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Abstract

The goal of this paper is to transfer image processing to vector fields
and flow visualization by defining a suitable convolution operation.
For this, a multiplication of vectors is necessary. Clifford algebra
provides such a multiplication of vectors. So we define a Clifford
convolution on vector fields with uniform grids. The Clifford con-
volution works with multivector filter masks. Scalar and vector
masks can be easily converted to multivector fields. So, filter masks
from image processing on scalar fields can be applied as well as
vector and multivector masks. Furthermore, a method for pattern
matching with Clifford convolution on vector fields is described.
The method is independent of the direction of the structures. This
provides an automatic approach to feature detection. The features
can be visualized using any known method like glyphs, isosurfaces
or streamlines. The features are defined by filter masks instead of
analytical properties and thus the approach is more intuitive.

CR Categories: I.4.3 [Image Processing And Computer Vision]:
Filtering—; I.4.6 [Image Processing And Computer Vision]: Edge
and Feature Detection—; J.2 [Physical Sciences And Engineering]:
Aerospace—Engineering;
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1 Introduction

Classical methods for vector field visualization are hedgehog, flow-
probe, streamlines, stream ribbons, stream tubes, spot noise and
line integral convolution [7, 8]. Hedgehog and flow-probe are very
complex if drawn everywhere, especially in 3D. Streamlines are
a good method for visualization if you know where to start them.
Spot noise and line integral convolution are good for visualization
in 2D, but result in clutter in 3D.

Visualization methods based on feature extraction are topology
graphs and vortex core methods [7, 8, 10, 12]. Topologic methods
are very good for feature extraction and visualization in 2D but get
complex in 3D. Vortex core methods have one problem as there
exists no consistent definition of a vortex. They work on different
definitions of vortices and can not be applied to other features. Roth

Figure 1: Vortices in a gas furnace chamber

[8] defined a parallel operator that covers a lot of the different vortex
core definitions.

Image processing [5, 6] has a lot of useful tools. Granlund and
Knutsson [2] and Heiberg [3] have tried to transfer image process-
ing to vector field visualization. Granlund and Knutsson [2] treat
a vector field as several scalar fields. Heiberg [3] defines a scalar
convolution on vector fields based on the scalar product of two vec-
tors. He gives an algorithm for pattern matching on vector fields
which is discussed in detail in the next section.

One way to convey image processing to vector fields is to define
the convolution on vector fields. Therefore, a product of vectors has
to be defined as the convolution has to calculate the product of vec-
tors. In this paper, we define a Clifford convolution on vector fields
with uniform grids. This is motivated by the need to define a multi-
plication of vectors. In Clifford algebra, a multiplication of vectors
is given. This multiplication supplies us with sinus and cosinus of
the angle between two vectors and the plane in which the angle is
measured. Thus, Clifford convolution based on this multiplication
results in an approximation of sinus and cosinus of the angle be-
tween the filter mask and the 0 in the vector field. Furthermore it
gives us the plane in which the angle lies, which is very important
in 3D. Clifford algebra works with multivectors. A multivector in
3D consists of the sum of a scalar, a 3D vector, a 3D bivector and
a trivector. Scalar and vector are as usual. In 3D the unit bivectors
can be identified with a planar direction and a limited oriented area
and the unit trivector gives the volume spanned by three orthogo-
nal unit vectors building a right hand system. Clifford convolution
works on multivector fields. As scalars and vectors can be easily
converted to multivectors, this is no problem. It means that scalar
filter like gradient or smoothing filter from image processing can



Figure 2: Pattern matching of a 2D vector field with a
�����

rotation
filter mask. On the right, the topology of the original vector field is
added.

be applied just like vector filter for pattern matching. The scalar
convolution defined by Heiberg [3] is a special case of the Clifford
multiplication as shown in section 4.

