<|lI!

Enterprise COBOL for z/0S

Programming Guide

Version 4 Release 1

SC23-8529-00

<|lI!

Enterprise COBOL for z/0S

Programming Guide

Version 4 Release 1

SC23-8529-00

Note!

Before using this information and the product it supports, be sure to read the general information under

First Edition (December 2007)

This edition applies to Version 4 Release 1 of IBM Enterprise COBOL for z/OS (program number 5655-S71) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using
the correct edition for the level of the product.

You can order publications online at www.ibm.com/shop/publications/order/, or order by phone or fax. IBM
Software Manufacturing Solutions takes publication orders between 8:30 a.m. and 7:00 p.m. Eastern Standard Time
(EST). The phone number is (800)879-2755. The fax number is (800)445-9269.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1991, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables.

Preface
About this document .

Accessibility . .

How this document will help you

Abbreviated terms . .

Comparison of commonly used terms .

How to read syntax diagrams.

How examples are shown .
Accessing softcopy documentation and support
information . .

Summary of changes .

Version 4 Release 1 (December 2007)

How to send your comments .

. Xiii

. XV

. XV
. XV

. Xvi
. Xvi
. Xvii
. Xvii
. XiX

. XiX
. Xix
. XiX
. Xxi

Part 1. Coding your program . . .

Chapter 1. Structuring your program
Identifying a program . .
Identifying a program as recursive .
Marking a program as callable by contammg
programs .
Setting a program to an 1n1t1al state
Changing the header of a source listing
Describing the computing environment
Example: FILE-CONTROL entries
Specifying the collating sequence
Defining symbolic characters
Defining a user-defined class
Defining files to the operating system
Describing the data. .
Usmg data in input and output operatlons
Comparison of WORKING-STORAGE and
LOCAL-STORAGE . S
Using data from another program
Processing the data . .
How logic is divided in the PROCEDURE
DIVISION . o
Declaratives .

Chapter 2. Using data ...
Using variables, structures, literals, and constants
Using variables . .
Using data items and group 1tems
Using literals .
Using constants .
Using figurative constants
Assigning values to data items .
Examples: initializing data items
Initializing a structure (INITIALIZE) .
Assigning values to elementary data items
(MOVE)

Assigning values to group data 1tems (MOVE)

© Copyright IBM Corp. 1991, 2007

. 16
.18
. 19

. 20
.23

. 25

. 25
. 25
. 26
.27
. 28
. 28
.29
. 30
. 32

. 34
. 35

Assigning arithmetic results (MOVE or
COMPUTE)

Assigning input from a screen or f11e (ACCEPT)
Displaying values on a screen or in a file (DISPLAY)

Displaying data on the system logical output
device . e
Using WITH NO ADVANCING

Using intrinsic functions (built-in functions)

Using tables (arrays) and pointers .

Storage and its addressability
Settings for RMODE . .
Storage restrictions for passing data .
Location of data areas . .

Storage for LOCAL-STORAGE data
Storage for external data . .
Storage for QSAM input-output buffers .

Chapter 3. Working with numbers and
arithmetic

Defining numeric data.

Displaying numeric data . . .
Controlling how numeric data is stored

Formats for numeric data.

External decimal (DISPLAY and NATIONAL)

items

External floatmg pomt (DISPLAY and
NATIONAL) items . Lo
Binary (COMP) items . .
Native binary (COMP-5) items .
Packed-decimal (COMP-3) items

Internal floatmg pomt (COMP-1 and COMP 2)

items
Examples: numeric data and 1nternal
representation .
Data format conversions .
Conversions and precision

Sign representation of zoned and packed dec1mal

data .

Checking for mcompat1b1e data (numerlc class test)

Performing arithmetic . .
Using COMPUTE and other arlthmetlc
statements . . .
Using arithmetic expressmns
Using numeric intrinsic functions .
Using math-oriented callable services.
Using date callable services .

Examples: numeric intrinsic functlons

Fixed-point contrasted with floating-point arlthmetlc
. 65
. 65
. 65

Floating-point evaluations
Fixed-point evaluations .
Arithmetic comparisons (relation condltlons)
Examples: fixed-point and floating-point
evaluations

Using currency signs . .
Example: multiple currency 51gns .

. 36

37
38

. 39
. 39
. 40
.41
.42
.42
.43
. 43
. 43
. 44
. 44

. 45
.45
. 47
.48
.49

. 49
. 50
. 50
. 51
. 52
. 52
. 52
. 54
. 54

. 55

56

. 57

. 58
. 58
. 59
. 60
. 62
. 62

64

. 66
. 67
. 68

iii

Chapter 4. Handling tables .
Defining a table (OCCURS) .
Nesting tables
Example: subscrrptlng
Example: indexing . .
Referring to an item in a table .
Subscripting .
Indexing
Putting values 1nto a table
Loading a table dynamically.
Initializing a table (INITIALIZE)
Assigning values when you define a table
(VALUE)
Example: PERFORM and subscrrptlng
Example: PERFORM and indexing.

. 69

. 69
.71
.72
.72
.72
.73
.74
.75
.75
. 76

.77
.79
. 80

Creating variable-length tables (DEPENDING ON) 81
Loading a variable-length table. L8
Assigning values to a variable-length table . 83

Searching a table . 84
Doing a serial search (SEARCH) . 84
Doing a binary search (SEARCH ALL) . 85

Processing table items using intrinsic functions . 86
Example: processing tables using intrinsic
functions . . 87

Chapter 5. Selecting and repeatlng

program actions . 89

Selecting program actions . 89
Coding a choice of actions . 89
Coding conditional expressions. . 94

Repeating program actions . .97
Choosing inline or out-of-line PERFORM . 98
Coding a loop e .99
Looping through a table . . 100
Executing multiple paragraphs or sectlons . 100

Chapter 6. Handling strings . 101

Joining data items (STRING) . 101
Example: STRING statement . 102

Splitting data items (UNSTRING) . 103
Example: UNSTRING statement . . 104

Manipulating null-terminated strings . 106
Example: null-terminated strings . . 107

Referring to substrings of data items . 107
Reference modifiers .o .o . 109
Example: arithmetic expressions as reference
modifiers . .o . 110
Example: intrinsic functlons as reference
modifiers . . 110

Tallying and replacrng data 1tems (INSPECT) 11
Examples: INSPECT statement. - 111

Converting data items (intrinsic functions). . 112
Converting to uppercase or lowercase
(UPPER-CASE, LOWER-CASE) . 113
Transforming to reverse order (REVERSE) . . 113
Converting to numbers (NUMVAL,

NUMVAL-C) . 113
Converting from one code page to another . 115
Evaluating data items (intrinsic functions) . . 115

iv Enterprise COBOL for z/OS V4.1 Programming Guide

Evaluating single characters for collating

sequence . . 115
Finding the largest or smallest data 1tem . 116
Finding the length of data items . . 118
Finding the date of compilation . 119
Chapter 7. Processing data in an
international environment . 121
COBOL statements and national data . 122
Intrinsic functions and national data. . 124
Unicode and the encoding of language characters 125
Using national data (Unicode) in COBOL . . 126
Defining national data items . 127
Using national literals .o 127
Using national-character figurative constants 128
Defining national numeric data items . 129
National groups . 129
Using national groups . 130
Storage of national data . . 133
Converting to or from national (Unrcode)
representation . . 134
Converting alphanumerlc DBCS and 1nteger to
national (MOVE) . . . 134
Converting alphanumeric or DBCS to natronal
(NATIONAL-OF) . . . 135
Converting national to alphanumerlc
(DISPLAY-OF) . . . 136
Overriding the default code page . 136
Conversion exceptions . . 136
Example: converting to and from nat10na1 data 137
Processing UTF-8 data . 137
Processing Chinese GB 18030 data . 138
Comparing national (UTF-16) data . 139
Comparing two class national operands . 139
Comparing class national and class numeric
operands . . 140
Comparing national numeric and other numeric
operands . . . 140
Comparing national and other character—strrng
operands . . . 140
Comparing national data and
alphanumeric-group operands. . 141
Coding for use of DBCS support . . 141
Declaring DBCS data . . 142
Using DBCS literals . . 142
Testing for valid DBCS characters . 143
Processing alphanumeric data items that contarn
DBCS data . 143
Chapter 8. Processing files . 145
File organization and input-output devices . 145
Choosing file organization and access mode . . 147
Format for coding input and output. . 148
Allocating files . . . 149
Checking for input or output erTors . . 150
Chapter 9. Processing QSAM files . 151
Defining QSAM files and records in COBOL . . 151
Establishing record formats. . . 152
Setting block sizes. . 159

Coding input and output statements for QSAM

files . . 161
Opening QSAM ﬁles . 162
Dynamically creating QSAM frles . 163
Adding records to QSAM files. . 163
Updating QSAM files . . lo4
Writing QSAM files to a prrnter or spooled data
set . . R ... L le4
Closing QSAM frles . 165

Handling errors in QSAM files . 165

Working with QSAM files . . 166
Defining and allocating QSAM f11es . 166
Retrieving QSAM files . 169
Ensuring that file attributes match your
program . . 170
Using striped extended format QSAM data sets 172

Accessing HFS files using QSAM. .. . 174

Labels for QSAM files . 174
Using trailer and header labels . 175
Format of standard labels . . 176

Processing QSAM ASCII files on tape . . 177

Processing ASCII file labels. . 178

Chapter 10. Processing VSAM files 179

VSAM files . . 180

Defining VSAM file organlzatron and records . 181
Specifying sequential organization for VSAM
files . 182
Specifying 1ndexed orgamzatlon for VSAM f11es 182
Specifying relative organization for VSAM files 184
Specifying access modes for VSAM files . 185
Defining record lengths for VSAM files. . 185

Coding input and output statements for VSAM

files . 187
File position 1nd1cator . 189
Opening a file (ESDS, KSDS, or RRDS) . 189
Reading records from a VSAM file . . 192
Updating records in a VSAM file. . 193
Adding records to a VSAM file . 193
Replacing records in a VSAM file. . 194
Deleting records from a VSAM file . . 194
Closing VSAM files . . 194

Handling errors in VSAM files . 195

Protecting VSAM files with a password . 196
Example: password protection for a VSAM
indexed file . . . 196

Working with VSAM data sets under z / OS and

UNIX . o . 197
Defining VSAM flles . . 197
Creating alternate indexes . . 198
Allocating VSAM files . 200
Sharing VSAM files through RLS . 202

Improving VSAM performance . 203

Chapter 11. Processing line-sequential

files . 1

Defining 11ne—sequent1a1 frles and records in

COBOL . 207
Allowable control characters . . 208

Describing the structure of a line-sequential file 208

Defining and allocating line-sequential files . . . 209

Coding input-output statements for line-sequential

files . . . o209
Opening hne sequentlal flles e . .210
Reading records from line-sequential frles . .210
Adding records to line-sequential files 211
Closing line-sequential files. 211

Handling errors in line-sequential files 212

Chapter 12. Sorting and merglng files 213

Sort and merge process 214
Describing the sort or merge file214
Describing the input to sorting or merging . . . 215
Example: describing sort and input files for
SORT A
Coding the input procedure216
Describing the output from sorting or merging . . 217
Coding the output procedure 218
Example: coding the output procedure when
using DFSORT 218
Restrictions on input and output procedures ... 219
Defining sort and merge datasets219
Sorting variable-length records220
Requesting the sort or merge220
Setting sort or merge criteria . . . oo 221
Example: sorting with input and output
procedures L2222
Choosing alternate collatmg sequences ... 223
Sorting on windowed date fields. 223
Preserving the original sequence of records w1th
equal keys 224
Determining whether the sort or merge was
successful 224
Stopping a sort or merge operatlon prematurely 225
Improving sort performance with FASTSRT . . . 225
FASTSRT requirements for JCL 226
FASTSRT requirements for sort input and
output files 226
Checking for sort errors wrth NOFASTSRT .. 2227
Controlling sort behavior 228
Changing DFSORT defaults w1th control
statements 229
Allocating storage for sort or merge operatlons 230
Allocating space for sort files231
Using checkpoint/restart with DFSORT 231
Sorting under CICS 23
CICS SORT application restrrctrons o2 232
Chapter 13. Handling errors . . 233
Requesting dumps 233
Handling errors in joining and sphttrng strlngs .. 234
Handling errors in arithmetic operations 234
Example: checking for division by zero. . . . 235
Handling errors in input and output operations 235
Using the end-of-file condition (AT END) . . 238
Coding ERROR declaratives 238
Using file status keys.239
Example: file status key 240
Using VSAM status codes (VSAM f11es only) 241
Example: checking VSAM status codes 241

Contents V

Coding INVALID KEY phrases . 243
Example: FILE STATUS and INVALID KEY . 243
Handling errors when calling programs . 244
Writing routines for handling errors . . 244
Part 2. Compiling and debugglng
your program . 247
Chapter 14. Compiling under z/OS 249
Compiling with JCL . . 249
Using a cataloged procedure . 250
Writing JCL to compile programs. . 259
Compiling under TSO . 261
Example: ALLOCATE and CALL for cornplhng
under TSO 202
Example: CLIST for complhng under TSO . 262
Starting the compiler from an assembler program 263
Defining compiler input and output. .. 264
Data sets used by the compiler under z/ OS .. 265
Defining the source code data set (SYSIN). . 267
Defining a compiler-option data set (SYSOPTF) 267
Specifying source libraries (SYSLIB) . . 268
Defining the output data set (SYSPRINT) . . 269
Directing compiler messages to your terminal
(SYSTERM) . . 269
Creating object code (SYSLIN or SYSPUNCH) 269
Defining an associated-data file (SYSADATA) 270
Defining the Java-source output file (SYSJAVA) 270
Defining the debug data set (SYSDEBUG) . . 270
Defining the library-processing output file
(SYSMDECK) . . 271
Specifying compiler optrons under z / OS . .27
Specifying compiler options with the PROCESS
(CBL) statement . . 272
Example: specifying cornpller optlons usmg]CL 273
Example: specifying compiler options under
TSO . . 273
Compiler options and compller output under
z/0S . . 273
Compiling multiple prograrns (batch comprlatron) 274
Example: batch compilation . 275
Specifying compiler options in a batch
compilation . . 276
Example: precedence of optlons ina batch
compilation . . . 277
Example: LANGUAGE optlon in a batch
compilation . . e . 278
Correcting errors in your source program . . 279
Generating a list of compiler error messages . . 279
Messages and listings for compiler-detected
errors . . e . 279
Format of compller error messages . . 280
Severity codes for compiler error messages . 281
Chapter 15. Compiling under UNIX 283
Setting environment variables under UNIX . 283
Specifying compiler options under UNIX . . 284
Compiling and linking with the cob2 command 285
Creating a DLL under UNIX . 286

vi Enterprise COBOL for z/OS V4.1 Programming Guide

Example: using cob2 to compile and link under

UNIX . . 287
cob2 syntax and optlons . 287
cob2 input and output files. . 289
Compiling using scripts . . 290
Chapter 16. Compiling, linking, and
running OO applications . . 291
Compiling, linking, and running OO apphcatlons
under UNIX. ... 29
Compiling OO apphcatlons under UNIX . . 291
Preparing OO applications under UNIX . 292
Example: compiling and linking a COBOL class
definition under z/OS UNIX 293
Running OO applications under UNIX . . 293
Compiling, linking, and running OO applications
in JCL or TSO/E . . 295
Compiling OO apphcatlons in]CL or TSO/ E 296
Preparing and running OO apphcatlons in]CL
or TSO/E. . .29
Example: compiling, hnklng, and runnrng an
OO application using JCL . . 298
Using IBM SDK for z/0S,]ava 2 Technology
Edition . . 299
Chapter 17. Compiler options . 301
Option settings for Standard COBOL 85
conformance. e . 303
Contflicting compiler optlons . 304
ADATA . 305
ADV . . 305
ARITH . 306
AWO . . 307
BUFSIZE . . 307
CICS . . 308
CODEPAGE . . 309
COMPILE . 311
CURRENCY. . 312
DATA . . 313
DATEPROC . . 314
DBCS . . 315
DECK . . 316
DIAGTRUNC . 316
DLL . 317
DUMP . 318
DYNAM . . 319
EXIT . . . 319
EXPORTALL . 320
FASTSRT . . 320
FLAG . . 321
FLAGSTD . 322
INTDATE . 323
LANGUAGE . 324
LIB. 325
LINECOUNT . 326
LIST . 326
MAP . . . 327
MDECK . . 328
NAME . 329
NSYMBOL . . 330

NUMBER

NUMPROC .

OBJECT .

OFFSET .

OPTFILE .

OPTIMIZE

OUTDD .

PGMNAME . .
PGMNAME(COMPAT)
PGMNAME(LONGUPPER).
PGMNAME(LONGMIXED)
Usage notes . .o

QUOTE/APOST

RENT .

RMODE .

SEQUENCE .

SIZE

SOURCE .

SPACE

SQL

SQLCCSID .

SSRANGE

TERMINAL .

TEST .

THREAD.

TRUNC .
TRUNC example 1
TRUNC example 2

VBREF .

WORD

XMLPARSE .

XREF . .

YEARWINDOW

ZWB .

Chapter 18. Compller-dlrectlng
statements

Chapter 19. Debugging
Debugging with source language .
Tracing program logic .
Finding and handling mput—output errors .
Validating data . .
Finding uninitialized data . .
Generating information about procedures
Debugging using compiler options .
Finding coding errors .
Finding line sequence problems .
Checking for valid ranges .
Selecting the level of error to be d1agnosed
Finding program entity definitions and
references .
Listing data items .
Using the debugger
Getting listings . .
Example: short hstmg
Example: SOURCE and NUMBER output
Example: MAP output .
Reading LIST output .

. 331
. 332
. 333
. 333
. 334
. 335
. 336
. 337
. 337
. 338
. 338
. 338
. 339
. 340
. 341
. 342
. 342
. 343
. 344
. 344
. 345
. 346
. 347
. 347
. 350
. 352
. 353
. 354
. 355
. 355
. 356
. 357
. 358
. 359

. 361

. 365
. 365
. 366
. 367
. 367
. 368
. 368
. 370
. 370
. 371
. 371
. 372

. 374
. 374
. 375
. 375
. 377
. 379
. 380
. 385

Example: XREF output: data-name

cross-references.39
Example: OFFSET Compﬂer output 400
Example: VBREF compiler output 401

Part 3. Targeting COBOL programs

for certain environments . 403
Chapter 20. Developing COBOL
programs for CICS . . . 405
Coding COBOL programs to run under CICS .. 405
Getting the system date under CICS. 407
Calling to or from COBOL programs 407
Determining the success of ECI calls. 409
Compiling with the CICS option 409
Separating CICS suboptions4l1
Integrated CICS translator411
Using the separate CICS translator 412
CICS reserved-word table 413
Handling errors by using CICS HANDLE ... 414
Example: handling errors by using CICS
HANDLE 415
Chapter 21. Programmlng for a DB2
environment. . 417
DB2 coprocessor417
Coding SQL statements . . . 418
Using SQL INCLUDE with the DB2 Coprocessor 419
Using character data in SQL statements . . . 419

Using national decimal data in SQL statements 420
Using national group items in SQL statements 420

Using binary items in SQL statements 421
Determining the success of SQL statements . . 421
Compiling with the SQL option 421
Separating DB2 suboptions. 422
COBOL and DB2 CCSID determmatlon 423
Code-page determination for string host
variables in SQL statements 424
Programming with the SQLCCSID or
NOSQLCCSID option 424
Differences in how the DB2 precompller and
coprocessor behave 425
Period at the end of EXEC SQL INCLUDE
statements 425
EXEC SQL INCLUDE and nested COPY
REPLACING425
EXEC SQL and REPLACE or COPY
REPLACING 426
Source code after an END EXEC statement .. 426
Multiple definitions of host variables 426
EXEC SQL statement continuation lines . . . 426
Bit-data host variables 427
SQL-INIT-FLAG 427
Choosing the DYNAM or NODYNAM compller
option. 427

Chapter 22. Developing COBOL

programs for IMS. . 429

Contents Vil

Compiling and linking COBOL programs for

running under IMS . . 429
Using object-oriented COBOL and]ava under IMS 430
Calling a COBOL method from an IMS Java
application . . . 430
Building a mixed COBOL /]ava apphcatlon that
starts with COBOL . . 431
Writing mixed-language IMS apphcatlons . 432
Chapter 23. Running COBOL
programs under UNIX. . 435
Running in UNIX environments . .o . 435
Setting and accessing environment variables . . 436
Setting environment variables that affect
execution. . 437
Runtime enV1ronment Varlables . 437
Example: setting and accessing env1ronment
variables . . . 438
Calling UNIX/POSIX APIs . 438
Accessing main program parameters . 440
Example: accessing main program parameters 441
Part 4. Structuring complex
applications . 443
Chapter 24. Using subprograms . 445
Main programs, subprograms, and calls . 445
Ending and reentering main programs or
subprograms . 446
Transferring control to another program . 447
Making static calls. . 448
Making dynamic calls . 449
AMODE switching . . . 451
Performance considerations of statlc and
dynamic calls . . 453
Making both static and dynam1c Calls . 454
Examples: static and dynamic CALL statements 454
Calling nested COBOL programs . . 456
Making recursive calls . 459
Calling to and from object-oriented programs . 459
Using procedure and function pointers . . 460
Deciding which type of pointer to use . . 461
Calling alternate entry points . . 461
Making programs reentrant . 462
Chapter 25. Sharing data . 463
Passing data. . 463
Describing arguments in the calhng program 465
Describing parameters in the called program 466
Testing for OMITTED arguments . . 466
Coding the LINKAGE SECTION . . . 467
Coding the PROCEDURE DIVISION for passmg
arguments . . . 467
Grouping data to be passed . 468
Handling null-terminated strings . . 468
Using pointers to process a chained list . 469
Passing return-code information . . 472
Understanding the RETURN-CODE specral
register e . 472

viii Enterprise COBOL for z/OS V4.1 Programming Guide

Using PROCEDURE DIVISION RETURNING . .

. 472
Specifying CALL . . . RETURNING . . 473
Sharing data by using the EXTERNAL clause. . 473
Sharing files between programs (external files) . . 473
Example: using external files . . 474
Chapter 26. Creating a DLL or a DLL
application . 479
Dynamic link libraries (DLLs) . 479
Compiling programs to create DLLs. . 480
Linking DLLs . 481
Example: sample JCL for a procedural DLL
application . o . 482
Prelinking certain DLLs . . 483
Using CALL identifier with DLLs . 483
Search order for DLLs in the HFS .. 484
Using DLL linkage and dynamic calls together . . 484

Using procedure or function pointers with DLLs 486

Calling DLLs from non-DLLs . . 486

Example: calling DLLs from non—DLLs . 487
Using COBOL DLLs with C/C++ programs . . 488
Using DLLs in OO COBOL applications . 489
Chapter 27. Preparing COBOL
programs for multithreading . . 491
Multithreading . . . 492
Choosing THREAD to support multlthreadmg . 493
Transferring control to multithreaded programs 493
Ending multithreaded programs . . 494
Processing files with multithreading . . 494

File-definition (FD) storage . . . 495

Serializing file access with multlthreadlng . 495

Example: usage patterns of file input and

output with multithreading. . 496

Handling COBOL limitations with multlthreadmg 497

Part 5. Using XML and COBOL

together . . 499
Chapter 28. Processing XML mput 501
XML parser in COBOL . . 502
Accessing XML documents . . 503
Parsing XML documents . 504
Writing procedures to process XML . 506
XML-EVENT .o . 507
XML-CODE . . 508
XML-TEXT and XML- NTEXT . . 508
XML-NAMESPACE and XML- NNAMESPACE 509
XML-NAMESPACE-PREFIX and
XML-NNAMESPACE-PREFIX . . 510
Transforming XML text to COBOL data 1tems 510
Parsing XML documents one segment at a time 511
XML PARSE examples . . 513
Understanding the encoding of XML documents 521
Coded character sets for XML documents . . 522
Parsing XML documents encoded in UTF-8 . 523
Code-page-sensitive characters in XML markup 524
Specifying the code page . 525

Handling XML PARSE exceptions 526

How the XML parser handles errors. 527
Handling conflicts in code pages. 528
Terminating XML parsing530

Chapter 29. Producing XML output 531

Generating XML output. . . . 531
Controlling the encoding of generated XML output 535
Handling errors in generating XML output . . . 536
Example: generating XMLb537
Program XGFX.b537
Program Prettybh38
Output from program XGFX b
Enhancing XML output . . . 23
Example: enhancing XML outputbha2
Example: converting hyphens in element or
attribute names to underscores 545

Part 6. Developing object-oriented
programsb547

Chapter 30. Writing object-orlented

programs 549
Example: accounts.b550
Subclassesb551
Defining a class55
CLASS-ID paragraph for deflnlng a Class . . .55

REPOSITORY paragraph for defining a class 554
WORKING-STORAGE SECTION for def1n1ng

class instance data. 556
Example: definingaclassb557
Defining a class instance method 557
METHOD-ID paragraph for defining a Class
instance method . . . 558
INPUT-OUTPUT SECTION for deflnlng a Class
instance method 559
DATA DIVISION for deflnlng a class 1nstance
method . . . 559
PROCEDURE DIVISION for deflnlng a Class
instance method 560
Overriding an instance method ... bel
Overloading an instance method 562
Coding attribute (get and set) methods. . . . 563
Example: defining a method 564
Defining a client 566
REPOSITORY paragraph for deflnrng a chent 567
DATA DIVISION for defining a client 568
Comparing and setting object references . . . 569
Invoking methods INVOKE)570
Creating and initializing instances of classes . . 574
Freeing instances of classes.576
Example: defining a client577
Defining a subclass 577

CLASS-ID paragraph for deflnlng a subclass 578
REPOSITORY paragraph for defining a subclass 579
WORKING-STORAGE SECTION for def1n1ng

subclass instance data . . . - . 580
Defining a subclass instance method580
Example: defining a subclass (with methods) 580

Defining a factory section 582
WORKING-STORAGE SECTION for def1n1ng
factory data . . . e . 582
Defining a factory method S . 583
Example: defining a factory (with methods) . 585

Wrapping procedure-oriented COBOL programs 591

Structuring OO applications . . . 591
Examples: COBOL applications that run usmg
the java command. S . 592

Chapter 31. Communicating with Java
methods59

Accessing JNI services5%
Handling Java exceptions 5%
Managing local and global references59
Java access controls59

Sharing data with Java . . . 600
Coding 1nter0perable data types in COBOL and
Java 600
Declaring arrays and strlngs for]ava 601
Manipulating Java arrays 602
Manipulating Java strings 604

Example: J2EE client written in COBOL 607
COBOL client (ConverterClient.cbl) 607
Java client (ConverterClientjava). 609

Part 7. Specialized processing. . . 611

Chapter 32. Interrupts and
checkpoint/restart 613

Setting checkpoints613
Designing checkpointso06l4
Testing for a successful checkpomt S . 615
DD statements for defining checkpoint data sets 615
Messages generated during checkpoint. . . . 616

Restarting programs6le
Requesting automatic restart B Y V4
Requesting deferred restart. 617
Formats for requesting deferred restart . . .618
Resubmitting jobs for restart 619
Example: restarting a job at a specific
checkpoint step. 619
Example: requesting a step restart .o . 619

Example: resubmitting a job for a step restart 620
Example: resubmitting a job for a checkpoint
restart.620

Chapter 33. Processmg two- d|g|t-year

dates. 623
Millennium language extensions (MLE) 624
Principles and objectives of these extensions . . 624
Resolving date-related logic problems 625
Using a century window 626
Using internal bridging627
Moving to full field expansion. . . . 629
Using year-first, year-only, and year-last date flelds 631
Compatible dates 631
Example: comparing year—frrst date ﬁelds .. . 632
Using other date formats632

Contents 1X

Example: isolating the year. 633

Manipulating literals as dates 633
Assumed century window 634
Treatment of nondates635

Setting triggers and limits 636
Example: using limits637
Using sign conditions 638

Sorting and merging by date 638
Example: sorting by date and time 639

Performing arithmetic on date fields. 639
Allowing for overflow from windowed date
fields640
Specifying the order of evaluat1on64

Controlling date processing explicitly 641
Using DATEVAL64
Using UNDATE64
Example: DATEVAL643
Example: UNDATE 643

Analyzing and avo1d1ng date- related d1agnost1c

messages. 644

Avoiding problems in processmg dates - . 645

Avoiding problems with packed-decimal f1elds 645
Moving from expanded to windowed date fields 646

Part 8. Improving performance and
productivity 647

Chapter 34. Tuning your program. . . 649

Using an optimal programming style 650
Using structured programming 650
Factoring expressions. 650
Using symbolic constants651
Grouping constant computations. 651
Grouping duplicate computations 651

Choosing efficient data types 652
Choosing efficient computational data 1tems .. 652
Using consistent data types.653
Making arithmetic expressions eff1c1ent . . .653
Making exponentiations efficient 653

Handling tables efficiently 653
Optimization of table references 655

Optimizing your code657
Optimization657

Choosing compiler features to enhance

performance.65
Performance- related comp1ler opt1ons660
Evaluating performance 663

Running efficiently with CICS, IMS, or VSAM .. 664

Chapter 35. Simplifying coding. . . . 665

Eliminating repetitive coding 665
Example: using the COPY statement0666

Using Language Environment callable services . . 667
Sample list of Language Environment callable
services668
Calling Language Env1r0nment services . . . 669
Example: Language Environment callable
services670

X Enterprise COBOL for z/OS V4.1 Programming Guide

Part 9. Appendixes 671

Appendix A. Intermediate results and
arithmetic precision 673

Terminology used for intermediate results. . . . 674

Example: calculation of intermediate results . . . 675

Fixed-point data and intermediate results 675
Addition, subtraction, multiplication, and
division675
Exponentiation 676
Example: exponentlatlon in f1xed pomt
arithmetic 677
Truncated 1ntermed1ate results678
Binary data and intermediate results 678

Intrinsic functions evaluated in fixed-point

arithmetic678
Integer functions678
Mixed functions 679

Floating-point data and 1ntermed1ate results .. . 680
Exponentiations evaluated in floatmg point
arithmetic 681
Intrinsic functions evaluated in floatmg pomt
arithmetic 681

Arithmetic expressions in nonar1thmet1c statements 681

Appendix B. Complex OCCURS
DEPENDINGON 683

Example: complex ODO.683
How length is calculated 684
Setting values of ODO objects. 684

Effects of change in ODO object value 684
Preventing index errors when changing ODO
object value 685
Preventing overlay when addmg elements to a
variable table685

Appendix C. Converting double-byte
character set (DBCS)data. 689

DBCS notation68

Alphanumeric to DBCS data conversion

IGzCA2D)68
IGZCA2D syntax69
IGZCA2D returncodes690
Example: IGZCA2D L6091

DBCS to alphanumeric data conversion (IGZCD2A) 692
IGZCD2A syntax692
IGZCD2A returncodes693
Example: IGZCD2A693

Appendix D. XML reference material 695
XML PARSE exceptions that allow continuation 695
XML PARSE exceptions that do not allow

continuation. . . B
XML GENERATE exceptlons oL T702

Appendix E. EXIT compiler opt|on . . 703

Using the user-exit work area 704
Calling from exit modules705
Processing of INEXIT.705

INEXIT parameters

Processing of LIBEXIT
Processing of LIBEXIT with nested COPY
statements e
LIBEXIT parameters .

Processing of PRTEXIT .
PRTEXIT parameters .

Processing of ADEXIT
ADEXIT parameters . .

Error handling for exit modules .

Using the EXIT compiler optlon with CICS and

SQL statements.
Example: INEXIT user eX1t

Appendix F. JNIL.cpy

Appendix G. COBOL SYSADATA file
contents

Existing compiler options that affect the
SYSADATA file.

SYSADATA record types

Example: SYSADATA

SYSADATA record descriptions

Common header section. .

Job identification record: X’0000" .
ADATA identification record: X’0001’
Compilation unit start | end record: X"0002’
Options record: X'0010" .

External symbol record: X’0020’

Parse tree record: X'0024’

Token record: X"0030’.

Source error record: X'0032’

Source record: X’0038’

. 705
. 706

. 707
. 708
. 709
. 710
. 710
. 711
. 712

. 712
. 713

. 717

. 723

. 723
. 724
. 725
. 726
. 727
. 728
. 729
. 729
. 730
. 739
. 740
. 755
. 768
. 769

COPY REPLACING record: X'0039” .
Symbol record: X'0042" . .
Symbol cross-reference record: X’OO44’
Nested program record: X'0046" .
Library record: X"0060’

Statistics record: X’0090” .

EVENTS record: X'0120".

Appendix H. Using sample programs
IGYTCARA: batch application.
Input data for IGYTCARA .
Report produced by IGYTCARA .
Preparing to run IGYTCARA .
IGYTCARB: interactive program .
Preparing to run IGYTCARB .
IGYTSALE: nested program application
Input data for IGYTSALE .
Reports produced by IGYTSALE .
Preparing to run IGYTSALE
Language elements and concepts that are
illustrated

Notices .
Trademarks .

Glossary

List of resources.
Enterprise COBOL for z/OS
Related publications .

Index .

Contents

. 770
. 770
. 783
. 784
. 785
. 785
. 786

791

. 791
. 792
. 793
. 794
. 795
. 796
. 798
. 799
. 801
. 804

. 805

. 81
. 813

. 815
. 849
. 849
. 849

. 851

xi

xii Enterprise COBOL for z/OS V4.1 Programming Guide

Tables

LS NS

==

13.

14.
15.
16.

17.

18.

19.

20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.

31.
32.

33.
34.

35.
36.
37.
38.

39.
40.
41.
42.

SO0 XN T

FILE-CONTROL entries

FILE SECTION entries .
Assignment to data items in a program
Effect of RMODE and RENT compiler
options on the RMODE attribute .

Ranges in value of COMP-5 data items
Internal representation of numeric items
NUMCLS(PRIM) and valid signs .
NUMCLS(ALT) and valid signs .
Order of evaluation of arithmetic operators
Numeric intrinsic functions .

Compatibility of math intrinsic functlons and

callable services .

INTDATE(LILIAN) and compatlblllty of date

intrinsic functions and callable services.
INTDATE(ANSI) and compatibility of date
intrinsic functions and callable services.
Hexadecimal values of the euro sign.
COBOL statements and national data
Intrinsic functions and national character
data.

National group 1tems that are processed
with group semantics

Encoding and size of alphanumerlc, DBCS
and national data .

Summary of file organlzatlons, access
modes, and record formats of COBOL files
QSAM file allocation.

Maximum record length of QSAM flles
Handling of QSAM user labels .
Identifiers for standard tape labels .
Comparison of VSAM, COBOL, and
non-VSAM terminology. .
Comparison of VSAM data-set types
VSAM file organization, access mode, and
record format

Definition of VSAM f1xed-length records
Definition of VSAM variable-length records
I/O statements for VSAM sequential files
I/O statements for VSAM relative and
indexed files

Statements to load records 1nto a VSAM f11e
Statements to update records in a VSAM
file . .

Methods for i 1mprov1ng VSAM performance
Methods for checking for sort errors with
NOFASTSRT .

Methods for controlling sort behav1or
Compiler data sets .

Block size of fixed-length Compller data sets
Block size of variable-length compiler data
sets . .
Types of compller output under z/OS
Severity codes for compiler error messages
Input files to the cob2 command.

Output files from the cob2 command

© Copyright IBM Corp. 1991, 2007

.14

29

.42

51
53

. 57
. 57

59
. 60

. 61

. 62

. 62
. 67

122

. 124

. 132

. 133

. 147
. 167

171

. 176
. 176

. 179

181

. 182

186
186
188

. 188

191

. 193

203

. 228

228

. 265

267

. 267

273
281

. 289

289

43.

44.

45.
46.
47.

48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

73.
74.

75.
76.
77.
78.
79.

80.

Commands for compiling and linking a
class definition .

java command options for custom1zmg the
JVvM .

Compiler options .

Mutually exclusive compller optlons
EBCDIC multibyte coded character set
identifiers

Values of the LANGUAGE compller optlon
Severity levels of compiler messages

Using compiler options to get listings
Terms used in MAP output .
Symbols used in LIST and MAP output
Signature information bytes for compiler
options

Signature 1nf0rmat10n bytes for the DATA
DIVISION .

Signature information bytes for the
ENVIRONMENT DIVISION .

Signature information bytes for
PROCEDURE DIVISION verbs .
Signature information bytes for more
PROCEDURE DIVISION items .

Calls between COBOL and assembler under
CICS

Compiler options requlred for the 1ntegrated
CICS translator.

Compiler options requlred for the separate
CICS translator.

TRUNC compiler optlons recommended for
the separate CICS translator

Compiler options required with the DB2
coprocessor . .

Samples with POSIX functlon calls

Effects of termination statements.

Methods for passing data in the CALL
statement .

Compiler options for DLL appllcatlons
Binder options for DLL applications
Special registers used by the XML parser
XML events and special regisers .

XML events and special registers

Coded character sets for XML documents
Hexadecimal values of special characters for
code page CCSIDs

Aliases for XML encoding declaratlons
Encoding of generated XML if the
ENCODING phrase is omitted

Structure of class definitions . .
Structure of instance method def1n1t10ns
Structure of COBOL clients .
Conformance of arguments in a COBOL
client . .

Conformance of the returned data 1tem in a
COBOL client .

Structure of factory deﬁmtlons

. 292

. 294
. 301

304

.31
324
372
375

. 382

383

. 388

. 389

. 390

. 390

. 392

. 408

. 410

. 413

. 413
. 422
. 439
. 446

. 464

480
481
506

. 513
. 518

523

. 524

525

. 535
. 552

558

. 566

. 571

. 573
. 582

xiii

81.
82.
83.
84.

85.

86.
87.

88.
89.

90.
91.
92.
93.
94.
95.

96.
97.
98.
99.
100.
101.
102.

103.
104.

xiv

Structure of factory method definitions
JNI services for local and global references

Interoperable data types in COBOL and Java

Interoperable arrays and strings in COBOL
and Java .

Nonmteroperable array types in COBOL
and Java . .o
JNI array services . .
Services that convert between]strlng
references and national data

Services that convert between jstring
references and alphanumeric data
Advantages and disadvantages of Year 2000
solutions . .
Performance- related compller optlons
Performance-tuning worksheet .
Language Environment callable services
IGZCA2D return codes .

IGZCD2A return codes . .

XML PARSE exceptions that allow
continuation (for XMLPARSE (COMPAT)) .

XML PARSE exceptions that do not allow
continuation. L
XML GENERATE exceptlons .

INEXIT processing

INEXIT parameters

LIBEXIT processing .

LIBEXIT processing with nonnested COPY
statements .

LIBEXIT processing w1th nested COPY
statements e
LIBEXIT parameters .

PRTEXIT processing .

583
599
600

. 601

. 602
. 602

. 605

. 605

. 626

660

. 663

668

. 691
. 693

. 696

. 699
. 702
. 705
. 706
. 707

. 707
. 708

. 708
. 709

Enterprise COBOL for z/OS V4.1 Programming Guide

105.
106.
107.
108.

109.
110.
111.
112.
113.

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.

127.

128.

129.

130.
131.

PRTEXIT parameters .

ADEXIT processing

ADEXIT parameters . .

Actions allowed on CICS and SQL
statements in exit modules.

SYSADATA record types

SYSADATA common header sectlon
SYSADATA job identification record
ADATA identification record .

SYSADATA compilation unit start| end
record . . o
SYSADATA optlons record .
SYSADATA external symbol record
SYSADATA parse tree record .

SYSADATA token record .
SYSADATA source error record .
SYSADATA source record .

SYSADATA COPY REPLACING record
SYSADATA symbol record . .
SYSADATA symbol cross-reference record
SYSADATA nested program record .
SYSADATA library record .

SYSADATA statistics record

SYSADATA EVENTS TIMESTAMP record
layout . .

SYSADATA EVENTS PROCESSOR record
layout .

SYSADATA EVENTS FILE END record
layout . .

SYSADATA EVENTS PROGRAM record
layout . .

SYSADATA EVENTS FILE ID record layout
SYSADATA EVENTS ERROR record layout

. 710
. 711
. 711

. 712
. 724

727
728

. 729

. 730
. 730

740

. 740
. 755
. 769
. 769

770

. 770

783

. 784
. 785
. 785
. 786
. 786

. 787

. 787
787
788

Preface

About this document

Welcome to IBM® Enterprise COBOL for z/ 0S® IBM’s latest host COBOL
compiler!

This version of IBM COBOL adds new COBOL function to help integrate COBOL
business processes and Web-oriented business processes by:

* Simplifying the componentization of COBOL programs and enabling
interoperability with Java components

* Promoting the exchange and use of data in standardized formats, including
XML and Unicode

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The accessibility
features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS enable users to:

* Use assistive technology products such as screen readers and screen magnifier
software.

* Operate specific or equivalent features by using only the keyboard.
¢ Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, consult the documentation for the
assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces by using TSO/E or ISPF. For information
about accessing TSO/E or ISPF interfaces, refer to the following publications:

¢ |z/0OS TSO/E Primen|
e |z/OS TSO/E User’s Guide|
2/OS ISPF User’s Guide Volume |

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this document

The English-language XHTML format of this document that will be provided in
the [BM System z Enterprise Development Tools & Compilers Information Center]
at publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to visually
impaired individuals who use a screen reader.

© Copyright IBM Corp. 1991, 2007 XV

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p110
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c230/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug60
http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp

xvi

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you must
set the screen reader to speak all punctuation.

How this document will help you

This document will help you write and compile Enterprise COBOL programs. It
will also help you define object-oriented classes and methods, invoke methods, and
refer to objects in your programs.

This document assumes experience in developing application programs and some
knowledge of COBOL. It focuses on using Enterprise COBOL to meet your
programming objectives and not on the definition of the COBOL language. For
complete information on COBOL syntax, see IBM Enterprise COBOL Language
Reference.

For information on migrating programs to Enterprise COBOL, see IBM Enterprise
COBOL Compiler and Runtime Migration Guide.

Language Environment® provides the runtime environment and runtime services
that are required to run your Enterprise COBOL programs. You will find
information on link-editing and running programs in the IBM z/OS Language
Environment Programming Guide and IBM z/OS Language Environment Programming
Reference.

For a comparison of commonly used Enterprise COBOL and IBM z/OS Language
Environment terms, see [‘Comparison of commonly used terms” on page xvii.

Abbreviated terms

Certain terms are used in a shortened form in this document. Abbreviations for the
product names used most frequently are listed alphabetically in the following
table.

Term used Long form

CICS® CICS Transaction Server
Enterprise COBOL IBM Enterprise COBOL for z/OS
Language Environment IBM z/0OS Language Environment
MVS™ MVS/ESA™

z/0S UNIX® z/0S UNIX System Services

In addition to these abbreviated terms, the term "Standard COBOL 85" is used to

refer to the combination of the following standards:

* 15O 1989:1985, Programming languages - COBOL

* ISO/IEC 1989/AMD1:1992, Programming languages - COBOL - Intrinsic
function module

* ISO/IEC 1989/AMD2:1994, Programming languages - COBOL - Correction and
clarification amendment for COBOL

* ANSI INCITS 23-1985, Programming Languages - COBOL

* ANSI INCITS 23a-1989, Programming Languages - Intrinsic Function Module for
COBOL

Enterprise COBOL for z/OS V4.1 Programming Guide

e ANSI INCITS 23b-1993, Programming Language - Correction Amendment for
COBOL

The ISO standards are identical to the American National standards.

Other terms, if not commonly understood, are shown in italics the first time that
they appear, and are listed in the glossary at the back of this document.

Comparison of commonly used terms
To better understand the terms used throughout the IBM z/OS Language

Environment and IBM Enterprise COBOL for z/OS publications and what terms
are meant to be equivalent, see the following table.

Language Environment term Enterprise COBOL equivalent

Aggregate Group item

Array A table created using the OCCURS clause

Array element Table element

Enclave Run unit

External data WORKING-STORAGE data defined with EXTERNAL clause
Local data Any non-EXTERNAL data item

Pass parameters directly, by value |BY VALUE

Pass parameters indirectly, by BY REFERENCE

reference

Pass parameters indirectly, by value | BY CONTENT

Routine Program

Scalar Elementary item

How to read syntax diagrams

Use the following description to read the syntax diagrams in this information.

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.
The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the
previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >---
symbol and end with the ---> symbol.

* Required items appear on the horizontal line (the main path):

»>—required_item >

* Optional items appear below the main path:

Preface XVii

v
A

»>—required_item |_
optional_i temJ

* If you can choose from two or more items, they appear vertically, in a stack. If
you must choose one of the items, one item of the stack appears on the main
path:

»>—required_i tem—[requi red_choicel >
required_choi ce2J

If choosing one of the items is optional, the entire stack appears below the main
path:

v
A

»>—required_item
i:opti onal_choi cel:‘
optional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below:

defau]t_choice—|

v
A

»>—required_item
i:opti onal_choi ce:‘
optional_choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated:

v
A

»—required_item——repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a
comma:

xviii Enterprise COBOL for z/OS V4.1 Programming Guide

»—required_item—repeatable_item >

* Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase italics (for example, column-name). They
represent user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How examples are shown

This document shows numerous examples of sample COBOL statements, program
fragments, and small programs to illustrate the coding techniques being discussed.
The examples of program code are written in lowercase, uppercase, or mixed case
to demonstrate that you can write your programs in any of these ways.

To more clearly separate some examples from the explanatory text, they are
presented in a monospace font.

COBOL keywords and compiler options that appear in text are generally shown in
SMALL UPPERCASE. Other terms such as program variable names are sometimes
shown in an italic font for clarity.

Accessing softcopy documentation and support information

IBM Enterprise COBOL for z/OS provides PDF and BookManager® versions of the
library on the product site at fwww.ibm.com /software/awdtools/cobol/zos /|

You can check that Web site for the latest editions of the documents. In the
BookManager version of a document, the content of some tables and syntax
diagrams might be aligned improperly due to variations in the display technology.

Support information is also available on the product site at [www.ibm.com /|
lsoftware /awdtools/cobol /zos/support/|

Summary of changes

This section lists the key changes that have been made to Enterprise COBOL in
Version 4. The changes that are described in this document have an associated
cross-reference for your convenience. The latest technical changes are marked by a
vertical bar () in the left margin in the PDF and BookManager versions.

Version 4 Release 1 (December 2007)

¢ The performance of operations on Unicode (USAGE NATIONAL) data has been
significantly improved. The compiler now generates z/Architecture® hardware
instructions for most Unicode MOVE operations and comparisons.

Preface XiX

http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/support/
http://www.ibm.com/software/awdtools/cobol/zos/support/

XX

* A new compiler option, XMLPARSE, makes it possible to choose between parsing

with the parser that is available with the COBOL library (for compatibility with
Enterprise COBOL Version 3) or with the z/OS XML System Services parser
(" XMLPARSE” on page 356).

New XML PARSE capabilities are available when you parse a document with the
z/0OS XML System Services parser (Chapter 28, “Processing XML input,” on|

[page 501):

— Namespaces and namespace prefixes are processed using new special
registers and new XML events.

— You can specify the document encoding using the ENCODING phrase of the XML
PARSE statement.

— You can parse documents that are encoded in Unicode UTF-8 (("Parsing XML
[documents encoded in UTF-8” on page 523).

— The RETURNING NATIONAL phrase enables you to receive XML document
fragments in Unicode regardless of the original encoding of an XML
document.

— You can parse documents that reside in a data set or parse very large
documents a buffer at a time (“Parsing XML documents one segment at al
[time” on page 511).

The XML GENERATE statement has been enhanced (Chapter 29, “Producing XML]

[output,” on page 531):

— You can specify a namespace using the NAMESPACE phrase, and a namespace
prefix to be applied to each element using the NAMESPACE-PREFIX phrase.

— You can specify the code page of the generated document using the ENCODING
phrase (“Controlling the encoding of generated XML output” on page 535).

— XML documents can now be generated in UTF-8 as well as in UTF-16 or
various EBCDIC code pages.

— The WITH ATTRIBUTES phrase causes eligible elementary items to be expressed
as attributes rather than as child elements in the generated XML.

— The WITH XML-DECLARATION phrase causes an XML declaration to be generated.

A new compiler option, OPTFILE, enables the specifying of COBOL compiler

options from within a data set (“OPTFILE” on page 334).

Compiler listings now cross-reference COPY statements and the data sets from
which copybooks are obtained (“Example: XREF output: COPY/BASIS
[cross-references” on page 398).

Support for new features of DB2® for z/OS V9 is enabled when you use the
integrated DB2 coprocessor (SQL compiler option) (“DB2 coprocessor” on page|
417):

— New SQL data types are supported: XML types, BINARY, VARBINARY,
BIGINT, and file reference variables.

— New SQL syntax for XML manipulation, enhancements to large object
manipulation, MERGE, and SELECT FROM MERGE is supported.

— DB2 processing options STDSQL(YES|NO), NOFOR, and SQL(ALL|DB2) are
supported as suboptions to the SQL compiler option (“Compiling with thel
ISQL option” on page 421).

Several usability enhancements to COBOL-DB2 applications are available when

you use the integrated DB2 coprocessor:

— The compiler listing is enhanced to show the DB2 options in effect (if you use
DB2 for z/OS V9) and to show the expansion of the SQLCA and SQLDA
control blocks.

Enterprise COBOL for z/OS V4.1 Programming Guide

— You can specify an alternate ddname for DBRMLIB when you invoke the
compiler from an assembler language program ({’Starting the compiler from|
[an assembler program” on page 263).

— An explicitly coded LOCAL-STORAGE SECTION or WORKING-STORAGE SECTION is no
longer required.

* Debugging has been enhanced to support Debug Tool V8. A new suboption of
the TEST compiler option, EJPD, enables the Debug Tool commands JUMPTO and
GOTO for production debugging. The TEST compiler option has been simplified
and has restructured suboptions (“TEST” on page 347).

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other Enterprise
COBOL documentation, contact us in one of these ways:

e Fill out the Readers’” Comments Form at the back of this document, and return it
by mail or give it to an IBM representative. If there is no form at the back of this
document, address your comments to:

IBM Corporation
Reader Comments
DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003
USA

¢ Use the Online Readers’ Comments Form at |www.ibm.com/ software/awdtools/ |

* Send your comments to the following e-mail address: comments@us.ibm.com.

Be sure to include the name of the document, the publication number of the
document, the version of Enterprise COBOL, and, if applicable, the specific
location (for example, the page number or section heading) of the text that you are
commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

Preface XX1

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

xxii Enterprise COBOL for z/OS V4.1 Programming Guide

Part 1. Coding your program

Chapter 1. Structuring your program
Identifying a program . .
Identifying a program as recursive . .
Marking a program as callable by contalnlng
programs
Setting a program to an 1n1t1al state
Changing the header of a source listing
Describing the computing environment
Example: FILE-CONTROL entries
Specifying the collating sequence

Example: specifying the collating sequence .

Defining symbolic characters
Defining a user-defined class
Defining files to the operating system

Varying the input or output file at run time

Optimizing buffer and device space
Describing the data. .
Using data in input and output operatrons
FILE SECTION entries.
Comparison of WORKING- STORAGE and
LOCAL-STORAGE . o
Example: storage sections.
Using data from another program .

Sharing data in separately compiled programs

Sharing data in nested programs

Sharing data in recursive or multithreaded

programs .
Processing the data . . .
How logic is divided in the PROCEDURE
DIVISION . o
Imperative statements
Conditional statements
Compiler-directing statements .
Scope terminators

Declaratives .

Chapter 2. Using data

Using variables, structures, hterals, and constants

Using variables . .
Using data items and group 1terns
Using literals .
Using constants . .
Using figurative constants

Assigning values to data items .
Examples: initializing data items
Initializing a structure (INITIALIZE) .
Assigning values to elementary data items
(MOVE)

Assigning values to group data 1terns (MOVE)

Assigning arithmetic results (MOVE or
COMPUTE)

Assigning input from a screen or frle (ACCEPT)
Displaying values on a screen or in a file (DISPLAY)

Displaying data on the system logical output
device . . e
Using WITH NO ADVANCING

© Copyright IBM Corp. 1991, 2007

o U1 O1

(ol N I e NN

.9
. 10
. 10
. 10
11
.12
.13
.13
.14

. 16
.17
.18

18

.18

.19
.19

. 20
.21
.21
.22
.22
.23

. 25
. 25
.25
. 26
.27
. 28
. 28
.29
. 30
.32

. 34
. 35

. 36

37
38

. 39
. 39

Using intrinsic functions (built-in functions)
Using tables (arrays) and pointers .
Storage and its addressability

Settings for RMODE . .
Storage restrictions for passing data .
Location of data areas .

Storage for LOCAL- STORAGE data
Storage for external data . .
Storage for QSAM input-output buffers .

Chapter 3. Working with numbers and arithmetic
Defining numeric data.

Displaying numeric data .

Controlling how numeric data is stored

Formats for numeric data.

External decimal (DISPLAY and NATIONAL)
items .o
External ﬂoatlng pomt (DISPLAY and
NATIONAL) items . Lo

Binary (COMP) items . .

Native binary (COMP-5) items .
Packed-decimal (COMP-3) items .
Internal float1ng p01nt (COMP-1 and COMP 2)
items R
Examples: numeric data and 1nternal
representation

Data format conversions .

Conversions and precision
Conversions that lose precision .
Conversions that preserve precision
Conversions that result in rounding .

Sign representation of zoned and packed-decimal
data .

Checking for 1ncompat1ble data (numerlc class test)
Performing arithmetic .

Using COMPUTE and other arlthmetlc
statements . . e
Using arithmetic express1ons
Using numeric intrinsic functions .
Using math-oriented callable services.
Using date callable services .
Examples: numeric intrinsic functlons

General number handling

Date and time

Finance.

Mathematics .

Statistics

Floating-point evaluations

Fixed-point evaluations .

Arithmetic comparisons (relation condltlons)
Examples: fixed-point and floating-point
evaluations

Using currency signs .

Example: multiple currency signs .

. 40
.41
.42
.42
. 43
. 43
.43
. 44
.44

45

. 45
. 47
. 48
. 49

. 49

. 50
. 50
. 51
. 52

. 52

. 52
. 54
. 54
. 54
. 55
. 55

. 55

56

. 57

. 58
. 58
. 59
. 60
. 62
. 62
. 63
. 63
. 63
. 64
. 64
Fixed-point contrasted w1th ﬂoatlng p01nt arlthmetlc
. 65
. 65

. 66
. 67
. 68

Chapter 4. Handling tables.
Defining a table (OCCURS) .
Nesting tables
Example: subscr1pt1ng
Example: indexing . .
Referring to an item in a table .
Subscripting .
Indexing
Putting values 1nto a table
Loading a table dynamically.
Initializing a table (INITIALIZE)
Assigning values when you define a table
(VALUE) .
Initializing each table 1tem 1nd1v1dually
Initializing a table at the group level .
Initializing all occurrences of a given table
element.
Example: PERFORM and subscrlptmg
Example: PERFORM and indexing. .
Creating variable-length tables (DEPENDING ON)
Loading a variable-length table. .
Assigning values to a variable-length table
Searching a table .
Doing a serial search (SEARCH)
Example: serial search . .
Doing a binary search (SEARCH ALL)
Example: binary search
Processing table items using intrinsic functrons
Example: processing tables using intrinsic
functions .

Chapter 5. Selecting and repeating program
actions S
Selecting program actions
Coding a choice of actions
Using nested IF statements .
Using the EVALUATE statement
Coding conditional expressions.
Switches and flags . .
Defining switches and flags .
Example: switches .
Example: flags
Resetting switches and ﬂags
Example: set switch on
Example: set switch off
Repeating program actions .
Choosing inline or out-of-line PERFORM
Example: inline PERFORM statement.
Coding a loop
Looping through a table .
Executing multiple paragraphs or sectrons

Chapter 6. Handling strings .
Joining data items (STRING)
Example: STRING statement
STRING results. .
Splitting data items (UNSTRING)
Example: UNSTRING statement .
UNSTRING results
Manipulating null-terminated strrngs
Example: null-terminated strings .

. 69
. 69
.71
.72
.72
.72
.73
.74
.75
.75
.76

.77
.77
.78

.78
.79
. 80

81

. 82
. 83
. 84
. 84
. 84
. 85
. 86
. 86

. 87

. 89
. 89
. 89
.90
.91
. 94
. 95
. 95
. 95
. 96
. 96
. 96
. 97
. 97
. 98
. 98
.99
. 100
. 100

. 101
. 101
. 102
. 103
. 103
. 104
. 105
. 106
. 107

2 Enterprise COBOL for z/OS V4.1 Programming Guide

Referring to substrings of data items
Reference modifiers e
Example: arithmetic expressions as reference
modifiers . .
Example: intrinsic funct1ons as reference
modifiers . .

Tallying and replacmg data 1terns (INSPECT) .
Examples: INSPECT statement. .

Converting data items (intrinsic functions).
Converting to uppercase or lowercase
(UPPER-CASE, LOWER-CASE)
Transforming to reverse order (REVERSE) .
Converting to numbers (NUMVAL,
NUMVAL-C)

Converting from one code page to another

Evaluating data items (intrinsic functions) .
Evaluating single characters for collating
sequence .

Finding the largest or smallest data 1tem
Returning variable-length results with
alphanumeric or national functions .

Finding the length of data items .

Finding the date of compilation

Chapter 7. Processing data in an international
environment . .
COBOL statements and nat1onal data
Intrinsic functions and national data.
Unicode and the encoding of language characters
Using national data (Unicode) in COBOL .
Defining national data items
Using national literals .
Using national-character figurative constants
Defining national numeric data items
National groups
Using national groups . .
Using national groups as elementary 1tems
Using national groups as group items .
Storage of national data .
Converting to or from national (Unrcode)
representation .
Converting alphanumer1c DBCS and 1nteger to
national (MOVE) .
Converting alphanumeric or DBCS to natronal
(NATIONAL-OF) . .
Converting national to alphanumenc
(DISPLAY-OF) . .
Overriding the default code page
Conversion exceptions
Example: converting to and from natlonal data
Processing UTF-8 data
Processing Chinese GB 18030 data
Comparing national (UTF-16) data
Comparing two class national operands
Comparing class national and class numeric
operands .
Comparing national numeric and other numeric
operands . .
Comparing national and other character—strrng
operands .

. 107
. 109

. 110

. 110
111
111
. 112

. 113
. 113

. 113
. 115
. 115

. 115
. 116

. 117
. 118
. 119

. 121
. 122
. 124

125

. 126
. 127
. 127

128

. 129
. 129
. 130

131

. 132
. 133

. 134

. 134

. 135

. 136

. 136
. 136

137

. 137
. 138
. 139
. 139
. 140
. 140

. 140

Comparing national data and

alphanumeric-group operands.
Coding for use of DBCS support .

Declaring DBCS data .

Using DBCS literals .

Testing for valid DBCS characters

DBCS data

Chapter 8. Processing files .

File organization and input-output dev1ces

Choosing file organization and access mode .
Format for coding input and output.

Allocating files . .

Checking for input or output errors .

Chapter 9. Processing QSAM files
Defining QSAM files and records in COBOL .
Establishing record formats. .
Logical records .
Requesting fixed-length format
Requesting variable-length format
Requesting spanned format.
Requesting undefined format .
Setting block sizes.
Coding input and output statements for QSAM
files Lo
Opening QSAM flles .
Dynamically creating QSAM flles
Adding records to QSAM files.
Updating QSAM files

set .
Closing QSAM frles
Handling errors in QSAM files
Working with QSAM files .
Defining and allocating QSAM flles
Parameters for creating QSAM files .
Retrieving QSAM files .
Parameters for retrieving QSAM frles
Ensuring that file attributes match your
program . .
Processing ex1st1ng f11es .
Processing new files .

