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Vorwort

Dieser Tagungsband enthält die Zusammenfassungen der Beiträge zum 31. Theo-
rietag der GI Fachgruppe “Automaten und Formale Sprachen”. Der Theorietag
findet aufgrund der geltenden Corona-Beschränkungen rein online vom 20.–21.
September 2021 statt. Neben den Beiträgen enthält das Tagungsprogramm auch
die eingeladenen Vorträge von Prof. Kevin Knight (Didi Labs, USA) und Prof.
Sebastian Maneth (Universität Bremen). Prof. Knight trägt zum Thema
“Are Automata Important for Machine Translation?” vor und wird Anwendun-
gen der Automatentheorie diskutieren. Prof. Maneth trägt zu einem Kernthema
der Automatentheorie vor und wird uns neueste Ergebnisse zu Baumübersetzern
in seinem Vortrag “Definability Results for Top-Down Tree Transducers” vor-
stellen.

Selbst eine kleine Tagung wie der Theorietag benötigt die Hilfe und Un-
terstützung vieler Beteiligter. Der Organisator möchte hiermit explizit allen Au-
toren für ihr Interesse und ihre Beiträge danken. Diese Beiträge bilden das wis-
senschaftliche Kernprogramm des Treffens und geben den Teilnehmern einen
Überblick über die Forschungsaktivitäten, die von der GI Fachgruppe abgedeckt
werden. Die Zusammenarbeit mit dem Leitungsgremium der GI Fachgruppe war
jederzeit produktiv und ermöglichte das Arbeitstreffen trotz der ungewöhnlichen
Umstände. Ein Vor-Ort-Treffen mit dem gewohnten Kegeln ist sicherlich in Fol-
gejahren wieder möglich. Abschließend gilt mein Dank allen Teilnehmern des
Theorietags. Ich wünsche Ihnen eine interessante und erfolgreiche Tagung.

13. September 2021
Leipzig

Andreas Maletti
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Abstract

We consider new variants of derivation modes for catalytic P systems with one cata-
lyst which yield computational completeness: we only take those non-extendable multi-
sets whose application yields the maximal number of generated objects or else those non-
extendable multisets whose application yields the maximal difference in the number of
objects between the newly generated configuration and the current configuration. Similar
results can even be obtained if we do not require the multisets of rules to be non-extendable.

1. Introduction
One basic feature of P systems already presented in [6] is the maximally parallel derivation
mode, i.e., using non-extendable multisets of rules in every derivation step. The result of a
computation can be extracted when the system halts, i.e., when no rule is applicable any more.
Catalysts are special symbols which allow only one object to evolve in its context and in their
basic variant never evolve themselves, i.e., a catalytic rule is of the form ca→ cv, where c is
a catalyst, a is a single object and v is a multiset of objects. In contrast, non-catalytic rules in
catalytic P systems are non-cooperative rules of the form a→ v.

From the beginning, the question how many catalysts are needed for obtaining compu-
tational completeness has been one of the most intriguing challenges regarding (catalytic) P
systems. Without catalysts only regular (semi-linear) sets can be generated when using the
standard maximal derivation mode and the standard halting mode, i.e., a result is extracted
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when the system halts with no rule being applicable any more. In [4] it has already been shown
that two catalysts are enough for generating any recursively enumerable set of multisets. Last
year we could show computational completeness for P systems with only one catalyst which
are using the derivation mode maxobjects, i.e., only those multisets of rules which affect the
maximal number of objects in the underlying configuration are taken, see [1]. In this extended
abstract we exhibit our main results proved in [2] and show the computational completeness for
P systems with only one catalyst if we take only multisets whose application yields the maxi-
mal number of generated objects or else those multisets whose application yields the maximal
difference in the number of objects between the newly generated configuration and the current
configuration.

2. Definitions

For an alphabet V , by V ∗ we denote the free monoid generated by V under the operation of
concatenation, i.e., containing all possible strings over V. The empty string is denoted by λ. The
set of all multisets over V is denoted by V ◦. The cardinality of a set or multiset M is denoted
by |M |. For further notions and results in formal language theory we refer to textbooks like [3]
and [8]. For an introduction to the area of membrane computing, see [7].

Register machines are well-known universal devices for computing on (or generating or
accepting) sets of vectors of natural numbers.

Definition 2.1 A register machine is a construct M = (m,B,l0, lh,P ) where m is the number
of registers, P is the set of instructions bijectively labeled by elements of B, l0 ∈B is the initial
label, and lh ∈B is the final label. The instructions of M can be of the following forms:
– p : (ADD(r) , q,s), with p ∈B \{lh}, q,s ∈B, 1≤ r ≤m.

Increase the value of register r by one, and non-deterministically jump to instruction q or s.
– p : (SUB(r) , q,s), with p ∈B \{lh}, q,s ∈B, 1≤ r ≤m.

If the value of register r is not zero then decrease the value of register r by one (decrement
case) and jump to instruction q, otherwise jump to instruction s (zero-test case).

– lh : HALT . Stop the execution of the register machine.
A configuration of a register machine is described by the contents of each register and by the
value of the current label, which indicates the next instruction to be executed. M is called
deterministic if the ADD-instructions all are of the form p : (ADD(r) , q).