We use Clifford convolution for pattern matching of the vector
field and vector filter masks. Clifford convolution gives approxi-
mations of sinus and cosines of the angle between the filter mask
and the structure in the vector field and the plane where the angle is
measured. Out of these approximations, the direction of the struc-
ture can be calculated. The mask is then rotated in the direction of
the structure. The scalar convolution of the rotated mask and the
vector field is computed as a similarity measure. As the approx-
imations for sinus and cosines depend on the angle between filter
mask and the direction of the structure in the field, additional mask
directions have to be used. It has been proven that three directions
in 2D and six directions in 3D evenly distributed on the circle or the
sphere are enough. The algorithm can be accelerated by discretiz-
ing the directions and rotating the filter mask only one time in all
directions. Rotated structures are recognized with a similarity value
of more than 90% in 3D and 95% in 2D using the acceleration with
72 mask directions in 2D and 258 mask directions in 3D.

The similarity values can be visualized using an isosurface al-
gorithm like marching cubes.The points with high similarity values
can also be used as starting points for streamlines or related tech-
niques. For our tests, we used data from a turbulent planar jet and
the turbulent flow inside a gas furnace chamber. Fig. 1 shows some
results from the gas furnace chamber while Fig. 2 gives a first im-
pression on the 2D results.

2 Related Work

The first idea regarding image processing on vector fields is to sim-
ply treat a vector field as several scalar fields. Thus, the Fourier
transformation can be used. As the scalar fields are not indepen-
dent, the results depend on the chosen coordinate system. Granlund
and Knutson [2] have investigated this approach in 2D. They define
lines and edges by a simple neighborhood. This means that the
neighborhood can be modeled by a function that varies only in one
direction. This function is called simple function. When the points
are in a simple neighborhood, they can estimate local orientation,
symmetries and curvature. They use these methods to extract tex-
ture borders that can be described as a sudden change in a feature
vector descriptor field.

Another approach is to define a multiplication of vectors and thus
convey the convolution to vector fields. Heiberg [3] defines convo-
lution on vector fields with the scalar product of two vectors:
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where ��� is the filter response, � is the normalized vector field and��� the filter mask with direction & . This convolution is referred

to as scalar convolution in the following. As the scalar product is
used, it gives an approximation of the cosines of the angle between
the structure in the vector field and the direction of the filter mask.

Furthermore, Heiberg gives an algorithm to compute a similar-
ity measure in 3D independent of the direction of the filters. The
vector field is normalized and the filter mask weighted with a rota-
tional symmetric function. The filter mask is rotated in six direc-
tions evenly distributed over a hemisphere. The six rotated filters
form a filter set. Next, the convolutions of the six filters and the field
are computed. Then, with help of a tensor, direction and similarity
are calculated out of the squared filter responses and the directions
of the six filter masks.

The algorithm can be conveyed to 2D, the necessary formulas
can be found in the book of Granlund and Knutson [2]. Because
of the square of the filter responses, only the direction and not the
orientation of the structure can be computed. The algorithm is ro-
bust in terms of noise sensitivity. The disadvantages are that it only
works on symmetric filter masks and even not properly on all of
them. A structure like the one in Fig. 3 is not recognized at all
if rotated in a disadvantageous direction. The algorithm could be
adapted to this cases by simply computing the whole algorithm a
second time with the filters distributed over the other half of the
sphere. Regarding only vortices, this effect doesn’t take place.
Stretched vortices and those with a curvilinear vortex core line can
only be approximated.

Figure 3: A divergent flow. The algorithm of Heiberg doesn’t rec-
ognize this structure if it is rotated disadvantageous.

3 Clifford Algebra

For a convolution on vector fields, one has to define a multiplication
of vectors. In Clifford algebra [4, 10], a multiplication of vectors
is defined. Furthermore, a geometric interpretation of the product
of two vectors is given. This product contains sinus and cosines of
the angle between the two vectors and the plane where the angle
is measured. The rotation of vectors can be easily described and
calculated within Clifford algebra, too. In general, Clifford algebra
extends the classical description of an Euclidean & -space as a real& -dimensional vector space with scalar product to a real algebra.

3.1 Clifford Algebra in 3D

For the 3-dimensional euclidian vector space, we
get a 8-dimensional ' -algebra (�) with the basis*�+-,#./+0,213+4, ) +4,�.0,515+4,51/, ) +4, ) ,�.6+0,�.4,51/, ) as a real vector space.
The elements of the algebra are called multivectors. The multipli-
cation of multivectors is defined as associative, bilinear and by the
equations *6,87  ,07�+ 9  *2+0:;+0<,073,87  *�+ 9  *2+0:;+0<, 7 ,5= > ,5=2, 7 + 9�+0?  *2+8:;+4<;+;9A@ ?