Using striped extended-format QSAM data sets

Allocation of buffers for QSAM files.
Accessing HFS files using QSAM.
Labels for QSAM files
Using trailer and header labels
Format of standard labels
Standard user labels . -
Processing QSAM ASCII files on tape .
Processing ASCII file labels.

Chapter 10. Processing VSAM files .

VSAM files .

Defining VSAM file organlzahon and records
Specifying sequential organization for VSAM
files .

Specifying 1ndexed organrzatron for VSAM ﬁles

Using alternate keys .

Writing QSAM files to a prmter or spooled data

. 141
. 141
. 142
. 142
. 143
Processing alphanumeric data items that contaln

. 143

. 145
. 145
. 147
. 148
. 149
. 150

. 151
. 151
. 152
. 152
. 153
. 154
. 156
. 158
. 159

. 161
. 162
. 163
. 163

. 164

. 164
. 165
. 165
. 166
. 166
. 169
. 169
. 170

. 170
. 171
. 172

172

. 173
. 174
. 174
. 175
. 176
. 177
. 177
. 178

. 179
. 180
. 181

. 182
182

. 183

Using an alternate index.

Specifying relative organization for VSAM frles
Fixed-length and variable-length RRDS.
Using variable-length RRDS

Specifying access modes for VSAM files
Example: using dynamic access with VSAM
files

Defining record lengths for VSAM flles
Defining fixed-length records .

Defining variable-length records .
Coding input and output statements for VSAM
files

File position 1nd1cator

Opening a file (ESDS, KSDS, or RRDS)
Opening an empty file
Statements to load records into a VSAM f11e
Opening a loaded file (a file with records)

Reading records from a VSAM file .

Updating records in a VSAM file.

Adding records to a VSAM file

Replacing records in a VSAM file.

Deleting records from a VSAM file .

Closing VSAM files .

Handling errors in VSAM files .
Protecting VSAM files with a password

Example: password protection for a VSAM

indexed file . .

Working with VSAM data sets under z / OS and
UNIX .

Defining VSAM flles .

Creating alternate indexes . .
Example: entries for alternate mdexes .

Allocating VSAM files

Sharing VSAM files through RLS
Preventing update problems with VSAM flles
in RLS mode o
Restrictions when using RLS . .
Handling errors in VSAM files in RLS mode

Improving VSAM performance o

Chapter 11. Processing line-sequential files .
Defining line-sequential files and records in
COBOL
Allowable control characters . .
Describing the structure of a line- sequentlal f11e
Defining and allocating line-sequential files
Coding input-output statements for line-sequential
files
Opening hne sequentlal f11es .
Reading records from line-sequential flles
Adding records to line-sequential files .
Closing line-sequential files.
Handling errors in line-sequential files .

Chapter 12. Sorting and merging files
Sort and merge process . .o
Describing the sort or merge f11e .

Describing the input to sorting or merging
Example: describing sort and input files for
SORT .

Coding the input procedure

. 183

184

. 184
. 184
. 185

. 185
. 185
. 186
. 186

. 187
. 189
. 189
. 190

191
191

. 192
. 193
. 193
. 194
. 194
. 194
. 195
. 196

. 196

. 197
. 197
. 198
. 199
. 200
. 202

. 202
. 203

203

. 203

. 207

. 207
. 208

208

. 209

. 209
. 210
. 210
. 211
. 211
. 212

. 213
. 214
. 214
. 215

. 215
. 216

Part 1. Coding your program 3

Describing the output from sorting or merging .

Coding the output procedure .

Example: coding the output procedure when

using DFSORT . .
Restrictions on input and output procedures
Defining sort and merge data sets
Sorting variable-length records
Requesting the sort or merge .

Setting sort or merge criteria

Example: sorting with input and output

procedures .

Choosing alternate collatlng sequences

Sorting on windowed date fields .

Preserving the original sequence of records w1th

equal keys .o
Determining whether the sort or merge was
successful
Stopping a sort or merge operatlon prematurely
Improving sort performance with FASTSRT

FASTSRT requirements for JCL

FASTSRT requirements for sort input and

output files . .

QSAM requlrements .
VSAM requirements . .

Checking for sort errors with NOFASTSRT
Controlling sort behavior .
Changing DFSORT defaults w1th control

statements

Default characterlstlcs of the IGZSRTCD data

set .

Allocating storage for sort or merge operations

Allocating space for sort files .
Using checkpoint/restart with DFSORT
Sorting under CICS . .

CICS SORT application restrlctlons .

Chapter 13. Handling errors .
Requesting dumps

Handling errors in joining and sphttlng strlngs .

Handling errors in arithmetic operations
Example: checking for division by zero.
Handling errors in input and output operations
Using the end-of-file condition (AT END)
Coding ERROR declaratives .
Using file status keys.
Example: file status key .

Using VSAM status codes (VSAM ﬁles only)

Example: checking VSAM status codes .

Coding INVALID KEY phrases

Example: FILE STATUS and INVALID KEY
Handling errors when calling programs
Writing routines for handling errors .

. 217
. 218

. 218
. 219
. 219
. 220
. 220
. 221

. 222
. 223
. 223
. 224

. 224

225

. 225
. 226

. 226
. 227
. 227
. 227
. 228

. 229

. 230

230

. 231
. 231
. 231
. 232

. 233
. 233
. 234
. 234
. 235

235

. 238
. 238
. 239
. 240

241

. 241
. 243
. 243
. 244
. 244

4 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 1. Structuring your program

COBOL programs consist of four divisions: IDENTIFICATION DIVISION, ENVIRONMENT
DIVISION, DATA DIVISION, and PROCEDURE DIVISION. Each division has a specific
logical function.

To define a program, only the IDENTIFICATION DIVISION is required.

To define a COBOL class or method, you need to define some divisions differently
than you do for a program.

RELATED TASKS

“Identifying a program”]

"“Describing the computing environment” on page 7|
“Describing the data” on page 13|

“Processing the data” on page 19

“Defining a class” on page 552|

“Defining a class instance method” on page 557
“Structuring OO applications” on page 591|

Identifying a program

Use the IDENTIFICATION DIVISION to name a program and optionally provide other
identifying information.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED
paragraphs for descriptive information about a program. The data you enter in the
DATE-COMPILED paragraph is replaced with the latest compilation date.
IDENTIFICATION DIVISION.

Program-1D. Helloprog.

Author. A. Programmer.

Installation. Computing Laboratories.

Date-Written. 12/21/2007.

Date-Compiled. 12/30/2007.

Use the PROGRAM-ID paragraph to name your program. The program-name that you
assign is used in these ways:

* Other programs use that name to call your program.

¢ The name appears in the header on each page, except the first, of the program
listing that is generated when you compile the program.

* If you use the NAME compiler option, the name is placed on the NAME
linkage-editor or binder control statement to identify the object module that the
compilation creates.

Tip: Do not use program-names that start with prefixes used by IBM products. If
you use program-names that start with any of the following prefixes, your CALL
statements might resolve to IBM library or compiler routines rather than to your
intended program:

- AFB
- AFH
- CBC
— CEE

© Copyright IBM Corp. 1991, 2007 5

6

- IBM
- IFY
- IGY
- 1GZ
- ILB

Tip: When a program-name is case sensitive, avoid mismatches with the name the
compiler is looking for. Verify that the appropriate setting of the PGMNAME compiler
option is in effect.

RELATED TASKS

“Changing the header of a source listing” on page 7|
“Identifying a program as recursive’]

“Marking a program as callable by containing programs”|
“Setting a program to an initial state”]

RELATED REFERENCES
Compiler limits (Enterprise COBOL Language Reference)
Conventions for program-names (Enterprise COBOL Language Reference)

Identifying a program as recursive

Code the RECURSIVE attribute on the PROGRAM-ID clause to specify that a program
can be recursively reentered while a previous invocation is still active.

You can code RECURSIVE only on the outermost program of a compilation unit.
Neither nested subprograms nor programs that contain nested subprograms can be
recursive. You must code RECURSIVE for programs that you compile with the THREAD
option.

RELATED TASKS
“Sharing data in recursive or multithreaded programs” on page 19
“Making recursive calls” on page 459

Marking a program as callable by containing programs

Use the COMMON attribute in the PROGRAM-ID paragraph to specify that a program can
be called by the containing program or by any program in the containing program.
The COMMON program cannot be called by any program contained in itself.

Only contained programs can have the COMMON attribute.

RELATED CONCEPTS
[“Nested programs” on page 456|

Setting a program to an initial state

Use the INITIAL attribute to specify that whenever a program is called, that
program and any nested programs that it contains are to be placed in their initial
state.

When a program is in its initial state:

* Data items that have VALUE clauses are set to the specified values.

Enterprise COBOL for z/OS V4.1 Programming Guide

¢ Changed GO TO statements and PERFORM statements are in their initial states.
* Non-EXTERNAL files are closed.

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 446|
“Making static calls” on page 448

“Making dynamic calls” on page 449|

Changing the header of a source listing

The header on the first page of a source listing contains the identification of the
compiler and the current release level, the date and time of compilation, and the
page number.

The following example shows these five elements:
PP 5655-S71 IBM Enterprise COBOL for z/0S 4.1.0 Date 12/30/2007 Time 15:05:19 Page 1

The header indicates the compilation platform. You can customize the header on
succeeding pages of the listing by using the compiler-directing TITLE statement.

RELATED REFERENCES
TITLE statement (Enterprise COBOL Language Reference)

Describing the computing environment

In the ENVIRONMENT DIVISION of a program, you describe the aspects of the
program that depend on the computing environment.

Use the CONFIGURATION SECTION to specify the following items:
¢ Computer for compiling the program (in the SOURCE-COMPUTER paragraph)
* Computer for running the program (in the 0BJECT-COMPUTER paragraph)

* Special items such as the currency sign and symbolic characters (in the
SPECIAL-NAMES paragraph)

¢ User-defined classes (in the REPOSITORY paragraph)

Use the FILE-CONTROL and I-0-CONTROL paragraphs of the INPUT-OUTPUT SECTION to:
* Identify and describe the characteristics of the files in the program.

* Associate your files with the external QSAM, VSAM, or HFS (hierarchical file
system) data sets where they physically reside.

The terms file in COBOL terminology and data set or HFS file in operating-system
terminology have essentially the same meaning and are used interchangeably in
this information.

For Customer Information Control System (CICS) and online Information
Management System (IMS") message processing programs (MPP), code only the
ENVIRONMENT DIVISION header and, optionally, the CONFIGURATION SECTION. CICS
does not allow COBOL definition of files. IMS allows COBOL definition of files
only for batch programs.

e Provide information to control efficient transmission of the data records between
your program and the external medium.

[“Example: FILE-CONTROL entries” on page 8|

Chapter 1. Structuring your program 7

RELATED TASKS

“Specifying the collating sequence”|

“Defining symbolic characters” on page 10|
“Defining a user-defined class” on page 10|
“Defining files to the operating system” on page 10|

RELATED REFERENCES
Sections and paragraphs (Enterprise COBOL Language Reference)

Example: FILE-CONTROL entries

The following table shows example FILE-CONTROL entries for a QSAM sequential
file, a VSAM indexed file, and a line-sequential file.

Table 1. FILE-CONTROL entries

QSAM file VSAM file Line-sequential file

SELECT PRINTFILE' SELECT COMMUTER-FILE' SELECT PRINTFILE'
ASSIGN TO UPDPRINT? ASSIGN TO COMMUTER? ASSIGN TO UPDPRINT?
ORGANIZATION IS SEQUENTIAL® ORGANIZATION IS INDEXED? ORGANIZATION IS LINE SEQUENTIAL®
ACCESS IS SEQUENTIAL.* ACCESS IS RANDOM' ACCESS IS SEQUENTIAL.*

RECORD KEY IS COMMUTER-KEY®

FILE STATUS IS°
COMMUTER-FILE-STATUS
COMMUTER-VSAM-STATUS.

random, or dynamic
have sequential orga

5. For VSAM files, you
VSAM file you use.

1. The SELECT clause chooses a file in the COBOL program to be associated with an external data set.

2. The ASSIGN clause associates the program’s name for the file with the external name for the actual data file. You
can define the external name with a DD statement or an environment variable.

3. The ORGANIZATION clause describes the file’s organization. For QSAM files, the ORGANIZATION clause is optional.
4. The ACCESS MODE clause defines the manner in which the records are made available for processing: sequential,

. For QSAM and line-sequential files, the ACCESS MODE clause is optional. These files always
nization.

might have additional statements in the FILE-CONTROL paragraph depending on the type of

RELATED TASKS

Chapter 9, “Processing QSAM files,” on page 151
Chapter 10, “Processing VSAM files,” on page 179
Chapter 11, “Processing line-sequential files,” on page 207
“Describing the computing environment” on page 7|

Specifying the collating sequence

You can use the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the
SPECIAL-NAMES paragraph to establish the collating sequence that is used in several
operations on alphanumeric items.

These clauses specify the collating sequence for the following operations on
alphanumeric items:

* Comparisons explicitly specified in relation conditions and condition-name
conditions

* HIGH-VALUE and LOW-VALUE settings
e SEARCH ALL

8 Enterprise COBOL for z/OS V4.1 Programming Guide

* SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase in the SORT
or MERGE statement

[‘Example: specifying the collating sequence’]

The sequence that you use can be based on one of these alphabets:

* EBCDIC: references the collating sequence associated with the EBCDIC character
set

* NATIVE: references the same collating sequence as EBCDIC

* STANDARD-1: references the collating sequence associated with the ASCII
character set defined by ANSI INCITS X3.4, Coded Character Sets - 7-bit American
National Standard Code for Information Interchange (7-bit ASCII)

* STANDARD-2: references the collating sequence associated with the character set
defined by ISO/IEC 646 -- Information technology -- ISO 7-bit coded character set for
information interchange, International Reference Version

* An alteration of the EBCDIC sequence that you define in the SPECIAL-NAMES
paragraph

The PROGRAM COLLATING SEQUENCE clause does not affect comparisons that involve
national or DBCS operands.

RELATED TASKS
“Choosing alternate collating sequences” on page 223
“Comparing national (UTF-16) data” on page 139

Example: specifying the collating sequence

The following example shows the ENVIRONMENT DIVISION coding that you can use
to specify a collating sequence in which uppercase and lowercase letters are
similarly handled in comparisons and in sorting and merging.

When you change the EBCDIC sequence in the SPECIAL-NAMES paragraph, the
overall collating sequence is affected, not just the collating sequence of the
characters that are included in the SPECIAL-NAMES paragraph.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
Source-Computer. IBM-390.
Object-Computer. IBM-390.
Program Collating Sequence Special-Sequence.
Special-Names.
Alphabet Special-Sequence Is
IIAII A'l so Ilall
IIBII A'I SO Ilbll
IICII A‘l so IICII
IIDII A'l SO Ildll
IIEII A'l SO Ilell
IIFII A'l so Ilfll
IIGII A'lso Ilgll
IIHII A'l so Ilhll
IIIII A'l SO II.iII
IIJII A‘l so IIJ'II
IIKII A'l SO Ilkll
IILII A'l SO II'|II
IIMII A'l so Ilmll
IINII A'ISO Ilnll
IIOII A‘l so II0II
IIPII A'l SO Ilpll

Chapter 1. Structuring your program 9

10

IIQII A'lso n
IIRII A'Iso n
IISII A'lso n n
"T" Also
"U" Also
IIVII A'Iso n
"W" Also
IIXII A'lso n
IIYII A'Iso n
"Z" Also

N X = <c +w0n 5.0

RELATED TASKS
[“Specifying the collating sequence” on page §|

Defining symbolic characters

Use the SYMBOLIC CHARACTERS clause to give symbolic names to any character of the
specified alphabet. Use ordinal position to identify the character, where position 1
corresponds to character X'00".

For example, to give a name to the backspace character (X"16” in the EBCDIC
alphabet), code:

SYMBOLIC CHARACTERS BACKSPACE IS 23

Defining a user-defined class

Use the CLASS clause to give a name to a set of characters that you list in the
clause.

For example, name the set of digits by coding the following clause:
CLASS DIGIT IS "O" THROUGH "9"

You can reference the class-name only in a class condition. (This user-defined class
is not the same as an object-oriented class.)

Defining files to the operating system

For all files that you process in your COBOL program, you need to define the files
to the operating system with an appropriate system data definition.

Depending on the operating system, this system data definition can take any of the
following forms:

* DD statement for MVS JCL.
e ALLOCATE command under TSO.

¢ Environment variable for z/OS or UNIX. The contents can define either an MVS
data set or a file in the HFS (hierarchical file system).

The following examples show the relationship of a FILE-CONTROL entry to the
system data definition and to the FD entry in the FILE SECTION:
* JCL DD statement:

(1)
//OUTFILE DD DSNAME=MY.QUT171,UNIT=SYSDA,SPACE=(TRK, (50,5))
/*

* Environment variable (export command):

Enterprise COBOL for z/OS V4.1 Programming Guide

(1)
export OUTFILE=DSN(MY.OUT171),UNIT(SYSDA),SPACE(TRK, (50,5))

* COBOL code:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARPOOL
ASSIGN TO OUTFILE (1)
ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD CARPOOL (2)
LABEL RECORD STANDARD
BLOCK CONTAINS O CHARACTERS
RECORD CONTAINS 80 CHARACTERS

® The assignment-name in the ASSIGN clause points to the ddname OUTFILE in
the DD statement or the environment variable QUTFILE in the export
command:

» //OUTFILE DD DSNAME=QUT171 . . ., or
e export OUTFILE= . . .
(2) When you specify a file file-name in a FILE-CONTROL entry, you must
describe the file in an FD entry:
SELECT CARPOOL

%D.CARPOOL

RELATED TASKS
[“Optimizing buffer and device space” on page 12|

RELATED REFERENCES
[“FILE SECTION entries” on page 14|
File section (Enterprise COBOL Language Reference)

Varying the input or output file at run time

The file-name that you code in a SELECT clause is used as a constant throughout
your COBOL program, but you can associate the name of the file with a different
actual file at run time.

Changing a file-name in a COBOL program would require changing the input
statements and output statements and recompiling the program. Alternatively, you
can change the DSNAME value in the DD statement or the DSN or PATH value in the
export command to use a different file at run time.

Environment variable values that are in effect at the time of the OPEN statement are
used for associating COBOL file-names to the system file-names (including any
path specifications).

The name that you use in the assignment-name of the ASSIGN clause must be the
same as the ddname in the DD statement or the environment variable in the export

command.

The file-name that you use in the SELECT clause (such as SELECT MASTER) must be the
same as in the FD file-name entry.

Chapter 1. Structuring your program 11

12

Two files should not use the same ddname or environment variable name in their
SELECT clauses; otherwise, results could be unpredictable. For example, if DISPLAY
output is directed to SYSOUT, do not use SYSOUT as the ddname or environment
variable name in the SELECT clause for a file.

[“Example: using different input files”|

Example: using different input files:

This example shows that you use the same COBOL program to access different
files by coding a DD statement or an export command before the programs runs.

Consider a COBOL program that contains the following SELECT clause:
SELECT MASTER ASSIGN TO DA-3330-S-MASTERA

Assume the three possible input files are MASTERL, MASTER2, and MASTER3. Before
running the program, code one of the following DD statements in the job step that
calls for program execution, or issue one of the following export commands from
the same shell from which you run the program:

//MASTERA DD DSNAME=MY.MASTER1,. . .
export MASTERA=DSN(MY.MASTER1),. . .

//MASTERA DD DSNAME=MY.MASTERZ,. . .
export MASTERA=DSN(MY.MASTER2),. . .

//MASTERA DD DSNAME=MY .MASTER3,. . .
export MASTERA=DSN(MY.MASTER3),. . .

Any reference in the program to MASTER will therefore be a reference to the file
currently assigned to the ddname or environment-variable name MASTERA.

Notice that in this example, you cannot use the PATH(path) form of the export
command to reference a line-sequential file in the HFS, because you cannot specify
an organization field (S- or AS-) with a line-sequential file.

Optimizing buffer and device space

Use the APPLY WRITE-ONLY clause to make optimum use of buffer and device space
when you create a sequential file with blocked variable-length records.

With APPLY WRITE-ONLY specified, a buffer is truncated only when the next record
does not fit in the unused portion of the buffer. Without APPLY WRITE-ONLY
specified, a buffer is truncated when it does not have enough space for a
maximum-size record.

The APPLY WRITE-ONLY clause has meaning only for sequential files that have
variable-length records and are blocked.

The AWO compiler option applies an implicit APPLY WRITE-ONLY clause to all eligible
files. The NOAWO compiler option has no effect on files that have the APPLY
WRITE-ONLY clause specified. The APPLY WRITE-ONLY clause takes precedence over
the NOAWO compiler option.

The APPLY-WRITE ONLY clause can cause input files to use a record area rather than
process the data in the buffer. This use might affect the processing of both input
files and output files.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES
[“AWQ” on page 307|

Describing the data

Define the characteristics of your data, and group your data definitions into one of
the sections in the DATA DIVISION.

You can use these sections for defining the following types of data:
¢ Data used in input-output operations (FILE SECTION)
* Data developed for internal processing:

— To have storage be statically allocated and exist for the life of the run unit
(WORKING-STORAGE SECTION)

— To have storage be allocated each time a program is entered, and deallocated
on return from the program (LOCAL-STORAGE SECTION)

* Data from another program (LINKAGE SECTION)

The Enterprise COBOL compiler limits the maximum size of DATA DIVISION
elements.

RELATED CONCEPTS
{“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 16

RELATED TASKS
“Using data in input and output operations’]
“Using data from another program” on page 18§|

RELATED REFERENCES
Compiler limits (Enterprise COBOL Language Reference)

Using data in input and output operations

Define the data that you use in input and output operations in the FILE SECTION.

Provide the following information about the data:

¢ Name the input and output files that the program will use. Use the FD entry to
give names to the files that the input-output statements in the PROCEDURE

DIVISION can refer to.

Data items defined in the FILE SECTION are not available to PROCEDURE DIVISION

statements until the file has been successfully opened.

* In the record description that follows the FD entry, describe the fields of the
records in the file:

— You can code a level-01 description of the entire record, and then in the
WORKING-STORAGE SECTION code a working copy that describes the fields of the
record in more detail. Use the READ INTO statement to bring the records into
WORKING-STORAGE. Processing occurs on the copy of data in WORKING-STORAGE.
A WRITE FROM statement writes processed data into the record area defined in
the FILE SECTION.

— The record-name established is the object of WRITE and REWRITE statements.

Chapter 1. Structuring your program 13

14

— For QSAM files only, you can set the record format in the RECORDING MODE
clause. If you omit the RECORDING MODE clause, the compiler determines the
record format based on the RECORD clause and on the level-01 record
descriptions.

— For QSAM files, you can set a blocking factor for the file in the BLOCK
CONTAINS clause. If you omit the BLOCK CONTAINS clause, the file defaults to
unblocked. However, you can override this with z/OS data management
facilities (including a DD file job-control statement).

— For line-sequential files, you can set a blocking factor for the file in the BLOCK
CONTAINS clause. When you code BLOCK CONTAINS 1 RECORDS, or BLOCK
CONTAINS n CHARACTERS, where 7 is the length of one logical record in bytes,
WRITE statements result in the record being transferred immediately to the file
rather than being buffered. This technique is useful when you want each
record written immediately, such as to an error log.

Programs in the same run unit can share, or have access to, common files. The
method for doing this depends on whether the programs are part of a nested
(contained) structure or are separately compiled (including programs compiled as
part of a batch sequence).

You can use the EXTERNAL clause for separately compiled programs. A file that is
defined as EXTERNAL can be referenced by any program in the run unit that
describes the file.

You can use the GLOBAL clause for programs in a nested, or contained, structure. If
a program contains another program (directly or indirectly), both programs can
access a common file by referencing a GLOBAL file-name.

RELATED CONCEPTS
[‘Nested programs” on page 456|

RELATED TASKS
[“Sharing files between programs (external files)” on page 473

RELATED REFERENCES
[“FILE SECTION entries”

FILE SECTION entries

The entries that you can use in the FILE SECTION are summarized in the table
below.

Table 2. FILE SECTION entries

Clause To define Notes

FD The file-name to be Must match file-name in the SELECT clause.
referred to in PROCEDURE | file-name is associated with a ddname
DIVISION input-output through the assignment-name.

statements (OPEN, CLOSE,
READ, also START and
DELETE for VSAM)

Enterprise COBOL for z/OS V4.1 Programming Guide

Table 2. FILE SECTION entries (continued)

Clause To define

Notes

BLOCK CONTAINS |Size of physical records

If the CHARACTERS phrase is specified, size
indicates the number of bytes in a record
regardless of the USAGE of the data items in
the record.

QSAM: If provided, must match
information on JCL or data-set label. If
specified as BLOCK CONTAINS 0, or not
provided, the system determines the
optimal block size for you.

Line sequential: Can be specified to control
buffering for WRITE statements.

VSAM: Syntax-checked, but has no effect on
execution.

RECORD CONTAINS |Size of logical records
n (fixed length)

Integer size indicates the number of bytes
in a record regardless of the USAGE of the
data items in the record. If the clause is
provided, it must match information on JCL
or data-set label. If # is equal to 0, LRECL
must be coded on JCL or data-set label.

RECORD IS
VARYING

Size of logical records
(variable length)

Integer size or sizes, if specified, indicate
the number of bytes in a record regardless
of the USAGE of the data items in the record.
If the clause is provided, it must match
information on JCL or data-set label;
compiler checks that record descriptions
match.

RECORD CONTAINS
nT0m

Size of logical records
(variable length)

The integer sizes indicate the number of
bytes in a record regardless of the USAGE of
the data items in the record. If the clause is
provided, it must match information on JCL
or data-set label; compiler checks that
record descriptions match.

LABEL RECORDS Labels for QSAM files

VSAM: Handled as comments

STANDARD Labels exist QSAM: Handled as comments

OMITTED Labels do not exist QSAM: Handled as comments

data-name Labels defined by the user | QSAM: Allowed for (optional) tape or disk
VALUE OF An item in the label Comments only

records associated with
file

DATA RECORDS Names of records

associated with file

Comments only

LINAGE

Depth of logical page

QSAM only

Chapter 1. Structuring your program 15

16

Table 2. FILE SECTION entries (continued)
Clause To define Notes

CODE-SET ASCII or EBCDIC files QSAM only.

When an ASCII file is identified with the
CODE-SET clause, the corresponding DD
statement might need to have
DCB=(0OPTCD=Q. . .) or DCB=(RECFM=D. . .)
coded if the file was not created using VS
COBOL II, COBOL for 0S/390° & VM, or
IBM Enterprise COBOL for z/OS.

RECORDING MODE | Physical record QSAM only
description

RELATED CONCEPTS
[‘Labels for QSAM files” on page 174|

RELATED REFERENCES
File section (Enterprise COBOL Language Reference)

Comparison of WORKING-STORAGE and LOCAL-STORAGE

How data items are allocated and initialized varies depending on whether the
items are in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION.

WORKING-STORAGE for programs is allocated at the start of the run unit.

Any data items that have VALUE clauses are initialized to the appropriate value at
that time. For the duration of the run unit, WORKING-STORAGE items persist in their
last-used state. Exceptions are:

* A program with INITIAL specified in the PROGRAM-ID paragraph
In this case, WORKING-STORAGE data items are reinitialized each time that the
program is entered.

* A subprogram that is dynamically called and then canceled

In this case, WORKING-STORAGE data items are reinitialized on the first reentry into
the program following the CANCEL.

WORKING-STORAGE is deallocated at the termination of the run unit.

See the related tasks for information about WORKING-STORAGE in COBOL class
definitions.

A separate copy of LOCAL-STORAGE data is allocated for each call of a program or
invocation of a method, and is freed on return from the program or method. If you
specify a VALUE clause for a LOCAL-STORAGE item, the item is initialized to that value
on each call or invocation. If a VALUE clause is not specified, the initial value of the
item is undefined.

Threading: Each invocation of a program that runs simultaneously on multiple
threads shares access to a single copy of WORKING-STORAGE data. Each invocation
has a separate copy of LOCAL-STORAGE data.

[“Example: storage sections” on page 17]

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
“Ending and reentering main programs or subprograms” on page 446|

Chapter 27, “Preparing COBOL programs for multithreading,” on page 491/
“WORKING-STORAGE SECTION for defining class instance data” on page 556|

RELATED REFERENCES
Working-storage section (Enterprise COBOL Language Reference)
Local-storage section (Enterprise COBOL Language Reference)

Example: storage sections
The following is an example of a recursive program that uses both
WORKING-STORAGE and LOCAL-STORAGE.

CBL pgmn(Tu)
khhkkkkhkkkhhkhhhkhdhhdhrhdhhkhhhhhhkdhrisx
* Recursive Program - Factorials
Kkokk ok kkok ok kkokkokokk ok ok ok kok ok kX *kkkkk
IDENTIFICATION DIVISION.
Program-Id. factorial recursive.
ENVIRONMENT DIVISION.

DATA DIVISION.

Working-Storage Section.

01 numb pic 9(4) value 5.

01 fact pic 9(8) value 0.
Local-Storage Section.

01 num pic 9(4).

PROCEDURE DIVISION.

move numb to num.

if numb = 0
move 1 to fact
else

subtract 1 from numb

call 'factorial'

multiply num by fact
end-if.

display num '! = ' fact.

goback.
End Program factorial.

The program produces the following output:

0000! = 00000001
0001! = 00000001
0002! = 00000002
0003! = 00000006
0004! = 00000024
0005! = 00000120

The following tables show the changing values of the data items in LOCAL-STORAGE
and WORKING-STORAGE in the successive recursive calls of the program, and in the
ensuing gobacks. During the gobacks, fact progressively accumulates the value of
5! (five factorial).

Value for num in Value for numb in Value for fact in
Recursive calls LOCAL-STORAGE WORKING-STORAGE WORKING-STORAGE
Main 5 5 0
1 4 4 0
2 3 3 0
3 2 2 0

Chapter 1. Structuring your program 17

18

Recursive calls

Value for num in
LOCAL-STORAGE

Value for numb in
WORKING-STORAGE

Value for fact in
WORKING-STORAGE

4 1 1 0
5 0 0 0
Value for num in Value for numb in Value for fact in
Gobacks LOCAL-STORAGE WORKING-STORAGE WORKING-STORAGE
5 0 0 1
4 1 0 1
3 2 0 2
2 3 0 6
1 4 0 24
Main 5 0 120

RELATED CONCEPTS
[“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 16

Using data from another program

How you share data depends on the type of program. You share data differently in
programs that are separately compiled than you do for programs that are nested or
for programs that are recursive or multithreaded.

RELATED TASKS
“Sharing data in separately compiled programs”|

“Sharing data in nested programs”|

“Sharing data in recursive or multithreaded programs” on page 19
“Passing data” on page 463

Sharing data in separately compiled programs

Many applications consist of separately compiled programs that call and pass data
to one another. Use the LINKAGE SECTION in the called program to describe the data
passed from another program.

In the calling program, use a CALL . . . USING or INVOKE . . . USING statement
to pass the data.

RELATED TASKS
[“Passing data” on page 463

Sharing data in nested programs

Some applications consist of nested programs, that is, programs that are contained
in other programs. Level-01 data items can include the GLOBAL attribute. This
attribute allows any nested program that includes the declarations to access these
data items.

Enterprise COBOL for z/OS V4.1 Programming Guide

A nested program can also access data items in a sibling program (one at the same
nesting level in the same containing program) that is declared with the COMMON
attribute.

RELATED CONCEPTS
[“Nested programs” on page 456|

Sharing data in recursive or multithreaded programs

If your program has the RECURSIVE attribute or is compiled with the THREAD
compiler option, data that is defined in the LINKAGE SECTION is not accessible on
subsequent invocations of the program.

To address a record in the LINKAGE SECTION, use either of these techniques:

* DPass an argument to the program and specify the record in an appropriate
position in the USING phrase in the program.

e Use the format-5 SET statement.

If your program has the RECURSIVE attribute or is compiled with the THREAD
compiler option, the address of the record is valid for a particular instance of the
program invocation. The address of the record in another execution instance of the
same program must be reestablished for that execution instance. Unpredictable

results will occur if you refer to a data item for which the address has not been
established.

RELATED CONCEPTS
[“Multithreading” on page 492|

RELATED TASKS
“Making recursive calls” on page 459)
“Processing files with multithreading” on page 494

RELATED REFERENCES
[“'THREAD” on page 350
SET statement (Enterprise COBOL Language Reference)

Processing the data

In the PROCEDURE DIVISION of a program, you code the executable statements that
process the data that you defined in the other divisions. The PROCEDURE DIVISION
contains one or two headers and the logic of your program.

The PROCEDURE DIVISION begins with the division header and a procedure-name
header. The division header for a program can simply be:

PROCEDURE DIVISION.

You can code the division header to receive parameters by using the USING phrase,
or to return a value by using the RETURNING phrase.

To receive an argument that was passed by reference (the default) or by content,
code the division header for a program in either of these ways:

PROCEDURE DIVISION USING dataname
PROCEDURE DIVISION USING BY REFERENCE dataname
Be sure to define dataname in the LINKAGE SECTION of the DATA DIVISION.

Chapter 1. Structuring your program 19

20

To receive a parameter that was passed by value, code the division header for a
program as follows:

PROCEDURE DIVISION USING BY VALUE dataname

To return a value as a result, code the division header as follows:
PROCEDURE DIVISION RETURNING dataname2

You can also combine USING and RETURNING in a PROCEDURE DIVISION header:
PROCEDURE DIVISION USING dataname RETURNING dataname?

Be sure to define dataname and dataname?2 in the LINKAGE SECTION.

RELATED CONCEPTS
[“How logic is divided in the PROCEDURE DIVISION”|

RELATED TASKS
[“Eliminating repetitive coding” on page 665|

RELATED REFERENCES
The procedure division header (Enterprise COBOL Language Reference)
The USING phrase (Enterprise COBOL Language Reference)

CALL statement (Enterprise COBOL Language Reference)

How logic is divided in the PROCEDURE DIVISION

The PROCEDURE DIVISION of a program is divided into sections and paragraphs,
which contain sentences, statements, and phrases.

Section
Logical subdivision of your processing logic.

A section has a section header and is optionally followed by one or more
paragraphs.

A section can be the subject of a PERFORM statement. One type of section is
for declaratives.

Paragraph
Subdivision of a section, procedure, or program.

A paragraph has a name followed by a period and zero or more sentences.
A paragraph can be the subject of a statement.

Sentence
Series of one or more COBOL statements that ends with a period.

Statement
Performs a defined step of COBOL processing, such as adding two
numbers.

A statement is a valid combination of words, and begins with a COBOL
verb. Statements are imperative (indicating unconditional action),
conditional, or compiler-directing. Using explicit scope terminators instead
of periods to show the logical end of a statement is preferred.

Phrase
A subdivision of a statement.

RELATED CONCEPTS
[“Compiler-directing statements” on page 22|

Enterprise COBOL for z/OS V4.1 Programming Guide

“Scope terminators” on page 22|
“Imperative statements”
“Conditional statements”]
“Declaratives” on page 23|

RELATED REFERENCES
PROCEDURE DIVISION structure (Enterprise COBOL Language Reference)

Imperative statements
An imperative statement (such as ADD, MOVE, INVOKE, or CLOSE) indicates an
unconditional action to be taken.

You can end an imperative statement with an implicit or explicit scope terminator.

A conditional statement that ends with an explicit scope terminator becomes an
imperative statement called a delimited scope statement. Only imperative statements
(or delimited scope statements) can be nested.

RELATED CONCEPTS
“Conditional statements”]
“Scope terminators” on page 22|

Conditional statements

A conditional statement is either a simple conditional statement (IF, EVALUATE,
SEARCH) or a conditional statement made up of an imperative statement that
includes a conditional phrase or option.

You can end a conditional statement with an implicit or explicit scope terminator.
If you end a conditional statement explicitly, it becomes a delimited scope
statement (which is an imperative statement).

You can use a delimited scope statement in these ways:

* To delimit the range of operation for a COBOL conditional statement and to
explicitly show the levels of nesting

For example, use an END-IF phrase instead of a period to end the scope of an IF
statement within a nested IF.

* To code a conditional statement where the COBOL syntax calls for an imperative
statement

For example, code a conditional statement as the object of an inline PERFORM:

PERFORM UNTIL TRANSACTION-EOF
PERFORM 200-EDIT-UPDATE-TRANSACTION
IF NO-ERRORS
PERFORM 300-UPDATE-COMMUTER-RECORD
ELSE
PERFORM 400-PRINT-TRANSACTION-ERRORS
END-IF
READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
AT END
SET TRANSACTION-EOF TO TRUE
END-READ
END-PERFORM

An explicit scope terminator is required for the inline PERFORM statement, but it is
not valid for the out-of-line PERFORM statement.

For additional program control, you can use the NOT phrase with conditional
statements. For example, you can provide instructions to be performed when a

Chapter 1. Structuring your program 21

22

particular exception does not occur, such as NOT ON SIZE ERROR. The NOT phrase
cannot be used with the ON OVERFLOW phrase of the CALL statement, but it can be
used with the ON EXCEPTION phrase.

Do not nest conditional statements. Nested statements must be imperative
statements (or delimited scope statements) and must follow the rules for
imperative statements.

The following statements are examples of conditional statements if they are coded
without scope terminators:

* Arithmetic statement with ON SIZE ERROR

¢ Data-manipulation statements with ON OVERFLOW

e CALL statements with ON OVERFLOW

* 1/0 statements with INVALID KEY, AT END, or AT END-OF-PAGE
* RETURN with AT END

RELATED CONCEPTS
“Imperative statements” on page 21|
“Scope terminators’/

RELATED TASKS
[“Selecting program actions” on page 89|

RELATED REFERENCES
Conditional statements (Enterprise COBOL Language Reference)

Compiler-directing statements
A compiler-directing statement causes the compiler to take specific action about the
program structure, COPY processing, listing control, or control flow.

A compiler-directing statement is not part of the program logic.
RELATED REFERENCES

(Chapter 18, “Compiler-directing statements,” on page 361|
Compiler-directing statements (Enterprise COBOL Language Reference)

Scope terminators
A scope terminator ends a verb or statement. Scope terminators can be explicit or
implicit.

Explicit scope terminators end a verb without ending a sentence. They consist of
END followed by a hyphen and the name of the verb being terminated, such as
END-IF. An implicit scope terminator is a period (.) that ends the scope of all
previous statements not yet ended.

Each of the two periods in the following program fragment ends an IF statement,
making the code equivalent to the code after it that instead uses explicit scope
terminators:

IF ITEM = "A"

DISPLAY "THE VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL

MOVE "C" TO ITEM

DISPLAY "THE VALUE OF ITEM IS NOW " ITEM.
IF ITEM = "B"

ADD 2 TO TOTAL.

Enterprise COBOL for z/OS V4.1 Programming Guide

IF ITEM = "A"
DISPLAY "THE VALUE OF ITEM IS " ITEM
ADD 1 TO TOTAL
MOVE "C" TO ITEM
DISPLAY "THE VALUE OF ITEM IS NOW " ITEM

END-IF
IF ITEM = "B"

ADD 2 TO TOTAL
END-IF

If you use implicit terminators, the end of statements can be unclear. As a result,
you might end statements unintentionally, changing your program’s logic. Explicit
scope terminators make a program easier to understand and prevent unintentional
ending of statements. For example, in the program fragment below, changing the
location of the first period in the first implicit scope example changes the meaning
of the code:
IF ITEM = "A"

DISPLAY "VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL.

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM
IF ITEM = "B

ADD 2 TO TOTAL.

The MOVE statement and the DISPLAY statement after it are performed regardless of
the value of ITEM, despite what the indentation indicates, because the first period
terminates the IF statement.

For improved program clarity and to avoid unintentional ending of statements, use
explicit scope terminators, especially within paragraphs. Use implicit scope
terminators only at the end of a paragraph or the end of a program.

Be careful when coding an explicit scope terminator for an imperative statement
that is nested within a conditional statement. Ensure that the scope terminator is
paired with the statement for which it was intended. In the following example, the
scope terminator will be paired with the second READ statement, though the
programmer intended it to be paired with the first.
READ FILE1

AT END

MOVE A TO B

READ FILE2
END-READ

To ensure that the explicit scope terminator is paired with the intended statement,
the preceding example can be recoded in this way:
READ FILE1
AT END
MOVE A TO B
READ FILE2
END-READ
END-READ

RELATED CONCEPTS
“Conditional statements” on page 21|
“Imperative statements” on page 21|

Declaratives

Declaratives provide one or more special-purpose sections that are executed when
an exception condition occurs.

Chapter 1. Structuring your program 23

Start each declarative section with a USE statement that identifies the function of
the section. In the procedures, specify the actions to be taken when the condition
occurs.

RELATED TASKS
[“Finding and handling input-output errors” on page 367

RELATED REFERENCES
Declaratives (Enterprise COBOL Language Reference)

24 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 2. Using data

This information is intended to help non-COBOL programmers relate terms for
data used in other programming languages to COBOL terms. It introduces COBOL
fundamentals for variables, structures, literals, and constants; assigning and
displaying values; intrinsic (built-in) functions, and tables (arrays) and pointers.

RELATED CONCEPTS
[“Storage and its addressability” on page 42|

RELATED TASKS

“Using variables, structures, literals, and constants”|

" Assigning values to data items” on page 29|

"“Displaying values on a screen or in a file (DISPLAY)” on page 3§

“Using intrinsic functions (built-in functions)” on page 40

“Using tables (arrays) and pointers” on page 41|

Chapter 7, “Processing data in an international environment,” on page 121|

Using variables, structures, literals, and constants

Most high-level programming languages share the concept of data being
represented as variables, structures (group items), literals, or constants.

The data in a COBOL program can be alphabetic, alphanumeric, double-byte
character set (DBCS), national, or numeric. You can also define index-names and
data items described as USAGE POINTER, USAGE FUNCTION-POINTER, USAGE
PROCEDURE-POINTER, or USAGE OBJECT REFERENCE. You place all data definitions in
the DATA DIVISION of your program.

RELATED TASKS

“Using variables”]

“Using data items and group items” on page 26|
“Using literals” on page 27

“Using constants” on page 28|

“Using figurative constants” on page 28|

RELATED REFERENCES
Classes and categories of data (Enterprise COBOL Language Reference)

Using variables

A variable is a data item whose value can change during a program. The value is
restricted, however, to the data type that you define when you specify a name and
a length for the data item.

For example, if a customer name is an alphanumeric data item in your program,
you could define and use the customer name as shown below:

Data Division.
01 Customer-Name Pic X(20).
01 Original-Customer-Name Pic X(20).

© Copyright IBM Corp. 1991, 2007 25

Procedure Division.
Move Customer-Name to Original-Customer-Name

You could instead declare the customer names above as national data items by
specifying their PICTURE clauses as Pic N(20) and specifying the USAGE NATIONAL
clause for the items. National data items are represented in Unicode UTF-16, in
which most characters are represented in 2 bytes of storage.

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Using national data (Unicode) in COBOL” on page 126|

RELATED REFERENCES
“NSYMBOL” on page 330]

“Storage of national data” on page 133

PICTURE clause (Enterprise COBOL Language Reference)

Using data items and group items

Related data items can be parts of a hierarchical data structure. A data item that
does not have subordinate data items is called an elementary item. A data item that
is composed of one or more subordinate data items is called a group item.

A record can be either an elementary item or a group item. A group item can be
either an alphanumeric group item or a national group item.

For example, Customer-Record below is an alphanumeric group item that is
composed of two subordinate alphanumeric group items (Customer-Name and
Part-Order), each of which contains elementary data items. These groups items
implicitly have USAGE DISPLAY. You can refer to an entire group item or to parts of
a group item in MOVE statements in the PROCEDURE DIVISION as shown below:

Data Division.
File Section.
FD Customer-File
Record Contains 45 Characters.
01 Customer-Record.
05 Customer-Name.

10 Last-Name Pic x(17).
10 Filler Pic x.
10 Initials Pic xx.

05 Part-Order.
10 Part-Name Pic x(15).
10 Part-Color Pic x(10).

Working-Storage Section.
01 Orig-Customer-Name.
05 Surname Pic x(17).
05 Initials Pic x(3).
01 Inventory-Part-Name Pic x(15).

Procedure Division.
Move Customer-Name to Orig-Customer-Name
Move Part-Name to Inventory-Part-Name

You could instead define Customer-Record as a national group item that is
composed of two subordinate national group items by changing the declarations in

26 Enterprise COBOL for z/OS V4.1 Programming Guide

the DATA DIVISION as shown below. National group items behave in the same way
as elementary category national data items in most operations. The GROUP-USAGE
NATIONAL clause indicates that a group item and any group items subordinate to it
are national groups. Subordinate elementary items in a national group must be
explicitly or implicitly described as USAGE NATIONAL.

Data Division.

File Section.

FD Customer-File
Record Contains 90 Characters.

01 Customer-Record Group-Usage National.
05 Customer-Name.
10 Last-Name Pic n(17).
10 Filler Pic n.
10 Initials Pic nn.
05 Part-Order.
10 Part-Name Pic n(15).
10 Part-Color Pic n(10).
Working-Storage Section.
01 Orig-Customer-Name Group-Usage National.
05 Surname Pic n(17).
05 Initials Pic n(3).
01 Inventory-Part-Name Pic n(15) Usage National.

Procedure Division.
Move Customer-Name to Orig-Customer-Name
Move Part-Name to Inventory-Part-Name

In the example above, the group items could instead specify the USAGE NATIONAL
clause at the group level. A USAGE clause at the group level applies to each
elementary data item in a group (and thus serves as a convenient shorthand
notation). However, a group that specifies the USAGE NATIONAL clause is not a
national group despite the representation of the elementary items within the group.
Groups that specify the USAGE clause are alphanumeric groups and behave in many
operations, such as moves and compares, like elementary data items of USAGE
DISPLAY (except that no editing or conversion of data occurs).

RELATED CONCEPTS
“Unicode and the encoding of language characters” on page 125|
“National groups” on page 129|

RELATED TASKS
“Using national data (Unicode) in COBOL” on page 126]
“Using national groups” on page 130

RELATED REFERENCES
“FILE SECTION entries” on page 14|

“Storage of national data” on page 133]

Classes and categories of group items (Enterprise COBOL Language Reference)
PICTURE clause (Enterprise COBOL Language Reference)

MOVE statement (Enterprise COBOL Language Reference)

USAGE clause (Enterprise COBOL Language Reference)

Using literals

A literal is a character string whose value is given by the characters themselves. If
you know the value you want a data item to have, you can use a literal
representation of the data value in the PROCEDURE DIVISION.

Chapter 2. Using data 27

You do not need to declare a data item for the value nor refer to it by using a
data-name. For example, you can prepare an error message for an output file by
moving an alphanumeric literal:

Move "Name is not valid" To Customer-Name

You can compare a data item to a specific integer value by using a numeric literal.
In the example below, "Name is not valid" is an alphanumeric literal, and 03519 is
a numeric literal:

01 Part-number Pic 9(5).

If Part-number = 03519 then display "Part number was found"

You can use the opening delimiter N" or N' to designate a national literal if the
NSYMBOL (NATIONAL) compiler option is in effect, or to designate a DBCS literal if the
NSYMBOL (DBCS) compiler option is in effect.

You can use the opening delimiter NX" or NX' to designate national literals in
hexadecimal notation (regardless of the setting of the NSYMBOL compiler option).
Each group of four hexadecimal digits designates a single national character.

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
“Using national literals” on page 127]
“Using DBCS literals” on page 142

RELATED REFERENCES
["'NSYMBOL” on page 330|
Literals (Enterprise COBOL Language Reference)

Using constants

A constant is a data item that has only one value. COBOL does not define a
construct for constants. However, you can define a data item with an initial value
by coding a VALUE clause in the data description (instead of coding an INITIALIZE
statement).

Data Division.
01 Report-Header pic x(50) value "Company Sales Report".

01 Interest pic 9v9999 value 1.0265.

The example above initializes an alphanumeric and a numeric data item. You can
likewise use a VALUE clause in defining a national or DBCS constant.

RELATED TASKS
“Using national data (Unicode) in COBOL” on page 126|
“Coding for use of DBCS support” on page 141

Using figurative constants

Certain commonly used constants and literals are available as reserved words
called figurative constants: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, and ALL
literal. Because they represent fixed values, figurative constants do not require a
data definition.

28 Enterprise COBOL for z/OS V4.1 Programming Guide

For example:
Move Spaces To Report-Header

RELATED TASKS
“Using national-character figurative constants” on page 128
“Coding for use of DBCS support” on page 141

RELATED REFERENCES
Figurative constants (Enterprise COBOL Language Reference)

Assigning values to data items

After you have defined a data item, you can assign a value to it at any time.
Assignment takes many forms in COBOL, depending on what you want to do.

Table 3. Assignment to data items in a program

What you want to do How to do it

Assign values to a data item or large data area. Use one of these ways:

e INITIALIZE statement

* MOVE statement

* STRING or UNSTRING statement

¢ VALUE clause (to set data items to the values you
want them to have when the program is in
initial state)

Assign the results of arithmetic. Use COMPUTE, ADD, SUBTRACT, MULTIPLY, or DIVIDE
statements.

Examine or replace characters or groups of characters in a data | Use the INSPECT statement.
item.

Receive values from a file. Use the READ (or READ INTO) statement.
Receive values from a system input device or a file. Use the ACCEPT statement.
Establish a constant. Use the VALUE clause in the definition of the data

item, and do not use the data item as a receiver.
Such an item is in effect a constant even though the
compiler does not enforce read-only constants.

One of these actions: Use the SET statement.
* Place a value associated with a table element in an index.

» Set the status of an external switch to ON or OFF.

* Move data to a condition-name to make the condition true.

e Set a POINTER, PROCEDURE-POINTER, or FUNCTION-POINTER data
item to an address.

* Associate an OBJECT REFERENCE data item with an object
instance.

[“Examples: initializing data items” on page 30|

RELATED TASKS
“Initializing a structure (INITIALIZE)” on page 32|

“ Assigning values to elementary data items (MOVE)” on page 34|
" Assigning values to group data items (MOVE)” on page 3
“ Assigning input from a screen or file (ACCEPT)” on page 37]
“Joining data items (STRING)” on page 101]

Chapter 2. Using data 29

30

“Splitting data items (UNSTRING)” on page 103|

“Assigning arithmetic results (MOVE or COMPUTE)” on page 36|

“Tallying and replacing data items (INSPECT)” on page 111

Chapter 7, “Processing data in an international environment,” on page 121|

Examples: initializing data items

The following examples show how you can initialize many kinds of data items,

including alphanumeric, national-edited, and numeric-edited data items, by using

INITIALIZE statements.

An INITIALIZE statement is functionally equivalent to one or more MOVE statements.
The related tasks about initializing show how you can use an INITIALIZE statement
on a group item to conveniently initialize all the subordinate data items that are in

a given data category.

Initializing a data item to b
INITIALIZE identifier-1

lanks or zeros:

identifier-1 PICTURE

identifier-1 before

identifier-1 after

9(5) 12345 00000

X(5) AB123 bbbbb!

N(3) 004100420031 002000200026
99XX9 12AB3 bbbbb'
XXBX/XX ABbC/DE bbbb/bb*
*%99.9CR 1234.5CR *%00.0bb"
A(5) ABCDE bbbbb*
+99.99E+99 +12.34E+02 +00.00E+00

identifier-1.

1. The symbol b represents a blank space.

2. Hexadecimal representation of the national (UTF-16) characters 'AB1’. The example
assumes that identifier-1 has Usage National.

3. Hexadecimal representation of the national (UTF-16) characters © ’ (three blank
spaces). Note that if identifier-1 were not defined as Usage National, and if
NSYMBOL (DBCS) were in effect, INITIALIZE would instead store DBCS spaces ("4040") into

Initializing an alphanumeric data item:

01 ALPHANUMERIC-1 PIC X
01 ALPHANUMERIC-3 PIC X(1

INITIALIZE ALPHANUMERIC-1

REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

VALUE "y".
) VALUE "A".

ALPHANUMERIC-3

ALPHANUMERIC-1 before

ALPHANUMERIC-1 after

A

Y

A

Initializing an alphanumeric right-justified data item:

01 ANJUST PIC X(8

INITIALIZE ANJUST

REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

Enterprise COBOL for z/OS V4.1 Programming Guide

) VALUE SPACES JUSTIFIED RIGHT.
01 ALPHABETIC-1 PIC A(4) VALUE "ABCD".

ALPHABETIC-1 ANJUST before ANJUST after

ABCD bbbbbbbb! bbbbABCD!

1. The symbol b represents a blank space.

Initializing an alphanumeric-edited data item:

01 ALPHANUM-EDIT-1 PIC XXBX/XXX VALUE "ABbC/DEF".
01 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/bb".

INITIALIZE ALPHANUM-EDIT-1
REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

ALPHANUM-EDIT-3 ALPHANUM-EDIT-1 before ALPHANUM-EDIT-1 after

M/bb! ABHC/DEF! M/bb/bbb'

1. The symbol b represents a blank space.

Initializing a national data item:

01 NATIONAL-1 PIC NN USAGE NATIONAL VALUE N"AB".
01 NATIONAL-3 PIC NN USAGE NATIONAL VALUE N"CD".

INITIALIZE NATIONAL-1
REPLACING NATIONAL DATA BY NATIONAL-3

NATIONAL-3 NATIONAL-1 before NATIONAL-1 after

00430044 00410042 00430044

1. Hexadecimal representation of the national characters 'CD’

2. Hexadecimal representation of the national characters "AB’

Initializing a national-edited data item:

01 NATL-EDIT-1 PIC ONN USAGE NATIONAL VALUE N"123".
01 NATL-3 PIC NNN USAGE NATIONAL VALUE N"456".

INITIALIZE NATL-EDIT-1
REPLACING NATIONAL-EDITED DATA BY NATL-3

NATL-3 NATL-EDIT-1 before NATL-EDIT-1 after

003400350036' 003100320033 003000340035°

1. Hexadecimal representation of the national characters 456’
2. Hexadecimal representation of the national characters "123’

3. Hexadecimal representation of the national characters ‘045’

Initializing a numeric (zoned decimal) data item:

01 NUMERIC-1 PIC 9(8) VALUE 98765432.
01 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.

INITIALIZE NUMERIC-1
REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

NUM-INT-CMPT-3 NUMERIC-1 before NUMERIC-1 after

1234567 98765432 01234567

Chapter 2. Using data

31

Initializing a numeric (national decimal) data item:
01 NAT-DEC-1 PIC 9(3) USAGE NATIONAL VALUE 987.
01 NUM-INT-BIN-3 PIC 9(2) BINARY VALUE 12.

INITIALIZE NAT-DEC-1
REPLACING NUMERIC DATA BY NUM-INT-BIN-3

NUM-INT-BIN-3 NAT-DEC-1 before NAT-DEC-1 after

12 003900380037" 0030003100322

1. Hexadecimal representation of the national characters '987’

2. Hexadecimal representation of the national characters "012’

Initializing a numeric-edited (USAGE DISPLAY) data item:

01 NUM-EDIT-DISP-1 PIC $ZZ9V VALUE "§$127".
01 NUM-DISP-3 PIC 999V VALUE 12.

INITIALIZE NUM-EDIT-DISP-1
REPLACING NUMERIC DATA BY NUM-DISP-3

NUM-DISP-3 NUM-EDIT-DISP-1 before NUM-EDIT-DISP-1 after

012 $127 $ 12

Initializing a numeric-edited (USAGE NATIONAL) data item:
01 NUM-EDIT-NATL-1 PIC $ZZ9V NATIONAL VALUE N"$127".
01 NUM-NATL-3 PIC 999V NATIONAL VALUE 12.

INITIALIZE NUM-EDIT-NATL-1
REPLACING NUMERIC DATA BY NUM-NATL-3

NUM-NATL-3 NUM-EDIT-NATL-1 before NUM-EDIT-NATL-1 after

003000310032 0024003100320037> 0024002000310032°

1. Hexadecimal representation of the national characters ‘012’

2. Hexadecimal representation of the national characters '$127

3. Hexadecimal representation of the national characters '$ 12’

RELATED TASKS

“Initializing a structure (INITIALIZE)”|
“Initializing a table (INITIALIZE)” on page 76|
“Defining numeric data” on page 45|

RELATED REFERENCES
[“'NSYMBOL” on page 330|

Initializing a structure (INITIALIZE)

You can reset the values of all subordinate data items in a group item by applying
the INITIALIZE statement to that group item. However, it is inefficient to initialize
an entire group unless you really need all the items in the group to be initialized.

The following example shows how you can reset fields to spaces and zeros in
transaction records that a program produces. The values of the fields are not

32 Enterprise COBOL for z/OS V4.1 Programming Guide

identical in each record that is produced. (The transaction record is defined as an
alphanumeric group item, TRANSACTION-0OUT.)

01 TRANSACTION-OUT.
05 TRANSACTION-CODE
05 PART-NUMBER
05 TRANSACTION-QUANTITY
05 PRICE-FIELDS.
10 UNIT-PRICE
10 DISCOUNT
10 SALES-PRICE

INITIALIZE TRANSACTION-OUT

PIC X.
PIC 9(6).
PIC 9(5).

PIC 9(5)V9(2).
PIC V9(2).
PIC 9(5)V9(2).

Record | TRANSACTION-OUT before

TRANSACTION-OUT after

1 RO01383000240000000000000000

H000000000000000000000000000*

R001390000480000000000000000

b000000000000000000000000000"

S001410000120000000000000000

H000000000000000000000000000*

C001383000000000425000000000

b000000000000000000000000000"

Q=W |

€002010000000000000100000000

H000000000000000000000000000*

1. The symbol b represents a blank space.

You can likewise reset the values of all the subordinate data items in a national
group item by applying the INITIALIZE statement to that group item. The
following structure is similar to the preceding structure, but instead uses Unicode

UTF-16 data:

01 TRANSACTION-OUT GROUP-USAGE
05 TRANSACTION-CODE
05 PART-NUMBER
05 TRANSACTION-QUANTITY
05 PRICE-FIELDS.
10 UNIT-PRICE
10 DISCOUNT
10 SALES-PRICE

NATIONAL.
PIC N.

PIC 9(6).
PIC 9(5).

PIC 9(5)V9(2).
PIC V9(2).
PIC 9(5)Vv9(2).

INITIALIZE TRANSACTION-OUT

Regardless of the previous contents of the transaction record, after the INITIALIZE
statement above is executed:

* TRANSACTION-CODE contains NX"0020" (a national space).

* Each of the remaining 27 national character positions of TRANSACTION-OUT
contains NX"0030" (a national-decimal zero).

When you use an INITIALIZE statement to initialize an alphanumeric or national

group data item, the data item is processed as a group item, that is, with group

semantics. The elementary data items within the group are recognized and

processed, as shown in the examples above. If you do not code the REPLACING

phrase of the INITIALIZE statement:

* SPACE is the implied sending item for alphabetic, alphanumeric,
alphanumeric-edited, DBCS, category national, and national-edited receiving
items.

* ZERO is the implied sending item for numeric and numeric-edited receiving
items.

RELATED CONCEPTS
[“National groups” on page 129|

Chapter 2. Using data 33

34

RELATED TASKS
“Initializing a table (INITIALIZE)” on page 76|
“Using national groups” on page 130

RELATED REFERENCES
INITIALIZE statement (Enterprise COBOL Language Reference)

Assigning values to elementary data items (MOVE)

Use a MOVE statement to assign a value to an elementary data item.