Taking into account the well-known flattening process, e.g., see [5], in this paper we only
consider simple catalytic P systems, i.e., with the simplest membrane structure of only one
membrane, and with only one catalyst:

Definition 2.2 A simple catalytic P system is a construct Π = (V,{c},T,w,R) where V is the
alphabet of objects, c∈ V is the single catalyst, T ⊆ (V \{c}), w ∈ V ◦ is the multiset of objects
initially present in the membrane region; R is a finite set of evolution rules over V ; these
evolution rules are of the forms ca→ cv or a→ v, where c is a catalyst, a is an object from
V \{c}, and v is a multiset over V \{c}.
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The multiset in the single membrane region of Π constitutes a configuration of the P system.
The initial configuration is given by the initial multiset w. A transition between configurations
is governed by the application of the evolution rules, which is done in a given derivation mode.

Given a P system Π = (V,{c},T,w,R), the standard parallel derivation mode used in P
systems is the maximally parallel derivation mode (max for short); in the derivation modes
maxrules[max] and maxobjects[max] only a [non-extendable] multiset of rules using the maxi-
mal number of rules and objects, respectively, is allowed to be applied.

In addition to these well-known derivation modes, in this paper we also consider several
new variants of derivation modes: in the derivation modes maxGENobjects[max] as well as
max∆objects[max] only [non-extendable] multisets R of rules are taken for which the number
of objects generated by the application of the rules in R to the configuration C respectively the
difference ∆C = |C ′|− |C| between the number of objects in the configuration C ′ obtained by
the application of R and the number of objects in the underlying configuration C is maximal.

3. Results
Theorem 3.1 For any register machine with at least two decrementable registers we can con-
struct a simple catalytic P system working in the derivation modes max∆objects[max] or in the
derivation modes maxGENobjects[max], which can simulate every step of the register machine
in n steps where n is the number of decrementable registers.

Proof. Given an arbitrary register machine M = (m,B,l0, lh,P ) we will construct a corre-
sponding catalytic P system with one membrane and one catalyst Π = (V,{c},T,c(l0,1),R)
simulating M . The main idea behind our construction is that all the objects except the catalyst
c and the output objects (representing the contents of the output registers) go through a cycle of
length n where n is the number of decrementable registers of the simulated register machine.
When the objects are traversing the r-th section of the n sections, they “know” that they are
to probably simulate a SUB-instruction on register r of the register machine M . The set of
labels of SUB-instructions on register r is denoted by BSUB(r), the set of labels of all ADD-
instructions by BADD. Without loss of generality, we assume that the first instruction labeled l0
is an ADD-instruction on register 1.

V = {ar | n+1≤ r ≤m}∪{(ar, i) | 1≤ r ≤ n,1≤ i≤ n}

∪ {(p, i) | p ∈BADD,1≤ i≤ n}∪{(p, i) | p ∈BSUB(r),1≤ i≤ r+1}

∪ {(p, i)−,(p, i)0 | p ∈BSUB(r), r+2≤ i≤ n}∪{c,e,d}.

The construction includes the dummy object d which is erased by the rule d→ λ. The
objects ar, n+ 1 ≤ r ≤m, represent the output registers. For the decrementable registers, we
use the objects (ar, i), 1 ≤ r ≤ n,1 ≤ i ≤ n, which go through a loop of n steps. The main
idea now is that the only case when such an object can be used to decrement register r is when
i = r, i.e., in the r-th step of the simulation cycle. In the same way as the register objects ar,
the program objects (p, i) representing the label p from B undergo the same cycle of length n.

(ar, i)→ (ar, i+1),1≤ r < n; (ar,n)→ (ar,1).
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For simulating an ADD-instruction p : (ADD(r), q,s) we need the following rules:

c(p, i)→ c(p, i+1)d, 1≤ i < n, as well as
c(p,n)→ c(q,1)(ar,1), c(p,n)→ c(s,1)(ar,1) for a decrementable register r and
c(p,n)→ c(q,1)ar, c(p,n)→ c(s,1)ar for an output register r.

For simulating a SUB-instruction p : (SUB(r), q,s) we need the following rules:

c(p, i)→ c(p, i+1)d, 1≤ i < r; (p,r)→ (p,r+1), c(ar, r)→ ced.

If r < n−1 :

ce→ cdddd, (p,r+1)→ (p,r+2)−, c(p,r+1)→ c(p,r+2)0dd;

c(p, i)−→ c(p, i+1)−d, r+2≤ i < n, c(p,n)−→ c(q,1)d,

c(p, i)0→ c(p, i+1)0d, r+2≤ i < n, c(p,n)0→ c(s,1)d.
If r = n−1 : ce→ cdddd, (p,n)→ (q,1), c(p,n)→ c(s,1)dd.
If r = n : ce→ cdddd, (p,n+1)→ (q,2), c(p,n+1)→ c(s,2)dd.

To implement the final HALT -instruction lh : HALT , we introduce d instead of (lh,1) or
(lh,2) as done for other labels. We finally observe that the proof construction given above is
even deterministic if the underlying register machine to be simulated is deterministic.

To mimick the non-extendability of the multisets of rules to be applied in the derivation
modes max∆objects and maxGENobjects, we simply add one more dummy object d on the right-
hand side of every rule constructed above, except for the erasing rule d→ λ. 2
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Abstract

We consider new variants of derivation modes for purely catalytic P systems which
can simulate register machines with n decrementable registers with only n catalysts: we
only take those non-extendable multisets whose application yields the maximal number
of generated objects or else those non-extendable multisets whose application yields the
maximal difference in the number of objects between the newly generated configuration
and the current configuration. Similar results can even be obtained if we do not require the
multisets of rules to be non-extendable.

