range of up to

2 GB of contiguous virtual storage

addresses that a program can use as a

buffer.

I

IBM COBOL extension

COBOL syntax and semantics supported

by IBM compilers in addition to those

described in Standard COBOL 85.

IDENTIFICATION DIVISION

One of the four main component parts of

a COBOL program, class definition, or

method definition. The IDENTIFICATION

DIVISION identifies the program, class, or

method. The IDENTIFICATION DIVISION

can include the following documentation:

author name, installation, or date.

* identifier

A syntactically correct combination of

character strings and separators that

names a data item. When referencing a

data item that is not a function, an

identifier consists of a data-name,

together with its qualifiers, subscripts,

and reference-modifier, as required for

uniqueness of reference. When referencing

a data item that is a function, a

function-identifier is used.

IGZCBSO

The Enterprise COBOL bootstrap routine.

It must be link-edited with any module

that contains a Enterprise COBOL

program.

* imperative statement

A statement that either begins with an

imperative verb and specifies an

unconditional action to be taken or is a

conditional statement that is delimited by

its explicit scope terminator (delimited

scope statement). An imperative statement

can consist of a sequence of imperative

statements.

* implicit scope terminator

A separator period that terminates the

scope of any preceding unterminated

statement, or a phrase of a statement that

by its occurrence indicates the end of the

scope of any statement contained within

the preceding phrase.

* index

A computer storage area or register, the

content of which represents the

identification of a particular element in a

table.

* index data item

A data item in which the values

associated with an index-name can be

stored in a form specified by the

implementor.

indexed data-name

An identifier that is composed of a

data-name, followed by one or more

index-names enclosed in parentheses.

Glossary 829

* indexed file

A file with indexed organization.

* indexed organization

The permanent logical file structure in

which each record is identified by the

value of one or more keys within that

record.

indexing

Synonymous with subscripting using

index-names.

* index-name

A user-defined word that names an index

associated with a specific table.

inheritance

A mechanism for using the

implementation of a class as the basis for

another class. By definition, the inheriting

class conforms to the inherited classes.

Enterprise COBOL does not support

multiple inheritance; a subclass has exactly

one immediate superclass.

inheritance hierarchy

See class hierarchy.

* initial program

A program that is placed into an initial

state every time the program is called in a

run unit.

* initial state

The state of a program when it is first

called in a run unit.

inline

In a program, instructions that are

executed sequentially, without branching

to routines, subroutines, or other

programs.

* input file

A file that is opened in the input mode.

* input mode

The state of a file after execution of an

OPEN statement, with the INPUT phrase

specified, for that file and before the

execution of a CLOSE statement, without

the REEL or UNIT phrase for that file.

* input-output file

A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION

The section of the ENVIRONMENT DIVISION

that names the files and the external

media required by an object program or

method and that provides information

required for transmission and handling of

data at run time.

* input-output statement

A statement that causes files to be

processed by performing operations on

individual records or on the file as a unit.

The input-output statements are ACCEPT

(with the identifier phrase), CLOSE, DELETE,

DISPLAY, OPEN, READ, REWRITE, SET (with

the TO ON or TO OFF phrase), START, and

WRITE.

* input procedure

A set of statements, to which control is

given during the execution of a SORT

statement, for the purpose of controlling

the release of specified records to be

sorted.

instance data

Data that defines the state of an object.

The instance data introduced by a class is

defined in the WORKING-STORAGE SECTION

of the DATA DIVISION in the OBJECT

paragraph of the class definition. The

state of an object also includes the state of

the instance variables introduced by

classes that are inherited by the current

class. A separate copy of the instance data

is created for each object instance.

* integer

(1) A numeric literal that does not include

any digit positions to the right of the

decimal point. (2) A numeric data item

defined in the DATA DIVISION that does

not include any digit positions to the

right of the decimal point. (3) A numeric

function whose definition provides that

all digits to the right of the decimal point

are zero in the returned value for any

possible evaluation of the function.

integer function

A function whose category is numeric and

whose definition does not include any

digit positions to the right of the decimal

point.

Interactive System Productivity Facility (ISPF)

An IBM software product that provides a

menu-driven interface for the TSO or VM

user. ISPF includes library utilities, a

powerful editor, and dialog management.

interlanguage communication (ILC)

The ability of routines written in different

830 Enterprise COBOL for z/OS V4.1 Programming Guide

programming languages to communicate.

ILC support allows the application

developer to readily build applications

from component routines written in a

variety of languages.

intermediate result

An intermediate field that contains the

results of a succession of arithmetic

operations.

* internal data

The data that is described in a program

and excludes all external data items and

external file connectors. Items described

in the LINKAGE SECTION of a program are

treated as internal data.

* internal data item

A data item that is described in one

program in a run unit. An internal data

item can have a global name.

internal decimal data item

A data item that is described as USAGE

PACKED-DECIMAL or USAGE COMP-3, and that

has a PICTURE character string that defines

the item as numeric (a valid combination

of symbols 9, S, P, or V). Synonymous

with packed-decimal data item.

* internal file connector

A file connector that is accessible to only

one object program in the run unit.

internal floating-point data item

A data item that is described as USAGE

COMP-1 or USAGE COMP-2. COMP-1 defines a

single-precision floating-point data item.

COMP-2 defines a double-precision

floating-point data item. There is no

PICTURE clause associated with an internal

floating-point data item.

* intrarecord data structure

The entire collection of groups and

elementary data items from a logical

record that a contiguous subset of the

data description entries defines. These

data description entries include all entries

whose level-number is greater than the

level-number of the first data description

entry describing the intra-record data

structure.

intrinsic function

A predefined function, such as a

commonly used arithmetic function,

called by a built-in function reference.

* invalid key condition

A condition, at run time, caused when a

specific value of the key associated with

an indexed or relative file is determined

to be not valid.

* I-O-CONTROL

The name of an ENVIRONMENT DIVISION

paragraph in which object program

requirements for rerun points, sharing of

same areas by several data files, and

multiple file storage on a single

input-output device are specified.

* I-O-CONTROL entry

An entry in the I-O-CONTROL paragraph of

the ENVIRONMENT DIVISION; this entry

contains clauses that provide information

required for the transmission and

handling of data on named files during

the execution of a program.

* I-O mode

The state of a file after execution of an

OPEN statement, with the I-O phrase

specified, for that file and before the

execution of a CLOSE statement without

the REEL or UNIT phase for that file.

* I-O status

A conceptual entity that contains the

two-character value indicating the

resulting status of an input-output

operation. This value is made available to

the program through the use of the FILE

STATUS clause in the file control entry for

the file.

is-a A relationship that characterizes classes

and subclasses in an inheritance hierarchy.

Subclasses that have an is-a relationship

to a class inherit from that class.

ISPF See Interactive System Productivity Facility

(ISPF).

iteration structure

A program processing logic in which a

series of statements is repeated while a

condition is true or until a condition is

true.

J

J2EE See Java 2 Platform, Enterprise Edition

(J2EE).

Java 2 Platform, Enterprise Edition (J2EE)

An environment for developing and

deploying enterprise applications, defined

Glossary 831

by Sun Microsystems, Inc. The J2EE

platform consists of a set of services,

application programming interfaces

(APIs), and protocols that provide the

functionality for developing multitiered,

Web-based applications. (Sun)

Java batch-processing program (JBP)

An IMS batch-processing program that

has access to online databases and output

message queues. JBPs run online, but like

programs in a batch environment, they

are started with JCL or in a TSO session.

Java batch-processing region

An IMS dependent region in which only

Java batch-processing programs are

scheduled.

Java Database Connectivity (JDBC)

A specification from Sun Microsystems

that defines an API that enables Java

programs to access databases.

Java message-processing program (JMP)

An IMS Java application program that is

driven by transactions and has access to

online IMS databases and message

queues.

Java message-processing region

An IMS dependent region in which only

Java message-processing programs are

scheduled.

Java Native Interface (JNI)

A programming interface that allows Java

code that runs inside a Java virtual

machine (JVM) to interoperate with

applications and libraries written in other

programming languages.

Java virtual machine (JVM)

A software implementation of a central

processing unit that runs compiled Java

programs.

JavaBeans

A portable, platform-independent,

reusable component model. (Sun)

JBP See Java batch-processing program (JBP).

JDBC See Java Database Connectivity (JDBC).

JMP See Java message-processing program (JMP).

job control language (JCL)

A control language used to identify a job

to an operating system and to describe

the job’s requirements.

JVM See Java virtual machine (JVM).

K

K When referring to storage capacity, two to

the tenth power; 1024 in decimal notation.

* key A data item that identifies the location of

a record, or a set of data items that serve

to identify the ordering of data.

* key of reference

The key, either prime or alternate,

currently being used to access records

within an indexed file.

* keyword

A reserved word or function-name whose

presence is required when the format in

which the word appears is used in a

source program.

kilobyte (KB)

One kilobyte equals 1024 bytes.

L

* language-name

A system-name that specifies a particular

programming language.

Language Environment-conforming

A characteristic of compiler products

(such as Enterprise COBOL, COBOL for

OS/390 & VM, COBOL for MVS & VM,

C/C++ for MVS & VM, PL/I for MVS &

VM) that produce object code conforming

to the Language Environment

conventions.

last-used state

A state that a program is in if its internal

values remain the same as when the

program was exited (the values are not

reset to their initial values).

* letter

A character belonging to one of the

following two sets:

1. Uppercase letters: A, B, C, D, E, F, G,

H, I, J, K, L, M, N, O, P, Q, R, S, T, U,

V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i,

j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,

z

* level indicator

Two alphabetic characters that identify a

specific type of file or a position in a

832 Enterprise COBOL for z/OS V4.1 Programming Guide

hierarchy. The level indicators in the DATA

DIVISION are: CD, FD, and SD.

* level-number

A user-defined word (expressed as a

two-digit number) that indicates the

hierarchical position of a data item or the

special properties of a data description

entry. Level-numbers in the range from 1

through 49 indicate the position of a data

item in the hierarchical structure of a

logical record. Level-numbers in the range

1 through 9 can be written either as a

single digit or as a zero followed by a

significant digit. Level-numbers 66, 77,

and 88 identify special properties of a

data description entry.

* library-name

A user-defined word that names a

COBOL library that the compiler is to use

for compiling a given source program.

* library text

A sequence of text words, comment lines,

the separator space, or the separator

pseudo-text delimiter in a COBOL library.

Lilian date

The number of days since the beginning

of the Gregorian calendar. Day one is

Friday, October 15, 1582. The Lilian date

format is named in honor of Luigi Lilio,

the creator of the Gregorian calendar.

* linage-counter

A special register whose value points to

the current position within the page body.

link (1) The combination of the link connection

(the transmission medium) and two link

stations, one at each end of the link

connection. A link can be shared among

multiple links in a multipoint or

token-ring configuration. (2) To

interconnect items of data or portions of

one or more computer programs; for

example, linking object programs by a

linkage editor to produce an executable

file.

LINKAGE SECTION

The section in the DATA DIVISION of the

called program or invoked method that

describes data items available from the

calling program or invoking method. Both

the calling program or invoking method

and the called program or invoked

method can refer to these data items

linker A term that refers to either the z/OS

linkage editor or the z/OS binder.

literal

A character string whose value is

specified either by the ordered set of

characters comprising the string or by the

use of a figurative constant.

little-endian

The default format that Intel processors

use to store binary data and UTF-16

characters. In this format, the most

significant byte of a binary data item is at

the highest address and the most

significant byte of a UTF-16 character is at

the highest address. Compare with

big-endian.

local reference

A reference to an object that is within the

scope of your method.

locale A set of attributes for a program

execution environment that indicates

culturally sensitive considerations, such as

character code page, collating sequence,

date and time format, monetary value

representation, numeric value

representation, or language.

* LOCAL-STORAGE SECTION

The section of the DATA DIVISION that

defines storage that is allocated and freed

on a per-invocation basis, depending on

the value assigned in the VALUE clauses.

* logical operator

One of the reserved words AND, OR, or

NOT. In the formation of a condition,

either AND, or OR, or both can be used

as logical connectives. NOT can be used

for logical negation.

* logical record

The most inclusive data item. The

level-number for a record is 01. A record

can be either an elementary item or a

group of items. Synonymous with record.

* low-order end

The rightmost character of a string of

characters.

M

main program

In a hierarchy of programs and

Glossary 833

subroutines, the first program that

receives control when the programs are

run within a process.

makefile

A text file that contains a list of the files

for your application. The make utility

uses this file to update the target files

with the latest changes.

* mass storage

A storage medium in which data can be

organized and maintained in both a

sequential manner and a nonsequential

manner.

* mass storage device

A device that has a large storage capacity,

such as a magnetic disk.

* mass storage file

A collection of records that is stored in a

mass storage medium.

* megabyte (MB)

One megabyte equals 1,048,576 bytes.

* merge file

A collection of records to be merged by a

MERGE statement. The merge file is created

and can be used only by the merge

function.

message-processing program (MPP)

An IMS application program that is

driven by transactions and has access to

online IMS databases and message

queues.

message queue

The data set on which messages are

queued before being processed by an

application program or sent to a terminal.

method

Procedural code that defines an operation

supported by an object and that is

executed by an INVOKE statement on that

object.

* method definition

The COBOL source code that defines a

method.

* method identification entry

An entry in the METHOD-ID paragraph of

the IDENTIFICATION DIVISION; this entry

contains a clause that specifies the

method-name.

method invocation

A communication from one object to

another that requests the receiving object

to execute a method.

method-name

The name of an object-oriented operation.

When used to invoke the method, the

name can be an alphanumeric or national

literal or a category alphanumeric or

category national data item. When used

in the METHOD-ID paragraph to define the

method, the name must be an

alphanumeric or national literal.

* mnemonic-name

A user-defined word that is associated in

the ENVIRONMENT DIVISION with a

specified implementor-name.

module definition file

A file that describes the code segments

within a load module.

MPP See message-processing program (MPP).

multitasking

A mode of operation that provides for the

concurrent, or interleaved, execution of

two or more tasks.

multithreading

Concurrent operation of more than one

path of execution within a computer.

Synonymous with multiprocessing.

N

name A word (composed of not more than 30

characters) that defines a COBOL

operand.

namespace

See XML namespace.

national character

(1) A UTF-16 character in a USAGE

NATIONAL data item or national literal. (2)

Any character represented in UTF-16.

national character position

See character position.

national data item

A data item of category national,

national-edited, or numeric-edited of

USAGE NATIONAL.

national decimal data item

An external decimal data item that is

described implicitly or explicitly as USAGE

834 Enterprise COBOL for z/OS V4.1 Programming Guide

 |
 |

NATIONAL and that contains a valid

combination of PICTURE symbols 9, S, P,

and V.

national-edited data item

A data item that is described by a PICTURE

character string that contains at least one

instance of the symbol N and at least one

of the simple insertion symbols B, 0, or /.

A national-edited data item has USAGE

NATIONAL.

national floating-point data item

An external floating-point data item that

is described implicitly or explicitly as

USAGE NATIONAL and that has a PICTURE

character string that describes a

floating-point data item.

national group item

A group item that is explicitly or

implicitly described with a GROUP-USAGE

NATIONAL clause. A national group item is

processed as though it were defined as an

elementary data item of category national

for operations such as INSPECT, STRING,

and UNSTRING. This processing ensures

correct padding and truncation of

national characters, as contrasted with

defining USAGE NATIONAL data items

within an alphanumeric group item. For

operations that require processing of the

elementary items within a group, such as

MOVE CORRESPONDING, ADD CORRESPONDING,

and INITIALIZE, a national group is

processed using group semantics.

* native character set

The implementor-defined character set

associated with the computer specified in

the OBJECT-COMPUTER paragraph.

* native collating sequence

The implementor-defined collating

sequence associated with the computer

specified in the OBJECT-COMPUTER

paragraph.

native method

A Java method with an implementation

that is written in another programming

language, such as COBOL.

* negated combined condition

The NOT logical operator immediately

followed by a parenthesized combined

condition. See also condition and combined

condition.

* negated simple condition

The NOT logical operator immediately

followed by a simple condition. See also

condition and simple condition.

nested program

A program that is directly contained

within another program.

* next executable sentence

The next sentence to which control will be

transferred after execution of the current

statement is complete.

* next executable statement

The next statement to which control will

be transferred after execution of the

current statement is complete.

* next record

The record that logically follows the

current record of a file.

* noncontiguous items

Elementary data items in the

WORKING-STORAGE SECTION and LINKAGE

SECTION that bear no hierarchic

relationship to other data items.

nondate

Any of the following:

v A data item whose date description

entry does not include the DATE FORMAT

clause

v A literal

v A date field that has been converted

using the UNDATE function

v A reference-modified date field

v The result of certain arithmetic

operations that can include date field

operands; for example, the difference

between two compatible date fields

null A figurative constant that is used to

assign, to pointer data items, the value of

an address that is not valid. NULLS can be

used wherever NULL can be used.

* numeric character

A character that belongs to the following

set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item

(1) A data item whose description restricts

its content to a value represented by

characters chosen from the digits 0

through 9. If signed, the item can also

contain a +, -, or other representation of

an operational sign. (2) A data item of

Glossary 835

category numeric, internal floating-point,

or external floating-point. A numeric data

item can have USAGE DISPLAY, NATIONAL,

PACKED-DECIMAL, BINARY, COMP, COMP-1,

COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item

A data item that contains numeric data in

a form suitable for use in printed output.

It can consist of external decimal digits

from 0 through 9, the decimal separator,

commas, the currency sign, sign control

characters, and other editing characters. A

numeric-edited item can be represented in

either USAGE DISPLAY or USAGE NATIONAL.

* numeric function

A function whose class and category are

numeric but that for some possible

evaluation does not satisfy the

requirements of integer functions.

* numeric literal

A literal composed of one or more

numeric characters that can contain a

decimal point or an algebraic sign, or

both. The decimal point must not be the

rightmost character. The algebraic sign, if

present, must be the leftmost character.

O

object

An entity that has state (its data values)

and operations (its methods). An object is

a way to encapsulate state and behavior.

Each object in the class is said to be an

instance of the class.

object code

Output from a compiler or assembler that

is itself executable machine code or is

suitable for processing to produce

executable machine code.

* OBJECT-COMPUTER

The name of an ENVIRONMENT DIVISION

paragraph in which the computer

environment, where the object program is

run, is described.

* object computer entry

An entry in the OBJECT-COMPUTER

paragraph of the ENVIRONMENT DIVISION;

this entry contains clauses that describe

the computer environment in which the

object program is to be executed.

object deck

A portion of an object program suitable as

input to a linkage editor. Synonymous

with object module and text deck.

object instance

See object.

object module

Synonym for object deck or text deck.

* object of entry

A set of operands and reserved words,

within a DATA DIVISION entry of a COBOL

program, that immediately follows the

subject of the entry.

object-oriented programming

A programming approach based on the

concepts of encapsulation and inheritance.

Unlike procedural programming

techniques, object-oriented programming

concentrates on the data objects that

comprise the problem and how they are

manipulated, not on how something is

accomplished.

object program

A set or group of executable

machine-language instructions and other

material designed to interact with data to

provide problem solutions. In this context,

an object program is generally the

machine language result of the operation

of a COBOL compiler on a source

program or class definition. Where there

is no danger of ambiguity, the word

program can be used in place of object

program.

object reference

A value that identifies an instance of a

class. If the class is not specified, the

object reference is universal and can

apply to instances of any class.

* object time

The time at which an object program is

executed. Synonymous with run time.

* obsolete element

A COBOL language element in Standard

COBOL 85 that was deleted from

Standard COBOL 2002.

ODO object

In the example below, X is the object of

the OCCURS DEPENDING ON clause (ODO

object).

836 Enterprise COBOL for z/OS V4.1 Programming Guide

WORKING-STORAGE SECTION

01 TABLE-1.

 05 X PICS9.

 05 Y OCCURS 3 TIMES

 DEPENDING ON X PIC X.

The value of the ODO object determines

how many of the ODO subject appear in

the table.

ODO subject

In the example above, Y is the subject of

the OCCURS DEPENDING ON clause (ODO

subject). The number of Y ODO subjects

that appear in the table depends on the

value of X.

* open mode

The state of a file after execution of an

OPEN statement for that file and before the

execution of a CLOSE statement without

the REEL or UNIT phrase for that file. The

particular open mode is specified in the

OPEN statement as either INPUT, OUTPUT,

I-O, or EXTEND.

* operand

(1) The general definition of operand is

“the component that is operated upon.”

(2) For the purposes of this document,

any lowercase word (or words) that

appears in a statement or entry format

can be considered to be an operand and,

as such, is an implied reference to the

data indicated by the operand.

operation

A service that can be requested of an

object.

* operational sign

An algebraic sign that is associated with a

numeric data item or a numeric literal, to

indicate whether its value is positive or

negative.

optional file

A file that is declared as being not

necessarily available each time the object

program is run.

* optional word

A reserved word that is included in a

specific format only to improve the

readability of the language. Its presence is

optional to the user when the format in

which the word appears is used in a

source unit.

* output file

A file that is opened in either output

mode or extend mode.

* output mode

The state of a file after execution of an

OPEN statement, with the OUTPUT or EXTEND

phrase specified, for that file and before

the execution of a CLOSE statement

without the REEL or UNIT phrase for that

file.

* output procedure

A set of statements to which control is

given during execution of a SORT

statement after the sort function is

completed, or during execution of a MERGE

statement after the merge function reaches

a point at which it can select the next

record in merged order when requested.

overflow condition

A condition that occurs when a portion of

the result of an operation exceeds the

capacity of the intended unit of storage.

overload

To define a method with the same name

as another method that is available in the

same class, but with a different signature.

See also signature.

override

To redefine an instance method (inherited

from a parent class) in a subclass.

P

package

A group of related Java classes, which can

be imported individually or as a whole.

packed-decimal data item

See internal decimal data item.

padding character

An alphanumeric or national character

that is used to fill the unused character

positions in a physical record.

page A vertical division of output data that

represents a physical separation of the

data. The separation is based on internal

logical requirements or external

characteristics of the output medium or

both.

* page body

That part of the logical page in which

lines can be written or spaced or both.

Glossary 837

* paragraph

In the PROCEDURE DIVISION, a

paragraph-name followed by a separator

period and by zero, one, or more

sentences. In the IDENTIFICATION

DIVISION and ENVIRONMENT DIVISION, a

paragraph header followed by zero, one,

or more entries.

* paragraph header

A reserved word, followed by the

separator period, that indicates the

beginning of a paragraph in the

IDENTIFICATION DIVISION and

ENVIRONMENT DIVISION. The permissible

paragraph headers in the IDENTIFICATION

DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION

 DIVISION)

CLASS-ID. (Class IDENTIFICATION DIVISION)

METHOD-ID. (Method IDENTIFICATION

 DIVISION)

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

The permissible paragraph headers in the

ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

REPOSITORY. (Program or Class

 CONFIGURATION SECTION)

FILE-CONTROL.

I-O-CONTROL.

* paragraph-name

A user-defined word that identifies and

begins a paragraph in the PROCEDURE

DIVISION.

parameter

(1) Data passed between a calling

program and a called program. (2) A data

element in the USING phrase of a method

invocation. Arguments provide additional

information that the invoked method can

use to perform the requested operation.

Persistent Reusable JVM

A JVM that can be serially reused for

transaction processing by resetting the

JVM between transactions. The reset

phase restores the JVM to a known

initialization state.

* phrase

An ordered set of one or more

consecutive COBOL character strings that

form a portion of a COBOL procedural

statement or of a COBOL clause.

* physical record

See block.

pointer data item

A data item in which address values can

be stored. Data items are explicitly

defined as pointers with the USAGE IS

POINTER clause. ADDRESS OF special

registers are implicitly defined as pointer

data items. Pointer data items can be

compared for equality or moved to other

pointer data items.

port (1) To modify a computer program to

enable it to run on a different platform.

