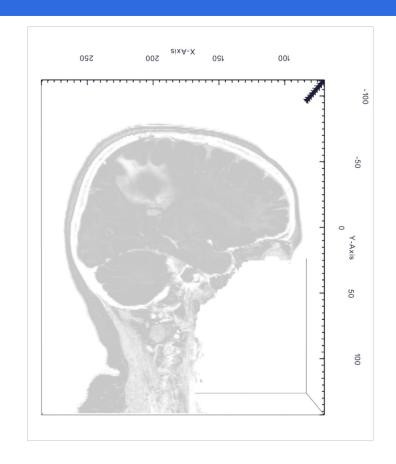


Uncertainty-aware Visualization in Medical Imaging – A Survey

C.Gillmann¹, D. Saur¹, T. Wischgoll², G. Scheuermann¹

Leipzig University¹


Wright State University²

Why This survey?

- Medical Imaging:
 - Is a popular application of visualization
 - Provides unique and complicated data
 - Is affected by uncertainty in various manners

Which uncertainty-aware visualization approaches exist that fit medical imaging?

- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

1. What is Medical Imaging?

- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

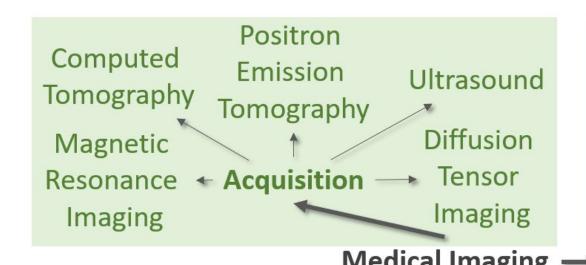
1. What is Medical Imaging?

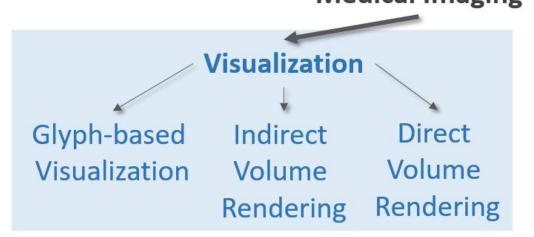
"Medical imaging is concerned with the analysis, visualization, and exploration of medical images"

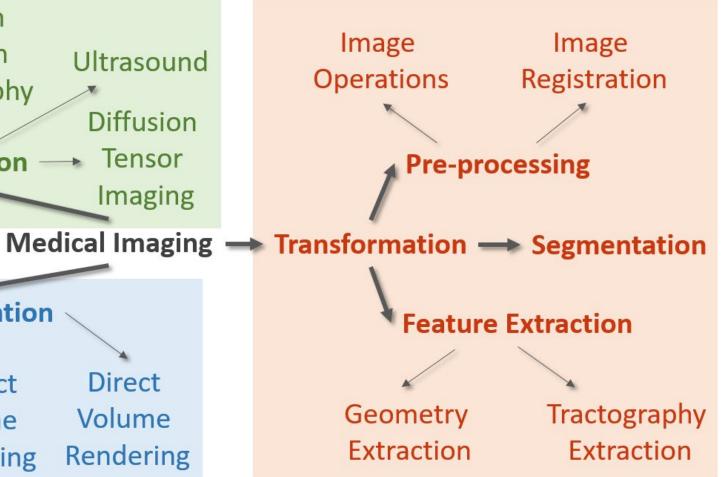
Acquisition: Generation of medical images