1. Introduction
One basic feature of P systems already presented in [5] is the maximally parallel derivation
mode, i.e., using non-extendable multisets of rules in every derivation step. The result of a
computation can be extracted when the system halts, i.e., when no rule is applicable any more.
Catalysts are special symbols which allow only one object to evolve in its context and in their
basic variant never evolve themselves, i.e., a catalytic rule is of the form ca→ cv, where c is a
catalyst, a is a single object and v is a multiset of objects. In purely catalytic P systems only
such catalytic rules are used.

With only one catalyst only regular (semi-linear) sets can be generated. In [3] it has already
been shown that three catalysts are enough for generating any recursively enumerable set of
multisets. In this extended abstract we exhibit our main results proved in [1] and show that P
systems with only n catalysts can simulate register machines with n decrementable registers if
we take only multisets whose application yields the maximal number of generated objects or
else those multisets whose application yields the maximal difference in the number of objects
between the newly generated configuration and the current configuration.
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2. Definitions
For an alphabet V , by V ∗ we denote the free monoid generated by V under the operation of
concatenation, i.e., containing all possible strings over V. The empty string is denoted by λ. The
set of all multisets over V is denoted by V ◦. The cardinality of a set or multiset M is denoted
by |M |. For further notions and results in formal language theory we refer to textbooks like [2]
and [7]. For an introduction to the area of membrane computing, see [6].

Register machines are well-known universal devices for computing on (or generating or
accepting) sets of vectors of natural numbers.

Definition 2.1 A register machine is a construct M = (m,B,l0, lh,P ) where m is the number
of registers, P is the set of instructions bijectively labeled by elements of B, l0 ∈B is the initial
label, and lh ∈B is the final label. The instructions of M can be of the following forms:
– p : (ADD(r) , q,s), with p ∈B \{lh}, q,s ∈B, 1≤ r ≤m.

Increase the value of register r by one, and non-deterministically jump to instruction q or s.
– p : (SUB(r) , q,s), with p ∈B \{lh}, q,s ∈B, 1≤ r ≤m.

If the value of register r is not zero then decrease the value of register r by one (decrement
case) and jump to instruction q, otherwise jump to instruction s (zero-test case).

– lh : HALT . Stop the execution of the register machine.
A configuration of a register machine is described by the contents of each register and by the
value of the current label, which indicates the next instruction to be executed. M is called
deterministic if the ADD-instructions all are of the form p : (ADD(r) , q).

Taking into account the well-known flattening process, which means that computations in
a P system with an arbitrary membrane structure can be simulated in a P system with only one
membrane, e.g., see [4], in this paper we only consider simple purely catalytic P systems, i.e.,
with the simplest membrane structure of only one membrane:

Definition 2.2 A simple purely catalytic P system is a construct Pi= (V,C,T,w,R) where V
is the alphabet of objects, C ⊂ V is the set of catalysts, T ⊆ (V \C) is the alphabet of terminal
objects, w ∈ V ◦ is the multiset of objects initially present in the membrane region, R is a finite
set of catalytic rules of the forms ca→ cv.

The multiset in the single membrane region of Π constitutes a configuration of the P system.
The initial configuration is given by the initial multiset w. A transition between configurations
is governed by the application of the evolution rules, which is done in a given derivation mode.

Given a P system Π = (V,C,T,w,R), the standard parallel derivation mode used in P
systems is the maximally parallel derivation mode (max for short); in the derivation modes
maxrules[max] and maxobjects[max] only a [non-extendable] multiset of rules using the maxi-
mal number of rules and objects, respectively, is allowed to be applied.

In addition to these well-known derivation modes, in this paper we also consider several
new variants of derivation modes: in the derivation modes maxGENobjects[max] as well as
max∆objects[max] only [non-extendable] multisets R of rules are taken for which the number
of objects generated by the application of the rules in R to the configuration C ′ respectively the
difference ∆C ′= |C ′′|−|C ′| between the number of objects in the configurationC ′′ obtained by
the application of R and the number of objects in the underlying configuration C ′ is maximal.
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3. Results
Theorem 3.1 For any register machine with n≥ 2 decrementable registers we can construct a
simple purely catalytic P system with only n catalysts, working in one of the derivation modes
max∆objectsmax, maxGENobjectsmax, max∆objects, or maxGENobjects, which can simulate
any computation of the register machine.

Proof. Given an arbitrary register machineM =(m,B,l0, lh,P ) with n decrementable registers
we construct a corresponding simple purely catalytic P system with n catalysts

Π = (V,{ck | 1≤ k ≤ n},T,w0,R)

simulating M . The main part of the proof is to show how to simulate the instructions of M in
Π; in all cases we have to take care that the n catalysts are kept busy – using corresponding
dummy objects dk with the catalysts ck,1 ≤ k ≤ n, The priority between different rules for a
catalyst is guarded by the number of objects on the right-hand side of the rules. We use the
catalyst cr – which has to be left free for decrementing or for zero-checking in the first step of
the simulation – and its “coupled” catalyst cr⊕n1 throughout all the simulation steps. Here r⊕n1
for r < n simply is r+1, whereas for r = n we define n⊕n1 = 1. Moreover, the notation [1..n]
is used for the set (interval) of natural numbers {1, . . . ,n}. For every p ∈ B we define Reg(p)
to be the register affected by the instruction labeled by p; in addition, we define Reg(lh) = 1.
The set of labels of SUB-instructions on register r is denoted by BSUB(r), the set of labels of
all ADD-instructions by BADD. During the simulation of all instructions, we use the following
multisets:

D′n,r = ∏i∈[1..n]\{r,r⊕n1} di, 1≤ r ≤ n.

Without loss of generality, we assume that the first instruction labeled l0 is an ADD-
instruction on register 1; hence, we start with the initial multiset

w0 = l0l
′
0D
′
n,1 ∏

i∈[1..n]
ci.