Thus, a multiplication of vectors is described, too. The usual vec-
tors ��� +���+�� ��� '�) are identified with

� , .	� � , 1
� ��, ) ��� )� ( )��
An arbitrary multivector � can be written as

� �� ������� ��� ��� �
with � + ��� ' + � + � ��� ) + �  , . , 1 , ) + � 1 > * .
The reversion is defined as

��� �� ���  � ��� ��� � �
The grade projectors �� 7"! (�)$# (�) are the maps

�%�& (' �� + �)�* .  � +
�%�& 1  �+� + �%�& )  � � �

For two vectors
� + � ��� ) it holds�,�  ��-.�/� � � + �  �

Furthermore, we have

� �0�  '  � � + �  21 � 1
1 � 143/5�67�
1 � �,�  1 1 21 �8-9� 1 21 � 1
1 � 1:6<;>=?�

and � �,�  1 corresponds to the normal vector of the plane through�
and

�
as it is the corresponding bivector. Thus, sinus and cosines

of the angle between
�

and
�

and the angle itself can be calculated.
Clifford convolution uses this multiplication to gain an approxima-
tion of the direction of the structure in the vector field.

The 2D Clifford algebra is defined analog, see Hestenes [4] and
Scheuermann [9].

3.2 Vector derivative

Let @BA .6+ �C�C� + A �7D be a basis of � � with A . - �C�C� - A � &E � + E @GF .
The reciprocal basis @BA . + �>�C� + A � D is defined as

A =  �  * � =IH .E � A . - �C�C� - A =IH . - A = � . - �C�C� - A � � � � �
A map � ! � )?# (�) is called multivector field. Let

� �J� ) . If the
limit �8K �
	���GLC;CMNPO '

* QSR � �
	 � Q � �  � �
	��UT + Q � '
exists, it is called directional derivative of � in direction

�
. It holds:

1. � K �
	�� is linear in
�
, that means �$V�W K W � VYX K X Z� . � K W �� 1 � K X

2. � �8[ � K �
	��  � K �
	�� [ �
	�� � � �
	�� [ K �
	��
Let � ! � ) # ( ) be a multivector field. The vector derivative of� , \ � ! � ) # ( )
is defined as \ � �
	��  )] =_^ . A = �(`ba �
	��
where A ./+ A 13+ A ) is a basis of � ) and A . + A 1 + A ) is the reciprocal
basis.

The vector derivative
\

can be discretized using many different
approaches. Let the neighborhood of a vector ced�f 7 in 2D be as fol-
lows:

c�d H . f 7 H . cgd�f 7 H . c�d � . f 7 H .c d H . f 7 c d+f 7 c d � . f 7c d H . f 7 � . c d�f 7 � . c d � . f 7 � .
Actually, the values at the nodes of the grid are taken but the above
visualization is more demonstrative.

1. The central difference is\ cih ,#. c�d � . f 7  c�d H . f 7: � ,51 c�d�f 7 � .  c�d+f 7 H .: �
This can be interpreted as a mask:j

# kl
2. The forward difference is\ cih , . c d � . f 7  c d�f 7: � , 1 c d�f 7 � .  c d+f 7: �

As a mask: j
m k

3. The backward difference is\ cnh ,�. c�d+f 7  c�d H . f 7: � ,51 c�d�f 7  c�d�f 7 H .: �
As a mask:

# o l
4. Another possible approach is the following mask which can

be interpreted as convergence at the point � � + 9 �<p :q j
o# km l r

In 3D, the vector derivative can be discretized in the same way.
Central difference and the last mask make the most sense for dis-
cretizing the vector derivative. This is motivated by the following
definitions of divergence and rotation at point cgd+f 7 :

1. Def: The gradient s ! ( ) #�' is defined by

s �Pt �  � \\ , . t + \\ , 1 t + \\ , ) t �
2. Def: The divergence at point c is defined as$ � cuc  \\ ,�. c � \\ ,51 c � \\ , ) c  �)s + cv 

*: � \ c � c \ �
3. Def: The rotation at point c is defined as	�wYx c  R s + c T� *: � \ c  c \ �

Thus, it holds
\ c  $ � cyc �&� 	�wYx c and c \  $ � cuc  � 	�wYx c .