Transformation: Analysis and processing of images

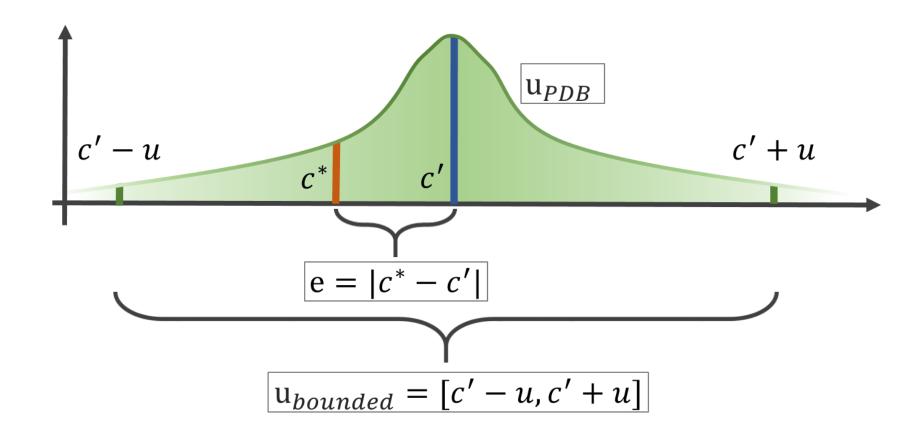
Visualization: Visual representation of medical images


Applications: Diagnosis, Treatment Planning,


Intraoperative Support, Education



1. What is Medical Imaging?



- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

2. Definition of Uncertainty

2. Definition of Uncertainty

Uncertainties can be descriped by:

- Type
 - Aleatoric (uncertainty arising from the data)
 - Epistemic (uncertainty arising from the computational model)
- Dimensionality of Event
- Category (numerical, spatial, binary...)
- Description (discrete or continous)

- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

3. Types of Uncertainties in Medical Imaging

Sources of Uncertainty	Type	Dimensionality of Event	Category	Description of Event
Positional uncertainty	а	3D	numerical	discrete
Pixel/voxel value uncertainty	а	nD	numerical	discrete
Incompleteness of Data	а	nD	numerical	discrete
Model inaccuracy	e	3D	spatial/volumetric/numeric	discrete/continuous
Model incompleteness	e	3D	spatial/volumetric/numeric	discrete/continuous
Parameter/boundary condition uncertainty	a/e	nD	numerical	discrete
Rasterization uncertainty	e	2D/3D	numerical	continuous
Perceptual and cognitive uncertainty	e/a	3D	binary	continuous
Decision making bias	e/a	3D	binary	continuous

Goal: Capture at least of one these uncertainties in a visualization

- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

4. Requirements of uncertainty-aware Visualization in Medical Imaging

- Discussion with collaborators
- Based on requirements known for medical imaging
- Rating of experts
- Reduction to high-level requirements
 - 1. Show the original dataset
 - 2. Show the related uncertainty
 - 3. Keep the cognitive load minimal

- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

5. Paper Selection Criteria

- Search Platforms
 - IEEE Transactions on Visualization and Computer Graphics
 - IEEE Transactions on Medical Imaging
 - Computers & Graphics
 - Eurographics Digital Library
 - Computer Graphics Forum
 - Uncertainty Quantification in Scientific Computing
 - Google Scholar
 - Springer Link

5. Paper Selection Criteria

Keywords

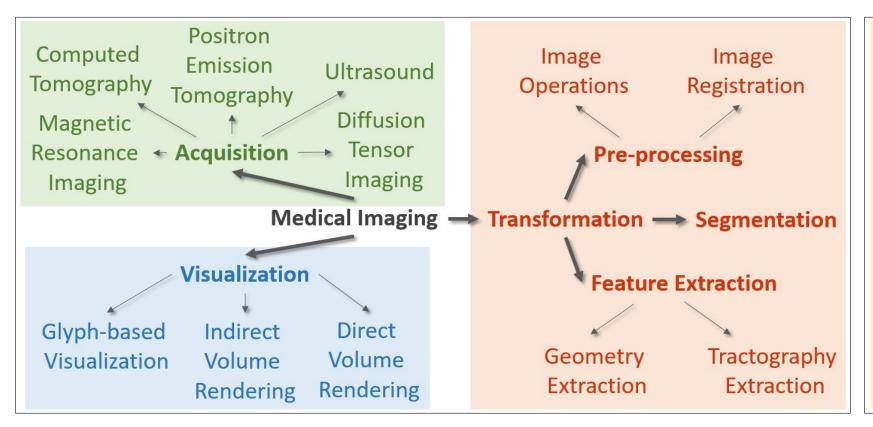
1. Part:

Uncertainty-aware Visualization | Uncertainty Visualization | Uncertainty Analysis | Sensitivity Analysis | Ambiguity Analysis | Variability | Variation

2. Part:

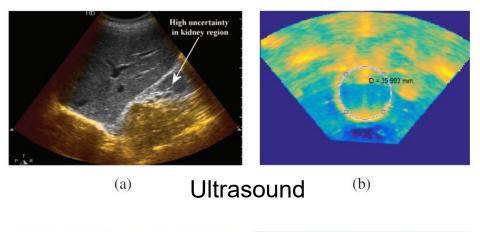
Medical Imaging | Medical Imaging subcategories | Diagnosis | Intraoperative Support | Treatment Planning | Education

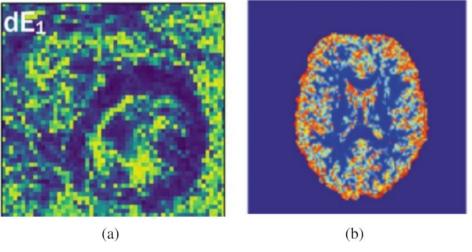
- Criteria of inclusion in this STAR
 - At least one example from medical imaging
 - Uncertainty visualization


- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

6. State of the art analysis

Structured along the medical imaging pipeline



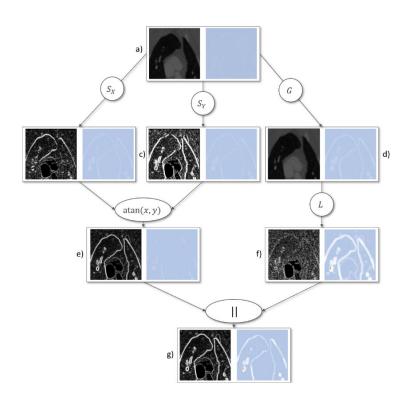

Applications

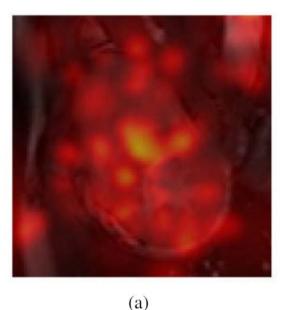
6.State of the art analysis (Acqusition)

- Ultrasound, Computed Tomography, Magnetic Resonance Tomography, Diffusion Tensor Imaging, Positron Emission Imaging
- Further imaging available, but not as popular

Diffusion Tensor Imaging

6.State of the art analysis (Acqusition)


Acquisition	Work	R1	R2	R3
	[HCMC10]	✓	Х	/
	[ZBDH*15]	✓	✓	✓
Ultrasound	[KWKN12]	✓	✓	✓
	[LBdJ18]	X	✓	✓
	[GML14]	X	✓	✓
	[HLF14]	X	✓	✓
Computed Tomography	[TS16]	X	✓	✓
Computed Tomography	[RHH*20]	X	✓	✓
	[GAH*17]	✓	✓	✓
Magnetic Resonance	[EMVP19]	X	✓	✓
Imaging	[GDP*20]	X	✓	✓
imaging	[CVR19]	✓	✓	X
Diffusion Tensor	[AMME18]	Х	✓	✓
	[WTW*08]	X	✓	✓
Imaging	[BWJ*03]	X	✓	✓
Positron Emission	[SSHM07]	Х	1	1
	[HBG*15]	X	✓	✓
Imaging	[NBYR12]	✓	✓	X