The following statement assigns the contents of an elementary data item,
Customer-Name, to the elementary data item Orig-Customer-Name:

Move Customer-Name to Orig-Customer-Name

If Customer-Name is longer than Orig-Customer-Name, truncation occurs on the right.
If Customer-Name is shorter, the extra character positions on the right in
Orig-Customer-Name are filled with spaces.

For data items that contain numbers, moves can be more complicated than with
character data items because there are several ways in which numbers can be
represented. In general, the algebraic values of numbers are moved if possible, as
opposed to the digit-by-digit moves that are performed with character data. For
example, after the MOVE statement below, Item-x contains the value 3.0, represented
as 0030:

01 Item-x Pic 999v9.

Move 3.06 to Item-x

You can move an alphabetic, alphanumeric, alphanumeric-edited, DBCS, integer, or
numeric-edited data item to a category national or national-edited data item; the
sending item is converted. You can move a national data item to a category
national or national-edited data item. If the content of a category national data
item has a numeric value, you can move that item to a numeric, numeric-edited,
external floating-point, or internal floating-point data item. You can move a
national-edited data item only to a category national data item or another
national-edited data item. Padding or truncation might occur.

For complete details about elementary moves, see the related reference below
about the MOVE statement.

The following example shows an alphanumeric data item in the Greek language
that is moved to a national data item:

CBL CODEPAGE(00875)

01 Data-in-Unicode Pic N(100) usage national.
01 Data-in-Greek Pic X(100).

Read Greek-file into Data-in-Greek
Move Data-in-Greek to Data-in-Unicode

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
“Assigning values to group data items (MOVE)”|
“Converting to or from national (Unicode) representation” on page 134

RELATED REFERENCES

[“CODEPAGE” on page 309

Classes and categories of data (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)

Assigning values to group data items (MOVE)

Use the MOVE statement to assign values to group data items.

You can move a national group item (a data item that is described with the
GROUP-USAGE NATIONAL clause) to another national group item. The compiler
processes the move as though each national group item were an elementary item
of category national, that is, as if each item were described as PIC N(m), where m
is the length of that item in national character positions.

You can move an alphanumeric group item to an alphanumeric group item or to a
national group item. You can also move a national group item to an alphanumeric
group item. The compiler performs such moves as group moves, that is, without
consideration of the individual elementary items in the sending or receiving group,
and without conversion of the sending data item. Be sure that the subordinate data
descriptions in the sending and receiving group items are compatible. The moves
occur even if a destructive overlap could occur at run time.

You can code the CORRESPONDING phrase in a MOVE statement to move subordinate
elementary items from one group item to the identically named corresponding
subordinate elementary items in another group item:
01 Group-X.

02 T-Code Pic X Value "A".

02 Month Pic 99 Value 04.

02 State Pic XX Value "CA".

02 Filler PIC X.
01 Group-N Group-Usage National.

02 State Pic NN.

02 Month Pic 99.

02 Filler Pic N.

02 Total Pic 999.

MOVE CORR Group-X TO Group-N

In the example above, State and Month within Group-N receive the values in
national representation of State and Month, respectively, from Group-X. The other
data items in Group-N are unchanged. (Filler items in a receiving group item are
unchanged by a MOVE CORRESPONDING statement.)

In a MOVE CORRESPONDING statement, sending and receiving group items are treated
as group items, not as elementary data items; group semantics apply. That is, the
elementary data items within each group are recognized, and the results are the
same as if each pair of corresponding data items were referenced in a separate
MOVE statement. Data conversions are performed according to the rules for the MOVE
statement as specified in the related reference below. For details about which types
of elementary data items correspond, see the related reference about the
CORRESPONDING phrase.

Chapter 2. Using data 35

36

RELATED CONCEPTS
“Unicode and the encoding of language characters” on page 125
“National groups” on page 129

RELATED TASKS

" Assigning values to elementary data items (MOVE)” on page 34|

“Using national groups” on page 130|

“Converting to or from national (Unicode) representation” on page 134}

RELATED REFERENCES
Classes and categories of group items (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)

CORRESPONDING phrase (Enterprise COBOL Language Reference)

Assigning arithmetic results (MOVE or COMPUTE)

When assigning a number to a data item, consider using the COMPUTE statement
instead of the MOVE statement.

Move w to z
Compute z = w

In the example above, the two statements in most cases have the same effect. The
MOVE statement however carries out the assignment with truncation. You can use
the DIAGTRUNC compiler option to request that the compiler issue a warning for
MOVE statements that might truncate numeric receivers.

When significant left-order digits would be lost in execution, the COMPUTE statement
can detect the condition and allow you to handle it. If you use the ON SIZE ERROR
phrase of the COMPUTE statement, the compiler generates code to detect a
size-overflow condition. If the condition occurs, the code in the ON SIZE ERROR
phrase is performed, and the content of z remains unchanged. If you do not
specify the ON SIZE ERROR phrase, the assignment is carried out with truncation.
There is no ON SIZE ERROR support for the MOVE statement.

You can also use the COMPUTE statement to assign the result of an arithmetic
expression or intrinsic function to a data item. For example:

Compute z = y + (x *x 3)
Compute x = Function Max(x y z)

You can assign the results of date, time, mathematical, and other calculations to
data items by using Language Environment callable services. Language
Environment services are available through a standard COBOL CALL statement, and
the values they return are passed in the parameters of the CALL statement. For
example, you can call the Language Environment service CEESIABS to find the
absolute value of a data item by coding the following statement:

Call 'CEESIABS' Using Arg, Feedback-code, Result.

As a result of this call, data item Result is assigned the absolute value of the value
in data item Arg; data item Feedback-code contains the return code that indicates
whether the service completed successfully. You have to define all the data items in
the DATA DIVISION using the correct descriptions according to the requirements of
the particular callable service. For the example above, the data items could be
defined as follows:

77 Arg Pic s9(9) Binary.
77 Feedback-code Pic x(12) Display.
77 Result Pic s9(9) Binary.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES
["'DIAGTRUNC” on page 316

Intrinsic functions (Enterprise COBOL Language Reference)
[Language Environment Programming Reference (Callable services)

Assigning input from a screen or file (ACCEPT)

One way to assign a value to a data item is to read the value from a screen or a
file.

To enter data from the screen, first associate the monitor with a mnemonic-name in
the SPECIAL-NAMES paragraph. Then use ACCEPT to assign the line of input entered
at the screen to a data item. For example:

Environment Division.

Configuration Section.

Special-Names.
Console is Names-Input.

Accept Customer-Name From Names-Input

To read from a file instead of the screen, make the following change:

* Change Console to device, where device is any valid system device (for example,
SYSIN). For example:

SYSIN is Names-Input

device can be a ddname that references a hierarchical file system (HFS) path. If
this ddname is not defined and your program is running in the z/OS UNIX
environment, stdin is the input source. If this ddname is not defined and your
program is not running in the z/OS UNIX environment, the ACCEPT statement
fails.

When you use the ACCEPT statement, you can assign a value to an alphanumeric or
national group item, or to an elementary data item that has USAGE DISPLAY, USAGE
DISPLAY-1, or USAGE NATIONAL.

When you assign a value to a USAGE NATIONAL data item, input data from the
console is converted from the EBCDIC code page specified in the CODEPAGE
compiler option to national (Unicode UTF-16) representation. This is the only case
where conversion of national data is done when you use the ACCEPT statement.
Conversion is done in this case because the input is known to be coming from a
screen.

To have conversion done when the input data is from any other device, use the
NATIONAL-OF intrinsic function.

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 135]

RELATED REFERENCES
[“CODEPAGE” on page 309

ACCEPT statement (Enterprise COBOL Language Reference)
SPECIAL-NAMES paragraph (Enterprise COBOL Language Reference)

Chapter 2. Using data 37

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

Displaying values on a screen or in a file (DISPLAY)

38

You can display the value of a data item on a screen or write it to a file by using
the DISPLAY statement.

Display "No entry for surname '" Customer-Name "' found in the file.".

In the example above, if the content of data item Customer-Name is JOHNSON,
then the statement displays the following message on the system logical output
device:

No entry for surname 'JOHNSON' found in the file.

To write data to a destination other than the system logical output device, use the
UPON phrase with a destination other than SYSOUT. For example, the following
statement writes to the file specified in the SYSPUNCH DD statement:

DispTay "Hello" upon syspunch.

You can specify a file in the HFS by using the SYSPUNCH DD statement. For example,
the following definition causes DISPLAY output to be written to the file
/u/userid/cobol/demo.lst:

//SYSPUNCH DD PATH='/u/userid/cobol/demo.Tst',

// PATHOPTS=(OWRONLY,0CREAT,0TRUNC) , PATHMODE=SIRWXU,
// FILEDATA=TEXT

The following statement writes to the job log or console and to the TSO screen if
you are running under TSO:

DispTay "Hello" upon console.

When you display the value of a USAGE NATIONAL data item to the console, it is
converted from Unicode (UTF-16) representation to EBCDIC based on the value of
the CODEPAGE option. This is the only case where conversion of national data is
done when you use the DISPLAY statement. Conversion is done in this case because
the output is known to be directed to a screen.

To have a national data item be converted when you direct output to a different
device, use the DISPLAY-OF intrinsic function, such as in the following example:

01 Data-in-Unicode pic N(10) usage national.

Display function Display-of(Data-in-Unicode, 00037)

RELATED CONCEPTS
[‘Unicode and the encoding of language characters” on page 125|

RELATED TASKS

“Displaying data on the system logical output device” on page 39|
“Using WITH NO ADVANCING” on page 39|

“Converting national to alphanumeric (DISPLAY-OF)” on page 136|
“Coding COBOL programs to run under CICS” on page 405|

RELATED REFERENCES
[“CODEPAGE” on page 309
DISPLAY statement (Enterprise COBOL Language Reference)

Enterprise COBOL for z/OS V4.1 Programming Guide

Displaying data on the system logical output device

To write data to the system logical output device, either omit the UPON clause or
use the UPON clause with destination SYSOUT.

DispTay "Hello" upon sysout.

The output is directed to the ddname that you specify in the OUTDD compiler
option. You can specify a file in the hierarchical file system with this ddname.

If the OUTDD ddname is not allocated and you are not running in the z/OS UNIX
environment, a default DD of SYSOUT=+* is allocated. If the OUTDD ddname is not
allocated and you are running in the z/OS UNIX environment, the _IGZ_SYSOUT
environment variable is used as follows:

Undefined or set to stdout
Output is routed to stdout (file descriptor 1).

Set to stderr
Output is routed to stderr (file descriptor 2).

Otherwise (set to something other than stdout or stderr)
The DISPLAY statement fails; a severity-3 Language Environment condition
is raised.

When DISPLAY output is routed to stdout or stderr, the output is not subdivided
into records. The output is written as a single stream of characters without line
breaks.

If OUTDD and the Language Environment runtime option MSGFILE specify the same
ddname, both DISPLAY output and Language Environment runtime diagnostics are
routed to the Language Environment message file.

RELATED TASKS
[“Setting and accessing environment variables” on page 436|

RELATED REFERENCES
[‘OUTDD” on page 336|
DISPLAY statement (Enterprise COBOL Language Reference)

Using WITH NO ADVANCING

If you specify the WITH NO ADVANCING phrase, and output is going to a ddname, the
printer control character + (plus) is placed into the first output position from the
next DISPLAY statement. + is the ANSI-defined printer control character that
suppresses line spacing before a record is printed.

If you specify the WITH NO ADVANCING phrase and the output is going to stdout or
stderr, a newline character is not appended to the end of the stream. A subsequent
DISPLAY statement might add additional characters to the end of the stream.

If you do not specify WITH NO ADVANCING, and the output is going to a ddname, the

printer control character * ’ (space) is placed into the first output position from the
next DISPLAY statement, indicating single-spaced output.

Chapter 2. Using data 39

DISPLAY "ABC"

DISPLAY "CDEF" WITH NO ADVANCING
DISPLAY "GHIJK" WITH NO ADVANCING
DISPLAY "LMNOPQ"

DISPLAY "RSTUVWX"

If you code the statements above, the result sent to the output device is:

ABC

CDEF
+GHIJK
+LMNOPQ

RSTUVMX

The output that is printed depends on how the output device interprets printer
control characters.

If you do not specify the WITH NO ADVANCING phrase and the output is going to
stdout or stderr, a newline character is appended to the end of the stream.

RELATED REFERENCES
DISPLAY statement (Enterprise COBOL Language Reference)

Using intrinsic functions (built-in functions)

40

Some high-level programming languages have built-in functions that you can
reference in your program as if they were variables that have defined attributes
and a predetermined value. In COBOL, these functions are called intrinsic functions.
They provide capabilities for manipulating strings and numbers.

Because the value of an intrinsic function is derived automatically at the time of
reference, you do not need to define functions in the DATA DIVISION. Define only
the nonliteral data items that you use as arguments. Figurative constants are not
allowed as arguments.

A function-identifier is the combination of the COBOL reserved word FUNCTION
followed by a function name (such as Max), followed by any arguments to be used
in the evaluation of the function (such as x, y, z). For example, the groups of
highlighted words below are function-identifiers:
Unstring Function Upper-case(Name) Delimited By Space

Into Fname Lname

Compute A = 1 + Function Logl0(x)
Compute M = Function Max(x y z)

A function-identifier represents both the invocation of the function and the data
value returned by the function. Because it actually represents a data item, you can
use a function-identifier in most places in the PROCEDURE DIVISION where a data
item that has the attributes of the returned value can be used.

The COBOL word function is a reserved word, but the function-names are not
reserved. You can use them in other contexts, such as for the name of a data item.
For example, you could use Sqrt to invoke an intrinsic function and to name a
data item in your program:

Working-Storage Section.

01 x Pic 99 value 2.
01 vy Pic 99 value 4.
01 z Pic 99 value 0.
01 Sqrt Pic 99 value 0.

Enterprise COBOL for z/OS V4.1 Programming Guide

Compute Sqrt = 16 ** .5
Compute z = x + Function Sqrt(y)

A function-identifier represents a value that is of one of these types: alphanumeric,
national, numeric, or integer. You can include a substring specification (reference
modifier) in a function-identifier for alphanumeric or national functions. Numeric
intrinsic functions are further classified according to the type of numbers they
return.

The functions MAX, MIN, DATEVAL, and UNDATE can return either type of value
depending on the type of arguments you supply.

The functions DATEVAL, UNDATE, and YEARWINDOW are provided with the millennium

language extensions to assist with manipulating and converting windowed date
fields.

Functions can reference other functions as arguments provided that the results of
the nested functions meet the requirements for the arguments of the outer function.
For example, Function Sqrt(5) returns a numeric value. Thus, the three arguments
to the MAX function below are all numeric, which is an allowable argument type for
this function:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

RELATED TASKS

“Processing table items using intrinsic functions” on page 86|
“Converting data items (intrinsic functions)” on page 112|
“Evaluating data items (intrinsic functions)” on page 115

Using tables (arrays) and pointers

In COBOL, arrays are called tables. A table is a set of logically consecutive data
items that you define in the DATA DIVISION by using the OCCURS clause.

Pointers are data items that contain virtual storage addresses. You define them
either explicitly with the USAGE IS POINTER clause in the DATA DIVISION or
implicitly as ADDRESS OF special registers.

You can perform the following operations with pointer data items:

* DPass them between programs by using the CALL . . . BY REFERENCE statement.
* Move them to other pointers by using the SET statement.

* Compare them to other pointers for equality by using a relation condition.

* Initialize them to contain an invalid address by using VALUE IS NULL.

Use pointer data items to:

* Accomplish limited base addressing, particularly if you want to pass and receive
addresses of a record area that is defined with OCCURS DEPENDING ON and is
therefore variably located.

e Handle a chained list.

RELATED TASKS
“Defining a table (OCCURS)” on page 69|
"“Using procedure and function pointers” on page 460|

Chapter 2. Using data 41

Storage and its addressability

42

When you run COBOL programs, the programs and the data that they use reside
in virtual storage. Storage that you use with COBOL can be either below the
16-MB line or above the 16-MB line but below the 2-GB bar. Two modes of
addressing are available to address this storage: 24-bit and 31-bit.

You can address storage below (but not above) the 16-MB line with 24-bit
addressing. You can address storage either above or below the 16-MB line with
31-bit addressing. Unrestricted storage is addressable by 31-bit addressing and
therefore encompasses all the storage available to your program, both above and
below the 16-MB line.

Enterprise COBOL does not directly exploit the 64-bit virtual addressing capability
of z/0OS; however, COBOL applications running in 31-bit or 24-bit addressing
mode are fully supported on 64-bit z/OS systems.

Addressing mode (AMODE) is the attribute that tells which hardware addressing mode
is supported by your program: 24-bit addressing, 31-bit addressing, or either 24-bit
or 31-bit addressing. This attribute is AMODE 24, AMODE 31, or AMODE ANY,
respectively. The object program, the load module, and the executing program each
has an AMODE attribute. All Enterprise COBOL object programs are AMODE ANY.

Residency mode (RMODE) is the attribute of a program load module that identifies
where in virtual storage the program will reside: below the 16-MB line, or either
below or above. This attribute is RMODE 24 or RMODE ANY.

Enterprise COBOL uses Language Environment services to control the storage used
at run time. Thus COBOL compiler options and Language Environment runtime
options influence the AMODE and RMODE attributes of your program and data, alone
and in combination:

DATA Compiler option that influences the location of storage for WORKING-STORAGE
data, I-O buffers, and parameter lists for programs compiled with RENT.

RMODE Compiler option that influences the residency mode and also influences the
location of storage for WORKING-STORAGE data, I-O buffers, and parameter
lists for programs compiled with NORENT.

RENT Compiler option to generate a reentrant program.

HEAP Runtime option that controls storage for the runtime heap. For example,
COBOL WORKING-STORAGE is allocated from heap storage.

STACK Runtime option that controls storage for the runtime stack. For example,
COBOL LOCAL-STORAGE is allocated from stack storage.

ALL31 Runtime option that specifies whether an application can run entirely in
AMODE 31.

Settings for RMODE

The RMODE and RENT options determine the RMODE attribute of your program:
Table 4. Effect of RMODE and RENT compiler options on the RMODE attribute

RMODE compiler option RENT compiler option RMODE attribute
RMODE (AUTO) NORENT RMODE 24
RMODE (AUTO) RENT RMODE ANY

Enterprise COBOL for z/OS V4.1 Programming Guide

Table 4. Effect of RMODE and RENT compiler options on the RMODE
attribute (continued)

RMODE compiler option RENT compiler option RMODE attribute
RMODE (24) RENT or NORENT RMODE 24
RMODE (ANY) RENT or NORENT RMODE ANY

Link-edit considerations: When the object code that COBOL generates has an
attribute of RMODE 24, you must link-edit it with RMODE 24. When the object code
that COBOL generates has an attribute of RMODE ANY, you can link-edit it with
RMODE ANY or RMODE 24.

Storage restrictions for passing data

Do not pass parameters that are allocated in storage above the 16-MB line to AMODE
24 subprograms. Force the WORKING-STORAGE data and parameter lists below the line
for programs that run in 31-bit addressing mode and pass data to programs that
run in AMODE 24:

» Compile reentrant programs (RENT) with DATA(24).
+ Compile nonreentrant programs (NORENT) with RMODE (24) or RMODE (AUTO).

* Nonreentrant programs (NORENT) compiled with RMODE (ANY) must be link-edited
with RMODE 24. The data areas for NORENT programs are above the 16-MB line or
below the 16-MB line depending on where the program is loaded, even if the
program was compiled with DATA(24). The DATA option does not affect programs
compiled with NORENT.

Location of data areas

For reentrant programs, the DATA compiler option and the HEAP runtime option
control whether storage for data areas such as WORKING-STORAGE SECTION and FD
record areas is obtained from below the 16-MB line or from unrestricted storage.
Compile programs with RENT or RMODE (ANY) if they will be run with 31-bit
addressing in virtual storage addresses above the 16-MB line. The DATA option does
not affect programs compiled with NORENT.

When you specify the runtime option HEAP(, ,BELOW), the DATA compiler option has
no effect; the storage for WORKING-STORAGE SECTION data areas is allocated from
below the 16-MB line. However, with HEAP(, ,ANYWHERE) as the runtime option,
storage for data areas is allocated from below the 16-MB line if you compiled the
program with the DATA(24) compiler option, or from unrestricted storage if you
compiled with the DATA(31) compiler option.

Storage for LOCAL-STORAGE data

The location of LOCAL-STORAGE data items is controlled by the STACK runtime option
and the AMODE of the program. LOCAL-STORAGE data items are acquired in
unrestricted storage when the STACK(, ,ANYWHERE) runtime option is in effect and
the program is running in AMODE 31. Otherwise LOCAL-STORAGE is acquired below
the 16-MB line. The DATA compiler option does not influence the location of
LOCAL-STORAGE data.

Chapter 2. Using data 43

44

Storage for external data

In addition to affecting how storage is obtained for dynamic data areas
(WORKING-STORAGE, FD record areas, and parameter lists), the DATA compiler option
can also influence where storage for EXTERNAL data is obtained. Storage required for
EXTERNAL data is obtained from unrestricted storage if the following conditions are
met:

* The program is compiled with the DATA(31) and RENT compiler options or the
RMODE (ANY) and NORENT compiler options.

* The HEAP(, ,ANYWHERE) runtime option is in effect.
* The ALL31(ON) runtime option is in effect.

In all other cases, the storage for EXTERNAL data is obtained from below the 16-MB
line. When you specify the ALL31(0N) runtime option, all the programs in the run
unit must be capable of running in 31-bit addressing mode.

Storage for QSAM input-output buffers

The DATA compiler option can also influence where input-output buffers for QSAM
files are obtained. See the related references below for information about allocation
of buffers for QSAM files and the DATA compiler option.

RELATED CONCEPTS

“ AMODE switching” on page 451

Lanquage Environment Programming Guidd (Heap storage overview: AMODE

considerations)

RELATED TASKS

Chapter 24, “Using subprograms,” on page 445|

Chapter 25, “Sharing data,” on page 463

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 173

"DATA” on page 313

“RENT” on page 34

“RMODE” on page 341

“Performance-related compiler options” on page 660

Language Environment Programming Referencd (HEAP, STACK, ALL31)

MV'S Program Management: User's Guide and Reference

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Chapter 3. Working with numbers and arithmetic

In general, you can view COBOL numeric data as a series of decimal digit
positions. However, numeric items can also have special properties such as an
arithmetic sign or a currency sign.

To define, display, and store numeric data so that you can perform arithmetic
operations efficiently:

e Use the PICTURE clause and the characters 9, +, -, P, S, and V to define numeric
data.

* Use the PICTURE clause and editing characters (such as Z, comma, and period)
along with MOVE and DISPLAY statements to display numeric data.

* Use the USAGE clause with various formats to control how numeric data is stored.
* Use the numeric class test to validate that data values are appropriate.

* Use ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements to perform
arithmetic.

* Use the CURRENCY SIGN clause and appropriate PICTURE characters to designate
the currency you want.

RELATED TASKS

“Defining numeric data”]

“Displaying numeric data” on page 47|

“Controlling how numeric data is stored” on page 48|

“Checking for incompatible data (numeric class test)” on page 56
“Performing arithmetic” on page 57|

“Using currency signs” on page 67

Defining numeric data

© Copyright IBM Corp. 1991, 2007

Define numeric items by using the PICTURE clause with the character 9 in the data
description to represent the decimal digits of the number. Do not use an X, which
is for alphanumeric data items.

For example, Count-y below is a numeric data item, an external decimal item that
has USAGE DISPLAY (a zoned decimal item):

05 Count-y Pic 9(4) Value 25.
05 Customer-name Pic X(20) Value "Johnson".

You can similarly define numeric data items to hold national characters (UTF-16).
For example, Count-n below is an external decimal data item that has USAGE
NATIONAL (a national decimal item):

05 Count-n Pic 9(4) Value 25 Usage National.

You can code up to 18 digits in the PICTURE clause when you compile using the
default compiler option ARITH(COMPAT) (referred to as compatibility mode). When
you compile using ARITH(EXTEND) (referred to as extended mode), you can code up
to 31 digits in the PICTURE clause.

Other characters of special significance that you can code are:

P Indicates leading or trailing zeros

45

S Indicates a sign, positive or negative

v Implies a decimal point

The s in the following example means that the value is signed:
05 Price Pic s99v99.

The field can therefore hold a positive or a negative value. The v indicates the
position of an implied decimal point, but does not contribute to the size of the
item because it does not require a storage position. An s usually does not
contribute to the size of a numeric item, because by default s does not require a
storage position.

However, if you plan to port your program or data to a different machine, you
might want to code the sign for a zoned decimal data item as a separate position
in storage. In the following case, the sign takes 1 byte:

05 Price Pic s99V99 Sign Is Leading, Separate.

This coding ensures that the convention your machine uses for storing a
nonseparate sign will not cause unexpected results on a machine that uses a
different convention.

Separate signs are also preferable for zoned decimal data items that will be printed
or displayed.

Separate signs are required for national decimal data items that are signed. The
sign takes 2 bytes of storage, as in the following example:

05 Price Pic s99V99 Usage National Sign Is Leading, Separate.

You cannot use the PICTURE clause with internal floating-point data (COMP-1 or
COMP-2). However, you can use the VALUE clause to provide an initial value for an
internal floating-point literal:

05 Compute-result Usage Comp-2 Value 06.23E-24.

For information about external floating-point data, see the examples referenced
below and the related concept about formats for numeric data.

[“Examples: numeric data and internal representation” on page 52|

RELATED CONCEPTS
“Formats for numeric data” on page 49|
Appendix A, “Intermediate results and arithmetic precision,” on page 673|

RELATED TASKS

“Displaying numeric data” on page 47

“Controlling how numeric data is stored” on page 48|
“Performing arithmetic” on page 57

“Defining national numeric data items” on page 129

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 55
"“Storage of national data” on page 13
“ARITH” on page 30
“"NUMPROC” on page 33
SIGN clause (Enterprise COBOL Language Reference)

46 Enterprise COBOL for z/OS V4.1 Programming Guide

Displaying numeric data

You can define numeric items with certain editing symbols (such as decimal points,
commas, dollar signs, and debit or credit signs) to make the items easier to read
and understand when you display or print them.

For example, in the code below, Edited-price is a numeric-edited item that has
USAGE DISPLAY. (You can specify the clause USAGE IS DISPLAY for numeric-edited
items; however, it is implied. It means that the items are stored in character
format.)

05 Price Pic 9(5)v99.
05 Edited-price Pic $zz,zz9.99.

Move Price To Edited-price
Display Edited-price

If the contents of Price are 0150099 (representing the value 1,500.99), $ 1,500.99 is
displayed when you run the code. The z in the PICTURE clause of Edited-price
indicates the suppression of leading zeros.

You can define numeric-edited data items to hold national (UTF-16) characters
instead of alphanumeric characters. To do so, declare the numeric-edited items as
USAGE NATIONAL. The effect of the editing symbols is the same for numeric-edited
items that have USAGE NATIONAL as it is for numeric-edited items that have USAGE
DISPLAY, except that the editing is done with national characters. For example, if
Edited-price is declared as USAGE NATIONAL in the code above, the item is edited
and displayed using national characters.

To display numeric or numeric-edited data items that have USAGE NATIONAL in
EBCDIC, direct them to CONSOLE. For example, if Edited-price in the code above
has USAGE NATIONAL, $ 1,500.99 is displayed when you run the program if the last
statement above is:

Display Edited-price Upon Console

You can cause an elementary numeric or numeric-edited item to be filled with
spaces when a value of zero is stored into it by coding the BLANK WHEN ZERO clause
for the item. For example, each of the DISPLAY statements below causes blanks to
be displayed instead of zeros:
05 Price Pic 9(5)v99.
05 Edited-price-D Pic $99,999.99

Blank When Zero.

05 Edited-price-N Pic $99,999.99 Usage National
Blank When Zero.

Move 0 to Price

Move Price to Edited-price-D

Move Price to Edited-price-N
Display Edited-price-D

Display Edited-price-N upon console

You cannot use numeric-edited items as sending operands in arithmetic
expressions or in ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statements. (Numeric
editing takes place when a numeric-edited item is the receiving field for one of
these statements, or when a MOVE statement has a numeric-edited receiving field
and a numeric-edited or numeric sending field.) You use numeric-edited items
primarily for displaying or printing numeric data.

Chapter 3. Working with numbers and arithmetic 47

You can move numeric-edited items to numeric or numeric-edited items. In the
following example, the value of the numeric-edited item (whether it has USAGE
DISPLAY or USAGE NATIONAL) is moved to the numeric item:

Move Edited-price to Price
Display Price

If these two statements immediately followed the statements in the first example
above, then Price would be displayed as 0150099, representing the value 1,500.99.
Price would also be displayed as 0150099 if Edited-price had USAGE NATIONAL.

You can also move numeric-edited items to alphanumeric, alphanumeric-edited,
floating-point, and national data items. For a complete list of the valid receiving
items for numeric-edited data, see the related reference about the MOVE statement.

[“Examples: numeric data and internal representation” on page 52|

RELATED TASKS
“Displaying values on a screen or in a file (DISPLAY)” on page 38|
“Controlling how numeric data is stored”]

“Defining numeric data” on page 45|

“Performing arithmetic” on page 57|

“Defining national numeric data items” on page 129

“Converting to or from national (Unicode) representation” on page 134|

RELATED REFERENCES
MOVE statement (Enterprise COBOL Language Reference)
BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

Controlling how numeric data is stored

48

You can control how the computer stores numeric data items by coding the USAGE
clause in your data description entries.

You might want to control the format for any of several reasons such as these:

* Arithmetic performed with computational data types is more efficient than with
USAGE DISPLAY or USAGE NATIONAL data types.

* Packed-decimal format requires less storage per digit than USAGE DISPLAY or
USAGE NATIONAL data types.

¢ Packed-decimal format converts to and from DISPLAY or NATIONAL format more
efficiently than binary format does.

* Floating-point format is well suited for arithmetic operands and results with
widely varying scale, while maintaining the maximal number of significant
digits.

* You might need to preserve data formats when you move data from one
machine to another.

The numeric data you use in your program will have one of the following formats
available with COBOL:

* External decimal (USAGE DISPLAY or USAGE NATIONAL)

* External floating point (USAGE DISPLAY or USAGE NATIONAL)
* Internal decimal (USAGE PACKED-DECIMAL)

e Binary (USAGE BINARY)

* Native binary (USAGE COMP-5)

Enterprise COBOL for z/OS V4.1 Programming Guide

* Internal floating point (USAGE COMP-1 or USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with
PACKED-DECIMAL.

The compiler converts displayable numbers to the internal representation of their
numeric values before using them in arithmetic operations. Therefore it is often
more efficient if you define data items as BINARY or PACKED-DECIMAL than as
DISPLAY or NATIONAL. For example:

05 Initial-count Pic S9(4) Usage Binary Value 1000.

Regardless of which USAGE clause you use to control the internal representation of a
value, you use the same PICTURE clause conventions and decimal value in the
VALUE clause (except for internal floating-point data, for which you cannot use a
PICTURE clause).

[“Examples: numeric data and internal representation” on page 52|

RELATED CONCEPTS
“Formats for numeric data’]

“Data format conversions” on page 54|

Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS
“Defining numeric data” on page 45|
“Displaying numeric data” on page 47|
“Performing arithmetic” on page 57|

RELATED REFERENCES
“Conversions and precision” on page 54
“Sign representation of zoned and packed-decimal data” on page 55|

Formats for numeric data

Several formats are available for numeric data.

External decimal (DISPLAY and NATIONAL) items

When USAGE DISPLAY is in effect for a category numeric data item (either because
you have coded it, or by default), each position (byte) of storage contains one
decimal digit. The items are stored in displayable form. External decimal items that
have USAGE DISPLAY are referred to as zoned decimal data items.

When USAGE NATIONAL is in effect for a category numeric data item, 2 bytes of
storage are required for each decimal digit. The items are stored in UTF-16 format.
External decimal items that have USAGE NATIONAL are referred to as national decimal
data items.

National decimal data items, if signed, must have the SIGN SEPARATE clause in
effect. All other rules for zoned decimal items apply to national decimal items. You
can use national decimal items anywhere that other category numeric data items
can be used.

External decimal (both zoned decimal and national decimal) data items are
primarily intended for receiving and sending numbers between your program and

Chapter 3. Working with numbers and arithmetic 49

files, terminals, or printers. You can also use external decimal items as operands
and receivers in arithmetic processing. However, if your program performs a lot of
intensive arithmetic, and efficiency is a high priority, COBOL’s computational
numeric types might be a better choice for the data items used in the arithmetic.

External floating-point (DISPLAY and NATIONAL) items

When USAGE DISPLAY is in effect for a floating-point data item (either because you
have coded it, or by default), each PICTURE character position (except for v, an
implied decimal point, if used) takes 1 byte of storage. The items are stored in
displayable form. External floating-point items that have USAGE DISPLAY are
referred to as display floating-point data items in this information when necessary to
distinguish them from external floating-point items that have USAGE NATIONAL.

In the following example, Compute-Result is implicitly defined as a display
floating-point item:
05 Compute-Result Pic -9v9(9)E-99.

The minus signs (-) do not mean that the mantissa and exponent must necessarily
be negative numbers. Instead, they mean that when the number is displayed, the
sign appears as a blank for positive numbers or a minus sign for negative
numbers. If you instead code a plus sign (+), the sign appears as a plus sign for
positive numbers or a minus sign for negative numbers.

When USAGE NATIONAL is in effect for a floating-point data item, each PICTURE
character position (except for v, if used) takes 2 bytes of storage. The items are
stored as national characters (UTF-16). External floating-point items that have
USAGE NATIONAL are referred to as national floating-point data items.

The existing rules for display floating-point items apply to national floating-point
items.

In the following example, Compute-Result-N is a national floating-point item:
05 Compute-Result-N Pic -9v9(9)E-99 Usage National.

If Compute-Result-N is displayed, the signs appear as described above for
Compute-Result, but in national characters.To instead display Compute-Result-N in
EBCDIC characters, direct it to the console:

DispTay Compute-Result-N Upon Console
You cannot use the VALUE clause for external floating-point items.

As with external decimal numbers, external floating-point numbers have to be
converted (by the compiler) to an internal representation of their numeric value
before they can be used in arithmetic operations. If you compile with the default
option ARITH (COMPAT), external floating-point numbers are converted to long
(64-bit) floating-point format. If you compile with ARITH (EXTEND), they are instead
converted to extended-precision (128-bit) floating-point format.

Binary (COMP) items

BINARY, COMP, and COMP-4 are synonyms. Binary-format numbers occupy 2, 4, or 8
bytes of storage. If the PICTURE clause specifies that an item is signed, the leftmost
bit is used as the operational sign.

50 Enterprise COBOL for z/OS V4.1 Programming Guide

A binary number with a PICTURE description of four or fewer decimal digits
occupies 2 bytes; five to nine decimal digits, 4 bytes; and 10 to 18 decimal digits, 8
bytes. Binary items with nine or more digits require more handling by the
compiler. Testing them for the SIZE ERROR condition and rounding is more
cumbersome than with other types.

You can use binary items, for example, for indexes, subscripts, switches, and
arithmetic operands or results.

Use the TRUNC(STD|OPT|BIN) compiler option to indicate how binary data (BINARY,
COMP, or COMP-4) is to be truncated.

Native binary (COMP-5) items

Data items that you declare as USAGE COMP-5 are represented in storage as binary
data. However, unlike USAGE COMP items, they can contain values of magnitude up
to the capacity of the native binary representation (2, 4, or 8 bytes) rather than
being limited to the value implied by the number of 9s in the PICTURE clause.

When you move or store numeric data into a COMP-5 item, truncation occurs at the
binary field size rather than at the COBOL PICTURE size limit. When you reference
a COMP-5 item, the full binary field size is used in the operation.

COMP-5 is thus particularly useful for binary data items that originate in
non-COBOL programs where the data might not conform to a COBOL PICTURE
clause.

The table below shows the ranges of possible values for COMP-5 data items.

Table 5. Ranges in value of COMP-5 data items

PICTURE Storage representation Numeric values
S9(1) through S9(4) |Binary halfword (2 bytes) |-32768 through +32767
S9(5) through S9(9) |Binary fullword (4 bytes) |-2,147,483,648 through +2,147,483,647

$9(10) through Binary doubleword (8 -9,223,372,036,854,775,808 through
S9(18) bytes) +9,223,372,036,854,775,307

9(1) through 9(4) Binary halfword (2 bytes) |0 through 65535
9(5) through 9(9) Binary fullword (4 bytes) |0 through 4,294,967,295

9(10) through 9(18) |Binary doubleword (8 0 through 18,446,744,073,709,551,615
bytes)

You can specify scaling (that is, decimal positions or implied integer positions) in
the PICTURE clause of COMP-5 items. If you do so, you must appropriately scale the
maximal capacities listed above. For example, a data item you describe as PICTURE
S99V99 COMP-5 is represented in storage as a binary halfword, and supports a range
of values from -327.68 through +327.67.

Large literals in VALUE clauses: Literals specified in VALUE clauses for COMP-5 items
can, with a few exceptions, contain values of magnitude up to the capacity of the
native binary representation. See Enterprise COBOL Language Reference for the
exceptions.

Regardless of the setting of the TRUNC compiler option, COMP-5 data items behave
like binary data does in programs compiled with TRUNC(BIN).

Chapter 3. Working with numbers and arithmetic 51

52

Packed-decimal (COMP-3) items

PACKED-DECIMAL and COMP-3 are synonyms. Packed-decimal items occupy 1 byte of
storage for every two decimal digits you code in the PICTURE description, except
that the rightmost byte contains only one digit and the sign. This format is most
efficient when you code an odd number of digits in the PICTURE description, so
that the leftmost byte is fully used. Packed-decimal items are handled as
fixed-point numbers for arithmetic purposes.

Internal floating-point (COMP-1 and COMP-2) items

COMP-1 refers to short floating-point format and COMP-2 refers to long floating-point
format, which occupy 4 and 8 bytes of storage, respectively. The leftmost bit
contains the sign and the next 7 bits contain the exponent; the remaining 3 or 7
bytes contain the mantissa.

COMP-1 and COMP-2 data items are stored in zSeries® hexadecimal format.
RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125|
Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS
“Defining numeric data” on page 45|
“Defining national numeric data items” on page 129

RELATED REFERENCES

“Storage of national data” on page 133

“TRUNC” on page 352

Classes and categories of data (Enterprise COBOL Language Reference)
SIGN clause (Enterprise COBOL Language Reference)

VALUE clause (Enterprise COBOL Language Reference)

Examples: numeric data and internal representation

The following table shows the internal representation of numeric items.

Enterprise COBOL for z/OS V4.1 Programming Guide

Table 6. Internal representation of numeric items

PICTURE and USAGE and
Numeric type optional SIGN clause Value Internal representation
External decimal | PIC S9999 DISPLAY + 1234 F1 F2 F3 C4
- 1234 F1 F2 F3 D4
1234 F1 F2 F3 C4
PIC 9999 DISPLAY 1234 F1 F2 F3 F4
PIC 9999 NATIONAL 1234 00 31 00 32 00 33 00 34
PIC $9999 DISPLAY + 1234 Cl F2 F3 F4
SIGN LEADING - 1234 DI F2 F3 F4
PIC $9999 DISPLAY + 1234 4E F1 F2 F3 F4
SIGN LEADING SEPARATE Ty 0 FlF2 F3
PIC 59999 DISPLAY + 1234 F1 F2 F3 F4 4F
SIGN TRAILING SEPARATE T, 1 F2 F3 F4 60
PIC $9999 NATIONAL + 1234 00 2B 00 31 00 32 00 33 00 34
SIGN LEADING SEPARATE - 1234 00 2D 00 31 60 32 0 33 00 34
PIC $9999 NATIONAL + 1234 00 31 00 32 00 33 00 34 00 2B
SIGN TRAILING SEPARATE ["534 00 31 60 32 60 33 00 34 060 2D
Binary PIC $9999 BINARY + 1234 04 D2
PIC $9999 COMP
PIC $9999 COMP-4 - 1234 FB 2E
PIC $9999 COMP-5 + 12345 30 39
- 12345 CF 7
PIC 9999 BINARY 1234 04 D2
PIC 9999 COMP
PIC 9999 COMP-4
PIC 9999 COMP-5 60000" EA 60
Internal decimal |PIC $9999 PACKED-DECIMAL + 1234 01 23 4C
PIC $9999 COMP-3 1o o1 23 40
PIC 9999 PACKED-DECIMAL 1234 01 23 4F
PIC 9999 COMP-3
Internal floating | COMP-1 + 1234 43 4D 20 00
point - 1234 C3 4D 26 00
COMP-2 + 1234 43 4D 20 00 00 00 00 00
- 1234 C3 4D 20 00 00 00 00 00
External floating |PIC +9(2).9(2)E+99 DISPLAY |+ 12.34E+02 4E F1 F2 4B F3 F4 C5 4E FO F2
point - 12.34E+02 60 F1 F2 4B F3 F4 C5 4E FO F2
PIC +9(2).9(2)E+99 NATIONAL |+ 12.34E+02 00 2B 00 31 00 32 00 2E 00 33
00 34 00 45 00 2B 00 30 00 32
- 12.34E+02 00 2D 00 31 00 32 00 2E 00 33
00 34 00 45 00 2B 00 30 00 32

1. The example demonstrates that COMP-5 data items can contain values of magnitude up to the capacity of the

native binary representation (2, 4, or 8 bytes), rather than being limited to the value implied by the number of 9s

in the PICTURE clause.

Chapter 3. Working with numbers and arithmetic

53

Data format conversions

When the code in your program involves the interaction of items that have
different data formats, the compiler converts those items either temporarily, for
comparisons and arithmetic operations, or permanently, for assignment to the
receiver in a MOVE or COMPUTE statement.

A conversion is actually a move of a value from one data item to another. The
compiler performs any conversions that are required during the execution of
arithmetic or comparisons by using the same rules that are used for MOVE and
COMPUTE statements.

When possible, the compiler performs a move to preserve numeric value instead of
a direct digit-for-digit move.

Conversion generally requires additional storage and processing time because data
is moved to an internal work area and converted before the operation is
performed. The results might also have to be moved back into a work area and
converted again.

Conversions between fixed-point data formats (external decimal, packed decimal,
or binary) are without loss of precision provided that the target field can contain
all the digits of the source operand.

A loss of precision is possible in conversions between fixed-point data formats and
floating-point data formats (short floating point, long floating point, or external
floating point). These conversions happen during arithmetic evaluations that have
a mixture of both fixed-point and floating-point operands.

RELATED REFERENCES
s : e 17
Conversions and precision”|
“Sign representation of zoned and packed-decimal data” on page 55|

Conversions and precision

In some numeric conversions, a loss of precision is possible; other conversions
preserve precision or result in rounding.

Because both fixed-point and external floating-point items have decimal
characteristics, references to fixed-point items in the following examples include
external floating-point items unless stated otherwise.

When the compiler converts from fixed-point to internal floating-point format,
fixed-point numbers in base 10 are converted to the numbering system used
internally.

When the compiler converts short form to long form for comparisons, zeros are
used for padding the shorter number.

Conversions that lose precision
When a USAGE COMP-1 data item is moved to a fixed-point data item that has more

than nine digits, the fixed-point data item will receive only nine significant digits,
and the remaining digits will be zero.

54 Enterprise COBOL for z/OS V4.1 Programming Guide

When a USAGE COMP-2 data item is moved to a fixed-point data item that has more
than 18 digits, the fixed-point data item will receive only 18 significant digits, and
the remaining digits will be zero.

Conversions that preserve precision

If a fixed-point data item that has six or fewer digits is moved to a USAGE COMP-1
data item and then returned to the fixed-point data item, the original value is
recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of nine or more
digits and then returned to the USAGE COMP-1 data item, the original value is
recovered.

If a fixed-point data item that has 15 or fewer digits is moved to a USAGE COMP-2
data item and then returned to the fixed-point data item, the original value is
recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point)
data item of 18 or more digits and then returned to the USAGE COMP-2 data item,
the original value is recovered.

Conversions that result in rounding

If a USAGE COMP-1 data item, a USAGE COMP-2 data item, an external floating-point
data item, or a floating-point literal is moved to a fixed-point data item, rounding
occurs in the low-order position of the target data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding occurs
in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item and the
PICTURE of the fixed-point data item contains more digit positions than the PICTURE
of the external floating-point data item, rounding occurs in the low-order position
of the target data item.

RELATED CONCEPTS
[Appendix A, “Intermediate results and arithmetic precision,” on page 673

Sign representation of zoned and packed-decimal data

Sign representation affects the processing and interaction of zoned decimal and
internal decimal data.

Given X'sd', where s is the sign representation and d represents the digit, the valid
sign representations for zoned decimal (USAGE DISPLAY) data without the SIGN IS
SEPARATE clause are:

Positive:
C,A E and F

Negative:
D and B

The COBOL NUMPROC compiler option affects sign processing for zoned decimal and
internal decimal data. NUMPROC has no effect on binary data, national decimal data,
or floating-point data.

Chapter 3. Working with numbers and arithmetic 55

NUMPROC(PFD)
Given X'sd', where s is the sign representation and d represents the digit,
when you use NUMPROC (PFD), the compiler assumes that the sign in your
data is one of three preferred signs:

Signed positive or 0:
X'c!

Signed negative:
X'D'

Unsigned or alphanumeric:
X 1 F 1

Based on this assumption, the compiler uses whatever sign it is given to
process data. The preferred sign is generated only where necessary (for
example, when unsigned data is moved to signed data). Using the
NUMPROC(PFD) option can save processing time, but you must use preferred
signs with your data for correct processing.

NUMPROC(NOPFD)
When the NUMPROC (NOPFD) compiler option is in effect, the compiler accepts
any valid sign configuration. The preferred sign is always generated in the
receiver. NUMPROC (NOPFD) is less efficient than NUMPROC(PFD), but you should
use it whenever data that does not use preferred signs might exist.

If an unsigned, zoned-decimal sender is moved to an alphanumeric
receiver, the sign is unchanged (even with NUMPROC(NOPFD) in effect).

NUMPROCMIG)
When NUMPROC (MIG) is in effect, the compiler generates code that is similar
to that produced by OS/VS COBOL. This option can be especially useful if
you migrate OS/VS COBOL programs to IBM Enterprise COBOL for z/OS.

RELATED REFERENCES

“NUMPROC” on page 332

“ZWB” on page 359

Checking for incompatible data (numeric class test)

56

The compiler assumes that values you supply for a data item are valid for the
PICTURE and USAGE clauses, and does not check their validity. Ensure that the
contents of a data item conform to the PICTURE and USAGE clauses before using the
item in additional processing.

It can happen that values are passed into your program and assigned to items that
have incompatible data descriptions for those values. For example, nonnumeric
data might be moved or passed into a field that is defined as numeric, or a signed
number might be passed into a field that is defined as unsigned. In either case, the
receiving fields contain invalid data. When you give an item a value that is
incompatible with its data description, references to that item in the PROCEDURE
DIVISION are undefined and your results are unpredictable.

You can use the numeric class test to perform data validation. For example:
Linkage Section.
01 Count-x Pic 999.

Procedure Division Using Count-x.
If Count-x is numeric then display "Data is good"

Enterprise COBOL for z/OS V4.1 Programming Guide

The numeric class test checks the contents of a data item against a set of values
that are valid for the PICTURE and USAGE of the data item. For example, a
packed-decimal item is checked for hexadecimal values X'0” through X'9” in the
digit positions and for a valid sign value in the sign position (whether separate or
nonseparate).

For zoned decimal and packed-decimal items, the numeric class test is affected by
the NUMPROC compiler option and the NUMCLS option (which is set at installation
time). To determine the NUMCLS setting used at your installation, consult your
system programmer.

If NUMCLS (PRIM) is in effect at your installation, use the following table to find the
values that the compiler considers valid for the sign.

Table 7. NUMCLS(PRIM) and valid signs

NUMPROC (NOPFD) NUMPROC (PFD) NUMPROC (MIG)
Signed C,DF C, D, +0 (positive C, D, F
Z€ero)
Unsigned F F F
Separate sign +, - +, -, +0 (positive +, -
Zero)

If NUMCLS (ALT) is in effect at your installation, use the following table to find the
values that the compiler considers valid for the sign.

Table 8. NUMCLS(ALT) and valid signs

NUMPROC (NOPFD) NUMPROC (PFD) NUMPROC (MIG)
Signed AtoF C, D, +0 (positive AtoF
Zero)
Unsigned F F F
Separate sign +, - +, -, +0 (positive +, -
Zero)

RELATED REFERENCES
["'NUMPROC” on page 332

Performing arithmetic

You can use any of several COBOL language features (including COMPUTE,
arithmetic expressions, numeric intrinsic functions, and math and date callable
services) to perform arithmetic. Your choice depends on whether a feature meets
your particular needs.

For most common arithmetic evaluations, the COMPUTE statement is appropriate. If
you need to use numeric literals, numeric data, or arithmetic operators, you might
want to use arithmetic expressions. In places where numeric expressions are
allowed, you can save time by using numeric intrinsic functions. Language
Environment callable services for mathematical functions and for date and time
operations also provide a means of assigning arithmetic results to data items.

RELATED TASKS
[“Using COMPUTE and other arithmetic statements” on page 58|

Chapter 3. Working with numbers and arithmetic 57

58

“Using arithmetic expressions”|

“Using numeric intrinsic functions” on page 59
“Using math-oriented callable services” on page 60|
“Using date callable services” on page 62

Using COMPUTE and other arithmetic statements

Use the COMPUTE statement for most arithmetic evaluations rather than ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements. Often you can code only one COMPUTE
statement instead of several individual arithmetic statements.

The COMPUTE statement assigns the result of an arithmetic expression to one or
more data items:

a+b/c*d-e
a+b/c*d-e

Compute z
Compute x y z

Some arithmetic calculations might be more intuitive using arithmetic statements
other than COMPUTE. For example:

COMPUTE Equivalent arithmetic statements

Compute Increment = Increment + 1 Add 1 to Increment

Compute Balance = Subtract Overdraft from Balance
Balance - Overdraft

Compute IncrementOne = Add 1 to IncrementOne,
IncrementOne + 1 IncrementTwo,

Compute IncrementTwo = IncrementThree

IncrementTwo + 1
Compute IncrementThree =
IncrementThree + 1

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for
division in which you want to process a remainder. The REM intrinsic function also
provides the ability to process a remainder.

When you perform arithmetic calculations, you can use national decimal data
items as operands just as you use zoned decimal data items. You can also use
national floating-point data items as operands just as you use display
floating-point operands.

RELATED CONCEPTS
“Fixed-point contrasted with floating-point arithmetic” on page 64
Appendix A, “Intermediate results and arithmetic precision,” on page 673|

RELATED TASKS
[“Defining numeric data” on page 45|

Using arithmetic expressions

You can use arithmetic expressions in many (but not all) places in statements
where numeric data items are allowed.

For example, you can use arithmetic expressions as comparands in relation
conditions:

If (a+b) > (c-d+5) Then. . .

Enterprise COBOL for z/OS V4.1 Programming Guide

Arithmetic expressions can consist of a single numeric literal, a single numeric data
item, or a single intrinsic function reference. They can also consist of several of
these items connected by arithmetic operators.

Arithmetic operators are evaluated in the following order of precedence:

Table 9. Order of evaluation of arithmetic operators

Operator Meaning Order of evaluation
Unary + or - Algebraic sign First

* Exponentiation Second

/ or* Division or multiplication Third

Binary + or - Addition or subtraction Last

Operators at the same level of precedence are evaluated from left to right;
however, you can use parentheses to change the order of evaluation. Expressions
in parentheses are evaluated before the individual operators are evaluated.
Parentheses, whether necessary or not, make your program easier to read.

RELATED CONCEPTS
“Fixed-point contrasted with floating-point arithmetic” on page 64|
Appendix A, “Intermediate results and arithmetic precision,” on page 673|

Using numeric intrinsic functions

You can use numeric intrinsic functions only in places where numeric expressions
are allowed. These functions can save you time because you don’t have to code the
many common types of calculations that they provide.

Numeric intrinsic functions return a signed numeric value, and are treated as
temporary numeric data items.

Numeric functions are classified into the following categories:

Integer
Those that return an integer

Floating point
Those that return a long (64-bit) or extended-precision (128-bit)
floating-point value (depending on whether you compile using the default
option ARITH(COMPAT) or using ARITH(EXTEND))

Mixed Those that return an integer, a floating-point value, or a fixed-point
number with decimal places, depending on the arguments

You can use intrinsic functions to perform several different arithmetic operations,
as outlined in the following table.

Chapter 3. Working with numbers and arithmetic 59

Table 10. Numeric intrinsic functions

Number
handling Date and time Finance Mathematics Statistics
LENGTH CURRENT-DATE ANNUITY ACOS MEAN
MAX DATE-OF-INTEGER PRESENT-VALUE ASIN MEDIAN
MIN DATE-TO-YYYYMMDD ATAN MIDRANGE
NUMVAL DATEVAL (WIN RANDOM
NUMVAL-C DAY-OF-INTEGER FACTORIAL RANGE
ORD-MAX DAY-TO-YYYYDDD INTEGER STANDARD-DEVIATION
ORD-MIN INTEGER-OF-DATE INTEGER-PART VARIANCE
INTEGER-OF-DAY LOG
UNDATE LOG10
WHEN-COMPILED MOD
YEAR-TO-YYYY REM
YEARWINDOW SIN
SQRT
SUM
TAN

Using

[“Examples: numeric intrinsic functions” on page 62

You can reference one function as the argument of another. A nested function is
evaluated independently of the outer function (except when the compiler
determines whether a mixed function should be evaluated using fixed-point or
floating-point instructions).

You can also nest an arithmetic expression as an argument to a numeric function.
For example, in the statement below, there are three function arguments (a, b, and
the arithmetic expression (c / d)):

Compute x = Function Sum(a b (c / d))

You can reference all the elements of a table (or array) as function arguments by
using the ALL subscript.

You can also use the integer special registers as arguments wherever integer
arguments are allowed.

Many of the capabilities of numeric intrinsic functions are also provided by
Language Environment callable services.

RELATED CONCEPTS
“Fixed-point contrasted with floating-point arithmetic” on page 64|
Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED REFERENCES
[“ARITH” on page 306

math-oriented callable services

Most COBOL intrinsic functions have corresponding math-oriented callable
services that you can use to produce the same results.

When you compile with the default option ARITH(COMPAT), COBOL floating-point
intrinsic functions return long (64-bit) results. When you compile with option

60 Enterprise COBOL for z/OS V4.1 Programming Guide

ARITH(EXTEND), COBOL floating-point intrinsic functions (with the exception of
RANDOM) return extended-precision (128-bit) results.

For example (considering the first row of the table below), if you compile using
ARITH(COMPAT), CEESDACS returns the same result as ACOS. If you compile using
ARITH(EXTEND), CEESQACS returns the same result as ACOS.

Table 11. Compatibility of math intrinsic functions and callable services

Corresponding Corresponding Results same for intrinsic

COBOL intrinsic long-precision Language extended-precision Language | function and callable
function Environment callable service | Environment callable service |service?

ACOS CEESDACS CEESQACS Yes

ASIN CEESDASN CEESQASN Yes

ATAN CEESDATN CEESQATN Yes

cos CEESDCOS CEESQCOS Yes

LOG CEESDLOG CEESQLOG Yes

LOG10 CEESDLG1 CEESQLG1 Yes

RANDOM! CEERANO none No

REM CEESDMOD CEESQMOD Yes

SIN CEESDSIN CEESQSIN Yes

SQRT CEESDSQT CEESQSQT Yes

TAN CEESDTAN CEESQTAN Yes

1. RANDOM returns a long (64-bit) floating-point result even if you pass it a 31-digit argument and compile with
ARITH(EXTEND).

Both the RANDOM intrinsic function and CEERANO service generate random
numbers between zero and one. However, because each uses its own algorithm,
RANDOM and CEERANO produce different random numbers from the same seed.

Even for functions that produce the same results, how you use intrinsic functions
and Language Environment callable services differs. The rules for the data types
required for intrinsic function arguments are less restrictive. For numeric intrinsic
functions, you can use arguments that are of any numeric data type. When you
invoke a Language Environment callable service with a CALL statement, however,
you must ensure that the parameters match the numeric data types (generally
COMP-1 or COMP-2) required by that service.

The error handling of intrinsic functions and Language Environment callable
services sometimes differs. If you pass an explicit feedback token when calling the
Language Environment math services, you must check the feedback code after
each call and take explicit action to deal with errors. However, if you call with the
feedback token explicitly OMITTED, you do not need to check the token; Language
Environment automatically signals any errors.

RELATED CONCEPTS
“Fixed-point contrasted with floating-point arithmetic” on page 64|
Appendix A, “Intermediate results and arithmetic precision,” on page 673

RELATED TASKS
[‘Using Language Environment callable services” on page 667]

Chapter 3. Working with numbers and arithmetic 61

62

RELATED REFERENCES
[“ARITH” on page 306

Using date callable services

Both the COBOL date intrinsic functions and the Language Environment date
callable services are based on the Gregorian calendar. However, the starting dates
can differ depending on the setting of the INTDATE compiler option.

When INTDATE(LILIAN) is in effect, COBOL uses October 15, 1582 as day 1.
Language Environment always uses October 15, 1582 as day 1. If you use
INTDATE(LILIAN), you get equivalent results from COBOL intrinsic functions and
Language Environment date callable services. The following table compares the
results when INTDATE (LILIAN) is in effect.

Table 12. INTDATE(LILIAN) and compatibility of date intrinsic functions and callable

services

Language Environment callable
COBOL intrinsic function | service Results
DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD | Compatible
DAY-OF-INTEGER CEEDATE with picture string YYYYDDD | Compatible
INTEGER-OF-DATE CEEDAYS Compatible
INTEGER-OF-DATE CEECBLDY Incompatible

When the default setting of INTDATE (ANSI) is in effect, COBOL uses January 1, 1601
as day 1. The following table compares the results when INTDATE(ANSI) is in effect.

Table 13. INTDATE(ANSI) and compatibility of date intrinsic functions and callable

services

Language Environment callable
COBOL intrinsic function | service Results
INTEGER-OF-DATE CEECBLDY Compatible
DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD | Incompatible
DAY-OF-INTEGER CEEDATE with picture string YYYYDDD | Incompatible
INTEGER-OF-DATE CEEDAYS Incompatible

RELATED TASKS
[‘Using Language Environment callable services” on page 667]

RELATED REFERENCES
[“INTDATE” on page 323|

Examples: numeric intrinsic functions

The following examples and accompanying explanations show intrinsic functions
in each of several categories.

Where the examples below show zoned decimal data items, national decimal items

could instead be used. (Signed national decimal items, however, require that the
SIGN SEPARATE clause be in effect.)

Enterprise COBOL for z/OS V4.1 Programming Guide

General number handling

Suppose you want to find the maximum value of two prices (represented below as
alphanumeric items with dollar signs), put this value into a numeric field in an
output record, and determine the length of the output record. You can use
NUMVAL-C (a function that returns the numeric value of an alphanumeric or national
literal, or an alphanumeric or national data item) and the MAX and LENGTH functions
to do so:

01 X Pic 9(2).
01 Pricel Pic x(8) Value "$8000".
01 Price2 Pic x(8) Value "$2000".

01 Output-Record.
05 Product-Name Pic x(20).
05 Product-Number Pic 9(9).
05 Product-Price Pic 9(6).

Procedure Division.
Compute Product-Price =
Function Max (Function Numval-C(Pricel) Function Numval-C(Price2))
Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters,
you can use the following statement:

Move Function Upper-case (Product-Name) to Product-Name
Date and time

The following example shows how to calculate a due date that is 90 days from
today. The first eight characters returned by the CURRENT-DATE function represent
the date in a four-digit year, two-digit month, and two-digit day format (YYYYMMDD).
The date is converted to its integer value; then 90 is added to this value and the
integer is converted back to the YYYYMMDD format.