V = {ar | 1≤ r ≤m}∪{âr | 1≤ r ≤ n} ∪{p,p′ | p ∈BADD∪{lh}}

∪ {p,p′, p̄, p̂ | p ∈BSUB(r),1≤ r ≤ n}∪{ck,dk | 1≤ k ≤ n}∪{d},

T = {ar | n+1≤ r ≤m}.
The dummy objects di, 1 ≤ i ≤ n, are used to keep the corresponding catalyst ci busy

whenever it is not needed during the simulation of a SUB-instruction, which is accomplished
by the following rule erasing di, but instead introducing the necessary amount of objects d to
keep the catalyst ci away from erasing a register object ar using the rule cidi→ cid

4, 1 ≤ i ≤
n. Moreover, for erasing d we use the rules ckd→ ck, 1 ≤ k ≤ n. In the derivation mode
max∆objects these erasing rules can only be used at the end of a computation when no other
rules can be applied anymore.

An ADD-instruction p : (ADD(r) , q,s), with p∈BADD, q,s∈B, 1≤ r≤m can be simulated
in one step by letting every catalyst make one evolution step:

cReg(p)p→ cReg(p)qq
′ardD

′
n,Reg(q) or cReg(p)p→ cReg(p)ss

′ardD
′
n,Reg(s), cReg(p)⊕n1p

′→ c2d
4.
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We recall that all other catalysts ci with i ∈ [1..n] \ {Reg(p),Reg(p)⊕n 1} are forced to
apply the rule cidi → cid

4. The dummy objects d are used to guarantee that the rules given
above, with in sum at least 5 objects on their right-hand sides, have priority over the rules
crar→ crârd

2, 1≤ r ≤ n, with in sum only 4 objects on their right-hand sides.
A SUB-instruction p : (SUB(r) , q,s), with p ∈ BSUB , q,s ∈ B, 1 ≤ r ≤ n is simulated as

follows; we emphasize that the simulation is deterministic.

step |reg(r)| rule for cr rule for cr⊕n1 resulting
objects

first > 0 crar→ crârd
2 cr⊕n1p

′→ cr⊕n1p̄d
10D′n,Reg(p) p, p̄, âr

= 0 crp→ crd
2 cr⊕n1p

′→ cr⊕n1p̄d
10D′n,Reg(p) p̄

second > 0 crp̄→ crp̂d
3 cr⊕n1p→ cr⊕n1d

9D′n,Reg(p) âr, p̂

= 0 crd→ cr (
∗) cr⊕n1p̄→ cr⊕n1ss

′d6D′n,Reg(s) s,s
′

third > 0 crp̂→ c1qq
′d2D′n,Reg(q) cr⊕n1âr→ cr⊕n1d

4 q,q′

The rule crd→ cr marked with (∗) is not applied in the derivation mode max∆objects.
lh : HALT is simulated by c1lh→ c1dd and c2l

′
h→ c2dd.

Finally all dummy objects are deleted by using the rules cid→ ci, 1≤ i≤ n. 2
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[5] GH. PĂUN, Computing With Membranes. Journal of Computer and System Sciences 61 (2000) 1,
108–143.
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Abstract

Eilenberg’s variety theorem marked a milestone in the algebraic theory of regular lan-
guages by establishing a formal correspondence between properties of regular languages and
properties of finite monoids recognizing them. Motivated by classes of languages accepted
by quantum finite automata, we introduce basic varieties of regular languages, a weakening
of Eilenberg’s original concept that does not require closure under any boolean operations,
and prove a variety theorem for them. To do so, we investigate the algebraic recognition
of languages by lattice bimodules, generalizing Klíma and Polák’s lattice algebras, and we
utilize the duality between algebraic completely distributive lattices and posets.

1. Introduction

The introduction of algebraic methods into the study of regular languages provides a convenient
classification system that allows to study finite automata and their languages in terms of associated
finite algebraic structures. A celebrated example is Schützenberger’s theorem [17] stating that a
language is star-free iff its syntactic monoid is aperiodic, thus proving the decidability of star-
freeness. Eilenberg’s variety theorem [8] formalizes this type of correspondence as a bijection
between varieties of regular languages (i.e. classes of regular languages closed under the set-
theoretic boolean operations, word derivatives and preimages of monoid homomorphisms)
and pseudovarieties of monoids (i.e. classes of finite monoids closed under finite products,
submonoids and quotient monoids).

Numerous extensions and generalizations of Eilenberg’s theorem have been discovered
over the past four decades, differing from the original one by either changing the type of
languages under consideration, e.g. from regular languages to ω-regular languages [19], or
by considering notions of varieties with relaxed closure properties. On the algebraic side,
such a relaxation requires to replace monoids by more complex algebraic structures. For
instance, Pin [13] studied positive varieties of regular languages, where the closure under
complement is dropped, and proved them to biject with pseudovarieties of ordered monoids.
Subsequently, Polák [14] introduced disjunctive varieties of regular languages, where in addition
to closure under complement also the closure under intersection is dropped, and related them to
pseudovarieties of idempotent semirings.