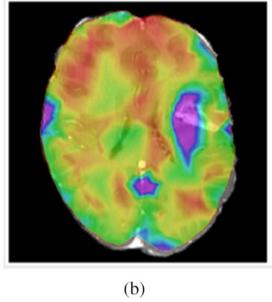
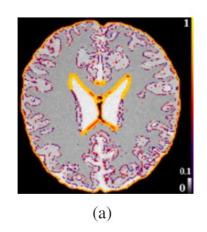
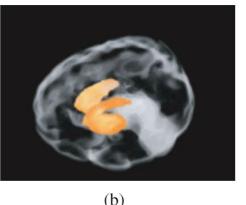
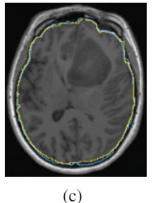

6.State of the art analysis (Transformation, preprocessing)

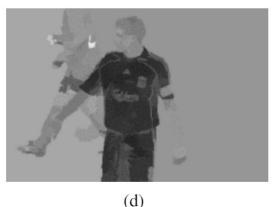
Image pre-processing and image registration covered

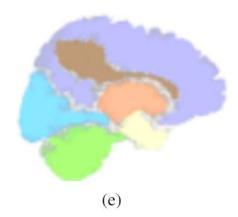
6.State of the Art Analysis (Transformation, Preprocessing)


Transfo	ormation	Work	R1	R2	R3
	Image Operations	[PAL01]	1	Х	X
		[MRSS08]	✓	X	X
		[JH01]	1	X	X
		[LTAH13]	✓	✓	X
		[FCC15]	✓	X	X
Pre- Processing		[GPW*19]	✓	✓	✓
		[Cha15]	✓	X	X
		[LTAH13]	X	✓	✓
	Image Registration	[BYW*20]	X	✓	✓
		[LDCA17]	X	✓	✓
		[RPSW10]	✓	✓	✓
		[YN15]	1	1	✓
		[SFJ*16]	1	1	✓

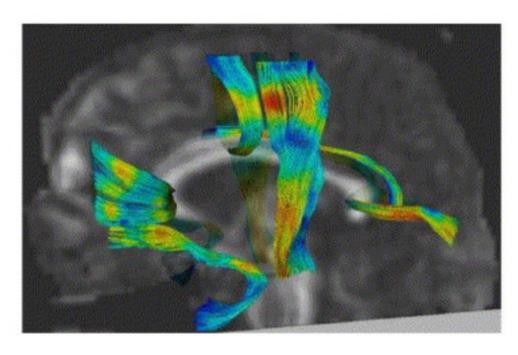


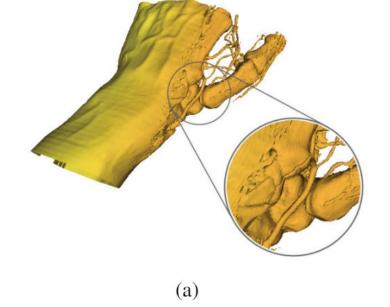

6. State of the Art Analysis (Transformation, Segmentation)




- Image Segmentation is involved in nearly any medical imaging process
- Machine learning on the rise

6. State of the Art Analysis (Transformation, Segmentation)



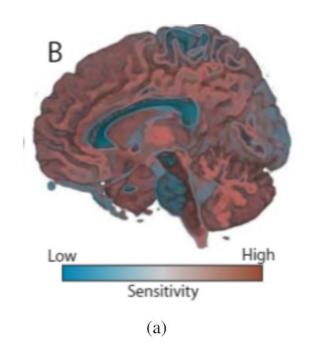

Transformation	Work	R1	R2	R3
	[BS09]	1	X	X
	[CCZ07]	✓	X	X
	[AVvO*04]	✓	X	X
	[KT08]	X	1	✓
	[Ada12]	X	1	✓
	[HR18]	1	1	✓
	[LGM*14]	X	1	✓
Segmentation	[ATHL14]	X	✓	✓
	[SHM10]	X	✓	X
	[PRH10]	✓	✓	✓
	[BUK*10]	X	1	✓
	[ATHL15]	✓	✓	X
	[GPW*19]	X	✓	✓
	[KWKP20]	✓	✓	✓
	[NPAA20]	1	1	✓