Furthermore, using the discretized vector derivative as a filter mask
and the Clifford convolution defined in section 4, it holds:$ � cuc  �{z � � c �  ('	IwIx c  * � �{z � � c �  1 �



3.2.1 Reflection and rotation

Let � + c � ' ) be unit vectors and � � ' ) . We look at the map��������> � � � . � can be decomposed in a part ��� orthogonal to �
and a part ��� parallel to � . Thus, it holds��������> � � � > � ����� � ��� � � > ������� ���� � ����  ���
This means that x is reflected at u. Now, we look at � �����  c ������� c  c�� � � c . This map can be written as � ����� 
	 � ��	
with 	  �7c  ��� + c. � � - c  , WX�

	 �  c��  ��� + c   � - c  , H WX 
Decomposing � in a part � � orthogonal to 	 and a part ��� parallel
to 	 , it holds	 ����� �	 � ��	 �	 � ����� � � � ��	  � � � ��� ,  �
This describes a rotation about � ��� in the plane described by � as

shown in Fig. 4. With �  �+�
,
� � ' , it holds 	 �� �i� �" , WX d�� ,� �3/5g6�� .1 � � and �  6<;C=�� .1 � � . Every rotation can be described by

two reflections. � c and c�� are multivectors with scalar and bivector
unequal zero. Reflection and rotation in 2D are analog.

Figure 4: Rotation of a vector using Clifford algebra

4 Clifford convolution

The multiplication of two vectors, as described in section 3, results
in sinus and cosines of the angle between the vectors and the plane
where the angle is measured. Then, one of the vectors can be cal-
culated out of the product of the two vectors and the second vector.
This multiplication can also be regarded as a convolution of a point
in the vector field with a

* � *
filter mask. Thus, the direction of

a structure in the field can be computed out of this convolution and
the direction of the filter mask. The Clifford convolution presented
here generalizes this concept to arbitrary filter masks. The Clif-
ford multiplication is defined between multivectors. This presents
no problem as vectors can be easily converted into multivectors.
As scalars can be converted, too, the convolution works also be-
tween a vector field and a filter mask with scalar values. That
means that gradient and smoothing filters from image processing
on scalar fields can be applied, too. Fig. 5 presents some typical
vector masks.

4.1 Convolution in scalar fields

In image processing, a filter is a map from one image to another.
For a continuous signal A ! '���#�� , the convolution with the filter� ! '���#�� is defined by� A � � �/������ ����� � � � � A ���  � �%$ �

Figure 5: Some filter masks in 2D. On the left, they are visual-
ized using hedgehogs. On the right, line integral convolution on the
masks is shown. From top to bottom: convergence, saddle point
and rotation.

Every linear and shift invariant filter (LSI filter) can be described as
a convolution with a filter mask. A lot of filters for smoothing im-
ages and for edge detection are LSI filter. Thus, the convolution is
an important operation in image processing [6]. An example of LSI
filter are binomial filters used for smoothing. Now, the convolution
has to be transfered to vector fields.

4.2 Convolution in vector fields

In a first step, the vector field is normalized. As streamlines are ev-
erywhere tangent to the vector field, one can regard pattern match-
ing of a normalized vector field as pattern matching of streamlines.

Heiberg [3] defined a convolution on vector fields with the scalar
product of two vectors. Let � be the normalized vector field and� � the normalized filter mask with direction & .

� � �
	����������� � � � ����� + ���
	! "�#�  $��
In the following, this convolution will be referred to as scalar con-
volution. The sensibility of this filter is proportional to the cosines
of the angle between the directions of the filter and the structure
within the vector field. This is because the scalar product of two
normalized vectors has the cosines of the angle between the two
vectors as result. Thus, the filter results in the largest values when
the directions of the filter mask and the structure in the field are the
same. If the angle between filter mask and structure is � 1 , the fil-
ter result is zero. If the angle is � , the filter result has the largest
negative value.