(2) In the Internet suite of protocols, a

specific logical connector between the

Transmission Control Protocol (TCP) or

the User Datagram Protocol (UDP) and a

higher-level protocol or application. A

port is identified by a port number.

portability

The ability to transfer an application

program from one application platform to

another with relatively few changes to the

source program.

preinitialization

The initialization of the COBOL runtime

environment in preparation for multiple

calls from programs, especially

non-COBOL programs. The environment

is not terminated until an explicit

termination.

* prime record key

A key whose contents uniquely identify a

record within an indexed file.

* priority-number

A user-defined word that classifies

sections in the PROCEDURE DIVISION for

purposes of segmentation. Segment

numbers can contain only the characters 0

through 9. A segment number can be

expressed as either one or two digits.

private

As applied to factory data or instance

data, accessible only by methods of the

class that defines the data.

* procedure

A paragraph or group of logically

successive paragraphs, or a section or

838 Enterprise COBOL for z/OS V4.1 Programming Guide

group of logically successive sections,

within the PROCEDURE DIVISION.

* procedure branching statement

A statement that causes the explicit

transfer of control to a statement other

than the next executable statement in the

sequence in which the statements are

written in the source code. The procedure

branching statements are: ALTER, CALL,

EXIT, EXIT PROGRAM, GO TO, MERGE (with the

OUTPUT PROCEDURE phrase), PERFORM and

SORT (with the INPUT PROCEDURE or OUTPUT

PROCEDURE phrase), XML PARSE.

PROCEDURE DIVISION

The COBOL division that contains

instructions for solving a problem.

procedure integration

One of the functions of the COBOL

optimizer is to simplify calls to performed

procedures or contained programs.

 PERFORM procedure integration is the

process whereby a PERFORM statement is

replaced by its performed procedures.

Contained program procedure integration

is the process where a call to a contained

program is replaced by the program code.

* procedure-name

A user-defined word that is used to name

a paragraph or section in the PROCEDURE

DIVISION. It consists of a paragraph-name

(which can be qualified) or a

section-name.

procedure-pointer data item

A data item in which a pointer to an

entry point can be stored. A data item

defined with the USAGE IS

PROCEDURE-POINTER clause contains the

address of a procedure entry point.

Typically used to communicate with

COBOL and Language Environment

programs.

process

The course of events that occurs during

the execution of all or part of a program.

Multiple processes can run concurrently,

and programs that run within a process

can share resources.

program

(1) A sequence of instructions suitable for

processing by a computer. Processing may

include the use of a compiler to prepare

the program for execution, as well as a

runtime environment to execute it. (2) A

logical assembly of one or more

interrelated modules. Multiple copies of

the same program can be run in different

processes.

* program identification entry

In the PROGRAM-ID paragraph of the

IDENTIFICATION DIVISION, an entry that

contains clauses that specify the

program-name and assign selected

program attributes to the program.

* program-name

In the IDENTIFICATION DIVISION and the

end program marker, a user-defined word

or alphanumeric literal that identifies a

COBOL source program.

project

The complete set of data and actions that

are required to build a target, such as a

dynamic link library (DLL) or other

executable (EXE).

* pseudo-text

A sequence of text words, comment lines,

or the separator space in a source

program or COBOL library bounded by,

but not including, pseudo-text delimiters.

* pseudo-text delimiter

Two contiguous equal sign characters (==)

used to delimit pseudo-text.

* punctuation character

A character that belongs to the following

set:

 Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

″ Quotation mark

(Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

QSAM (queued sequential access method)

An extended version of the basic

sequential access method (BSAM). When

this method is used, a queue is formed of

input data blocks that are awaiting

processing or of output data blocks that

Glossary 839

have been processed and are awaiting

transfer to auxiliary storage or to an

output device.

* qualified data-name

An identifier that is composed of a

data-name followed by one or more sets

of either of the connectives OF and IN

followed by a data-name qualifier.

* qualifier

(1) A data-name or a name associated

with a level indicator that is used in a

reference either together with another

data-name (which is the name of an item

that is subordinate to the qualifier) or

together with a condition-name. (2) A

section-name that is used in a reference

together with a paragraph-name specified

in that section. (3) A library-name that is

used in a reference together with a

text-name associated with that library.

R

* random access

An access mode in which the

program-specified value of a key data

item identifies the logical record that is

obtained from, deleted from, or placed

into a relative or indexed file.

* record

See logical record.

* record area

A storage area allocated for the purpose

of processing the record described in a

record description entry in the FILE

SECTION of the DATA DIVISION. In the FILE

SECTION, the current number of character

positions in the record area is determined

by the explicit or implicit RECORD clause.

* record description

See record description entry.

* record description entry

The total set of data description entries

associated with a particular record.

Synonymous with record description.

record key

A key whose contents identify a record

within an indexed file.

* record-name

A user-defined word that names a record

described in a record description entry in

the DATA DIVISION of a COBOL program.

* record number

The ordinal number of a record in the file

whose organization is sequential.

recording mode

The format of the logical records in a file.

Recording mode can be F (fixed length), V

(variable length), S (spanned), or U

(undefined).

recursion

A program calling itself or being directly

or indirectly called by a one of its called

programs.

recursively capable

A program is recursively capable (can be

called recursively) if the RECURSIVE

attribute is on the PROGRAM-ID statement.

reel A discrete portion of a storage medium,

the dimensions of which are determined

by each implementor that contains part of

a file, all of a file, or any number of files.

Synonymous with unit and volume.

reentrant

The attribute of a program or routine that

allows more than one user to share a

single copy of a load module.

* reference format

A format that provides a standard method

for describing COBOL source programs.

reference modification

A method of defining a new category

alphanumeric, category DBCS, or category

national data item by specifying the

leftmost character and length relative to

the leftmost character position of a USAGE

DISPLAY, DISPLAY-1, or NATIONAL data

item.

* reference-modifier

A syntactically correct combination of

character strings and separators that

defines a unique data item. It includes a

delimiting left parenthesis separator, the

leftmost character position, a colon

separator, optionally a length, and a

delimiting right parenthesis separator.

* relation

See relational operator or relation condition.

* relation character

A character that belongs to the following

set:

840 Enterprise COBOL for z/OS V4.1 Programming Guide

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition

The proposition (for which a truth value

can be determined) that the value of an

arithmetic expression, data item,

alphanumeric literal, or index-name has a

specific relationship to the value of

another arithmetic expression, data item,

alphanumeric literal, or index name. See

also relational operator.

* relational operator

A reserved word, a relation character, a

group of consecutive reserved words, or a

group of consecutive reserved words and

relation characters used in the

construction of a relation condition. The

permissible operators and their meanings

are:

 Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL

TO

Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file

A file with relative organization.

* relative key

A key whose contents identify a logical

record in a relative file.

* relative organization

The permanent logical file structure in

which each record is uniquely identified

by an integer value greater than zero,

which specifies the logical ordinal

position of the record in the file.

* relative record number

The ordinal number of a record in a file

whose organization is relative. This

number is treated as a numeric literal that

is an integer.

* reserved word

A COBOL word that is specified in the

list of words that can be used in a

COBOL source program, but that must

not appear in the program as a

user-defined word or system-name.

* resource

A facility or service, controlled by the

operating system, that an executing

program can use.

* resultant identifier

A user-defined data item that is to contain

the result of an arithmetic operation.

reusable environment

A reusable environment is created when

you establish an assembler program as

the main program by using either the old

COBOL interfaces for preinitialization

(functions ILBOSTP0 and IGZERRE, and

the RTEREUS runtime option), or the

Language Environment interface,

CEEPIPI.

routine

A set of statements in a COBOL program

that causes the computer to perform an

operation or series of related operations.

In Language Environment, refers to either

a procedure, function, or subroutine.

* routine-name

A user-defined word that identifies a

procedure written in a language other

than COBOL.

* run time

The time at which an object program is

executed. Synonymous with object time.

runtime environment

The environment in which a COBOL

program executes.

* run unit

A stand-alone object program, or several

object programs, that interact by means of

COBOL CALL or INVOKE statements and

function at run time as an entity.

Glossary 841

S

SBCS See single-byte character set (SBCS).

scope terminator

A COBOL reserved word that marks the

end of certain PROCEDURE DIVISION

statements. It can be either explicit

(END-ADD, for example) or implicit

(separator period).

* section

A set of zero, one, or more paragraphs or

entities, called a section body, the first of

which is preceded by a section header.

Each section consists of the section header

and the related section body.

* section header

A combination of words followed by a

separator period that indicates the

beginning of a section in any of these

divisions: ENVIRONMENT, DATA, or

PROCEDURE. In the ENVIRONMENT DIVISION

and DATA DIVISION, a section header is

composed of reserved words followed by

a separator period. The permissible

section headers in the ENVIRONMENT

DIVISION are:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

The permissible section headers in the

DATA DIVISION are:

FILE SECTION.

WORKING-STORAGE SECTION.

LOCAL-STORAGE SECTION.

LINKAGE SECTION.

In the PROCEDURE DIVISION, a section

header is composed of a section-name,

followed by the reserved word SECTION,

followed by a separator period.

* section-name

A user-defined word that names a section

in the PROCEDURE DIVISION.

selection structure

A program processing logic in which one

or another series of statements is

executed, depending on whether a

condition is true or false.

* sentence

A sequence of one or more statements, the

last of which is terminated by a separator

period.

* separately compiled program

A program that, together with its

contained programs, is compiled

separately from all other programs.

* separator

A character or two or more contiguous

characters used to delimit character

strings.

* separator comma

A comma (,) followed by a space used to

delimit character strings.

* separator period

A period (.) followed by a space used to

delimit character strings.

* separator semicolon

A semicolon (;) followed by a space used

to delimit character strings.

sequence structure

A program processing logic in which a

series of statements is executed in

sequential order.

* sequential access

An access mode in which logical records

are obtained from or placed into a file in

a consecutive predecessor-to-successor

logical record sequence determined by the

order of records in the file.

* sequential file

A file with sequential organization.

* sequential organization

The permanent logical file structure in

which a record is identified by a

predecessor-successor relationship

established when the record is placed into

the file.

serial search

A search in which the members of a set

are consecutively examined, beginning

with the first member and ending with

the last.

session bean

In EJB, an enterprise bean that is created

by a client and that usually exists only for

the duration of a single client/server

session. (Sun)

77-level-description-entry

A data description entry that describes a

noncontiguous data item that has

level-number 77.

842 Enterprise COBOL for z/OS V4.1 Programming Guide

* sign condition

The proposition (for which a truth value

can be determined) that the algebraic

value of a data item or an arithmetic

expression is either less than, greater than,

or equal to zero.

signature

(1) The name of an operation and its

parameters. (2) The name of a method

and the number and types of its formal

parameters.

* simple condition

Any single condition chosen from this set:

v Relation condition

v Class condition

v Condition-name condition

v Switch-status condition

v Sign condition

See also condition and negated simple

condition.

single-byte character set (SBCS)

A set of characters in which each

character is represented by a single byte.

See also ASCII and EBCDIC (Extended

Binary-Coded Decimal Interchange Code).

slack bytes

Bytes inserted between data items or

records to ensure correct alignment of

some numeric items. Slack bytes contain

no meaningful data. In some cases, they

are inserted by the compiler; in others, it

is the responsibility of the programmer to

insert them. The SYNCHRONIZED clause

instructs the compiler to insert slack bytes

when they are needed for proper

alignment. Slack bytes between records

are inserted by the programmer.

* sort file

A collection of records to be sorted by a

SORT statement. The sort file is created

and can be used by the sort function only.

* sort-merge file description entry

An entry in the FILE SECTION of the DATA

DIVISION that is composed of the level

indicator SD, followed by a file-name, and

then followed by a set of file clauses as

required.

* SOURCE-COMPUTER

The name of an ENVIRONMENT DIVISION

paragraph in which the computer

environment, where the source program is

compiled, is described.

* source computer entry

An entry in the SOURCE-COMPUTER

paragraph of the ENVIRONMENT DIVISION;

this entry contains clauses that describe

the computer environment in which the

source program is to be compiled.

* source item

An identifier designated by a SOURCE

clause that provides the value of a

printable item.

source program

Although a source program can be

represented by other forms and symbols,

in this document the term always refers

to a syntactically correct set of COBOL

statements. A COBOL source program

commences with the IDENTIFICATION

DIVISION or a COPY statement and

terminates with the end program marker,

if specified, or with the absence of

additional source program lines.

source unit

A unit of COBOL source code that can be

separately compiled: a program or a class

definition. Also known as a compilation

unit.

* special character

A character that belongs to the following

set:

 Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (virgule, slash)

= Equal sign

$ Currency sign

, Comma (decimal point)

; Semicolon

. Period (decimal point, full stop)

″ Quotation mark

(Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol

: Colon

SPECIAL-NAMES

The name of an ENVIRONMENT DIVISION

Glossary 843

paragraph in which environment-names

are related to user-specified

mnemonic-names.

* special names entry

An entry in the SPECIAL-NAMES paragraph

of the ENVIRONMENT DIVISION; this entry

provides means for specifying the

currency sign; choosing the decimal point;

specifying symbolic characters; relating

implementor-names to user-specified

mnemonic-names; relating

alphabet-names to character sets or

collating sequences; and relating

class-names to sets of characters.

* special registers

Certain compiler-generated storage areas

whose primary use is to store information

produced in conjunction with the use of a

specific COBOL feature.

Standard COBOL 85

The COBOL language defined by the

following standards:

v ANSI INCITS 23-1985, Programming

languages - COBOL, as amended by

ANSI INCITS 23a-1989, Programming

Languages - COBOL - Intrinsic Function

Module for COBOL and ANSI INCITS

23b-1993, Programming Languages -

Correction Amendment for COBOL

v ISO 1989:1985, Programming languages -

COBOL, as amended by ISO/IEC

1989/AMD1:1992, Programming languages

- COBOL: Intrinsic function module and

ISO/IEC 1989/AMD2:1994, Programming

languages - Correction and clarification

amendment for COBOL

* statement

A syntactically valid combination of

words, literals, and separators, beginning

with a verb, written in a COBOL source

program.

structured programming

A technique for organizing and coding a

computer program in which the program

comprises a hierarchy of segments, each

segment having a single entry point and a

single exit point. Control is passed

downward through the structure without

unconditional branches to higher levels of

the hierarchy.

* subclass

A class that inherits from another class.

When two classes in an inheritance

relationship are considered together, the

subclass is the inheritor or inheriting

class; the superclass is the inheritee or

inherited class.

* subject of entry

An operand or reserved word that

appears immediately following the level

indicator or the level-number in a DATA

DIVISION entry.

* subprogram

See called program.

* subscript

An occurrence number that is represented

by either an integer, a data-name

optionally followed by an integer with the

operator + or -, or an index-name

optionally followed by an integer with the

operator + or -, that identifies a particular

element in a table. A subscript can be the

word ALL when the subscripted identifier

is used as a function argument for a

function allowing a variable number of

arguments.

* subscripted data-name

An identifier that is composed of a

data-name followed by one or more

subscripts enclosed in parentheses.

substitution character

A character that is used in a conversion

from a source code page to a target code

page to represent a character that is not

defined in the target code page.

* superclass

A class that is inherited by another class.

See also subclass.

surrogate pair

In the UTF-16 format of Unicode, a pair

of encoding units that together represents

a single Unicode graphic character. The

first unit of the pair is called a high

surrogate and the second a low surrogate.

The code value of a high surrogate is in

the range X’D800’ through X’DBFF’. The

code value of a low surrogate is in the

range X’DC00’ through X’DFFF’.

Surrogate pairs provide for more

characters than the 65,536 characters that

fit in the Unicode 16-bit coded character

set.

switch-status condition

The proposition (for which a truth value

844 Enterprise COBOL for z/OS V4.1 Programming Guide

can be determined) that an UPSI switch,

capable of being set to an on or off status,

has been set to a specific status.

* symbolic-character

A user-defined word that specifies a

user-defined figurative constant.

syntax

(1) The relationship among characters or

groups of characters, independent of their

meanings or the manner of their

interpretation and use. (2) The structure

of expressions in a language. (3) The rules

governing the structure of a language. (4)

The relationship among symbols. (5) The

rules for the construction of a statement.

* system-name

A COBOL word that is used to

communicate with the operating

environment.

T

* table

A set of logically consecutive items of

data that are defined in the DATA DIVISION

by means of the OCCURS clause.

* table element

A data item that belongs to the set of

repeated items comprising a table.

text deck

Synonym for object deck or object module.

* text-name

A user-defined word that identifies library

text.

* text word

A character or a sequence of contiguous

characters between margin A and margin

R in a COBOL library, source program, or

pseudo-text that is any of the following

characters:

v A separator, except for space; a

pseudo-text delimiter; and the opening

and closing delimiters for alphanumeric

literals. The right parenthesis and left

parenthesis characters, regardless of

context within the library, source

program, or pseudo-text, are always

considered text words.

v A literal including, in the case of

alphanumeric literals, the opening

quotation mark and the closing

quotation mark that bound the literal.

v Any other sequence of contiguous

COBOL characters except comment

lines and the word COPY bounded by

separators that are neither a separator

nor a literal.

thread

A stream of computer instructions

(initiated by an application within a

process) that is in control of a process.

token In the COBOL editor, a unit of meaning in

a program. A token can contain data, a

language keyword, an identifier, or other

part of the language syntax.

top-down design

The design of a computer program using

a hierarchic structure in which related

functions are performed at each level of

the structure.

top-down development

See structured programming.

trailer-label

(1) A file or data-set label that follows the

data records on a unit of recording

medium. (2) Synonym for end-of-file label.

troubleshoot

To detect, locate, and eliminate problems

in using computer software.

* truth value

The representation of the result of the

evaluation of a condition in terms of one

of two values: true or false.

typed object reference

A data-name that can refer only to an

object of a specified class or any of its

subclasses.

U

* unary operator

A plus (+) or a minus (-) sign that

precedes a variable or a left parenthesis in

an arithmetic expression and that has the

effect of multiplying the expression by +1

or -1, respectively.

Unicode

A universal character encoding standard

that supports the interchange, processing,

and display of text that is written in any

of the languages of the modern world.

There are multiple encoding schemes to

represent Unicode, including UTF-8,

UTF-16, and UTF-32. Enterprise COBOL

Glossary 845

supports Unicode using UTF-16 in

big-endian format as the representation

for the national data type.

Uniform Resource Identifier (URI)

A sequence of characters that uniquely

names a resource, in Enterprise COBOL,

the identifier of a namespace. URI syntax

is defined by the document Uniform

Resource Identifier (URI): Generic Syntax.

unit A module of direct access, the dimensions

of which are determined by IBM.

universal object reference

A data-name that can refer to an object of

any class.

unrestricted storage

Storage below the 2-GB bar. It can be

above or below the 16-MB line. If it is

above the 16-MB line, it is addressable

only in 31-bit mode.

* unsuccessful execution

The attempted execution of a statement

that does not result in the execution of all

the operations specified by that statement.

The unsuccessful execution of a statement

does not affect any data referenced by

that statement, but can affect status

indicators.

UPSI switch

A program switch that performs the

functions of a hardware switch. Eight are

provided: UPSI-0 through UPSI-7.

URI See Uniform Resource Identifier (URI).

* user-defined word

A COBOL word that must be supplied by

the user to satisfy the format of a clause

or statement.

V

* variable

A data item whose value can be changed

by execution of the object program. A

variable used in an arithmetic expression

must be a numeric elementary item.

variable-length item

A group item that contains a table

described with the DEPENDING phrase of

the OCCURS clause.

* variable-length record

A record associated with a file whose file

description or sort-merge description

entry permits records to contain a varying

number of character positions.

* variable-occurrence data item

A variable-occurrence data item is a table

element that is repeated a variable

number of times. Such an item must

contain an OCCURS DEPENDING ON clause in

its data description entry or be

subordinate to such an item.

* variably located group

A group item following, and not

subordinate to, a variable-length table in

the same record. The group item can be

an alphanumeric group or a national

group.

* variably located item

A data item following, and not

subordinate to, a variable-length table in

the same record.

* verb

A word that expresses an action to be

taken by a COBOL compiler or object

program.

volume

A module of external storage. For tape

devices it is a reel; for direct-access

devices it is a unit.

volume switch procedures

System-specific procedures that are

executed automatically when the end of a

unit or reel has been reached before

end-of-file has been reached.

VSAM file system

A file system that supports COBOL

sequential, relative, and indexed

organizations.

W

Web service

A modular application that performs

specific tasks and is accessible through

open protocols like HTTP and SOAP.

white space

Characters that introduce space into a

document. They are:

v Space

v Horizontal tabulation

v Carriage return

v Line feed

v Next line

846 Enterprise COBOL for z/OS V4.1 Programming Guide

|
|
|
|
|
|

||

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt

as named in the Unicode Standard.

windowed date field

A date field containing a windowed

(two-digit) year. See also date field and

windowed year.

windowed year

A date field that consists only of a

two-digit year. This two-digit year can be

interpreted using a century window. For

example, 07 could be interpreted as 2007.

See also century window. Compare with

expanded year.

* word

A character string of not more than 30

characters that forms a user-defined word,

a system-name, a reserved word, or a

function-name.

* WORKING-STORAGE SECTION

The section of the DATA DIVISION that

describes working-storage data items,

composed either of noncontiguous items

or working-storage records or of both.

workstation

A generic term for computers used by

end users including personal computers,

3270 terminals, intelligent workstations,

and UNIX terminals. Often a workstation

is connected to a mainframe or to a

network.

wrapper

An object that provides an interface

between object-oriented code and

procedure-oriented code. Using wrappers

allows programs to be reused and

accessed by other systems.

X

x The symbol in a PICTURE clause that can

hold any character in the character set of

the computer.

XML Extensible Markup Language. A standard

metalanguage for defining markup

languages that was derived from and is a

subset of SGML. XML omits the more

complex and less-used parts of SGML and

makes it much easier to write applications

to handle document types, author and

manage structured information, and

transmit and share structured information

across diverse computing systems. The

use of XML does not require the robust

applications and processing that is

necessary for SGML. XML is developed

under the auspices of the World Wide

Web Consortium (W3C).

XML data

Data that is organized into a hierarchical

structure with XML elements. The data

definitions are defined in XML element

type declarations.

XML declaration

XML text that specifies characteristics of

the XML document such as the version of

XML being used and the encoding of the

document.

XML document

A data object that is well formed as

defined by the W3C XML specification.

XML namespace

A mechanism, defined by the W3C XML

Namespace specifications, that limits the

scope of a collection of element names

and attribute names. A uniquely chosen

XML namespace ensures the unique

identity of an element name or attribute

name across multiple XML documents or

multiple contexts within an XML

document.

XML type definition

An XML element that contains or points

to markup declarations that provide a

grammar for a class of documents. This

grammar is known as a document type

definition, or DTD.

Y

year field expansion

Explicit expansion of date fields that

contain two-digit years to contain

four-digit years in files and databases,

and then use of these fields in expanded

form in programs. This is the only

method for assuring reliable date

processing for applications that have used

two-digit years.

Z

zoned decimal data item

An external decimal data item that is

described implicitly or explicitly as USAGE

DISPLAY and that contains a valid

combination of PICTURE symbols 9, S, P,

and V. The content of a zoned decimal

data item is represented in characters 0

Glossary 847

 |
 |
 |
 |
 |
 |
 |
 |
 |
 |

through 9, optionally with a sign. If the

PICTURE string specifies a sign and the

SIGN IS SEPARATE clause is specified, the

sign is represented as characters + or -. If

SIGN IS SEPARATE is not specified, the

sign is one hexadecimal digit that

overlays the first 4 bits of the sign

position (leading or trailing).