01 YYYYMMDD Pic 9(8).
01 Integer-Form Pic S9(9).

Move Function Current-Date(1:8) to YYYYMMDD

Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)
Add 90 to Integer-Form

Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)
Display 'Due Date: ' YYYYMMDD

Finance

Business investment decisions frequently require computing the present value of
expected future cash inflows to evaluate the profitability of a planned investment.
The present value of an amount that you expect to receive at a given time in the
future is that amount, which, if invested today at a given interest rate, would
accumulate to that future amount.

For example, assume that a proposed investment of $1,000 produces a payment
stream of $100, $200, and $300 over the next three years, one payment per year
respectively. The following COBOL statements calculate the present value of those
cash inflows at a 10% interest rate:

01 Series-Amtl Pic 9(9)V99 Value 100.
01 Series-Amt2 Pic 9(9)Vv99 Value 200.
01 Series-Amt3 Pic 9(9)V99 Value 300.

01 Discount-Rate Pic S9(2)V9(6) Value .10.
01 Todays-Value Pic 9(9)Vv99.

Chapter 3. Working with numbers and arithmetic 63

Compute Todays-Value =
Function
Present-Value(Discount-Rate Series-Amtl Series-Amt2 Series-Amt3)

You can use the ANNUITY function in business problems that require you to
determine the amount of an installment payment (annuity) necessary to repay the
principal and interest of a loan. The series of payments is characterized by an
equal amount each period, periods of equal length, and an equal interest rate each
period. The following example shows how you can calculate the monthly payment
required to repay a $15,000 loan in three years at a 12% annual interest rate (36
monthly payments, interest per month = .12/12):

01 Loan Pic 9(9)Vv99.
01 Payment Pic 9(9)Vv99.
01 Interest Pic 9(9)Vv99.

01 Number-Periods Pic 99.

Compute Loan = 15000
Compute Interest = .12
Compute Number-Periods = 36
Compute Payment =
Loan * Function Annuity((Interest / 12) Number-Periods)

Mathematics

The following COBOL statement demonstrates that you can nest intrinsic
functions, use arithmetic expressions as arguments, and perform previously
complex calculations simply:

Compute Z = Function Log(Function Sqrt (2 = X + 1)) + Function Rem(X 2)

Here in the addend the intrinsic function REM (instead of a DIVIDE statement with a
REMAINDER clause) returns the remainder of dividing X by 2.

Statistics

Intrinsic functions make calculating statistical information easier. Assume you are
analyzing various city taxes and want to calculate the mean, median, and range
(the difference between the maximum and minimum taxes):

01 Tax-S Pic 99v999 value .045.
01 Tax-T Pic 99v999 value .02.
01 Tax-W Pic 99v999 value .035.
01 Tax-B Pic 99v999 value .03.
01 Ave-Tax Pic 99v999.
01 Median-Tax Pic 99v999.

01 Tax-Range Pic 99v999.

Function Mean (Tax-S Tax-T Tax-W Tax-B)
Function Median (Tax-S Tax-T Tax-W Tax-B)
Function Range (Tax-S Tax-T Tax-W Tax-B)

Compute Ave-Tax
Compute Median-Tax
Compute Tax-Range

RELATED TASKS
[“Converting to numbers (NUMVAL, NUMVAL-C)” on page 113|

Fixed-point contrasted with floating-point arithmetic

How you code arithmetic in a program (whether an arithmetic statement, an
intrinsic function, an expression, or some combination of these nested within each
other) determines whether the evaluation is done with floating-point or fixed-point
arithmetic.

64 Enterprise COBOL for z/OS V4.1 Programming Guide

Many statements in a program could involve arithmetic. For example, each of the
following types of COBOL statements requires some arithmetic evaluation:

* General arithmetic

compute report-matrix-col = (emp-count ** .5) + 1

add report-matrix-min to report-matrix-max giving report-matrix-tot
* Expressions and functions

nction sqrt(emp-count) + 1

compute report-matrix-col = fu
= function integer-part((average-hours) + 1)

compute whole-hours
* Arithmetic comparisons

if report-matrix-col < function sqrt(emp-count) + 1
if whole-hours not = function integer-part((average-hours) + 1)

Floating-point evaluations

In general, if your arithmetic coding has either of the characteristics listed below, it
is evaluated in floating-point arithmetic:

e An operand or result field is floating point.

An operand is floating point if you code it as a floating-point literal or if you
code it as a data item that is defined as USAGE COMP-1, USAGE COMP-2, or external
floating point (USAGE DISPLAY or USAGE NATIONAL with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to a numeric
intrinsic function results in floating-point arithmetic when any of the following
conditions is true:

— An argument in an arithmetic expression results in floating point.

— The function is a floating-point function.

— The function is a mixed function with one or more floating-point arguments.
* An exponent contains decimal places.

An exponent contains decimal places if you use a literal that contains decimal
places, give the item a PICTURE that contains decimal places, or use an arithmetic
expression or function whose result has decimal places.

An arithmetic expression or numeric function yields a result that has decimal
places if any operand or argument (excluding divisors and exponents) has decimal
places.

Fixed-point evaluations

In general, if an arithmetic operation contains neither of the characteristics listed
above for floating point, the compiler causes it to be evaluated in fixed-point
arithmetic. In other words, arithmetic evaluations are handled as fixed point only if
all the operands are fixed point, the result field is defined to be fixed point, and
none of the exponents represent values with decimal places. Nested arithmetic
expressions and function references must also represent fixed-point values.

Arithmetic comparisons (relation conditions)

When you compare numeric expressions using a relational operator, the numeric
expressions (whether they are data items, arithmetic expressions, function
references, or some combination of these) are comparands in the context of the
entire evaluation. That is, the attributes of each can influence the evaluation of the
other: both expressions are evaluated in fixed point, or both are evaluated in

Chapter 3. Working with numbers and arithmetic 65

66

floating point. This is also true of abbreviated comparisons even though one
comparand does not explicitly appear in the comparison. For example:

if (a+d) = (b+e)andc

This statement has two comparisons: (a + d) = (b +e), and (a + d) = c.
Although (a + d) does not explicitly appear in the second comparison, it is a
comparand in that comparison. Therefore, the attributes of ¢ can influence the
evaluation of (a + d).

The compiler handles comparisons (and the evaluation of any arithmetic
expressions nested in comparisons) in floating-point arithmetic if either comparand
is a floating-point value or resolves to a floating-point value.

The compiler handles comparisons (and the evaluation of any arithmetic
expressions nested in comparisons) in fixed-point arithmetic if both comparands
are fixed-point values or resolve to fixed-point values.

Implicit comparisons (no relational operator used) are not handled as a unit,
however; the two comparands are treated separately as to their evaluation in
floating-point or fixed-point arithmetic. In the following example, five arithmetic
expressions are evaluated independently of one another’s attributes, and then are
compared to each other.

evaluate (a + d)

when (b + e) thru c
when (f / g) thru (h * i)

end-evaluate

[“Examples: fixed-point and floating-point evaluations”]

RELATED REFERENCES
[“Arithmetic expressions in nonarithmetic statements” on page 681|

Examples: fixed-point and floating-point evaluations

The following example shows statements that are evaluated using fixed-point
arithmetic and using floating-point arithmetic.

Assume that you define the data items for an employee table in the following
manner:

01 employee-table.
05 emp-count pic 9(4).
05 employee-record occurs 1 to 1000 times
depending on emp-count.

10 hours pic +9(5)e+99.
01 report-matrix-col pic 9(3).
01 report-matrix-min pic 9(3).
01 report-matrix-max pic 9(3).
01 report-matrix-tot pic 9(3).
01 average-hours pic 9(3)v9.
01 whole-hours pic 9(4).

These statements are evaluated using floating-point arithmetic:

compute report-matrix-col = (emp-count ** .5) + 1
compute report-matrix-col = function sqrt(emp-count) + 1
if report-matrix-tot < function sqrt(emp-count) + 1

These statements are evaluated using fixed-point arithmetic:

Enterprise COBOL for z/OS V4.1 Programming Guide

add report-matrix-min to report-matrix-max giving report-matrix-tot
compute report-matrix-max =

function max(report-matrix-max report-matrix-tot)
if whole-hours not = function integer-part((average-hours) + 1)

Using currency signs

Many programs need to process financial information and present that information
using the appropriate currency signs. With COBOL currency support (and the
appropriate code page for your printer or display unit), you can use several
currency signs in a program.

You can use one or more of the following signs:

¢ Symbols such as the dollar sign ($)

* Currency signs of more than one character (such as USD or EUR)
 Euro sign, established by the Economic and Monetary Union (EMU)

To specify the symbols for displaying financial information, use the CURRENCY SIGN
clause (in the SPECIAL-NAMES paragraph in the CONFIGURATION SECTION) with the
PICTURE characters that relate to those symbols. In the following example, the
PICTURE character $ indicates that the currency sign $US is to be used:

Currency Sign is "$US" with Picture Symbol "$".
77 Invoice-Amount Pic $$,$$9.99.

Display "Invoice amount is " Invoice-Amount.

In this example, if Invoice-Amount contained 1500.00, the display output would be:
Invoice amount is $US1,500.00

By using more than one CURRENCY SIGN clause in your program, you can allow for
multiple currency signs to be displayed.

You can use a hexadecimal literal to indicate the currency sign value. Using a
hexadecimal literal could be useful if the data-entry method for the source
program does not allow the entry of the intended characters easily. The following
example shows the hexadecimal value X'9F' used as the currency sign:

Currency Sign X'9F' with Picture Symbol 'U'.

01 Deposit-Amount Pic UUUUU9.99.

If there is no corresponding character for the euro sign on your keyboard, you
need to specify it as a hexadecimal value in the CURRENCY SIGN clause. The
hexadecimal value for the euro sign is either X'9F' or X'5A' depending on the code
page in use, as shown in the following table.

Table 14. Hexadecimal values of the euro sign

Code page Modified

CCSID Applicable countries from Euro sign

1140 USA, Canada, Netherlands, Portugal, Australia, | 037 X'9F
New Zealand

1141 Austria, Germany 273 X'9F

1142 Denmark, Norway 277 X'5A’

1143 Finland, Sweden 278 X'5A’

Chapter 3. Working with numbers and arithmetic 67

Table 14. Hexadecimal values of the euro sign (continued)

Code page Modified

CCSID Applicable countries from Euro sign
1144 Italy 280 X'9F
1145 Spain, Latin America - Spanish 284 X'9F
1146 UK 285 X'9F
1147 France 297 X'9F
1148 Belgium, Canada, Switzerland 500 X'9F
1149 Iceland 871 X'9F

RELATED REFERENCES
[“CURRENCY” on page 312
CURRENCY SIGN clause (Enterprise COBOL Language Reference)

Example: multiple currency signs

The following example shows how you can display values in both euro currency
(as EUR) and Swiss francs (as CHF).

IDENTIFICATION DIVISION.
PROGRAM-ID. EuroSamp.
Environment Division.
Configuration Section.
Special-Names.
Currency Sign is "CHF " with Picture Symbol "F"
Currency Sign is "EUR " with Picture Symbol "U".
Data Division.
Working-Storage Section.
01 Deposit-in-Euro Pic S9999V99 Value 8000.00.
01 Deposit-in-CHF Pic S99999v99.
01 Deposit-Report.
02 Report-in-Franc Pic -FFFFF9.99.
02 Report-in-Euro Pic -UUUUU9.99.
01 EUR-to-CHF-Conv-Rate Pic 9V99999 Value 1.53893.

PROCEDURE DIVISION.
Report-Deposit-in-CHF-and-EUR.
Move Deposit-in-Euro to Report-in-Euro
Compute Deposit-in-CHF Rounded
= Deposit-in-Euro * EUR-to-CHF-Conv-Rate
On Size Error
Perform Conversion-Error
Not On Size Error
Move Deposit-in-CHF to Report-in-Franc
Display "Deposit in euro " Report-in-Euro
Display "Deposit in franc = " Report-in-Franc
End-Compute
Goback.
Conversion-Error.
Display "Conversion error from EUR to CHF"
Display "Euro value: " Report-in-Euro.

The above example produces the following display output:

EUR 8000.00
CHF 12311.44

Deposit in euro
Deposit in franc

The exchange rate used in this example is for illustrative purposes only.

68 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 4. Handling tables

A table is a collection of data items that have the same description, such as account
totals or monthly averages; it consists of a table name and subordinate items called
table elements. A table is the COBOL equivalent of an array.

SAMPLE-TABLE-ONE

COBOL Code

01 SAMPLE-TABLE-ONE. | | | | | |
05 TABLE-COLUMN OCCURS 3 TIMES.

10 TABLE-ITEM-1 PO N

10 TABLE-ITEM-2 REGRALLY)

In the example above, SAMPLE-TABLE-ONE is the group item that contains the table.
TABLE-COLUMN names the table element of a one-dimensional table that occurs three
times.

Rather than defining repetitious items as separate, consecutive entries in the DATA
DIVISION, you use the OCCURS clause in the DATA DIVISION entry to define a table.
This practice has these advantages:

* The code clearly shows the unity of the items (the table elements).
* You can use subscripts and indexes to refer to the table elements.
* You can easily repeat data items.

Tables are important for increasing the speed of a program, especially one that
looks up records.

RELATED TASKS

“Nesting tables” on page 71|

“Defining a table (OCCURS)”|

“Referring to an item in a table” on page 72|

“Putting values into a table” on page 75|

“Creating variable-length tables (DEPENDING ON)” on page 81]
“Searching a table” on page 84

“Processing table items using intrinsic functions” on page 86|
“Handling tables efficiently” on page 653|

Defining a table (OCCURS)

To code a table, give the table a group name and define a subordinate item (the
table element) to be repeated n times.
01 table-name.

05 element-name OCCURS n TIMES.
. . . (subordinate items of the table element)

In the example above, table-name is the name of an alphanumeric group item. The
table element definition (which includes the OCCURS clause) is subordinate to the
group item that contains the table. The 0CCURS clause cannot appear in a level-01
description.

© Copyright IBM Corp. 1991, 2007 69

If a table is to contain only Unicode (UTF-16) data, and you want the group item
that contains the table to behave like an elementary category national item in most
operations, code the GROUP-USAGE NATIONAL clause for the group item:
01 table-nameN Group-Usage National.

05 element-nameN OCCURS m TIMES.

10 elementNl Pic nn.
10 elementN2 Pic S99 Sign Is Leading, Separate.

Any elementary item that is subordinate to a national group must be explicitly or
implicitly described as USAGE NATIONAL, and any subordinate numeric data item
that is signed must be implicitly or explicitly described with the SIGN IS SEPARATE
clause.

To create tables of two to seven dimensions, use nested OCCURS clauses.

To create a variable-length table, code the DEPENDING ON phrase of the OCCURS
clause.

To specify that table elements will be arranged in ascending or descending order
based on the values in one or more key fields of the table, code the ASCENDING or
DESCENDING KEY phrases of the OCCURS clause, or both. Specify the names of the
keys in decreasing order of significance. Keys can be of class alphabetic,
alphanumeric, DBCS, national, or numeric. (If it has USAGE NATIONAL, a key can be
of category national, or can be a national-edited, numeric-edited, national decimal,
or national floating-point item.)

You must code the ASCENDING or DESCENDING KEY phrase of the OCCURS clause to do
a binary search (SEARCH ALL) of a table.

[“Example: binary search” on page 86|

RELATED CONCEPTS
[“National groups” on page 129|

RELATED TASKS
“Nesting tables” on page 71|

“Referring to an item in a table” on page 72|

“Putting values into a table” on page 75|

“Creating variable-length tables (DEPENDING ON)” on page 81]
“Using national groups” on page 130

“Doing a binary search (SEARCH ALL)” on page 85|

“Defining numeric data” on page 45|

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

SIGN clause (Enterprise COBOL Language Reference)

ASCENDING KEY and DESCENDING KEY phrases
(Enterprise COBOL Language Reference)

70 Enterprise COBOL for z/OS V4.1 Programming Guide

Nesting tables

To create a two-dimensional table, define a one-dimensional table in each
occurrence of another one-dimensional table.

SAMPLE-TABLE-TWO

COBOL Code

01 SAMPLE-TABLE-TWO. I[| | | | | |
05 TABLE-ROW OCCURS 2 TIMES .«

10 TABLE-COLUMN OCCURS 3 TIMES. | | | | | |

15 TABLE-ITEM-1 PIC X(2).

15 TABLE-ITEM-2 PIC X(1).

For example, in SAMPLE-TABLE-TWO above, TABLE-ROW is an element of a
one-dimensional table that occurs two times. TABLE-COLUMN is an element of a
two-dimensional table that occurs three times in each occurrence of TABLE-ROW.

To create a three-dimensional table, define a one-dimensional table in each
occurrence of another one-dimensional table, which is itself contained in each
occurrence of another one-dimensional table. For example:

SAMPLE-TABLE-THREE

COBOL Code I T T

01 SAMPLE-TABLE-THREE.
05 TABLE-DEPTH OCCURS 2 TIMES.* |]|]

10 TABLE-ROW OCCURS 2 TIMES.

15 TABLE-COLUMN OCCURS 3 TIMES. NN

20 TABLE-ITEM-1 PIC X(2).

20 TABLE-ITEM-2 PIC X(1).

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that
occurs two times. TABLE-ROW is an element of a two-dimensional table that occurs
two times within each occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a

three-dimensional table that occurs three times within each occurrence of
TABLE-ROW.

In a two-dimensional table, the two subscripts correspond to the row and column
numbers. In a three-dimensional table, the three subscripts correspond to the
depth, row, and column numbers.

“Example: subscripting” on page 7.
“Example: indexing” on page 72|

RELATED TASKS

“Defining a table (OCCURS)” on page 69|

“Referring to an item in a table” on page 72
“Putting values into a table” on page 75

“Creating variable-length tables (DEPENDING ON)” on page 8|

“Searching a table” on page 84

“Processing table items using intrinsic functions” on page 86|

“Handling tables efficiently” on page 653|

RELATED REFERENCES
OCCURS clause (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 71

Example: subscripting

The following example shows valid references to SAMPLE-TABLE-THREE that use
literal subscripts. The spaces are required in the second example.

TABLE-COLUMN (2, 2, 1)
TABLE-COLUMN (2 2 1)

In either table reference, the first value (2) refers to the second occurrence within
TABLE-DEPTH, the second value (2) refers to the second occurrence within TABLE-ROW,
and the third value (1) refers to the first occurrence within TABLE-COLUMN.

The following reference to SAMPLE-TABLE-TWO uses variable subscripts. The reference
is valid if SUB1 and SUB2 are data-names that contain positive integer values within
the range of the table.

TABLE-COLUMN (SUB1 SUB2)

RELATED TASKS
[“Subscripting” on page 73]

Example: indexing

The following example shows how displacements to elements that are referenced
with indexes are calculated.

Consider the following three-dimensional table, SAMPLE-TABLE-FOUR:

01 SAMPLE-TABLE-FOUR
05 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.
10 TABLE-ROW OCCURS 4 TIMES INDEXED BY INX-B.
15 TABLE-COLUMN OCCURS 8 TIMES INDEXED BY INX-C PIC X(8).

Suppose you code the following relative indexing reference to SAMPLE-TABLE-FOUR:
TABLE-COLUMN (INX-A + 1, INX-B + 2, INX-C - 1)

This reference causes the following computation of the displacement to the
TABLE-COLUMN element:

(contents of INX-A) + (256 * 1)
+ (contents of INX-B) + (64 * 2)
+ (contents of INX-C) - (8 = 1)

This calculation is based on the following element lengths:

* Each occurrence of TABLE-DEPTH is 256 bytes in length (4 * 8 * 8).
* Each occurrence of TABLE-ROW is 64 bytes in length (8 * 8).

* Each occurrence of TABLE-COLUMN is 8 bytes in length.

RELATED TASKS
[“Indexing” on page 74|

Referring to an item in a table

A table element has a collective name, but the individual items within it do not
have unique data-names.

To refer to an item, you have a choice of three techniques:

72 Enterprise COBOL for z/OS V4.1 Programming Guide

* Use the data-name of the table element, along with its occurrence number
(called a subscript) in parentheses. This technique is called subscripting.

¢ Use the data-name of the table element, along with a value (called an index) that
is added to the address of the table to locate an item (as a displacement from the
beginning of the table). This technique is called indexing, or subscripting using
index-names.

* Use both subscripts and indexes together.

RELATED TASKS
“Subscripting” |
“Indexing” on page 74|

Subscripting

The lowest possible subscript value is 1, which references the first occurrence of a
table element. In a one-dimensional table, the subscript corresponds to the row
number.

You can use a literal or a data-name as a subscript. If a data item that has a literal
subscript is of fixed length, the compiler resolves the location of the data item.

When you use a data-name as a variable subscript, you must describe the
data-name as an elementary numeric integer. The most efficient format is
COMPUTATIONAL (COMP) with a PICTURE size that is smaller than five digits. You
cannot use a subscript with a data-name that is used as a subscript. The code
generated for the application resolves the location of a variable subscript at run
time.

You can increment or decrement a literal or variable subscript by a specified
integer amount. For example:

TABLE-COLUMN (SUB1 - 1, SUB2 + 3)

You can change part of a table element rather than the whole element. To do so,
refer to the character position and length of the substring to be changed. For
example:

01 ANY-TABLE.

05 TABLE-ELEMENT PIC X(10)
OCCURS 3 TIMES VALUE "ABCDEFGHIJ".

MOVE "??" TO TABLE-ELEMENT (1) (3 : 2).

The MOVE statement in the example above moves the string "??” into table element
number 1, beginning at character position 3, for a length of 2 characters.

ANY-TABLE ANY-TABLE
before the change: after the change:
* ABCDEFGHIJ AB?7EFGHIJ
. ABCDEFGHIJ ABCDEFGHIJ
| ABCDEFGHLJ ABCDEFGHIJ

[“Example: subscripting” on page 72|

RELATED TASKS
[“Indexing” on page 74

Chapter 4. Handling tables 73

74

“Putting values into a table” on page 75|

“Searching a table” on page 84|

“Handling tables efficiently” on page 653|

Indexing

You create an index by using the INDEXED BY phrase of the OCCURS clause to
identify an index-name.

For example, INX-A in the following code is an index-name:

05 TABLE-ITEM PIC X(8)
OCCURS 10 INDEXED BY INX-A.

The compiler calculates the value contained in the index as the occurrence number
(subscript) minus 1, multiplied by the length of the table element. Therefore, for
the fifth occurrence of TABLE-ITEM, the binary value contained in INX-Ais (5 - 1) * 8§,
or 32.

You can use an index-name to reference another table only if both table
descriptions have the same number of table elements, and the table elements are of
the same length.

You can use the USAGE IS INDEX clause to create an index data item, and can use
an index data item with any table. For example, INX-B in the following code is an
index data item:

77 INX-B USAGE IS INDEX.

SET INX-A TO 10

SET INX-B TO INX-A.

PERFORM VARYING INX-A FROM 1 BY 1 UNTIL INX-A > INX-B
DISPLAY TABLE-ITEM (INX-A)

END-PERFORM.

The index-name INX-A is used to traverse table TABLE-ITEM above. The index data
item INX-B is used to hold the index of the last element of the table. The advantage
of this type of coding is that calculation of offsets of table elements is minimized,
and no conversion is necessary for the UNTIL condition.

You can use the SET statement to assign to an index data item the value that you
stored in an index-name, as in the statement SET INX-B TO INX-A above. For
example, when you load records into a variable-length table, you can store the
index value of the last record into a data item defined as USAGE IS INDEX. Then
you can test for the end of the table by comparing the current index value with the
index value of the last record. This technique is useful when you look through or
process a table.

You can increment or decrement an index-name by an elementary integer data
item or a nonzero integer literal, for example:

SET INX-A DOWN BY 3

The integer represents a number of occurrences. It is converted to an index value
before being added to or subtracted from the index.

Enterprise COBOL for z/OS V4.1 Programming Guide

Initialize the index-name by using a SET, PERFORM VARYING, or SEARCH ALL
statement. You can then use the index-name in SEARCH or relational condition
statements. To change the value, use a PERFORM, SEARCH, or SET statement.

Because you are comparing a physical displacement, you can directly use index
data items only in SEARCH and SET statements or in comparisons with indexes or
other index data items. You cannot use index data items as subscripts or indexes.

[“Example: indexing” on page 72|

RELATED TASKS
“Subscripting” on page 73]

"“Putting values into a table”]

“Searching a table” on page 84|

“Processing table items using intrinsic functions” on page 86|
“Handling tables efficiently” on page 653

RELATED REFERENCES
INDEXED BY phrase (Enterprise COBOL Language Reference)
INDEX phrase (Enterprise COBOL Language Reference)
SET statement (Enterprise COBOL Language Reference)

Putting values

into a table

You can put values into a table by loading the table dynamically, initializing the
table with the INITIALIZE statement, or assigning values with the VALUE clause
when you define the table.

RELATED TASKS

“Loading a table dynamically”|

“Loading a variable-length table” on page 82|

“Initializing a table (INITIALIZE)” on page 76|

" Assigning values when you define a table (VALUE)” on page 77|
" Assigning values to a variable-length table” on page 8

Loading a table dynamically

If the initial values of a table are different with each execution of your program,
you can define the table without initial values. You can instead read the changed
values into the table dynamically before the program refers to the table.

To load a table, use the PERFORM statement and either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not
exceed the space allocated for the table. Use a named value (rather than a literal)
for the maximum item count. Then, if you make the table bigger, you need to
change only one value instead of all references to a literal.

“Example: PERFORM and subscripting” on page 79|

“Example: PERFORM and indexing” on page 80

RELATED REFERENCES
PERFORM with VARYING phrase (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 75

Initializing a table (INITIALIZE)

You can load a table by coding one or more INITIALIZE statements.

For example, to move the value 3 into each of the elementary numeric data items
in a table called TABLE-ONE, shown below, you can code the following statement:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

To move the character X" into each of the elementary alphanumeric data items in
TABLE-ONE, you can code the following statement:

INITIALIZE TABLE-ONE REPLACING ALPHANUMERIC DATA BY "X".

When you use the INITIALIZE statement to initialize a table, the table is processed
as a group item (that is, with group semantics); elementary data items within the
group are recognized and processed. For example, suppose that TABLE-ONE is an
alphanumeric group that is defined like this:

01 TABLE-ONE.
02 Trans-out Occurs 20.

05 Trans-code Pic X Value "R".
05 Part-number Pic XX Value "13".
05 Trans-quan Pic 99 Value 10.

05 Price-fields.
10 Unit-price Pic 99V Value 50.
10 Discount Pic 99V Value 25.
10 Sales-Price Pic 999 Value 375.

Initialize TABLE-ONE Replacing Numeric Data By 3
Alphanumeric Data By "X"

The table below shows the content that each of the twenty 12-byte elements
Trans-out (n) has before execution and after execution of the INITIALIZE statement
shown above:

Trans-out (n) before Trans-out(n) after

R13105025375 XXb030303003"

1. The symbol b represents a blank space.

You can similarly use an INITIALIZE statement to load a table that is defined as a
national group. For example, if TABLE-ONE shown above specified the GROUP-USAGE
NATIONAL clause, and Trans-code and Part-number had N instead of X in their
PICTURE clauses, the following statement would have the same effect as the
INITIALIZE statement above, except that the data in TABLE-ONE would instead be
encoded in UTF-16:

Initialize TABLE-ONE Replacing Numeric Data By 3
National Data By N"X"

The REPLACING NUMERIC phrase initializes floating-point data items also.
You can use the REPLACING phrase of the INITIALIZE statement similarly to
initialize all of the elementary ALPHABETIC, DBCS, ALPHANUMERIC-EDITED,
NATIONAL-EDITED, and NUMERIC-EDITED data items in a table.

The INITIALIZE statement cannot assign values to a variable-length table (that is, a
table that was defined using the OCCURS DEPENDING ON clause).

76 Enterprise COBOL for z/OS V4.1 Programming Guide

[“Examples: initializing data items” on page 30|

RELATED TASKS
“Initializing a structure (INITIALIZE)” on page 32|

" Assigning values when you define a table (VALUE)”]

" Assigning values to a variable-length table” on page 83|
“Looping through a table” on page 100

“Using data items and group items” on page 26|

“Using national groups” on page 130

RELATED REFERENCES
INITIALIZE statement (Enterprise COBOL Language Reference)

Assigning values when you define a table (VALUE)

If a table is to contain stable values (such as days and months), you can set the
specific values when you define the table.

Set static values in tables in one of these ways:

* Initialize each table item individually.

* Initialize an entire table at the group level.

¢ Initialize all occurrences of a given table element to the same value.

RELATED TASKS
“Initializing each table item individually”]

“Initializing a table at the group level” on page 78|

“Initializing all occurrences of a given table element” on page 7§
“Initializing a structure (INITIALIZE)” on page 32|

Initializing each table item individually

If a table is small, you can set the value of each item individually by using a VALUE
clause.

Use the following technique, which is shown in the example code below:

1. Declare a record (such as Error-Flag-Table below) that contains the items that
are to be in the table.

2. Set the initial value of each item in a VALUE clause.
3. Code a REDEFINES entry to make the record into a table.

B R R R R R R R R R R R e T

Hkk ERROR FLAG TABLE *kk
khhkkhhkhkhkhhkkhhhhhhdhhhhhhhdhhdhhhhdhhdhhdhdhhdrhdrhhxhhhidxkx
01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.
05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times
Indexed By Flag-Index Pic X.

Chapter 4. Handling tables 77

78

In the example above, the VALUE clause at the 01 level initializes each of the table
items to the same value. Each table item could instead be described with its own
VALUE clause to initialize that item to a distinct value.

To initialize larger tables, use MOVE, PERFORM, or INITIALIZE statements.
RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32|
" Assigning values to a variable-length table” on page 83|

RELATED REFERENCES
REDEFINES clause (Enterprise COBOL Language Reference)
OCCURS clause (Enterprise COBOL Language Reference)

Initializing a table at the group level

Code an alphanumeric or national group data item and assign to it, through the
VALUE clause, the contents of the whole table. Then, in a subordinate data item, use
an OCCURS clause to define the individual table items.

In the following example, the alphanumeric group data item TABLE-ONE uses a
VALUE clause that initializes each of the four elements of TABLE-TWO:

01 TABLE-ONE VALUE "1234".
05 TABLE-TWO OCCURS 4 TIMES PIC X.

In the following example, the national group data item Table-OneN uses a VALUE
clause that initializes each of the three elements of the subordinate data item
Table-TwoN (each of which is implicitly USAGE NATIONAL). Note that you can
initialize a national group data item with a VALUE clause that uses an alphanumeric
literal, as shown below, or a national literal.
01 Table-OneN Group-Usage National Value "AB12CD34EF56".

05 Table-TwoN Occurs 3 Times Indexed By MyI.

10 ElementOneN Pic nn.
10 ElementTwoN Pic 99.

After Table-0neN is initialized, ElementOneN(1) contains NX"00410042" (the UTF-16
representation of 'AB’), the national decimal item ElementTwoN(1) contains
NX"00310032" (the UTF-16 representation of "12"), and so forth.

RELATED REFERENCES
OCCURS clause (Enterprise COBOL Language Reference)
GROUP-USAGE clause (Enterprise COBOL Language Reference)

Initializing all occurrences of a given table element

You can use the VALUE clause in the data description of a table element to initialize
all instances of that element to the specified value.

01 T2.
05 T-0BJ PIC 9 VALUE 3.
05 T OCCURS 5 TIMES
DEPENDING ON T-0BJ.

10 X PIC XX VALUE "AA".
10°Y PIC 99 VALUE 19.
10 Z PIC XX VALUE "BB".

For example, the code above causes all the X elements (1 through 5) to be
initialized to AA, all the Y elements (1 through 5) to be initialized to 19, and all the
Z elements (1 through 5) to be initialized to BB. T-0BJ is then set to 3.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
[“Assigning values to a variable-length table” on page 83|

RELATED REFERENCES
OCCURS clause (Enterprise COBOL Language Reference)

Example: PERFORM and subscripting

This example traverses an error-flag table using subscripting until an error code
that has been set is found. If an error code is found, the corresponding error
message is moved to a print report field.

EE R R R R R R R R R R Rk R R R R R R o R R R R R

*kk ERROR FLAG TABLE *kk
kkhkkkkhkkhkkhkkhhkkkhhkkhkhhkkhhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhkkhkhkkhkkkkkx
01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.
05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times

Indexed By Flag-Index Pic X.
77 Error-on Pic X Value "E".
Jekok ko ko ok ok Kok ke ke ok ok k Kkkokkokkkokkok ok kokkokkok ko ok ko ko ko ok ok ko Kokkokkokkokkok *
*kk ERROR MESSAGE TABLE *kk

KRR ARKR A RN AR AR KRR A KRNI AR A AR A AR AR RA I A Fhkdhhdhhdhhddhhdhhdixsd
01 Error-Message-Table.

05 Filler Pic X(25) Value
"Transaction Type Invalid".

05 Filler Pic X(25) Value
"Shift Code Invalid".

05 Filler Pic X(25) Value
"Home Location Code Inval.".

05 Filler Pic X(25) Value
"Work Location Code Inval.".

05 Filler Pic X(25) Value
"Last Name - Blanks".

05 Filler Pic X(25) Value
"Initials - Blanks".

05 Filler Pic X(25) Value
"DupTicate Record Found".

05 Filler Pic X(25) Value

"Commuter Record Not Found".
01 Filler Redefines Error-Message-Table.
05 Error-Message Occurs 8 Times
Indexed By Message-Index Pic X(25).

PROCEDURE DIVISION.
Perform
Varying Sub From 1 By 1
Until No-Errors
If Error-Flag (Sub) = Error-On
Move Space To Error-Flag (Sub)
Move Error-Message (Sub) To Print-Message
Perform 260-Print-Report

End-If
End-Perform

Chapter 4. Handling tables 79

Example: PERFORM and indexing

This example traverses an error-flag table using indexing until an error code that
has been set is found. If an error code is found, the corresponding error message is
moved to a print report field.

B e e e e e o R R T

*kk ERROR FLAG TABLE wkk
""""""" B
01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.
05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times

Indexed By Flag-Index Pic X.
77 Error-on Pic X Value "E".
Khhkkhhkhkhkhhhkhhhdhhdrhdhhhhdhhdhhdhdhhhhhdhhhhddhhdrhdhhhridtxkx
*okok ERROR MESSAGE TABLE *kk

khhkkhkhhkhkkhhkhhhhkdhhdrhhdhhhhdhhdhhhdrhhhdhhdhhdhrddhhdrhhhrhhrdhikx
01 Error-Message-Table.

05 Filler Pic X(25) Value
"Transaction Type Invalid".

05 Filler Pic X(25) Value
"Shift Code Invalid".

05 Filler Pic X(25) Value
"Home Location Code Inval.".

05 Filler Pic X(25) Value
"Work Location Code Inval.".

05 Filler Pic X(25) Value
"Last Name - Blanks".

05 Filler Pic X(25) Value
"Initials - Blanks".

05 Filler Pic X(25) Value
"Duplicate Record Found".

05 Filler Pic X(25) Value

"Commuter Record Not Found".
01 Filler Redefines Error-Message-Table.
05 Error-Message Occurs 8 Times
Indexed By Message-Index Pic X(25).

PROCEDURE DIVISION.

Set Flag-Index To 1
Perform Until No-Errors
Search Error-Flag
When Error-Flag (Flag-Index) = Error-On
Move Space To Error-Flag (Flag-Index)
Set Message-Index To Flag-Index
Move Error-Message (Message-Index) To
Print-Message
Perform 260-Print-Report
End-Search
End-Perform

80 Enterprise COBOL for z/OS V4.1 Programming Guide

Creating variable-length tables (DEPENDING ON)

If you do not know before run time how many times a table element occurs, define
a variable-length table. To do so, use the 0CCURS DEPENDING ON (ODO) clause.

X OCCURS 1 TO 10 TIMES DEPENDING ON Y
In the example above, X is called the ODO subject, and Y is called the ODO object.

Two factors affect the successful manipulation of variable-length records:
* Correct calculation of record lengths

The length of the variable portions of a group item is the product of the object
of the DEPENDING ON phrase and the length of the subject of the 0CCURS clause.

* Conformance of the data in the object of the OCCURS DEPENDING ON clause to its
PICTURE clause
If the content of the ODO object does not match its PICTURE clause, the program

could terminate abnormally. You must ensure that the ODO object correctly
specifies the current number of occurrences of table elements.

The following example shows a group item (REC-1) that contains both the subject
and object of the OCCURS DEPENDING ON clause. The way the length of the group
item is determined depends on whether it is sending or receiving data.

WORKING-STORAGE SECTION.
01 MAIN-AREA.

03 REC-1.
05 FIELD-1 PIC 9.
05 FIELD-2 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-1 PIC X(05).
01 REC-2.
03 REC-2-DATA PIC X(50).

If you want to move REC-1 (the sending item in this case) to REC-2, the length of
REC-1 is determined immediately before the move, using the current value in
FIELD-1. If the content of FIELD-1 conforms to its PICTURE clause (that is, if FIELD-1
contains a zoned decimal item), the move can proceed based on the actual length
of REC-1. Otherwise, the result is unpredictable. You must ensure that the ODO
object has the correct value before you initiate the move.

When you do a move to REC-1 (the receiving item in this case), the length of REC-1
is determined using the maximum number of occurrences. In this example, five
occurrences of FIELD-2, plus FIELD-1, yields a length of 26 bytes. In this case, you
do not need to set the ODO object (FIELD-1) before referencing REC-1 as a receiving
item. However, the sending field’s ODO object (not shown) must be set to a valid
numeric value between 1 and 5 for the ODO object of the receiving field to be
validly set by the move.

However, if you do a move to REC-1 (again the receiving item) where REC-1 is
followed by a variably located group (a type of complex ODO), the actual length of
REC-1 is calculated immediately before the move, using the current value of the
ODO object (FIELD-1). In the following example, REC-1 and REC-2 are in the same
record, but REC-2 is not subordinate to REC-1 and is therefore variably located:

01 MAIN-AREA

03 REC-1.
05 FIELD-1 PIC 9.
05 FIELD-3 PIC 9.
05 FIELD-2 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-1 PIC X(05).

Chapter 4. Handling tables 81

03 REC-2.
05 FIELD-4 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-3 PIC X(05).

The compiler issues a message that lets you know that the actual length was used.
This case requires that you set the value of the ODO object before using the group
item as a receiving field.

The following example shows how to define a variable-length table when the ODO
object (LOCATION-TABLE-LENGTH below) is outside the group:

DATA DIVISION.

FILE SECTION.

FD LOCATION-FILE
RECORDING MODE F
BLOCK O RECORDS
RECORD 80 CHARACTERS
LABEL RECORD STANDARD.

01 LOCATION-RECORD.

05 LOC-CODE PIC XX.

05 LOC-DESCRIPTION PIC X(20).

05 FILLER PIC X(58).

WORKING-STORAGE SECTION.
01 FLAGS.
05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.
88 LOCATION-EOF VALUE "FALSE".
01 MISC-VALUES.

05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.
khkkkkhkhkhkhkhkkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkhkhhkkkhhkhkhkx
sk LOCATION TABLE -
- FILE CONTAINS LOCATION CODES. -
""""""" AR AR AR A A AR A IR Ak d**

01 LOCATION-TABLE.
05 LOCATION-CODE OCCURS 1 TO 100 TIMES
DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

RELATED CONCEPTS
[Appendix B, “Complex OCCURS DEPENDING ON,” on page 683

RELATED TASKS
" Assigning values to a variable-length table” on page 83|

“Loading a variable-length table”]

“Preventing overlay when adding elements to a variable table” on page 685
“Finding the length of data items” on page 118|

Enterprise COBOL Compiler and Runtime Migration Guide|

RELATED REFERENCES
OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Loading a variable-length table

You can use a do-until structure (a TEST AFTER loop) to control the loading of a
variable-length table. For example, after the following code runs,
LOCATION-TABLE-LENGTH contains the subscript of the last item in the table.

DATA DIVISION.

FILE SECTION.

FD LOCATION-FILE
RECORDING MODE F
BLOCK 0 RECORDS
RECORD 80 CHARACTERS
LABEL RECORD STANDARD.

82 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

01 LOCATION-RECORD.

05 LOC-CODE PIC XX.
05 LOC-DESCRIPTION PIC X(20).
05 FILLER PIC X(58).
WORKING-STORAGE SECTION.
01 FLAGS.
05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.
88 LOCATION-EOF VALUE "YES".

01 MISC-VALUES.
05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.
kkhkkkkhkkhkhkkhkhkkhhkhkhhkkhhkkhhkhkhhkhhhkkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkhkhkkhkhkkhhkhkkhkkkhkkhkxk
Hokk LOCATION TABLE Kok
Hokk FILE CONTAINS LOCATION CODES. Kok

R e e e R T T T T e s T

01 LOCATION-TABLE.
05 LOCATION-CODE OCCURS 1 TO 100 TIMES
DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

PROCEDURE DIVISION.

Perform Test After
Varying Location-Table-Length From 1 By 1
Until Location-EOF
Or Location-Table-Length = Location-Table-Max
Move Location-Record To
Location-Code (Location-Table-Length)
Read Location-File
At End Set Location-EOF To True
End-Read
End-Perform

Assigning values to a variable-length table

You can code a VALUE clause for an alphanumeric or national group item that has a
subordinate data item that contains the 0CCURS clause with the DEPENDING ON
phrase. Each subordinate structure that contains the DEPENDING ON phrase is
initialized using the maximum number of occurrences.

If you define the entire table by using the DEPENDING ON phrase, all the elements
are initialized using the maximum defined value of the ODO (0CCURS DEPENDING
ON) object.

If the ODO object is initialized by a VALUE clause, it is logically initialized after the
ODO subject has been initialized.
01 TABLE-THREE VALUE "3ABCDE".

05 X PIC 9.

05 Y OCCURS 5 TIMES
DEPENDING ON X PIC X.

For example, in the code above, the ODO subject Y(1) is initialized to 'A’, Y(2) to
'B’, ..., Y(5) to 'E, and finally the ODO object X is initialized to 3. Any subsequent
reference to TABLE-THREE (such as in a DISPLAY statement) refers to X and the first
three elements, Y(1) through Y(3), of the table.

RELATED TASKS
[“Assigning values when you define a table (VALUE)” on page 77

RELATED REFERENCES
OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Chapter 4. Handling tables 83

Searching a table

84

Doing

COBOL provides two search techniques for tables: serial and binary.

To do serial searches, use SEARCH and indexing. For variable-length tables, you can
use PERFORM with subscripting or indexing.

To do binary searches, use SEARCH ALL and indexing.

A binary search can be considerably more efficient than a serial search. For a serial
search, the number of comparisons is of the order of n, the number of entries in
the table. For a binary search, the number of comparisons is of the order of only
the logarithm (base 2) of n. A binary search, however, requires that the table items
already be sorted.

RELATED TASKS

“Doing a serial search (SEARCH)"|
“Doing a binary search (SEARCH ALL)” on page 85|

a serial search (SEARCH)

Use the SEARCH statement to do a serial (sequential) search beginning at the current
index setting. To modify the index setting, use the SET statement.

The conditions in the WHEN phrase are evaluated in the order in which they appear:

* If none of the conditions is satisfied, the index is increased to correspond to the
next table element, and the WHEN conditions are evaluated again.

e If one of the WHEN conditions is satisfied, the search ends. The index remains
pointing to the table element that satisfied the condition.

e If the entire table has been searched and no conditions were met, the AT END
imperative statement is executed if there is one. If you did not code AT END,
control passes to the next statement in the program.

You can reference only one level of a table (a table element) with each SEARCH
statement. To search multiple levels of a table, use nested SEARCH statements.
Delimit each nested SEARCH statement with END-SEARCH.

Performance: If the found condition comes after some intermediate point in the
table, you can speed up the search by using the SET statement to set the index to
begin the search after that point. Arranging the table so that the data used most
often is at the beginning of the table also enables more efficient serial searching. If
the table is large and is presorted, a binary search is more efficient.

[“Example: serial search’|

RELATED REFERENCES
SEARCH statement (Enterprise COBOL Language Reference)

Example: serial search

The following example shows how you might find a particular string in the
innermost table of a three-dimensional table.

Enterprise COBOL for z/OS V4.1 Programming Guide

Each dimension of the table has its own index (set to 1, 4, and 1, respectively). The
innermost table (TABLE-ENTRY3) has an ascending key.
01 TABLE-ONE.
05 TABLE-ENTRY1 OCCURS 10 TIMES
INDEXED BY TE1-INDEX.
10 TABLE-ENTRY2 OCCURS 10 TIMES
INDEXED BY TE2-INDEX.
15 TABLE-ENTRY3 OCCURS 5 TIMES
ASCENDING KEY IS KEY1
INDEXED BY TE3-INDEX.
20 KEY1 PIC X(5).
20 KEY2 PIC X(10).

PROCEDURE DIVISION.

SET TEI-INDEX TO 1

SET TE2-INDEX TO 4

SET TE3-INDEX TO 1

MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

MOVE "AAAAAAAAQO" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

SEARCH TABLE-ENTRY3
AT END
MOVE 4 TO RETURN-CODE
WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)
= "A1234AAAAAAAAQO"
MOVE O TO RETURN-CODE
END-SEARCH

Values after execution:

TE1-INDEX =1

TE2-INDEX = 4

TE3-INDEX points to the TABLE-ENTRY3 item
that equals "A1234AAAAAAAAGO"

RETURN-CODE = 0

Doing a binary search (SEARCH ALL)

If you use SEARCH ALL to do a binary search, you do not need to set the index
before you begin. The index is always the one that is associated with the first
index-name in the 0CCURS clause. The index varies during execution to maximize
the search efficiency.

To use the SEARCH ALL statement to search a table, the table must specify the
ASCENDING or DESCENDING KEY phrases of the OCCURS clause, or both, and must
already be ordered on the key or keys that are specified in the ASCENDING and
DESCENDING KEY phrases.

In the WHEN phrase of the SEARCH ALL statement, you can test any key that is named
in the ASCENDING or DESCENDING KEY phrases for the table, but you must test all
preceding keys, if any. The test must be an equal-to condition, and the WHEN phrase
must specify either a key (subscripted by the first index-name associated with the
table) or a condition-name that is associated with the key. The WHEN condition can
be a compound condition that is formed from simple conditions that use AND as the
only logical connective.

Each key and its object of comparison must be compatible according to the rules

for comparison of data items. Note though that if a key is compared to a national
literal or identifier, the key must be a national data item.

Chapter 4. Handling tables 85

“Example: binary search”
p

RELATED TASKS
[‘Defining a table (OCCURS)” on page 69|

RELATED REFERENCES
SEARCH statement (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)

Example: binary search
The following example shows how you can code a binary search of a table.

Suppose you define a table that contains 90 elements of 40 bytes each, and three
keys. The primary and secondary keys (KEY-1 and KEY-2) are in ascending order,
but the least significant key (KEY-3) is in descending order:

01 TABLE-A.
05 TABLE-ENTRY OCCURS 90 TIMES
ASCENDING KEY-1, KEY-2
DESCENDING KEY-3
INDEXED BY INDX-1.

10 PART-1 PIC 99.

10 KEY-1 PIC 9(5).
10 PART-2 PIC 9(6).
10 KEY-2 PIC 9(4).
10 PART-3 PIC 9(18).
10 KEY-3 PIC 9(5).

You can search this table by using the following statements:

SEARCH ALL TABLE-ENTRY
AT END
PERFORM NOENTRY

WHEN KEY-1 (INDX-1) = VALUE-1 AND
KEY-2 (INDX-1) = VALUE-2 AND
KEY-3 (INDX-1) = VALUE-3

MOVE PART-1 (INDX-1) TO OUTPUT-AREA
END-SEARCH

If an entry is found in which each of the three keys is equal to the value to which
it is compared (VALUE-1, VALUE-2, and VALUE-3, respectively), PART-1 of that entry is
moved to OUTPUT-AREA. If no matching key is found in the entries in TABLE-A, the
NOENTRY routine is performed.

Processing table items using intrinsic functions

86

You can use intrinsic functions to process alphabetic, alphanumeric, national, or
numeric table items. (You can process DBCS data items only with the NATIONAL-OF
intrinsic function.) The data descriptions of the table items must be compatible
with the requirements for the function arguments.

Use a subscript or index to reference an individual data item as a function
argument. For example, assuming that Table-One is a 3 x 3 array of numeric items,
you can find the square root of the middle element by using this statement:

Compute X = Function Sqrt(Table-One(2,2))

You might often need to iteratively process the data in tables. For intrinsic
functions that accept multiple arguments, you can use the subscript ALL to

Enterprise COBOL for z/OS V4.1 Programming Guide

reference all the items in the table or in a single dimension of the table. The
iteration is handled automatically, which can make your code shorter and simpler.

You can mix scalars and array arguments for functions that accept multiple
arguments:

Compute Table-Median = Function Median(Argl Table-One(ALL))

[“Example: processing tables using intrinsic functions”|

RELATED TASKS

“Using intrinsic functions (built-in functions)” on page 4d
“Converting data items (intrinsic functions)” on page 112
“Evaluating data items (intrinsic functions)” on page 115

RELATED REFERENCES
Intrinsic functions (Enterprise COBOL Language Reference)

Example: processing tables using intrinsic functions

These examples show how you can apply an intrinsic function to some or all of the
elements in a table by using the ALL subscript.

Assuming that Table-Two is a 2 x 3 x 2 array, the following statement adds the
values in elements Table-Two(1,3,1), Table-Two(1,3,2), Table-Two(2,3,1), and
Table-Two(2,3,2):

Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL))

The following example computes various salary values for all the employees
whose salaries are encoded in Employee-Table:

01 Employee-Table.
05 Emp-Count Pic s9(4) usage binary.
05 Emp-Record Occurs 1 to 500 times
depending on Emp-Count.
10 Emp-Name Pic x(20).
10 Emp-Idme Pic 9(9).
10 Emp-Salary Pic 9(7)v99.

Procedure Division.
Compute Max-Salary
Compute I

Function Max(Emp-Salary(ALL))
Function Ord-Max(Emp-Salary(ALL))
Compute Avg-Salary Function Mean(Emp-Salary(ALL))
Compute Salary-Range Function Range(Emp-Salary(ALL))
Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

Chapter 4. Handling tables 87

88 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 5. Selecting and repeating program actions

Use COBOL control language to choose program actions based on the outcome of
logical tests, to iterate over selected parts of your program and data, and to
identify statements to be performed as a group.

These controls include the IF, EVALUATE, and PERFORM statements, and the use of
switches and flags.

RELATED TASKS
“Selecting program actions”]
“Repeating program actions” on page 97|

Selecting program actions

You can provide for different program actions depending on the tested value of
one or more data items.

The IF and EVALUATE statements in COBOL test one or more data items by means
of a conditional expression.

RELATED TASKS
“Coding a choice of actions”]
“Coding conditional expressions” on page 94

RELATED REFERENCES
IF statement (Enterprise COBOL Language Reference)
EVALUATE statement (Enterprise COBOL Language Reference)

Coding a choice of actions

Use IF . . . ELSE to code a choice between two processing actions. (The word
THEN is optional.) Use the EVALUATE statement to code a choice among three or
more possible actions.
IF condition-p

statement-1
ELSE

statement-2
END-IF

When one of two processing choices is no action, code the IF statement with or
without ELSE. Because the ELSE clause is optional, you can code the IF statement as
follows:

IF condition-q

statement-1
END-IF

Such coding is suitable for simple cases. For complex logic, you probably need to
use the ELSE clause. For example, suppose you have nested IF statements in which
there is an action for only one of the processing choices. You could use the ELSE
clause and code the null branch of the IF statement with the CONTINUE statement:

© Copyright IBM Corp. 1991, 2007 89

90

IF condition-q
statement-1
ELSE
CONTINUE
END-IF

The EVALUATE statement is an expanded form of the IF statement that allows you to
avoid nesting IF statements, a common source of logic errors and debugging

problems.

RELATED TASKS

"“Using nested IF statements’]

“Using the EVALUATE statement” on page 91|

“Coding conditional expressions” on page 94|

Using nested IF statements

When an IF statement contains an IF statement as one of its possible branches, the
IF statements are said to be nested. Theoretically, there is no limit to the depth of
nested IF statements.

However, use nested IF statements sparingly. The logic can be difficult to follow,
although explicit scope terminators and indentation help. When a program has to
test a variable for more than two values, EVALUATE is probably a better choice.

The following pseudocode depicts a nested IF statement:

IF condition-p
IF condition-q
statement-1
ELSE
statement-2
END-IF
statement-3
ELSE
statement-4
END-IF

In the pseudocode above, an IF statement and a sequential structure are nested in
one branch of the outer IF. In this structure, the END-IF that closes the nested IF is
very important. Use END-IF instead of a period, because a period would end the
outer IF structure also.

The following figure shows the logic structure of the pseudocode above.

Enterprise COBOL for z/OS V4.1 Programming Guide

Statement 1

True
|
Trie condition-q v—» Statement 3
|
. . Statement2 Q—»
False > Statement4

RELATED TASKS
[“Coding a choice of actions” on page 89|

RELATED REFERENCES
Explicit scope terminators (Enterprise COBOL Language Reference)

Using the EVALUATE statement

You can use the EVALUATE statement instead of a series of nested IF statements to
test several conditions and specify a different action for each. Thus you can use the
EVALUATE statement to implement a case structure or decision table.

You can also use the EVALUATE statement to cause multiple conditions to lead to the
same processing, as shown in these examples:

“Example: EVALUATE using THRU phrase” on page 92|
“Example: EVALUATE using multiple WHEN phrases” on page 92|

In an EVALUATE statement, the operands before the WHEN phrase are referred to as
selection subjects, and the operands in the WHEN phrase are called the selection objects.
Selection subjects can be identifiers, literals, conditional expressions, or the word
TRUE or FALSE. Selection objects can be identifiers, literals, conditional or arithmetic
expressions, or the word TRUE, FALSE, or ANY.

You can separate multiple selection subjects with the ALSO phrase. You can separate
multiple selection objects with the ALSO phrase. The number of selection objects
within each set of selection objects must be equal to the number of selection
subjects, as shown in this example:

[“Example: EVALUATE testing several conditions” on page 93|

Identifiers, literals, or arithmetic expressions that appear within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects. Conditions or the word TRUE or FALSE that appear in a selection

Chapter 5. Selecting and repeating program actions 91

object must correspond to a conditional expression or the word TRUE or FALSE in
the set of selection subjects. (You can use the word ANY as a selection object to
correspond to any type of selection subject.)

The execution of the EVALUATE statement ends when one of the following
conditions occurs:

* The statements associated with the selected WHEN phrase are performed.
* The statements associated with the WHEN OTHER phrase are performed.
* No WHEN conditions are satisfied.

WHEN phrases are tested in the order that they appear in the source program.
Therefore, you should order these phrases for the best performance. First code the
WHEN phrase that contains selection objects that are most likely to be satisfied, then
the next most likely, and so on. An exception is the WHEN OTHER phrase, which must
come last.

RELATED TASKS
[“Coding a choice of actions” on page 89|

RELATED REFERENCES
EVALUATE statement (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)

Example: EVALUATE using THRU phrase:

This example shows how you can code several conditions in a range of values to
lead to the same processing action by coding the THRU phrase. Operands in a THRU
phrase must be of the same class.

In this example, CARPOOL-SIZE is the selection subject; 1, 2, and 3 THRU 6 are the
selection objects:

EVALUATE CARPOOL-SIZE
WHEN 1
MOVE "SINGLE" TO PRINT-CARPOOL-STATUS
WHEN 2
MOVE "COUPLE" TO PRINT-CARPOOL-STATUS
WHEN 3 THRU 6
MOVE "SMALL GROUP" TO PRINT-CARPOOL STATUS
WHEN OTHER
MOVE "BIG GROUP" TO PRINT-CARPOOL STATUS
END-EVALUATE

The following nested IF statements represent the same logic:

IF CARPOOL-SIZE = 1 THEN
MOVE "SINGLE" TO PRINT-CARPOOL-STATUS
ELSE
IF CARPOOL-SIZE = 2 THEN
MOVE "COUPLE" TO PRINT-CARPOOL-STATUS
ELSE
IF CARPOOL-SIZE >= 3 and CARPOOL-SIZE <= 6 THEN
MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS
ELSE
MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS
END-IF
END-IF
END-IF

Example: EVALUATE using multiple WHEN phrases:

92 Enterprise COBOL for z/OS V4.1 Programming Guide

The following example shows that you can code multiple WHEN phrases if several
conditions should lead to the same action. Doing so gives you more flexibility than
using only the THRU phrase, because the conditions do not have to evaluate to
values in a range nor have the same class.

EVALUATE MARITAL-CODE
WHEN "M"
ADD 2 TO PEOPLE-COUNT
WHEN "S"
WHEN "D"
WHEN "W"
ADD 1 TO PEOPLE-COUNT
END-EVALUATE

The following nested IF statements represent the same logic:

IF MARITAL-CODE = "M" THEN
ADD 2 TO PEOPLE-COUNT
ELSE
IF MARITAL-CODE = "S" OR
MARITAL-CODE = "D" OR
MARITAL-CODE = "W" THEN
ADD 1 TO PEOPLE-COUNT
END-IF
END-IF

Example: EVALUATE testing several conditions:

This example shows the use of the ALSO phrase to separate two selection subjects
(True ALSO True) and to separate the two corresponding selection objects within
each set of selection objects (for example, When A + B < 10 Also C = 10).

Both selection objects in a WHEN phrase must satisfy the TRUE, TRUE condition before
the associated action is performed. If both objects do not evaluate to TRUE, the next
WHEN phrase is processed.

Identification Division.
Program-ID. MiniEval.

Environment Division.
Configuration Section.
Source-Computer. IBM-390.

Data Division.
Working-Storage Section.

01 Age Pic 999.
01 Sex Pic X.
01 Description Pic X(15).
01 A Pic 999.
01 B Pic 9999.
01 C Pic 9999.
01 D Pic 9999.
01 E Pic 99999.
01 F Pic 999999.
Procedure Division.
PNO1.

Evaluate True Also True

When Age < 13 Also Sex = "M"
Move "Young Boy" To Description

When Age < 13 Also Sex = "F"
Move "Young Girl" To Description

When Age > 12 And Age < 20 Also Sex = "M"
Move "Teenage Boy" To Description

When Age > 12 And Age < 20 Also Sex = "F"
Move "Teenage Girl" To Description

When Age > 19 Also Sex = "M"
Move "Adult Man" To Description

When Age > 19 Also Sex = "F"

Chapter 5. Selecting and repeating program actions 93

Move "Adult Woman" To Description
When Other
Move "Invalid Data" To Description
End-Evaluate
Evaluate True Also True
When A + B < 10 Also C = 10
Move "Case 1" To Description
When A+ B>50 AlsoC=(D+E)/F
Move "Case 2" To Description
When Other
Move "Case Other" To Description
End-Evaluate
Stop Run.