Now let � be a normalized multivector field and � � a normal-
ized multivector filter mask with direction & . The Clifford convo-



lution is defined as

z � �
	��� � ��� � � � ���#�4���
	  ���%$�� �
For discrete vector fields, the convolutions have to be discretized.
In 3D, they are:

� � � � + 9�+4? �� �]
� ^ H
�

�]
� ^ H
�

�]
� ^ H
�

� � � � � + x + � � + ��� �  � + 9  x +4?  � �  
and

z ��� � + 9�+0? �� �]
� ^ H
�

�]
� ^ H
�

�]
� ^ H
�

����� � + x + � �4��� �  � + 9  x +4?  � �
with

� + 9�+4?�+ � + x + � ��� � 	 is the dimension of the grid of the filter
mask and the � � + 9�+0? � are grid nodes. A filter mask with different
sizes in the three dimensions can be described by a filter mask with
the same size in all three directions by simply filling up with zeros.
So, this discretized convolutions are general enough. The convolu-
tions in 2D are analog.

As it holds �����
	��  � z � �
	��  ' , the scalar convolution is a
special case of the Clifford convolution.

The convolution has to be computed at every point of the grid.
But at the border of the vector field, the convolution needs values
outside the vector field. So, similar to image processing, there is
the problem of boundary values. The solutions for this problem
are the same as in image processing with all their advantages and
disadvantages [6]. The values can be chosen as follows:

1. Zero. Thus, artificial edges at the border are created.

2. Extrapolated. At the simplest case, one can take the values at
the boundary. Another possible extrapolation is to mirror the
values at the border. All extrapolations lay too much stress on
the bordervalues.

3. Cyclic convolution. The image is assumed to be periodic and
the values are set accordingly. This is very much dependent on
the chosen display window as most images and vector fields
are not periodic.

4. Window function. The values are gradually reduced to zero
near the boundary. Some values at the border are lost but
otherwise this is the preferred approach.

5 Pattern matching in vector fields

In flow visualization, it is important to find vortices as they use a
lot of energy. Sometimes, many vortices are desired if for example
two gases shall be mixed or if lift of an airplane is to be supported.
Sometimes, vortices are not wanted as they slow the flow and put a
lot of stress on the surrounding material. Other interesting features
are shock waves, separation lines and attachment lines. Regions
with divergence and convergence in the flow are of interest, too.
Features like these can be described by small filter masks. Thus,
they can be found with pattern matching based on Clifford convo-
lution as described here.

The similarity measure should be independent of the direction of
the structure within the vector field and the mask. Otherwise, one
has to rotate the filter mask many times and compute the similari-
ties for all the rotated masks. In a last step, it would be necessary
to compute the maximum similarity and take the corresponding di-
rection as the direction of the structure. The Clifford convolution
gives the direction of the structure in the field directly.

Figure 6: Vortex core found with pattern matching

The algorithm is in many aspects similar to the algorithm of
Heiberg [3]. It computes the similarity of a filter mask and struc-
tures in the vector field. The similarity is independent of the di-
rections of the structures. The directions of the structures are com-
puted, too. First, vector field and mask are normalized. Then the
mask is rotated to generate a filter set. After this, the Clifford con-
volutions of each of the filter masks and the vector field are com-
puted. This has been analog to Heiberg who uses scalar convolu-
tion. Then, the direction of the structure in the vector field is cal-
culated. Heiberg computes similarity and direction with the help of
a tensor out of the filter responses. Here, the filter mask is rotated
in the direction of the structure and the similarity is computed by
another scalar convolution.

5.1 Principal idea

The Clifford multiplication gives sinus and cosines of the angle be-
tween two vectors. Furthermore, it gives the plane where the angle
is measured. Thus, Clifford convolution gives an approximation of
sinus and cosines of the angle between mask and structure and the
plane where the angle lies. With normalized field and mask it holds

1. 2D:

(a) �%z � �
	��  ('/h E 3_5g67�
�(b) �%z � �
	��  1 h E 6<;C=?�
�

2. 2D:

(a) �%z � �
	��  ' h E 3_5g67�
�(b) 1 �{z � �
	��  1 1 h E 6<;C=(�
�(c) � z � �
	��  1 is the normal vector of the plane of the

angle �
��

�
is the angle between filter mask and structure at point 	 andE>�� d+f 7 f = � �
	��	�
� d�f 7 f = * . So one can simply compute the

direction of the structure with sinus, cosines and plane of the angle.
The mask is rotated in this direction and one scalar convolution
for the similarity is computed. When filter mask and structure are
equal, the similarity is � �
	��� *

.