848 Enterprise COBOL for z/OS V4.1 Programming Guide

List of resources

Enterprise COBOL for z/OS

Compiler and Runtime Migration Guide, GC23-8527

Customization Guide, SC23-8526

Language Reference, SC23-8528

Licensed Program Specifications, GI11-7871

Programming Guide, SC23-8529

Softcopy publications

The following collection kits contain Enterprise

COBOL and other product publications:

z/OS Software Products Collection, SK3T-4270

z/OS and Software Products DVD Collection,

SK3T-4271

Support

Performance Tuning, www.ibm.com/support/

docview.wss?uid=swg27001475

If you have a problem using Enterprise COBOL

for z/OS, see the following site, which provides

up-to-date support information: www.ibm.com/

software/awdtools/cobol/zos/support/.

Related publications

CICS Transaction Server for z/OS

Application Programming Guide, SC34-6818

Application Programming Reference, SC34-6819

Customization Guide, SC34-6814

External Interfaces Guide, SC34-6830

z/OS XL C/C++

Programming Guide, SC09-4765

Run-Time Library Reference, SA22-7821

DB2 for z/OS

Application Programming and SQL Guide, SC18-9841

Command Reference, SC18-9844

SQL Reference, SC18-9854

Debug Tool

Reference and Messages, GC19-1198

User’s Guide, SC19-1196

z/OS DFSMS

Access Method Services for Catalogs, SC26-7394

Checkpoint/Restart, SC26-7401

Macro Instructions for Data Sets, SC26-7408

Using Data Sets, SC26-7410

Utilities, SC26-7414

DFSORT

Application Programming Guide, SC26-7523

Installation and Customization, SC26-7524

IMS

Application Programming: Database Manager,

SC18-7809

Application Programming: Design Guide, SC18-7810

Application Programming: EXEC DLI Commands for

CICS and IMS, SC18-7811

Application Programming: Transaction Manager,

SC18-7812

Connect Guide and Reference, SC18-9287

Java Guide and Reference, SC18-7821

z/OS ISPF

Dialog Developer’s Guide and Reference, SC34-4821

© Copyright IBM Corp. 1991, 2007 849

User’s Guide Vol. 1, SC34-4822

User’s Guide Vol. 2, SC34-4823

z/OS Language Environment

Concepts Guide, SA22-7567

Customization, SA22-7564

Debugging Guide, GA22-7560

Programming Guide, SA22-7561

Programming Reference, SA22-7562

Run-Time Messages, SA22-7566

Run-Time Application Migration Guide, GA22-7565

Writing Interlanguage Communication Applications,

SA22-7563

z/OS MVS

JCL Reference, SA22-7597

JCL User’s Guide, SA22-7598

Program Management: User’s Guide and Reference,

SA22-7643

System Commands, SA22-7627

z/OS TSO/E

Command Reference, SA22-7782

Primer, SA22-7787

User’s Guide, SA22-7794

z/OS UNIX System Services

Command Reference, SA22-7802

Programming: Assembler Callable Services Reference,

SA22-7803

User’s Guide, SA22-7801

z/Architecture(R)

Principles of Operation, SA22-7832

Softcopy publications for z/OS

The following collection kit contains z/OS and

related product publications:

z/OS CD Collection Kit, SK3T-4269

Unicode and character representation

Unicode, www.unicode.org/

Character Data Representation Architecture: Reference

and Registry, SC09-2190

z/OS Support for Unicode: Using Unicode Services,

SA22-7649

Java

The Java Language Specification, Second Edition, by

Gosling et al., java.sun.com/docs/books/jls/

second_edition/html/j.title.doc.html

The Java Native Interface, java.sun.com/j2se/

1.3/docs/guide/jni/index.html

The Java 2 Enterprise Edition Developer’s Guide,

java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/

ejb/html/DevGuideTOC.html

Java 2 on z/OS, www.ibm.com/servers/eserver/

zseries/software/java/

Persistent Reusable Java Virtual Machine User’s

Guide, SC34-6201

WebSphere Application Server for z/OS

Applications, SA22-7959

XML

Extensible Markup Language (XML),

www.w3.org/XML/

Namespaces in XML 1.0, www.w3.org/TR/REC-
xml-names/

Namespaces in XML 1.1, www.w3.org/TR/xml-
names11/

XML specification, www.w3.org/TR/REC-xml/

z/OS XML System Services User’s Guide and

Reference, SA23-1350

850 Enterprise COBOL for z/OS V4.1 Programming Guide

Index

Special characters
_BPX_SHAREAS environment

variable 439

_CEE_ENVFILE environment variable
description 437

indicating Java settings 297

_CEE_RUNOPTS environment variable
description 437

setting XPLINK 300

specifying runtime options 435

_IGZ_SYSOUT environment variable
setting 437

writing to stdout or stderr 39

-# cob2 option for displaying compile and

link steps 287

-b cob2 option
for creating DLLs 286

for passing information to the

linker 287

-c cob2 option for compiling but not

linking 287

-comprc_ok cob2 option for controlling

compiler based on return code 287

-e cob2 option for specifying entry

point 287

-g cob2 option equivalent to specifying

TEST 287

-I cob2 option for searching

copybooks 287

-l cob2 option for specifying archive

library name 287

-L cob2 option for specifying archive

library path 287

-o cob2 option for specifying output

file 287

-q cob2 option for specifying compiler

options 287

-v cob2 option for displaying and

executing compile and link steps 287

! character, hexadecimal values 524

.a suffix with cob2 289

.adt file 305

.adt suffix with cob2 289

.cbl suffix with cob2 289

.dbg suffix with cob2 289

.dek suffix with cob2 289

.lst suffix with cob2 289

.o suffix with cob2 289

.x suffix with cob2 289

*CBL statement 361

*CONTROL statement 361

[character, hexadecimal values 524

] character, hexadecimal values 524

| character, hexadecimal values 524

character, hexadecimal values 524

Numerics
16-MB line

CICS programs 406

16-MB line (continued)
IMS programs 406

performance options 660

24-bit addressing mode 42

31-bit addressing mode 42

dynamic call 451

5203 - 5206 conditions 712

64-bit addressing
no support 42

A
a suffix with cob2 289

a.out file from cob2 289

abends, compile-time 318

ACCEPT statement
assigning input 37

reading from stdin 37

under CICS 407

access method services
build alternate indexes in

advance 203

defining VSAM data sets, z/OS 197

loading a VSAM data set 191

accessibility
of Enterprise COBOL xv

of this document xv

using z/OS xv

ADATA compiler option 305

adding records
to line-sequential files 211

to QSAM files 163

to VSAM files 193

ADDRESS special register, CALL

statement 464

addresses
incrementing 469

NULL value 469

passing between programs 469

passing entry-point addresses 460

addressing mode, definition 42

ADEXIT suboption of EXIT compiler

option 703, 710

ADMODE attribute
with multithreading 497

adt suffix with cob2 289

ADV compiler option 305

AIXBLD runtime option
effect on performance 664

ALL subscript
examples 87

processing table elements

iteratively 86

table elements as function

arguments 60

ALL31 runtime option
multioption interaction 42

OFF for AMODE switching 451

ALLOCATE command (TSO)
compiler data sets 261

with HFS files 261

allocation of files
data sets under TSO 261

description 149

line-sequential 209

QSAM 166

VSAM 200

ALPHABET clause, establishing collating

sequence with 8

alphabetic data
comparing to national 140

MOVE statement with 34

alphanumeric comparison 94

alphanumeric data
comparing

effect of ZWB 359

to national 140

converting
to DBCS with IGZCA2D 689

to national with MOVE 134

to national with

NATIONAL-OF 135

MOVE statement with 34

with double-byte characters 689

alphanumeric date fields,

contracting 646

alphanumeric group item
a group without GROUP-USAGE

NATIONAL 27

definition 26

alphanumeric literals
conversion of mixed

DBCS/EBCDIC 689

description 27

with DBCS content 142

with double-byte characters 689

alphanumeric-edited data
initializing

example 31

using INITIALIZE 76

MOVE statement with 34

alternate collating sequence
choosing 223

example 9

alternate entry point, calling 461

alternate index
creating 198

example of 199

password for 196

path 198, 199

performance considerations 203

using 183

ALTERNATE RECORD KEY clause
identify alternate indexes 199

identifying alternate keys in KSDS

files 183

alternate reserved-word table
CICS 413

specifying 355

AMODE
and DLLs 485

assigned for EXIT modules 705

© Copyright IBM Corp. 1991, 2007 851

AMODE (continued)
description 42

switching
ALL31(OFF) 451

examples 451

overview 451

AMP parameter 201

ANNUITY intrinsic function 64

ANSI85 translator option 412

APIs, UNIX and POSIX
calling 438

APOST compiler option 339

APPLY WRITE-ONLY clause 12

arguments
describing in calling program 465

passing BY VALUE 465

specifying OMITTED 466

testing for OMITTED arguments 467

ARITH compiler option
description 306

performance considerations 660

arithmetic
COMPUTE statement simpler to

code 58

error handling 234

with intrinsic functions 59

arithmetic comparisons 65

arithmetic evaluation
conversions and precision 54

data format conversion 54

examples 64, 66

fixed-point contrasted with

floating-point 64

intermediate results 673

performance tips 652

precedence 59, 675

precision 673

arithmetic expression
as reference modifier 110

description of 58

in nonarithmetic statement 681

in parentheses 58

with MLE 639

arithmetic operation
with MLE 636, 639

arrays
COBOL 41

Java
declaring 601

manipulating 602

ASCII
alphabet, QSAM 177

converting to EBCDIC 115

file labels 178

job control language (JCL) 178

record formats, QSAM 177

standard labels 178

tape files, QSAM 177

user labels 178

ASCII files
CODE-SET clause 14

OPTCD= parameter in DCB 14

assembler
expansion of PROCEDURE

DIVISION 385

from LIST option 657

assembler (continued)
programs

calls from (in CICS) 407

compiling from 263

listing of 326, 657

with multithreading 497

ASSIGN clause
corresponds to ddname 10

QSAM files 152

assigning values 29

assistive technologies xv

associated-data file, creating 270

assumed century window for

nondates 634

asynchronous signals with

multithreading 498

AT END (end-of-file) 238

ATTACH macro 263

attribute methods 563

ATTRIBUTE-CHARACTERS XML

event 513, 517

ATTRIBUTE-NAME XML event 513, 517

automatic restart 617

available files
QSAM 163

VSAM 197

avoiding coding errors 649

AWO compiler option
APPLY-WRITE ONLY clause

performance 12

description 307

performance considerations 660

B
backward branches, avoid 650

Base class
equating to java.lang.Object 555

using for java.lang.Object 554

base cluster name 199

base locator 380, 381

basis libraries 268

BASIS statement 361

batch compilation
description 274

LANGUAGE option
example 278

precedence of options
example 277

overview 276

big-endian, converting to

little-endian 126

binary data item
general description 50

intermediate results 678

synonyms 49

using efficiently 50, 652

binary search
description 85

example 86

binder
c89 command 285

options needed for DLLs 481

recommended for DLLs 481

binding OO applications
example 298

using JCL or TSO/E 296

BLANK WHEN ZERO clause
coded for numeric data 127

example with numeric-edited

data 47

BLOCK CONTAINS clause
FILE SECTION entry 14

no meaning for VSAM files 186

QSAM files 153, 159

block size
ASCII files 178

QSAM files 159

fixed-length 153

record layout 155

using DCB 168

variable-length 154

system-determined 160, 267

blocking factor, definition 153

blocking QSAM files 159

blocking records 159

BPXBATCH utility
calling z/OS UNIX programs 436

running OO applications 296

branch, implicit 98

buffers
best use of 12

obtaining for QSAM 173

BUFOFF= 178

BUFSIZE compiler option 307

BY CONTENT 463

BY REFERENCE 463

BY VALUE
description 463

restrictions 465

valid data types 465

byte order mark 126

byte-stream files
processing with QSAM 174

C
C/C++ programs

with COBOL DLLs 488

with multithreading 497

c89 command for link step 285

CALL command (TSO) 261

CALL identifier
always dynamic 451

dynamic calls 449

making from DLLs 483

with NODLL 449

with NODYNAM 454

CALL literal
dynamic calls 449

static calls 448

with DYNAM 449

with NODLL 448, 449

with NODYNAM 448, 454

CALL statement
AMODE processing 451

BY CONTENT 463

BY REFERENCE 463

BY VALUE
description 463

restrictions 465

CICS restrictions 407

effect of EXIT option on registers 705

exception condition 244

852 Enterprise COBOL for z/OS V4.1 Programming Guide

CALL statement (continued)
for error handling 244

function-pointer 461

handling of program-name in 337

Language Environment callable

services 669

overflow condition 244

RETURNING 473

to alternate entry points 461

USING 465

with CANCEL 451

with DYNAM 319

with ON EXCEPTION 244

with ON OVERFLOW 22, 244

calls
31-bit addressing mode 451

AMODE switching for 24-bit

programs 451

between COBOL and non-COBOL

programs 445

between COBOL programs 445, 447

CICS restrictions 407

dynamic
example 454

making 449

performance 453

restrictions 449

with static calls 454

exception condition 244

interlanguage 445

LINKAGE SECTION 467

OMITTED arguments 466

overflow condition 244

passing arguments 465

passing data 463

receiving parameters 466

recursive 459

static
example 454

making 448

performance 453

with dynamic calls 454

to and from object-oriented

programs 459

to JNI services 595

to Language Environment callable

services 669

CANCEL statement
cannot use with DLL linkage 485

for subprograms 450

handling of program-name in 337

with dynamic CALL 450

case structure, EVALUATE statement

for 91

cataloged procedure
JCL for compiling 250

to compile (IGYWC) 251

to compile and link-edit

(IGYWCL) 252

to compile, link-edit, run

(IGYWCLG) 253

to compile, load, run (IGYWCG) 254

to compile, prelink, link-edit

(IGYWCPL) 255

to compile, prelink, link-edit, run

(IGYWCPLG) 256

cataloged procedure (continued)
to compile, prelink, load, run

(IGYWCPG) 258

to prelink and link-edit

(IGYWPL) 258

CBL statement
overview 361

specifying compiler options 272

cbl suffix with cob2 289

CBLPSHPOP runtime option 414

CBLQDA runtime option 163

CCSID
conflict in XML documents 528

definition 125

EBCDIC multibyte CCSIDs 310

of DB2 string data 423

of PARSE statement 504

of XML documents 504, 522

specifying with CODEPAGE

option 309

century window
assumed for nondates 634

fixed 627

sliding 627

chained-list processing
example 470

overview 469

changing
characters to numbers 113

file-name 11

title on source listing 7

CHAR intrinsic function, example 116

character set, definition 125

CHECK runtime option
performance considerations 660

reference modification 109

checking for valid data
conditional expressions 94

numeric 56

checkpoint
designing 614

example of JCL for restart 619

messages generated during 616

methods 614

multiple 614, 616

overview 613

record data set 615

restart during DFSORT 231

restrictions during sort 614

setting 613

single 614

disk 616

tape 616

Standard COBOL 85 614

testing 615

Chinese GB 18030 data
processing 138

CHKPT keyword 231

CICS
alternate reserved-word table 413

calling nested programs 408

CICS HANDLE 414

example 415

LABEL value 414

coding programs to run under
calls 407

DISPLAY statement 407

CICS (continued)
coding programs to run under

(continued)
I/O 406

overview 405

restrictions 406

SORT statement 414

command-level interface 405

commands and the PROCEDURE

DIVISION 405

compiling with CICS option 409

developing programs for 405

DFHCOMMAREA parameter
calling nested programs 408

calling separately compiled

programs 408

DFHEIBLK parameter
calling nested programs 408

calling separately compiled

programs 408

ECI calls and RETURN-CODE special

register 409

EXIT compiler option and 712

in a multithreaded environment 497

integrated translator
advantages 411

calling nested programs 408

compiler options for 410

overview 411

interlanguage communication

under 408

macro-level interface 405

NODYNAM compiler option 408

performance considerations 415, 664

restrictions
16-MB line 406

OO programs 549

separate translator 411

sorting 232

separate translator
calling nested programs 409

compiler options for 413

restrictions 411

using 412

sorting under
change reserved-word table 414

overview 231

restrictions 232

Standard COBOL 85

considerations 412

system date, getting 407

CICS compiler option
description 308

enables integrated translator 411

multioption interaction 304

specifying suboptions 411

using 409

CISZ (control interval size), performance

considerations 203, 664

CKPT keyword 231

class
defining 552

definition of 549

factory data 582

instance data 556

instantiating
COBOL 576

Index 853

class (continued)
instantiating (continued)

Java 575

name
external 555, 567

in a program 554

object, obtaining reference with

JNI 596

user-defined 10

class condition
testing

for DBCS 143

for Kanji 143

for numeric 56

overview 94

validating data 367

CLASSPATH environment variable
description 437

example of setting 296

specifying location of Java

classes 294

client
defining 566

definition of 566

CLOSE statement
line-sequential files 209

QSAM 161

VSAM 187

closing files
line-sequential 211

multithreading serialization 494

QSAM
overview 165

with multithreading 165

VSAM
overview 194

with multithreading 195

closing files, automatic
line-sequential 211

QSAM 165

VSAM 194

cluster, VSAM 197

cob2 command
compiling with

examples 287

overview 285

description 287

for compiling OO applications 291

for creating DLLs 286

for linking OO applications 292

input and output 289

linking with
examples 287

overview 285

options and syntax 287

COBJVMINITOPTIONS environment

variable
description 437

specifying JVM options 295

COBOL
and Java 595

binding 296

compiling under z/OS UNIX 291

compiling using JCL or

TSO/E 296

linking 292

running 293, 297

COBOL (continued)
and Java (continued)