Coding conditional expressions

Using the IF and EVALUATE statements, you can code program actions that will be
performed depending on the truth value of a conditional expression.

The following are some of the conditions that you can specify:
¢ Relation conditions, such as:

Numeric comparisons

Alphanumeric comparisons

— DBCS comparisons

National comparisons
* Class conditions; for example, to test whether a data item:
— IS NUMERIC
— IS ALPHABETIC
— IS DBCS
— IS KANJI
— IS NOT KANJI

* Condition-name conditions, to test the value of a conditional variable that you
define

* Sign conditions, to test whether a numeric operand IS POSITIVE, NEGATIVE, or
ZERO

* Switch-status conditions, to test the status of UPSI switches that you name in the
SPECIAL-NAMES paragraph

* Complex conditions, such as:
— Negated conditions; for example, NOT (A IS EQUAL TO B)
— Combined conditions (conditions combined with logical operators AND or OR)

RELATED CONCEPTS
[“Switches and flags” on page 95|

RELATED TASKS
“Defining switches and flags” on page 95|

"“Resetting switches and flags” on page 96|

“Checking for incompatible data (numeric class test)” on page 56
“Comparing national (UTF-16) data” on page 139

“Testing for valid DBCS characters” on page 143]

RELATED REFERENCES
General relation conditions (Enterprise COBOL Language Reference)

94 Enterprise COBOL for z/OS V4.1 Programming Guide

Class condition (Enterprise COBOL Language Reference)

Rules for condition-name entries (Enterprise COBOL Language Reference)
Sign condition (Enterprise COBOL Language Reference)

Combined conditions (Enterprise COBOL Language Reference)

Switches and flags

Some program decisions are based on whether the value of a data item is true or
false, on or off, yes or no. Control these two-way decisions by using level-88 items
with meaningful names (condition-names) to act as switches.

Other program decisions depend on the particular value or range of values of a
data item. When you use condition-names to give more than just on or off values
to a field, the field is generally referred to as a flag.

Flags and switches make your code easier to change. If you need to change the
values for a condition, you have to change only the value of that level-88
condition-name.

For example, suppose a program uses a condition-name to test a field for a given
salary range. If the program must be changed to check for a different salary range,
you need to change only the value of the condition-name in the DATA DIVISION.
You do not need to make changes in the PROCEDURE DIVISION.

RELATED TASKS
“Defining switches and flags”|
“Resetting switches and flags” on page 96|

Defining switches and flags

In the DATA DIVISION, define level-88 items that will act as switches or flags, and
give them meaningful names.

To test for more than two values with flags, assign more than one condition-name
to a field by using multiple level-88 items.

The reader can easily follow your code if you choose meaningful condition-names
and if the values assigned to them have some association with logical values.

“Example: switches”]
“Example: flags” on page 96|

Example: switches

The following examples show how you can use level-88 items to test for various
binary-valued (on-off) conditions in your program.

For example, to test for the end-of-file condition for an input file named
Transaction-File, you can use the following data definitions:
Working-Storage Section.

01 Switches.

05 Transaction-EOF-Switch Pic X value space.
88 Transaction-EQOF value "y".

The level-88 description says that a condition named Transaction-EQF is turned on

when Transaction-EOF-Switch has value "y’. Referencing Transaction-EOF in the
PROCEDURE DIVISION expresses the same condition as testing Transaction-EOF-

Chapter 5. Selecting and repeating program actions 95

96

Switch = "y". For example, the following statement causes a report to be printed
only if Transaction-EOF-Switch has been set to "y”:

If Transaction-EOF Then
Perform Print-Report-Summary-Lines

Example: flags

The following examples show how you can use several level-88 items together
with an EVALUATE statement to determine which of several conditions in a program
is true.

Consider for example a program that updates a master file. The updates are read
from a transaction file. The records in the file contain a field that indicates which
of the three functions is to be performed: add, change, or delete. In the record
description of the input file, code a field for the function code using level-88 items:
01 Transaction-Input Record
05 Transaction-Type Pic X.
88 Add-Transaction Value "A".

88 Change-Transaction Value "C".
88 Delete-Transaction Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names to determine
which function is to be performed might look like this:
Evaluate True
When Add-Transaction
Perform Add-Master-Record-Paragraph
When Change-Transaction
Perform Update-Existing-Record-Paragraph
When Delete-Transaction
Perform Delete-Master-Record-Paragraph
End-Evaluate

Resetting switches and flags

Throughout your program, you might need to reset switches or flags to the
original values they had in their data descriptions. To do so, either use a SET
statement or define a data item to move to the switch or flag.

When you use the SET condition-name TO TRUE statement, the switch or flag is set to
the original value that it was assigned in its data description. For a level-88 item
that has multiple values, SET condition-name TO TRUE assigns the first value (A in the
example below):

88 Record-is-Active Value "A" "0" "S"

Using the SET statement and meaningful condition-names makes it easier for
readers to follow your code.

“Example: set switch on”}

“Example: set switch off” on page 97

Example: set switch on

The following examples show how you can set a switch on by coding a SET
statement that moves the value TRUE to a level-88 item.

For example, the SET statement in the following example has the same effect as
coding the statement Move "y" to Transaction-EOF-Switch:

Enterprise COBOL for z/OS V4.1 Programming Guide

01 Switches
05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".

Procedure Division.
000-Do-Main-Logic.
Perform 100-Initialize-Paragraph
Read Update-Transaction-File
At End Set Transaction-EOF to True
End-Read

The following example shows how to assign a value to a field in an output record
based on the transaction code of an input record:

01 Input-Record.

05 Transaction-Type Pic X(9).
01 Data-Record-Out.
05 Data-Record-Type Pic X.
88 Record-Is-Active Value "A".
88 Record-Is-Suspended Value "S".
88 Record-Is-Deleted Value "D".
05 Key-Field Pic X(5).

Procedure Division.
Evaluate Transaction-Type of Input-Record
When "ACTIVE"
Set Record-Is-Active to TRUE
When "SUSPENDED"
Set Record-Is-Suspended to TRUE
When "DELETED"
Set Record-Is-Deleted to TRUE
End-Evaluate

Example: set switch off

The following example shows how you can set a switch off by coding a MOVE
statement that moves a value to a level-88 item.

For example, you can use a data item called SWITCH-OFF to set an on-off switch to
off, as in the following code, which resets a switch to indicate that end-of-file has
not been reached:

01 Switches

05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".
01 SWITCH-OFF Pic X Value "n".

Procedure Division.

Move SWITCH-OFF to Transaction-EOF-Switch

Repeating program actions

Use a PERFORM statement to repeat the same code (that is, loop) either a specified
number of times or based on the outcome of a decision.

You can also use a PERFORM statement to execute a paragraph and then implicitly
return control to the next executable statement. In effect, this PERFORM statement is
a way of coding a closed subroutine that you can enter from many different parts

of the program.

PERFORM statements can be inline or out-of-line.

Chapter 5. Selecting and repeating program actions 97

98

RELATED TASKS

“Choosing inline or out-of-line PERFORM]

“Coding a loop” on page 99

“Looping through a table” on page 100

“Executing multiple paragraphs or sections” on page 100)

RELATED REFERENCES
PERFORM statement (Enterprise COBOL Language Reference)

Choosing inline or out-of-line PERFORM

An inline PERFORM is an imperative statement that is executed in the normal flow of
a program; an out-of-line PERFORM entails a branch to a named paragraph and an
implicit return from that paragraph.

To determine whether to code an inline or out-of-line PERFORM statement, answer
the following questions:

 Is the PERFORM statement used in several places?

Use an out-of-line PERFORM when you want to use the same portion of code in
several places in your program.

* Which placement of the statement will be easier to read?

If the code to be performed is short, an inline PERFORM can be easier to read. But
if the code extends over several screens, the logical flow of the program might
be clearer if you use an out-of-line PERFORM. (Each paragraph in structured
programming should perform one logical function, however.)

* What are the efficiency tradeoffs?

An inline PERFORM avoids the overhead of branching that occurs with an
out-of-line PERFORM. But even out-of-line PERFORM coding can improve code
optimization, so efficiency gains should not be overemphasized.

In the 1974 COBOL standard, the PERFORM statement is out-of-line and thus requires
a branch to a separate paragraph and an implicit return. If the performed
paragraph is in the subsequent sequential flow of your program, it is also executed
in that logic flow. To avoid this additional execution, place the paragraph outside
the normal sequential flow (for example, after the GOBACK) or code a branch around
it.

The subject of an inline PERFORM is an imperative statement. Therefore, you must
code statements (other than imperative statements) within an inline PERFORM with
explicit scope terminators.

[“Example: inline PERFORM statement”’

Example: inline PERFORM statement
This example shows the structure of an inline PERFORM statement that has the
required scope terminators and the required END-PERFORM phrase.

Perform 100-Initialize-Paragraph
* The following statement is an inline PERFORM:
Perform Until Transaction-EOF
Read Update-Transaction-File Into WS-Transaction-Record
At End
Set Transaction-EOF To True
Not At End
Perform 200-Edit-Update-Transaction
If No-Errors
Perform 300-Update-Commuter-Record

Enterprise COBOL for z/OS V4.1 Programming Guide

Else
Perform 400-Print-Transaction-Errors
* End-If is a required scope terminator
End-If
Perform 410-Re-Initialize-Fields
* End-Read is a required scope terminator
End-Read
End-Perform

Coding a loop

Use the PERFORM . . . TIMES statement to execute a paragraph a specified number
of times.

PERFORM 010-PROCESS-ONE-MONTH 12 TIMES
INSPECT . . .

In the example above, when control reaches the PERFORM statement, the code for the
paragraph 010-PROCESS-ONE-MONTH is executed 12 times before control is transferred
to the INSPECT statement.

Use the PERFORM . . . UNTIL statement to execute a paragraph until a condition
you choose is satisfied. You can use either of the following forms:

PERFORM . . . WITH TEST AFTER UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . UNTIL . . .

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL statement if you want to
execute the paragraph at least once, and test before any subsequent execution. This
statement is equivalent to a do-until structure:

l | False

Do one jteration of Test True
_’(- PERFORM >\ Condition

In the following example, the implicit WITH TEST BEFORE phrase provides a
do-while structure:
PERFORM 010-PROCESS-ONE-MONTH

UNTIL MONTH GREATER THAN 12
INSPECT . . .

When control reaches the PERFORM statement, the condition MONTH GREATER THAN 12
is tested. If the condition is satisfied, control is transferred to the INSPECT

statement. If the condition is not satisfied, 010-PROCESS-ONE-MONTH is executed, and
the condition is tested again. This cycle continues until the condition tests as true.

(To make your program easier to read, you might want to code the WITH TEST
BEFORE clause.)

Do oneiteration of

’ PERFORM |
True

False
—»(Test

W

Chapter 5. Selecting and repeating program actions 99

100

Looping through a table

You can use the PERFORM . . . VARYING statement to initialize a table. In this form
of the PERFORM statement, a variable is increased or decreased and tested until a
condition is satisfied.

Thus you use the PERFORM statement to control looping through a table. You can
use either of these forms:

PERFORM . . . WITH TEST AFTER VARYING . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . VARYING . . . UNTIL . . .

The following section of code shows an example of looping through a table to
check for invalid data:
PERFORM TEST AFTER VARYING WS-DATA-IX
FROM 1 BY 1 UNTIL WS-DATA-IX = 12
IF WS-DATA (WS-DATA-IX) EQUALS SPACES
SET SERIOUS-ERROR TO TRUE
DISPLAY ELEMENT-NUM-MSG5
END-TF
END-PERFORM
INSPECT . . .

When control reaches the PERFORM statement above, WS-DATA-IX is set equal to 1
and the PERFORM statement is executed. Then the condition WS-DATA-IX = 12 is
tested. If the condition is true, control drops through to the INSPECT statement. If
the condition is false, WS-DATA-IX is increased by 1, the PERFORM statement is
executed, and the condition is tested again. This cycle of execution and testing
continues until WS-DATA-IX is equal to 12.

The loop above controls input-checking for the 12 fields of item WS-DATA. Empty
fields are not allowed in the application, so the section of code loops and issues
error messages as appropriate.

Executing multiple paragraphs or sections

In structured programming, you usually execute a single paragraph. However, you
can execute a group of paragraphs, or a single section or group of sections, by
coding the PERFORM . . . THRU statement.

When you use the PERFORM . . . THRU statement, code a paragraph-EXIT statement
to clearly indicate the end point of a series of paragraphs.

RELATED TASKS
[“Processing table items using intrinsic functions” on page 86|

Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 6. Handling strings

COBOL provides language constructs for performing many different operations on
string data items.

For example, you can:

* Join or split data items.

* Manipulate null-terminated strings, such as count or move characters.
* Refer to substrings by their ordinal position and, if needed, length.

* Tally and replace data items, such as count the number of times a specific
character occurs in a data item.

* Convert data items, such as change to uppercase or lowercase.

* Evaluate data items, such as determine the length of a data item.

RELATED TASKS
“Joining data items (STRING)”|

“Splitting data items (UNSTRING)” on page 103

“Manipulating null-terminated strings” on page 106

“Referring to substrings of data items” on page 107

“Tallying and replacing data items (INSPECT)” on page 111|

“Converting data items (intrinsic functions)” on page 112

“Evaluating data items (intrinsic functions)” on page 115

Chapter 7, “Processing data in an international environment,” on page 121|

Joining data items (STRING)

Use the STRING statement to join all or parts of several data items or literals into
one data item. One STRING statement can take the place of several MOVE statements.

The STRING statement transfers data into a receiving data item in the order that you
indicate. In the STRING statement you also specify:

* A delimiter for each set of sending fields that, if encountered, causes those
sending fields to stop being transferred (DELIMITED BY phrase)

* (Optional) Action to be taken if the receiving field is filled before all of the
sending data has been processed (ON OVERFLOW phrase)

* (Optional) An integer data item that indicates the leftmost character position
within the receiving field into which data should be transferred (WITH POINTER
phrase)

The receiving data item must not be an edited item, or a display or national

floating-point item. If the receiving data item has:

* USAGE DISPLAY, each identifier in the statement except the POINTER identifier
must have USAGE DISPLAY, and each literal in the statement must be
alphanumeric

e USAGE NATIONAL, each identifier in the statement except the POINTER identifier
must have USAGE NATIONAL, and each literal in the statement must be national

¢ USAGE DISPLAY-1, each identifier in the statement except the POINTER identifier
must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

© Copyright IBM Corp. 1991, 2007 101

102

Only that portion of the receiving field into which data is written by the STRING
statement is changed.

[“Example: STRING statement”)

RELATED TASKS
[“Handling errors in joining and splitting strings” on page 234|

RELATED REFERENCES
STRING statement (Enterprise COBOL Language Reference)

Example: STRING statement

The following example shows the STRING statement selecting and formatting
information from a record into an output line.

The FILE SECTION defines the following record:

01 RCD-01.

05 CUST-INFO.
10 CUST-NAME PIC X(15).
10 CUST-ADDR PIC X(35).

05 BILL-INFO.
10 INV-NO PIC X(6).
10 INV-AMT PIC $$,$$$.99.
10 AMT-PAID PIC $$,$$$.99.
10 DATE-PAID PIC X(8).
10 BAL-DUE PIC $$,$$$.99.
10 DATE-DUE PIC X(8).

The WORKING-STORAGE SECTION defines the following fields:

77 RPT-LINE PIC X(120).
77 LINE-POS PIC S9(3).
77 LINE-NO PIC 9(5) VALUE 1.
77 DEC-POINT PIC X VALUE ".".

The record RCD-01 contains the following information (the symbol b indicates a
blank space):

J.B.bSMITHbbbbLD

444HSPRINGDHST. ,bCHICAGO,bILL.bbbbbb
A14275

$4,736.85

$2,400.00

09/22/76

$2,336.85

10/22/76

In the PROCEDURE DIVISION, these settings occur before the STRING statement:
* RPT-LINE is set to SPACES.
e LINE-POS, the data item to be used as the POINTER field, is set to 4.

Here is the STRING statement:

STRING
LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE
DELIMITED BY SIZE
BAL-DUE
DELIMITED BY DEC-POINT
INTO RPT-LINE
WITH POINTER LINE-POS.

Enterprise COBOL for z/OS V4.1 Programming Guide

Because the POINTER field LINE-POS has value 4 before the STRING statement is
performed, data is moved into the receiving field RPT-LINE beginning at character
position 4. Characters in positions 1 through 3 are unchanged.

The sending items that specify DELIMITED BY SIZE are moved in their entirety to
the receiving field. Because BAL-DUE is delimited by DEC-POINT, the moving of
BAL-DUE to the receiving field stops when a decimal point (the value of DEC-POINT)
is encountered.

STRING results

When the STRING statement is performed, items are moved into RPT-LINE as shown
in the table below.

Item Positions
LINE-NO 4-8
Space 9
CUST-INFO 10 - 59
INV-NO 60 - 65
Space 66
DATE-DUE 67 - 74
Space 75
Portion of BAL-DUE that precedes the decimal point 76 - 81

After the STRING statement is performed, the value of LINE-POS is 82, and RPT-LINE
has the values shown below.

Column
4 10 60 67 76
00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL. A14275 10/22/76 $2,336

Splitting data items (UNSTRING)

Use the UNSTRING statement to split a sending field into several receiving fields.
One UNSTRING statement can take the place of several MOVE statements.

In the UNSTRING statement you can specify:

* Delimiters that, when one of them is encountered in the sending field, cause the
current receiving field to stop receiving and the next, if any, to begin receiving
(DELIMITED BY phrase)

A field for the delimiter that, when encountered in the sending field, causes the
current receiving field to stop receiving (DELIMITER IN phrase)

* An integer data item that stores the number of characters placed in the current
receiving field (COUNT IN phrase)

* An integer data item that indicates the leftmost character position within the
sending field at which UNSTRING processing should begin (WITH POINTER phrase)

* An integer data item that stores a tally of the number of receiving fields that are
acted on (TALLYING IN phrase)

Chapter 6. Handling strings 103

104

* Action to be taken if all of the receiving fields are filled before the end of the
sending data item is reached (ON OVERFLOW phrase)

The sending data item and the delimiters in the DELIMITED BY phrase must be of
category alphabetic, alphanumeric, alphanumeric-edited, DBCS, national, or
national-edited.

Receiving data items can be of category alphabetic, alphanumeric, numeric, DBCS,
or national. If numeric, a receiving data item must be zoned decimal or national
decimal. If a receiving data item has:

* USAGE DISPLAY, the sending item and each delimiter item in the statement must
have USAGE DISPLAY, and each literal in the statement must be alphanumeric

* USAGE NATIONAL, the sending item and each delimiter item in the statement must
have USAGE NATIONAL, and each literal in the statement must be national

e USAGE DISPLAY-1, the sending item and each delimiter item in the statement
must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

[“Example: UNSTRING statement”

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Handling errors in joining and splitting strings” on page 234

RELATED REFERENCES
UNSTRING statement (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Example: UNSTRING statement

The following example shows the UNSTRING statement transferring selected
information from an input record. Some information is organized for printing and
some for further processing.

The FILE SECTION defines the following records:
* Record to be acted on by the UNSTRING statement:

01 INV-RCD.

05 CONTROL-CHARS PIC XX.

05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.

05 INV-CODE PIC X(10).
05 FILLER PIC X.

05 NO-UNITS PIC 9(6).
05 FILLER PIC X.

05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.

05 RTL-AMT PIC 9(6).99.

*
* UNSTRING receiving field for printed output:
01 DISPLAY-REC.

05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY-DOLS PIC 9(6).

*
* UNSTRING receiving field for further processing:

Enterprise COBOL for z/OS V4.1 Programming Guide

01 WORK-REC.

05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE REDEFINES FIELD-A PIC 9999V99.
05 INV-CLASS PIC X(3).
*
* UNSTRING statement control fields:
77 DBY-1 PIC X.
77 CTR-1 PIC S9(3).
77 CTR-2 PIC S9(3).
77 CTR-3 PIC S9(3).
77 CTR-4 PIC S9(3).
77 DLTR-1 PIC X.
77 DLTR-2 PIC X.
77 CHAR-CT PIC S9(3).
77 FLDS-FILLED PIC S9(3).

In the PROCEDURE DIVISION, these settings occur before the UNSTRING statement:
* A period (.) is placed in DBY-1 for use as a delimiter.

CHAR-CT (the POINTER field) is set to 3.

* The value zero (0) is placed in FLDS-FILLED (the TALLYING field).

¢ Data is read into record INV-RCD, whose format is as shown below.

Column
1 10 20 30 40 50 60

ZYFOUR-PENNY-NAILS 707890/BBA 475120 00122 000379.50

Here is the UNSTRING statement:

* Move subfields of INV-RCD to the subfields of DISPLAY-REC
* and WORK-REC:
UNSTRING INV-RCD
DELIMITED BY ALL SPACES OR "/" OR DBY-1
INTO ITEM-NAME COUNT IN CTR-1

INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS

M-UNITS COUNT IN CTR-3

FIELD-A

DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4
WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COMPLETE.

Because the POINTER field CHAR-CT has value 3 before the UNSTRING statement is
performed, the two character positions of the CONTROL-CHARS field in INV-RCD are
ignored.

UNSTRING results

When the UNSTRING statement is performed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME,
left justified in the area, and the four unused character positions are padded
with spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is coded as a delimiter, the five contiguous space characters
in positions 19 through 23 are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character
slash (/) is placed in DLTR-1, and the value 6 is placed in CTR-2.

Chapter 6. Handling strings 105

4. Positions 31 through 33 (BBA) are placed in INV-CLASS. The delimiter is SPACE,
but because no field has been defined as a receiving area for delimiters, the
space in position 34 is bypassed.

5. Positions 35 through 40 (475120) are placed in M-UNITS. The value 6 is placed in
CTR-3. The delimiter is SPACE, but because no field has been defined as a
receiving area for delimiters, the space in position 41 is bypassed.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right justified in the
area. The high-order digit position is filled with a zero (0). The delimiter is
SPACE, but because no field was defined as a receiving area for delimiters, the
space in position 47 is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)
delimiter in DBY-1 is placed in DLTR-2, and the value 6 is placed in CTR-4.

8. Because all receiving fields have been acted on and two characters in INV-RCD
have not been examined, the ON OVERFLOW statement is executed. Execution of
the UNSTRING statement is completed.

After the UNSTRING statement is performed, the fields contain the values shown

below.

Field Value

DISPLAY-REC 707890 FOUR-PENNY-NAILS 000379
WORK-REC 475120000122BBA

CHAR-CT (the POINTER field) 55

FLDS-FILLED (the TALLYING field) 6

Manipulating null-terminated strings

106

You can construct and manipulate null-terminated strings (for example, strings that
are passed to or from a C program) by various mechanisms.

For example, you can:
e Use null-terminated literal constants (Z". . . ").

e Use an INSPECT statement to count the number of characters in a null-terminated
string:
MOVE © TO char-count
INSPECT source-field TALLYING char-count

FOR CHARACTERS
BEFORE X"00"

* Use an UNSTRING statement to move characters in a null-terminated string to a
target field, and get the character count:

WORKING-STORAGE SECTION.
01 source-field PIC X(1001).
01 char-count COMP-5 PIC 9(4).
01 target-area.
02 individual-char OCCURS 1 TO 1000 TIMES DEPENDING ON char-count
PIC X.

PROCEDURE DIVISION.
UNSTRING source-field DELIMITED BY X"00"
INTO target-area
COUNT IN char-count
ON OVERFLOW
DISPLAY "source not null terminated or target too short"
END-UNSTRING

Enterprise COBOL for z/OS V4.1 Programming Guide

* Use a SEARCH statement to locate trailing null or space characters. Define the
string being examined as a table of single characters.

* Check each character in a field in a loop (PERFORM). You can examine each
character in a field by using a reference modifier such as source-field (I:1).

[“Example: null-terminated strings”|

RELATED TASKS
[“Handling null-terminated strings” on page 468

RELATED REFERENCES
Alphanumeric literals (Enterprise COBOL Language Reference)

Example: null-terminated strings

The following example shows several ways in which you can process
null-terminated strings.

01 L pic X(20) value z'ab'.

01 M pic X(20) value z'cd'.

01 N pic X(20).

01 N-Length pic 99 value zero.

01 Y pic X(13) value 'Hello, World!'.

* Display null-terminated string:
Inspect N tallying N-length
for characters before initial x'00'
Display 'N: ' N(1:N-Length) ' Length: ' N-Length

* Move null-terminated string to alphanumeric, strip null:
Unstring N delimited by X'00' into X

* Create null-terminated string:
String Y delimited by size
X'00"' delimited by size
into N.

* Concatenate two null-terminated strings to produce another:
String L delimited by x'00'
M delimited by x'00'
X'00' delimited by size
into N.

Referring to substrings of data items

Refer to a substring of a data item that has USAGE DISPLAY, DISPLAY-1, or NATIONAL
by using a reference modifier. You can also refer to a substring of an alphanumeric
or national character string that is returned by an intrinsic function by using a
reference modifier.

The following example shows how to use a reference modifier to refer to a
twenty-character substring of a data item called Customer-Record:

Move Customer-Record(1:20) to Orig-Customer-Name

You code a reference modifier in parentheses immediately after the data item. As
the example shows, a reference modifier can contain two values that are separated
by a colon, in this order:

1. Ordinal position (from the left) of the character that you want the substring to
start with

Chapter 6. Handling strings 107

108

2. (Optional) Length of the desired substring in character positions

The reference-modifier position and length for an item that has USAGE DISPLAY are
expressed in terms of single-byte characters. The reference-modifier position and
length for items that have USAGE DISPLAY-1 or NATIONAL are expressed in terms of
DBCS character positions and national character positions, respectively.

If you omit the length in a reference modifier (coding only the ordinal position of
the first character, followed by a colon), the substring extends to the end of the
item. Omit the length where possible as a simpler and less error-prone coding
technique.

You can refer to substrings of USAGE DISPLAY data items, including alphanumeric
groups, alphanumeric-edited data items, numeric-edited data items, display
floating-point data items, and zoned decimal data items, by using reference
modifiers. When you reference-modify any of these data items, the result is of
category alphanumeric. When you reference-modify an alphabetic data item, the
result is of category alphabetic.

You can refer to substrings of USAGE NATIONAL data items, including national
groups, national-edited data items, numeric-edited data items, national
floating-point data items, and national decimal data items, by using reference
modifiers. When you reference-modify any of these data items, the result is of
category national. For example, suppose that you define a national decimal data
item as follows:

01 NATL-DEC-ITEM Usage National Pic 999 Value 123.

You can use NATL-DEC-ITEM in an arithmetic expression because NATL-DEC-ITEM is of
category numeric. But you cannot use NATL-DEC-ITEM(2:1) (the national character
2, which in hexadecimal notation is NX"0032") in an arithmetic expression, because
it is of category national.

You can refer to substrings of table entries, including variable-length entries, by
using reference modifiers. To refer to a substring of a table entry, code the
subscript expression before the reference modifier. For example, assume that
PRODUCT-TABLE is a properly coded table of character strings. To move D to the
fourth character in the second string in the table, you can code this statement:

MOVE 'D' to PRODUCT-TABLE (2), (4:1)

You can code either or both of the two values in a reference modifier as a variable
or as an arithmetic expression.

[“Example: arithmetic expressions as reference modifiers” on page 110|

Because numeric function identifiers can be used anywhere that arithmetic
expressions can be used, you can code a numeric function identifier in a reference
modifier as the leftmost character position or as the length, or both.

[“Example: intrinsic functions as reference modifiers” on page 110)|

Each number in the reference modifier must have a value of at least 1. The sum of
the two numbers must not exceed the total length of the data item by more than 1
character position so that you do not reference beyond the end of the substring.

Enterprise COBOL for z/OS V4.1 Programming Guide

If the leftmost character position or the length value is a fixed-point noninteger,
truncation occurs to create an integer. If either is a floating-point noninteger,
rounding occurs to create an integer.

The following options detect out-of-range reference modifiers, and flag violations
with a runtime message:

* SSRANGE compiler option

¢ CHECK runtime option

RELATED CONCEPTS
“Reference modifiers”]
“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Referring to an item in a table” on page 72|

RELATED REFERENCES
[‘SSRANGE” on page 346|

Reference modification (Enterprise COBOL Language Reference)
Function definitions (Enterprise COBOL Language Reference)

Reference modifiers
Reference modifiers let you easily refer to a substring of a data item.

For example, assume that you want to retrieve the current time from the system
and display its value in an expanded format. You can retrieve the current time
with the ACCEPT statement, which returns the hours, minutes, seconds, and
hundredths of seconds in this format:

HHMMSSss

However, you might prefer to view the current time in this format:
HH:MM:SS

Without reference modifiers, you would have to define data items for both formats.
You would also have to write code to convert from one format to the other.

With reference modifiers, you do not need to provide names for the subfields that
describe the TIME elements. The only data definition you need is for the time as
returned by the system. For example:

01 REFMOD-TIME-ITEM PIC X(8).

The following code retrieves and expands the time value:

ACCEPT REFMOD-TIME-ITEM FROM TIME.
DISPLAY "CURRENT TIME IS: "
* Retrieve the portion of the time value that corresponds to
the number of hours:
REFMOD-TIME-ITEM (1:2)

*

* Retrieve the portion of the time value that corresponds to
the number of minutes:
REFMOD-TIME-ITEM (3:2)

*

* Retrieve the portion of the time value that corresponds to
the number of seconds:
REFMOD-TIME-ITEM (5:2)

*

Chapter 6. Handling strings 109

110

“Example: arithmetic expressions as reference modifiers”|

“Example: intrinsic functions as reference modifiers”]

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 37]

“Referring to substrings of data items” on page 107

“Using national data (Unicode) in COBOL” on page 126|

RELATED REFERENCES
Reference modification (Enterprise COBOL Language Reference)

Example: arithmetic expressions as reference modifiers

Suppose that a field contains some right-justified characters, and you want to
move those characters to another field where they will be left justified. You can do
so by using reference modifiers and an INSPECT statement.

Suppose a program has the following data:

01 LEFTY PIC X(30).
01 RIGHTY PIC X(30) JUSTIFIED RIGHT.
01 I PIC 9(9) USAGE BINARY.

The program counts the number of leading spaces and, using arithmetic
expressions in a reference modifier, moves the right-justified characters into
another field, justified to the left:

MOVE SPACES TO LEFTY
MOVE ZERO TO I
INSPECT RIGHTY
TALLYING I FOR LEADING SPACE.
IF T IS LESS THAN LENGTH OF RIGHTY THEN
MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY
END-IF

The MOVE statement transfers characters from RIGHTY, beginning at the position
computed as I + 1 for a length that is computed as LENGTH OF RIGHTY - I, into the
field LEFTY.

Example: intrinsic functions as reference modifiers

You can use intrinsic functions in reference modifiers if you do not know the
leftmost position or length of a substring at compile time.

For example, the following code fragment causes a substring of Customer-Record to
be moved into the data item WS-name. The substring is determined at run time.

05 WS-name Pic x(20).
05 Left-posn Pic 99.
05 I Pic 99.

Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

If you want to use a noninteger function in a position that requires an integer
function, you can use the INTEGER or INTEGER-PART function to convert the result to
an integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

RELATED REFERENCES
INTEGER (Enterprise COBOL Language Reference)
INTEGER-PART (Enterprise COBOL Language Reference)

Enterprise COBOL for z/OS V4.1 Programming Guide

Tallying and replacing data items (INSPECT)

Use the INSPECT statement to inspect characters or groups of characters in a data
item and to optionally replace them.

Use the INSPECT statement to do the following tasks:

* Count the number of times a specific character occurs in a data item (TALLYING
phrase).

* Fill a data item or selected portions of a data item with specified characters such
as spaces, asterisks, or zeros (REPLACING phrase).

* Convert all occurrences of a specific character or string of characters in a data
item to replacement characters that you specify (CONVERTING phrase).

You can specify one of the following data items as the item to be inspected:

* An elementary item described explicitly or implicitly as USAGE DISPLAY, USAGE
DISPLAY-1, or USAGE NATIONAL

* An alphanumeric group item or national group item

If the inspected item has:

* USAGE DISPLAY, each identifier in the statement (except the TALLYING count field)
must have USAGE DISPLAY, and each literal in the statement must be
alphanumeric

* USAGE NATIONAL, each identifier in the statement (except the TALLYING count field)
must have USAGE NATIONAL, and each literal in the statement must be national

* USAGE DISPLAY-1, each identifier in the statement (except the TALLYING count
field) must have USAGE DISPLAY-1, and each literal in the statement must be a
DBCS literal

[“Examples: INSPECT statement”]

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED REFERENCES
INSPECT statement (Enterprise COBOL Language Reference)

Examples: INSPECT statement

The following examples show some uses of the INSPECT statement to examine and
replace characters.

In the following example, the INSPECT statement examines and replaces characters
in data item DATA-2. The number of times a leading zero (0) occurs in the data item
is accumulated in COUNTR. The first instance of the character A that follows the first
instance of the character C is replaced by the character 2.

77 COUNTR PIC 9 VALUE ZERO.
01 DATA-2 PIC X(11).

INSPECT DATA-2

TALLYING COUNTR FOR LEADING "O"
REPLACING FIRST "A" BY "2" AFTER INITIAL "C"

Chapter 6. Handling strings 111

DATA-2 before COUNTR after DATA-2 after
0OACADEMY00O 2 00AC2DEMY00
0000ALABAMA 4 0000ALABAMA
CHATHAMOOOO 0 CH2THAMOOOO

In the following example, the INSPECT statement examines and replaces characters
in data item DATA-3. Each character that precedes the first instance of a quotation
mark (") is replaced by the character 0.

77 COUNTR PIC 9 VALUE ZERO.
01 DATA-3 PIC X(8).

INSPECT DATA-3

REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

DATA-3 before COUNTR after DATA-3 after
456"ABEL 0 000"ABEL
ANDES"12 0 00000"12
"TWAS BR 0 "TWAS BR

The following example shows the use of INSPECT CONVERTING with AFTER and
BEFORE phrases to examine and replace characters in data item DATA-4. All
characters that follow the first instance of the character / but that precede the first
instance of the character ? (if any) are translated from lowercase to uppercase.

01 DATA-4 PIC X(11).

INSPECT DATA-4
CONVERTING
"abcdefghijklmnopgrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
AFTER INITIAL "/"
BEFORE INITIAL"?"

DATA-4 before DATA-4 after
a/five/?six a/FIVE/?six
r/Rexx/RRRr r/REXX/RRRR
zfour?inspe zfour?inspe

Converting data items (intrinsic functions)

112

You can use intrinsic functions to convert character-string data items to several
other formats, for example, to uppercase or lowercase, to reverse order, to
numbers, or to one code page from another.

You can use the NATIONAL-OF and DISPLAY-OF intrinsic functions to convert to and
from national (Unicode) strings.

You can also use the INSPECT statement to convert characters.

[“Examples: INSPECT statement” on page 111|

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
“Converting to uppercase or lowercase (UPPER-CASE, LOWER-CASE)”|
“Transforming to reverse order (REVERSE)"]

“Converting to numbers (NUMVAL, NUMVAL-C)"|

“Converting from one code page to another” on page 115|

Converting to uppercase or lowercase (UPPER-CASE,
LOWER-CASE)

You can use the UPPER-CASE and LOWER-CASE intrinsic functions to easily change the
case of alphanumeric, alphabetic, or national strings.

01 Item-1 Pic x(30) Value "Hello World!".
01 Item-2 Pic x(30).

Display Item-1

Display Function Upper-case(Item-1)
Display Function Lower-case(Item-1)

Move Function Upper-case(Item-1) to Item-2
Display Item-2

The code above displays the following messages on the system logical output
device:

Hello World!

HELLO WORLD!

hello world!
HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1, but affect only
how the letters are displayed. However, the MOVE statement causes uppercase
letters to replace the contents of Item-2.

RELATED TASKS
“ Assigning input from a screen or file (ACCEPT)” on page 37]
“Displaying values on a screen or in a file (DISPLAY)” on page 3§

Transforming to reverse order (REVERSE)

You can reverse the order of the characters in a string by using the REVERSE
intrinsic function.

Move Function Reverse(Orig-cust-name) To Orig-cust-name

For example, the statement above reverses the order of the characters in
Orig-cust-name. If the starting value is JOHNSONbbb, the value after the statement is
performed is bbbNOSNHOJ, where b represents a blank space.

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

Converting to numbers (NUMVAL, NUMVAL-C)

The NUMVAL and NUMVAL-C functions convert character strings (alphanumeric or
national literals, or class alphanumeric or class national data items) to numbers.
Use these functions to convert free-format character-representation numbers to
numeric form so that you can process them numerically.

Chapter 6. Handling strings 113

114

01 R Pic x(20) Value "- 1234.5678".
01 S Pic x(20) Value " $12,345.67CR".
01 Total Usage is Comp-1.

Compute Total = Function Numval(R) + Function Numval-C(S)

Use NUMVAL-C when the argument includes a currency symbol or comma or both,
as shown in the example above. You can also place an algebraic sign before or after
the character string, and the sign will be processed. The arguments must not
exceed 18 digits when you compile with the default option ARITH(COMPAT)
(compatibility mode) nor 31 digits when you compile with ARITH(EXTEND) (extended
mode), not including the editing symbols.

NUMVAL and NUMVAL-C return long (64-bit) floating-point values in compatibility
mode, and return extended-precision (128-bit) floating-point values in extended
mode. A reference to either of these functions represents a reference to a numeric
data item.

At most 15 decimal digits can be converted accurately to long-precision floating
point (as described in the related reference below about conversions and precision).
If the argument to NUMVAL or NUMVAL-C has more than 15 digits, it is recommended
that you specify the ARITH(EXTEND) compiler option so that an extended-precision
function result that can accurately represent the value of the argument is returned.

When you use NUMVAL or NUMVAL-C, you do not need to statically declare numeric
data in a fixed format nor input data in a precise manner. For example, suppose
you define numbers to be entered as follows:

01 X Pic S999V99 Teading sign is separate.

Accept X from Console

The user of the application must enter the numbers exactly as defined by the
PICTURE clause. For example:

+001.23
-300.00

However, using the NUMVAL function, you could code:

01 A Pic x(10).
01 B Pic S999v99.

Accept A from Console
Compute B = Function Numval(A)

The input could then be:

1.23
-300

RELATED CONCEPTS

“Formats for numeric data” on page 49|

“Data format conversions” on page 54|

“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Converting to or from national (Unicode) representation” on page 134]

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES
“Conversions and precision” on page 54|
“ARITH” on page 306

Converting from one code page to another

You can nest the DISPLAY-OF and NATIONAL-OF intrinsic functions to easily convert
from any code page to any other code page.

For example, the following code converts an EBCDIC string to an ASCII string:

77 EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.
77 ASCII-CCSID PIC 9(4) BINARY VALUE 819.
77 Input-EBCDIC PIC X(80).
77 ASCII-Output PIC X(80).

* Convert EBCDIC to ASCII
Move Function Display-of
(Function National-of (Input-EBCDIC EBCDIC-CCSID),
ASCII-CCSID)
to ASCII-output

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
[“Converting to or from national (Unicode) representation” on page 134

Evaluating data items (intrinsic functions)

You can use intrinsic functions to determine the ordinal position of a character in
the collating sequence, to find the largest or smallest item in a series, to find the
length of data item, or to determine when a program was compiled.

Use these intrinsic functions:

* CHAR and ORD to evaluate integers and single alphabetic or alphanumeric
characters with respect to the collating sequence used in a program

* MAX, MIN, ORD-MAX, and ORD-MIN to find the largest and smallest items in a series
of data items, including USAGE NATIONAL data items

* LENGTH to find the length of data items, including USAGE NATIONAL data items
e WHEN-COMPILED to find the date and time when a program was compiled

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

RELATED TASKS
“Evaluating single characters for collating sequence”|

“Finding the largest or smallest data item” on page 116
“Finding the length of data items” on page 118
“Finding the date of compilation” on page 119

Evaluating single characters for collating sequence

To find out the ordinal position of a given alphabetic or alphanumeric character in
the collating sequence, use the ORD function with the character as the argument. ORD
returns an integer that represents that ordinal position.

Chapter 6. Handling strings 115

116

You can use a one-character substring of a data item as the argument to ORD:
IF Function Ord(Customer-record(1:1)) IS > 194 THEN . . .

If you know the ordinal position in the collating sequence of a character, and want
to find the character that it corresponds to, use the CHAR function with the integer
ordinal position as the argument. CHAR returns the desired character. For example:

INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

RELATED REFERENCES
CHAR (Enterprise COBOL Language Reference)
ORD (Enterprise COBOL Language Reference)

Finding the largest or smallest data item

To determine which of two or more alphanumeric, alphabetic, or national data
items has the largest value, use the MAX or ORD-MAX intrinsic function. To determine
which item has the smallest value, use MIN or ORD-MIN. These functions evaluate
according to the collating sequence.

To compare numeric items, including those that have USAGE NATIONAL, you can use
MAX, ORD-MAX, MIN, or ORD-MIN. With these intrinsic functions, the algebraic values of
the arguments are compared.

The MAX and MIN functions return the content of one of the arguments that you
supply. For example, suppose that your program has the following data
definitions:

05 Argl Pic x(10) Value "THOMASSON ".

05 Arg2 Pic x(10) Value "THOMAS ",
05 Arg3 Pic x(10) Value "VALLEJO ".

The following statement assigns VALLEJObbb to the first 10 character positions of
Customer-record, where b represents a blank space:

Move Function Max(Argl Arg2 Arg3) To Customer-record(1:10)
If you used MIN instead, then THOMASbbbb would be assigned.

The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal
position (counting from the left) of the argument that has the largest or smallest
value in the list of arguments that you supply. If you used the ORD-MAX function in
the example above, the compiler would issue an error message because the
reference to a numeric function is not in a valid place. The following statement is a
valid use of ORD-MAX:

Compute x = Function Ord-max(Argl Arg2 Arg3)

The statement above assigns the integer 3 to x if the same arguments are used as
in the previous example. If you used ORD-MIN instead, the integer 2 would be
returned. The examples above might be more realistic if Argl, Arg2, and Arg3 were
successive elements of an array (table).

If you specify a national item for any argument, you must specify all arguments as
class national.

RELATED TASKS
[“Performing arithmetic” on page 57|

Enterprise COBOL for z/OS V4.1 Programming Guide

“Processing table items using intrinsic functions” on page 86|
“Returning variable-length results with alphanumeric or national functions”|

RELATED REFERENCES
MAX (Enterprise COBOL Language Reference)
MIN (Enterprise COBOL Language Reference)
ORD-MAX (Enterprise COBOL Language Reference)
ORD-MIN (Enterprise COBOL Language Reference)

Returning variable-length results with alphanumeric or national
functions

The results of alphanumeric or national functions could be of varying lengths and
values depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the
COMPUTE statement depend on the values and sizes of R1 and R2:

01 R1 Pic x(10) value "e".
01 R2 Pic x(05) value "f".
01 R3 Pic x(20) value spaces.
01 L Pic 99.

Move Function Max(R1 R2) to R3
Compute L = Function Length(Function Max(R1 R2))

This code has the following results:

* R2 is evaluated to be larger than RI1.

* The string "fbbbb’ is moved to R3, where b represents a blank space. (The unfilled
character positions in R3 are padded with spaces.)

e L evaluates to the value 5.

If R1 contained 'g” instead of 'e’, the code would have the following results:
* Rl would evaluate as larger than R2.

* The string "ghbbbbbbbb” would be moved to R3. (The unfilled character positions
in R3 would be padded with spaces.)

¢ The value 10 would be assigned to L.

If a program uses national data for function arguments, the lengths and values of
the function results could likewise vary. For example, the following code is
identical to the fragment above, but uses national data instead of alphanumeric
data.
01 R1 Pic n(10) national value "e".
01 R2 Pic n(05) national value "f".

(

01 R3 Pic n(20) national value spaces.
01 L Pic 99 national.

Move Function Max(R1 R2) to R3
Compute L = Function Length(Function Max(R1 R2))

This code has the following results, which are similar to the first set of results
except that these are for national characters:

* R2 is evaluated to be larger than R1.

* The string NX"0066 0020 0020 0020 0020" (the equivalent in national characters
of "fbbbb’, where b represents a blank space), shown here in hexadecimal notation
with added spaces for readability, is moved to R3. The unfilled character
positions in R3 are padded with national spaces.

Chapter 6. Handling strings 117

118

* L evaluates to the value 5, the length in national character positions of R2.

You might be dealing with variable-length output from alphanumeric or national
functions. Plan your program accordingly. For example, you might need to think
about using variable-length files when the records that you are writing could be of
different lengths:

File Section.

FD OQutput-File Recording Mode V.

01 Short-Customer-Record Pic X(50).

01 Long-Customer-Record Pic X(70).

Working-Storage Section.

01 R1 Pic x(50).

01 R2 Pic x(70).

If R1 > R2

Write Short-Customer-Record from R1
Else

Write Long-Customer-Record from R2
End-if

RELATED TASKS
“Finding the largest or smallest data item” on page 116|
“Performing arithmetic” on page 57|

RELATED REFERENCES
MAX (Enterprise COBOL Language Reference)

Finding the length of data items

You can use the LENGTH function in many contexts (including tables and numeric
data) to determine the length of an item. For example, you can use the LENGTH
function to determine the length of an alphanumeric or national literal, or a data
item of any type except DBCS.

The LENGTH function returns the length of a national item (a literal, or any item that
has USAGE NATIONAL, including national group items) as an integer equal to the
length of the argument in national character positions. It returns the length of any
other data item as an integer equal to the length of the argument in alphanumeric
character positions.

The following COBOL statement demonstrates moving a data item into the field in
a record that holds customer names:

Move Customer-name To Customer-record(1l:Function Length(Customer-name))

You can also use the LENGTH OF special register, which returns the length in bytes
even for national data. Coding either Function Length(Customer-name) or LENGTH
OF Customer-name returns the same result for alphanumeric items: the length of
Customer-name in bytes.

You can use the LENGTH function only where arithmetic expressions are allowed.
However, you can use the LENGTH OF special register in a greater variety of
contexts. For example, you can use the LENGTH OF special register as an argument
to an intrinsic function that allows integer arguments. (You cannot use an intrinsic
function as an operand to the LENGTH OF special register.) You can also use the
LENGTH OF special register as a parameter in a CALL statement.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS

“Performing arithmetic” on page 57|

“Creating variable-length tables (DEPENDING ON)” on page 81
“Processing table items using intrinsic functions” on page 86|

RELATED REFERENCES
LENGTH (Enterprise COBOL Language Reference)
LENGTH OF (Enterprise COBOL Language Reference)

Finding the date of compilation

You can use the WHEN-COMPILED intrinsic function to determine when a program
was compiled. The 21-character result indicates the four-digit year, month, day, and
time (in hours, minutes, seconds, and hundredths of seconds) of compilation, and
the difference in hours and minutes from Greenwich mean time.

The first 16 positions are in the following format:
YYYYMMDDhhmms shh

You can instead use the WHEN-COMPILED special register to determine the date and
time of compilation in the following format:

MM/DD/YYhh.mm.ss
The WHEN-COMPILED special register supports only a two-digit year, and carries the
time out only to seconds. You can use this special register only as the sending field

in a MOVE statement.

RELATED REFERENCES
WHEN-COMPILED (Enterprise COBOL Language Reference)

Chapter 6. Handling strings 119

120 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 7. Processing data in an international environment

Enterprise COBOL supports Unicode UTF-16 as national character data at run
time. UTF-16 provides a consistent and efficient way to encode plain text. Using
UTF-16, you can develop software that will work with various national languages.

Use these COBOL facilities to code and compile programs that process national
data:
¢ Data types and literals:

— Character data types, defined with the USAGE NATIONAL clause and a PICTURE
clause that defines data of category national, national-edited, or
numeric-edited

— Numeric data types, defined with the USAGE NATIONAL clause and a PICTURE
clause that defines a numeric data item (a national decimal item) or an external
floating-point data item (a national floating-point item)

— National literals, specified with literal prefix N or NX

— Figurative constant ALL national-literal

— Figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO, which have
national character (UTF-16) values when used in national-character contexts

e The COBOL statements shown in the related reference below about COBOL
statements and national data

¢ Intrinsic functions:

— NATIONAL-OF to convert an alphanumeric or double-byte character set (DBCS)
character string to USAGE NATIONAL (UTF-16)

— DISPLAY-OF to convert a national character string to USAGE DISPLAY in a
selected code page (EBCDIC, ASCII, EUC, or UTF-8)

— The other intrinsic functions shown in the related reference below about
intrinsic functions and national data

e The GROUP-USAGE NATIONAL clause to define groups that contain only USAGE
NATIONAL data items and that behave like elementary category national items in
most operations

* Compiler options:
— CODEPAGE to specify the code page to use for alphanumeric and DBCS data in
your program

— NSYMBOL to control whether national or DBCS processing is used for the N
symbol in literals and PICTURE clauses

You can also take advantage of implicit conversions of alphanumeric or DBCS data
items to national representation. The compiler performs such conversions (in most
cases) when you move these items to national data items, or compare these items
with national data items.

RELATED CONCEPTS
“Unicode and the encoding of language characters” on page 125|
“National groups” on page 129|

RELATED TASKS
“Using national data (Unicode) in COBOL” on page 126|
“Converting to or from national (Unicode) representation” on page 134|

© Copyright IBM Corp. 1991, 2007 121

“Processing UTF-8 data” on page 137]

“Processing Chinese GB 18030 data” on page 138

“Comparing national (UTF-16) data” on page 139

“Coding for use of DBCS support” on page 141

Appendix C, “Converting double-byte character set (DBCS) data,” on page 689

RELATED REFERENCES

“COBOL statements and national data’]

“Intrinsic functions and national data” on page 124

“CODEPAGE” on page 309

“NSYMBOL” on page 330

Classes and categories of data (Enterprise COBOL Language Reference)
Data categories and PICTURE rules (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)

General relation conditions (Enterprise COBOL Language Reference)

COBOL statements and national data

You can use national data with the PROCEDURE DIVISION and compiler-directing
statements shown in the table below.

Table 15. COBOL statements and national data

EBCDIC only if the CONSOLE
mnemonic-name is
specified directly or
indirectly.

COBOL
statement Can be national Comment For more information
ACCEPT identifier-1, identifier-2 identifier-1 is converted " Assigning input from a screen or file|
from the native code page |[(ACCEPT)” on page 37]
specified in the CODEPAGE
compiler option only if
input is from CONSOLE.
ADD All identifiers can be “Using COMPUTE and other|
numeric items that have arithmetic statements” on page 58
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.
CALL identifier-2, identifier-3, ['Passing data” on page 463
identifier-4, identifier-5;
literal-2, literal-3
COMPUTE identifier-1 can be numeric “Using COMPUTE and other|
or numeric-edited with arithmetic statements” on page 58)
USAGE NATIONAL.
arithmetic-expression can
contain numeric items that
have USAGE NATIONAL.
COPY . . . operand-1, operand-2 of the Chapter 18, “Compiler-directing|
REPLACING REPLACING phrase statements,” on page 361|
DISPLAY identifier-1 identifier-1 is converted to “Displaying values on a screen or in a|

file (DISPLAY)” on page 3§

122 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 15. COBOL statements and national data (continued)

COBOL
statement Can be national Comment For more information
DIVIDE All identifiers can be “Using COMPUTE and other
numeric items that have arithmetic statements” on page 58|
USAGE NATIONAL. identifier-3
(GIVING) and identifier-4
(REMAINDER) can be
numeric-edited with USAGE
NATIONAL.
INITIALIZE identifier-1; identifier-2 or If you specify REPLACING “Examples: initializing data items” on
literal-1 of the REPLACING NATIONAL or REPLACING page 30|
phrase NATIONAL-EDITED, identifier-2
or literal-1 must be valid as
a sending operand in a
move to identifier-1.
INSPECT All identifiers and literals. |If any of these (other than |[“Tallying and replacing data items]
(identifier-2, the TALLYING identifier-2, the TALLYING (INSPECT)” on page 111
integer data item, can have |identifier) have USAGE
USAGE NATIONAL.) NATIONAL, all must be
national.
INVOKE Method-name as identifier-2 “Invoking methods (INVOKE)” on|
or literal-1; identifier-3 or page 57{]
literal-2 in the BY VALUE
phrase
MERGE Merge keys The COLLATING SEQUENCE “Setting sort or merge criteria” on|
phrase does not apply. page 221|
MOVE Both the sender and Implicit conversions are " Assigning values to elementary datal
receiver, or only the performed for valid MOVE items (MOVE)” on page 34
receiver operands.
" Assigning values to group data items|
(MOVE)” on page 35|
MULTIPLY All identifiers can be “Using COMPUTE and other
numeric items that have arithmetic statements” on page 58|
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.
SEARCH ALL Both the key data item and |The key data item and its |[‘Doing a binary search (SEARCH|

(binary search)

its object of comparison

object of comparison must
be compatible according to
the rules of comparison. If
the object of comparison is
of class national, the key
must be also.

ALL)” on page 85

SORT Sort keys The COLLATING SEQUENCE “Setting sort or merge criteria” on|
phrase does not apply. page 221
STRING All identifiers and literals. |If identifier-3, the receiving |[’Joining data items (STRING)” on|

(identifier-4, the POINTER
integer data item, can have
USAGE NATIONAL.)

data item, is national, all
identifiers and literals
(other than identifier-4, the
POINTER identifier) must be
national.

page 101|

Chapter 7. Processing data in an international environment

123

Table 15. COBOL statements and national data (continued)

(identifier-6 and identifier-7,
the COUNT and TALLYING
integer data items,
respectively, can have USAGE
NATIONAL.)

data item, has USAGE
NATIONAL, the sending data
item and each delimiter
must have USAGE NATIONAL,
and each literal must be
national.

COBOL
statement Can be national Comment For more information
SUBTRACT All identifiers can be “Using COMPUTE and other
numeric items that have arithmetic statements” on page 58|
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.
UNSTRING All identifiers and literals. | If identifier-4, a receiving “Splitting data items (UNSTRING)” on|

page 10§|

XML GENERATE

identifier-1 (the generated
XML document); identifier-2
(the source field or fields);
identifier-4 or literal-4 (the
namespace identifier);
identifier-5 or literal-5 (the
namespace prefix)

Chapter 29, “Producing XML output,”|

on page 53 !l

XML PARSE

identifier-1 (the XML
document)

The XML-NTEXT special
register contains national
character document
fragments during parsing.
XML-NNAMESPACE and
XML-NNAMESPACE-PREFIX
special registers contain the
associated namespace
identifier and namespace
prefix, if any, in national
characters.

Chapter 28, “Processing XML input,”]

on page 50 1|

RELATED TASKS

“Defining numeric data” on page 45|

"“Displaying numeric data” on page 47]

“Using national data (Unicode) in COBOL” on page 126]

“Comparing national (UTE-16) data” on page 139

RELATED REFERENCES

[“CODEPAGE” on page 309

Classes and categories of data (Enterprise COBOL Language Reference)

Intrinsic functions and national data

You can use arguments of class national with the intrinsic functions shown in the

table below.

Table 16. Intrinsic functions and national character data

Intrinsic function

Function type

For more information

DISPLAY-OF Alphanumeric “Converting national to alphanumeric (DISPLAY-OF)” on|
[page 136|
124 Enterprise COBOL for z/OS V4.1 Programming Guide

Table 16. Intrinsic functions and national character data (continued)

Intrinsic function Function type For more information

LENGTH Integer [“Finding the length of data items” on page 118

LOWER-CASE, UPPER-CASE National “Converting to uppercase or lowercase (UPPER-CASE,|
LOWER-CASE)” on page 113

NUMVAL, NUMVAL-C Numeric “Converting to numbers (NUMVAL, NUMVAL-C)” on page]
11

MAX, MIN National [“Finding the largest or smallest data item” on page 116

ORD-MAX, ORD-MIN Integer [“Finding the largest or smallest data item” on page 116]

REVERSE National [“Transforming to reverse order (REVERSE)” on page 113|

You can use national decimal arguments wherever zoned decimal arguments are
allowed. You can use national floating-point arguments wherever display
floating-point arguments are allowed. (See the related reference below about
arguments for a complete list of intrinsic functions that can take integer or numeric
arguments.)

RELATED TASKS

“Defining numeric data” on page 45|

“Using national data (Unicode) in COBOL” on page 126|

RELATED REFERENCES
Arguments (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Unicode and the encoding of language characters

Enterprise COBOL provides basic runtime support for Unicode, which can handle
tens of thousands of characters that cover all commonly used characters and
symbols in the world.

A character set is a defined set of characters, but is not associated with a coded
representation. A coded character set (also referred to in this documentation as a code
page) is a set of unambiguous rules that relate the characters of the set to their
coded representation. Each code page has a name and is like a table that sets up
the symbols for representing a character set; each symbol is associated with a
unique bit pattern, or code point. Each code page also has a coded character set
identifier (CCSID), which is a value from 1 to 65,536.

Unicode has several encoding schemes, called Unicode Transformation Format (UTF),
such as UTF-8, UTF-16, and UTE-32. Enterprise COBOL uses UTF-16 (CCSID 1200)
in big-endian format as the representation for national literals and data items that
have USAGE NATIONAL.

UTF-8 represents ASCII invariant characters a-z, A-Z, 0-9, and certain special
characters such as " @, . + - = / * () the same way that they are represented in
ASCII. UTE-16 represents these characters as NX'00nn', where X'nn' is the
representation of the character in ASCIL.

For example, the string 'ABC' is represented in UTF-16 as NX'004100420043". In
UTF-8, 'ABC' is represented as X'414243".

Chapter 7. Processing data in an international environment 125

One or more encoding units are used to represent a character from a coded
character set. For UTF-16, an encoding unit takes 2 bytes of storage. Any character
defined in any EBCDIC, ASCII, or EUC code page is represented in one UTF-16
encoding unit when the character is converted to the national data representation.

Cross-platform considerations: Enterprise COBOL and COBOL for AIX® support
UTF-16 in big-endian format in national data. COBOL for Windows® supports
UTE-16 in little-endian format (UTF-16LE) in national data. If you are porting
Unicode data that is encoded in UTF-16LE representation to Enterprise COBOL
from another platform, you must convert that data to UTF-16 in big-endian format
to process the data as national data.

RELATED TASKS
[“Converting to or from national (Unicode) representation” on page 134|

RELATED REFERENCES
[“Storage of national data” on page 133
Character sets and code pages (Enterprise COBOL Language Reference)

Using national data (Unicode) in COBOL

126

In Enterprise COBOL, you can specify national (UTF-16) data in any of several
ways.

These types of national data are available:

* National data items (categories national, national-edited, and numeric-edited)
* National literals

* Figurative constants as national characters

* Numeric data items (national decimal and national floating-point)

In addition, you can define national groups that contain only data items that
explicitly or implicitly have USAGE NATIONAL, and that behave in the same way as
elementary category national data items in most operations.

These declarations affect the amount of storage that is needed.
RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 125|
“National groups” on page 129

RELATED TASKS

"“Defining national data items” on page 12

“Using national literals” on page 12

“Using national-character figurative constants” on page 128|

“Defining national numeric data items” on page 129

“Using national groups” on page 130

“Converting to or from national (Unicode) representation” on page 134{
“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES
[“Storage of national data” on page 133
Classes and categories of data (Enterprise COBOL Language Reference)

Enterprise COBOL for z/OS V4.1 Programming Guide

Defining national data items

Using

Define national data items with the USAGE NATIONAL clause to hold national
(UTF-16) character strings.

You can define national data items of the following categories:
* National

* National-edited

* Numeric-edited

To define a category national data item, code a PICTURE clause that contains only
one or more PICTURE symbols N.