One item is conspicuously missing from this list: a variety theorem for classes of languages
that need not be closed under any boolean operations, i.e. in which only closure under word
derivatives and preimages of monoid homomorphisms is required. In our recent work [5], we
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close this gap by developing the theory of such basic varieties. As the corresponding algebraic
structure we introduce reduced lattice bimodules. A reduced lattice bimodule (M,D) is given
by a monoid M and a complete distributive lattice D such that
(1) M acts on D from the left and right, i.e. there are binary operations M ×D→ D and
D×M →D respecting the monoid and lattice structure;
(2) M embeds into D via an injective unary operation ι : M ↪→D;
(3) the image ι[M ]⊆D generates D as a complete lattice.
Lattice bimodules form a two-sorted generalization of the lattice algebras recently studied by
Klíma and Polák [11]. A pseudovariety of reduced lattice bimodules is a class of finite reduced
lattice bimodules closed under reduced homomorphic images and reduced sub-bimodules of finite
products. As our main result, we establish the following algebraic classification of basic varieties:

Basic Variety Theorem. Basic varieties of regular languages correspond bijectively to pseu-
dovarieties of reduced lattice bimodules.

This answers the open problem of Klíma and Polák [11] about an Eilenberg-type correspondence.
Our proof of the theorem is inspired by the recently developed duality-theoretic perspective on

algebraic language theory [1, 9, 16, 18], which provides the insight that correspondences between
language varieties and pseudovarieties of algebraic structures can be understood in terms of an
underlying dual equivalence of categories. More specifically, we show that pseudovarieties of
reduced lattice bimodules can be interpreted as profinite equational theories of lattice bimodules
in the category AlgCDL of algebraic completely distributive lattices (equivalently, profinite
distributive lattices), while basic varieties give rise to basic cotheories of regular languages in the
category Pos of posets and monotone maps. Our Eilenberg correspondence for basic varieties
then boils down to an application of the well-known dual equivalence

AlgCDL 'op Pos.

Our Basic Variety Theorem is not an instance of previous category-theoretic generalizations of
Eilenberg’s theorem [1, 6, 16, 18] since the two-sorted nature of lattice bimodules requires to
introduce the novel concept of reduced structures, which makes the ensuing notion of pseudovari-
ety more intricate than the ones studied in op. cit. However, much of the methodology developed
there applies smoothly, which can be seen as further evidence of its scope and flexibility.

2. Towards an Algebraic Characterization of Quantum Finite Automata

Basic varieties naturally arise in several areas of automata theory, most notably in the study
of languages accepted by reversible finite automata (RFA) [10] or quantum finite automata
(QFA) [4]. Several different notions of QFA have been proposed and studied, varying in their
expressive power. In this section, we focus on Kondacs-Watrous quantum finite automata
(KWQFA) [12], also known in the literature as measure-many quantum finite automata.

A KWQFA M = (Q,Σ,T,q0,Qacc,Qrej,Qnon) is given by a finite set Q of basis states, an
input alphabet Σ not containing the end markers κ and $, an initial state q0 ∈Q and a partition
Qacc ∪̇Qrej ∪̇Qnon of Q into accepting, rejecting and non-halting states. The transitions are
specified by a family of unitary linear transformations Tσ : HQ→HQ (σ ∈ Σ∪{κ,$}) on the
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complex Hilbert space HQ with orthonormal basis Q. Thus, denoting the basis vectors by |q〉
(q ∈Q), every element |ψ〉 ofHQ can be uniquely expressed as a linear combination

|ψ〉= ∑
q∈Qacc

αq |q〉+ ∑
q∈Qrej

αq |q〉+ ∑
q∈Qnon

αq |q〉 (2.1)

where αq ∈ C. The states of M are those |ψ〉 ∈ HQ with norm ∑q∈Q |αq|2 = 1. Note that a
unitary transformation Tσ maps states to states. A measurement collapses the state |ψ〉 to its
projection onto one of the subspaces 〈Qacc〉, 〈Qrej〉, 〈Qnon〉 generated by Qacc, Qrej, Qnon, viz.

• the projection ∑q∈Qacc
αq |q〉 onto 〈Qacc〉 with probability ∑q∈Qacc

|αq|2;

• the projection ∑q∈Qrej
αq |q〉 onto 〈Qrej〉 with probability ∑q∈Qrej

|αq|2;

• the projection ∑q∈Qnon
αq |q〉 onto 〈Qnon〉 with probability ∑q∈Qnon

|αq|2.

Initially, the automaton is in the basis state |q0〉. An input w ∈ Σ? is processed by first adding
the left (κ) and right ($) end markers. Then, for every successive symbol σ in w̃ = κw$ the
corresponding transformation Tσ is applied and a measurement is performed. The automaton
halts and accepts if the resulting state lies in 〈Qacc〉, halts and rejects if it lies in 〈Qrej〉, and
continues with processing the next input letter if it lies in 〈Qnon〉. Thus, if the QFA is in the state
|ψ〉 of (2.1) after reading the current input symbol but before making the measurement, it accepts
with probability ∑q∈Qacc

|αq|2, rejects with probability ∑q∈Qrej
|αq|2 and continues processing

the input with probability ∑q∈Qnon
|αq|2. This yields an overall probability p ∈ [0,1] that the

input word w is accepted, i.e. that at any stage of the computation the automaton is observed in a
state from 〈Qacc〉.

We say that M accepts the language L ⊆ Σ? (with bounded error) if there exists a real
number p > 1/2 such that M accepts every input word in L with probability ≥ p and rejects
every input word not in L with probability ≥ p. The class of languages accepted by KWQFA
is denoted by RMM. It is known to be a proper subclass of the class of all regular languages;
for instance, {a,b}?a 6∈ RMM [12, Proposition 7]. Subsequent work has identified certain
“forbidden configurations” in the minimal deterministic finite automaton of a regular language
making it unrecognizable by a KWQFA [3,7]. In this way, it was shown that RMM is not closed
under union and intersection [3, Corollary 3.2]. However, RMM is closed under preimages of
monoid homomorphisms and derivatives [7, Theorem 4.1], and thus forms a basic variety regular
languages that is not captured by any of the previously known Eilenberg-type correspondences.