structuring applications 591

under IMS 430

object-oriented
binding 296

compiling under z/OS UNIX 291

compiling using JCL or

TSO/E 296

linking 292

running 293

under IMS 430

COBOL client
example 585

example of passing object

references 572

COBOL DLL programs, calling 486

COBOL terms 25

COBOL3 translator option 412

COBOPT environment variable 283

code
copy 665

optimized 657, 658

code page
conflict in XML documents 528

DBCS 310

definition 125

euro currency support 67

hexadecimal values of special

characters 524

of DB2 string data 423

overriding 136

specifying 309, 525

code point, definition 125

CODE-SET clause 14

coded character set
definition 125

in XML documents 522

CODEPAGE compiler option
DBCS code pages 310

description 309

for national literals 133

items that are not affected 310

operations that override 310

coding
class definition 552

clients 566

condition tests 95

constructor methods 583

DATA DIVISION 13

decisions 89

efficiently 649

ENVIRONMENT DIVISION 7

EVALUATE statement 91

factory definition 582

factory methods 583

file input/output (overview) 145

IDENTIFICATION DIVISION 5

IF statement 89

input/output overview 148

input/output statements
for line-sequential files 209

for QSAM files 161

for VSAM files 187

instance methods 557, 580

interoperable data types with

Java 600

coding (continued)
loops 97

OO programs
must be reentrant 462

overview 549

PROCEDURE DIVISION 19

programs to run under CICS
calls 407

DISPLAY statement 407

I/O 406

must be reentrant 462

overview 405

restrictions 406

SORT statement 414

system date, getting 407

programs to run under DB2
CCSID of string data 423

overview 417

stored procedures must be

reentrant 462

programs to run under IMS
must be reentrant 462

overview 429

restrictions 429

simplifying 665

SQL statements 418

subclasses
example 580

overview 577

tables 69

techniques 13, 649

test conditions 95

collating sequence
alternate

choosing 223

example 9

ASCII 9

binary for national keys 222

EBCDIC 9

HIGH-VALUE 8

ISO 7-bit code 9

LOW-VALUE 8

MERGE 8, 223

NATIVE 9

nonnumeric comparisons 8

ordinal position of a character 115

SEARCH ALL 8

SORT 8, 223

specifying 8

STANDARD-1 9

STANDARD-2 9

symbolic characters in the 10

COLLATING SEQUENCE phrase
does not apply to national keys 222

overrides PROGRAM COLLATING

SEQUENCE clause 8, 223

use in SORT or MERGE 223

columns in tables 69

COMMON attribute 6, 456

COMP (COMPUTATIONAL) 50

COMP-1 (COMPUTATIONAL-1)
format 52

performance tips 653

COMP-2 (COMPUTATIONAL-2)
format 52

performance tips 653

COMP-3 (COMPUTATIONAL-3) 52

854 Enterprise COBOL for z/OS V4.1 Programming Guide

COMP-4 (COMPUTATIONAL-4) 50

COMP-5 (COMPUTATIONAL-5) 51

comparing data items
date fields 631

national
overview 139

to alphabetic, alphanumeric, or

DBCS 140

to alphanumeric groups 141

to numeric 140

two operands 139

object references 569

zoned decimal and alphanumeric,

effect of ZWB 359

COMPAT suboption of PGMNAME 337

compatibility mode 45, 673

compatible dates
in comparisons 631

with MLE 631

compilation
conformance to Standard COBOL

85 303

results 273

with HFS files 252

compilation statistics 379

COMPILE compiler option
description 311

use NOCOMPILE to find syntax

errors 370

compile-time considerations
compiler-directed errors 279

display compile and link steps 287

dump, generating a 318

error messages
determining what severity level to

produce 321

severity levels 281

executing compile and link steps after

display 287

compiler
calculation of intermediate

results 674

date-related messages, analyzing 644

environment variables under z/OS

UNIX 283

generating list of error messages 279

invoking in the z/OS UNIX shell
examples 287

overview 285

limits
DATA DIVISION 13

messages
choosing severity to be

flagged 372

determining what severity level to

produce 321

embedding in source listing 372

from exit modules 712

sending to terminal 269

severity levels 281

compiler data sets
in the HFS 250, 260

input and output 265

required for compilation 265

SYSADATA (ADATA records) 270

SYSDEBUG (debug records) 270

SYSIN 267

compiler data sets (continued)
SYSJAVA 270

SYSLIB (libraries) 268

SYSLIN (object code) 269

SYSMDECK (library processing) 271

SYSOPTF 267

SYSOUT (listing) 269

SYSPUNCH (object code) 269

SYSTERM (messages) 269

with cob2 289

compiler listings
getting 375

compiler options
abbreviations 301

ADATA 305

ADV 305

APOST 339

ARITH 306

performance considerations 660

AWO 307

performance considerations 660

BUFSIZE 307

CICS 308

CODEPAGE 309

COMPILE 311

conflicting 304

CURRENCY 312

DATA 313

DATEPROC 314

DBCS 315

DECK 316

DIAGTRUNC 316

DLL 317

DUMP 318

DYNAM 319, 660

EXIT 319, 703

EXPORTALL 320

FASTSRT 225, 320

performance considerations 660

FLAG 321, 372

FLAGSTD 322

for CICS integrated translator 410

for CICS separate translator 409, 413

for debugging
overview 370

TEST restriction 368

THREAD restriction 368

IMS, recommended for 429

in effect 387

INTDATE 323

LANGUAGE 324

example in batch compilation 278

LIB 325

LINECOUNT 326

LIST 326, 375

MAP 327, 374, 375

MDECK 328

NAME 329

NOCOMPILE 370

NOFASTSRT 227

NSYMBOL 330

NUMBER 331, 377

NUMPROC 332

NUMPROC(PFD)
performance considerations 660

NUMPROC(PFD|NOPFD|MIG) 55

OBJECT 333

compiler options (continued)
OFFSET 333

on compiler invocation 379

OPTFILE 334

OPTIMIZE 335, 657

performance considerations 660

OUTDD 336

performance considerations 660

PGMNAME 337

precedence of
example 277

in batch 276

in SYSOPTF data sets 268, 335

under z/OS 271

under z/OS UNIX 284

QUOTE 339

RENT 340

performance considerations 660

RMODE 341

performance considerations 660

SEQUENCE 342

signature information bytes 387

SIZE 342

SOURCE 343, 375

SPACE 344

specifying 271

specifying under TSO 273

specifying under z/OS 273

specifying under z/OS UNIX 284

specifying with PROCESS (CBL) 272

specifying with SYSOPTF data

set 267

SQL
description 344

using with DB2 421

SQLCCSID
description 345

effect on CCSID of string

data 423

performance considerations 425

recommended with DB2

coprocessor 424

SSRANGE 346, 371

performance considerations 660

Standard COBOL 85

conformance 303

status 379

table of 301

TERMINAL 347

TEST
description 347

performance considerations 660

use for debugging 375

THREAD
debugging restriction 368

description 350

performance considerations 660

TRUNC 352

performance considerations 660

under IMS and CICS 406

VBREF 355, 375

WORD 355

XMLPARSE 356

XREF 357, 374

YEARWINDOW 358

ZWB 359

Index 855

compiler-directing statements
description 361

overview 22

compiling
batch 274

control of 271

data sets for 265

DLLs 286

from an assembler program 263

OO applications
cob2 command 291

example 293, 298

under z/OS UNIX 291

using JCL or TSO/E 296

under TSO 261

under z/OS 249

under z/OS UNIX 283

using shell script 290

using the cob2 command
examples 287

overview 285

with cataloged procedures 250

compile 251

compile and link-edit 252

compile, link-edit, run 253

compile, load, run 254

compile, prelink, link-edit 255

compile, prelink, link-edit,

run 256

compile, prelink, load, run 258

with JCL (job control language) 249

compiling and linking in the z/OS UNIX

shell
DLLs 286

examples 287

OO applications
cob2 command 292

example 293

overview 285

completion code
merge 224

sort 224

complex OCCURS DEPENDING ON
basic forms of 683

complex ODO item 683

variably located data item 683

variably located group 683

computation
arithmetic data items 652

constant data items 651

duplicate 651

of indexes 74

of subscripts 655

COMPUTATIONAL (COMP) 50

COMPUTATIONAL-1 (COMP-1)
format 52

performance tips 653

COMPUTATIONAL-2 (COMP-2)
format 52

performance tips 653

COMPUTATIONAL-3 (COMP-3)
date fields, potential problems 645

description 52

COMPUTATIONAL-4 (COMP-4) 50

COMPUTATIONAL-5 (COMP-5) 51

COMPUTE statement
assigning arithmetic results 36

COMPUTE statement (continued)
simpler to code 58

computer, describing 7

concatenating data items (STRING) 101

condition handling
closing QSAM files 165

closing VSAM files 195

in input or output procedures 219

using Language Environment 667

condition testing 95

condition-name 633

conditional expression
EVALUATE statement 89

IF statement 89

PERFORM statement 99

conditional statement
overview 21

with NOT phrase 21

with object references 569

CONFIGURATION SECTION 7

conflicting compiler options 304

conformance requirements
example of passing object references

in INVOKE 572

RETURNING phrase of INVOKE 573

Standard COBOL 85 303

USING phrase of INVOKE 571

constants
computations 651

data items 651

definition 28

figurative, definition 28

contained program integration 658

CONTENT-CHARACTERS XML

event 513, 517, 519

continuation
entry 230

of program 235

syntax checking 312

CONTINUE statement 89

contracting alphanumeric dates 646

control
in nested programs 456

program flow 89

transfer 446

control interval size (CISZ), performance

considerations 203, 664

CONTROL statement 361

converting data items
between code pages 115

between data formats 54

exceptions with national data 136

precision 54

reversing order of characters 113

to alphanumeric
with DISPLAY 38

with DISPLAY-OF 136

to Chinese GB 18030 from

national 138

to integers with INTEGER,

INTEGER-PART 110

to national
from Chinese GB 18030 138

from UTF-8 137

with ACCEPT 37

with MOVE 134

with NATIONAL-OF 135

converting data items (continued)
to numbers with NUMVAL,

NUMVAL-C 113

to uppercase or lowercase
with INSPECT 112

with intrinsic functions 113

to UTF-8 from national 137

with INSPECT 111

with intrinsic functions 112

converting files to expanded date form,

example 629

CONVERTING phrase (INSPECT),

example 112

coprocessor, DB2
CCSID determination of string

data 423

differences from the precompiler 425

enable with SQL compiler option 421

overview 417

recommended compiler option

SQLCCSID 424

required compiler options 422

using SQL INCLUDE with 419

copy libraries
COPY statement 361

data set 265

example 666

search order 361

specifying 268

SYSLIB 268

z/OS UNIX search order 283, 287

COPY statement
cross-reference to data-set names 398

DB2 considerations 425

description 361

example 666

nested 665, 707

UNIX considerations 361

z/OS considerations 268

copybook
description 361

obtaining from user-supplied

module 703

searching for 287, 361

using 665

copybook cross-reference,

description 374

COUNT IN phrase
UNSTRING 103

XML GENERATE 536

counting
characters (INSPECT) 111

generated XML characters 532

creating
associated-data file 270

library-processing output file 271

line-sequential files, z/OS 209

object code 269

objects 574

QSAM files, z/OS 166, 169

SYSJAVA file 270

variable-length tables 81

cross-reference
COPY/BASIS 398

COPY/BASIS statements 375

copybooks 375

data and procedure-names 374

856 Enterprise COBOL for z/OS V4.1 Programming Guide

cross-reference (continued)
embedded 375

list 357

program-name 398

special definition symbols 400

text-names and data sets 374

verb list 355

verbs 375

CRP (file position indicator) 189, 192

CURRENCY compiler option 312

currency signs
euro 67

hexadecimal literals 67

multiple-character 67

using 67

CURRENT-DATE intrinsic function
example 63

under CICS 407

customer support xix, 849

D
D-format record

layout 155

requesting 154

DASD (direct-access storage device) 203

data
concatenating (STRING) 101

converting between alphanumeric and

DBCS 689

efficient execution 649

format, numeric types 48

grouping 468

incompatible 56

naming 14

numeric 45

passing 463

record size 14

splitting (UNSTRING) 103

validating 56

data (See also numeric data)
format conversion 54

data and procedure-name cross-reference,

description 374

data areas, dynamic 319

DATA compiler option
description 313

influencing data location 43

multioption interaction 42

performance considerations 660

when passing data 43

data definition 380

data description entry 13

DATA DIVISION
client 568

coding 13

description 13

entries for line-sequential files 208

entries for QSAM files 152

entries for VSAM files 185

factory data 582

factory method 584

FD entry 13

FILE SECTION 13

GROUP-USAGE NATIONAL

clause 70

instance data 556, 580

DATA DIVISION (continued)
instance method 559

items present in 389

limits 13

LINKAGE SECTION 18

listing 375

mapping of items 327, 375

OCCURS clause 69

OCCURS DEPENDING ON (ODO)

clause 81

REDEFINES clause 77

restrictions 13

signature information bytes 389

USAGE clause at the group level 27

USAGE IS INDEX clause 74

USAGE NATIONAL clause at the

group level 130

WORKING-STORAGE SECTION 13

data item
alphanumeric with double-byte

characters 689

coding Java types 600

common, in subprogram linkage 466

concatenating (STRING) 101

converting characters (INSPECT) 111

converting characters to numbers 113

converting to uppercase or

lowercase 113

converting with intrinsic

functions 112

counting characters (INSPECT) 111

DBCS 689

elementary, definition 26

evaluating with intrinsic

functions 115

finding the smallest or largest

item 116

group, definition 26

index, referring to table elements

with 72

initializing, examples of 30

map 273

numeric 45

reference modification 107

referring to a substring 107

replacing characters (INSPECT) 111

reversing characters 113

splitting (UNSTRING) 103

unused 335, 380

variably located 683

data manipulation
character data 101

DBCS data 689

DATA RECORDS clause 14

data set
alternate data-set names 263

checkpoint record 615

compiler-option 267

defining with environment

variable 149

example of checkpoint/restart 619

JAVAERR 297

JAVAIN 297

JAVAOUT 297

names, alternate 263

output 269

source code 267

data set (continued)
SYSADATA 270

SYSDEBUG 270

SYSIN 267

SYSJAVA 270

SYSLIB 268

SYSLIN 269

SYSMDECK 271

SYSOPTF 267

SYSPRINT 269

SYSPUNCH 269

SYSTERM 269

used interchangeably for file 7

data sets used for compiling 265

data-definition attribute codes 380

data-name
cross-reference 396

cross-reference list 273

in MAP listing 380

OMITTED 14

password for VSAM files 196

date and time operations
Language Environment callable

services 667

date arithmetic 640

date comparisons 631

date field expansion
advantages 626

description 629

date fields, potential problems with 645

DATE FORMAT clause
cannot use with national data 624

use for automatic date

recognition 623

use for sorting on windowed date

fields 224

date operations
finding date of compilation 119

intrinsic functions for 41

date processing with internal bridges,

advantages 626

date windowing
advantages 626

example 627, 633

how to control 641

MLE approach 626

when not supported 632

DATE-COMPILED paragraph 5

DATE-OF-INTEGER intrinsic

function 63

DATEPROC compiler option
analyzing warning-level

messages 644

description 314

performance 637

DATEVAL intrinsic function
example 643

using 642

DB2
coding considerations 417

coprocessor
CCSID determination of string

data 423

database request module

(DBRM) 418, 422

differences from the

precompiler 425

Index 857

DB2 (continued)
coprocessor (continued)

enable with SQL compiler

option 421

overview 417

recommended compiler option

SQLCCSID 424

required compiler options 422

using SQL INCLUDE with 419

DYNAM compiler option with TSO or

IMS 427

NODYNAM compiler option with

CICS or CAF 427

precompiler
differences from the

coprocessor 425

recommended compiler option

NOSQLCCSID 425

specifying code page for host

variables 419

SQL compiler option 421

SQL statements
CCSID determination 423

coding 418

overview 417

return codes 421

SQL DECLARE 419

SQL INCLUDE 419

using binary data in 421

using character data in 419

using national decimal data 420

SQLCCSID compiler option 423

DBCS comparison 94

DBCS compiler option
description 315

for Java interoperability 291, 296

for OO COBOL 291, 296

multioption interaction 304

DBCS data
comparing

to national 140

converting
to alphanumeric with

IGZCD2A 692

to and from alphanumeric 689

to national, overview 143

declaring 142

encoding 133

literals
description 28

maximum length 142

using 142

MOVE statement with 34

notation for 689

testing for 143

dbg suffix with cob2 289

DBRM data set
defining 422

description 418

DCB 161

DD control statement
AMP parameter 201

ASCII tape files 178

creating line-sequential files 209

creating QSAM files 166, 169

DBRMLIB 422

DCB overrides data-set label 168

DD control statement (continued)
define file 10

defining merge data sets 219

defining sort data sets 219

JAVAERR 297

JAVAIN 297

JAVAOUT 297

RLS parameter 202

SYSADATA 270

SYSDEBUG 270

SYSIN 267

SYSJAVA 270

SYSLIB 268

SYSLIN 269

SYSMDECK 271

SYSOPTF 267

SYSPRINT 269

SYSPUNCH 269

ddname definition 10

deadlock in I/O error declarative 238

Debug Tool
compiler options for 375

description 365

debugging
and performance 349

compiler options for
overview 370

TEST restriction 368

THREAD restriction 368

defining data set 270

dynamic 349

overview 365

runtime options for 368

using COBOL language features 365

using the debugger 375

debugging, language features
class test 367

debugging lines 368

debugging statements 368

declaratives 368

file status keys 367

INITIALIZE statements 368

scope terminators 366

SET statements 368

WITH DEBUGGING MODE

clause 368

DECK compiler option 316

declarative procedures
EXCEPTION/ERROR 238

with multithreading 238

LABEL 176

USE FOR DEBUGGING 368

deferred restart 617

defining
debug data set 270

files, overview 10, 145

libraries 268

line-sequential files to z/OS 209

QSAM files
to z/OS 166, 169

sort or merge files under z/OS 219

VSAM files 197

to z/OS 197

dek suffix with cob2 289

DELETE statement
compiler-directing 361

multithreading serialization 494

DELETE statement (continued)
VSAM, coding 187

deleting records from VSAM file 194

delimited scope statement
description of 21

nested 23

DEPENDING ON clause 154, 186

depth in tables 71

device
classes 265

requirements 265

DFHCOMMAREA parameter
calling nested CICS programs 408

calling separately compiled CICS

programs 408

DFHEIBLK parameter
calling nested CICS programs 408

calling separately compiled CICS

programs 408

DFSORT
defining data sets for 219

error message for RETURN

statement 218

diagnostics, program 379

DIAGTRUNC compiler option 316

direct-access
direct indexing 74

file organization 146

storage device (DASD) 203

directories
adding a path to 287

DISPLAY (USAGE IS)
encoding 133

external decimal 49

floating point 50

display floating-point data (USAGE

DISPLAY) 50

DISPLAY statement
directing output 336

displaying data values 38

displaying on the system logical

output device 39

interaction with OUTDD 39

suppressing line spacing 39

under CICS 407

using in debugging 366

writing to stdout or stderr 39

DISPLAY-1 (USAGE IS)
encoding 133

DISPLAY-OF intrinsic function
example with Chinese data 138

example with Greek data 137

example with UTF-8 data 137

using 136

with XML documents 523

DLL compiler option
description 317

for Java interoperability 291, 296

for OO COBOL 291, 296

multioption interaction 304

DLL igzcjava.x
binding with

example 298

preparing OO applications 296

linking with
example 293

preparing OO applications 292

858 Enterprise COBOL for z/OS V4.1 Programming Guide

DLL libjvm.x
binding with

example 298

preparing OO applications 296

linking with
example 293

preparing OO applications 292

with EBCDIC services 606

DLLs (see dynamic link libraries) 479

do loop 99

do-until 99

do-while 99

documentation of program 7

DSA memory map 385

dump
requesting 233

with DUMP compiler option 273

DUMP compiler option
description 318

multioption interaction 304

output 273

duplicate computations, grouping 651

DYNAM compiler option
description 319

multioption interaction 304

performance considerations 660

under DB2 with TSO or IMS 427

with dynamic calls 449

dynamic calls
example 454

making 449

performance 453

restrictions 449

using with DLL linkage 484

when to use 450

with static calls 454

dynamic data areas, allocating

storage 43

dynamic debugging 349

dynamic file allocation
order of allocation 149

using CBLQDA 163

using environment variables
line-sequential files 209

QSAM files 166

VSAM files 200

dynamic link libraries
about 479

binder options for DLLs 481

compiler options required 286

compiling 480

creating
from the z/OS UNIX shell 286

overview 479

creating for OO 292

for Java interoperability 292

in OO COBOL applications 489

linking 481

prelinker needed if DLL to be in

PDS 483

prelinker needed if DLL to reside in

PDS 481

prelinking 483

programs with DLL support must be

reentrant 462

search order for in HFS 484

using CALL identifier with 483

dynamic link libraries (continued)
using with C/C++ programs 488

using with dynamic calls 484

using with Java interoperability 293

using with OO 293

E
E-level error message 281, 372

EBCDIC
code pages supported in XML

documents 522

converting to ASCII 115

JNI services 605

multibyte CCSIDs supported for

DBCS 310

ECI calls and RETURN-CODE special

register 409

efficiency of coding 649

EJECT statement 361

embedded cross-reference
description 375

example 399

embedded error messages 372

embedded MAP summary 374, 381

enclave 445

encoding
controlling in generated XML

output 535

description 133

language characters 125

of XML documents 521

specifying with CODEPAGE

option 309

encoding declaration
preferable to omit 525

specifying 525

END-OF-DOCUMENT XML event 513,

517, 519

END-OF-ELEMENT XML event 513,

517, 519

end-of-file phrase (AT END) 238

END-OF-INPUT XML event 517, 519

enhancing XML output
example of converting hyphens to

underscores 545

example of modifying data

definitions 542

rationale and techniques 541

ENTER statement 361

entry point
alternate 461

alternate in ENTRY statement 460

ENTRY label 461

passing entry addresses of 460

procedure-pointer data item 460

ENTRY statement
for alternate entry points 460

handling of program-name in 337

ENVAR runtime option 297

ENVIRONMENT DIVISION
class 554

client 567

collating sequence coding 8

CONFIGURATION SECTION 7

description 7

entries for line-sequential files 207

ENVIRONMENT DIVISION (continued)
entries for QSAM files 151

entries for VSAM files 181

INPUT-OUTPUT SECTION 7

instance method 559

items present in, program

initialization code 390

signature information bytes 390

subclass 579

environment variables
_BPX_SHAREAS 439

_CEE_ENVFILE
description 437

indicating Java settings 297

_CEE_RUNOPTS
description 437

setting XPLINK 300

specifying runtime options 435

_IGZ_SYSOUT 437

and copybooks 361

CLASSPATH
description 437

example of setting 296

specifying location of Java

classes 294

COBJVMINITOPTIONS
description 437

specifying JVM options 295

COBOPT 283

compiler 283

defining files, example 10

defining line-sequential files 209

defining QSAM files 166

example of setting and accessing 438

LIBPATH
description 437

example of setting 296

specifying location for COBOL

classes 294

library-name 283, 361

PATH
description 437

example of setting 296

runtime 437

setting and accessing 436

STEPLIB
description 437

example 285

SYSLIB
description 283

specifying location of JNI.cpy 291

text-name 283, 361

using to allocate files 149

environment-name 7

ERRMSG, for generating list of error

messages 279

error
arithmetic 234

compiler options, conflicting 304

handling 233

handling for input-output 150

listing 273

message table
example using indexing 80

example using subscripting 79

processing
line-sequential files 212

Index 859

error (continued)
processing (continued)

QSAM files 165

VSAM files 195

routines for handling 244

error messages
compiler

choosing severity to be

flagged 372

correcting source 279

determining what severity level to

produce 321

embedding in source listing 372

format 280

from exit modules 712

generating a list of 279

location in listing 280

sending to terminal 269

severity levels 281

compiler-directed 279

ESDS (entry-sequenced data sets)
file access mode 185

organization 182

euro currency sign 67

EVALUATE statement
case structure 91

coding 91

contrasted with nested IFs 92, 93

example that tests several

conditions 93

example with multiple WHEN

phrases 93

example with THRU phrase 92

performance 92

structured programming 650

testing multiple values, example 96,

97

use to test multiple conditions 89

evaluating data item contents
class test

for numeric 56

overview 94

INSPECT statement 111

intrinsic functions 115

exception condition
CALL 244

XML GENERATE 536

XML PARSE 527

exception handling
with Java 596

EXCEPTION XML event 527

EXCEPTION/ERROR declarative
description 238

file status key 240

line-sequential error processing 212

QSAM error processing 165

VSAM error processing 195

EXEC control statement, RD parameter

of 616

EXIT compiler option
considerations for SQL and CICS

statements 712

description 319

using 703

with the DUMP compiler option 304

exit modules
called for SYSADATA data set 710

exit modules (continued)
error messages generated 712

loading and invoking 705

used in place of library-name 706

used in place of SYSLIB 706

used in place of SYSPRINT 709

EXIT PROGRAM statement
in subprogram 446

with multithreading 446

explicit scope terminator 22

exponentiation
evaluated in fixed-point

arithmetic 676

evaluated in floating-point

arithmetic 681

performance tips 653

EXPORTALL compiler option
description 320

DLL considerations 480

multioption interaction 304

extended mode 45, 673

external class-name 555, 567

EXTERNAL clause
example for files 474

for data items 473

for sharing files 14, 473

external data
obtaining storage for 44

sharing 473

storage location of 44

external decimal data
national 49

zoned 49

external file 473

external floating-point data
display 50

national 50

F
F-format record

layout 153

requesting 153

factoring expressions 650

factory data
defining 582

definition of 549

making it accessible 583

private 583

factory definition, coding 582

factory methods
defining 583

definition of 549

hiding 584

invoking 585

using to wrap procedural

programs 591

FACTORY paragraph
factory data 582

factory methods 583

factory section, defining 582

FASTSRT compiler option
description 320

improving sort performance 225, 660

information message 225

requirements
JCL 226

FASTSRT compiler option (continued)
requirements (continued)