To define a national-edited data item, code a PICTURE clause that contains at least
one of each of the following symbols:

e Symbol N
* Simple insertion editing symbol B, 0, or /

To define a numeric-edited data item of class national, code a PICTURE clause that
defines a numeric-edited item (for example, -$999.99) and code a USAGE NATIONAL
clause. You can use a numeric-edited data item that has USAGE NATIONAL in the
same way that you use a numeric-edited item that has USAGE DISPLAY.

You can also define a data item as numeric-edited by coding the BLANK WHEN ZERO
clause for an elementary item that is defined as numeric by its PICTURE clause.

If you code a PICTURE clause but do not code a USAGE clause for data items that
contain only one or more PICTURE symbols N, you can use the compiler option

NSYMBOL (NATIONAL) to ensure that such items are treated as national data items
instead of as DBCS items.

RELATED TASKS
[‘Displaying numeric data” on page 47]

RELATED REFERENCES
["'NSYMBOL” on page 330|
BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

national literals

To specify national literals, use the prefix character N and compile with the option
NSYMBOL (NATIONAL).

You can use either of these notations:
* N"character-data"
* N'character-data'

If you compile with the option NSYMBOL(DBCS), the literal prefix character N
specifies a DBCS literal, not a national literal.

To specify a national literal as a hexadecimal value, use the prefix NX. You can use
either of these notations:

* NX"hexadecimal-digits"

Chapter 7. Processing data in an international environment 127

* NX'hexadecimal-digits'

Each of the following MOVE statements sets the national data item Y to the UTF-16
value of the characters "AB”:

01 Y pic NN usage national.

Move NX"00410042" to Y
Move N"AB" to Y
Move "AB" to Y

Do not use alphanumeric hexadecimal literals in contexts that call for national
literals, because such usage is easily misunderstood. For example, the following
statement also results in moving the UTF-16 characters "AB’ (not the hexadecimal
bit pattern C1C2) to Y, where Y is defined as USAGE NATIONAL:

Move X"C1C2" to Y

You cannot use national literals in the SPECIAL-NAMES paragraph or as
program-names. You can use a national literal to name an object-oriented method
in the METHOD-ID paragraph or to specify a method-name in an INVOKE statement.

RELATED TASKS
[“Using literals” on page 27

RELATED REFERENCES
['NSYMBOL” on page 330|
National literals (Enterprise COBOL Language Reference)

Using national-character figurative constants

You can use the figurative constant ALL national-literal in a context that requires
national characters. ALL national-literal represents all or part of the string that is
generated by successive concatenations of the encoding units that make up the
national literal.

You can use the figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO
in a context that requires national characters, such as a MOVE statement, an implicit
move, or a relation condition that has national operands. In these contexts, the
figurative constant represents a national-character (UTF-16) value.

When you use the figurative constant HIGH-VALUE in a context that requires
national characters, its value is NX'FFFF'. When you use LOW-VALUE in a context
that requires national characters, its value is NX'0000".

Restrictions: You must not use HIGH-VALUE or the value assigned from HIGH-VALUE
in a way that results in conversion of the value from one data representation to
another (for example, between USAGE DISPLAY and USAGE NATIONAL). X'FF' (the
value of HIGH-VALUE in an alphanumeric context when the EBCDIC collating
sequence is being used) does not represent a valid EBCDIC character, and NX'FFFF'
does not represent a valid national character. Conversion of such a value to
another representation results in a substitution character being used (not X'FF' or
NX'FFFF'). Consider the following example:

01 natl-data PIC NN Usage National.
01 alph-data PIC XX.

MOVE HIGH-VALUE TO natl-data, alph-data
IF natl-data = alph-data. . .

128 Enterprise COBOL for z/OS V4.1 Programming Guide

The IF statement above evaluates as false even though each of its operands was set
to HIGH-VALUE. Before an elementary alphanumeric operand is compared to a
national operand, the alphanumeric operand is treated as though it were moved to
a temporary national data item, and the alphanumeric characters are converted to
the corresponding national characters. When X'FF' is converted to UTE-16,
however, the UTF-16 item gets a substitution character value and so does not
compare equally to NX'FFFF'.

RELATED TASKS
“Converting to or from national (Unicode) representation” on page 134{
“Comparing national (UTF-16) data” on page 139

RELATED REFERENCES
Figurative constants (Enterprise COBOL Language Reference)
DISPLAY-OF (Enterprise COBOL Langquage Reference)
ISupport for Unicode: Using Unicode Services|

Defining national numeric data items

Define data items with the USAGE NATIONAL clause to hold numeric data that is
represented in national characters (UTF-16). You can define national decimal items
and national floating-point items.

To define a national decimal item, code a PICTURE clause that contains only the
symbols 9, P, S, and V. If the PICTURE clause contains S, the SIGN IS SEPARATE
clause must be in effect for that item.

To define a national floating-point item, code a PICTURE clause that defines a
floating-point item (for example, +99999.9E-99).

You can use national decimal items in the same way that you use zoned decimal
items. You can use national floating-point items in the same way that you use
display floating-point items.

RELATED TASKS
“Defining numeric data” on page 45|
“Displaying numeric data” on page 47]

RELATED REFERENCES
SIGN clause (Enterprise COBOL Language Reference)

National groups

National groups, which are specified either explicitly or implicitly with the
GROUP-USAGE NATIONAL clause, contain only data items that have USAGE NATIONAL. In
most cases, a national group item is processed as though it were redefined as an
elementary category national item described as PIC N(m), where m is the number
of national (UTF-16) characters in the group.

For some operations on national groups, however (just as for some operations on
alphanumeric groups), group semantics apply. Such operations (for example, MOVE
CORRESPONDING and INITIALIZE) recognize or process the elementary items within
the national group.

Chapter 7. Processing data in an international environment 129

http://publib.boulder.ibm.com/cgi-bin/bookmgr/books/iea2un70

130

Where possible, use national groups instead of alphanumeric groups that contain
USAGE NATIONAL items. National groups provide several advantages for the
processing of national data compared to the processing of national data within
alphanumeric groups:

* When you move a national group to a longer data item that has USAGE NATIONAL,
the receiving item is padded with national characters. By contrast, if you move
an alphanumeric group that contains national characters to a longer
alphanumeric group that contains national characters, alphanumeric spaces are
used for padding. As a result, mishandling of data items could occur.

* When you move a national group to a shorter data item that has USAGE
NATIONAL, the national group is truncated at national-character boundaries. By
contrast, if you move an alphanumeric group that contains national characters to
a shorter alphanumeric group that contains national characters, truncation might
occur between the 2 bytes of a national character.

* When you move a national group to a national-edited or numeric-edited item,
the content of the group is edited. By contrast, if you move an alphanumeric
group to an edited item, no editing takes place.

* When you use a national group as an operand in a STRING, UNSTRING, or INSPECT
statement:

— The group content is processed as national characters rather than as
single-byte characters.

— TALLYING and POINTER operands operate at the logical level of national
characters.

— The national group operand is supported with a mixture of other national
operand types.

By contrast, if you use an alphanumeric group that contains national characters
in these contexts, the characters are processed byte by byte. As a result, invalid
handling or corruption of data could occur.

USAGE NATIONAL groups: A group item can specify the USAGE NATIONAL clause at the
group level as a convenient shorthand for the USAGE of each of the elementary data
items within the group. Such a group is not a national group, however, but an
alphanumeric group, and behaves in many operations, such as moves and
compares, like an elementary data item of USAGE DISPLAY (except that no editing or
conversion of data occurs).

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 35

“Joining data items (STRING)” on page 101]

“Splitting data items (UNSTRING)” on page 103

“Tallying and replacing data items (INSPECT)” on page 111|

“Using national groups”|

RELATED REFERENCES
GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups

To define a group data item as a national group, code a GROUP-USAGE NATIONAL
clause at the group level for the item. The group can contain only data items that
explicitly or implicitly have USAGE NATIONAL.

The following data description entry specifies that a level-01 group and its
subordinate groups are national group items:

Enterprise COBOL for z/OS V4.1 Programming Guide

01 Nat-Group-1 GROUP-USAGE NATIONAL.
02 Group-1.
04 Month PIC 99.
04 DayOf PIC 99.
04 Year PIC 9999.
02 Group-2 GROUP-USAGE NATIONAL.
04 Amount PIC 9(4).99 USAGE NATIONAL.

In the example above, Nat-Group-1 is a national group, and its subordinate groups
Group-1 and Group-2 are also national groups. A GROUP-USAGE NATIONAL clause is
implied for Group-1, and USAGE NATIONAL is implied for the subordinate items in
Group-1. Month, DayOf, and Year are national decimal items, and Amount is a
numeric-edited item that has USAGE NATIONAL.

You can subordinate national groups within alphanumeric groups as in the
following example:
01 Alpha-Group-1.
02 Group-1.
04 Month PIC 99.
04 DayOf PIC 99.
04 Year PIC 9999.
02 Group-2 GROUP-USAGE NATIONAL.
04 Amount PIC 9(4).99.

In the example above, Alpha-Group-1 and Group-1 are alphanumeric groups; USAGE
DISPLAY is implied for the subordinate items in Group-1. (If Alpha-Group-1 specified
USAGE NATIONAL at the group level, USAGE NATIONAL would be implied for each of
the subordinate items in Group-1. However, Alpha-Group-1 and Group-1 would be
alphanumeric groups, not national groups, and would behave like alphanumeric
groups during operations such as moves and compares.) Group-2 is a national
group, and USAGE NATIONAL is implied for the numeric-edited item Amount.

You cannot subordinate alphanumeric groups within national groups. All
elementary items within a national group must be explicitly or implicitly described
as USAGE NATIONAL, and all group items within a national group must be explicitly
or implicitly described as GROUP-USAGE NATIONAL.

RELATED CONCEPTS
[“National groups” on page 129|

RELATED TASKS
“Using national groups as elementary items”]
“Using national groups as group items” on page 132|

RELATED REFERENCES
GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups as elementary items

In most cases, you can use a national group as though it were an elementary data
item.

In the following example, a national group item, Group-1, is moved to a
national-edited item, Edited-date. Because Group-1 is treated as an elementary
data item during the move, editing takes place in the receiving data item. The
value in Edited-date after the move is 06/23/2007 in national characters.

Chapter 7. Processing data in an international environment 131

132

01 Edited-date PIC NN/NN/NNNN USAGE NATIONAL.
01 Group-1 GROUP-USAGE NATIONAL.

02 Month PIC 99 VALUE 06.

02 DayOf PIC 99 VALUE 23.

02 Year PIC 9999 VALUE 2007.

MOVE Group-1 to Edited-date.

If Group-1 were instead an alphanumeric group in which each of its subordinate
items had USAGE NATIONAL (specified either explicitly with a USAGE NATIONAL clause
on each elementary item, or implicitly with a USAGE NATIONAL clause at the group
level), a group move, rather than an elementary move, would occur. Neither
editing nor conversion would take place during the move. The value in the first
eight character positions of Edited-date after the move would be 06232007 in
national characters, and the value in the remaining two character positions would
be 4 bytes of alphanumeric spaces.

RELATED TASKS

“ Assigning values to group data items (MOVE)” on page 35

“Comparing national data and alphanumeric-group operands” on page 141|

“Using national groups as group items”|

RELATED REFERENCES
MOVE statement (Enterprise COBOL Language Reference)

Using national groups as group items

In some cases when you use a national group, it is handled with group semantics;
that is, the elementary items in the group are recognized or processed.

In the following example, an INITIALIZE statement that acts upon national group
item Group-OneN causes the value 15 in national characters to be moved to only the
numeric items in the group:
01 Group-OneN Group-Usage National.

05 Trans-codeN Pic N Value "A".

05 Part-numberN Pic NN Value "XX".
05 Trans-quanN Pic 99 Value 10.

Initialize Group-OneN Replacing Numeric Data By 15

Because only Trans-quanN in Group-0OneN above is numeric, only Trans-quanN
receives the value 15. The other subordinate items are unchanged.

The table below summarizes the cases where national groups are processed with
group semantics.

Table 17. National group items that are processed with group semantics

Language feature Uses of national group items Comment

CORRESPONDING phrase |Specify a national group item for |Elementary items within the

of the ADD, SUBTRACT, |processing as a group in national group are processed

or MOVE statement accordance with the rules of the like elementary items that
CORRESPONDING phrase. have USAGE NATIONAL within

an alphanumeric group.

Host variable in EXEC | Specify a national group item as a | The national group item is in
SQL statement host variable. effect shorthand for the set of
host variables that are
subordinate to the group item.

Enterprise COBOL for z/OS V4.1 Programming Guide

Table 17. National group items that are processed with group semantics (continued)

Language feature

Uses of national group items

Comment

INITIALIZE statement

Specify a national group for
processing as a group in
accordance with the rules of the
INITIALIZE statement.

Elementary items within the
national group are initialized
like elementary items that
have USAGE NATIONAL within
an alphanumeric group.

Name qualification

Use the name of a national group
item to qualify the names of
elementary data items and of
subordinate group items in the
national group.

Follow the same rules for
qualification as for an
alphanumeric group.

RENAMES clause

THROUGH phrase of the

To specify a national group item in
the THROUGH phrase, use the same
rules as for an alphanumeric group
item.

The result is an alphanumeric
group item.

FROM phrase of the
XML GENERATE
statement

Specify a national group item in
the FROM phrase for processing as a
group in accordance with the rules
of the XML GENERATE statement.

Elementary items within the
national group are processed
like elementary items that
have USAGE NATIONAL within
an alphanumeric group.

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 32|

“Initializing a table (INITIALIZE)” on page 76|

" Assigning values to elementary data items (MOVE)” on page 34|

"“Assigning values to group data items (MOVE)” on page 3

“Finding the length of data items” on page 118|

"“Generating XML output” on page 531]

“Using national group items in SQL statements” on page 420|

RELATED REFERENCES

Qualification (Enterprise COBOL Language Reference)
RENAMES clause (Enterprise COBOL Language Reference)

Storage of national data

Use the table below to compare alphanumeric (DISPLAY), DBCS (DISPLAY-1), and
Unicode (NATIONAL) encoding and to plan storage usage.

Table 18. Encoding and size of alphanumeric, DBCS, and national data

Characteristic DISPLAY DISPLAY-1 NATIONAL
Character encoding unit 1 byte 2 bytes 2 bytes
Code page' EBCDIC EBCDIC DBCS | UTF-16BE
Encoding units per graphic 1 1 1 or2?
character

Bytes per graphic character 1 byte 2 bytes 2 or 4 bytes

Chapter 7. Processing data in an international environment

133

Table 18. Encoding and size of alphanumeric, DBCS, and national data (continued)

Characteristic DISPLAY DISPLAY-1 | NATIONAL

1. Use the CODEPAGE compiler option to specify the EBCDIC code page that is applicable to
alphanumeric or DBCS data.

2. Most characters are represented in UTE-16 using one encoding unit. In particular, the
following characters are represented using a single UTF-16 encoding unit per character:

* COBOL characters A-Z, a-z, 0-9, space, + -*/=$,,."()><"
* All characters that are converted from an EBCDIC, ASCII, or EUC code page

RELATED CONCEPTS
[“Unicode and the encoding of language characters” on page 125|

Converting to or from national (Unicode) representation

134

You can implicitly or explicitly convert data items to national (UTF-16)
representation.

You can implicitly convert alphabetic, alphanumeric, DBCS, or integer data to
national data by using the MOVE statement. Implicit conversions also take place in
other COBOL statements, such as IF statements that compare an alphanumeric
data item with a data item that has USAGE NATIONAL.

You can explicitly convert to and from national data items by using the intrinsic
functions NATIONAL-OF and DISPLAY-OF, respectively. By using these intrinsic
functions, you can specify a code page for the conversion that is different from the
code page that is in effect with the CODEPAGE compiler option.

RELATED TASKS

“Converting alphanumeric, DBCS, and integer to national (MOVE)’|
“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 135|
“Converting national to alphanumeric (DISPLAY-OF)” on page 136]
“Overriding the default code page” on page 136|

"“Comparing national (UTE-16) data” on page 139

RELATED REFERENCES
“CODEPAGE” on page 309
“Conversion exceptions” on page 136|

Converting alphanumeric, DBCS, and integer to national
(MOVE)

You can use a MOVE statement to implicitly convert data to national representation.

You can move the following kinds of data to category national or national-edited
data items, and thus convert the data to national representation:

¢ Alphabetic

* Alphanumeric

¢ Alphanumeric-edited

* DBCS

* Integer of USAGE DISPLAY

¢ Numeric-edited of USAGE DISPLAY

Enterprise COBOL for z/OS V4.1 Programming Guide

You can likewise move the following kinds of data to numeric-edited data items
that have USAGE NATIONAL:

* Alphanumeric

* Display floating-point (floating-point of USAGE DISPLAY)
* Numeric-edited of USAGE DISPLAY

* Integer of USAGE DISPLAY

For complete rules about moves to national data, see the related reference about
the MOVE statement.

For example, the MOVE statement below moves the alphanumeric literal "AB" to the
national data item UTF16-Data:

01 UTF16-Data Pic N(2) Usage National.

Move "AB" to UTF16-Data

After the MOVE statement above, UTF16-Data contains NX'00410042"', the national
representation of the alphanumeric characters 'AB’.

If padding is required in a receiving data item that has USAGE NATIONAL, the default
UTEF-16 space character (NX'0020") is used. If truncation is required, it occurs at the
boundary of a national-character position.

RELATED TASKS

“ Assigning values to elementary data items (MOVE)” on page 34|
" Assigning values to group data items (MOVE)” on page 3
“Displaying numeric data” on page 47]

“Coding for use of DBCS support” on page 141

RELATED REFERENCES
MOVE statement (Enterprise COBOL Language Reference)

Converting alphanumeric or DBCS to national (NATIONAL-OF)

Use the NATIONAL-OF intrinsic function to convert alphabetic, alphanumeric, or
DBCS data to a national data item. Specify the source code page as the second
argument if the source is encoded in a different code page than is in effect with the
CODEPAGE compiler option.

[“Example: converting to and from national data” on page 137

RELATED TASKS

“Processing UTF-8 data” on page 137]

“Processing Chinese GB 18030 data” on page 138

"“Processing alphanumeric data items that contain DBCS data” on page 143|

RELATED REFERENCES
[“CODEPAGE” on page 309
NATIONAL-OF (Enterprise COBOL Language Reference)

Chapter 7. Processing data in an international environment 135

136

Converting national to alphanumeric (DISPLAY-OF)

Use the DISPLAY-OF intrinsic function to convert national data to an alphanumeric
(USAGE DISPLAY) character string that is represented in a code page that you specify
as the second argument.

If you omit the second argument, the output code page is the one that was in
effect with the CODEPAGE compiler option when the source was compiled.

If you specify an EBCDIC or ASCII code page that combines single-byte character
set (SBCS) and DBCS characters, the returned string might contain a mixture of
SBCS and DBCS characters. The DBCS substrings are delimited by shift-in and
shift-out characters if the code page in effect for the function is an EBCDIC code

page.

[“Example: converting to and from national data” on page 137

RELATED TASKS
“Processing UTF-8 data” on page 137]
“Processing Chinese GB 18030 data” on page 138]

RELATED REFERENCES
DISPLAY-OF (Enterprise COBOL Language Reference)

Overriding the default code page

In some cases, you might need to convert data to or from a code page that differs
from the CCSID that is specified as the CODEPAGE option value. To do so, convert
the item by using a conversion function in which you explicitly specify the code

page.

If you specify a code page as an argument to the DISPLAY-0F intrinsic function, and
the code page differs from the code page that is in effect with the CODEPAGE
compiler option, do not use the function result in any operations that involve
implicit conversion (such as an assignment to, or comparison with, a national data
item). Such operations assume the EBCDIC code page that is specified with the
CODEPAGE compiler option.

RELATED REFERENCES
[‘CODEPAGE” on page 309

Conversion exceptions

Implicit or explicit conversion between national data and alphanumeric data can
fail and generate a severity-3 Language Environment condition.

Failure can occur if the code page that you specified implicitly or explicitly is not a
valid code page.

A character that does not have a counterpart in the target CCSID does not result in
a conversion exception. Such a character is converted to a substitution character in
the target code page.

RELATED REFERENCES
[“CODEPAGE” on page 309

Enterprise COBOL for z/OS V4.1 Programming Guide

Example: converting to and from national data

The following example shows the NATIONAL-OF and DISPLAY-OF intrinsic functions
and the MOVE statement for converting to and from national (UTF-16) data items. It
also demonstrates the need for explicit conversions when you operate on strings
that are encoded in multiple code pages.

CBL CODEPAGE (00037)
* . . .

01 Data-in-Unicode pic N(100) usage national.

01 Data-in-Greek pic X(100).

01 other-data-in-US-English pic X(12) value "PRICE in $ =".

* . . .
Read Greek-file into Data-in-Greek
Move function National-of(Data-in-Greek, 00875)
to Data-in-Unicode
* . . . process Data-in-Unicode here . . .
Move function Display-of(Data-in-Unicode, 00875)
to Data-in-Greek
Write Greek-record from Data-in-Greek

The example above works correctly because the input code page is specified.
Data-in-Greek is converted as data represented in CCSID 00875 (Greek). However,
the following statement results in an incorrect conversion unless all the characters
in the item happen to be among those that have a common representation in both
the Greek and the English code pages:

Move Data-in-Greek to Data-in-Unicode

The MOVE statement above converts Data-in-Greek to Unicode representation based
on the CCSID 00037 (U.S. English) to UTF-16 conversion. This conversion does not
produce the expected results because Data-in-Greek is encoded in CCSID 00875.

If you can correctly set the CODEPAGE compiler option to CCSID 00875 (that is, the
rest of your program also handles EBCDIC data in Greek), you can code the same
example correctly as follows:

CBL CODEPAGE (00875)
*
01 Data-in-Unicode pic N(100) usage national.
01 Data-in-Greek pic X(100).
* . . .
Read Greek-file into Data-in-Greek
. process Data-in-Greek here ..
. or do the following (if need to process data in Unicode):
Move Data-in-Greek to Data-in-Unicode
* . . . process Data-in-Unicode
Move function Display-of(Data-in-Unicode) to Data-in-Greek
Write Greek-record from Data-in-Greek

Processing UTF-8 data

When you need to process UTF-8 data, first convert the data to UTF-16 in a
national data item. After processing the national data, convert it back to UTF-8 for
output. For the conversions, use the intrinsic functions NATIONAL-OF and
DISPLAY-OF, respectively. Use code page 1208 for UTF-8 data.

You need to do two steps to convert ASCII or EBCDIC data to UTF-8:

1. Use the function NATIONAL-OF to convert the ASCII or EBCDIC string to a
national (UTF-16) string.

2. Use the function DISPLAY-OF to convert the national string to UTE-8.

Chapter 7. Processing data in an international environment 137

The following example converts Greek EBCDIC data to UTE-8:

01 Greek-EBCDIC pic X (10) value "opyoefnO".

01 UnicodeString pic N(10).

01 UTF-8-String pic X (20).
Move function National-of (Greek-EBCDIC, 00875) to UnicodeString
Move function Display-of (UnicodeString, 01208) to UTF-8-String

Usage note: Use care if you use reference modification to refer to data encoded in
UTF-8. UTF-8 characters are encoded with a varying number of bytes per
character. Avoid operations that might split a multibyte character.

RELATED TASKS
“Converting to or from national (Unicode) representation” on page 134]
"“Referring to substrings of data items” on page 107

“Parsing XML documents encoded in UTF-8” on page 523

Processing Chinese GB 18030 data

138

GB 18030 is a national-character standard specified by the government of the
People’s Republic of China.

GB 18030 characters can be encoded in either UTF-16 or in code page CCSID 1392.
Code page 1392 is an ASCII multibyte code page that uses 1, 2, or 4 bytes per
character. A subset of the GB 18030 characters can be encoded in the Chinese ASCII
code page, CCSID 1386, or in the Chinese EBCDIC code page, CCSID 1388.

Enterprise COBOL does not have explicit support for GB 18030, but does support
the processing of GB 18030 characters in several ways. You can:

* Use DBCS data items to process GB 18030 characters that are represented in
CCSID 1388.

* Use national data items to define and process GB 18030 characters that are
represented in UTF-16, CCSID 01200.

* Process data in any code page (including CCSID 1388 or 1392) by converting the
data to UTF-16, processing the UTF-16 data, and then converting the data back
to the original code-page representation.

When you need to process Chinese GB 18030 data that requires conversion, first
convert the input data to UTF-16 in a national data item. After you process the
national data item, convert it back to Chinese GB 18030 for output. For the
conversions, use the intrinsic functions NATIONAL-OF and DISPLAY-OF, respectively,
and specify code page 1388 or 1392 as the second argument of each function.

The following example illustrates these conversions:

01 Chinese-EBCDIC pic X(16) value "ﬁ;ﬁ:@ﬁ@ﬁjﬁ: ..,
01 Chinese-GB18030-String pic X(16).

01 UnicodeString pic N(14).
Move function National-of(Chinese-EBCDIC, 1388) to UnicodeString

* Process data in Unicode
Move function Display-of(UnicodeString, 1388) to Chinese-GB18030-String

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 134|

“Coding for use of DBCS support” on page 141

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES
[‘Storage of national data” on page 133

Comparing national (UTF-16) data

You can compare national (UTF-16) data, that is, national literals and data items
that have USAGE NATIONAL (whether of class national or class numeric), explicitly or
implicitly with other kinds of data in relation conditions.

You can code conditional expressions that use national data in the following
statements:

* EVALUATE
e IF

e INSPECT
* PERFORM
* SEARCH

* STRING

* UNSTRING

The following sections provide an overview about comparing national data to
other data items. For full details, see the related references.

RELATED TASKS

“Comparing two class national operands”|

“Comparing class national and class numeric operands” on page 140|
“Comparing national numeric and other numeric operands” on page 140
“Comparing national and other character-string operands” on page 140|
“Comparing national data and alphanumeric-group operands” on page 141|

RELATED REFERENCES

Relation conditions (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)
National comparisons (Enterprise COBOL Language Reference)
Group comparisons (Enterprise COBOL Language Reference)

Comparing two class national operands

You can compare the character values of two operands of class national.

Either operand (or both) can be any of the following types of items:
* A national group

* An elementary category national or national-edited data item

* A numeric-edited data item that has USAGE NATIONAL

One of the operands can instead be a national literal or a national intrinsic
function.

When you compare two class national operands that have the same length, they
are determined to be equal if all pairs of the corresponding characters are equal.
Otherwise, comparison of the binary values of the first pair of unequal characters
determines the operand with the larger binary value.

Chapter 7. Processing data in an international environment 139

140

When you compare operands that have unequal lengths, the shorter operand is
treated as if it were padded on the right with default UTF-16 space characters
(NX'0020") to the length of the longer operand.

The PROGRAM COLLATING SEQUENCE clause does not affect the comparison of two
class national operands.

RELATED CONCEPTS
[“National groups” on page 129|

RELATED TASKS
[“Using national groups” on page 130|

RELATED REFERENCES
National comparisons (Enterprise COBOL Language Reference)

Comparing class national and class humeric operands

You can compare national literals or class national data items to integer literals or
numeric data items that are defined as integer (that is, national decimal items or
zoned decimal items). At most one of the operands can be a literal.

You can also compare national literals or class national data items to floating-point
data items (that is, display floating-point or national floating-point items).

Numeric operands are converted to national (UTF-16) representation if they are not
already in national representation. A comparison is made of the national character
values of the operands.

RELATED REFERENCES
General relation conditions (Enterprise COBOL Language Reference)

Comparing national numeric and other nhumeric operands

National numeric operands (national decimal and national floating-point operands)
are data items of class numeric that have USAGE NATIONAL.

You can compare the algebraic values of numeric operands regardless of their
USAGE. Thus you can compare a national decimal item or a national floating-point
item with a binary item, an internal-decimal item, a zoned decimal item, a display
floating-point item, or any other numeric item.

RELATED TASKS
|”Deﬁning national numeric data items” on page 129|

RELATED REFERENCES
General relation conditions (Enterprise COBOL Language Reference)

Comparing national and other character-string operands

You can compare the character value of a national literal or class national data item
with the character value of any of the following other character-string operands:
alphabetic, alphanumeric, alphanumeric-edited, DBCS, or numeric-edited of USAGE
DISPLAY.

Enterprise COBOL for z/OS V4.1 Programming Guide

These operands are treated as if they were moved to an elementary national data
item. The characters are converted to national (UTF-16) representation, and the
comparison proceeds with two national character operands.

RELATED TASKS
[“Using national-character figurative constants” on page 128|

RELATED REFERENCES
National comparisons (Enterprise COBOL Language Reference)

Comparing national data and alphanumeric-group operands

You can compare a national literal, a national group item, or any elementary data
item that has USAGE NATIONAL to an alphanumeric group.

Neither operand is converted. The national operand is treated as if it were moved
to an alphanumeric group item of the same size in bytes as the national operand,
and the two groups are compared. An alphanumeric comparison is done regardless
of the representation of the subordinate items in the alphanumeric group operand.

For example, Group-XN is an alphanumeric group that consists of two subordinate
items that have USAGE NATIONAL:
01 Group-XN.

02 TransCode PIC NN Value "AB" Usage National.
02 Quantity PIC 999 Value 123 Usage National.

If N"AB123" = Group-XN Then Display "EQUAL"
Else Display "NOT EQUAL".

When the IF statement above is executed, the 10 bytes of the national literal
N"AB123" are compared byte by byte to the content of Group-XN. The items compare
equally, and "EQUAL" is displayed.

RELATED REFERENCES
Group comparisons (Enterprise COBOL Language Reference)

Coding for use of DBCS support

IBM Enterprise COBOL for z/OS supports using applications in any of many
national languages, including languages that use double-byte character sets
(DBCS).

The following list summarizes the support for DBCS:

* DBCS characters in user-defined words (DBCS names)

* DBCS characters in comments

* DBCS data items (defined with PICTURE N, G, or G and B)
* DBCS literals

* DBCS compiler option

RELATED TASKS

“Declaring DBCS data” on page 142|

“Using DBCS literals” on page 142|

“Testing for valid DBCS characters” on page 143

Chapter 7. Processing data in an international environment 141

142

“Processing alphanumeric data items that contain DBCS data” on page 143)
Appendix C, “Converting double-byte character set (DBCS) data,” on page 689

RELATED REFERENCES
['DBCS” on page 315

Declaring DBCS data

Using

Use the PICTURE and USAGE clauses to declare DBCS data items. DBCS data items
can use PICTURE symbols G, G and B, or N. Each DBCS character position is 2 bytes
in length.

You can specify a DBCS data item by using the USAGE DISPLAY-1 clause. When you
use PICTURE symbol G, you must specify USAGE DISPLAY-1. When you use PICTURE
symbol N but omit the USAGE clause, USAGE DISPLAY-1 or USAGE NATIONAL is implied
depending on the setting of the NSYMBOL compiler option.

If you use a VALUE clause with the USAGE clause in the declaration of a DBCS item,
you must specify a DBCS literal or the figurative constant SPACE or SPACES.

For the purpose of handling reference modifications, each character in a DBCS data
item is considered to occupy the number of bytes that corresponds to the

code-page width (that is, 2).

RELATED REFERENCES
["'NSYMBOL” on page 330|

DBCS literals

You can use the prefix N or G to represent a DBCS literal.

That is, you can specify a DBCS literal in either of these ways:
* N'dbcs characters' (provided that the compiler option NSYMBOL (DBCS) is in effect)
* G'dbcs characters'

You can use quotation marks (") or single quotation marks (') as the delimiters of
a DBCS literal irrespective of the setting of the APOST or QUOTE compiler option. You
must code the same opening and closing delimiter for a DBCS literal.

The shift-out (SO) control character X'OE' must immediately follow the opening
delimiter, and the shift-in (SI) control character X'0F' must immediately precede
the closing delimiter.

In addition to DBCS literals, you can use alphanumeric literals to specify any
character in one of the supported code pages. However, any string of DBCS
characters that is within an alphanumeric literal must be delimited by the SO and
SI characters, and the DBCS compiler option must be in effect for the SO and SI
characters to be recognized as shift codes.

You cannot continue an alphanumeric literal that contains DBCS characters. The
length of a DBCS literal is likewise limited by the available space in Area B on a
single source line. The maximum length of a DBCS literal is thus 28 double-byte
characters.

Enterprise COBOL for z/OS V4.1 Programming Guide

An alphanumeric literal that contains DBCS characters is processed byte by byte,
that is, with semantics appropriate for single-byte characters, except when it is
converted explicitly or implicitly to national data representation, as for example in
an assignment to or comparison with a national data item.

RELATED TASKS
[“Using figurative constants” on page 28|

RELATED REFERENCES

“DBCS” on page 315|

“NSYMBOL” on page 330

“QUOTE/APOST” on page 339

DBCS literals (Enterprise COBOL Language Reference)

Testing for valid DBCS characters

The Kanji class test tests for valid Japanese graphic characters. This testing includes
Katakana, Hiragana, Roman, and Kanji character sets.

The Kanji class test is done by checking characters for the range X'41"' through
X'7E" in the first byte and X'41' through X'FE' in the second byte, plus the space
character X'4040".

The DBCS class test tests for valid graphic characters for the code page.
The DBCS class test is done by checking characters for the range X'41' through
X'FE' in both the first and second byte of each character, plus the space character

X'4040".

RELATED TASKS
[‘Coding conditional expressions” on page 94|

RELATED REFERENCES
Class condition (Enterprise COBOL Language Reference)

Processing alphanumeric data items that contain DBCS data

If you use byte-oriented operations (for example, STRING, UNSTRING, or reference
modification) on an alphanumeric data item that contains DBCS characters, results
are unpredictable. You should instead convert the item to a national data item
before you process it.

That is, do these steps:

1. Convert the item to UTF-16 in a national data item by using a MOVE statement
or the NATIONAL-OF intrinsic function.

2. Process the national data item as needed.

3. Convert the result back to an alphanumeric data item by using the DISPLAY-0F
intrinsic function.

RELATED TASKS

“Joining data items (STRING)” on page 101

“Splitting data items (UNSTRING)” on page 103|

"“Referring to substrings of data items” on page 107

“Converting to or from national (Unicode) representation” on page 134|

Chapter 7. Processing data in an international environment 143

144 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 8. Processing files

Reading and writing data is an essential part of every program. Your program
retrieves information, processes it as you request, and then produces the results.

The source of the information and the target for the results can be one or more of
the following items:

* Another program

* Direct-access storage device
* Magnetic tape

* Printer

* Terminal

* Card reader or punch

The information as it exists on an external device is in a physical record or block, a
collection of information that is handled as a unit by the system during input or
output operations.

Your COBOL program does not directly handle physical records. It processes
logical records. A logical record can correspond to a complete physical record, part
of a physical record, or to parts or all of one or more physical records. Your
COBOL program handles logical records exactly as you have defined them.

In COBOL, a collection of logical records is a file, a sequence of pieces of
information that your program can process.

RELATED CONCEPTS
m : 77
[‘File organization and input-output devices’]

RELATED TASKS

“Choosing file organization and access mode” on page 147
“ Allocating files” on page 149

“Checking for input or output errors” on page 150

File organization and input-output devices

Depending on the input-output devices, your file organization can be sequential,
line sequential, indexed, or relative. Decide on the file types and devices to be used
when you design your program.

You have the following choices of file organization:

Sequential file organization
The chronological order in which records are entered when a file is created
establishes the arrangement of the records. Each record except the first has
a unique predecessor record, and each record except the last has a unique
successor record. Once established, these relationships do not change.

The access (record transmission) mode allowed for sequential files is
sequential only.

© Copyright IBM Corp. 1991, 2007 145

146

Line-sequential file organization
Line-sequential files are sequential files that reside on the hierarchical file
system (HFS) and that contain only characters as data. Each record ends
with a newline character.

The only access (record transmission) mode allowed for line-sequential files
is sequential.

Indexed file organization
Each record in the file contains a special field whose contents form the
record key. The position of the key is the same in each record. The index
component of the file establishes the logical arrangement of the file, an
ordering by record key. The actual physical arrangement of the records in
the file is not significant to your COBOL program.

An indexed file can also use alternate indexes in addition to the record key.
These keys let you access the file using a different logical ordering of the
records.

The access (record transmission) modes allowed for indexed files are
sequential, random, or dynamic. When you read or write indexed files
sequentially, the sequence is that of the key values.

Relative file organization
Records in the file are identified by their location relative to the beginning
of the file. The first record in the file has a relative record number of 1, the
tenth record has a relative record number of 10, and so on.

The access (record transmission) modes allowed for relative files are
sequential, random, or dynamic. When relative files are read or written
sequentially, the sequence is that of the relative record number.

With IBM Enterprise COBOL for z/OS, requests to the operating system for the
storage and retrieval of records from input-output devices are handled by the two
access methods QSAM and VSAM, and the UNIX file system.

The device type upon which you elect to store your data could affect the choices of
file organization available to you. Direct-access storage devices provide greater
flexibility in the file organization options. Sequential-only devices limit
organization options but have other characteristics, such as the portability of tapes,
that might be useful.

Sequential-only devices
Terminals, printers, card readers, and punches are called unit-record devices
because they process one line at a time. Therefore, you must also process
records one at a time sequentially in your program when it reads from or
writes to unit-record devices.

On tape, records are ordered sequentially, so your program must process
them sequentially. Use QSAM physical sequential files when processing
tape files. The records on tape can be fixed length or variable length.

Direct-access storage devices
Direct-access storage devices hold many records. The record arrangement
of files stored on these devices determines the ways that your program can
process the data. When using direct-access devices, you have greater
flexibility within your program, because your can use several types of file
organization:

* Sequential (VSAM or QSAM)
* Line sequential (UNIX)

Enterprise COBOL for z/OS V4.1 Programming Guide

* Indexed (VSAM)
* Relative (VSAM)

RELATED TASKS

“ Allocating files” on page 149

Chapter 9, “Processing OSAM files,” on page 151
Chapter 10, “Processing VSAM files,” on page 179
Chapter 11, “Processing line-sequential files,” on page 207]
“Choosing file organization and access mode”]

Choosing file organization and access mode

There are several guidelines you can use to determine which file organization and
access mode to use in an application.

Consider the following guidelines when choosing file organization:

* If an application accesses records (whether fixed-length or variable-length) only
sequentially and does not insert records between existing records, a QSAM or
VSAM sequential file is the simplest type.

* If you are developing an application for UNIX that sequentially accesses records
that contain only printable characters and certain control characters,
line-sequential files work best.

* If an application requires both sequential and random access (whether records
are fixed length or variable length), a VSAM indexed file is the most flexible

type.

* If an application inserts and deletes records randomly, a relative file works well.

Consider the following guidelines when choosing access mode:

 If a large percentage of a file is referenced or updated in an application,
sequential access is faster than random or dynamic access.

* If a small percentage of records is processed during each run of an application,
use random or dynamic access.

Table 19. Summary of file organizations, access modes, and record formats of COBOL
files

Sequential | Random Dynamic | Fixed Variable

File organization access access access length length
QSAM (physical X X X
sequential)

Line sequential X X! X
VSAM sequential (ESDS) X X X
VSAM indexed (KSDS) X X X X X
VSAM relative (RRDS) X X X X X

1. The data itself is in variable format but can be read into and written from COBOL
fixed-length records.

RELATED REFERENCES
“Format for coding input and output” on page 148
“ Allowable control characters” on page 208|

Chapter 8. Processing files 147

Format for coding input and output

The following code shows the general format of input-output coding. Explanations
of the user-supplied information follow the code.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT filename ASSIGN TO assignment-name (1) (2)
ORGANIZATION IS org ACCESS MODE IS access (3) (4)
FILE STATUS IS file-status (5)

DATA DIVISION.
FILE SECTION.
FD filename

01 recordname (6)
nn . . . fieldlength & type (7) (8)
nn . . . fieldlength & type

WORKING-STORAGE SECTION
01 file-status PICTURE 99.

F"R(.)CIZZDURE DIVISION.
(.)PEN'iomode filename 9)
F.{E/:\D'filename
b.isiTl:Z recordname
éLéSé filename
éT(')P ' RUN.
The user-supplied information in the code above is as follows:
(1) filename
Any legal COBOL name. You must use the same file-name in the SELECT
clause and in the FD entry, and on the READ, OPEN, and CLOSE statements. In
addition, the file-name is required if you use the START or DELETE
statements. This name is not necessarily the actual name of the data set as

known to the system. Each file requires its own SELECT clause, FD entry,
and input-output statements.

(2) assignment-name
Any name you choose, provided that it follows COBOL and system
naming rules. The name can be 1-30 characters long if it is a user-defined
word, or 1-160 characters long if it is a literal. You code the name part of
the assignment-name on a DD statement, in an ALLOCATE command (TSO) or
as an environment variable (for example, in an export command) (UNIX).

(3) org The organization can be SEQUENTIAL, LINE SEQUENTIAL, INDEXED, or
RELATIVE. This clause is optional for QSAM files.

(4) access
The access mode can be SEQUENTIAL, RANDOM, or DYNAMIC. For sequential file
processing, including line-sequential, you can omit this clause.

(5) file-status
The COBOL file status key. You can specify the file status key as a

148 Enterprise COBOL for z/OS V4.1 Programming Guide

two-character category alphanumeric or category national item, or as a
two-digit zoned decimal (USAGE DISPLAY) or national decimal (USAGE
NATIONAL) item.

(6) recordname
The name of the record used in the WRITE and REWRITE statements.

(7) fieldlength
The logical length of the field.

(8) type
The record format of the file. If you break the record entry beyond the
level-01 description, each element should map accurately against the fields
in the record.

(9) iomode
The INPUT or OUTPUT mode. If you are only reading from a file, code INPUT.
If you are only writing to it, code OUTPUT or EXTEND. If you are both reading
and writing, code I-0, except for organization LINE SEQUENTIAL.

RELATED TASKS
Chapter 9, “Processing QSAM files,” on page 151
Chapter 10, “Processing VSAM files,” on page 179
Chapter 11, “Processing line-sequential files,” on page 207

Allocating files

For any type of file (sequential, line sequential, indexed, or relative) in your z/OS
or UNIX applications, you can define the external name with either a ddname or
an environment-variable name. The external name is the name in the
assignment-name of the ASSIGN clause.

If the file is in the HFS, you can use either a DD definition or an environment
variable to define the file by specifying its path name with the PATH keyword.

The environment-variable name must be uppercase. The allowable attributes for its
value depend on the organization of the file being defined.

Because you can define the external name in either of two ways, the COBOL run
time goes through the following steps to find the definition of the file:

1. If the ddname is explicitly allocated, it is used. The definition can be from a DD
statement in JCL, an ALLOCATE command from TSO/E, or a user-initiated
dynamic allocation.

2. If the ddname is not explicitly allocated and an environment variable of the
same name is set, the value of the environment variable is used.

The file is dynamically allocated using the attributes specified by the
environment variable. At a minimum, you must specify either the PATH() or
DSN() option. All options and attributes must be in uppercase, except for the
path-name suboption of the PATH option, which is case sensitive. You cannot
specify a temporary data-set name in the DSN() option.

File status code 98 results from any of the following:

* The contents (including a value of null or all blanks) of the environment
variable are not valid.

* The dynamic allocation of the file fails.
* The dynamic deallocation of the file fails.

Chapter 8. Processing files 149

The COBOL run time checks the contents of the environment variable at each
OPEN statement. If a file with the same external name was dynamically allocated
by a previous OPEN statement, and the contents of the environment variable
have changed since that OPEN, the run time dynamically deallocates the
previous allocation and reallocates the file using the options currently set in the
environment variable. If the contents of the environment variable have not
changed, the run time uses the current allocation.

3. If neither a ddname nor an environment variable is defined, the following steps
occur:

a. If the allocation is for a QSAM file and the CBLQDA runtime option is in
effect, CBLQDA dynamic allocation processing takes place for those eligible
files. This type of "implicit” dynamic allocation persists for the life of the
run unit and cannot be reallocated.

b. Otherwise, the allocation fails.

The COBOL run time deallocates all dynamic allocations at run unit termination,
except for implicit CBLQDA allocations.

RELATED TASKS

“Setting and accessing environment variables” on page 436|
"“Defining and allocating QSAM files” on page 166
“Dynamically creating QSAM files” on page 163

" Allocating VSAM files” on page 20(f

Checking for input or output errors

150

After each input or output statement is performed, the file status key is updated
with a value that indicates the success or failure of the operation.

Using a FILE STATUS clause, test the file status key after each input or output
statement, and call an error-handling procedure if a nonzero file status code is
returned. With VSAM files, you can use a second data item in the FILE STATUS
clause to get additional VSAM status code information.

Another way of handling errors in input and output operations is to code ERROR
(synonymous with EXCEPTION) declaratives.

RELATED TASKS

“Handling errors in input and output operations” on page 235|

“Coding ERROR declaratives” on page 23§

“Using file status keys” on page 239

Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 9. Processing QSAM files

Queued sequential access method (QSAM) files are unkeyed files in which the
records are placed one after another, according to entry order.

Your program can process these files only sequentially, retrieving (with the READ

statement) records in the same order as they are in the file. Each record is placed
after the preceding record. To process QSAM files in your program, use COBOL

language statements that:

¢ Identify and describe the QSAM files in the ENVIRONMENT DIVISION and the DATA
DIVISION.

e Process the records in these files in the PROCEDURE DIVISION.

After you have created a record, you cannot change its length or its position in the
file, and you cannot delete it. You can, however, update QSAM files on
direct-access storage devices (using REWRITE), though not in the HFS.

QSAM files can be on tape, direct-access storage devices (DASDs), unit-record
devices, and terminals. QSAM processing is best for tables and intermediate
storage.

You can also access byte-stream files in the HFS using QSAM. These files are
binary byte-oriented sequential files with no record structure. The record
definitions that you code in your COBOL program and the length of the variables
that you read into and write from determine the amount of data transferred.

RELATED CONCEPTS
“Labels for QSAM files” on page 174]
2/OS DFSMS: Using Data Sets| (Access methods)

RELATED TASKS

“Defining QSAM files and records in COBOL”|

“Coding input and output statements for QSAM files” on page 161|
“Handling errors in QSAM files” on page 165|

“Working with QSAM files” on page 166|

“Processing QSAM ASCII files on tape” on page 177

“Processing ASCII file labels” on page 178§|

Defining QSAM files and records in COBOL

Use the FILE-CONTROL entry to define the files in a COBOL program as QSAM files,
and to associate the files with their external file-names.

An external file-name (a ddname or environment variable name) is the name by
which a file is known to the operating system. In the following example,
COMMUTER-FILE-MST is your program’s name for the file; COMMUTR is the external
name:
FILE-CONTROL.

SELECT COMMUTER-FILE-MST

ASSIGN TO S-COMMUTR

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

© Copyright IBM Corp. 1991, 2007 151

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

152

The ASSIGN clause name can include an S- before the external name to document
that the file is a QSAM file. Both the ORGANIZATION and ACCESS MODE clauses are
optional.

RELATED TASKS
“Establishing record formats”|
“Setting block sizes” on page 159

Establishing record formats

In the FD entry in the DATA DIVISION, code the record format and indication of
whether the records are blocked. In the associated record description entry or
entries, specify the record-name and record length.

You can code a record format of F, V, S, or U in the RECORDING MODE clause. COBOL
determines the record format from the RECORD clause or from the record
descriptions associated with the FD entry for the file. If you want the records to be
blocked, code the BLOCK CONTAINS clause in the FD entry.

The following example shows how the FD entry might look for a file that has
fixed-length records:

FILE SECTION.
FD COMMUTER-FILE-MST
RECORDING MODE IS F
BLOCK CONTAINS O RECORDS
RECORD CONTAINS 80 CHARACTERS.
01 COMMUTER-RECORD-MST.
05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

A recording mode of S is not supported for files in the HFS. The above example is
appropriate for such a file.

RELATED CONCEPTS
[“Logical records”|

RELATED TASKS
“Requesting fixed-length format” on page 153

“Requesting variable-length format” on page 154
“Requesting spanned format” on page 156|

“Requesting undefined format” on page 158

“Defining QSAM files and records in COBOL” on page 151|

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Logical records
COBOL uses the term logical record in a slightly different way than z/OS QSAM.

For format-V and format-S files, a QSAM logical record includes a 4-byte prefix in
front of the user data portion of the record that is not included in the definition of
a COBOL logical record.

For format-F and format-U files, and for HFS byte-stream files, the definitions of
QSAM logical record and COBOL logical record are identical.

Enterprise COBOL for z/OS V4.1 Programming Guide

In this information, QSAM logical record refers to the QSAM definition, and logical
record refers to the COBOL definition.

RELATED REFERENCES

“Layout of format-F records”]

“Lavyout of format-V records” on page 155|
“Layout of format-S records” on page 157
“Layout of format-U records” on page 159)

Requesting fixed-length format

Fixed-length records are in format F. Use RECORDING MODE F to explicitly request
this format.

You can omit the RECORDING MODE clause. The compiler determines the recording

mode to be F if the length of the largest level-01 record associated with the file is

not greater than the block size coded in the BLOCK CONTAINS clause, and you take

one of the following actions:

* Use the RECORD CONTAINS integer clause (format-1 RECORD clause) to indicate the
length of the record in bytes.

When you use this clause, the file is always fixed format with record length
integer even if there are multiple level-01 record description entries with different
lengths associated with the file.

* Omit the RECORD CONTAINS integer clause, but code the same fixed size and no
OCCURS DEPENDING ON clause for all level-01 record description entries associated
with the file. This fixed size is the record length.

In an unblocked format-F file, the logical record is the same as the block.

In a blocked format-F file, the number of logical records in a block (the blocking
factor) is constant for every block in the file except the last block, which might be
shorter.

Files in the HFS are never blocked.

RELATED CONCEPTS
[“Logical records” on page 152|

RELATED TASKS
“Requesting variable-length format” on page 154
“Requesting spanned format” on page 156|
“Requesting undefined format” on page 158|
“Establishing record formats” on page 152|

RELATED REFERENCES
[“Layout of format-F records”]

Layout of format-F records:

The layout of format-F QSAM records is shown below.

Chapter 9. Processing QSAM files 153

154

Unblocked Records
Logical Record

Fixed Length

Blocked Records
Logical Record Logical Record Logical Record

Fixed Length

RELATED CONCEPTS
[“Logical records” on page 152|

RELATED TASKS
“Requesting fixed-length format” on page 153|
2/OS DFSMS: Using Data Sets| (Fixed-length record formats)

RELATED REFERENCES

“Layout of format-V records” on page 155|
“Layout of format-S records” on page 157
“Layout of format-U records” on page 159

Requesting variable-length format

Variable-length records can be in format V or format D. Format-D records are
variable-length records on ASCII tape files. Format-D records are processed in the
same way as format-V records.

Use RECORDING MODE V for both. You can omit the RECORDING MODE clause. The
compiler determines the recording mode to be V if the largest level-01 record
associated with the file is not greater than the block size set in the BLOCK CONTAINS
clause, and you take one of the following actions:

* Use the RECORD IS VARYING clause (format-3 RECORD clause).

If you provide values for integer-1 and integer-2 (RECORD IS VARYING FROM
integer-1 TO integer-2), the maximum record length is the value coded for integer-2
regardless of the lengths coded in the level-01 record description entries
associated with the file. The integer sizes indicate the minimum and maximum
record lengths in numbers of bytes regardless of the USAGE of the data items in
the record.

If you omit integer-1 and integer-2, the maximum record length is determined to
be the size of the largest level-01 record description entry associated with the
file.

e Use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD clause).
Make integer-1 and integer-2 match the minimum length and the maximum
length in bytes of the level-01 record description entries associated with the file.
The maximum record length is the integer-2 value.

e Omit the RECORD clause, but code multiple level-01 records (associated with the
file) that are of different sizes or contain an OCCURS DEPENDING ON clause.

The maximum record length is determined to be the size of the largest level-01
record description entry associated with the file.

When you specify a READ INTO statement for a format-V file, the record size read
for that file is used in the MOVE statement generated by the compiler. Consequently,
you might not get the result you expect if the record just read does not correspond
to the level-01 record description. All other rules of the MOVE statement apply. For

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

example, when you specify a MOVE statement for a format-V record read in by the
READ statement, the size of the record moved corresponds to its level-01 record
description.

When you specify a READ statement for a format-V file followed by a MOVE of the
level-01 record, the actual record length is not used. The program will attempt to
move the number of bytes described by the level-01 record description. If this
number exceeds the actual record length and extends outside the area addressable
by the program, results are unpredictable. If the number of bytes described by the
level-01 record description is shorter than the physical record read, truncation of
bytes beyond the level-01 description occurs. To find the actual length of a
variable-length record, specify data-name-1 in format 3 of the RECORD clause of the
File Definition (FD).

RELATED TASKS

“Requesting fixed-length format” on page 153|
“Requesting spanned format” on page 156
“Requesting undefined format” on page 158|
“Establishing record formats” on page 152|

RELATED REFERENCES

“FILE SECTION entries” on page 14|

“Layout of format-V records’]

Enterprise COBOL Compiler and Runtime Migration Guide| (Moving from the
VS COBOL 1II run time)

Layout of format-V records:

Format-V QSAM records have control fields that precede the data. The QSAM
logical record length is determined by adding 4 bytes (for the control fields) to the
record length defined in your program, but you must not include these 4 bytes in
the description of the record and record length.

<«— Block Size >|
«—— QSAM Logical Record —»

+— Data Record =—>
(Level -01 Record)

4 4 Variable 4 Variable
bytes bytes bytes bytes bytes
LL |BB| 11 | bb Data 11 bb Data
'cC ‘cc' 'cc'
cc The first 4 bytes of each block contain control information.

LL Represents 2 bytes designating the length of the block (including the
'CC’ field).

BB Represents 2 bytes reserved for system use.
cc The first 4 bytes of each logical record contain control information.

11 Represents 2 bytes designating the logical record length (including the
‘cc’ field).

bb Represents 2 bytes reserved for system use.

The block length is determined as follows:
* Unblocked format-V records: CC + cc + the data portion

Chapter 9. Processing QSAM files 155

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

156

* Blocked format-V records: CC + the cc of each record + the data portion of each
record

The operating system provides the control bytes when the file is written; the
control byte fields do not appear in your description of the logical record in the
DATA DIVISION of your program. COBOL allocates input and output buffers large
enough to accommodate the control bytes. These control fields in the buffer are not
available for you to use in your program. When variable-length records are written
on unit record devices, control bytes are neither printed nor punched. They appear,
however, on other external storage devices, as well as in buffer areas of storage. If
you move V-mode records from an input buffer to a WORKING-STORAGE area, they’ll
be moved without the control bytes.

Files in the HFS are never blocked.

RELATED CONCEPTS
[“Logical records” on page 152|

RELATED TASKS
[“Requesting variable-length format” on page 154|

RELATED REFERENCES

“Layout of format-F records” on page 153}
“Layout of format-S records” on page 157}
“Layout of format-U records” on page 159

Requesting spanned format

Spanned records are in format S. A spanned record is a QSAM logical record that
can be contained in one or more physical blocks.

You can code RECORDING MODE S for spanned records in QSAM files that are
assigned to magnetic tape or to direct access devices. Do not request spanned
records for files in the HFS. You can omit the RECORDING MODE clause. The compiler
determines the recording mode to be S if the maximum record length (in bytes)
plus 4 is greater than the block size set in the BLOCK CONTAINS clause.

For files with format S in your program, the compiler determines the maximum
record length with the same rules as are used for format V. The length is based on
your usage of the RECORD clause.

When creating files that contain format-S records and a record is larger than the
remaining space in a block, COBOL writes a segment of the record to fill the block.
The rest of the record is stored in the next block or blocks depending on its length.
COBOL supports QSAM spanned records up to 32,760 bytes in length.

When retrieving files that have format-S records, a program can retrieve only
complete records.

Benefits of format-S files: You can efficiently use external storage and still
organize your files with logical record lengths by defining files with format-S
records:

* You can set block lengths to efficiently use track capacities on direct access
devices.

* You are not required to adjust the logical record lengths to device-dependent
physical block lengths. One logical record can span two or more physical blocks.

Enterprise COBOL for z/OS V4.1 Programming Guide

* You have greater flexibility when you want to transfer logical records between
direct access storage types.

You will, however, have additional overhead in processing format-S files.

Format-S files and READ INTO: When you specify a READ INTO statement for a
format-S file, the compiler generates a MOVE statement that uses the size of the
record that it just read for that file. If the record just read does not correspond to
the level-01 record description, you might not get the result that you expect. All
other rules of the MOVE statement apply.

RELATED CONCEPTS
“Logical records” on page 152|
“Spanned blocked and unblocked files”|

RELATED TASKS
“Requesting fixed-length format” on page 153
“Requesting variable-length format” on page 154|
"“Requesting undefined format” on page 158|
“Establishing record formats” on page 152|

RELATED REFERENCES
“FILE SECTION entries” on page 14|
“Layout of format-S records’

Spanned blocked and unblocked files: A spanned blocked QSAM file is made
up of blocks, each containing one or more logical records or segments of logical
records. A spanned unblocked file is made up of physical blocks, each containing
one logical record or one segment of a logical record.

In a spanned blocked file, a logical record can be either fixed or variable in length,
and its size can be smaller than, equal to, or larger than the physical block size.
There are no required relationships between logical records and physical block
sizes.

In a spanned unblocked file, the logical records can be either fixed or variable in
length. When the physical block contains one logical record, the block length is
determined by the logical record size. When a logical record has to be segmented,
the system always writes the largest physical block possible. The system segments
the logical record when the entire logical record cannot fit on a track.

RELATED CONCEPTS
[‘Logical records” on page 152

RELATED TASKS
[“Requesting spanned format” on page 156|

Layout of format-S records:

Spanned records are preceded by control fields, as shown below.

4 bytes | 4 bytes Variable bytes
LL | BB} 11 | bb Data Record or Segment
BDF SDF

Chapter 9. Processing QSAM files 157

158

Each block is preceded by a 4-byte block descriptor field ('BDF’ in the image).
There is only one block descriptor field at the beginning of each physical block.

Each segment of a record in a block, even if the segment is the entire record, is
preceded by a 4-byte segment descriptor field (SDF’ in the image). There is one
segment descriptor field for each record segment in the block. The segment
descriptor field also indicates whether the segment is the first, the last, or an
intermediate segment.

You do not describe these fields in the DATA DIVISION of your COBOL program,
and the fields are not available for you to use in your program.

RELATED TASKS
[“Requesting spanned format” on page 156|

RELATED REFERENCES

“Layout of format-F records” on page 153
“Layout of format-V records” on page 155
“Layout of format-U records” on page 159

Requesting undefined format

Format-U records have undefined or unspecified characteristics. With format U,
you can process blocks that do not meet format-F or format-V specifications.

When you use format-U files, each block of storage is one logical record. A read of
a format-U file returns the entire block as a record. A write to a format-U file
writes a record out as a block. The compiler determines the recording mode to be
U only if you code RECORDING MODE U.

It is recommended that you not use format U to update or extend a file that was
written with a different record format. If you use format U to update a file that
was written with a different format, the RECFM value in the data-set label could be
changed or the data set could contain records written in different formats.

The record length is determined in your program based on how you use the
RECORD clause:

 If you use the RECORD CONTAINS integer clause (format-1 RECORD clause), the record
length is the integer value regardless of the lengths of the level-01 record
description entries associated with the file. The integer size indicates the number
of bytes in a record regardless of the USAGE of its data items.

 If you use the RECORD IS VARYING clause (format-3 RECORD clause), the record
length is determined based on whether you code integer-1 and integer-2.