It is an open problem in the theory of quantum automata whether the class RMM is decidable
or whether it admits an algebraic characterization [2]. Our Basic Variety Theorem provides
strong evidence that such a characterization must exist: it asserts that RMM corresponds to a
pseudovariety of reduced lattice bimodules, which by the correspondence between pseudovari-
eties and theories admits an equational presentation using profinite equations over free lattice
bimodules, much analogous to Reiterman’s [15] description of pseudovarieties of finite monoids
in terms of profinite equations over free monoids Σ?. A concrete profinite axiomatization of
the pseudovariety induced by RMM might pave the way towards the decidability of that class:
deciding whether a given regular language lies in RMM reduces to checking whether its syntactic
lattice bimodule satisfies the equational axioms.
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Zusammenfassung

Wir beobachten, dass parameterisierte formalsprachliche (und algebraische) Probleme,
sofern sie nicht trivialerweise in FPT liegen, zumeist schwer oder vollständig für ‘recht
hohe’ Komplexitätsklassen sind, für die man aus anderen Bereichen selten Beispiele findet.

1. Einleitung

Die parameterisierte Komplexitätstheorie wurde in den 1990er Jahren von Rod Downey und
Mike Fellows begründet, siehe [5]. Die Idee ist, einer Instanz nicht nur in ihrer Bitlänge zu
messen, sondern (auch) in anderen Größen, die u.U. viel kleiner sind. Diese Größen nennt man
Parameter. Auch wenn man nun bei NP-schweren Problemen keine deterministischen Poly-
nomzeitalgorithmen erwarten kann, so könnte man versuchen, die scheinbar unvermeidliche
kombinatorische Explosion auf besagten Parameter einzuschränken. Gelingt dies, liegt das Pro-
blem in FPT. Genauer wird gefordert, dass es eine berechenbare Funktion f gibt, sowie eine
berechenbare Funktion κ, die Instanzen ihren Parameter zuordnet, sodass sich die Laufzeit bei
Eingabe x abschätzen lässt durch f(κ(x))p(|x|), wobei p ein Polynom ist. Ganz entsprechend
lassen sich auch ‘FPT-Reduktionen’ definieren.

Die bekanntesten Komplexitätsklassen ‘jenseits von FPT’ lassen sich gut durch ‘parame-
terisierte Halteprobleme’ kennzeichnen, z.B. entspricht in diesem Sinne W[1] der Frage , bei
vorgelegter nichtdeterministischer Einband-Turingmaschine, ob diese Maschine in höchstens k
Schritten bei leerer Eingabe hält; hierbei ist k der Parameter. W[2] entspricht derselben Pro-
blemstellung bei Mehrband-Turingmaschinen.

Im Laufe der Jahre wurden sehr viele Probleme gefunden, die vollständig für W[1] bzw. für
W[2] sind. Diese Probleme entstammen vornehmlich der Graphentheorie und der Logik. Viel
weniger ist bekannt über andere parameterisierte Komplexitätsklassen.

(A)Viele der vorgestellten Ergebnisse entstanden in Zusammenarbeit mit anderen Autoren, was durch entspre-
chende Zitate klar werden sollte.
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2. W[sync]: eine weitere Komplexitätsklasse?

Eines der Themen, mit denen wir uns in letzter Zeit häufiger beschäftigt haben, sind synchro-
nisierende Wörter, ein Konzept, das, wie Mischa Volkov im Übersichtsartikel [10] ausführt,
schon vor der berühmten Arbeit von Ján Černý [4] in der Literatur immer wieder auftaucht.
Hierzu passt folgendes kombinatorisches Problem: Gegeben sei ein DEA A sowie eine Zahl k,
und gefragt ist, ob A ein synchronisierendes Wort der Länge höchstens k besitzt, also ein Wort,
welches A in denselben Zustand treibt, gleich wo das Lesen des Wortes beginnt. Igor Rystsov
und David Eppstein haben unabhängig voneinander fast denselben NP-Vollständigkeitsbeweise
hierfür geliefert; siehe [6, 9].

Es gibt verschiedene natürlich erscheinende Parameterisierungen für dieses Problem, z.B.
Zustandszahl oder Eingabealphabetgröße, oder auch die Zahl k selbst. Wenn wir mit der Zu-
standszahl parameterisieren, erhalten wir ein Problem in FPT, wie man leicht durch eine Po-
tenzautomatenkonstruktion einsieht. Umgekehrt ist die Eingabealphabetgröße alleine ein nicht
hilfreicher Parameter, weil die schon erwähnte NP-Schwere-Konstruktion von Eppstein und
Rystsov benötigt nur binäre Eingabewörter. Ähnlich war für den Parameter k alleine schon län-
ger klar, siehe [7], dass das Problem W[2]-schwer ist. Hingegen bietet die Parameterisierung
nach einer Kombination aus Eingabealphabetgröße und Längenbeschränkung ein triviales FPT-
Problem, denn man kann sich schlicht erlauben, alle genügend kleinen Wörter auszuprobieren.