QSAM 226

sort input and output files 226

VSAM 227

FD (file description) entry 14

figurative constants
definition 28

HIGH-VALUE restriction 128

national-character 128

file access mode
choosing 147

dynamic 185

example 185

for indexed files (KSDS) 185

for relative files (RRDS) 185

for sequential files (ESDS) 185

performance considerations 203

random 185

sequential 185

summary table of 181

file allocation 149

file availability
QSAM files under z/OS 163

VSAM files under z/OS 197

file conversion
with millennium language

extensions 629

file description (FD) entry 14

file organization
choosing 147

comparison of ESDS, KSDS,

RRDS 181

indexed 145, 182

line-sequential 207

overview 145

QSAM 151

relative 145

relative-record 184

sequential 145, 182

VSAM 180

file position indicator (CRP) 189, 192

FILE SECTION
BLOCK CONTAINS clause 14

CODE-SET clause 14

DATA RECORDS clause 14

description 13

EXTERNAL clause 14

FD entry 14

GLOBAL clause 14

LABEL RECORDS clause 14

LINAGE clause 14

OMITTED 14

RECORD CONTAINS clause 14

record description 13

RECORD IS VARYING 14

RECORDING MODE clause 14

VALUE OF 14

FILE STATUS clause
description 150

example 243

line-sequential error processing 212

NOFASTSRT error processing 227

QSAM error processing 165

using 239

VSAM error processing 195

with VSAM status code 241

860 Enterprise COBOL for z/OS V4.1 Programming Guide

file status code
02 192

05 189

30 191

35 189

37 161

39 162, 170, 174, 189

49 194

90 160, 165, 195

92 194, 439

using 235

file status key
checking for I/O errors 239

checking for successful OPEN 239,

240

error handling 367

set for error handling 150

used with VSAM status code 241

VSAM, importance of in 195

FILE-CONTROL paragraph
example of entries 8

relation to FD entries 10

files
associating program files to external

files 7

attributes 170

available
QSAM 163

VSAM 197

changing name 11

COBOL coding
DATA DIVISION entries 152, 185,

208

ENVIRONMENT DIVISION

entries 151, 181, 207

input/output statements 161, 187,

209

overview 148

defining to operating system 10

describing 13

external 473

identifying to z/OS 166, 169, 197,

209

labels 178

multithreaded processing
example 496

recommended organization 495

recommended usage patterns 495

serialization 494

optional
QSAM 163

VSAM 190

overview 146

processing
line-sequential 207

QSAM 151

VSAM 179

with multithreading 494

sort performance
FASTSRT 225

variable-length files 220

storage of file-definition records 495

unavailable
QSAM 163

VSAM 197

usage explanation 11

used interchangeably for data set 7

fixed century window 627

fixed-length records
QSAM

layout 153

requesting 153

VSAM
defining 186

RRDS 180

fixed-point arithmetic
comparisons 65

evaluation 64

example evaluations 66

exponentiation 676

fixed-point data
binary 50

conversions and precision 54

conversions between fixed- and

floating-point 54

external decimal 49

intermediate results 675

packed-decimal 52

planning use of 652

FLAG compiler option
compiler output 373

description 321

using 372

flags and switches 95

FLAGSTD compiler option 322

multioption interaction 304

floating-point arithmetic
comparisons 65

evaluation 64

example evaluations 66

exponentiation 681

floating-point data
conversions and precision 54

conversions between fixed- and

floating-point 54

external 50

intermediate results 680

internal
format 52

performance tips 653

planning use of 652

format of record
fixed-length

defining for VSAM 186

layout of QSAM 153

requesting for QSAM 153

for QSAM ASCII tape 177

format D 177

layout 155

requesting 154

format F 177

layout 153

requesting 153

format S
layout 157

overview 157

requesting 156

format U 177

layout 159

requesting 158

format V 177

layout 155

requesting 154

format of record (continued)
spanned

layout 157

overview 157

requesting 156

undefined
layout 159

requesting 158

variable-length
defining for VSAM 186

layout of QSAM 155

requesting for QSAM 154

formatted dump 233

freeing object instances 576

full date field expansion,

advantages 626

function-pointer data item
addressing JNI services 717

CALL statement 461

calling COBOL 461

calling DLL program
example 487

calling Language Environment

services 461

definition 460

SET function-pointer 460

with DLLs 486

G
garbage collection 576

GB 18030 data
converting to or from national 138

processing 138

generating XML output
example 537

overview 531

get and set methods 563

GETMAIN, saving address of 704

GLOBAL clause for files 14, 18

global names 458

GO TO MORE-LABELS 176

GOBACK statement
in main program 446

in subprogram 446

with multithreading 446

group item
cannot subordinate alphanumeric

group within national group 131

comparing to national data 141

definition 26

for defining tables 69

group move contrasted with

elementary move 35, 131

initializing
using a VALUE clause 78

using INITIALIZE 32, 76

MOVE statement with 35

passing as an argument 468

treated as a group item
example with INITIALIZE 76

in INITIALIZE 33

variably located 683

group move contrasted with elementary

move 35, 131

GROUP-USAGE NATIONAL clause
communicating with Java 600

Index 861

GROUP-USAGE NATIONAL clause

(continued)
defining a national group 130

defining tables 70

example of declaring a national

group 26

initializing a national group 33

grouping data to pass as an

argument 468

H
header label

definition 175

using 175

header on listing 7

HEAP runtime option
influencing data location 43

multioption interaction 42

hexadecimal literals
as currency sign 67

national
description 28

using 127

hiding factory methods 584

hierarchical file system (HFS)
compiler data sets 252

defining file with environment

variable 149

processing files with QSAM 174

reading file with ACCEPT 37

search order for DLLs in 484

writing files with DISPLAY 39

hierarchy of compiler options
in batch 276

in SYSOPTF data sets 335

under z/OS 271

under z/OS UNIX 284

I
I-level message 281, 372

IDENTIFICATION DIVISION
class 554

CLASS-ID paragraph 554, 578

client 566

coding 5

DATE-COMPILED paragraph 5

errors 5

listing header example 7

method 558

PROGRAM-ID paragraph 5

required paragraphs 5

subclass 578

TITLE statement 7

IF statement
coding 89

nested 90

use EVALUATE instead for multiple

conditions 90

with null branch 89

IGZBRDGE macro
with multithreading 498

IGZCA2D service routine 689

IGZCD2A service routine 692

igzcjava.x
binding with

example 298

preparing OO applications 296

linking with
example 293

preparing OO applications 292

IGZEOPT module
with multithreading 498

IGZETUN module
with multithreading 498

IGZSRTCD data set 229

imperative statement, list 21

implicit scope terminator 22

IMS
COBOL-Java interoperability

accessing databases 432

calling COBOL method from

Java 430

calling Java method from

COBOL 431

messages 432

STOP RUN 432

synchronizing transactions 432

using the AIB 433

coding programs under
overview 429

restrictions 7, 429

compiling and linking for 429

performance considerations 664

incompatible data 56

incrementing addresses 469

index
assigning a value to 74

computation of element displacement,

example 72

creating with OCCURS INDEXED BY

clause 74

definition 72

incrementing or decrementing 74

initializing 75

key, detecting faulty 243

range checking 371

referencing other tables with 74

index data item
cannot use as subscript or index 75

creating with USAGE IS INDEX

clause 74

indexed file organization
description 145

specifying 182

indexing
computation of element displacement,

example 72

definition 72

example 80

preferred to subscripting 653

tables 74

INEXIT
example user exit 713

processing of 705

suboption of EXIT 703

inheritance hierarchy, definition of 551

INITIAL attribute 447

effect on nested programs 6

effect on subprograms 448, 449

setting programs to initial state 6

INITIAL attribute (continued)
use of dynamic call and CANCEL

instead 451

INITIALIZE statement
examples 30

loading group values 32

loading national group values 33

loading table values 76

REPLACING phrase 76

using for debugging 368

initializing
a group item

using a VALUE clause 78

using INITIALIZE 32, 76

a national group item
using a VALUE clause 78

using INITIALIZE 33, 76

a structure using INITIALIZE 32

a table
all occurrences of an element 78

at the group level 78

each item individually 77

using INITIALIZE 76

using PERFORM VARYING 100

examples 30

instance data 574

variable-length group 83

inline PERFORM
example 98

overview 98

input
coding for CICS 406

coding for line-sequential files 209

coding for QSAM files 161

coding for VSAM files 187

from files 145

to compiler, under z/OS 265

input procedure
coding 216

example 222

FASTSRT option not effective 226

requires RELEASE or RELEASE

FROM 217

restrictions 219

INPUT-OUTPUT SECTION 7

input/output
checking for errors 239

coding overview 148

controlling with FASTSRT option 320

logic flow after error 235

overview 145

processing errors
line-sequential files 212

QSAM files 165, 235

VSAM files 195, 235

input/output coding
AT END (end-of-file) phrase 238

checking for successful operation 239

checking VSAM status codes 241

detecting faulty index key 243

error handling techniques 235

EXCEPTION/ERROR

declaratives 238

INSERT statement 361

INSPECT statement
examples 111

using 111

862 Enterprise COBOL for z/OS V4.1 Programming Guide

inspecting data (INSPECT) 111

instance
creating 574

definition of 549

deleting 576

instance data
defining 556, 580

definition of 549

initializing 574

making it accessible 563

private 556

instance methods
defining 557, 580

definition of 549

invoking overridden 574

overloading 562

overriding 561

INTDATE compiler option
description 323

effect on calendar starting date 62

INTEGER intrinsic function,

example 110

INTEGER-OF-DATE intrinsic

function 63

INTEGER-PART intrinsic function 110

integrated CICS translator
advantages 411

compiler options for 410

overview 411

interactive program, example 795

Interactive System Productivity Facility

(ISPF) 795

interlanguage communication
and PL/I tasking 497

between COBOL and Java 595

IMS applications 432

subprograms 445

under CICS 408

with multithreading 497

intermediate results 673

internal bridges
advantages 626

example 628

for date processing 627

internal floating-point data (COMP-1,

COMP-2) 52

interoperable data types with Java 600

interrupts 613

intrinsic functions
as reference modifiers 110

converting alphanumeric data items

with 112

converting national data items

with 112

DATEVAL
example 643

using 642

evaluating data items 115

example of
ANNUITY 64

CHAR 116

CURRENT-DATE 63

DISPLAY-OF 137

INTEGER 110

INTEGER-OF-DATE 63

LENGTH 63, 117, 118

LOG 64

intrinsic functions (continued)
example of (continued)

LOWER-CASE 113

MAX 63, 87, 116, 117

MEAN 64

MEDIAN 64, 87

MIN 110

NATIONAL-OF 137

NUMVAL 113

NUMVAL-C 63, 113

ORD 115

ORD-MAX 87, 116

PRESENT-VALUE 63

RANGE 64, 87

REM 64

REVERSE 113

SQRT 64

SUM 87

UPPER-CASE 113

WHEN-COMPILED 119

finding date of compilation 119

finding largest or smallest item 116

finding length of data items 118

intermediate results 678, 681

introduction to 40

nesting 41

numeric functions
differences from Language

Environment callable

services 61

equivalent Language Environment

callable services 60

examples of 59

integer, floating-point, mixed 59

nested 60

special registers as arguments 60

table elements as arguments 60

uses for 59

processing table elements 86

UNDATE
example 643

using 642

INVALID KEY phrase
description 243

example 243

INVOKE statement
RETURNING phrase 573

USING phrase 571

using to create objects 574

using to invoke methods 570

with ON EXCEPTION 571, 585

with PROCEDURE DIVISION

RETURNING 472

invoking
COBOL UNIX programs 435

factory or static methods 585

instance methods 570

Language Environment callable

services 669

ISAM data set, analogous to VSAM KSDS

data set 179

ISPF (Interactive System Productivity

Facility) 795

J
J2EE client

example 607

running 295

Java
and COBOL 595

binding 296

compiling under z/OS UNIX 291

compiling using JCL or

TSO/E 296

linking 292

running 293, 297

structuring applications 591

array classes 600

arrays
declaring 601

example 604

manipulating 602

boolean array 601

boolean type 600

byte array 601

byte type 600

char array 601

char type 600

class types 600

double array 602

double type 600

example
exception handling 597

J2EE client 607

processing an array 604

exception
catching 597

example 597

handling 596

throwing 597

float array 602

float type 600

global references
JNI services for 599

managing 598

object 598

passing 598

int array 601

int type 600

interoperability 595

interoperable data types, coding 600

jstring class 600

local references
deleting 598

freeing 599

JNI services for 599

managing 598

object 598

passing 598

per multithreading 598

saving 598

long array 601

long type 600

methods
access control 599

object array 601

running with COBOL
under z/OS UNIX 293

using JCL or TSO/E 297

XPLINK linkage 299

sharing data with 600

Index 863

Java (continued)
short array 601

short type 600

string array 601

strings
declaring 601

manipulating 604

Java virtual machine
exceptions 597

initializing 294

object references 598

java.lang.Object
referring to as Base 554

javac command 291

JAVAERR data set 297

JAVAIN data set 297

JAVAOUT data set 297

JCL
ASCII tape files 178

cataloged procedures 250

example of checkpoint/restart 619

FASTSRT requirement 225

for compiling 249

for compiling with HFS 252

for line-sequential files 209

for merge 219

for OO applications 296

example 298

for QSAM files 167

for sort 219

for VSAM data sets 200

JNI
accessing services 595

comparing object references 569

converting local references to

global 575

EBCDIC services 605

environment structure 595

addressability for 596

exception handling services 596

Java array services 602

Java string services 604

obtaining class object reference 596

restrictions when using 596

Unicode services 604

JNI.cpy
for compiling 291

for JNINativeInterface 595

listing 717

JNIEnvPtr special register 595

JNINativeInterface
environment structure 595

JNI.cpy 595

JOB control statement, RD parameter

of 616

job resubmission 619

job stream 445

jstring Java class 600

K
Kanji comparison 94

Kanji data, testing for 143

keyboard navigation xv

keys
alternate in KSDS file 183

for binary search 85

keys (continued)
for merging

defining 221

overview 214

for sorting
defining 221

overview 214

permissible data types
in MERGE statement 222

in OCCURS clause 70

in SORT statement 222

prime in KSDS file 182

relative-record 184

to specify order of table elements 70

KSDS (key-sequenced data sets)
file access mode 185

organization 182

L
LABEL declarative

description 361

GO TO MORE-LABELS 176

handling user labels 176

LABEL RECORDS clause
FILE SECTION entry 14

LABEL= 178

labels
ASCII file 178

format, standard 176

processing, QSAM files 174

standard user 177

LANGUAGE compiler option
description 324

Language Environment callable services
condition handling 667

corresponding math intrinsic

functions 60

date and time computations 667

differences from intrinsic

functions 61

dynamic storage services 667

example of using 670

feedback code 669

for date and time 62

for mathematics 60

invoking with CALL 669

mathematics 667

message handling 667

national language support 667

omitted feedback code 669

overview 667

return code 669

RETURN-CODE special register 669

sample list of 668

types of 667

language features for debugging (See also

debugging, language features)
DISPLAY statements 366

large block interface (LBI) 160

largest or smallest item, finding 116

last-used state
subprograms with EXIT PROGRAM

or GOBACK 447

subprograms without INITIAL

attribute 448, 449

LBI (large block interface) 160

LENGTH intrinsic function 115

compared with LENGTH OF special

register 118

example 63, 118

variable-length results 117

with national data 118

length of data items, finding 118

LENGTH OF special register
passing 464

using 118

level-88 item
conditional expressions 94

for windowed date fields 633

restriction 634

setting switches off, example 97

setting switches on, example 96

switches and flags 95

testing multiple values, example 96

testing single values, example 95

level-number 380

LIB compiler option 325

multioption interaction 304

LIBEXIT suboption of EXIT option 703,

706

libjvm.x
binding with

example 298

preparing OO applications 296

linking with
example 293

preparing OO applications 292

with EBCDIC services 606

LIBPATH environment variable
description 437

example of setting 296

specifying location for COBOL

classes 294

library
BASIS 268

COPY 268

defining 268

directory entry 263

specifying path for 361

library-name
alternative if not specified 287

cross-reference to data-set names 398

when not used 706

library-name environment variable 283

limits of the compiler
DATA DIVISION 13

user data 13

line number 380

line-sequential files
adding records to 211

allowable control characters 208

blocking 14

closing 211

closing to prevent reopening 210

DATA DIVISION entries 208

ENVIRONMENT DIVISION

entries 207

input/output error processing 212

input/output statements for 209

national data not supported 211

opening 210

processing files 207

reading from 210

864 Enterprise COBOL for z/OS V4.1 Programming Guide

line-sequential files (continued)
reading records from 210

under z/OS
creating files 209

DD statement for 209

defining 209

environment variable for 209

job control language (JCL) 209

writing to 210

LINECOUNT compiler option 326

LINK macro 263

LINKAGE SECTION
coding 467

for describing parameters 466

with recursive calls 19

with the THREAD option 19

linked-list processing, example 470

linking in the z/OS UNIX shell
c89 command 285

passing information to cob2 287

using the cob2 command
DLLs 286

examples 287

overview 285

linking OO applications
cob2 command 292

under z/OS UNIX
example 293

overview 292

using JCL or TSO/E
example 298

overview 296

LIST compiler option
assembler code for source

program 385

compiler output 386, 387

conflict with OFFSET option 375

description 326

DSA memory map 385, 396

getting output 375

location and size of

WORKING-STORAGE 396

multioption interaction 304

reading output 385

symbols used in output 383

TGT memory map 385

list of resources 849

listings (See also SYSADATA)
assembler expansion of PROCEDURE

DIVISION 385

data and procedure-name

cross-reference 374

embedded error messages 372

generating a short listing 375

line numbers, user-supplied 377

sorted cross-reference of

program-names 398

sorted cross-reference of

text-names 398

terms used in MAP output 382

text-name cross-reference 374

literals
alphanumeric

description 27

with DBCS content 142

DBCS
description 28

literals (continued)
DBCS (continued)

maximum length 142

using 142

definition 27

hexadecimal
using 127

national
description 28

using 127

numeric 28

using 27

little-endian, converting to

big-endian 126

loading a table dynamically 75

local names 458

local references, converting to global 575

LOCAL-STORAGE SECTION
client 568, 569

comparison with

WORKING-STORAGE
example 17

OO client 569

overview 16

determining location 43

LOG intrinsic function 64

logical record
description 145

fixed-length format
defining for VSAM 186

requesting for QSAM 153

QSAM, definition 152

variable-length format
defining for VSAM 186

layout for QSAM 155

requesting for QSAM 154

LONGMIXED suboption of

PGMNAME 338

LONGUPPER suboption of

PGMNAME 338

loops
coding 97

conditional 99

do 99

in a table 100

performed an explicit number of

times 99

LOWER-CASE intrinsic function 113

lowercase, converting to 113

lst suffix with cob2 289

M
main program

and subprograms 445

dynamic calls 449

parameter list in UNIX 440

main storage, allocating to buffers 307

MAP compiler option
data items and relative addresses 273

description 327

embedded MAP summary 375

example 380, 384

nested program map 375

example 384

symbols used in output 383

terms used in output 382

MAP compiler option (continued)
using 374, 375

mapping of DATA DIVISION items 375

mathematics
intrinsic functions 59, 64

Language Environment callable

services 61, 667

MAX intrinsic function
example table calculation 87

example with functions 63

using 116

MDECK compiler option
description 328

multioption interaction 304

MEAN intrinsic function
example statistics calculation 64

example table calculation 87

MEDIAN intrinsic function
example statistics calculation 64

example table calculation 87

memory map
DSA 385

TGT 385

memory map, TGT
example 394

merge
alternate collating sequence 223

completion code 224

criteria 221

data sets needed under z/OS 219

DD statements for defining z/OS data

sets 219

description 213

determining success 224

diagnostic message 225

files, describing 215

keys
defining 221

overview 214

pass control statements to 229

process 214

restrictions 213

storage use 230

terminating 225

MERGE statement
ASCENDING|DESCENDING KEY

phrase 222

COLLATING SEQUENCE phrase 8,

223

description 220

GIVING phrase 220

overview 213

restrictions 213

USING phrase 220

message handling, Language

Environment callable services 667

messages
compiler

choosing severity to be

flagged 372

date-related 644

determining what severity level to

produce 321

embedding in source listing 372

generating a list of 279

millennium language

extensions 644

Index 865

messages (continued)
compiler (continued)

sending to terminal 269

severity levels 281

compiler-directed 279

from exit modules 712

METHOD-ID paragraph 558

methods
constructor 583

factory 583

hiding factory 584

instance 557, 580

invoking 570, 585

invoking superclass 574

Java access control 599

obtaining passed arguments 561

overloading 562

overriding 561, 584

PROCEDURE DIVISION

RETURNING 472

returning a value from 561

signature 558

millennium language extensions
assumed century window 634

compatible dates 631

concepts 624

date windowing 623

DATEPROC compiler option 314

nondates 635

objectives 625

principles 624

YEARWINDOW compiler option 358

MIN intrinsic function
example 110

using 116

mixed DBCS/EBCDIC literal
alphanumeric to DBCS

conversion 689

DBCS to alphanumeric

conversion 692

MLE 624

mnemonic-name
SPECIAL-NAMES paragraph 7

modules, exit
loading and invoking 705

MOVE statement
assigning arithmetic results 36

converting to national data 134

CORRESPONDING 35

effect of ODO on lengths of sending

and receiving items 81

group move contrasted with

elementary move 35, 131

with elementary receiving items 34

with group receiving items 35

with national items 34

MSGFILE runtime option 336

multiple currency signs
example 68

using 67

multiple inheritance, not permitted 552,

578

multiple thread environment, running

in 350

multithreading
AMODE setting 497

asynchronous signals 498

multithreading (continued)
choosing data section 491

in an OO client 569

closing QSAM files 165

closing VSAM files 195

COBOL programs 491

coding file I/O
example 496

recommended organization 495

recommended usage patterns 495

serialization 494

control transfer 493

ending programs 494

EXIT PROGRAM statement 446

GOBACK statement 446

I/O error declaratives 238

IGZBRDGE 498

IGZEOPT 498

IGZETUN 498

interlanguage communication 497

limitations 497

nested programs 497

older compilers 498

overview 491

preinitializing 493

preparing COBOL programs for 491

recursion 493

recursive requirement 497

reentrancy 497

reentrancy requirement 497

runtime restrictions 498

sort and merge restriction 213

STOP RUN statement 446

synchronizing access to

resources 497

terminology 492

THREAD compiler option
restrictions with 351

when to choose 493

UPSI switches 498

with PL/I tasks 497

N
N delimiter for national or DBCS

literals 28

NAME compiler option
description 329

using 5

name declaration
searching for 459

NAMESPACE-DECLARATION XML

event 509, 510, 517

naming
files 10

programs 5

NATIONAL (USAGE IS)
external decimal 49

floating point 50

national comparison 94

national data
cannot use with DATE FORMAT

clause 624

communicating with Java 600

comparing
overview 139

national data (continued)
comparing (continued)