If you code integer-1 and integer-2 (RECORD IS VARYING FROM integer-1 TO
integer-2), the maximum record length is the integer-2 value regardless of the
lengths of the level-01 record description entries associated with the file. The
integer sizes indicate the minimum and maximum record lengths in numbers of
bytes regardless of the USAGE of the data items in the record.

If you omit integer-1 and integer-2, the maximum record length is determined to

be the size of the largest level-01 record description entry associated with the
file.

* If you use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD
clause), with integer-1 and integer-2 matching the minimum length and the
maximum length in bytes of the level-01 record description entries associated
with the file, the maximum record length is the integer-2 value.

Enterprise COBOL for z/OS V4.1 Programming Guide

* If you omit the RECORD clause, the maximum record length is determined to be
the size of the largest level-01 record description entry associated with the file.

Format-U files and READ INTO: When you specify a READ INTO statement for a
format-U file, the compiler generates a MOVE statement that uses the size of the
record that it just read for that file. If the record just read does not correspond to
the level-01 record description, you might not get the result that you expect. All
other rules of the MOVE statement apply.

RELATED TASKS
“Requesting fixed-length format” on page 153
“Requesting variable-length format” on page 154]
“Requesting spanned format” on page 156
"Establishing record formats” on page 15

RELATED REFERENCES
“FILE SECTION entries” on page 14|
“Layout of format-U records”]

Layout of format-U records:

With format-U, each block of external storage is handled as a logical record. There
are no record-length or block-length fields.

Physical Block >

Logical Record

RELATED CONCEPTS
[“Logical records” on page 152|

RELATED TASKS
[‘Requesting undefined format” on page 158|

RELATED REFERENCES

“Layout of format-F records” on page 153]
“Layout of format-V records” on page 155|
“Layout of format-S records” on page 157

Setting block sizes

In COBOL, you establish the size of a physical record by using the BLOCK CONTAINS
clause. If you omit this clause, the compiler assumes that the records are not
blocked.

Blocking QSAM files on tape and disk can enhance processing speed and minimize
storage requirements. You can block z/OS UNIX files (including those in the HEFS),
PDSE members, and spooled data sets, but doing so has no effect on how the
system stores the data.

If you set the block size explicitly in the BLOCK CONTAINS clause, the size must not
be greater than the maximum block size for the device. If you specify the
CHARACTERS phrase of the BLOCK CONTAINS clause, size must indicate the number of
bytes in a record regardless of the USAGE of the data items in the record. The block
size that is set for a format-F file must be an integral multiple of the record length.

Chapter 9. Processing QSAM files 159

160

If your program uses QSAM files on tape, use a physical block size of at least 12 to
18 bytes. Otherwise, the block will be skipped over when a parity check occurs
during one of the following actions:

* Reading a block of records of fewer than 12 bytes
* Writing a block of records of fewer than 18 bytes

Larger blocks generally give you better performance. Blocks of only a few kilobytes
are particularly inefficient; you should choose a block size of at least tens of
kilobytes. If you specify record blocking and omit the block size, the system will
pick a block size that is optimal for device utilization and for data transfer speed.

Letting z/OS determine block size: To maximize performance, do not explicitly set
the block size for a blocked file in your COBOL source program. For new blocked
data sets, it is simpler to allow z/OS to supply a system-determined block size. To
use this feature, follow these guidelines:

e Code BLOCK CONTAINS 0 in your source program.

* Do not code RECORD CONTAINS 0 in your source program.

* Do not code a BLKSIZE value in the JCL DD statement.

Setting block size explicitly: If you prefer to set a block size explicitly, your
program will be most flexible if you follow these guidelines:

* Code BLOCK CONTAINS 0 in your source program.
* Code a BLKSIZE value in the ddname definition (the JCL DD statement).

For extended-format data sets on z/OS, DFSMS™ adds a 32-byte block suffix to the
physical record. If you specify a block size explicitly (using JCL or ISPF), do not
include the size of this block suffix in the block size. This block suffix is not
available for you to use in your program. z/OS DFSMS allocates the space used to
read in the block suffix. However, when you calculate how many blocks of an
extended-format data set will fit on a track of a direct-access device, you need to
include the size of the block suffix in the block size.

If you specify a block size that is larger than 32760 directly in the BLOCK CONTAINS
clause or indirectly with the use of BLOCK CONTAINS n RECORDS, the OPEN of the data
set fails with file status code 90 unless you define the data set to be on tape.

For existing blocked data sets, it is simplest to:
* Code BLOCK CONTAINS 0 in your source program.
* Not code a BLKSIZE value in the ddname definition.

When you omit the BLKSIZE from the ddname definition, the block size is
automatically obtained by the system from the data-set label.

Taking advantage of LBI: You can improve the performance of tape data sets by
using the large block interface (LBI) for large block sizes. When the LBI is
available, the COBOL run time automatically uses this facility for those tape files
for which you use system-determined block size. LBI is also used for those files for
which you explicitly define a block size in JCL or a BLOCK CONTAINS clause. Use of
the LBI allows block sizes to exceed 32760 if the tape device supports it.

The LBI is not used in all cases. An attempt to use a block size greater than 32760
in the following cases is diagnosed at compile time or results in a failure at OPEN:

e Spanned records

Enterprise COBOL for z/OS V4.1 Programming Guide

e OPEN I-O

Using a block size that exceeds 32760 might result in your not being able to read
the tape on another system. A tape that you create with a block size greater than
32760 can be read only on a system that has a tape device that supports block sizes
greater than 32760. If you specify a block size that is too large for the file, the
device, or the operating system level, a runtime message is issued.

To limit a system-determined block size to 32760, do not specify BLKSIZE anywhere,

and set one of the following items to 32760:

* The BLKSZLIM keyword on the DD statement for the data set

* BLKSZLIM for the data class by using the BLKSZLIM keyword (must be set by your
systems programmer)

* A block-size limit for the system in the DEVSUPxx member of SYS1.PARMLIB
by using the keyword TAPEBLKSZLIM (must be set by your systems programmer)

The block-size limit is the first nonzero value that the compiler finds by checking
these items.

If no BLKSIZE or BLKSZLIM value is available from any source, the system limits

BLKSIZE to 32760. You can then enable block sizes larger than 32760 in one of two

ways:

* Specify a BLKSZLIM value greater than 32760 in the DD statement for the file and
use BLOCK CONTAINS 0 in your COBOL source.

* Specify a value greater than 32760 for the BLKSIZE in the DD statement or in the
BLOCK CONTAINS clause in your COBOL source.

BLKSZLIM is device-independent.

Block size and the DCB RECFM subparameter: Under z/OS, you can code the S
or T option in the DCB RECFM subparameter:

* Use the S (standard) option in the DCB RECFM subparameter for a format-F record
with only standard blocks (ones that have no truncated blocks or unfilled tracks
in the file, except for the last block of the file). S is also supported for records on
tape. It is ignored if the records are not on DASD or tape.

Using this standard block option might improve input-output performance,
especially for direct-access devices.

e The T (track overflow) option for QSAM files is no longer useful.

RELATED TASKS
“Defining QSAM files and records in COBOL” on page 151|
2/OS DFSMS: Using Data Sets|

RELATED REFERENCES
[“FILE SECTION entries” on page 14|
BLOCK CONTAINS clause (Enterprise COBOL Language Reference)

Coding input and output statements for QSAM files

You can code the following input and output statements to process a QSAM file or
a byte-stream file in the HFS using QSAM: OPEN, READ, WRITE, REWRITE, and CLOSE.

OPEN Initiates the processing of files. You can open all QSAM files as INPUT,
OUTPUT, or EXTEND (depending on device capabilities).

Chapter 9. Processing QSAM files 161

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

162

You can also open QSAM files on direct access storage devices as I-0. You
cannot open HFS files as I-0; a file status of 37 results if you attempt to do
SO.

READ Reads a record from the file. With sequential processing, your program
reads one record after another in the same order in which they were
entered when the file was created.

WRITE Creates a record in the file. Your program writes new records to the end of
the file.

REWRITE
Updates a record. You cannot update a file in the HFS using REWRITE.

CLOSE Releases the connection between the file and your program.

RELATED TASKS

“Opening QSAM files”]

" Adding records to QSAM files” on page 163

“Updating QSAM files” on page 164

“Writing QSAM files to a printer or spooled data set” on page 164

“Closing QSAM files” on page 165|

RELATED REFERENCES
OPEN statement (Enterprise COBOL Language Reference)
READ statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)
REWRITE statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)
File status key (Enterprise COBOL Language Reference)

Opening QSAM files

Before your program can use any READ, WRITE, or REWRITE statements to process
records in a file, it must first open the file with an OPEN statement.

An OPEN statement works if both of the following conditions are true:
* The file is available or has been dynamically allocated.

* The fixed file attributes coded in the ddname definition or the data-set label for
the file match the attributes coded for that file in the SELECT clause and FD entry.

Mismatches in the file-organization attributes, code set, maximum record size, or
record format (fixed or variable) result in a file status code 39, and the failure of
the OPEN statement. Mismatches in maximum record size and record format are
not errors when opening files in the HFS.

For fixed-length QSAM files, if you code RECORD CONTAINS 0 in the FD entry, the
record size attributes are not in conflict. The record size is taken from the DD
statement or the data-set label, and the OPEN statement is successful.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program
is running.

Use the REVERSED option of the OPEN statement to process tape files in reverse order.
The file is positioned at the end, and READ statements read the data records in
reverse order, starting with the last record. The REVERSED option is supported only
for files that have fixed-length records.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
“Dynamically creating QSAM files”]
“Ensuring that file attributes match your program” on page 170

RELATED REFERENCES
OPEN statement (Enterprise COBOL Language Reference)

Dynamically creating QSAM files

Sometimes a QSAM file is unavailable on the operating system, but a COBOL
program specifies that the file be created. Under certain circumstances, the file is
created for you dynamically.

A QSAM file is considered to be available on z/OS when it has been identified to
the operating system using a valid DD statement, an export command for an
environment variable, or a TSO ALLOCATE command. Otherwise the file is
unavailable.

Note that a DD statement with a misspelled ddname is equivalent to a missing DD
statement, and an environment variable with a value that is not valid is equivalent
to an unset variable.

The QSAM file is implicitly created if you use the runtime option CBLQDA and one
of the following circumstances exists:

* An optional file is being opened as EXTEND or I-0.

Optional files are files that are not necessarily available each time the program is
run. You define a file that is being opened in INPUT, I-0, or EXTEND mode as
optional by coding the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

¢ The file is being opened for OUTPUT, regardless of the OPTIONAL phrase.

The file is allocated with the system default attributes established at your
installation and the attributes coded in the SELECT clause and FD entry in your
program.

Do not confuse this implicit allocation mechanism with the explicit dynamic
allocation of files by means of environment variables. Explicit dynamic allocation
requires that a valid environment variable be set. CBLQDA support is used only
when the QSAM file is unavailable as defined above, which includes no valid
environment variable being set.

Under z/0S, files created using the CBLQDA option are temporary data sets and do
not exist after the program has run.

RELATED TASKS
[“Opening QSAM files” on page 162

Adding records to QSAM files

To add to a QSAM file, open the file as EXTEND and use the WRITE statement to add
records immediately after the last record in the file.

To add records to a file opened as I-0, you must first close the file and open it as
EXTEND.

Chapter 9. Processing QSAM files 163

164

RELATED REFERENCES
READ statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

Updating QSAM files

You can update QSAM files only if they reside on direct access storage devices.
You cannot update files in the HFS.

Replace an existing record with another record of the same length by doing these
steps:
1. Open the file as I-0.

2. Use REWRITE to update an existing record. (The last file processing statement
before REWRITE must have been a successful READ statement.)

You cannot open as I-0 an extended format data set that you allocate in
compressed format.

RELATED REFERENCES
REWRITE statement (Enterprise COBOL Language Reference)

Writing QSAM files to a printer or spooled data set

COBOL provides language statements to control the size of a printed page and
control the vertical positioning of records.

Controlling the page size: Use the LINAGE clause of the FD entry to control the size
of your printed page: the number of lines in the top and bottom margins and in
the footing area of the page. When you use the LINAGE clause, COBOL handles the
file as if you had also requested the ADV compiler option.

If you use the LINAGE clause in combination with WRITE BEFORE | AFTER ADVANCING
nn LINES, be careful about the values you set. With the ADVANCING nn LINES phrase,
COBOL first calculates the sum of LINAGE-COUNTER plus nn. Subsequent actions
depend on the size of nn. The END-OF-PAGE imperative phrase is performed after
the LINAGE-COUNTER is increased. Consequently, the LINAGE-COUNTER could be
pointing to the next logical page instead of to the current footing area when the
END-OF-PAGE phrase is performed.

AT END-OF-PAGE or NOT AT END-OF-PAGE imperative phrases are performed only if
the write operation completes successfully. If the write operation is unsuccessful,
control is passed to the end of the WRITE statement, and all conditional phrases are
omitted.

Controlling the vertical positioning of records: Use the WRITE ADVANCING
statement to control the vertical positioning of each record you write on a printed

page.

BEFORE ADVANCING prints the record before the page is advanced. AFTER ADVANCING
prints the record after the page is advanced.

Specify the number of lines the page is advanced with an integer (or an identifier
with a mnemonic-name) following ADVANCING. If you omit the ADVANCING phrase from
a WRITE statement, the effect is as if you had coded:

AFTER ADVANCING 1 LINE

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED REFERENCES
WRITE statement (Enterprise COBOL Language Reference)

Closing QSAM files

Use the CLOSE statement to disconnect your program from a QSAM file. If you try
to close a file that is already closed, you will get a logic error.

If you do not close a QSAM file, the file is automatically closed for you under the
following conditions, except for files defined in any OS/VS COBOL programs in
the run unit:

* When the run unit ends normally, the run time closes all open files that are
defined in any COBOL programs in the run unit.

* If the run unit ends abnormally and the TRAP(ON) runtime option is in effect, the
run time closes all open files that are defined in any COBOL programs in the
run unit.

* When Language Environment condition handling has completed and the
application resumes in a routine other than where the condition occurred, the
run time closes all open files that are defined in any COBOL programs in the
run unit that might be called again and reentered.

You can change the location where the program resumes running (after a
condition is handled) by moving the resume cursor with the Language
Environment CEEMRCR callable service or by using language constructs such as
a C longjmp.

* When you use CANCEL for a COBOL subprogram, the run time closes any open
nonexternal files that are defined in that program.

* When a COBOL subprogram with the INITIAL attribute returns control, the run
time closes any open nonexternal files that are defined in that program.

* When a thread of a multithreaded application ends, both external and
nonexternal files that you opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE
operations are performed, but your EXCEPTION/ERROR and LABEL declaratives are not
invoked.

Errors: If you open a QSAM file in a multithreaded application, you must close it
from the same thread of execution from which the file was opened. Attempting to
close the file from a different thread results in a close failure with file-status
condition 90.

RELATED REFERENCES
CLOSE statement (Enterprise COBOL Language Reference)

Handling errors in QSAM files

When an input statement or output statement fails, COBOL does not take
corrective action for you. You choose whether your program should continue
running after a less-than-severe input or output error occurs.

COBOL provides these ways for you to intercept and handle certain QSAM input
and output errors:

* End-of-file phrase (AT END)
* EXCEPTION/ERROR declarative

Chapter 9. Processing QSAM files 165

e FILE STATUS clause
* INVALID KEY phrase

If you do not code a FILE STATUS key or a declarative, serious QSAM processing
errors will cause a message to be issued and a Language Environment condition to
be signaled, which will cause an abend if you specify the runtime option
ABTERMENC (ABEND).

If you use the FILE STATUS clause or the EXCEPTION/ERROR declarative, code
EROPT=ACC in the DCB of the DD statement for that file. Otherwise, your COBOL
program will not be able to continue processing after some error conditions.

If you use the FILE STATUS clause, be sure to check the key and take appropriate
action based on its value. If you do not check the key, your program might
continue, but the results will probably not be what you expected.

RELATED TASKS
[“Handling errors in input and output operations” on page 235|

Working with QSAM files

To work with QSAM files in a COBOL program, you define and allocate them,
retrieve them, and ensure that their file attributes match those in your program.
You can also use striped extended-format QSAM data sets to help improve
performance.

RELATED TASKS

“Defining and allocating QSAM files”]

“Retrieving QSAM files” on page 169

“Ensuring that file attributes match your program” on page 170
“Using striped extended-format QSAM data sets” on page 172

RELATED REFERENCES
[“Allocation of buffers for QSAM files” on page 173

Defining and allocating QSAM files

You can define a QSAM file or a byte-stream file in the HFS by using either a DD
statement or an environment variable. Allocation of these files follows the general
rules for the allocation of COBOL files.

When you use an environment variable, the name must be in uppercase. Specify
the MVS data set in one of these ways:

* DSN(dataset-name)
 DSN(dataset-name (member-name))

dataset-name must be fully qualified and cannot be a temporary data set (that is, it
must not start with &).

Restriction: You cannot create a PDS or PDSE by using an environment variable.

You can optionally specify the following attributes in any order after DSN:
* A disposition value, one of: NEW, OLD, SHR, or MOD
* TRACKS or CYL

166 Enterprise COBOL for z/OS V4.1 Programming Guide

e SPACE (nnn,mmm)

* VOL (volume-serial)

» UNIT(type)

* KEEP, DELETE, CATALOG, or UNCATALOG
* STORCLAS (storage-class)

* MGMTCLAS (management-class)

* DATACLAS (data-class)

You can use either an environment variable or a DD definition to define a file in the
HEFS. To do so, define one of the following items with a name that matches the
external name in the ASSIGN clause:

* A DD allocation that uses PATH="absolute-path-name"' and FILEDATA=BINARY

* An environment variable with a value PATH (pathname), where pathname is an
absolute path name (starting with /)

For compatibility with releases of COBOL before COBOL for OS/390 & VM

Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation
for HFS files, but this use is not recommended. To process text files in the HFS, use
LINE SEQUENTIAL organization. If you do use QSAM to process text files in the HFS,

you cannot use environment variables to define the files.

When you define a QSAM file, use the parameters as shown below.

Table 20. QSAM file allocation

What you want to do

DD parameter to use

EV keyword to use

Name the file.

DSNAME (data-set name)

DSN

Select the type and quantity of
input-output devices to be
allocated for the file.

UNIT

UNIT for type only

Give instructions for the volume in
which the file will reside and for
volume mounting.

VOLUME (or let the system
choose an output volume)

VoL

catalog, pass, or keep the file after
the job step is completed.

Allocate the type and amount of SPACE SPACE for the amount of

space the file needs. (Only for space (primary and

direct-access storage devices.) secondary only); TRACKS or
CYL for the type of space

Specify the type and some of the LABEL n/a

contents of the label associated

with the file.

Indicate whether you want to DISP NEW, OLD, SHR, MOD plus

KEEP, DELETE, CATALQG, or
UNCATALOG

Complete any data control block
information that you want to add.

DCB subparameters

n/a

Some of the information about the QSAM file must always be coded in the
FILE-CONTROL paragraph, the FD entry, and other COBOL clauses. Other
information must be coded in the DD statement or environment variable for output
files. For input files, the system can obtain information from the file label (for
standard label files). If DCB information is provided in the DD statement for input

Chapter 9. Processing QSAM files

167

168

files, it overrides information on the data-set label. For example, the amount of
space allocated for a new direct-access device file can be set in the DD statement by
the SPACE parameter.

You cannot express certain characteristics of QSAM files in the COBOL language,
but you can code them in the DD statement for the file by using the DCB parameter.
Use the subparameters of the DCB parameter to provide information that the system
needs for completing the data set definition, including the following items:

* Block size (BLKSIZE=), if BLOCK CONTAINS 0 RECORDS was coded at compile time
(recommended)

* Options to be executed if an error occurs in reading or writing a record
* TRACK OVERFLOW or standard blocks
* Mode of operation for a card reader or punch

DCB attributes coded for a DD DUMMY do not override those coded in the FD entry of
your COBOL program.

[“Example: setting and accessing environment variables” on page 438|

RELATED TASKS
“Setting block sizes” on page 159

“Defining QSAM files and records in COBOL” on page 151|
“ Allocating files” on page 149|

RELATED REFERENCES
“Parameters for creating QSAM files” on page 169
IMVS Program Management: User’s Guide and Referencd

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

Parameters for creating QSAM files

The following DD statement parameters are frequently used to create QSAM files.

DSNAME= | dataset-name
dataset-name (member-name)
&&name

&&name (member-name)

DSN=

UNIT= (name[,unitcount])
VOLUME= ([PRIVATE] [,RETAIN] [,vol-sequence-num] [,volume-count] ...

vot ... | ,SER=(volume-serial[,volume-serial]...)
,REF=|dsname)
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname
SPACE= ([TRK , (primary-quantity[,secondary-quantity] [,directory-quantity]))
CYL
average-record-1length|

SL yyyy/dd

LABEL= ([Data-set-sequence-number,]| NL ,EXPDT= | yyddd])
d
SUL | [,RETPD=xxxx

MOD ,KEEP ,KEEP
,PASS ,CATLG

DISP= ([NEN] ,DELETE ,DELETE])
,CATLG

DCB= (subparameter-list)

RELATED TASKS
[“Defining and allocating QSAM files” on page 166

Retrieving QSAM files

You retrieve QSAM files, cataloged or not, by using job control statements or
environment variables.

Cataloged files
All data set information, such as volume and space, is stored in the catalog
and file label. All you have to code are the data set name and a
disposition. When you use a DD statement, this is the DSNAME parameter and
the DISP parameter. When you use an environment variable, this is the DSN
parameter and one of the parameters OLD, SHR, or MOD.

Noncataloged files
Some information is stored in the file label, but you must code the unit
and volume information, and the dsname and disposition.

If you are using JCL, and you created the file in the current job step or in a
previous job step in the current job, you can refer to the previous DD statement for
most of the data set information. You do, however, need to code DSNAME and DISP.

RELATED REFERENCES
[“Parameters for retrieving QSAM files” on page 170)

Chapter 9. Processing QSAM files 169

170

Parameters for retrieving QSAM files

The following DD statement parameters are used to retrieve previously created files.

dataset-name

DSNAME=
dataset-name (member-name)
DSN= *.ddname
*.stepname.ddname
&&name

&&name (member-name)

UNIT= (name[,unitcount])

VOLUME= (subparameter-list)
VOL=

LABEL= (subparameter-list)

prsp= (|OD | [LDELETE | [,DELETE |)
SHR | |,KEEP ,KEEP
MOD | | ,PASS ,CATLG
,CATLG LUNCATLG
,UNCATLG

DCB= (subparameter-list)

RELATED TASKS
[“Retrieving QSAM files” on page 169

Ensuring that file attributes match your program

When the fixed file attributes in the DD statement or the data-set label and the
attributes that are coded for that file in the SELECT clause and FD entry are not
consistent, an OPEN statement in your program might not work.

Mismatches in the attributes for file organization, record format (fixed or variable),
record length, or the code set result in file status code 39 and the failure of the
OPEN statement. An exception exists for files in the HFS: mismatches in record
format and record length do not cause an error.

To prevent common file status 39 problems, follow the guidelines for processing
existing or new files.

If you have not made a file available with a DD statement or a TSO ALLOCATE
command, and your COBOL program specifies that the file be created, Enterprise
COBOL dynamically allocates the file. When the file is opened, the file attributes
that are coded in your program are used. You do not have to worry about file
attribute conflicts.

Remember that information in the JCL or environment variable overrides
information in the data-set label.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
“Processing existing files”|

“Processing new files” on page 172|
“Opening QSAM files” on page 162

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Processing existing files

When your program processes an existing file, code the description of the file in
your COBOL program to be consistent with the file attributes of the data set. Use
the guidelines below to define the maximum record length.

Table 21. Maximum record length of QSAM files

For this format: | Specify this:

VorS Exactly 4 bytes less than the length attribute of the data set
F Same value as the length attribute of the data set

U Same value as the length attribute of the data set

The easiest way to define variable-length (format-V) records in a program is to use
the RECORD IS VARYING FROM integer-1 TO integer-2 clause in the FD entry and set an
appropriate value for integer-2. Express the integer sizes in bytes regardless of the
underlying USAGE of the data items in the record. For example, assume that you
determine that the length attribute of the data set is 104 bytes (LRECL=104).
Remembering that the maximum record length is determined from the RECORD IS
VARYING clause and not from the level-01 record descriptions, you could define a
format-V file in your program with this code:
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V

RECORD IS VARYING FROM 4 TO 100 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of
format-V. If the 104 bytes are all user data, you could define the file in your
program with this code:
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS U

RECORD IS VARYING FROM 4 TO 104 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

To define fixed-length records in your program, either code the RECORD CONTAINS
integer clause, or omit this clause and code all level-01 record descriptions to be the
same fixed size. In either case, use a value that equals the value of the length
attribute of the data set. If you intend to use the same program to process different
files at run time, and those files have differing fixed lengths, avoid record-length
conflicts by coding RECORD CONTAINS 0.

If the existing file is an ASCII data set (DCB=(0PTCD=Q)), you must use the CODE-SET
clause in the FD entry for the file.

Chapter 9. Processing QSAM files 171

172

RELATED TASKS
“Processing new files”]|

“Requesting fixed-length format” on page 153
“Requesting variable-length format” on page 154
“Requesting undefined format” on page 158|
“Opening QSAM files” on page 162

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Processing new files

If your COBOL program writes records to a new file that will be made available
before the program runs, ensure that the file attributes in the DD statement, the
environment variable, or the allocation do not conflict with the attributes in the
program.

Usually you need to code only a minimum of parameters when predefining files.
But if you need to explicitly set a length attribute for the data set (for example, you
are using an ISPF allocation panel, or your DD statement is for a batch job in which
the program uses RECORD CONTAINS 0), follow these guidelines:

* For format-V and format-S files, set a length attribute that is 4 bytes larger than
that defined in the program.

* For format-F and format-U files, set a length attribute that is the same as that
defined in the program.

* If you open the file as OUTPUT and write it to a printer, the compiler might add 1
byte to the record length to account for the carriage-control character, depending
on the ADV compiler option and the language used in your program. In such a
case, take the added byte into account when coding the LRECL value.

For example, if your program contains the following code for a file that has
variable-length records, the LRECL value in the DD statement or allocation should be
54.
FILE SECTION.
FD COMMUTER-FILE-MST
RECORDING MODE IS V
RECORD CONTAINS 10 TO 50 CHARACTERS.
01 COMMUTER-RECORD-A PIC X(10).
01 COMMUTER-RECORD-B PIC X(50).

RELATED TASKS
“Processing existing files” on page 171|
“Requesting fixed-length format” on page 153|
“Requesting variable-length format” on page 154|
“Requesting undefined format” on page 158|
“Opening QSAM files” on page 162|
"Dynamically creating QSAM files” on page 163

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Using striped extended-format QSAM data sets

Striped extended-format QSAM data sets can benefit applications that process files
that have large amounts of data or in which the time needed for I/O operations
significantly affects overall performance.

Enterprise COBOL for z/OS V4.1 Programming Guide

A striped extended-format QSAM data set is an extended-format QSAM data set
that is spread over multiple volumes, thus allowing parallel data access.

For you to gain the maximum benefit from using QSAM striped data sets, z/OS
DEFSMS needs to be able to allocate the required number of buffers above the
16-MB line. When you develop applications that contain files allocated to QSAM
striped data sets, follow these guidelines:

* Avoid using a QSAM striped data set for a file that cannot have buffers
allocated above the 16-MB line.

¢ Omit the RESERVE clause in the FILE-CONTROL entry for the file. Doing so lets
z/0OS DFSMS determine the optimum number of buffers for the data set.

» Compile your program with the DATA(31) and RENT compiler options, and make
the load module AMODE 31.

* Specify the ALL31(ON) runtime option if the file is an EXTERNAL file with format-F,
format-V, or format-U records.

Note that all striped data sets are extended-format data sets, but not all
extended-format data sets are striped.

RELATED TASKS
/OS DEFSMS: Using Data Sets|

RELATED REFERENCES
[“Allocation of buffers for QSAM files”]

Allocation of buffers for QSAM files

z/0S DFSMS automatically allocates buffers for storing input and output for a
QSAM file above or below the 16-MB line as appropriate for the file.

Most QSAM files have buffers allocated above the 16-MB line. Exceptions are:
¢ Programs running in AMODE 24.

* Programs compiled with the DATA(24) and RENT options.

* Programs compiled with the NORENT and RMODE (24) options.

* Programs compiled with the NORENT and RMODE (AUTO) options.

* EXTERNAL files when the ALL31(0FF) runtime option is specified. To specify the
ALL31(ON) runtime option, all programs in the run unit must be capable of
running in 31-bit addressing mode.

* Files allocated to the TSO terminal.

* A file with format-S (spanned) records, if the file is any of the following:
— An EXTERNAL file (even if ALL31(ON) is specified)
— A file specified in a SAME RECORD AREA clause of the I-0-CONTROL paragraph
— A blocked file that is opened I-0 and updated using the REWRITE statement

RELATED CONCEPTS
[“Storage and its addressability” on page 42|

RELATED TASKS
[“Using striped extended-format QSAM data sets” on page 172

Chapter 9. Processing QSAM files 173

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

Accessing HFS files using QSAM

You can process byte-stream files in the hierarchical file system (HFS) as
ORGANIZATION SEQUENTIAL files using QSAM. To do this, specify as the
assignment-name in the ASSIGN clause either a ddname or an environment-variable
name.

ddname
A DD allocation that identifies the file with the keywords PATH= and
FILEDATA=BINARY

Environment-variable name
An environment variable that holds the runtime value of the HFS path for
the file

Observe the following restrictions:
* Spanned record format is not supported.

* OPEN I-0 and REWRITE are not supported. If you attempt one of these operations,
one of the following file-status conditions results:

— 37 from OPEN I-0

— 47 from REWRITE (because you could not have successfully opened the file as
I-0)

Usage notes

 File status 39 (fixed file attribute conflict) is not enforced for either of the
following types of conflicts:

- Record-length conflict
— Record-type conflict (fixed as opposed to variable)

* A READ returns the number of bytes of the maximum logical record size for the
file except for the last record, which might be shorter.

For example, suppose that a file definition has level-01 record descriptions of 3,
5, and 10 bytes long, and you write the following three records: ‘abc’, ‘defgh’,
and “ijklmnopqr’, in that order. The first READ of this file returns “abcdefghij’, the
second READ returns ‘klmnopqr ’, and the third READ results in the AT END
condition.

For compatibility with releases of IBM COBOL before COBOL for OS/390 & VM
Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation
for HFS files, but this use is not recommended. To process text files in the HFS, use
LINE SEQUENTIAL organization. If you use QSAM to process text files in the HFS,
you cannot use environment variables to define the files.

RELATED TASKS

“ Allocating files” on page 149

"Defining and allocating QSAM files” on page 166
2/OS DFSMS: Using Data Sets| (Using HFS data sets)

Labels for QSAM files

You can use labels to identify magnetic tape and direct access volumes and data
sets. The operating system uses label-processing routines to identify and verify
labels and locate volumes and data sets.

174 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

There are two kinds of labels: standard and nonstandard. Enterprise COBOL does
not support nonstandard user labels. In addition, standard user labels contain
user-specified information about the associated data set.

Standard labels consist of volume labels and groups of data-set labels. Volume
labels precede or follow data on the volume, and identify and describe the volume.
The data-set labels precede or follow each data set on the volume, and identify and
describe the data set.

* The data-set labels that precede the data set are called header labels.

* The data-set labels that follow the data set are called trailer labels. They are
similar to the header labels, except that they also contain a count of blocks in the
data set.

* The data-set label groups can optionally include standard user labels.
* The volume label groups can optionally include standard user labels.

RELATED TASKS
[“Using trailer and header labels”|

RELATED REFERENCES
[“Format of standard labels” on page 176

Using trailer and header labels

You can create, examine, or update user labels when the beginning or end of a
data set or volume (reel) is reached. End-of-volume or beginning-of-volume exits
are allowed. You can also create or examine intermediate trailers and headers.

You can create, examine, or update up to eight header labels and eight trailer
labels on each volume of the data set. (QSAM EXTEND works in a manner identical
to OUTPUT except that the beginning-of-file label is not processed.) Labels reside on
the initial volume of a multivolume data set. This volume must be mounted as
CLOSE if trailer labels are to be created, examined, or updated. Trailer labels for files
opened as INPUT or I-0 are processed when a CLOSE statement is performed for the
file that has reached an AT END condition.

If you code a header or trailer with the wrong position number, the result is
unpredictable. (Data management might force the label to the correct relative
position.)

When you use standard label processing, code the label type of the standard and
user labels (SUL) on the DD statement that describes the data set.

Getting a user-label track: If you use a LABEL subparameter of SUL for direct access
volumes, a separate user-label track is allocated when the data set is created. This
additional track is allocated at initial allocation and for sequential data sets at
end-of-volume (volume switch). The user-label track (one per volume of a
sequential data set) contains both user header and user trailer labels. If a LABEL
name is referenced outside the user LABEL declarative, results are unpredictable.

Handling user labels: The USE AFTER LABEL declarative provides procedures for
handling user labels on supported files. The AFTER option indicates processing of

standard user labels.

List the labels as data-names in the LABEL RECORDS clause in the FD entry for the file.

Chapter 9. Processing QSAM files 175

176

Table 22. Handling of QSAM user labels

When the file is

opened as: And: Result:

INPUT USE . . . LABEL declarative is | The label is read and control is
coded for the OPEN option or for |passed to the LABEL declarative.
the file.

OUTPUT USE . . . LABEL declarative is | A buffer area for the label is
coded for the OPEN option or for |provided, and control is passed to
the file. the LABEL declarative.

INPUT or I-0 CLOSE statement is performed Control is passed to the LABEL
for the file that has reached the |declarative for processing trailer
AT END condition. labels.

You can specify a special exit by using the statement GO TO MORE-LABELS. When
this statement results in an exit from a label DECLARATIVE SECTION, the system takes
one of the following actions:

* Writes the current beginning or ending label, and then reenters the USE section at
its beginning to create more labels. After creating the last label, the system exits
by performing the last statement of the section.

* Reads an additional beginning or ending label, and then reenters the USE section
at its beginning to check more labels. When processing user labels, the system
reenters the section only if there is another user label to check. Hence, a program
path that flows through the last statement in the section is not needed.

If a GO TO MORE-LABELS statement is not performed for a user label, the
DECLARATIVE SECTION is not reentered to check or create any immediately
succeeding user labels.

RELATED CONCEPTS
[“Labels for QSAM files” on page 174

Format of standard labels

Standard labels are 80-character records that are recorded in EBCDIC or ASCII. The
first four characters are always used to identify the labels.

Table 23. Identifiers for standard tape labels

Identifier Description
VOL1 Volume label
HDR1 or HDR2
EOV1 or EOV2
EOF1 or EOF2
UHL1 to UHLS
UTL1 to UTLS8

Data set header labels

Data set trailer labels (end-of-volume)

Data set trailer labels (end-of-data-set)

User header labels

User trailer labels

The format of the label for a direct-access volume is the almost the same as the
format of the label group for a tape volume label group. The difference is that a
data-set label of the initial DASTO volume label consists of the data set control
block (DSCB). The DSCB appears in the volume table of contents (VTOC) and
contains the equivalent of the tape data set header and trailer, in addition to
control information such as space allocation.

Enterprise COBOL for z/OS V4.1 Programming Guide

Standard user labels

User labels are optional within the standard label groups. The format for user
header labels (UHL1-8) and user trailer labels (UTL1-8) consists of a label 80
characters in length recorded in either:

* EBCDIC on DASD or on IBM standard labeled tapes
* ASCII or ISO/ANSI labeled tapes

The first 3 bytes consist of the characters that identify the label as either:
* UHL for a user header label (at the beginning of a data set)
» UTL for a user trailer label (at the end-of-volume or end-of-data set)

The next byte contains the relative position of this label within a set of labels of the
same type; one to eight labels are permitted. The remaining 76 bytes consist of
user-specified information.

Standard user labels are not supported for QSAM striped data sets.

RELATED CONCEPTS
[“Labels for QSAM files” on page 174

Processing QSAM ASCII files on tape

If your program processes a QSAM ASCII file, you must request the ASCII
alphabet, define the record formats, and define the ddname (with JCL).

In addition, if your program processes signed numeric data items from ASCII files,
define the numeric data as zoned decimal items with separate signs, that is, as
USAGE DISPLAY and with the SEPARATE phrase of the SIGN clause.

The CODEPAGE compiler option has no effect on the code page used for conversions
between ASCII and EBCDIC for ASCII tape support. See the z/OS DFSMS
documentation for information about how CCSIDs used for the ASCII tape support
are selected and what the default CCSIDs are.

Requesting the ASCII alphabet: In the SPECIAL-NAMES paragraph, code STANDARD-1
for ASCIIL:

ALPHABET-NAME IS STANDARD-1

In the FD entry for the file, code:
CODE-SET IS ALPHABET-NAME

Defining the record formats: Process QSAM ASCII tape files with any of these
record formats:

* Fixed length (format F)
* Undefined (format U)
* Variable length (format V)

If you use variable-length records, you cannot explicitly code format D; instead,

code RECORDING MODE V. The format information is internally converted to D mode.
D-mode records have a 4-byte record descriptor for each record.

Chapter 9. Processing QSAM files 177

Defining the ddname: Under z/OS, processing ASCII files requires special JCL
coding. Code these subparameters of the DCB parameter in the DD statement:

BUFOFF=[L | n]

L A 4-byte block prefix that contains the block length (including the
block prefix)

n The length of the block prefix:
* For input, from 0 through 99

* For output, either 0 or 4
Use this value if you coded BLOCK CONTAINS 0.
BLKSIZE=n
n The size of the block, including the length of the block prefix
LABEL=[AL | AULINL]
AL American National Standard (ANS) labels
AUL ANS and user labels
NL No labels
OPTCD=Q
Q This value is required for ASCII files and is the default if the file is
created using Enterprise COBOL.

RELATED TASKS
[“Processing ASCII file labels”]

RELATED REFERENCES
z/0OS DFSMS: Using Data Sets| (Character data conversion)

Processing ASCII file labels

178

Standard label processing for ASCII files is the same as standard label processing
for EBCDIC files. The system translates ASCII code into EBCDIC before processing.

All ANS user labels are optional. ASCII files can have user header labels (UHLn)
and user trailer labels (UTL#n). There is no limit to the number of user labels at the
beginning and the end of a file; you can write as many labels as you need. All user
labels must be 80 bytes in length.

To create or verify user labels (user label exit), code a USE AFTER STANDARD LABEL
procedure. You cannot use USE BEFORE STANDARD LABEL procedures.

ASCII files on tape can have:
* ANS labels

* ANS and user labels

* No labels

Any labels on an ASCII tape must be in ASCII code only. Tapes that contain a
combination of ASCII and EBCDIC cannot be read.

RELATED TASKS
[“Processing QSAM ASCII files on tape” on page 177

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460

Chapter 10. Processing VSAM files

Virtual storage access method (VSAM) is an access method for files on
direct-access storage devices. With VSAM you can load files, retrieve records from
files, update files, and add, replace, and delete records in files.

VSAM processing has these advantages over QSAM:
* Protection of data against unauthorized access
* Compatibility across systems

* Independence of devices (no need to be concerned with block size and other
control information)

 Simpler JCL (information needed by the system is provided in integrated
catalogs)

* Ability to use indexed file organization or relative file organization

The table below shows how VSAM terms differ from COBOL terms and other
terms that you might be familiar with.

Table 24. Comparison of VSAM, COBOL, and non-VSAM terminology

VSAM term COBOL term Similar non-VSAM term
Data set File Data set
Entry-sequenced data set (ESDS) Sequential file QSAM data set
Key-sequenced data set (KSDS) Indexed file ISAM data set
Relative-record data set (RRDS) Relative file BDAM data set

Control interval Block

Control interval size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access method control block (ACB) Data control block (DCB)
Cluster (CL) Data set

Cluster definition Data-set allocation

AMP parameter of JCL DD statement DCB parameter of JCL DD statement
Record size Record length

The term file in this VSAM documentation refers to either a COBOL file or a
VSAM data set.

If you have complex requirements or frequently use VSAM, review the VSAM
publications for your operating system.

RELATED CONCEPTS
[“"VSAM files” on page 180|

RELATED TASKS
“Defining VSAM file organization and records” on page 181]
“Coding input and output statements for VSAM files” on page 187|
“Handling errors in VSAM files” on page 195

“Protecting VSAM files with a password” on page 196|

© Copyright IBM Corp. 1991, 2007 179

“Working with VSAM data sets under z/OS and UNIX” on page 197

“Improving VSAM performance” on page 203|

RELATED REFERENCES

-/OS DFSMS: Using Data Sets)

2/OS DFSMS Macro Instructions for Data Setsl

2/OS DFSMS: Access Method Services for Catalogd

VSAM files

The physical organization of VSAM data sets differs considerably from the
organizations used by other access methods.

VSAM data sets are held in control intervals (CI) and control areas (CA). The size
of the CI and CA is normally determined by the access method, and the way in

which they are used is not visible to you.

You can use three types of file organization with VSAM:

VSAM sequential file organization

(Also referred to as VSAM ESDS (entry-sequenced data set) organization.) In
VSAM sequential file organization, the records are stored in the order in
which they were entered.

VSAM entry-sequenced data sets are equivalent to QSAM sequential files.
The order of the records is fixed.

VSAM indexed file organization

(Also referred to as VSAM KSDS (key-sequenced data set) organization.) In a
VSAM indexed file (KSDS), the records are ordered according to the
collating sequence of an embedded prime key field, which you define. The
prime key consists of one or more consecutive characters in the records.
The prime key uniquely identifies the record and determines the sequence
in which it is accessed with respect to other records. A prime key for a
record might be, for example, an employee number or an invoice number.

VSAM relative file organization

(Also referred to as VSAM fixed-length or variable-length RRDS
(relative-record data set) organization.) A VSAM relative-record data set
(RRDS) contains records ordered by their relative key. The relative key is the
relative record number, which represents the location of the record relative
to where the file begins. The relative record number identifies the fixed- or
variable-length record.

In a VSAM fixed-length RRDS, records are placed in a series of
fixed-length slots in storage. Each slot is associated with a relative record
number. For example, in a fixed-length RRDS containing 10 slots, the first
slot has a relative record number of 1, and the tenth slot has a relative
record number of 10.

In a VSAM variable-length RRDS, the records are ordered according to
their relative record number. Records are stored and retrieved according to
the relative record number that you set.

Throughout this documentation, the term VSAM relative-record data set (or
RRDS) is used to mean both relative-record data sets with fixed-length
records and with variable-length records, unless they need to be
differentiated.

180 Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d540
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

The following table compares the characteristics of the different types of VSAM

data sets.

Table 25. Comparison of VSAM data-set types

Characteristic

Entry-sequenced data set
(ESDS)

Key-sequenced data set
(KSDS)

Relative-record data set
(RRDS)

Order of records

Order in which they are
written

Collating sequence by key
field

Order of relative record
number

Access

Sequential

By key through an index

By relative record number,
which is handled like a key

Alternate indexes

Can have one or more
alternate indexes, although
not supported in COBOL

Can have one or more
alternate indexes

Cannot have alternate indexes

Relative byte address
(RBA) and relative
record number (RRN)
of a record

RBA cannot change.

RBA can change.

RRN cannot change.

Space for adding
records

Uses space at the end of
the data set

Uses distributed free space
for inserting records and
changing their lengths in
place

For fixed-length RRDS, uses
empty slots in the data set

For variable-length RRDS, uses
distributed free space and
changes the lengths of added
records in place

Space from deleting
records

You cannot delete a record,
but you can reuse its space
for a record of the same
length.

Space from a deleted or
shortened record is
automatically reclaimed in a
control interval.

Space from a deleted record
can be reused.

Spanned records

Can have spanned records

Can have spanned records

Cannot have spanned records

Reuse as work file

Can be reused unless it has
an alternate index, is
associated with key ranges,
or exceeds 123 extents per
volume

Can be reused unless it has
an alternate index, is
associated with key ranges, or
exceeds 123 extents per
volume

Can be reused

RELATED TASKS

“Specifying sequential organization for VSAM files” on page 182]

“Specifying indexed organization for VSAM files” on page 182

“Specifying relative organization for VSAM files” on page 184

“Defining VSAM files” on page 197]

Defining VSAM file organization and records

Use an entry in the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define
the file organization and access modes for the VSAM files in your COBOL

program.

In the FILE SECTION of the DATA DIVISION, code a file description (FD) entry for the
file. In the associated record description entry or entries, define the record-name and
record length. Code the logical size of the records with the RECORD clause.

Important: You can process VSAM data sets in Enterprise COBOL programs only
after you define them with access method services.

Chapter 10. Processing VSAM files

181

182

Table 26. VSAM file organization, access mode, and record format

Sequential |Random Dynamic Fixed Variable

File organization access access access length length
VSAM sequential Yes No No Yes Yes
(ESDS)

VSAM indexed Yes Yes Yes Yes Yes
(KSDS)

VSAM relative Yes Yes Yes Yes Yes
(RRDS)

RELATED TASKS

“Specifying sequential organization for VSAM files”|

“Specifying indexed organization for VSAM files”|

“Specifying relative organization for VSAM files” on page 184

“Specifying access modes for VSAM files” on page 185|

“Defining record lengths for VSAM files” on page 185

“Using file status keys” on page 239

“Using VSAM status codes (VSAM files only)” on page 241

“Defining VSAM files” on page 197]

Specifying sequential organization for VSAM files

Identify VSAM ESDS files in a COBOL program with the ORGANIZATION IS
SEQUENTIAL clause. You can access (read or write) records in sequential files only
sequentially.

After you place a record in the file, you cannot shorten, lengthen, or delete it.
However, you can update (REWRITE) a record if the length does not change. New
records are added at the end of the file.

The following example shows typical FILE-CONTROL entries for a VSAM sequential
file (ESDS):

SELECT S-FILE
ASSIGN TO SEQUENTIAL-AS-FILE
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS
[“VSAM files” on page 180|

Specifying indexed organization for VSAM files

Identify a VSAM KSDS file in a COBOL program by using the ORGANIZATION IS
INDEXED clause. Code a prime key for the record by using the RECORD KEY clause.
You can also use alternate keys and an alternate index.

RECORD KEY IS data-name

In the example above, data-name is the name of the prime key field as you define it
in the record description entry in the DATA DIVISION. The prime key data item can
be class alphabetic, alphanumeric, DBCS, numeric, or national. If it has USAGE
NATIONAL, the prime key can be category national, or can be a national-edited,

Enterprise COBOL for z/OS V4.1 Programming Guide

numeric-edited, national decimal, or national floating-point data item. The collation
of record keys is based on the binary value of the keys regardless of the class or
category of the keys.

The following example shows the statements for a VSAM indexed file (KSDS) that
is accessed dynamically. In addition to the primary key, COMMUTER-NO, an alternate
key, LOCATION-NO, is specified:

SELECT I-FILE
ASSIGN TO INDEXED-FILE
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS IFILE-RECORD-KEY
ALTERNATE RECORD KEY IS IFILE-ALTREC-KEY
FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS
[“VSAM files” on page 180

RELATED TASKS
“Using alternate keys”]
“Using an alternate index”]

RELATED REFERENCES
RECORD KEY clause (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Using alternate keys

In addition to the primary key, you can code one or more alternate keys for a
VSAM KSDS file. By using alternate keys, you can access an indexed file to read
records in some sequence other than the prime-key sequence.

Alternate keys do not need to be unique. More than one record could be accessed
if alternate keys are coded to allow duplicates. For example, you could access the
file through employee department rather than through employee number.

You define the alternate key in your COBOL program with the ALTERNATE RECORD
KEY clause:

ALTERNATE RECORD KEY IS data-name

In the example above, data-name is the name of the alternate key field as you
define it in the record description entry in the DATA DIVISION. Alternate key data
items, like prime key data items, can be class alphabetic, alphanumeric, DBCS,
numeric, or national. The collation of alternate keys is based on the binary value of
the keys regardless of the class or category of the keys.

Using an alternate index

To use an alternate index for a VSAM KSDS file, you need to define a data set
called the alternate index (AIX) by using access method services.

The AIX contains one record for each value of a given alternate key. The records
are in sequential order by alternate-key value. Each record contains the
corresponding primary keys of all records in the associated indexed files that
contain the alternate-key value.

Chapter 10. Processing VSAM files 183

184

RELATED TASKS
[‘Creating alternate indexes” on page 198

Specifying relative organization for VSAM files

Identify VSAM RRDS files in a COBOL program by using the ORGANIZATION IS
RELATIVE clause. Use the RELATIVE KEY IS clause to associate each logical record
with its relative record number.

The following example shows a relative-record data set (RRDS) that is accessed
randomly by the value in the relative key:
SELECT R-FILE

ASSIGN TO RELATIVE-FILE

ORGANIZATION IS RELATIVE

ACCESS IS RANDOM

RELATIVE KEY IS RFILE-RELATIVE-KEY

FILE STATUS IS FSTAT-CODE VSAM-CODE.

You can use a randomizing routine to associate a key value in each record with the
relative record number for that record. Although there are many techniques to
convert a record key to a relative record number, the most commonly used is the
division/remainder technique. With this technique, you divide the key by a value
equal to the number of slots in the data set to produce a quotient and remainder.
When you add one to the remainder, the result is a valid relative record number.

Alternate indexes are not supported for VSAM RRDS.
RELATED CONCEPTS

“VSAM files” on page 180|
“Fixed-length and variable-length RRDS”

RELATED TASKS
“Using variable-length RRDS”]
“Defining VSAM files” on page 197]

Fixed-length and variable-length RRDS

In an RRDS that has fixed-length records, each record occupies one slot. You store
and retrieve records according to the relative record number of the slot. A
variable-length RRDS does not have slots; instead, the free space that you define
allows for more efficient record insertions.

When you load an RRDS that has fixed-length records, you have the option of
skipping over slots and leaving them empty. When you load an RRDS that has
variable-length records, you can skip over relative record numbers.

Using variable-length RRDS

To use relative-record data sets (RRDS) that have variable-length records, you must
use VSAM variable-length RRDS support.

Do these steps:

1. Define the file with the ORGANIZATION IS RELATIVE clause.

2. Use FD entries to describe the records with variable-length sizes.
3. Use the NOSIMVRD runtime option.

4. Define the VSAM file through access-method services as an RRDS.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED TASKS
[‘Defining VSAM files” on page 197]

RELATED REFERENCES
£/OS DFSMS: Access Method Services for Catalogs

Specifying access modes for VSAM files

You can access records in VSAM sequential files only sequentially. You can access
records in VSAM indexed and relative files in three ways: sequentially, randomly,
or dynamically.

For sequential access, code ACCESS IS SEQUENTIAL in the FILE-CONTROL entry.
Records in indexed files are then accessed in the order of the key field selected
(either primary or alternate). Records in relative files are accessed in the order of
the relative record numbers.

For random access, code ACCESS IS RANDOM in the FILE-CONTROL entry. Records in
indexed files are then accessed according to the value you place in a key field.
Records in relative files are accessed according to the value you place in the
relative key.

For dynamic access, code ACCESS IS DYNAMIC in the FILE-CONTROL entry. Dynamic
access is a mixed sequential-random access in the same program. Using dynamic
access, you can write one program to perform both sequential and random
processing, accessing some records in sequential order and others by their keys.

[‘Example: using dynamic access with VSAM files”]

RELATED TASKS
[‘Reading records from a VSAM file” on page 192

Example: using dynamic access with VSAM files

Suppose that you have an indexed file of employee records, and the employee’s
hourly wage forms the record key.

If your program processes those employees who earn between $15.00 and $20.00
per hour and those who earn $25.00 per hour and above, using dynamic access of
VSAM files, the program would:

1. Retrieve the first record randomly (with a random-retrieval READ) based on the
key of 1500.

2. Read sequentially (using READ NEXT) until the salary field exceeds 2000.
3. Retrieve the next record randomly, based on a key of 2500.
4. Read sequentially until the end of the file.

RELATED TASKS
[“Reading records from a VSAM file” on page 192|

Defining record lengths for VSAM files

You can define VSAM records to be fixed or variable in length. COBOL determines
the record format from the RECORD clause and the record descriptions that are
associated with the FD entry for a file.

Chapter 10. Processing VSAM files 185

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

186

Because the concept of blocking has no meaning for VSAM files, you can omit the
BLOCK CONTAINS clause. The clause is syntax-checked, but it has no effect on how

the program runs.

RELATED TASKS

“Defining fixed-length records”|

“Defining variable-length records”]

Enterprise COBOL Compiler and Runtime Migration Guidd

RELATED REFERENCES

[“FILE SECTION entries” on page 14|

Defining fixed-length records

To define VSAM records as fixed length, use one of these coding options.

Table 27. Definition of VSAM fixed-length records

integer.

length of integer-3 bytes

Clause
RECORD clause format |Record length Comments
Code RECORD CONTAINS 1 Fixed in size with a The lengths of the

level-01 record
description entries
associated with the file
do not matter.

Omit the RECORD clause,
but code all level-01
records that are
associated with the file as
the same size; and code
none with an 0CCURS
DEPENDING ON clause.

The fixed size that you
coded

RELATED REFERENCES

RECORD clause (Enterprise COBOL Language Reference)

Defining variable-length records

To define VSAM records as variable length, use one of these coding options.

Table 28. Definition of VSAM variable-length records

integer-4 TO integer-5.

Clause

RECORD clause format |Maximum record length |Comments

Code RECORD IS VARYING |3 integer-7 bytes The lengths of the

FROM integer-6 TO integer-7. level-01 record

description entries
associated with the file
do not matter.

Code RECORD IS VARYING. |3 Size of the largest level-01 | The compiler determines
record description entry | the maximum record
associated with the file length.

Code RECORD CONTAINS 2 integer-5 bytes The minimum record

length is integer-4 bytes.

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3mg40

Table 28. Definition of VSAM variable-length records (continued)

RECORD clause

Clause
format

Maximum record length

Comments

Omit the RECORD clause,
but code multiple level-01

Size of the largest level-01
record description entry

The compiler determines
the maximum record

associated with the file length.

records that are
associated with the file
and are of different sizes
or contain an 0CCURS

DEPENDING ON clause.

When you specify a READ INTO statement for a format-V file, the record size that is
read for that file is used in the MOVE statement generated by the compiler.
Consequently, you might not get the result you expect if the record read in does
not correspond to the level-01 record description. All other rules of the MOVE
statement apply. For example, when you specify a MOVE statement for a format-V
record read in by the READ statement, the size of the record corresponds to its
level-01 record description.

RELATED REFERENCES
RECORD clause (Enterprise COBOL Language Reference)

Coding input and output statements for VSAM files

Use the COBOL statements shown below to process VSAM files.

OPEN To connect the VSAM data set to your COBOL program for processing.
WRITE To add records to a file or load a file.
START To establish the current location in the cluster for a READ NEXT statement.

START does not retrieve a record; it only sets the current record pointer.

READ and READ NEXT
To retrieve records from a file.

REWRITE
To update records.

DELETE To logically remove records from indexed and relative files only.

CLOSE To disconnect the VSAM data set from your program.

All of the following factors determine which input and output statements you can
use for a given VSAM data set:

¢ Access mode (sequential, random, or dynamic)
* File organization (ESDS, KSDS, or RRDS)
* Mode of OPEN statement (INPUT, OUTPUT, I-0, or EXTEND)

The following table shows the possible combinations of statements and open
modes for sequential files (ESDS). The X indicates that you can use a statement
with the open mode shown at the top of the column.

Chapter 10. Processing VSAM files 187

188

Table 29. /0 statements for VSAM sequential files

COBOL
Access mode statement OPEN INPUT | OPEN OUTPUT OPEN I-0 OPEN EXTEND
Sequential OPEN X X X X
WRITE X X
START
READ X X
REWRITE X
DELETE
CLOSE X X X X

The following table shows the possible combinations of statements and open
modes you can use with indexed (KSDS) files and relative (RRDS) files. The X
indicates that you can use the statement with the open mode shown at the top of

the column.

Table 30. 1/0 statements for VSAM relative and indexed files

COBOL
Access mode statement OPEN INPUT | OPEN OUTPUT OPEN I-0 OPEN EXTEND
Sequential OPEN X X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X X
Random OPEN X X X

WRITE X X

START

READ X X

REWRITE X

DELETE X

CLOSE X X X
Dynamic OPEN X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X

The fields that you code in the FILE STATUS clause are updated by VSAM after
each input-output statement to indicate the success or failure of the operation.

Enterprise COBOL for z/OS V4.1 Programming Guide

RELATED CONCEPTS
[“File position indicator”|

RELATED TASKS
“Opening a file (ESDS, KSDS, or RRDS)"]
“Reading records from a VSAM file” on page 192|
“Updating records in a VSAM file” on page 193|
“Adding records to a VSAM file” on page 193]
"“Replacing records in a VSAM file” on page 194
“Deleting records from a VSAM file” on page 194|
“Closing VSAM files” on page 194

RELATED REFERENCES
File status key (Enterprise COBOL Language Reference)

File position indicator

The file position indicator marks the next record to be accessed for sequential
COBOL requests. You do not set the file position indicator in your program. It is
set by successful OPEN, START, READ, and READ NEXT statements.

Subsequent READ or READ NEXT requests use the established file position indicator
location and update it.

The file position indicator is not used or affected by the output statements WRITE,
REWRITE, or DELETE. The file position indicator has no meaning for random
processing.

RELATED TASKS
[‘Reading records from a VSAM file” on page 192|

Opening a file (ESDS, KSDS, or RRDS)

Before you can use WRITE, START, READ, REWRITE, or DELETE statements to process
records in a file, you must first open the file with an OPEN statement.

File availability and creation affect OPEN processing, optional files, and file status
codes 05 and 35. For example, if you open a file that is neither optional nor
available in EXTEND, I-0, or INPUT mode, you get file status 35 and the OPEN
statement fails. If the file is OPTIONAL, the same OPEN statement creates the file and
returns file status 05.

An OPEN operation works successfully only when you set fixed file attributes in the
DD statement or data-set label for a file and specify consistent attributes for the file
in the SELECT clause and FD entries of your COBOL program. Mismatches in the

following items result in a file status code 39 and the failure of the OPEN statement:

* Attributes for file organization (sequential, relative, or indexed)

* Prime record key

* Alternate record keys

* Maximum record size

* Record type (fixed or variable)

How you code the OPEN statement for a VSAM file depends on whether the file is
empty (a file that has never contained records) or loaded. For either type of file,

your program should check the file status key after each OPEN statement.

Chapter 10. Processing VSAM files 189

190

RELATED TASKS
“Opening an empty file”]
“Opening a loaded file (a file with records)” on page 191|

RELATED REFERENCES
[“Statements to load records into a VSAM file” on page 191

Opening an empty file

To open a file that has never contained records (an empty file), use a form of the
OPEN statement.

Depending on the type of file that you are opening, use one of the following
statements:

e OPEN OUTPUT for ESDS files.

e OPEN OUTPUT or OPEN EXTEND for KSDS and RRDS files. (Either coding has the
same effect.) If you coded the file for random or dynamic access and the file is
optional, you can use OPEN I-0.

Optional files are files that are not necessarily available each time a program is run.
You can define files opened in INPUT, I-0, or OUTPUT mode as optional by defining
them with the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

Initially loading a file sequentially: Initially loading a file means writing records
into the file for the first time. Doing so is not the same as writing records into a
file from which all previous records have been deleted. To initially load a VSAM
file:

1. Open the file.

2. Use sequential processing (ACCESS IS SEQUENTIAL). (Sequential processing is
faster than random or dynamic processing.)