Die Einordnung für das mit (nur) k parameterisierte Problem bleibt jedoch unbefriedigend.
Im Lauf der Zeit haben wir [1, 2] für einige weitere (zumeist formalsprachliche oder alge-
braische) kombinatorische Probleme gezeigt, dass sie äquivalent zum längenparameterisierten
Synchronisierungsproblem für DEAs sind. Beispielsweise trifft das zu auf die Frage, ob es zu
einer vorgelegten Menge von DEAs ein Wort der Länge höchstens k gibt, das von allen vorge-
legten Automaten akzeptiert wird; zuvor war nur die W[2]-Schwere dieses Problems bekannt,
siehe [11]. Ein weiteres zu diesen beiden parameterisierten Problemen FPT-äquivalentes Pro-
blem, eingeführt in [3] als Monoidfaktorisierungsproblem, fragt danach, ob bei vorgelegten
Abbildungen f0,f1, . . . ,fn, jeweils von X nach X , es eine Auswahl i1, i2, . . . , ik′ ∈ {1,2, . . . ,n}
mit k′≤ k gibt, sodass f0 = fi1 ◦fi2 ◦· · ·◦fik′ gilt. Die Tatsache, dass es doch mehrere Probleme
gibt, die äquivalent zu dem eingangs diskutierten, mit k parameterisierten Synchronisierungs-
problem sind, hat uns dazu ermutigt, W[Sync] als neue parameterisierte Komplexitätsklasse
einzuführen. Wir wissen, dass W[2] eine Teilklasse von W[Sync] ist, über W[Sync] aber Klas-
sen wie A[2] oder W[P] liegen, die wir hier nicht formal eingeführt haben.

3. Weitere Klassen und Probleme

Wenn man das oben auch diskutierte DEA-Schnittproblem nach der Zahl der vorgelegten Auto-
maten parameterisiert, erhält man ein vollständiges Problem für eine weitere interessante, in der
Literatur aber weitgehend vernachlässigte parameterisierte Komplexitätsklasse, nämlich WNL,
siehe [8]. Auch diese Klasse kennt etliche vollständige parameterisierte formalsprachliche Pro-
bleme. Einige davon liefern bei anderen Parameterisierungen auch Beispiele für Probleme ‘zwi-
schen’ W[2] und W[Sync].

Das Studium formalsprachlicher Probleme im Zusammenhang mit parameterisierter Kom-
plexität könnte weitere interessante Ergebnisse auch für die Welt der parameterisierten Komple-
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xität liefern und möglicherweise auch zur Einführung weiterer Komplexitätsklassen beitragen.
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Abstract

A pattern α is a string of variables and terminal letters. We say that α matches a word
w, consisting only of terminal letters, if w can be obtained by replacing the variables of α
by terminal words. The matching problem, i.e., deciding whether a given pattern matches a
given word, was heavily investigated: it is NP-complete in general, but can be solved effi-
ciently for classes of patterns with restricted structure. In this talk, we approach this prob-
lem in a generalized setting, by considering approximate pattern matching under Hamming
distance. More precisely, we are interested in what is the minimum Hamming distance be-
tweenw and any word u obtained by replacing the variables of α by terminal words. Firstly,
we address the class of regular patterns (in which no variable occurs twice) and propose ef-
ficient algorithms for this problem, as well as matching conditional lower bounds. We show
that the problem can still be solved efficiently if we allow repeated variables, but restrict
the way the different variables can be interleaved according to a locality parameter. How-
ever, as soon as we allow a variable to occur more than once and its occurrences can be
interleaved arbitrarily with those of other variables, even if none of them occurs more than
once, the problem becomes intractable.

This paper was presented at MFCS 2021, and it is available at this link:
https://drops.dagstuhl.de/opus/volltexte/2021/14488/.
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During the last two decades or so, literally hundreds of research papers have been investi-
gating deterministic and nondeterministic state complexity of regular languages. Here, general
purpose lower bound techniques are available, and in many cases, upper and lower bounds can
be obtained that match exactly, not only asymptotically. For recent surveys, see, e.g., [5, 9].

The situation is less desirable if we investigate the minimum required size of regular ex-
pressions describing a regular language. While several different lower bound techniques are
available, often the best known upper and lower bounds match only asymptotically. For illus-
tration, the size blow-up when going from finite automata over a binary alphabet to regular
expressions is at least cn for some c > 1 for large enough n, cf. [7]. The current record holder
for the upper bound is O(1.682n), see [3]. This gives a “tight” bound of 2Θ(n), which is on
closer inspection a bit loose. To our knowledge, exactly matching upper and lower bounds for
the minimum required expression size are known only for very few nontrivial language fam-
ilies: Namely, the Boolean n-bit parity function [4, 8], the less-than relation on an n-set [1],
given as { ij | 1≤ i < j ≤ n}, and the permutations of an n-set [13].

The set of all palindromes over the alphabet {a,b} is context-free but not regular; virtu-
ally every computer science student in the world will learn this during their curriculum. Not
surprisingly, this basic observation is as old as the Chomsky hierarchy itself [2]. Of course,
if we consider only palindromes of a given length, the set thus obtained is finite, and there-
fore regular. We exactly determine the optimum regular expressions for this set, for every given
length. Let Pn (P̃n, respectively) consists of all words that are palindromes of length 2n (2n−1,
respectively) over a fixed binary alphabet. Then the following holds:

Theorem 1 There is a regular expression of alphabetic width 4 ·2n−4 (3 ·2n−4, respectively)
that specifies Pn (P̃n, respectively), which is minimal w.r.t. alphabetic width among all expres-
sions that describe Pn (P̃n, respectively).