to alphabetic, alphanumeric, or

DBCS 140

to alphanumeric groups 141

to numeric 140

two operands 139

concatenating (STRING) 101

converting
exceptions 136

from alphanumeric or DBCS with

NATIONAL-OF 135

from alphanumeric, DBCS, or

integer with MOVE 134

overview 134

to alphanumeric with

DISPLAY-OF 136

to numbers with NUMVAL,

NUMVAL-C 113

to or from Chinese GB 18030 138

to or from Greek alphanumeric,

example 137

to or from UTF-8 137

to uppercase or lowercase 113

with INSPECT 111

defining 127

displaying on output 38

encoding in XML documents 521

evaluating with intrinsic

functions 115

external decimal 49

external floating-point 50

figurative constants 128

finding the smallest or largest

item 116

in conditional expressions 139

in generated XML documents 532

in keys
in MERGE statement 222

in OCCURS clause 70

in SORT statement 222

initializing, example of 31

input with ACCEPT 37

inspecting (INSPECT) 111

LENGTH intrinsic function and 118

LENGTH OF special register 118

literals
using 127

MOVE statement with 34, 134

NSYMBOL compiler option if no

USAGE clause 127

reference modification of 108

reversing characters 113

specifying 126

splitting (UNSTRING) 104

VALUE clause with alphanumeric

literal, example 117

national decimal data (USAGE

NATIONAL)
defining 129

example 45

format 49

initializing, example of 32

national floating-point data (USAGE

NATIONAL)
defining 129

definition 50

866 Enterprise COBOL for z/OS V4.1 Programming Guide

national group item
advantages over alphanumeric

groups 130

can contain only national data 26,

131

communicating with Java 600

contrasted with USAGE NATIONAL

group 27

defining 130

example 26

for defining tables 70

in generated XML documents 532

initializing
using a VALUE clause 78

using INITIALIZE 33, 76

LENGTH intrinsic function and 118

MOVE statement with 35

overview 129

passing as an argument 468

treated as a group item
example with INITIALIZE 132

in INITIALIZE 33

in MOVE CORRESPONDING 35

summary 132

treated as an elementary item
example with MOVE 35

in most cases 26, 129

using
as an elementary item 131

overview 130

VALUE clause with alphanumeric

literal, example 78

national language support (NLS)
DBCS 141

LANGUAGE compiler option 324

processing data 121

national literals
description 28

using 127

national-edited data
defining 127

editing symbols 127

initializing
example 31

using INITIALIZE 76

MOVE statement with 34

PICTURE clause 127

NATIONAL-OF intrinsic function
example with Chinese data 138

example with Greek data 137

example with UTF-8 data 137

using 135

with XML documents 523

nested COPY statement 665, 707

nested delimited scope statements 23

nested IF statement
coding 90

CONTINUE statement 89

EVALUATE statement preferred 90

with null branches 89

nested intrinsic functions 60

nested program integration 658

nested program map
description 375

example 384

nested programs
calling 456

nested programs (continued)
description 456

guidelines 456

map 375, 384

scope of names 458

transfer of control 456

nesting level
program 380, 384

statement 380

NOCBLCARD translator option 412

NOCOMPILE compiler option
use to find syntax errors 370

NODLL compiler option
with dynamic calls 449

with static calls 448

NODYNAM compiler option
under CICS 408

under DB2 with CICS or CAF 427

with static and dynamic calls 454

with static calls 448

with stored procedures 428

NOFASTSRT compiler option 227, 231

nondates with MLE 635

NOSIMVRD runtime option 184

NOSQLCCSID compiler option

recommended for compatibility with

DB2 precompiler 425

Notices 811

NSYMBOL compiler option
description 330

effect on N literals 28

for DBCS literals 127

for national data items 127

for national literals 127

multioption interaction 304

null branch 89

null-terminated strings
example 107

handling 468

manipulating 106

NUMBER compiler option
description 331

for debugging 377

NUMCLS installation option, effect on

numeric class test 57

numeric class test
checking for valid data 56

effect of NUMPROC, NUMCLS 57

numeric comparison 94

numeric data
binary

USAGE BINARY 50

USAGE COMPUTATIONAL

(COMP) 50

USAGE COMPUTATIONAL-4

(COMP-4) 50

USAGE COMPUTATIONAL-5

(COMP-5) 51

can compare algebraic values

regardless of USAGE 140

comparing to national 140

converting
between fixed- and

floating-point 54

precision 54

to national with MOVE 134

defining 45

numeric data (continued)
display floating-point (USAGE

DISPLAY) 50

editing symbols 47

external decimal
USAGE DISPLAY 49

USAGE NATIONAL 49

external floating-point
USAGE DISPLAY 50

USAGE NATIONAL 50

internal floating-point
USAGE COMPUTATIONAL-1

(COMP-1) 52

USAGE COMPUTATIONAL-2

(COMP-2) 52

national decimal (USAGE

NATIONAL) 49

national floating-point (USAGE

NATIONAL) 50

packed-decimal
sign representation 55

USAGE COMPUTATIONAL-3

(COMP-3) 52

USAGE PACKED-DECIMAL 52

PICTURE clause 45, 47

storage formats 48

USAGE DISPLAY 45

USAGE NATIONAL 45

zoned decimal (USAGE DISPLAY)
format 49

sign representation 55

numeric intrinsic functions
differences from Language

Environment callable services 61

equivalent Language Environment

callable services 60

example of
ANNUITY 64

CURRENT-DATE 63

INTEGER 110

INTEGER-OF-DATE 63

LENGTH 63, 117

LOG 64

MAX 63, 87, 116, 117

MEAN 64

MEDIAN 64, 87

MIN 110

NUMVAL 113

NUMVAL-C 63, 113

ORD 115

ORD-MAX 87

PRESENT-VALUE 63

RANGE 64, 87

REM 64

SQRT 64

SUM 87

integer, floating-point, mixed 59

nested 60

special registers as arguments 60

table elements as arguments 60

uses for 59

numeric literals, description 28

numeric-edited data
BLANK WHEN ZERO clause

coding with numeric data 127

example 47

defining 127

Index 867

numeric-edited data (continued)
editing symbols 47

initializing
examples 32

using INITIALIZE 76

PICTURE clause 47

USAGE DISPLAY
displaying 47

initializing, example of 32

USAGE NATIONAL
displaying 47

initializing, example of 32

NUMPROC compiler option
affected by NUMCLS 57

description 332

effect on sign processing 55

performance considerations 661

NUMVAL intrinsic function
description 113

NUMVAL-C intrinsic function
description 113

example 63

NX delimiter for national literals 28

O
o suffix with cob2 289

object
creating 574

definition of 549

deleting 576

object code
compilation and listing 273

creating 269

generating 311

producing in 80-column record 316

OBJECT compiler option
description 333

multioption interaction 304

object instances, definition of 549

OBJECT paragraph
instance data 556, 580

instance methods 557

object references
comparing 569

converting from local to global 575

example of passing 572

setting 569

typed 568

universal 568

OBJECT-COMPUTER paragraph 7

object-oriented COBOL
binding

example 298

overview 296

calls to and from OO programs 459

communicating with Java 600

compiling
under z/OS UNIX 291

using JCL or TSO/E 296

DLLs in 489

IMS
accessing databases 432

calling COBOL method from

Java 430

calling Java method from

COBOL 431

object-oriented COBOL (continued)
linking

example 293

overview 292

preparing applications
under z/OS UNIX 292

using JCL or TSO/E 296

programs must be reentrant 462

restrictions
cannot run under CICS 406

CICS 549

EXEC CICS statements 549

EXEC SQL statements 549

sort and merge 213

SQL compiler option 549

running
under z/OS UNIX 293

using JCL or TSO/E 297

XPLINK linkage 299

writing OO programs 549

objectives of millennium language

extensions 625

OCCURS clause
ASCENDING|DESCENDING KEY

phrase
example 86

needed for binary search 85

specify order of table elements 70

cannot use in a level-01 item 69

for defining table elements 69

for defining tables 69

INDEXED BY phrase for creating

indexes 74

nested for creating multidimensional

tables 70

OCCURS DEPENDING ON (ODO)

clause
complex 683

for creating variable-length tables 81

initializing ODO elements 83

ODO object 81

ODO subject 81

optimization 654

simple 81

variable-length records
QSAM 154

VSAM 186

OCCURS INDEXED BY clause, creating

indexes with 74

ODO object 81

ODO subject 81

OFFSET compiler option
description 333

multioption interaction 304

output 400

OMITTED clause, FILE SECTION 14

OMITTED parameters 669

OMITTED phrase for omitting

arguments 466

ON EXCEPTION phrase
INVOKE statement 571, 585

ON SIZE ERROR
with windowed date fields 640

OPEN operation code 705

OPEN statement
file availability 162, 189, 210

file status key 239

OPEN statement (continued)
line-sequential files 209

multithreading serialization 494

QSAM files 161

VSAM files 187

opening files
line-sequential 210

multithreading serialization 494

QSAM 162

VSAM
empty 190

overview 189

OPTFILE compiler option 334

optimization
avoid ALTER statement 650

avoid backward branches 650

BINARY data items 652

consistent data 653

constant computations 651

constant data items 651

contained program integration 658

duplicate computations 651

effect of compiler options on 659

effect on parameter passing 466

effect on performance 650

factor expressions 650

index computations 655

indexing 653

nested program integration 658

OCCURS DEPENDING ON 654

out-of-line PERFORM 650

packed-decimal data items 652

performance implications 654

procedure integration 658

structured programming 650

subscript computations 655

subscripting 653

table elements 653

top-down programming 650

unreachable code 657, 658

unused data items 335, 380

OPTIMIZE compiler option
description 335

effect on parameter passing 466

effect on performance 657

multioption interaction 304

performance considerations 660

using 657

optimizer
example 658

overview 657

optional files
QSAM 163

VSAM 190

ORD intrinsic function, example 115

ORD-MAX intrinsic function
example table calculation 87

using 116

ORD-MIN intrinsic function 116

order of evaluation
arithmetic operators 59, 675

compiler options 304

out-of-line PERFORM 98

OUTDD compiler option
DD not allocated 39

description 336

interaction with DISPLAY 39

868 Enterprise COBOL for z/OS V4.1 Programming Guide

output
coding for CICS 406

coding for line-sequential files 209

coding for QSAM files 161

coding for VSAM files 187

data set 269

from compiler, under z/OS 265

to files 145

output files with cob2 289

output procedure
coding 218

example 218, 222

FASTSRT option not effective 226

requires RETURN or RETURN

INTO 218

restrictions 219

overflow condition
CALL 244

joining and splitting strings 234

UNSTRING 103

overloading instance methods 562

overriding
factory methods 584

instance methods 561

P
packed-decimal data item

date fields, potential problems 645

description 52

sign representation 55

synonym 49

using efficiently 52, 652

page
control 164

depth 14

paragraph
grouping 100

introduction 20

parameters
ADEXIT 711

describing in called program 466

INEXIT 705

LIBEXIT 708

main program in UNIX 440

PRTEXIT 710

parsing XML documents
description 504

overview 502

passing data between programs
addresses 469

arguments in calling program 465

BY CONTENT 463

BY REFERENCE 463

BY VALUE
overview 463

restrictions 465

EXTERNAL data 473

in the RETURN-CODE special

register 472

JNI services 596

OMITTED arguments 466

options considerations 43

parameters in called program 466

with Java 600

password
alternate index 196

password (continued)
example 196

VSAM files 196

PASSWORD clause 196

PATH environment variable
description 437

example of setting 296

path name
for copybook search 287, 361

PERFORM statement
coding loops 97

for a table
example using indexing 80

example using subscripting 79

for changing an index 75

inline 98

out-of-line 98

performed an explicit number of

times 99

TEST AFTER 99

TEST BEFORE 99

THRU 100

TIMES 99

UNTIL 99

VARYING 100

VARYING WITH TEST AFTER 100

WITH TEST AFTER . . . UNTIL 99

WITH TEST BEFORE . . . UNTIL 99

performance
AIXBLD runtime option 664

and debugging 349

APPLY WRITE-ONLY clause 12

arithmetic evaluations 652

arithmetic expressions 653

blocking QSAM files 159

calls 453

CBLPSHPOP considerations 415

CBLPSHPOP runtime option 415

CICS environment 649, 664

coding 649

coding tables 653

compiler option
ARITH 660

AWO 660

DYNAM 660

FASTSRT 660

NUMPROC 55, 660

OPTIMIZE 657, 660

RENT 660

RMODE 660

SQLCCSID 425

SSRANGE 660

TEST 660

THREAD 352, 660

TRUNC 352, 660

consistent data types 653

data usage 652

DATEPROC(TRIG) 637

effect of compiler options on 659

effects of buffer size 307

exponentiations 653

IMS environment 429, 664

OCCURS DEPENDING ON 654

optimizer
example 658

overview 657

performance (continued)
order of WHEN phrases in

EVALUATE 92

out-of-line PERFORM compared with

inline 98

programming style 650

runtime considerations 649

striped extended-format QSAM data

sets 172

table handling 655

table searching
binary compared with serial 84

improving serial search 84

tape, QSAM 160

variable subscript data format 73

VSAM files 203, 664

worksheet 663

period as scope terminator 22

PGMNAME compiler option 337

physical
block 145

record 14, 145

PICTURE clause
cannot use for internal floating

point 46

determining symbol used 312

incompatible data 56

N for national data 127

national-edited data 127

numeric data 45

numeric-edited data 127

Z for zero suppression 47

PL/I tasking
POSIX runtime option 497

with COBOL 497

pointer data item
description 41

incrementing addresses with 469

NULL value 469

used to pass addresses 469

used to process chained list 469, 470

porting applications
effect of separate sign 46

POSIX
calling APIs 438

threads 497

POSIX runtime option
effect on DLL search order 484

use in OO applications 297

precedence
arithmetic operators 59, 675

CICS options 410

compiler options
in batch 276

in SYSOPTF data sets 268, 335

under z/OS 271

under z/OS UNIX 284

copybook search order 283

preferred sign 55

preinitializing the COBOL environment
with multithreading 493

prelinking cataloged procedure
compile, prelink, link-edit 255

compile, prelink, link-edit, run 256

compile, prelink, load, run 258

prelink and link-edit 258

PRESENT-VALUE intrinsic function 63

Index 869

preserving original sequence in a

sort 224

priority numbers, segmentation 660

procedure and data-name cross-reference,

description 374

PROCEDURE DIVISION
additional information 392

client 566

description 19

in subprograms 467

instance method 560

RETURNING
methods, use of 472

to return a value 19

signature information bytes 390, 392

statements
compiler-directing 22

conditional 21

delimited scope 21

imperative 21

terminology 19

USING
BY VALUE 467

to receive parameters 19, 466

verbs present in 390

procedure integration 658

procedure-pointer data item
calling C/C++ 461

calling JNI services 461

definition 460

entry address for entry point 460

passing parameters to callable

services 460

SET procedure-pointer 460

with DLLs 486

process
definition 492

PROCESS (CBL) statement
batch compiling 276

conflicting options in 304

overview 361

precedence
in batch 276

under z/OS 271

under z/OS UNIX 284

specifying compiler options 272

processing
chained lists

example 470

overview 469

labels for QSAM files 174

tables
example using indexing 80

example using subscripting 79

producing XML output 531

product support xix, 849

program
attribute codes 384

compiling and linking using cob2
DLLs 286

examples 287

overview 285

compiling under z/OS 249

compiling under z/OS UNIX 283

decisions
EVALUATE statement 89

IF statement 89

program (continued)
decisions (continued)

loops 99

PERFORM statement 99

switches and flags 95

developing for z/OS UNIX 435

diagnostics 379

initialization code 386

limitations 649

main 445

nesting level 380

reentrant 462

restarting 616

signature information bytes 387

statistics 379

structure 5

subprogram 445

PROGRAM COLLATING SEQUENCE

clause
does not affect national or DBCS

operands 9

establishing collating sequence 8

overridden by COLLATING

SEQUENCE phrase 8

overrides default collating

sequence 223

program processing table 408

program termination
actions taken in main and

subprogram 446

statements 446

PROGRAM-ID paragraph
coding 5

COMMON attribute 6

INITIAL attribute 6

program-names
avoid using certain prefixes 5

cross-reference 398

handling of case 337

specifying 5

protecting VSAM files 196

PRTEXIT suboption of EXIT option 703,

709

Q
QSAM files

adding records to 163

ASCII tape file 177

ASSIGN clause 152

attributes 170

BLOCK CONTAINS clause 159

block size 159

blocking enhances performance 159

blocking records 159, 173

closing 165

closing to prevent reopening 162

DATA DIVISION entries 152

ENVIRONMENT DIVISION

entries 151

FASTSRT requirements 226

input/output error processing 165,

235

input/output statements for 161

label processing 174

obtaining buffers for 173

opening 162

QSAM files (continued)
processing

existing files 171

HFS files 174

in reverse order 162

new files 172

overview 151

replacing records 164

retrieving 169

striped extended-format 172

tape performance 160

under z/OS
creating files 166, 169

DD statement for 166, 169

defining 166, 169

environment variable for 166

file availability 163

job control language (JCL) 167

updating files 163

using same input/output file under

FASTSRT 226

writing to a printer 164

QUOTE compiler option 339

R
railroad track diagrams, how to

read xvii

random numbers, generating 61

RANGE intrinsic function
example statistics calculation 64

example table calculation 87

RD parameter of JOB or EXEC

statement 616

READ INTO for format-V VSAM

files 187

READ NEXT statement 187

READ statement
line-sequential files 209

multithreading serialization 494

QSAM 161

VSAM 187

reading records
block size 160

from line-sequential files 210

reading records from VSAM files
dynamically 192

randomly 192

sequentially 192

record
description 13

format
fixed-length QSAM 153

fixed-length VSAM 186

format D 154, 155, 177

format F 153, 177

format S 156, 157

format U 158, 159, 177

format V 154, 155, 177

QSAM ASCII tape 177

spanned 156, 157

undefined 158, 159

variable-length QSAM 154, 155

variable-length VSAM 186

order, effect of organization on 145

RECORD CONTAINS clause
FILE SECTION entry 14

870 Enterprise COBOL for z/OS V4.1 Programming Guide

RECORD KEY clause
identifying prime key in KSDS

files 182

RECORDING MODE clause
fixed-length records, QSAM 153

QSAM files 14

specify record format 152

variable-length records, QSAM 154,

155

recursive calls
and the LINKAGE SECTION 19

coding 459

identifying 6

REDEFINES clause, making a record into

a table using 77

reentrant programs 462

reference modification
example 109

generated XML documents 532

intrinsic functions 107

national data 108

out-of-range values 109

tables 73, 108

UTF-8 documents 138

reference modifier
arithmetic expression as 110

intrinsic function as, example 110

variables as 108

registers affected by EXIT compiler

option 705

relation condition 94

relative file organization 145

RELEASE FROM statement
compared to RELEASE 217

example 216

RELEASE statement
compared to RELEASE FROM 217

with SORT 216, 217

REM intrinsic function 64

RENT compiler option
description 340

for DLLs 480

for IMS 429

for Java interoperability 291, 296

for OO COBOL 291, 296

influencing addressability 42

multioption interaction 42, 304

performance considerations 660

when passing data 43

REPLACE statement
DB2 considerations 426

description 361

replacing
data items (INSPECT) 111

records in QSAM file 164

records in VSAM file 194

text, DB2 considerations 426

REPLACING phrase (INSPECT),

example 111

REPOSITORY paragraph
class 554

client 567

coding 7

subclass 579

representation
data 56

sign 55

RERUN clause
checkpoint/restart 231

reserved-word table, CICS alternate
overview 413

specifying with WORD 355

residency mode, definition 42

restart
automatic 617

deferred 617

overview 613

routine 613

restarting a program 616

restrictions
CICS

16-MB line 406

calls 407

coding 7, 406

separate translator 411

sorting 232

IMS
16-MB line 406

coding 7, 429

input/output procedures 219

OO programs 549

subscripting 73

using EXEC SQL under IMS 432

resubmitting a job 619

return code
compiler 281

feedback code from Language

Environment services 669

from CICS ECI 409

from DB2 SQL statements 421

RETURN-CODE special register 472,

669

VSAM files
description 241

example 241

RLS mode 203

when control returns to operating

system 472

RETURN statement
required in output procedure 218

with INTO phrase 218

RETURN-CODE special register
calls to Language Environment

services 669

CICS ECI calls 409

considerations for DB2 421

not set by INVOKE 571

passing data between programs 472

sharing return codes between

programs 472

when control returns to operating

system 472

RETURNING phrase
CALL statement 473

INVOKE statement 573

methods, use of 472

PROCEDURE DIVISION header 561

REVERSE intrinsic function 113

reverse order of tape files 162

reversing characters 113

REWRITE statement
multithreading serialization 494

QSAM 161

VSAM 187

RLS parameter 202

RMODE
assigned for EXIT modules 705

description 42

RMODE compiler option
description 341

influencing addressability 42

multioption interaction 42

performance considerations 660

when passing data 43

ROUNDED phrase 674

rows in tables 71

RRDS (relative-record data sets)
file access mode 185

fixed-length records 180, 184

organization 184

performance considerations 203

simulating variable-length

records 184

variable-length records 180, 184

run time
changing file-name 11

multithreading restrictions 498

performance considerations 649

run unit
description 445

role in multithreading 492

running OO applications
under z/OS UNIX

overview 293

XPLINK linkage 299

using JCL or TSO/E 297

XPLINK linkage 299

runtime options
affecting DATA compiler option 43

AIXBLD 664

ALL31 451

CBLPSHPOP 414

CHECK(OFF)
performance considerations 660

DEBUG 368

ENVAR 297

MSGFILE 336

NOSIMVRD 184

POSIX
DLL search order 484

use in OO applications 297

specifying under z/OS UNIX 435

Standard COBOL 85

conformance 303

TRAP
closing files in QSAM 165

closing files in VSAM 195

closing line-sequential files 212

ON SIZE ERROR 234

XPLINK
not recommended as a

default 300

setting 300

S
S-format record

layout 157

overview 157

requesting 156

S-level error message 281, 372

Index 871

sample programs 791

scope of names
global 458

local 458

scope terminator
aids in debugging 366

explicit 21, 22

implicit 22

SD (sort description) entry, example 215

SEARCH ALL statement
binary search 85

example 86

for changing an index 75

table must be ordered 85

search order
DLLs in the HFS 484

SEARCH statement
example 84

for changing an index 75

nesting to search more than one level

of a table 84

serial search 84

searching
for name declarations 459

tables
binary search 85

overview 84

performance 84

serial search 84

section
declarative 23

description of 20

grouping 100

segmentation 660

SELECT clause
ASSIGN clause 10

naming files 10

vary input-output file 11

SELECT OPTIONAL
QSAM 163

VSAM 190

SELF 569

sentence, definition 20

separate CICS translator
compiler options for 409, 413

restrictions 411

using 412

separate sign
for line-sequential files 211

portability 46

printing 46

required for signed national

decimal 46

SEQUENCE compiler option 342

sequential file organization 145

sequential search
description 84

example 84

sequential storage device 146

serial search
description 84

example 84

serialization of files with

multithreading 494

SERVICE LABEL statement 361

SET condition-name TO TRUE statement
example 98, 100

SET condition-name TO TRUE statement

(continued)
switches and flags 96

SET statement
for changing an index 74

for changing index data items 74

for function-pointer data items 460

for object references 569

for procedure-pointer data items 460

for setting a condition, example 96

handling of program-name in 337

using for debugging 368

setting
index data items 74

indexes 74

switches and flags 96

sharing
data

between separately compiled

programs 473

coding the LINKAGE

SECTION 467

from another program 18

in recursive or multithreaded

programs 19

in separately compiled

programs 18

overview 463

parameter-passing

mechanisms 463

passing arguments to a

method 571

PROCEDURE DIVISION

header 467

RETURN-CODE special

register 472

returning a value from a

method 573

scope of names 458

with Java 600

files
scope of names 458

using EXTERNAL clause 14, 473

using GLOBAL clause 14

short listing, example 377

sign condition
testing sign of numeric operand 94

using in date processing 638

SIGN IS SEPARATE clause
for line-sequential files 211

portability 46

printing 46

required for signed national decimal

data 46

sign representation 55

signature
definition of 558

must be unique 558

signature information bytes
compiler options in effect 387

DATA DIVISION 389

ENVIRONMENT DIVISION 390

PROCEDURE DIVISION 390, 392

SIZE compiler option 342

size of printed page, control 164

skip a block of records 160

sliding century window 627

softcopy versions of information xix

sort
alternate collating sequence 223

checkpoint/restart 231

completion code 224

controlling behavior of 228

criteria 221

data sets needed under z/OS 219

DD statements for defining z/OS data

sets 219

description 213

determining success 224

diagnostic message 225

FASTSRT compiler option
improving performance 225

requirements 226

using same QSAM file for input

and output 226

files, describing 215

input procedures
coding 216

example 222

keys
defining 221

overview 214

NOFASTSRT compiler option 227

output procedures
coding 218

example 218, 222

pass control statements to 229

performance
FASTSRT 225

variable-length files 220

preserving original sequence 224

process 214

restrictions 213

restrictions on input/output

procedures 219

special registers 228

storage use 230

terminating 225

under CICS 231

variable-length records 220

windowed date fields 223

workspace 231

SORT statement
ASCENDING|DESCENDING KEY

phrase 222

COLLATING SEQUENCE phrase 8,

223

description 220

GIVING phrase 220

overview 213

restrictions 213

restrictions for CICS applications 232

under CICS 231

change reserved-word table 414

USING phrase 220

SORT-CONTROL special register 229

SORT-CORE-SIZE special register 229

SORT-FILE-SIZE special register 229

SORT-MESSAGE special register 229

SORT-MODE-SIZE special register 229

SORT-RETURN special register 229

determining sort or merge

success 224

terminating sort or merge 225

872 Enterprise COBOL for z/OS V4.1 Programming Guide

SORTCKPT DD statement 231

SOURCE and NUMBER output,

example 379

source code
compiler data set 267

line number 380, 384

listing, description 375

program listing 273

SOURCE compiler option
description 343

getting output 375

SOURCE-COMPUTER paragraph 7

SPACE compiler option 344

spanned files 157

spanned record format
description 156

layout 157

requesting 156

special feature specification 7

special register
ADDRESS 464

arguments in intrinsic functions 60

JNIEnvPtr 595

LENGTH OF 118, 464

RETURN-CODE 472

SORT-RETURN
determining sort or merge

success 224

terminating sort or merge 225

WHEN-COMPILED 119

XML-CODE 506, 508

XML-EVENT 506, 507

XML-NAMESPACE 506, 509

XML-NAMESPACE-PREFIX 506, 510

XML-NNAMESPACE 506, 509

XML-NNAMESPACE-PREFIX 506,

510

XML-NTEXT 506, 508

XML-TEXT 506, 508

SPECIAL-NAMES paragraph
coding 7

QSAM files 177

splitting data items (UNSTRING) 103

SQL compiler option
description 344

multioption interaction 304

restriction in OO programs 549

using 421

SQL statements
CCSID determination 423

coding 418

EXIT compiler option and 712

overview 417

return codes 421

SQL DECLARE 419

SQL INCLUDE 419

use for DB2 services 417

using binary data in 421

using character data in 419

using national decimal data 420

SQLCA
declare for programs that use SQL

statements 418

return codes from DB2 421

SQLCCSID compiler option
description 345

effect on CCSID of string data 423

SQLCCSID compiler option (continued)
performance considerations 425

recommended with DB2

coprocessor 424

SQRT intrinsic function 64

SSRANGE compiler option
description 346

performance considerations 660

reference modification 109

turn off by using CHECK(OFF)