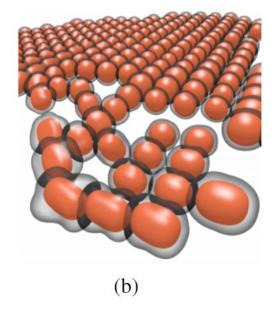
6. State of the Art Analysis (Transformation, Feature Extraction)

Geometry extraction and tractography covered

(b)

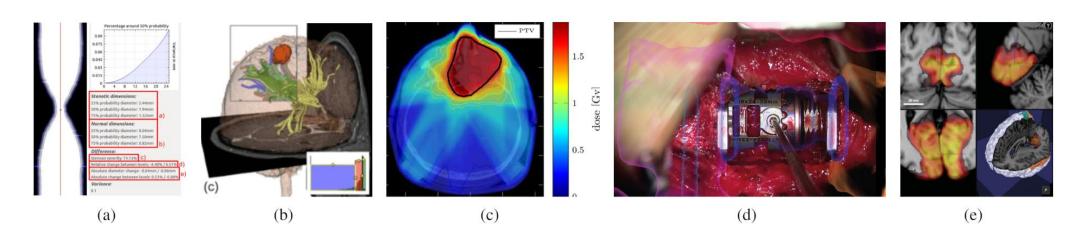
6. State of the Art Analysis (Transformation, Feature Extraction)


Transfo	ormation	Work	R1	R2	R3
Feature Extraction	Surface Extraction	[GMG09] [DSS*09] [PWH11] [HMH*15]	\ \ \ \ \ \	X X ✓	X X X
	Tracto- Graphy	[GWHA18] [BBKW02] [FFW06]	1	1	X
		[CLH06] [BBJ*07] [BPVHR12]	✓ ✓	✓ ✓	✓ ✓


6. State of the Art Analysis (Visualization)

- Direct volume rendering, indirect volume rendering and glyph visualization
- Often lack the ability to relate to the original dataset