5.2 Filter directions

Unfortunately, praxis is worse than theory. The approximation of
the angle between the directions of mask and structure gets more
imprecise when the angle is bigger. So additional masks with dif-
ferent directions have to be used. The distribution of the directions
is:



Figure 7: Part of the gas furnace chamber. On the left, the algorithm
of Sujudi-Haimes. On the right, pattern matching with a

< �A< � <
rotation mask.

1. 2D:
�  F � � and

� �� )1
(a) & .  � *�+ F���p
(b) & 1  �  � + � ��p + that is & . rotated

1 �) counterclockwise.

(c) & 1  �  � +  � � p + that is & . rotated � �) counterclock-
wise.

2. 3D:

(a) & .  � *�+ F + F���p , & 1  �  *2+ F + F���p ,

(b) & )  �+F +6*2+ F�� p , & �  �+F +  *�+ F�� p ,

(c) &��  �+F + F +�* � p , &��  �+F + F +  * � p ,

The algorithm also works with other directions and other numbers
of directions. As usually, one can trade precision for computational
speed. The masks are rotated in the desired direction using Clifford
algebra and linear interpolation.

Out of the approximations &	� d of the single masks, the direction& � of the structure has to be computed. In 2D, the mask with the
smallest angle to the structure is sufficient as criterion. In 3D,
the direction is computed analog to the computation of a center
of gravity. The directions calculated out of the filter outputs with�Gz ��
 �
	��  ('� F are weighted with the scalars � z ��
 �
	��  ('�� E d
and summed. The resulting vector is normalized and gives the di-
rection &�� of the structure. The algorithm is insensitive to noise as
shown in section 7. Outline of the algorithm:

1. Normalize vector field and filter mask

2. Rotate mask to get the filter set and compute E d
3. For each grid node of the field:

(a) Compute Clifford convolution with all masks

(b) Compute direction & � of the structure

(c) Rotate mask in direction & �
(d) Compute scalar convolution of rotated mask and field

for the similarity value

5.3 Acceleration

The rotation of the mask at every node of the grid is computational
expensive. Therefore, the directions of the filter mask for the final
scalar convolution are discretized and all rotated masks are com-
puted only once. The mask with the direction closest to the direc-
tion of the structure is taken for the scalar convolution at this point.
The direction of the mask and E d  � d+f 7 f = � �
	�� are computed and
saved with the rotated filter mask. In 2D, the mask can be chosen

by the angle between the direction and the vector � *�+ F + F�� p . In 3D,
it is not easy to distribute the directions evenly over the sphere. A
subdivision algorithm on the sphere starting with an octaeder gives
an approximation. Each triangle of the octaeder is divided in 4 new
triangles and the vertices are normalized. With three subdivision
steps, one gets 258 directions.

step # points # triangles
0 6 8
1 18 32
2 66 128
3 258 512

There are 45 directions in each octant. For the computation of the
nearest mask, the right octant has to be identified. Then the scalar
product of the direction of the structure and all directions in the
octant are computed. The mask with the direction resulting in the
smallest scalar product is chosen. As there are only a few points in
each octant, a more complex search pattern is not necessary.

6 Filter Design

As mentioned before, the filter masks can be scalar, vector and mul-
tivector masks. Actually, there are only multivector filter masks but
scalar and vector filter masks can be easily converted to multivector
masks. Therefore, the terms scalar and vector filter mask are used
to point up which kind of multivector filter mask is used. All masks
used in image processing [5, 6] can be applied to vector fields using
the Clifford convolution.

6.1 Smoothing and scale spaces

Box and binomial filter for smoothing can be applied to vector
fields. The binomial filter is better suited for smoothing than the
box filter as the box filter can permute local minima and maxima.
Fig. 8 illustrates 2D and 3D binomial filters.