runtime option 660

using 371

STACK runtime option
influencing data location 43

multioption interaction 42

STANDARD clause, FD entry 14

Standard COBOL 85
checkpoints 614

considerations for CICS 412

required compiler options 303

required runtime options 303

standard label format 176

standard label, QSAM 178

START statement
multithreading serialization 494

VSAM 187

START-OF-DOCUMENT XML

event 513, 517, 519

START-OF-ELEMENT XML event 517,

519

statement
compiler-directing 22

conditional 21

definition 20

delimited scope 21

explicit scope terminator 22

imperative 21

implicit scope terminator 22

nesting level 380

static calls
example 454

making 448

performance 453

with dynamic calls 454

static data areas, allocating storage 43

static data, definition of 549

static methods
definition of 549

invoking 585

statistics intrinsic functions 64

status code, VSAM files
description 241

example 241

stderr
controlling line spacing 39

directing with DISPLAY 39

setting DISPLAY to 437

stdin
reading with ACCEPT 37

stdout
controlling line spacing 39

directing with DISPLAY 39

setting DISPLAY to 437

STEPLIB environment variable
description 437

example of specifying compiler 285

STOP RUN statement
in main program 446

in subprogram 446

with multithreading 446

storage
device

direct-access 146

sequential 146

for arguments 465

management with Language

Environment callable services 667

mapping 375

use during sort 230

stride, table 655

STRING statement
example 102

overflow condition 234

using 101

with DBCS data 689

strings
handling 101

Java
declaring 601

manipulating 604

null-terminated 468

striped extended-format QSAM file 172

structure, initializing using

INITIALIZE 32

structured programming 650

structuring OO applications 591

subclass
coding

example 580

overview 577

instance data 580

subprogram
and main program 445

definition 463

description 445

linkage 445

common data items 466

PROCEDURE DIVISION in 467

termination
effects 446

subscript
computations 655

definition 72

literal, example 72

range checking 371

variable, example 72

subscripting
definition 72

example 79

literal, example 72

reference modification 73

relative 73

restrictions 73

use data-name or literal 73

variable, example 72

substitution character 128

substrings
of table elements 108

reference modification of 107

SUM intrinsic function, example table

calculation 87

SUPER 574

support xix, 849

Index 873

switch-status condition 94

switches and flags
defining 95

description 95

resetting 96

setting switches off, example 97

setting switches on, example 96

testing multiple values, example 96

testing single values, example 95

SYMBOLIC CHARACTERS clause 10

symbolic constant 651

syntax diagrams, how to read xvii

syntax errors
finding with NOCOMPILE compiler

option 370

SYSABEND file
description 265

SYSADATA
file, creating 270

output 305

records, exit module 710

SYSADATA file
description 265

example 725

file contents 723

record descriptions 726

record types 724

SYSDEBUG data set
defining 270

use of 348

SYSDEBUG file
description 265

SYSIN data set
defining 267

description 265

user exit error message 712

SYSJAVA file
defining 270

description 265

SYSLIB data set
defining 268

description 265

when not used 706

SYSLIB environment variable
description 283

specifying location of JNI.cpy 291

SYSLIN data set 269

description 265

SYSMDECK file
defining 271

description 265

SYSMDUMP file
description 265

SYSOPTF data set
defining 267

description 265

SYSPRINT data set
defining 269

description 265

when not used 709

SYSPUNCH data set
description 265, 269

requirements for DECK compiler

option 316

system date
under CICS 407

system dump 233

system-determined block size 160, 267

system-name 7

SYSTERM data set
defining 269

description 265

sending messages to 347

SYSUDUMP file
description 265

SYSUT data set 265

T
table

assigning values to 77

columns 69

compare to array 41

defining with OCCURS clause 69

definition 69

depth 71

description 41

dynamically loading 75

efficient coding 653, 655

elements 69

identical element specifications 653

index, definition 72

initializing
all occurrences of an element 78

at the group level 78

each item individually 77

using INITIALIZE 76

using PERFORM VARYING 100

loading values in 75

looping through 100

multidimensional 70

one-dimensional 69

processing with intrinsic

functions 86

redefining a record as 77

reference modification 73

referencing substrings of

elements 108

referencing with indexes, example 72

referencing with subscripts,

example 72

referring to elements 72

rows 71

searching
binary 85

overview 84

performance 84

sequential 84

serial 84

stride computation 655

subscript, definition 72

three-dimensional 71

two-dimensional 71

variable-length
creating 81

example of loading 82

initializing 83

preventing overlay in 685

TALLYING phrase (INSPECT),

example 111

tape files
performance 160

reverse order 162

TERMINAL compiler option 347

terminal, sending messages to 347

terminating XML parsing 530

termination 446

terminology
VSAM 179

terms used in MAP output 382

test
conditions 99

data 94

numeric operand 94

UPSI switch 94

TEST AFTER 99

TEST BEFORE 99

TEST compiler option
description 347

multioption interaction 304

performance considerations 660

use for debugging 375

text-name cross-reference,

description 374

text-name environment variable 283

TGT memory map
description 385

example 394

THREAD compiler option
and the LINKAGE SECTION 19

cannot use with nested

programs 456

description 350

for Java interoperability 291, 296

for OO COBOL 291, 296

multioption interaction 304

performance considerations 660

threading
and preinitialization 493

control transfer 493

ending programs 494

z/OS UNIX considerations 435

TITLE statement 361

controlling header on listing 7

top-down programming
constructs to avoid 650

TRACK OVERFLOW option 161

Trademarks 813

trailer label
definition 175

using 175

transferring control
between COBOL and non-COBOL

programs 445

between COBOL programs 447, 456

called program 446

calling program 446

main and subprograms 445

nested programs 456

transforming COBOL data to XML
example 537

overview 531

TRAP runtime option
closing line-sequential files 212

closing QSAM files 165

closing VSAM files 195

ON SIZE ERROR 234

TRUNC compiler option
description 352

performance considerations 660

874 Enterprise COBOL for z/OS V4.1 Programming Guide

TRUNC compiler option (continued)
suboptions for separate CICS

translator 413

TSO
ALLOCATE command 261

CALL command 261

compiling under 261

SYSTERM for compiler messages 269

tuning considerations, performance 659,

660

typed object references 568

U
U-format record

layout 159

requesting 158

U-level error message 281, 372

unavailable files
QSAM 163

VSAM 197

UNDATE intrinsic function
example 643

using 642

undefined record format
layout 159

QSAM 177

requesting 158

unfilled tracks 161

Unicode
description 125

encoding 133

JNI services 604

processing data 121

using with DB2 419

universal object references 568

UNIX
accessing environment variables

example 438

overview 436

accessing main parameters 440

example 441

calling APIs 438

compiler environment variables 283

compiling from script 290

compiling OO applications
example 293

overview 291

compiling under 283

copybook search order 283, 287, 361

copybooks 361

developing programs 435

execution environments 435

linking OO applications
example 293

overview 292

preparing OO applications
example 293

overview 292

programs must be reentrant 462

restrictions 435

running OO applications
overview 293

XPLINK linkage 299

running programs 435

setting environment variables
example 438

UNIX (continued)
setting environment variables

(continued)
overview 436

sort and merge restriction 213

specifying compiler options 284

unreachable code 657, 658

UNSTRING statement
example 104

overflow condition 234

using 103

with DBCS data 689

updating VSAM records 193

UPPER-CASE intrinsic function 113

uppercase, converting to 113

UPSI switches with multithreading 498

USAGE clause
at the group level 27

incompatible data 56

INDEX phrase, creating index data

items with 74

NATIONAL phrase at the group

level 130

OBJECT REFERENCE 568

USE . . . LABEL declarative 176

USE AFTER STANDARD LABEL 178

USE FOR DEBUGGING declaratives 368

USE statement 361

user label
exits 178

QSAM 178

standard 177

user-defined condition 94

user-exit work area 704

user-label track 175

USING phrase
INVOKE statement 571

PROCEDURE DIVISION header 467,

561

UTF-16
definition 125

encoding for national data 125

UTF-8
avoid reference modification with

XML documents 138

converting to or from national 137

definition 125

encoding for ASCII invariant

characters 125

example of generating an XML

document 533

processing data items 137

V
V-format record

layout 155

requesting 154

valid data
numeric 56

VALUE clause
alphanumeric literal with national

data, example 117

alphanumeric literal with national

group, example 78

assigning table values
at the group level 78

VALUE clause (continued)
assigning table values (continued)

to each item individually 77

to each occurrence of an

element 78

assigning to a variable-length

group 83

cannot use for external floating

point 50

initializing internal floating-point

literals 46

large literals with COMP-5 51

large, with TRUNC(BIN) 352

VALUE IS NULL 469

VALUE OF clause 14

variable
as reference modifier 108

definition 25

variable-length records
OCCURS DEPENDING ON (ODO)

clause 654

QSAM
layout 155

requesting 154

sorting 220

VSAM
defining 186

RRDS 180

variable-length table
assigning values to 83

creating 81

example 82

example of loading 82

preventing overlay in 685

variables, environment
example of setting and accessing 438

library-name 361

runtime 437

variably located data item 683

variably located group 683

VBREF compiler option
description 355

output example 401

using 375

verb cross-reference listing
description 375

verbs used in program 375

VERSION-INFORMATION XML

event 513, 517, 519

VSAM files
adding records to 193

allocating with environment

variable 200

closing 195

coding input/output statements 187

comparison of file organizations 181

creating alternate indexes 198

DATA DIVISION entries 185

deleting records from 194

ENVIRONMENT DIVISION

entries 181

error processing 235

file position indicator (CRP) 189, 192

file status key 195

input/output error processing 195

loading
dynamically or randomly 190

Index 875

VSAM files (continued)
loading (continued)

extended format 191

sequentially 190

with access method services 191

opening
empty 190

overview 189

performance considerations 203

processing files 179

protecting with password 196

reading records from 192

record-level sharing (RLS)
error handling 203

overview 202

preventing update problems 202

restrictions 203

replacing records in 194

status codes
description 241

example 241

under z/OS
defining data sets 197

file availability 197

JCL 200

RLS mode 202

updating records 193

VSAM terminology
BDAM data set 179

comparison to non-VSAM terms 179

ESDS for QSAM 179

KSDS for ISAM 179

RRDS for BDAM 179

W
W-level message 281, 372

WHEN phrase
EVALUATE statement 91

SEARCH ALL statement 85

SEARCH statement 84

WHEN-COMPILED intrinsic

function 119

WHEN-COMPILED special register 119

windowed date fields
contracting 646

sorting on 223

WITH DEBUGGING MODE clause
for debugging lines 368

for debugging statements 368

WITH POINTER phrase
STRING 101

UNSTRING 103

WORD compiler option
description 355

multioption interaction 304

recommended for CICS integrated

translator 410

recommended for CICS separate

translator 413

work data sets for compiling 265

WORKING-STORAGE SECTION
client 568, 569

comparison with LOCAL-STORAGE
example 17

OO client 569

overview 16

WORKING-STORAGE SECTION

(continued)
factory data 582

finding location and size of 396

instance data 556, 580

instance method 559

multithreading considerations 569

storage location for data 313

workspace
use during sort 231

wrapper, definition of 591

wrapping procedure-oriented

programs 591

write a block of records 160

WRITE ADVANCING statement 164

WRITE statement
line-sequential files 209

multithreading serialization 494

QSAM 161

VSAM 187

X
x suffix with cob2 289

XML declaration
generating 533

specifying encoding declaration 525

XML document
accessing 503

code-page-sensitive characters 524

coded character sets 522

controlling the encoding of 535

encoding 521

enhancing
example of converting hyphens to

underscores 545

example of modifying data

definitions 542

rationale and techniques 541

events
example 517

generating
example 537

overview 531

handling parsing exceptions 526

national language 521

parser 502

parsing
description 504

documents encoded in UTF-8 523

example 514, 517, 519

one segment at a time 511

processing 501

specifying code page 525

supported EBCDIC code pages 522

Unicode UTF-8 encoding 522

XML event
ATTRIBUTE-CHARACTERS 513, 517

ATTRIBUTE-NAME 513, 517

CONTENT-CHARACTERS 513, 517,

519

END-OF-DOCUMENT 513, 517, 519

END-OF-ELEMENT 513, 517, 519

END-OF-INPUT 517, 519

EXCEPTION 527

NAMESPACE-DECLARATION 509,

510, 517

XML event (continued)
START-OF-DOCUMENT 513, 517,

519

START-OF-ELEMENT 517, 519

VERSION-INFORMATION 513, 517,

519

XML events
description 502

processing 505

processing procedure 504

XML exception codes
for generating 702

for parsing
handleable 695

not handleable 699

XML GENERATE statement
COUNT IN 536

NAMESPACE 533

NAMESPACE-PREFIX 534

NOT ON EXCEPTION 535

ON EXCEPTION 536

WITH ATTRIBUTES 533

WITH ENCODING 535

XML-DECLARATION 533

XML generation
counting generated characters 532

description 531

enhancing output
example of converting hyphens to

underscores 545

example of modifying data

definitions 542

rationale and techniques 541

example 537

generating attributes 533

generating elements 532

handling errors 536

ignored data items 532

overview 531

using namespace prefixes 534

using namespaces 533

XML output
controlling the encoding of 535

enhancing
example of converting hyphens to

underscores 545

example of modifying data

definitions 542

rationale and techniques 541

generating
example 537

overview 531

XML PARSE statement
NOT ON EXCEPTION 527

ON EXCEPTION 527

overview 502

using 504

XML parser
error handling 527

overview 502

XML parsing
control flow with processing

procedure 508

description 504

handling CCSID conflicts 528

handling code-page conflicts 528

handling exceptions 526

876 Enterprise COBOL for z/OS V4.1 Programming Guide

XML parsing (continued)
overview 501

special registers 506

terminating 530

XML processing procedure
control flow with parser 508

error with EXIT PROGRAM or

GOBACK 507

example 514

one segment at a time 519

handling parsing exceptions 526

restriction on XML PARSE 507

specifying 504

using special registers 506

with code-page conflicts 529

writing 506

XML-CODE special register
content 508

control flow between parser and

processing procedure 508

description 506

exception codes for generating 702

exception codes for parsing
encoding conflicts 526

handleable 695

not handleable 699

terminating parsing with 530

using in generating 535

using in parsing 501

with code-page conflicts 528

with generating exceptions 536

with parsing exceptions 527

XML-EVENT special register
content 507, 513

description 506

using 501, 505

with parsing exceptions 527

XML-NAMESPACE special register
content 509

description 506

using 501

XML-NAMESPACE-PREFIX special

register
content 510

description 506

using 501

XML-NNAMESPACE special register
content 509

description 506

using 501

XML-NNAMESPACE-PREFIX special

register
content 510

description 506

using 501

XML-NTEXT special register
content 508

description 506

using 501

with parsing exceptions 527

XML-TEXT special register
content 508, 513

description 506

using 501

with parsing exceptions 527

XMLPARSE compiler option 356, 501

XPLINK linkage convention in OO

applications 299

XPLINK runtime option
not recommended as a default 300

setting 300

XREF compiler option
description 357

finding copybook data sets 374

finding data- and

procedure-names 374

getting output 375

XREF output
COPY/BASIS cross-references 398

data-name cross-references 396

program-name cross-references 398

Y
year field expansion 629

year windowing
advantages 626

how to control 641

MLE approach 626

when not supported 632

year-last date fields 631

YEARWINDOW compiler option
description 358

effect on sort/merge 229

Z
z/OS

compiling under 249

zero comparison (See sign

condition) 638

zero suppression
example of BLANK WHEN ZERO

clause 47

PICTURE symbol Z 47

zoned decimal data (USAGE DISPLAY)
effect of ZWB on comparison to

alphanumeric 359

example 45

format 49

sign representation 55

ZWB compiler option 359

Index 877

878 Enterprise COBOL for z/OS V4.1 Programming Guide

Readers’ Comments — We’d Like to Hear from You

Enterprise COBOL for z/OS

Programming Guide

Version 4 Release 1

 Publication No. SC23-8529-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-8529-00

SC23-8529-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA

U.S.A. 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5655-S71

Printed in USA

SC23-8529-00

	Contents
	Tables
	Preface
	About this document
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document

	How this document will help you
	Abbreviated terms
	Comparison of commonly used terms
	How to read syntax diagrams
	How examples are shown

	Accessing softcopy documentation and support information
	Summary of changes
	Version 4 Release 1 (December 2007)

	How to send your comments

	Part 1. Coding your program
	Chapter 1. Structuring your program
	Identifying a program
	Identifying a program as recursive
	Marking a program as callable by containing programs
	Setting a program to an initial state
	Changing the header of a source listing

	Describing the computing environment
	Example: FILE-CONTROL entries
	Specifying the collating sequence
	Example: specifying the collating sequence

	Defining symbolic characters
	Defining a user-defined class
	Defining files to the operating system
	Varying the input or output file at run time
	Optimizing buffer and device space

	Describing the data
	Using data in input and output operations
	FILE SECTION entries

	Comparison of WORKING-STORAGE and LOCAL-STORAGE
	Example: storage sections

	Using data from another program
	Sharing data in separately compiled programs
	Sharing data in nested programs
	Sharing data in recursive or multithreaded programs

	Processing the data
	How logic is divided in the PROCEDURE DIVISION
	Imperative statements
	Conditional statements
	Compiler-directing statements
	Scope terminators

	Declaratives

	Chapter 2. Using data
	Using variables, structures, literals, and constants
	Using variables
	Using data items and group items
	Using literals
	Using constants
	Using figurative constants

	Assigning values to data items
	Examples: initializing data items
	Initializing a structure (INITIALIZE)
	Assigning values to elementary data items (MOVE)
	Assigning values to group data items (MOVE)
	Assigning arithmetic results (MOVE or COMPUTE)
	Assigning input from a screen or file (ACCEPT)

	Displaying values on a screen or in a file (DISPLAY)
	Displaying data on the system logical output device
	Using WITH NO ADVANCING

	Using intrinsic functions (built-in functions)
	Using tables (arrays) and pointers
	Storage and its addressability
	Settings for RMODE
	Storage restrictions for passing data
	Location of data areas
	Storage for LOCAL-STORAGE data
	Storage for external data
	Storage for QSAM input-output buffers

	Chapter 3. Working with numbers and arithmetic
	Defining numeric data
	Displaying numeric data
	Controlling how numeric data is stored
	Formats for numeric data
	External decimal (DISPLAY and NATIONAL) items
	External floating-point (DISPLAY and NATIONAL) items
	Binary (COMP) items
	Native binary (COMP-5) items
	Packed-decimal (COMP-3) items
	Internal floating-point (COMP-1 and COMP-2) items
	Examples: numeric data and internal representation

	Data format conversions
	Conversions and precision
	Conversions that lose precision
	Conversions that preserve precision
	Conversions that result in rounding

	Sign representation of zoned and packed-decimal data
	Checking for incompatible data (numeric class test)
	Performing arithmetic
	Using COMPUTE and other arithmetic statements
	Using arithmetic expressions
	Using numeric intrinsic functions
	Using math-oriented callable services
	Using date callable services
	Examples: numeric intrinsic functions
	General number handling
	Date and time
	Finance
	Mathematics
	Statistics

	Fixed-point contrasted with floating-point arithmetic
	Floating-point evaluations
	Fixed-point evaluations
	Arithmetic comparisons (relation conditions)
	Examples: fixed-point and floating-point evaluations

	Using currency signs
	Example: multiple currency signs

	Chapter 4. Handling tables
	Defining a table (OCCURS)
	Nesting tables
	Example: subscripting
	Example: indexing

	Referring to an item in a table
	Subscripting
	Indexing

	Putting values into a table
	Loading a table dynamically
	Initializing a table (INITIALIZE)
	Assigning values when you define a table (VALUE)
	Initializing each table item individually
	Initializing a table at the group level
	Initializing all occurrences of a given table element

	Example: PERFORM and subscripting
	Example: PERFORM and indexing

	Creating variable-length tables (DEPENDING ON)
	Loading a variable-length table
	Assigning values to a variable-length table

	Searching a table
	Doing a serial search (SEARCH)
	Example: serial search

	Doing a binary search (SEARCH ALL)
	Example: binary search

	Processing table items using intrinsic functions
	Example: processing tables using intrinsic functions

	Chapter 5. Selecting and repeating program actions
	Selecting program actions
	Coding a choice of actions
	Using nested IF statements
	Using the EVALUATE statement

	Coding conditional expressions
	Switches and flags
	Defining switches and flags
	Example: switches
	Example: flags
	Resetting switches and flags
	Example: set switch on
	Example: set switch off

	Repeating program actions
	Choosing inline or out-of-line PERFORM
	Example: inline PERFORM statement

	Coding a loop
	Looping through a table
	Executing multiple paragraphs or sections

	Chapter 6. Handling strings
	Joining data items (STRING)
	Example: STRING statement
	STRING results

	Splitting data items (UNSTRING)
	Example: UNSTRING statement
	UNSTRING results

	Manipulating null-terminated strings
	Example: null-terminated strings

	Referring to substrings of data items
	Reference modifiers
	Example: arithmetic expressions as reference modifiers
	Example: intrinsic functions as reference modifiers

	Tallying and replacing data items (INSPECT)
	Examples: INSPECT statement

	Converting data items (intrinsic functions)
	Converting to uppercase or lowercase (UPPER-CASE, LOWER-CASE)
	Transforming to reverse order (REVERSE)
	Converting to numbers (NUMVAL, NUMVAL-C)
	Converting from one code page to another

	Evaluating data items (intrinsic functions)
	Evaluating single characters for collating sequence
	Finding the largest or smallest data item
	Returning variable-length results with alphanumeric or national functions

	Finding the length of data items
	Finding the date of compilation

	Chapter 7. Processing data in an international environment
	COBOL statements and national data
	Intrinsic functions and national data
	Unicode and the encoding of language characters
	Using national data (Unicode) in COBOL
	Defining national data items
	Using national literals
	Using national-character figurative constants
	Defining national numeric data items
	National groups
	Using national groups
	Using national groups as elementary items
	Using national groups as group items

	Storage of national data

	Converting to or from national (Unicode) representation
	Converting alphanumeric, DBCS, and integer to national (MOVE)
	Converting alphanumeric or DBCS to national (NATIONAL-OF)
	Converting national to alphanumeric (DISPLAY-OF)
	Overriding the default code page
	Conversion exceptions
	Example: converting to and from national data

	Processing UTF-8 data
	Processing Chinese GB 18030 data
	Comparing national (UTF-16) data
	Comparing two class national operands
	Comparing class national and class numeric operands
	Comparing national numeric and other numeric operands
	Comparing national and other character-string operands
	Comparing national data and alphanumeric-group operands

	Coding for use of DBCS support
	Declaring DBCS data
	Using DBCS literals
	Testing for valid DBCS characters
	Processing alphanumeric data items that contain DBCS data

	Chapter 8. Processing files
	File organization and input-output devices
	Choosing file organization and access mode
	Format for coding input and output

	Allocating files
	Checking for input or output errors

	Chapter 9. Processing QSAM files
	Defining QSAM files and records in COBOL
	Establishing record formats
	Logical records
	Requesting fixed-length format
	Requesting variable-length format
	Requesting spanned format
	Requesting undefined format

	Setting block sizes

	Coding input and output statements for QSAM files
	Opening QSAM files
	Dynamically creating QSAM files
	Adding records to QSAM files
	Updating QSAM files
	Writing QSAM files to a printer or spooled data set
	Closing QSAM files

	Handling errors in QSAM files
	Working with QSAM files
	Defining and allocating QSAM files
	Parameters for creating QSAM files

	Retrieving QSAM files
	Parameters for retrieving QSAM files

	Ensuring that file attributes match your program
	Processing existing files
	Processing new files

	Using striped extended-format QSAM data sets
	Allocation of buffers for QSAM files