3. Use WRITE to add a record to the file.

Using OPEN OUTPUT to load a VSAM file significantly improves the performance of
your program. Using OPEN I-0 or OPEN EXTEND has a negative effect on the
performance of your program.

When you load VSAM indexed files sequentially, you optimize both loading
performance and subsequent processing performance, because sequential
processing maintains user-defined free space. Future insertions will be more
efficient.

With ACCESS IS SEQUENTIAL, you must write the records in ascending RECORD KEY
order.

When you load VSAM relative files sequentially, the records are placed in the file
in the ascending order of relative record numbers.

Initially loading a file randomly or dynamically: You can use random or dynamic
processing to load a file, but they are not as efficient as sequential processing.
Because VSAM does not support random or dynamic processing, COBOL has to
perform some extra processing to enable you to use ACCESS IS RANDOM or ACCESS

IS DYNAMIC with OPEN OUTPUT or OPEN I-0. These steps prepare the file for use and
give it the status of a loaded file because it has been used at least once.

Enterprise COBOL for z/OS V4.1 Programming Guide

In addition to extra overhead for preparing files for use, random processing does
not consider any user-defined free space. As a result, any future insertions might
be inefficient. Sequential processing maintains user-defined free space.

When you are loading an extended-format VSAM data set, file status 30 will occur
for the OPEN if z/OS DFSMS system-managed buffering sets the buffering to local
shared resources (LSR). To successfully load the VSAM data set in this case, specify
ACCBIAS=USER in the DD AMP parameter for the VSAM data set to bypass
system-managed buffering.

Loading a VSAM data set with access method services: You can load or update a
VSAM data set by using the access method services REPRO command. Use REPRO
whenever possible.

RELATED TASKS
[“Opening a loaded file (a file with records)’

RELATED REFERENCES
“Statements to load records into a VSAM file”]
/OS DFSMS: Access Method Services for Catalogs (REPRO)

Statements to load records into a VSAM file

Use the statements shown below to load records into a VSAM file.

Table 31. Statements to load records into a VSAM file

ACCESS MODE

ALTERNATE RECORD KEY
FILE STATUS

PASSWORD

ACCESS MODE

Division ESDS KSDS RRDS

ENVIRONMENT SELECT SELECT SELECT

DIVISION ASSIGN ASSIGN ASSIGN
FILE STATUS |ORGANIZATION IS INDEXED ORGANIZATION IS RELATIVE
PASSWORD RECORD KEY RELATIVE KEY

FILE STATUS
PASSWORD
ACCESS MODE

DATA DIVISION

FD entry

FD entry

FD entry

PROCEDURE
DIVISION

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

RELATED TASKS

“Opening an empty file” on page 190

“Updating records in a VSAM file” on page 193

Opening a loaded file (a file with records)

To open a file that already contains records, use OPEN INPUT, OPEN I-0, or OPEN

EXTEND.

If you open a VSAM entry-sequenced or relative-record file as EXTEND, the added
records are placed after the last existing records in the file.

If you open a VSAM key-sequenced file as EXTEND, each record you add must have
a record key higher than the highest record in the file.

Chapter 10. Processing VSAM files 191

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

192

RELATED TASKS
“Opening an empty file” on page 190
“Working with VSAM data sets under z/OS and UNIX” on page 197

RELATED REFERENCES
“Statements to load records into a VSAM file” on page 191
2/OS DFSMS: Access Method Services for Catalogs

Reading records from a VSAM file

Use the READ statement to retrieve (READ) records from a file. To read a record, you
must have opened the file INPUT or I-0. Your program should check the file status
key after each READ.

You can retrieve records in VSAM sequential files only in the sequence in which
they were written.

You can retrieve records in VSAM indexed and relative record files in any of the
following ways:

Sequentially
According to the ascending order of the key you are using, the RECORD KEY
or the ALTERNATE RECORD KEY, beginning at the current position of the file
position indicator for indexed files, or according to ascending relative
record locations for relative files

Randomly
In any order, depending on how you set the RECORD KEY or ALTERNATE
RECORD KEY or the RELATIVE KEY before your READ request

Dynamically
Mixed sequential and random

With dynamic access, you can switch between reading a specific record directly
and reading records sequentially, by using READ NEXT for sequential retrieval and
READ for random retrieval (by key).

When you want to read sequentially, beginning at a specific record, use START
before the READ NEXT statement to set the file position indicator to point to a
particular record. When you code START followed by READ NEXT, the next record is
read and the file position indicator is reset to the next record. You can move the
file position indicator randomly by using START, but all reading is done
sequentially from that point.

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is performed for a VSAM indexed file, based on an alternate
index for which duplicates exist, only the first record in the data set (base cluster)
with that alternate key value is retrieved. You need a series of READ NEXT
statements to retrieve each of the data set records with the same alternate key. A
file status code of 02 is returned if there are more records with the same alternate
key value to be read; a code of 00 is returned when the last record with that key
value has been read.

RELATED CONCEPTS
[“File position indicator” on page 189)

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

RELATED TASKS
[‘Specifying access modes for VSAM files” on page 185|

Updating records in a VSAM file

To update a VSAM file, use these PROCEDURE DIVISION statements.
Table 32. Statements to update records in a VSAM file

Access
method ESDS KSDS RRDS
ACCESS IS OPEN EXTEND OPEN EXTEND OPEN EXTEND
SEQUENTIAL WRITE WRITE WRITE
CLOSE CLOSE CLOSE
or or or
OPEN I-0 OPEN I-0 OPEN I-0
READ READ READ
REWRITE REWRITE REWRITE
CLOSE DELETE DELETE
CLOSE CLOSE
ACCESS IS Not applicable OPEN I-0 OPEN I-0
RANDOM READ READ
WRITE WRITE
REWRITE REWRITE
DELETE DELETE
CLOSE CLOSE
ACCESS IS Not applicable OPEN I-0 OPEN I-0
DYNAMIC READ NEXT READ NEXT
(sequential WRITE WRITE
processing) REWRITE REWRITE
START START
DELETE DELETE
CLOSE CLOSE
ACCESS IS Not applicable OPEN I-0 OPEN I-0
DYNAMIC READ READ
(random WRITE WRITE
processing) REWRITE REWRITE
DELETE DELETE
CLOSE CLOSE

RELATED REFERENCES
[“Statements to load records into a VSAM file” on page 191]

Adding records to a VSAM file

Use the COBOL WRITE statement to add a record to a file without replacing any
existing records. The record to be added must not be larger than the maximum
record size that you set when you defined the file. Your program should check the
file status key after each WRITE statement.

Adding records sequentially: Use ACCESS IS SEQUENTIAL and code the WRITE

statement to add records sequentially to the end of a VSAM file that has been
opened with either OUTPUT or EXTEND.

Chapter 10. Processing VSAM files 193

Sequential files are always written sequentially.

For indexed files, you must write new records in ascending key sequence. If you
open the file EXTEND, the record keys of the records to be added must be higher
than the highest primary record key on the file when you opened the file.

For relative files, the records must be in sequence. If you include a RELATIVE KEY
data item in the SELECT clause, the relative record number of the record to be
written is placed in that data item.

Adding records randomly or dynamically: When you write records to an indexed
data set and ACCESS IS RANDOM or ACCESS IS DYNAMIC, you can write the records in
any order.

Replacing records in a VSAM file

To replace a record in a VSAM file, use REWRITE on a file that you opened as I-0. If
the file was not opened as I-0, the record is not rewritten and the status key is set
to 49. Check the file status key after each REWRITE statement.

For sequential files, the length of the replacement record must be the same as the
length of the original record. For indexed files or variable-length relative files, you
can change the length of the record you replace.

To replace a record randomly or dynamically, you do not have to first READ the
record. Instead, locate the record you want to replace as follows:

* For indexed files, move the record key to the RECORD KEY data item, and then
issue the REWRITE.

e For relative files, move the relative record number to the RELATIVE KEY data
item, and then issue the REWRITE.

Deleting records from a VSAM file

To remove an existing record from an indexed or relative file, open the file I-0 and
use the DELETE statement. You cannot use DELETE on a sequential file.

When you use ACCESS IS SEQUENTIAL or the file contains spanned records, your
program must first read the record to be deleted. The DELETE then removes the
record that was read. If the DELETE is not preceded by a successful READ, the
deletion is not done and the status key value is set to 92.

When you use ACCESS IS RANDOM or ACCESS IS DYNAMIC, your program does not
have to first read the record to be deleted. To delete a record, move the key of the
record to be deleted to the RECORD KEY data item, and then issue the DELETE. Your
program should check the file status key after each DELETE statement.

Closing VSAM files

Use the CLOSE statement to disconnect your program from a VSAM file. If you try
to close a file that is already closed, you will get a logic error. Check the file status
key after each CLOSE statement.

194 Enterprise COBOL for z/OS V4.1 Programming Guide

If you do not close a VSAM file, the file is automatically closed for you under the
following conditions, except for files defined in any OS/VS COBOL programs in
the run unit:

* When the run unit ends normally, all open files defined in any COBOL
programs in the run unit are closed.

* When the run unit ends abnormally, if the TRAP(ON) runtime option has been set,
all open files defined in any COBOL programs in the run unit are closed.

* When Language Environment condition handling has completed and the
application resumes in a routine other than where the condition occurred, open
files defined in any COBOL programs in the run unit that might be called again
and reentered are closed.

You can change the location where a program resumes after a condition is
handled. To make this change, you can, for example, move the resume cursor
with the CEEMRCR callable service or use language constructs such as a C
longjmp statement.

* When you issue CANCEL for a COBOL subprogram, any open nonexternal files
defined in that program are closed.

* When a COBOL subprogram with the INITIAL attribute returns control, any
open nonexternal files defined in that program are closed.

* When a thread of a multithreaded application ends, both external and
nonexternal files that were opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE
operations are performed, but your EXCEPTION/ERROR and LABEL declaratives are not
invoked.

Errors: If you open a VSAM file in a multithreaded application, you must close it
from the same thread of execution. Attempting to close the file from a different
thread results in a close failure with file-status condition 90.

Handling errors in VSAM files

When an input or output statement operation fails, COBOL does not perform
corrective action for you.

All OPEN and CLOSE errors with a VSAM file, whether logical errors in your
program or input/output errors on the external storage media, return control to
your COBOL program even if you coded no DECLARATIVE and no FILE STATUS
clause.

If any other input or output statement operation fails, you choose whether your
program will continue running after a less-than-severe error.

COBOL provides these ways for you to intercept and handle certain VSAM input
and output errors:

* End-of-file phrase (AT END)

* EXCEPTION/ERROR declarative

e FILE STATUS clause (file status key and VSAM status code)
* INVALID KEY phrase

You should define a status key for each VSAM file that you define in your
program. Check the status key value after each input or output request, especially
OPEN and CLOSE.

Chapter 10. Processing VSAM files 195

If you do not code a file status key or a declarative, serious VSAM processing
errors will cause a message to be issued and a Language Environment condition to
be signaled, which will cause an abend if you specify the runtime option
ABTERMENC (ABEND).

RELATED TASKS
“Handling errors in input and output operations” on page 235|
“Using VSAM status codes (VSAM files only)” on page 241|

RELATED REFERENCES
2/0S DFSMS Macro Instructions for Data Sets§ (VSAM macro return and
reason codes)

Protecting VSAM files with a password

196

Although the preferred security mechanism on a z/OS system is RACF®,
Enterprise COBOL also supports using explicit passwords on VSAM files to
prevent unauthorized access and update.

To use explicit passwords, code the PASSWORD clause in the FILE-CONTROL
paragraph. Use this clause only if the catalog entry for the files includes a read or
an update password:

* If the catalog entry includes a read password, you cannot open and access the
file in a COBOL program unless you use the PASSWORD clause in the
FILE-CONTROL paragraph and describe it in the DATA DIVISION. The data-name
referred to must contain a valid password when the file is opened.

* If the catalog entry includes an update password, you can open and access it,
but not update it, unless you code the PASSWORD clause in the FILE-CONTROL
paragraph and describe it in the DATA DIVISION.

* If the catalog entry includes both a read password and an update password,
specify the update password to both read and update the file in your program.

If your program only retrieves records and does not update them, you need only
the read password. If your program loads files or updates them, you need to
specify the update password that was cataloged.

For indexed files, the PASSWORD data item for the RECORD KEY must contain the valid
password before the file can be successfully opened.

If you password-protect a VSAM indexed file, you must also password-protect
each alternate index in order to be fully password protected. Where you place the
PASSWORD clause is important because each alternate index has its own password.
The PASSWORD clause must directly follow the key clause to which it applies.

Example: password protection for a VSAM indexed file

The following example shows the COBOL code used for a VSAM indexed file that
has password protection.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LIBFILE
ASSIGN TO PAYMAST
ORGANIZATION IS INDEXED
RECORD KEY IS EMPL-NUM

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d540

PASSWORD IS BASE-PASS
ALTERNATE RECORD KEY IS EMPL-PHONE
PASSWORD IS PATHI1-PASS

WORKING-STORAGE SECTION.
01 BASE-PASS PIC X(8) VALUE "25BSREAD".
01 PATH1-PASS PIC X(8) VALUE "25ATREAD".

Working with VSAM data sets under z/0S and UNIX

There are some special coding considerations for VSAM files under z/OS and
UNIX for access method services (IDCAMS) commands, environment variables,
and JCL.

A VSAM file is available if all of the following conditions are true:
* You define it using access method services.

* You define it for your program by providing a DD statement, an environment
variable, or an ALLOCATE command.

* It has previously contained a record.

A VSAM file is unavailable if it has never contained a record, even if you have
defined it.

You always get a return code of zero on completion of the OPEN statement for a
VSAM sequential file.

Use the access method services REPRO command to empty a file. Deleting records in
this manner resets the high-use relative byte address (RBA) of the file to zero. The
file is effectively empty and appears to COBOL as if it never contained a record.

RELATED TASKS

“Defining files to the operating system” on page 10|
“Defining VSAM files”
“Creating alternate indexes” on page 19§

“ Allocating VSAM files” on page 20|

“Sharing VSAM files through RLS” on page 202|

Defining VSAM files

You can process VSAM entry-sequenced, key-sequenced, and relative-record data
sets in Enterprise COBOL only after you define them through access method
services (IDCAMS).

A VSAM cluster is a logical definition for a VSAM data set and has one or two
components:

* The data component of a VSAM cluster contains the data records.

* The index component of a VSAM key-sequenced cluster consists of the index
records.

Use the DEFINE CLUSTER access-method services command to define VSAM data
sets (clusters). This process includes creating an entry in an integrated catalog
without any data transfer. Define the following information about the cluster:

* Name of the entry

Chapter 10. Processing VSAM files 197

198

* Name of the catalog to contain this definition and its password (can use default
name)

* Organization (sequential, indexed, or relative)

* Device and volumes that the data set will occupy
* Space required for the data set

* Record size and control interval sizes (CISIZE)

* Passwords (if any) required for future access

Depending on what kind of data set is in the cluster, also define the following
information for each cluster:

* For VSAM indexed data sets (KSDS), specify length and position of the prime
key in the records.

* For VSAM fixed-length relative-record data sets (RRDS), specify the record size
as greater than or equal to the maximum size COBOL record:
DEFINE CLUSTER NUMBERED
RECORDSIZE (n,n)
When you define a data set in this way, all records are padded to the fixed slot
size n. If you use the RECORD IS VARYING ON data-name form of the RECORD clause,
a WRITE or REWRITE uses the length specified in DEPENDING ON data-name as the
length of the record to be transferred by VSAM. This data is then padded to the
fixed slot size. READ statements always return the fixed slot size in the DEPENDING
ON data-name.

e For VSAM variable-length relative-record data sets (RRDS), specify the average
size COBOL record expected and the maximum size COBOL record expected:

DEFINE CLUSTER NUMBERED
RECORDSIZE (avg ,m)

The average size COBOL record expected must be less than the maximum size
COBOL record expected.

RELATED TASKS

“Creating alternate indexes”|

“Allocating VSAM files” on page 200|

“Specifying relative organization for VSAM files” on page 184

RELATED REFERENCES
/OS DFSMS: Access Method Services for Catalogs

Creating alternate indexes

An alternate index provides access to the records in a data set that uses more than
one key. It accesses records in the same way as the prime index key of an indexed
data set (KSDS).

When planning to use an alternate index, you must know:

* The type of data set (base cluster) with which the index will be associated
* Whether the keys will be unique or not unique

* Whether the index is to be password protected

* Some of the performance aspects of using alternate indexes

Because an alternate index is, in practice, a VSAM data set that contains pointers to
the keys of a VSAM data set, you must define the alternate index and the alternate
index path (the entity that establishes the relationship between the alternate index

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

and the prime index). After you define an alternate index, make a catalog entry to
establish the relationship (or path) between the alternate index and its base cluster.
This path allows you to access the records of the base cluster through the alternate
keys.

To use an alternate index, do these steps:

1. Define the alternate index by using the DEFINE ALTERNATEINDEX command. In it,
specify these items:
¢ Name of the alternate index
* Name of its related VSAM indexed data set
* Location in the record of any alternate indexes and whether they are unique
* Whether alternate indexes are to be updated when the data set is changed
* Name of the catalog to contain this definition and its password (can use

default name)

In your COBOL program, the alternate index is identified solely by the
ALTERNATE RECORD KEY clause in the FILE-CONTROL paragraph. The ALTERNATE
RECORD KEY definitions must match the definitions in the catalog entry. Any
password entries that you cataloged should be coded directly after the
ALTERNATE RECORD KEY phrase.

2. Relate the alternate index to the base cluster (the data set to which the alternate
index gives you access) by using the DEFINE PATH command. In it, specify these
items:

* Name of the path
¢ Alternate index to which the path is related
* Name of the catalog that contains the alternate index

The base cluster and alternate index are described by entries in the same
catalog.

3. Load the VSAM indexed data set.

4. Build the alternate index by using (typically) the BLDINDEX command. Identify
the input file as the indexed data set (base cluster) and the output file as the
alternate index or its path. BLDINDEX reads all the records in the VSAM indexed
data set (or base cluster) and extracts the data needed to build the alternate
index.

Alternatively, you can use the runtime option AIXBLD to build the alternate
index at run time. However, this option might adversely affect performance.

[“Example: entries for alternate indexes”]

RELATED TASKS
[“Using an alternate index” on page 183

RELATED REFERENCES
ILanguage Environment Programming Referencd (AIXBLD (COBOL only))

Example: entries for alternate indexes

The following example maps the relationships between the COBOL FILE-CONTROL
entry and the DD statements or environment variables for a VSAM indexed file that
has two alternate indexes.

Using JCL:

Chapter 10. Processing VSAM files 199

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea3180

200

//MASTERA DD DSNAME=clustername,DISP=0LD (1)
//MASTERA1 DD DSNAME=pathl,DISP=0LD (2)
//MASTERA2 DD DSNAME=path2,DISP=0LD (3)

Using environment variables:

export MASTERA=DSN(clustername),0LD (1)
export MASTERA=DSN(pathl),0LD (2)
export MASTERA=DSN(path2),0LD (3)
FILE-CONTROL.
SELECT MASTER-FILE ASSIGN TO MASTERA (4)
RECORD KEY IS EM-NAME
PASSWORD IS PW-BASE (5)
ALTERNATE RECORD KEY IS EM-PHONE (6)
PASSWORD IS PW-PATH1
ALTERNATE RECORD KEY IS EM-CITY (7)
PASSWORD IS PW-PATHZ.
1) The base cluster name is clustername.
) The name of the first alternate index path is pathl.
3) The name of the second alternate index path is path2.
@) The ddname or environment variable name for the base cluster is specified

with the ASSIGN clause.
(5) Passwords immediately follow their indexes.
6) The key EM-PHONE relates to the first alternate index.
?) The key EM-CITY relates to the second alternate index.

RELATED TASKS
[“Creating alternate indexes” on page 198

Allocating VSAM files

You must predefine and catalog all VSAM data sets through the access method
services DEFINE command. Most of the information about a VSAM data set is in the
catalog, so you need to specify only minimal DD or environment variable
information.

Allocation of VSAM files (indexed, relative, and sequential) follows the general
rules for the allocation of COBOL files.

When you use an environment variable to allocate a VSAM file, the variable name
must be in uppercase. Usually the input and data buffers are the only variables
that you are concerned about. You must specify these options in the order shown,
but no others:

1. DSN(dsname), where dsname is the name of the base cluster
2. OLD or SHR

The basic DD statement that you need for VSAM files and the corresponding export
command are these:

//ddname DD DSN=dsname ,DISP=SHR,AMP=AMORG
export evname="DSN(dsname) ,SHR"

Enterprise COBOL for z/OS V4.1 Programming Guide

In either case, dsname must be the same as the name used in the access method
services DEFINE CLUSTER or DEFINE PATH command. DISP must be OLD or SHR
because the data set is already cataloged. If you specify MOD when using JCL, the
data set is treated as OLD.

AMP is a VSAM JCL parameter that supplements the information that the program
supplies about the data set. AMP takes effect when your program opens the VSAM
file. Any information that you set through the AMP parameter takes precedence over
the information that is in the catalog or that the program supplies. The AMP
parameter is required only under the following circumstances:

* You use a dummy VSAM data set. For example,
//ddname DD DUMMY,AMP=AMORG
* You request additional index or data buffers. For example,

//ddname DD DSN=VSAM.dsname ,DISP=SHR,
// AMP=('BUFNI=4,BUFND=8")

You cannot specify AMP if you allocate a VSAM data set with an environment
variable.

For a VSAM base cluster, specify the same system-name (ddname or environment
variable name) that you specify in the ASSIGN clause after the SELECT clause.

When you use alternate indexes in your COBOL program, you must specify not
only a system-name (using a DD statement or environment variable) for the base
cluster, but also a system-name for each alternate index path. No language
mechanism exists to explicitly declare system-names for alternate index paths
within the program. Therefore, you must adhere to the following guidelines for
forming the system-name (ddname or environment variable name) for each
alternate index path:

* Concatenate the base cluster name with an integer.

¢ Begin with 1 for the path associated with the first alternate record defined for
the file in your program (ALTERNATE RECORD KEY clause of the FILE-CONTROL
paragraph).

* Increment by 1 for the path associated with each successive alternate record
definition for that file.

For example, if the system-name of a base cluster is ABCD, the system-name for the
first alternate index path defined for the file in your program is ABCD1, the
system-name for the second alternate index path is ABCD2, and so on.

If the length of the base cluster system-name together with the sequence number
exceeds eight characters, the base cluster portion of the system-name is truncated
on the right to reduce the concatenated result to eight characters. For example, if
the system-name of a base cluster is ABCDEFGH, the system name of the first
alternate index path is ABCDEFG1, the tenth is ABCDEF10, and so on.

RELATED TASKS
[“Allocating files” on page 149

RELATED REFERENCES
IMVS Program Management: User’s Guide and Reference

Chapter 10. Processing VSAM files 201

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

202

Sharing VSAM files through RLS

By using the VSAM JCL parameter RLS, you can specify record-level sharing with
VSAM. Specifying RLS is the only way to request the RLS mode when running
COBOL programs.

Use RLS=CR when consistent read protocols are required, and RLS=NRI when no read
integrity protocols are required. You cannot specify RLS if you allocate your VSAM
data set with an environment variable

RELATED TASKS
“Preventing update problems with VSAM files in RLS mode”|
“Handling errors in VSAM files in RLS mode” on page 203|

RELATED REFERENCES
[“Restrictions when using RLS” on page 203|

Preventing update problems with VSAM files in RLS mode

When you open a VSAM data set in RLS mode for I-0 (updates), the first READ
causes an exclusive lock of the record regardless of the value of RLS (RLS=CR or
RLS=NRI) that you specify.

If the COBOL file is defined as ACCESS RANDOM, VSAM releases the exclusive lock
on the record after a WRITE or REWRITE statement is issued or a READ statement is
issued for another record. When a WRITE or REWRITE is done, VSAM writes the
record immediately.

However, if the COBOL file is defined as ACCESS DYNAMIC, VSAM does not release
the exclusive lock on the record after a WRITE or REWRITE statement, nor after a READ
statement, unless the I-O statement causes VSAM to move to another control
interval (CI). As a result, if a WRITE or REWRITE was done, VSAM does not write the
record until processing is moved to another CI and the lock is released. When you
use ACCESS DYNAMIC, one way to cause the record to be written immediately, to
release the exclusive lock immediately, or both, is to define the VSAM data set to
allow only one record per CI.

Specifying RLS=CR locks a record and prevents an update to it until another READ is
requested for another record. While a lock on the record being read is in effect,
other users can request a READ for the same record, but they cannot update the
record until the read lock is released. When you specify RLS=NRI, no lock will be in
effect when a READ for input is issued. Another user might update the record.

The locking rules for RLS=CR can cause the application to wait for availability of a
record lock. This wait might slow down the READ for input. You might need to
modify your application logic to use RLS=CR. Do not use the RLS parameter for
batch jobs that update nonrecoverable spheres until you are sure that the
application functions correctly in a multiple-updater environment.

When you open a VSAM data set in RLS mode for INPUT or I-0 processing, it is
good to issue an OPEN or START immediately before a READ. If there is a delay
between the OPEN or START and the READ, another user might add records before the
record on which the application is positioned after the OPEN or START. The COBOL
run time points explicitly to the beginning of the VSAM data set at the time when
OPEN was requested, but another user might add records that would alter the true
beginning of the VSAM data set if the READ is delayed.

Enterprise COBOL for z/OS V4.1 Programming Guide

Restrictions when using RLS

When you use RLS mode, several restrictions apply to VSAM cluster attributes and
to runtime options.

Be aware of these restrictions:
e The VSAM cluster attributes KEYRANGE and IMBED are not supported when you
open a VSAM file.

¢ The VSAM cluster attribute REPLICATE is not recommended because the benefits
are negated by the system-wide buffer pool and potentially large CF cache
structure in the storage hierarchy.

¢ The AIXBLD runtime option is not supported when you open a VSAM file
because VSAM does not allow an empty path to be opened. If you need the
AIXBLD runtime option to build the alternate index data set, open the VSAM data
set in non-RLS mode.

¢ The SIMVRD runtime option is not supported for VSAM files.
* Temporary data sets are not allowed.

Handling errors in VSAM files in RLS mode

If your application accesses a VSAM data set in RLS mode, be sure to check the file
status and VSAM feedback codes after each request.

If your application encounters "SMSVSAM server not available” while processing
input or output, explicitly close the VSAM file before you try to open it again.
VSAM generates return code 16 for such failures, and there is no feedback code.
You can have COBOL programs check the first 2 bytes of the second file status
area for VSAM return code 16. The COBOL run time generates message 1GZ0205W
and automatically closes the file if the error occurs during OPEN processing.

All other RLS mode errors return a VSAM return code of 4, 8, or 12.

RELATED TASKS
[‘Using VSAM status codes (VSAM files only)” on page 241

Improving VSAM performance

Your system programmer is most likely responsible for tuning the performance of
COBOL and VSAM. As an application programmer, you can control the aspects of
VSAM that are listed below.

Table 33. Methods for improving VSAM performance

Aspect of VSAM | What you can do Rationale and comments

Invoking access | Build your alternate indexes in
methods service |advance, using IDCAMS.

Chapter 10. Processing VSAM files 203

204

Table 33. Methods for improving VSAM performance (continued)

Aspect of VSAM

What you can do

Rationale and comments

Buffering

For sequential access, request
more data buffers; for random
access, request more index
buffers. Specify both BUFND
and BUFNI when ACCESS IS
DYNAMIC.

Avoid coding additional
buffers unless your application
will run interactively; then
code buffers only when
response-time problems arise
that might be caused by
delays in input and output.

The default is one index (BUFNI) and
two data buffers (BUFND).

Loading records,
using access
methods services

Use the access methods service
REPRO command when:

* The target indexed data set
already contains records.

* The input sequential data
set contains records to be
updated or inserted into the
indexed data set.

If you use a COBOL program
to load the file, use OPEN
OUTPUT and ACCESS
SEQUENTIAL.

The REPRO command can update an
indexed data set as fast or faster than
any COBOL program under these
conditions.

File access modes

For best performance, access
records sequentially.

Dynamic access is less efficient than
sequential access, but more efficient
than random access. Random access
results in increased EXCPs because
VSAM must access the index for each
request.

Key design

Design the key in the records
so that the high-order portion
is relatively constant and the
low-order portion changes
often.

This method compresses the key best.

Multiple
alternate indexes

Avoid using multiple alternate
indexes.

Updates must be applied through the
primary paths and are reflected
through multiple alternate paths,
perhaps slowing performance.

Relative file
organization

Use VSAM fixed-length
relative data sets rather than
VSAM variable-length relative
data sets.

Although not as space efficient, VSAM
fixed-length relative data sets are more
runtime efficient than VSAM
variable-length relative data sets.

Enterprise COBOL for z/OS V4.1 Programming Guide

Table 33. Methods for improving VSAM performance (continued)

Aspect of VSAM

What you can do

Rationale and comments

Control interval
sizes (CISZ)

Provide your system
programmer with information
about the data access and
future growth of your VSAM
data sets. From this
information, your system
programmer can determine
the best control interval size
(C1SZ) and FREESPACE size
(FSPC).

Choose proper values for CISZ
and FSPC to minimize control
area (CA) splits. You can
diagnose the current number
of CA splits by issuing the
LISTCAT ALL command on the
cluster, and then compress
(using EXPORT, IMPORT, or
REPRO) the cluster to omit all
CA splits periodically.

VSAM calculates CISZ to best fit the
direct-access storage device (DASD)
usage algorithm, which might not,
however, be efficient for your
application.

An average CISZ of 4K is suitable for
most applications. A smaller CISZ
means faster retrieval for random
processing at the expense of inserts
(that is, more CISZ splits and therefore
more space in the data set). A larger
CISZ results in the transfer of more data
across the channel for each READ. This is
more efficient for sequential processing,
similar to a large 0S BLKSIZE.

Many control area (CA) splits are
unfavorable for VSAM performance.
The FREESPACE value can affect CA
splits, depending on how the file is
used.

RELATED TASKS

“Specifying access modes for VSAM files” on page 185|

percentage of free space)

RELATED REFERENCES

2/OS DFSMS: Using Data Sets| (Building a resource pool, Selecting the optimal

/OS DFSMS: Access Method Services for Catalogd

Chapter 10. Processing VSAM files 205

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d460
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2i251

206 Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 11. Processing line-sequential files

Line-sequential files reside in the hierarchical file system (HFS) and contain only
printable characters and certain control characters as data. Each record ends with
an EBCDIC newline character (X’15"), which is not included in the record length.

Because these are sequential files, records are placed one after another according to
entry order. Your program can process these files only sequentially, retrieving (with
the READ statement) records in the same order as they are in the file. A new record
is placed after the preceding record.

To process line-sequential files in your program, use COBOL language statements
that:

* Identify and describe the files in the ENVIRONMENT DIVISION and the DATA
DIVISION

e Process the records in the files in the PROCEDURE DIVISION

After you have created a record, you cannot change its length or its position in the
file, and you cannot delete it.

RELATED TASKS

“Defining line-sequential files and records in COBOL’]

“Describing the structure of a line-sequential file” on page 208|
“Coding input-output statements for line-sequential files” on page 209
“Handling errors in line-sequential files” on page 212

“Defining and allocating line-sequential files” on page 209

LINIX System Services User’s Guidd

RELATED REFERENCES
[“Allowable control characters” on page 208

Defining line-sequential files and records in COBOL

Use the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define the files in
a COBOL program as line-sequential files, and to associate the files with the
corresponding external file-names (ddnames or environment variable names).

An external file-name is the name by which a file is known to the operating
system. In the following example, COMMUTER-FILE is the name that your program
uses for the file; COMMUTR is the external name:
FILE-CONTROL.

SELECT COMMUTER-FILE

ASSIGN TO COMMUTR

ORGANIZATION IS LINE SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS ECODE.

The ASSIGN assignment-name clause must not include an organization field (S- or
AS-) before the external name. The ACCESS phrase and the FILE STATUS clause are
optional.

RELATED TASKS
[“Describing the structure of a line-sequential file” on page 208|

© Copyright IBM Corp. 1991, 2007 207

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/BPXZA471

“Coding input-output statements for line-sequential files” on page 209
“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES
[“Allowable control characters”|

Allowable control characters

The control characters shown in the table below are the only characters other than
printable characters that line-sequential files can contain. The hexadecimal values
are in EBCDIC.

Hexadecimal value Control character
X'05’ Horizontal tab
X'0B’ Vertical tab

xoc Form feed

X'0D’ Carriage return
X'0E’ DBCS shift-out
X'0F DBCS shift-in
X'15 Newline

X'16’ Backspace

X2F Alarm

The newline character is treated as a record delimiter. The other control characters
are treated as data and are part of the record.

RELATED TASKS
[‘Defining line-sequential files and records in COBOL” on page 207]

Describing the structure of a line-sequential file

In the FILE SECTION, code a file description (FD) entry for the file. In the associated
record description entry or entries, define the record-name and record length.

Code the logical size in bytes of the records by using the RECORD clause.
Line-sequential files are stream files. Because of their character-oriented nature, the
physical records are of variable length.

The following examples show how the FD entry might look for a line-sequential
file:

With fixed-length records:

FILE SECTION.

FD COMMUTER-FILE
RECORD CONTAINS 80 CHARACTERS.

01 COMMUTER-RECORD.
05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

With variable-length records:

208 Enterprise COBOL for z/OS V4.1 Programming Guide

FILE SECTION.
FD COMMUTER-FILE
RECORD VARYING FROM 16 TO 80 CHARACTERS.
01 COMMUTER-RECORD.
05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

If you code the same fixed size and no OCCURS DEPENDING ON clause for any level-01
record description entries associated with the file, that fixed size is the logical
record length. However, because blanks at the end of a record are not written to
the file, the physical records might be of varying lengths.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 207
“Coding input-output statements for line-sequential files”]
"“Defining and allocating line-sequential files”]

RELATED REFERENCES
Data division--file description entries (Enterprise COBOL Language Reference)

Defining and allocating line-sequential files

You can define a line-sequential file in the HFS by using either a DD statement or
an environment variable. Allocation of these files follows the general rules for
allocating COBOL files.

To define a line-sequential file, code a DD allocation or an environment variable
with a name that matches the external name in the ASSIGN clause:

e A DD allocation:
— A DD statement that specifies PATH="absolute-path-name'
— A TSO allocation that specifies PATH('absolute-path-name')
You can optionally also specify these options:
— PATHOPTS
— PATHMODE
— PATHDISP

* An environment variable with a value of PATH(absolute-path-name). No other
values can be specified.
For example, to have your program use HFS file /u/myfiles/commuterfile for a
COBOL file that has an assignment-name of COMMUTR, you could use the following
command:

export COMMUTR="PATH(/u/myfiles/commuterfile)"

RELATED TASKS
" Allocating files” on page 149
“Defining line-sequential files and records in COBOL” on page 207

RELATED REFERENCES
IMVS Program Management: User’s Guide and Reference

Coding input-output statements for line-sequential files

Code the input and output statements shown below to process a line-sequential
file.

Chapter 11. Processing line-sequential files 209

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b170

OPEN To initiate the processing of a file.

You can open a line-sequential file as INPUT, OUTPUT, or EXTEND. You cannot
open a line-sequential file as I-0.

READ To read a record from a file.

With sequential processing, a program reads one record after another in
the same order in which the records were entered when the file was
created.

WRITE To create a record in a file.
A program writes new records to the end of the file.

CLOSE To release the connection between a file and the program.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 207|
"“Describing the structure of a line-sequential file” on page 208|
“Opening line-sequential files”|

"“Reading records from line-sequential files”|

“Adding records to line-sequential files” on page 211

“Closing line-sequential files” on page 211|

“Handling errors in line-sequential files” on page 212

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
READ statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)

Opening line-sequential files

Before your program can use any READ or WRITE statements to process records in a
file, it must first open the file with an OPEN statement. An OPEN statement works if
the file is available or has been dynamically allocated.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program
is running.

RELATED TASKS

“Reading records from line-sequential files”|

“Adding records to line-sequential files” on page 211]
“Closing line-sequential files” on page 211

"Defining and allocating line-sequential files” on page 209

RELATED REFERENCES
OPEN statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)

Reading records from line-sequential files

To read from a line-sequential file, open the file and use the READ statement. Your
program reads one record after another in the same order in which the records
were entered when the file was created.

210 Enterprise COBOL for z/OS V4.1 Programming Guide

Characters in the file record are read one at a time into the record area until one of
the following conditions occurs:

* The record delimiter (the EBCDIC newline character) is encountered.

The delimiter is discarded and the remainder of the record area is filled with
spaces. (Record area is longer than the file record.)

¢ The entire record area is filled with characters.

If the next unread character is the record delimiter, it is discarded. The next READ
reads from the first character of the next record. (Record area is the same length
as the file record.)

Otherwise the next unread character is the first character to be read by the next
READ. (Record area is shorter than the file record.)

¢ End-of-file is encountered.

The remainder of the record area is filled with spaces. (Record area is longer
than the file record.)

RELATED TASKS
“Opening line-sequential files” on page 210}

" Adding records to line-sequential files”]

“Closing line-sequential files”]

"“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES
OPEN statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

Adding records to line-sequential files

To add to a line-sequential file, open the file as EXTEND and use the WRITE statement
to add records immediately after the last record in the file.

Blanks at the end of the record area are removed, and the record delimiter is
added. The characters in the record area from the first character up to and
including the added record delimiter are written to the file as one record.

Records written to line-sequential files must contain only USAGE DISPLAY and
DISPLAY-1 items. Zoned decimal data items must be unsigned or declared with the
SEPARATE phrase of the SIGN clause if signed.

RELATED TASKS
“Opening line-sequential files” on page 210

“Reading records from line-sequential files” on page 210|
“Closing line-sequential files”]

“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES
OPEN statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

Closing line-sequential files

Use the CLOSE statement to disconnect your program from a line-sequential file. If
you try to close a file that is already closed, you will get a logic error.

Chapter 11. Processing line-sequential files 211

If you do not close a line-sequential file, the file is automatically closed for you
under the following conditions:

* When the run unit ends normally.
* When the run unit ends abnormally, if the TRAP(ON) runtime option is set.

* When Language Environment condition handling is completed and the
application resumes in a routine other than where the condition occurred, open
files defined in any COBOL programs in the run unit that might be called again
and reentered are closed.

You can change the location where the program resumes (after a condition is
handled) by moving the resume cursor with the Language Environment
CEEMRCR callable service or using HLL language constructs such as a C
longjmp call.

File status codes are set when these implicit CLOSE operations are performed, but
EXCEPTION/ERROR declaratives are not invoked.

RELATED TASKS

“Opening line-sequential files” on page 210|

“Reading records from line-sequential files” on page 210|
“Adding records to line-sequential files” on page 211
“Defining and allocating line-sequential files” on page 209

RELATED REFERENCES
CLOSE statement (Enterprise COBOL Language Reference)

Handling errors in line-sequential files

212

When an input or output statement fails, COBOL does not take corrective action
for you. You choose whether your program should continue running after an input
or output statement fails.

COBOL provides these language elements for intercepting and handling certain
line-sequential input and output errors:

* End-of-file phrase (AT END)
e EXCEPTION/ERROR declarative
e FILE STATUS clause

If you do not use one of these techniques, an error in processing input or output
raises a Language Environment condition.

If you use the FILE STATUS clause, be sure to check the key and take appropriate
action based on its value. If you do not check the key, your program might

continue, but the results will probably not be what you expected.

RELATED TASKS

“Coding input-output statements for line-sequential files” on page 209|

“Handling errors in input and output operations” on page 235|

Enterprise COBOL for z/OS V4.1 Programming Guide

Chapter 12. Sorting and merging files

You can arrange records in a particular sequence by using a SORT or MERGE
statement. You can mix SORT and MERGE statements in the same COBOL program.

SORT statement
Accepts input (from a file or an internal procedure) that is not in sequence,
and produces output (to a file or an internal procedure) in a requested
sequence. You can add, delete, or change records before or after they are
sorted.

MERGE statement
Compares records from two or more sequenced files and combines them in
order. You can add, delete, or change records after they are merged.

A program can contain any number of sort and merge operations. They can be the
same operation performed many times or different operations. However, one
operation must finish before another begins.

With Enterprise COBOL, your IBM licensed program for sorting and merging must
be DFSORT" or an equivalent. Where DFSORT is mentioned, you can use any
equivalent sort or merge product.

COBOL programs that contain SORT or MERGE statements can reside above or below
the 16-MB line.

The steps you take to sort or merge are generally as follows:
1. Describe the sort or merge file to be used for sorting or merging.

2. Describe the input to be sorted or merged. If you want to process the records
before you sort them, code an input procedure.

3. Describe the output from sorting or merging. If you want to process the records
after you sort or merge them, code an output procedure.

4. Request the sort or merge.

5. Determine whether the sort or merge operation was successful.

Restrictions:

* You cannot run a COBOL program that contains SORT or MERGE statements under
z/0OS UNIX. This restriction includes BPXBATCH.

* You cannot use SORT or MERGE statements in programs compiled with the THREAD
option. This includes programs that use object-oriented syntax and
multithreaded applications, both of which require the THREAD option.

RELATED CONCEPTS
[“Sort and merge process” on page 214

RELATED TASKS

“Describing the sort or merge file” on page 214|

"“Describing the input to sorting or merging” on page 215|
“Describing the output from sorting or merging” on page 217
“Requesting the sort or merge” on page 220|

"“Determining whether the sort or merge was successful” on page 224|
“Stopping a sort or merge operation prematurely” on page 225

© Copyright IBM Corp. 1991, 2007 213

“Improving sort performance with FASTSRT” on page 225|
“Controlling sort behavior” on page 228
IDFSORT Application Programming Guidd

RELATED REFERENCES
[“CICS SORT application restrictions” on page 232|

SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Sort and merge process

During the sorting of a file, all of the records in the file are ordered according to
the contents of one or more fields (keys) in each record. You can sort the records in
either ascending or descending order of each key.

If there are multiple keys, the records are first sorted according to the content of
the first (or primary) key, then according to the content of the second key, and so
on.

To sort a file, use the COBOL SORT statement.

During the merging of two or more files (which must already be sorted), the
records are combined and ordered according to the contents of one or more keys in
each record. You can order the records in either ascending or descending order of
each key. As with sorting, the records are first ordered according to the content of
the primary key, then according to the content of the second key, and so on.

Use MERGE . . . USING to name the files that you want to combine into one
sequenced file. The merge operation compares keys in the records of the input
files, and passes the sequenced records one by one to the RETURN statement of an
output procedure or to the file that you name in the GIVING phrase.

RELATED TASKS
[“Setting sort or merge criteria” on page 221

RELATED REFERENCES
SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Describing the sort or merge file

Describe the sort file to be used for sorting or merging. You need SELECT clauses
and SD entries even if you are sorting or merging data items only from
WORKING-STORAGE or LOCAL-STORAGE.

Code as follows:

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the
ENVIRONMENT DIVISION to name a sort file. For example:
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT Sort-Work-1 ASSIGN TO SortFile.

Sort-Work-1 is the name of the file in your program. Use this name to refer to
the file.

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

2. Describe the sort file in an SD entry in the FILE SECTION of the DATA DIVISION.
Every SD entry must contain a record description. For example:

DATA DIVISION.
FILE SECTION.
SD Sort-Work-1
RECORD CONTAINS 100 CHARACTERS.
01 SORT-WORK-1-AREA.
05 SORT-KEY-1 PIC X(10).
05 SORT-KEY-2 PIC X(10).
05 FILLER PIC X(80).

The file described in an SD entry is the working file used for a sort or merge
operation. You cannot perform any input or output operations on this file and you
do not need to provide a ddname definition for it.

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Describing the input to sorting or merging

Describe the input file or files for sorting or merging by following the procedure
below.

1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the
ENVIRONMENT DIVISION to name the input files. For example:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT Input-File ASSIGN TO InFiTe.

Input-File is the name of the file in your program. Use this name to refer to the
file.

2. Describe the input file (or files when merging) in an FD entry in the FILE
SECTION of the DATA DIVISION. For example:

DATA DIVISION.
FILE SECTION.
FD Input-File
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS © CHARACTERS
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS.
01 Input-Record PIC X(100).

RELATED TASKS
“Coding the input procedure” on page 216
“Requesting the sort or merge” on page 220|

RELATED REFERENCES
[“FILE SECTION entries” on page 14|

Example: describing sort and input files for SORT

The following example shows the ENVIRONMENT DIVISION and DATA DIVISION entries
needed to describe sort work files and an input file.

ID Division.
Program-ID. SmplSort.
Environment Division.
Input-Output Section.
File-Control.

Chapter 12. Sorting and merging files 215

*

* Assign name for a working file is treated as documentation.
*

Select Sort-Work-1 Assign To SortFile.

Select Sort-Work-2 Assign To SortFile.

Select Input-File Assign To InFile.

Data Division.
File Section.
SD Sort-Work-1
Record Contains 100 Characters.
01 Sort-Work-1-Area.
05 Sort-Key-1 Pic X(10).
05 Sort-Key-2 Pic X(10).
05 Filler Pic X(80).
SD Sort-Work-2
Record Contains 30 Characters.
01 Sort-Work-2-Area.
05 Sort-Key Pic X(5).
05 Filler Pic X(25).
FD Input-File
Label Records Are Standard
Block Contains 0 Characters
Recording Mode is F
Record Contains 100 Characters.

01 Input-Record Pic X(100).
Working-Storage Section.

01 EOS-Sw Pic X.

01 Filler.

05 Table-Entry Occurs 100 Times
Indexed By X1 Pic X(30).

RELATED TASKS
[‘Requesting the sort or merge” on page 220|

Coding the input procedure

216

To process the records in an input file before they are released to the sort program,
use the INPUT PROCEDURE phrase of the SORT statement.

You can use an input procedure to:
* Release data items to the sort file from WORKING-STORAGE or LOCAL-STORAGE.
* Release records that have already been read elsewhere in the program.

* Read records from an input file, select or process them, and release them to the
sort file.

Each input procedure must be contained in either paragraphs or sections. For
example, to release records from a table in WORKING-STORAGE or LOCAL-STORAGE to
the sort file SORT-WORK-2, you could code as follows:

SORT SORT-WORK-2
ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE 600-SORT3-INPUT-PROC

600-SORT3-INPUT-PROC SECTION.
PERFORM WITH TEST AFTER
VARYING X1 FROM 1 BY 1 UNTIL X1 = 100
RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)
END-PERFORM.

Enterprise COBOL for z/OS V4.1 Programming Guide

To transfer records to the sort program, all input procedures must contain at least
one RELEASE or RELEASE FROM statement. To release A from X, for example, you can
code:

MOVE X TO A.
RELEASE A.

Alternatively, you can code:
RELEASE A FROM X.

The following table compares the RELEASE and RELEASE FROM statements.

RELEASE RELEASE FROM

MOVE EXT-RECORD PERFORM RELEASE-SORT-RECORD
TO SORT-EXT-RECORD e

PERFORM RELEASE-SORT-RECORD RELEASE-SORT-RECORD.

RELEASE SORT-RECORD

RELEASE-SORT-RECORD. FROM SORT-EXT-RECORD
RELEASE SORT-RECORD

RELATED REFERENCES

[“Restrictions on input and output procedures” on page 219

RELEASE statement (Enterprise COBOL Language Reference)

Describing the output from sorting or merging

If the output from sorting or merging is a file, describe the file by following the
procedure below.

1.

Write a SELECT clause in the FILE-CONTROL paragraph of the ENVIRONMENT
DIVISION to name the output file. For example:

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT Output-File ASSIGN TO OutFile.

Output-File is the name of the file in your program. Use this name to refer to
the file.

Describe the output file (or files when merging) in an FD entry in the FILE
SECTION of the DATA DIVISION. For example:

DATA DIVISION.
FILE SECTION.
FD Output-File
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS O CHARACTERS
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS.
01 Output-Record PIC X(100).

RELATED TASKS

“Coding the output procedure” on page 218|

“Requesting the sort or merge” on page 220

RELATED REFERENCES

[“FILE SECTION entries” on page 14|

Chapter 12. Sorting and merging files 217

Coding the output procedure

218

To select, edit, or otherwise change sorted records before writing them from the
sort work file into another file, use the OUTPUT PROCEDURE phrase of the SORT
statement.

Each output procedure must be contained in either a section or a paragraph. An
output procedure must include both of the following elements:

* At least one RETURN statement or one RETURN statement with the INTO phrase

* Any statements necessary to process the records that are made available, one at
a time, by the RETURN statement

The RETURN statement makes each sorted record available to the output procedure.
(The RETURN statement for a sort file is similar to a READ statement for an input file.)

You can use the AT END and END-RETURN phrases with the RETURN statement. The
imperative statements in the AT END phrase are performed after all the records have
been returned from the sort file. The END-RETURN explicit scope terminator delimits
the scope of the RETURN statement.

If you use RETURN INTO instead of RETURN, the records will be returned to
WORKING-STORAGE, LOCAL-STORAGE, or to an output area.

DFSORT coding: When you use DFSORT and a RETURN statement does not
encounter an AT END condition before a COBOL program finishes running, the SORT
statement could end abnormally with DFSORT message IEC025A. To avoid this
situation, be sure to code the RETURN statement with the AT END phrase. In addition,
ensure that the RETURN statement is executed until the AT END condition is
encountered. The AT END condition occurs after the last record is returned to the
program from the sort work file and a subsequent RETURN statement is executed.

[“Example: coding the output procedure when using DFSORT”]

RELATED REFERENCES
[‘Restrictions on input and output procedures” on page 219
RETURN statement (Enterprise COBOL Language Reference)

Example: coding the output procedure when using DFSORT

The following example shows a coding technique that ensures that the RETURN
statement encounters the AT END condition before the program finishes running.
The RETURN statement, coded with the AT END phrase, is executed until the AT END
condition occurs.

IDENTIFICATION DIVISION.

DATA DIVISION.
FILE SECTION.

SD OUR-FILE.
01 OUR-SORT-REC.
03 SORT-KEY PIC X(10).
03 FILLER PIC X(70).
WORKING-STORAGE SECTION.
01 WS-SORT-REC PIC X(80).
01 END-OF-SORT-FILE-INDICATOR PIC X VALUE 'N'.

88 NO-MORE-SORT-RECORDS VALUE 'Y'.

Enterprise COBOL for z/OS V4.1 Programming Guide

PROCEDURE DIVISION.
A-CONTROL SECTION.
SORT OUR-FILE ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE IS B-INPUT
OUTPUT PROCEDURE IS C-OUTPUT.

B-INPUT SECTION.
MOVE TO WS-SORT-REC.
RELEASE OUR-SORT-REC FROM WS-SORT-REC.

C-OUTPUT SECTION.
DISPLAY 'STARTING READS OF SORTED RECORDS: '.
RETURN OUR-FILE
AT END
SET NO-MORE-SORT-RECORDS TO TRUE.
PERFORM WITH TEST BEFORE UNTIL NO-MORE-SORT-RECORDS
IF SORT-RETURN = 0 THEN
DISPLAY 'OUR-SORT-REC = ' OUR-SORT-REC
RETURN OUR-FILE
AT END
SET NO-MORE-SORT-RECORDS TO TRUE
END-IF
END-PERFORM.

Restrictions on input and output procedures

The restrictions listed below apply to each input or output procedure called by
SORT and to each output procedure called by MERGE.

* The procedure must not contain any SORT or MERGE statements.

* You can use ALTER, GO TO, and PERFORM statements in the procedure to refer to
procedure-names outside the input or output procedure. However, control must
return to the input or output procedure after a GO TO or PERFORM statement.

¢ The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points inside the input or output procedure (with the exception of the
return of control from a declarative section).

 In an input or output procedure, you can call a program that follows standard
linkage conventions. However, the called program cannot issue a SORT or MERGE
statement.

* During a SORT or MERGE operation, the SD data item is used. You must not use it
in the output procedure before the first RETURN executes. If you move data into
this record area before the first RETURN statement, the first record to be returned
will be overwritten.

* Language Environment condition handling does not allow user-written
condition handlers to be established in an input or output procedure.

RELATED TASKS

“Coding the input procedure” on page 216|

“Coding the output procedure” on page 218|

Language Environment Programming Guidd (Preparing to link-edit
and run)

Defining sort and merge data sets

To use DFSORT under z/QOS, code DD statements in the runtime JCL to describe the
necessary data sets that are listed below.

Chapter 12. Sorting and merging files 219

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea2180

Sort or merge work
Define a minimum of three data sets: SORTWKO1, SORTWKO2, SORTWKO3, . . .,
SORTWKnn (where nn is 99 or less). These data sets cannot be in the HFS.

SYSOUT Define for sort diagnostic messages, unless you change the data-set name.
(Change the name using either the MSGDDN keyword of the OPTION control
statement in the SORT-CONTROL data set, or using the SORT-MESSAGE special
register.)

SORTCKPT
Define if the sort or merge is to take checkpoints.

Input and output
Define input and output data sets, if any.

SORTLIB (DFSORT library)
Define the library that contains the sort modules, for example,
SYS1.SORTLIB.

RELATED TASKS
“Controlling sort behavior” on page 228

“Using checkpoint/restart with DESORT” on page 231|

Sorting variable-length records

Your sort work file will be variable length only if you define it to be variable
length, even if the input file to the sort contains variable-length records.

The compiler determines that the sort work file is variable length if you code one
of the following elements in the SD entry:

e A RECORD IS VARYING clause

* Two or more record descriptions that define records that have different sizes, or
records that contain an OCCURS DEPENDING ON clause

You cannot use RECORDING MODE V for the sort work file because the SD entry does
not allow the RECORDING MODE clause.

Performance consideration: To improve sort performance of variable-length files,
specify the most frequently occurring record length of the input file (the modal

length) on the SMS= control card or in the SORT-MODE-SIZE special register.

RELATED TASKS

“Changing DFSORT defaults with control statements” on page 229

“Controlling sort behavior” on page 228§

Requesting the sort or merge

220

To read records from an input file (files for MERGE) without preliminary processing,
use SORT . . . USING or MERGE . . . USING and the name of the input file (files)
that you declared in a SELECT clause.

To transfer sorted or merged records from the sort or merge program to another
file without any further processing, use SORT . . . GIVING or MERGE . . . GIVING
and the name of the output file that you declared in a SELECT clause. For example:

Enterprise COBOL for z/OS V4.1 Programming Guide

SORT Sort-Work-1
ON ASCENDING KEY Sort-Key-1
USING Input-File
GIVING Output-File.

For SORT . . . USING or MERGE . . . USING, the compiler generates an input
procedure to open the file (files), read the records, release the records to the sort or
merge program, and close the file (files). The file (files) must not be open when the
SORT or MERGE statement begins execution. For SORT . . . GIVING or MERGE . . .
GIVING, the compiler generates an output procedure to open the file, return the
records, write the records, and close the file. The file must not be open when the
SORT or MERGE statement begins execution.

The USING or GIVING files in a SORT or MERGE statement can be sequential files
residing in the HFS.

[“Example: describing sort and input files for SORT” on page 215|

If you want an input procedure to be performed on the sort records before they are
sorted, use SORT . . . INPUT PROCEDURE. If you want an output procedure to be
performed on the sorted records, use SORT . . . OUTPUT PROCEDURE. For example:

SORT Sort-Work-1
ON ASCENDING KEY Sort-Key-1
INPUT PROCEDURE EditInputRecords
OUTPUT PROCEDURE FormatData.

[“Example: sorting with input and output procedures” on page 222|

Restriction: You cannot use an input procedure with the MERGE statement. The
source of input to the merge operation must be a collection of already sorted files.
However, if you want an output procedure to be performed on the merged
records, use MERGE . . . OUTPUT PROCEDURE. For example:
MERGE Merge-Work

ON ASCENDING KEY Merge-Key

USING Input-File-1 Input-File-2 Input-File-3

OUTPUT PROCEDURE ProcessOutput.

In the FILE SECTION, you must define Merge-Work in an SD entry, and the input files
in FD entries.

RELATED TASKS
[‘Defining sort and merge data sets” on page 219

RELATED REFERENCES
SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Setting sort or merge criteria

To set sort or merge criteria, define the keys on which the operation is to be
performed.

Do these steps:

1. In the record description of the files to be sorted or merged, define the key or
keys.

Chapter 12. Sorting and merging files 221

222

There is no maximum number of keys, but the keys must be located in the first
4092 bytes of the record description. The total length of the keys cannot exceed
4092 bytes unless the EQUALS keyword is coded in the DFSORT OPTION control
statement, in which case the total length of the keys must not exceed 4088
bytes.

Restriction: A key cannot be variably located.

2. In the SORT or MERGE statement, specify the key fields to be used for sequencing
by coding the ASCENDING or DESCENDING KEY phrase, or both. When you code
more than one key, some can be ascending, and some descending.

Specify the names of the keys in decreasing order of significance. The leftmost
key is the primary key. The next key is the secondary key, and so on.

SORT and MERGE keys can be of class alphabetic, alphanumeric, national, or numeric
(but not numeric of USAGE NATIONAL). If it has USAGE NATIONAL, a key can be of
category national or can be a national-edited or numeric-edited data item. A key
cannot be a national decimal data item or a national floating-point data item.

The collation order for national keys is determined by the binary order of the keys.
If you specify a national data item as a key, any COLLATING SEQUENCE phrase in the
SORT or MERGE statement does not apply to that key.

You can mix SORT and MERGE statements in the same COBOL program. A program
can perform any number of sort or merge operations. However, one operation
must end before another can begin.

RELATED REFERENCES
IDESORT Application Programming Guidd (SORT control statement)
SORT statement (Enterprise COBOL Language Reference)

MERGE statement (Enterprise COBOL Language Reference)

Example: sorting with input and output procedures

The following example shows the use of an input and an output procedure in a
SORT statement. The example also shows how you can define a primary key
(SORT-GRID-LOCATION) and a secondary key (SORT-SHIFT) before using them in the
SORT statement.

DATA DIVISION.

SD SORT-FILE
RECORD CONTAINS 115 CHARACTERS
DATA RECORD SORT-RECORD.

01 SORT-RECORD.

05 SORT-KEY.
10 SORT-SHIFT PIC X(1).
10 SORT-GRID-LOCATION PIC X(2).
10 SORT-REPORT PIC X(3).

05 SORT-EXT-RECORD.
10 SORT-EXT-EMPLOYEE-NUM PIC X(6).
10 SORT-EXT-NAME PIC X(30).
10 FILLER PIC X(73).

WORKING-STORAGE SECTION.
01 TABI.
05 TAB-ENTRY OCCURS 10 TIMES
INDEXED BY TAB-INDX.

10 WS-SHIFT PIC X(1).
10 WS-GRID-LOCATION PIC X(2).
10 WS-REPORT PIC X(3).

Enterprise COBOL for z/OS V4.1 Programming Guide

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ICE1CA10

10 WS-EXT-EMPLOYEE-NUM PIC X(6).
10 WS-EXT-NAME PIC X(30).
10 FILLER PIC X(73).

PROCEDURE DIVISION.

SORT SORT-FILE
ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT
INPUT PROCEDURE 600-SORT3-INPUT
OUTPUT PROCEDURE 700-SORT3-0UTPUT.

600-SORT3-INPUT.
PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10
RELEASE SORT-RECORD FROM TAB-ENTRY (TAB-INDX)
END-PERFORM.

700-SORT3-0UTPUT.
PERFORM VARYING TAB-INDX