Figure 8: A � � � and a
< �A< � <

binomial mask. Only the scalar
values are shown as all other values are zero. The weights of the< � < � <

mask are as follows: yellow:1, green:2, blue:4 and red:8.
The weights of both masks have to be divided by the sum of all
values of the mask.

Repeated smoothing of the vector field and subsampling leads to
multiresolution pyramids as in image processing. Thereby, a scale
space can be constructed. Thus, the behavior of the field can be ana-
lyzed at different scales. The scale space can be combined with the
pattern matching method. This has the advantage that only small
masks have to be used as the computation of large masks is com-
putationally expensive. Furthermore, the scales of features can be
figured out and the features divided into features of different scales.
Fig. 10 shows the results of applying a rotation mask to a scale
space of a turbulent flow data set described in section 7.



6.2 Vector masks for pattern matching

Vector filter masks are used for pattern matching. They can rep-
resent features such as vortices, saddlepoints, convergence, diver-
gence and many more. One mighty filter is the small convergence
filter in 2D as it computes divergence and rotation of the field as
defined in section 3. The divergence is given in the scalar and the
rotation in the bivector part of the result. In 3D, it is more complex
as the bivector consists of a 3D vector but nonetheless useful. Some
3D vector filter masks are given in Fig. 9.

Figure 9: Some filter masks in 3D. The rotation bottom left is ap-
proximately what one would describe as a swirl. But it also re-
sponds to homogeneous flows. Thus the rotation top left and right
is more suited as a similarity mask for rotations as it doesn’t respond
to homogeneous flows. Bottom right is a divergent flow mask.

7 Results

The main goal of this paper is to convey image processing to vector
fields on uniform grids. All LSI filter can be described by scalar fil-
ter masks. Scalar filter masks can be easily converted to multivector
filter masks. Thus, they can be used with the Clifford convolution
defined in this paper and applied to vector fields. As the LSI filter
are very important in image processing, most of the methods from
image processing can now be applied to vector fields on uniform
grids. With smoothing filters like the binomial filter, scale spaces
can be build. This is very helpful for pattern matching.

Furthermore, we want to have an algorithm for pattern matching
on vector fields that is robust and insensitive to noise. It should also
work on all kinds of filter masks. It has to be at least as precise
as the algorithm of Heiberg [3]. The computed directions should
be accurate and it should recognize a rotated copy of itself with a
similarity value of 90%-100%.

For these reasons, out first tests consisted in rotating the given
mask by all possible angles (steps different from the rotations used
to speed the algorithm). The second class of tests added white noise
to the field to check for robustness.

The algorithm for pattern matching computes a similarity mea-
sure and the direction of the structure. With the described accelera-
tion, it recognizes rotated structures with a similarity value of about
100% in 2D and 96%-100% in 3D. The filter masks can be arbitrary.
Curved structures and not symmetric ones present no problem. The
algorithm works local and is insensitive to noise. Rotating every
vector in a field randomly up to

*6���
reduces the similarity values

about 3%. Rotating every vector in a field randomly up to
<�: �

re-
sults in similarity values of the same structures of still more then
90%. Compared to the adjusted algorithm of Heiberg, the algo-
rithm presented here is only half as fast because of the computation
of the Clifford convolution. It is more precise and it works on more
filter masks. The similarity values of the field can be visualized
using a marching cubes algorithm. Otherwise they can be used to
determine starting points for streamlines or the like.

After these rather academic tests, we have chosen two test data
sets from real applications. The first data set is a turbulent swirling
jet entering a fluid at rest. The simulation considers a cylinder and
assumes rotational symmetry, so that a planar cut along the axis of
the cylinder can be used as a domain. The domain is discretized
by a

*3:�� � * F * rectilinear grid with smaller rectangles towards
the axis of the cylinder. Since a lot of small and large scale vor-
tices are present in the flow, a discrete numerical simulation (DNS)
using a higher order finite difference scheme is used to solve the
incompressible Navier-Stokes equations. The results of the Clif-
ford convolution are shown in Fig. 2 including an overlay with the
topological structure. A scale space example is shown in Fig. 10.