	Accessing HFS files using QSAM
	Labels for QSAM files
	Using trailer and header labels
	Format of standard labels
	Standard user labels

	Processing QSAM ASCII files on tape
	Processing ASCII file labels

	Chapter 10. Processing VSAM files
	VSAM files
	Defining VSAM file organization and records
	Specifying sequential organization for VSAM files
	Specifying indexed organization for VSAM files
	Using alternate keys
	Using an alternate index

	Specifying relative organization for VSAM files
	Fixed-length and variable-length RRDS
	Using variable-length RRDS

	Specifying access modes for VSAM files
	Example: using dynamic access with VSAM files

	Defining record lengths for VSAM files
	Defining fixed-length records
	Defining variable-length records

	Coding input and output statements for VSAM files
	File position indicator
	Opening a file (ESDS, KSDS, or RRDS)
	Opening an empty file
	Statements to load records into a VSAM file
	Opening a loaded file (a file with records)

	Reading records from a VSAM file
	Updating records in a VSAM file
	Adding records to a VSAM file
	Replacing records in a VSAM file
	Deleting records from a VSAM file
	Closing VSAM files

	Handling errors in VSAM files
	Protecting VSAM files with a password
	Example: password protection for a VSAM indexed file

	Working with VSAM data sets under z/OS and UNIX
	Defining VSAM files
	Creating alternate indexes
	Example: entries for alternate indexes

	Allocating VSAM files
	Sharing VSAM files through RLS
	Preventing update problems with VSAM files in RLS mode
	Restrictions when using RLS
	Handling errors in VSAM files in RLS mode

	Improving VSAM performance

	Chapter 11. Processing line-sequential files
	Defining line-sequential files and records in COBOL
	Allowable control characters

	Describing the structure of a line-sequential file
	Defining and allocating line-sequential files
	Coding input-output statements for line-sequential files
	Opening line-sequential files
	Reading records from line-sequential files
	Adding records to line-sequential files
	Closing line-sequential files

	Handling errors in line-sequential files

	Chapter 12. Sorting and merging files
	Sort and merge process
	Describing the sort or merge file
	Describing the input to sorting or merging
	Example: describing sort and input files for SORT

	Coding the input procedure
	Describing the output from sorting or merging
	Coding the output procedure
	Example: coding the output procedure when using DFSORT

	Restrictions on input and output procedures
	Defining sort and merge data sets
	Sorting variable-length records
	Requesting the sort or merge
	Setting sort or merge criteria
	Example: sorting with input and output procedures
	Choosing alternate collating sequences
	Sorting on windowed date fields
	Preserving the original sequence of records with equal keys

	Determining whether the sort or merge was successful
	Stopping a sort or merge operation prematurely
	Improving sort performance with FASTSRT
	FASTSRT requirements for JCL
	FASTSRT requirements for sort input and output files
	QSAM requirements
	VSAM requirements

	Checking for sort errors with NOFASTSRT
	Controlling sort behavior
	Changing DFSORT defaults with control statements
	Default characteristics of the IGZSRTCD data set

	Allocating storage for sort or merge operations
	Allocating space for sort files

	Using checkpoint/restart with DFSORT
	Sorting under CICS
	CICS SORT application restrictions

	Chapter 13. Handling errors
	Requesting dumps
	Handling errors in joining and splitting strings
	Handling errors in arithmetic operations
	Example: checking for division by zero

	Handling errors in input and output operations
	Using the end-of-file condition (AT END)
	Coding ERROR declaratives
	Using file status keys
	Example: file status key
	Using VSAM status codes (VSAM files only)
	Example: checking VSAM status codes
	Coding INVALID KEY phrases
	Example: FILE STATUS and INVALID KEY

	Handling errors when calling programs
	Writing routines for handling errors

	Part 2. Compiling and debugging your program
	Chapter 14. Compiling under z/OS
	Compiling with JCL
	Using a cataloged procedure
	Compile procedure (IGYWC)
	Compile and link-edit procedure (IGYWCL)
	Compile, link-edit, and run procedure (IGYWCLG)
	Compile, load, and run procedure (IGYWCG)
	Compile, prelink, and link-edit procedure (IGYWCPL)
	Compile, prelink, link-edit, and run procedure (IGYWCPLG)
	Prelink and link-edit procedure (IGYWPL)
	Compile, prelink, load, and run procedure (IGYWCPG)

	Writing JCL to compile programs
	Example: user-written JCL for compiling

	Compiling under TSO
	Example: ALLOCATE and CALL for compiling under TSO
	Example: CLIST for compiling under TSO

	Starting the compiler from an assembler program
	Defining compiler input and output
	Data sets used by the compiler under z/OS
	Logical record length and block size

	Defining the source code data set (SYSIN)
	Defining a compiler-option data set (SYSOPTF)
	Specifying source libraries (SYSLIB)
	Defining the output data set (SYSPRINT)
	Directing compiler messages to your terminal (SYSTERM)
	Creating object code (SYSLIN or SYSPUNCH)
	Defining an associated-data file (SYSADATA)
	Defining the Java-source output file (SYSJAVA)
	Defining the debug data set (SYSDEBUG)
	Defining the library-processing output file (SYSMDECK)

	Specifying compiler options under z/OS
	Specifying compiler options with the PROCESS (CBL) statement
	Example: specifying compiler options using JCL
	Example: specifying compiler options under TSO
	Compiler options and compiler output under z/OS

	Compiling multiple programs (batch compilation)
	Example: batch compilation
	Specifying compiler options in a batch compilation
	Example: precedence of options in a batch compilation
	Example: LANGUAGE option in a batch compilation

	Correcting errors in your source program
	Generating a list of compiler error messages
	Messages and listings for compiler-detected errors
	Format of compiler error messages
	Severity codes for compiler error messages

	Chapter 15. Compiling under UNIX
	Setting environment variables under UNIX
	Specifying compiler options under UNIX
	Compiling and linking with the cob2 command
	Creating a DLL under UNIX
	Example: using cob2 to compile and link under UNIX
	cob2 syntax and options
	cob2 input and output files

	Compiling using scripts

	Chapter 16. Compiling, linking, and running OO applications
	Compiling, linking, and running OO applications under UNIX
	Compiling OO applications under UNIX
	Preparing OO applications under UNIX
	Example: compiling and linking a COBOL class definition under z/OS UNIX
	Running OO applications under UNIX
	Running OO applications that start with a main method
	Running OO applications that start with a COBOL program

	Compiling, linking, and running OO applications in JCL or TSO/E
	Compiling OO applications in JCL or TSO/E
	Preparing and running OO applications in JCL or TSO/E
	Example: compiling, linking, and running an OO application using JCL
	JCL for program TSTHELLO
	Definition of class HelloJ
	Environment variable settings file, ENV

	Using IBM SDK for z/OS, Java 2 Technology Edition

	Chapter 17. Compiler options
	Option settings for Standard COBOL 85 conformance
	Conflicting compiler options
	ADATA
	ADV
	ARITH
	AWO
	BUFSIZE
	CICS
	CODEPAGE
	COMPILE
	CURRENCY
	DATA
	DATEPROC
	DBCS
	DECK
	DIAGTRUNC
	DLL
	DUMP
	DYNAM
	EXIT
	EXPORTALL
	FASTSRT
	FLAG
	FLAGSTD
	INTDATE
	LANGUAGE
	LIB
	LINECOUNT
	LIST
	MAP
	MDECK
	NAME
	NSYMBOL
	NUMBER
	NUMPROC
	OBJECT
	OFFSET
	OPTFILE
	OPTIMIZE
	OUTDD
	PGMNAME
	PGMNAME(COMPAT)
	PGMNAME(LONGUPPER)
	PGMNAME(LONGMIXED)
	Usage notes

	QUOTE/APOST
	RENT
	RMODE
	SEQUENCE
	SIZE
	SOURCE
	SPACE
	SQL
	SQLCCSID
	SSRANGE
	TERMINAL
	TEST
	THREAD
	TRUNC
	TRUNC example 1
	TRUNC example 2

	VBREF
	WORD
	XMLPARSE
	XREF
	YEARWINDOW
	ZWB

	Chapter 18. Compiler-directing statements
	Chapter 19. Debugging
	Debugging with source language
	Tracing program logic
	Finding and handling input-output errors
	Validating data
	Finding uninitialized data
	Generating information about procedures
	Example: USE FOR DEBUGGING

	Debugging using compiler options
	Finding coding errors
	Finding line sequence problems
	Checking for valid ranges
	Selecting the level of error to be diagnosed
	Example: embedded messages

	Finding program entity definitions and references
	Listing data items

	Using the debugger
	Getting listings
	Example: short listing
	Example: SOURCE and NUMBER output
	Example: MAP output
	Example: embedded map summary
	Terms used in MAP output
	Symbols used in LIST and MAP output
	Example: nested program map

	Reading LIST output
	Example: program initialization code
	Signature information bytes: compiler options
	Signature information bytes: DATA DIVISION
	Signature information bytes: ENVIRONMENT DIVISION
	Signature information bytes: PROCEDURE DIVISION verbs
	Signature information bytes: more PROCEDURE DIVISION items
	Example: assembler code generated from source code
	Example: TGT memory map
	Example: DSA memory map
	Example: location and size of WORKING-STORAGE

	Example: XREF output: data-name cross-references
	Example: XREF output: program-name cross-references
	Example: XREF output: COPY/BASIS cross-references
	Example: embedded cross-reference

	Example: OFFSET compiler output
	Example: VBREF compiler output

	Part 3. Targeting COBOL programs for certain environments
	Chapter 20. Developing COBOL programs for CICS
	Coding COBOL programs to run under CICS
	Getting the system date under CICS
	Calling to or from COBOL programs
	Determining the success of ECI calls

	Compiling with the CICS option
	Separating CICS suboptions
	Integrated CICS translator

	Using the separate CICS translator
	CICS reserved-word table
	Handling errors by using CICS HANDLE
	Example: handling errors by using CICS HANDLE

	Chapter 21. Programming for a DB2 environment
	DB2 coprocessor
	Coding SQL statements
	Using SQL INCLUDE with the DB2 coprocessor
	Using character data in SQL statements
	Using national decimal data in SQL statements
	Using national group items in SQL statements
	Using binary items in SQL statements
	Determining the success of SQL statements

	Compiling with the SQL option
	Separating DB2 suboptions

	COBOL and DB2 CCSID determination
	Code-page determination for string host variables in SQL statements
	Programming with the SQLCCSID or NOSQLCCSID option

	Differences in how the DB2 precompiler and coprocessor behave
	Period at the end of EXEC SQL INCLUDE statements
	EXEC SQL INCLUDE and nested COPY REPLACING
	EXEC SQL and REPLACE or COPY REPLACING
	Source code after an END-EXEC statement
	Multiple definitions of host variables
	EXEC SQL statement continuation lines
	Bit-data host variables
	SQL-INIT-FLAG

	Choosing the DYNAM or NODYNAM compiler option

	Chapter 22. Developing COBOL programs for IMS
	Compiling and linking COBOL programs for running under IMS
	Using object-oriented COBOL and Java under IMS
	Calling a COBOL method from an IMS Java application
	Building a mixed COBOL/Java application that starts with COBOL
	Writing mixed-language IMS applications
	Using the STOP RUN statement
	Processing messages and synchronizing transactions
	Accessing databases
	Using the application interface block

	Chapter 23. Running COBOL programs under UNIX
	Running in UNIX environments
	Setting and accessing environment variables
	Setting environment variables that affect execution
	Runtime environment variables
	Example: setting and accessing environment variables

	Calling UNIX/POSIX APIs
	Accessing main program parameters
	Example: accessing main program parameters

	Part 4. Structuring complex applications
	Chapter 24. Using subprograms
	Main programs, subprograms, and calls
	Ending and reentering main programs or subprograms
	Transferring control to another program
	Making static calls
	Making dynamic calls
	Canceling a subprogram
	When to use a dynamic call with subprograms

	AMODE switching
	Performance considerations of static and dynamic calls
	Making both static and dynamic calls
	Examples: static and dynamic CALL statements
	Calling nested COBOL programs
	Nested programs
	Example: structure of nested programs
	Scope of names

	Making recursive calls
	Calling to and from object-oriented programs
	Using procedure and function pointers
	Deciding which type of pointer to use
	Calling alternate entry points

	Making programs reentrant

	Chapter 25. Sharing data
	Passing data
	Describing arguments in the calling program
	Describing parameters in the called program
	Testing for OMITTED arguments

	Coding the LINKAGE SECTION
	Coding the PROCEDURE DIVISION for passing arguments
	Grouping data to be passed
	Handling null-terminated strings
	Using pointers to process a chained list
	Example: using pointers to process a chained list

	Passing return-code information
	Understanding the RETURN-CODE special register
	Using PROCEDURE DIVISION RETURNING . . .
	Specifying CALL . . . RETURNING

	Sharing data by using the EXTERNAL clause
	Sharing files between programs (external files)
	Example: using external files
	Input-output using external files

	Chapter 26. Creating a DLL or a DLL application
	Dynamic link libraries (DLLs)
	Compiling programs to create DLLs
	Linking DLLs
	Example: sample JCL for a procedural DLL application
	Prelinking certain DLLs
	Using CALL identifier with DLLs
	Search order for DLLs in the HFS

	Using DLL linkage and dynamic calls together
	Using procedure or function pointers with DLLs
	Calling DLLs from non-DLLs
	Example: calling DLLs from non-DLLs

	Using COBOL DLLs with C/C++ programs
	Using DLLs in OO COBOL applications

	Chapter 27. Preparing COBOL programs for multithreading
	Multithreading
	Choosing THREAD to support multithreading
	Transferring control to multithreaded programs
	Ending multithreaded programs
	Processing files with multithreading
	File-definition (FD) storage
	Serializing file access with multithreading
	Example: usage patterns of file input and output with multithreading

	Handling COBOL limitations with multithreading

	Part 5. Using XML and COBOL together
	Chapter 28. Processing XML input
	XML parser in COBOL
	Accessing XML documents
	Parsing XML documents
	Writing procedures to process XML
	XML-EVENT
	XML-CODE
	XML-TEXT and XML-NTEXT
	XML-NAMESPACE and XML-NNAMESPACE
	XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX
	Transforming XML text to COBOL data items
	Parsing XML documents one segment at a time
	XML PARSE examples
	Example: parsing a simple document
	Example: program for processing XML
	Example: parsing an XML document that uses namespaces
	Example: parsing XML documents one segment at a time

	Understanding the encoding of XML documents
	Coded character sets for XML documents
	Parsing XML documents encoded in UTF-8
	Code-page-sensitive characters in XML markup
	Specifying the code page

	Handling XML PARSE exceptions
	How the XML parser handles errors
	Handling conflicts in code pages

	Terminating XML parsing

	Chapter 29. Producing XML output
	Generating XML output
	Controlling the encoding of generated XML output
	Handling errors in generating XML output
	Example: generating XML
	Program XGFX
	Program Pretty
	Output from program XGFX

	Enhancing XML output
	Example: enhancing XML output
	Example: converting hyphens in element or attribute names to underscores

	Part 6. Developing object-oriented programs
	Chapter 30. Writing object-oriented programs
	Example: accounts
	Subclasses

	Defining a class
	CLASS-ID paragraph for defining a class
	REPOSITORY paragraph for defining a class
	Example: external class-names and Java packages

	WORKING-STORAGE SECTION for defining class instance data
	Example: defining a class

	Defining a class instance method
	METHOD-ID paragraph for defining a class instance method
	INPUT-OUTPUT SECTION for defining a class instance method
	DATA DIVISION for defining a class instance method
	PROCEDURE DIVISION for defining a class instance method
	Overriding an instance method
	Overloading an instance method
	Coding attribute (get and set) methods
	Example: coding a get method

	Example: defining a method
	Account class
	Check class

	Defining a client
	REPOSITORY paragraph for defining a client
	DATA DIVISION for defining a client
	Choosing LOCAL-STORAGE or WORKING-STORAGE

	Comparing and setting object references
	Invoking methods (INVOKE)
	USING phrase for passing arguments
	Example: passing conforming object-reference arguments from a COBOL client
	RETURNING phrase for obtaining a returned value
	Invoking overridden superclass methods

	Creating and initializing instances of classes
	Instantiating Java classes
	Instantiating COBOL classes

	Freeing instances of classes
	Example: defining a client

	Defining a subclass
	CLASS-ID paragraph for defining a subclass
	REPOSITORY paragraph for defining a subclass
	WORKING-STORAGE SECTION for defining subclass instance data
	Defining a subclass instance method
	Example: defining a subclass (with methods)
	CheckingAccount class (subclass of Account)

	Defining a factory section
	WORKING-STORAGE SECTION for defining factory data
	Defining a factory method
	Hiding a factory or static method
	Invoking factory or static methods

	Example: defining a factory (with methods)
	Account class
	CheckingAccount class (subclass of Account)
	Check class
	TestAccounts client program
	Output produced by the TestAccounts client program

	Wrapping procedure-oriented COBOL programs
	Structuring OO applications
	Examples: COBOL applications that run using the java command
	Displaying a message
	Echoing the input strings

	Chapter 31. Communicating with Java methods
	Accessing JNI services
	Handling Java exceptions
	Example: handling Java exceptions

	Managing local and global references
	Deleting, saving, and freeing local references

	Java access controls

	Sharing data with Java
	Coding interoperable data types in COBOL and Java
	Declaring arrays and strings for Java
	Manipulating Java arrays
	Example: processing a Java int array

	Manipulating Java strings

	Example: J2EE client written in COBOL
	COBOL client (ConverterClient.cbl)
	Java client (ConverterClient.java)

	Part 7. Specialized processing
	Chapter 32. Interrupts and checkpoint/restart
	Setting checkpoints
	Designing checkpoints
	Testing for a successful checkpoint
	DD statements for defining checkpoint data sets
	Examples: defining checkpoint data sets

	Messages generated during checkpoint

	Restarting programs
	Requesting automatic restart
	Requesting deferred restart
	Formats for requesting deferred restart
	Example: requesting a deferred restart

	Resubmitting jobs for restart
	Example: restarting a job at a specific checkpoint step
	Example: requesting a step restart
	Example: resubmitting a job for a step restart
	Example: resubmitting a job for a checkpoint restart

	Chapter 33. Processing two-digit-year dates
	Millennium language extensions (MLE)
	Principles and objectives of these extensions

	Resolving date-related logic problems
	Using a century window
	Example: century window

	Using internal bridging
	Example: internal bridging

	Moving to full field expansion
	Example: converting files to expanded date form

	Using year-first, year-only, and year-last date fields
	Compatible dates
	Example: comparing year-first date fields
	Using other date formats
	Example: isolating the year

	Manipulating literals as dates
	Assumed century window
	Treatment of nondates

	Setting triggers and limits
	Example: using limits
	Using sign conditions

	Sorting and merging by date
	Example: sorting by date and time

	Performing arithmetic on date fields
	Allowing for overflow from windowed date fields
	Specifying the order of evaluation

	Controlling date processing explicitly
	Using DATEVAL
	Using UNDATE
	Example: DATEVAL
	Example: UNDATE

	Analyzing and avoiding date-related diagnostic messages
	Avoiding problems in processing dates
	Avoiding problems with packed-decimal fields
	Moving from expanded to windowed date fields

	Part 8. Improving performance and productivity
	Chapter 34. Tuning your program
	Using an optimal programming style
	Using structured programming
	Factoring expressions
	Using symbolic constants
	Grouping constant computations
	Grouping duplicate computations

	Choosing efficient data types
	Choosing efficient computational data items
	Using consistent data types
	Making arithmetic expressions efficient
	Making exponentiations efficient

	Handling tables efficiently
	Optimization of table references
	Optimization of constant and variable items
	Optimization of duplicate items
	Optimization of variable-length items
	Comparison of direct and relative indexing

	Optimizing your code
	Optimization
	Contained program procedure integration
	PERFORM procedure integration
	Example: PERFORM procedure integration

	Choosing compiler features to enhance performance
	Performance-related compiler options
	Evaluating performance

	Running efficiently with CICS, IMS, or VSAM

	Chapter 35. Simplifying coding
	Eliminating repetitive coding
	Example: using the COPY statement

	Using Language Environment callable services
	Sample list of Language Environment callable services
	Calling Language Environment services
	Example: Language Environment callable services

	Part 9. Appendixes
	Appendix A. Intermediate results and arithmetic precision
	Terminology used for intermediate results
	Example: calculation of intermediate results
	Fixed-point data and intermediate results
	Addition, subtraction, multiplication, and division
	Exponentiation
	Example: exponentiation in fixed-point arithmetic
	Truncated intermediate results
	Binary data and intermediate results

	Intrinsic functions evaluated in fixed-point arithmetic
	Integer functions
	Mixed functions

	Floating-point data and intermediate results
	Exponentiations evaluated in floating-point arithmetic
	Intrinsic functions evaluated in floating-point arithmetic

	Arithmetic expressions in nonarithmetic statements

	Appendix B. Complex OCCURS DEPENDING ON
	Example: complex ODO
	How length is calculated
	Setting values of ODO objects

	Effects of change in ODO object value
	Preventing index errors when changing ODO object value
	Preventing overlay when adding elements to a variable table

	Appendix C. Converting double-byte character set (DBCS) data
	DBCS notation
	Alphanumeric to DBCS data conversion (IGZCA2D)
	IGZCA2D syntax
	IGZCA2D return codes
	Example: IGZCA2D

	DBCS to alphanumeric data conversion (IGZCD2A)
	IGZCD2A syntax
	IGZCD2A return codes
	Example: IGZCD2A

	Appendix D. XML reference material
	XML PARSE exceptions that allow continuation
	XML PARSE exceptions that do not allow continuation
	XML GENERATE exceptions

	Appendix E. EXIT compiler option
	Using the user-exit work area
	Calling from exit modules
	Processing of INEXIT
	INEXIT parameters

	Processing of LIBEXIT
	Processing of LIBEXIT with nested COPY statements
	LIBEXIT parameters

	Processing of PRTEXIT
	PRTEXIT parameters

	Processing of ADEXIT
	ADEXIT parameters

	Error handling for exit modules
	Using the EXIT compiler option with CICS and SQL statements
	Example: INEXIT user exit

	Appendix F. JNI.cpy
	Appendix G. COBOL SYSADATA file contents
	Existing compiler options that affect the SYSADATA file
	SYSADATA record types
	Example: SYSADATA
	SYSADATA record descriptions
	Common header section
	Job identification record: X'0000'
	ADATA identification record: X'0001'
	Compilation unit start|end record: X'0002'
	Options record: X'0010'
	External symbol record: X'0020'
	Parse tree record: X'0024'
	Token record: X'0030'
	Source error record: X'0032'
	Source record: X'0038'
	COPY REPLACING record: X'0039'
	Symbol record: X'0042'
	Symbol cross-reference record: X'0044'
	Nested program record: X'0046'
	Library record: X'0060'
	Statistics record: X'0090'
	EVENTS record: X'0120'

	Appendix H. Using sample programs
	IGYTCARA: batch application
	Input data for IGYTCARA
	Report produced by IGYTCARA
	Preparing to run IGYTCARA
	Running IGYTCARA

	IGYTCARB: interactive program
	Preparing to run IGYTCARB
	Running IGYTCARB

	IGYTSALE: nested program application
	Input data for IGYTSALE
	Reports produced by IGYTSALE
	Example: IGYTSALE transaction errors
	Example: IGYTSALE sales analysis by product by area
	Example: IGYTSALE sales and commissions
	Example: IGYTSALE response time from sale to ship

	Preparing to run IGYTSALE
	Running IGYTSALE

	Language elements and concepts that are illustrated

	Notices
	Trademarks

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

	Index
	Readers’ Comments — We'd Like to Hear from You