6. State of the Art Analysis (Visualization)

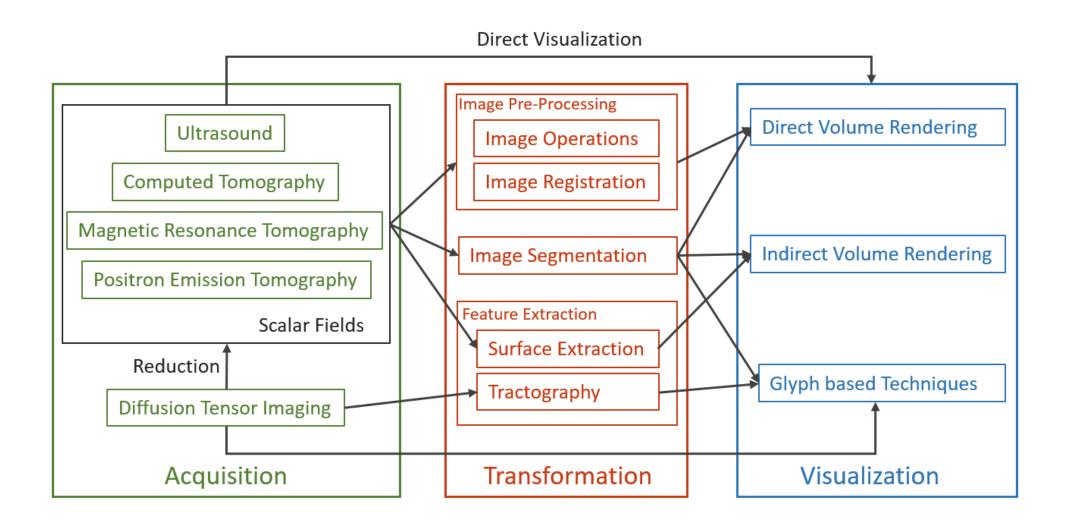

Visualization	Work	R1	R2	R3
	[Kni08]	1	1	X
Direct Volume Rendering	[LLPY07]	✓	✓	✓
Direct volume Rendering	[MCC*20]	1	1	X
	[KSE16]	✓	✓	✓
	[RLBS03]	✓	✓	X
Indirect Volume Rendering	[GR04]	✓	✓	X
munect volume Kendering	[Dra08]	✓	✓	X
	[GWHA18]	✓	✓	X
Glyph-based Visualization	[Jon03]	1	1	Х
	[ZSL*16]	1	1	X
	[GRT19]	1	1	X
	[AWHS16]	1	1	X
	[RGH*19]	✓	✓	X

6. State of the Art Analysis (Applications)

- Diagnosis, treatment Planning, Intraoperative Support and Education
- Visual Analytics approaches
- Interactive approaches
- Multi-modal visualization

6. State of the Art Analysis (Applications)

Application	Work	R1	R2	R3
	[SSHM07]	1	✓	Х
Diagnosis	[GSW*20]	X	✓	✓
Diagnosis	[BPtHRV13]	✓	✓	✓
	[RMW*17]	X	✓	✓
	[GMHW18]	✓	✓	✓
	[WCW*17]	✓	✓	X
Treatment Planning	[MUO06]	X	✓	✓
Treatment Framming	[CST*18]	✓	✓	✓
	[AMBZ20]	X	✓	X
	[Fox18]	✓	✓	/
	[SMC*06]	✓	✓	✓
Intraoperative Support	[CBS*19]	✓	✓	✓
	[SMV*14]	✓	✓	✓
	[GMP*18]	X	✓	1
Education	-	-	-	-



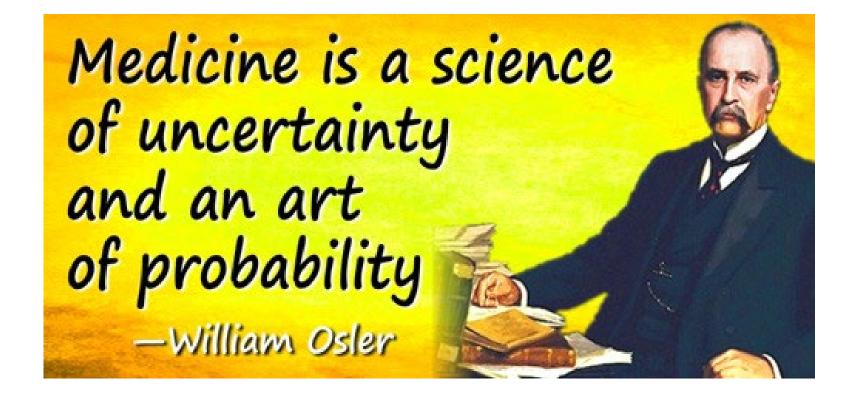
- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

7. Creation of Medical Imaging Pipelines

- 1. What is Medical Imaging?
- 2. Definition of Uncertainty
- 3. Types of Uncertainties in Medical Imaging
- 4. Requirements of uncertainty-aware Visualization in Medical Imaging
- 5. Paper Selection Criteria
- 6. State of the Art Analysis
- 7. Creation of Medical Imaging Pipelines
- 8. Open Problems

8. Open Problems

- Identification of proper Uncertainty Quantification Approaches
- Uncertainty in Clinical Studies
- Exploration Tools for Uncertainty in Medical Image Data
- Knowledge from other Applications
- Provenance Visualization of Uncertainty
- Teaching of uncertainty-aware Medical Imaging
- Connection to Sensitivity and Ensemble Visualization
- Further use of Machine Learning
- Visual Analytics Approaches in Medical Imaging
- Ready to use Framework


Thank you!

Christina Gillmann

Leipzig University

gillmann@informatik.uni-leipzig.de