Figure 10: A scale space build by smoothing with a � � � binomial
filter mask. Every second value was taken in the subsampling. On
the resulting fields, pattern matching with a � � � rotation mask was
applied. On the top left the original image filtered with the mask is
shown.

Our second application is a gas furnace chamber as it is used
for heating a house. In the top left picture in Fig. 11, the swirling
gas enters the chamber in the center of the left face while the air
enters from 9 openings on the top and 9 openings on the bottom, so
that the combustion takes place in the center area of the chamber.
The products of the combustion leave the chamber on the right.
The simulation solves compressible Navier-Stokes equations using
a turbulent model applied on a irregular grid consisting of 174341
tetrahedra with 32440 vertices. The flow is highly turbulent and
exhibits a lot of different scale vortices. Since our method works
only on rectilinear grids so far, we used a local resampling around
each vertex. Since the cells differ substantially in size, we took as
distance in the local resampling the length of the shortest edge at
the vertex. The results of a

< � < � <
, a � � � � � and a

� � � � �
rotation mask are shown in Fig. 11. Obviously, the result of the< � < � <

mask (given in red) gives a larger region of potential
vortices than the � � � � � mask (yellow) and the

� � � � �
mask

(green). As usual, larger masks mean more computation, smaller
similarity and, if even larger than here, less precise location of the
feature.



Figure 11: Parts of a gas furnace chamber. Pattern matching of the
vector field of the chamber and a

< � <�� <
(red), a � � � � � (yellow)

and a
� � � � �

(green) rotation mask was computed. The similarities
are visualized using a marching tetrahedra with an isovalue of 0.5.
On the right, the main inflow of the gas is shown. At the bottom,
some streamlines are drawn additionally.

8 Conclusion and future work

We have presented a way to convey image processing to vector
fields on uniform grids. Tools from image processing such as
smoothing filter and scale spaces have been successfully applied
to vector fields. Thus, a broad new approach to vector field visual-
ization is given.

Furthermore, we have presented a robust algorithm for pattern
matching on these vector fields. We have shown that the algorithm
for pattern matching of Heiberg [3] has some disadvantages and
is limited in the choice of the filter masks. Our pattern matching
algorithm is not limited to any masks and naturally includes scalar
masks like binomial filter. Furthermore, it is insensitive to noise
and at least as precise as the algorithm of Heiberg.

Future work will include the search for a really convincing adap-
tion to irregular grids since our method described for the gas fur-
nace chamber should be improved. Another important issue will be
the design of additional filters that are more directed towards the
features in question.
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Appendix

Clifford multiplication

Since Clifford algebra might be considered complicated, here is a
hint on the implementation of the Clifford product. Let�  � ' ��� .-,#. ��� 16,21 ��� ) ,�.4,51
and [  � ' ��� .4,�. ��� 1/,51 ��� ) ,�.4,51
be multivectors in 2D. Then

� ' + � ' are scalars,��. , . + � 1 , 1 + �5. , . + ��1 , 1
are vectors and

� ) , . , 1 + � ) , . , 1 are
bivectors. The Product �8[ can be computed as follows:

�8[  � ' [ ����. , . [ ��� 1 , 1 [ ��� ) , . , 1 [ � ' � ' ��� ' � .4,�. ��� ' � 1/,51 ��� ' � ) ,�.4,51�8��. , .<� ' ����. , .��2. , .S����. , .<�61 , 1
����. , .<� ) , . , 1�8� 1 , 1 � ' ��� 1 , 1b�2. , .S��� 1 , 1 �61 , 1
��� 1 , 1 � ) , . , 1�8� ) ,�.4,51 � ' ��� ) ,#.-,21 � .4,�. ��� ) ,�.4,51 � 16,51 ��� ) ,#.-,21 � ) ,�.4,51 � ' � ' ����.��2.S��� 1 �61y��� ) � )� � � ' � . ��� . � '  � 1 � ) ��� ) � 1 � ,#.� � � ' ��1
��� 1 � ' ����.<� )  � ) �2. � , 1� � � ' � ) ��� ) � ' ��� . � 1  � 1 � . � ,#.-,21
as it holds ,�.4,�.  ,51/,51  *
and , 1 , . > , . , 1
as defined in section 3. The multiplication in 3D can be computed
in the same way.