This is an extended abstract of: H. GRUBER, M. HOLZER, Optimal Regular Expressions for Palindromes
of Given Length. In: F. BONCHI, S. J. PUGLISI (eds.), Proceedings of the 46th International Symposium on
Mathematical Foundations of Computer Science. Number 202 in Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Tallinn, Estonia, 2021, 52:1–52:15.
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In the course of the proof, we also determine the optimum regular expressions for the lex-
icographically first k palindromes of a given length, for every k. The difficulty of course lies
in establishing a matching lower bound. To this end, we use and expand a method from [13]
to obtain a recurrent lower bound. The recurrence thus obtained involves a “minvolution” in
the sense of [6] and the minimum operator of course yields a nonlinear recurrence and reads
as follows—let `(n,k) be the minimum alphabetic width of a regular expression describing a
subset of Pn, where the subset has cardinality at least k: then `(n,k), for n≥ 0 and 1≤ k ≤ 2n,
obeys the following recurrence

`(n,k)≥min{`(n−1,k)+2, min
1≤i<k

{`(n,i)+ `(n,k− i)}}, for n≥ 2 and 2≤ k ≤ 2n−1,

`(n,k)≥ min
1≤i<k

{`(n,i)+ `(n,k− i)}, for n≥ 1 and k > 2n−1,

and
`(n,1) = 2n.

A long line of research concerns asymptotic and exact solutions of recurrences involving min-
imum and maximum functions, see, e.g., [10] and references therein. Our recurrence falls into
neither of the known categories. Nevertheless, we can show that

f(n,k) = 2n+4(k−1)−2S2(k−1),

where S2(k) denotes the “digit sum to base 2” function, is a solution to the above mentioned
recurrence. The digit sum to base 2 funtion function is often referred to as the Hamming weight
function and denotes the number of ones in the binary expansion of the number k. As a side
result we show that

max
0≤i≤n

{S2(i)+S2(n− i)}= λ(n+1)+S2(n+1)−1, (1)

for n being a nonnegative integer, which may be of its own interest. Here λ(n) is defined as
λ(n) = 0, if n = 0, and λ(n) = blog2nc, otherwise. Remarkably, the formula on the right-
hand side of the identity in Equation 1 is famously known as the number of multiplications to
compute the (n+ 1)th power by the ancient Indian Chandah-sutra method. This appears as
sequence A014701 in the On-line Encyclopedia of Integer Sequences, and is referred to as the
left-to-right binary method 1 in [12, Chap. 4.6.3].

With the lower bound in place, it remains to give an optimal regular expression matching
the lower bound. The expression En,k describes the lexicographically first k palindromes of
length 2n , and is defined recursively as follows:

En,k = a ·En−1,k ·a, for n≥ 1 and 1≤ k ≤ 2n−1,

En,k = a ·En−1,2n−1 ·a+ b ·En−1,k−2n−1 · b, for n≥ 1 and 2n−1 < k ≤ 2n,
and

E0,1 = ε.

We can prove the following statement:
1We note that the formula given in [12, p. 463] refers to the right-to-left binary method. As explained there,

the latter takes one more multiplication than the left-to-right binary method.

https://oeis.org/A014701
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Theorem 2 Let n,k be integers with n≥ 0 and 1≤ k ≤ 2n. Then the regular expression En,k

of alphabetic width f(n,k) describes the lexicographically first k palindromes of length 2n over
the alphabet {a,b}.

When turning to palindromes of odd length, the lower bound recurrence essentially differs
only in the terminating cases. Changing the starting conditions of a nonlinear system may, or
may not, change everything. Nevertheless we obtain the following result:

Theorem 3 Let n,k be integers with n≥ 1 and 1≤ k ≤ 2n. There is a regular expression Ẽn,k

of alphabetic width f(n,k)− k, which describes the lexicographically first k palindromes of
length 2n−1 over the alphabet {a,b} .

Next, let awidth(L) denote the minimum alphabetic with among all regular expressions
describing L. As an anonymous reviewer pointed out, our proofs imply the following, which is
reminiscent of the Kruskal-Katona Theorem:

Theorem 4 For n ≥ 0 and 1 ≤ k ≤ 2dn/2e, let Paln denote the set of palindromes of length n,
and let Lexn,k denote the set of the lexicographically first k palindromes of length n. Then

Lexn,k ∈ argmin
|L|≥k
L⊆Paln

awidth(L).

The Kruskal-Katona Theorem is an important result in extremal combinatorics, see, e.g., [11].
Among several equivalent formulations of that theorem, one of them deals with minimization
of the size of shadows in layers of the Boolean hypercube. The theorem then states that initial
segments with respect to a version of the lexicographic ordering form sets with the smallest
shadow possible.

With some extra effort, all of our results can be generalized to larger alphabet sizes.
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Abstract

The state complexity of a regularity-preserving operation is the maximal number of
states needed in an automaton for the result of this operation dependent on the number of
states of automata for the input languages. A commutative language is a language closed
under permutation of letters. Here, we investigate the state complexity of the upward and
downward closure and interior operations, union and intersection, the projection operation
and the shuffle operation on the subclasses of commutative languages accepted by permu-
tation automata, by counter-free automata and those with product-form minimal automata.

1. Preliminaries
The set Σ∗ denotes the set of all finite sequences, i.e., of all words. The finite sequence of length
zero, or the empty word, is denoted by ε. For a given word we denote by |w| its length, and for
a ∈ Σ by |w|a the number of occurrences of the symbol a in w. A language is a subset of Σ∗.

The shuffle operation, denoted by�, is defined by

u�v = {w ∈ Σ
∗ | w = x1y1x2y2 · · ·xnyn for some words
x1, . . . ,xn,y1, . . . ,yn ∈ Σ

∗ such that u= x1x2 · · ·xn and v = y1y2 · · ·yn},

for u,v ∈ Σ∗ and L1�L2 :=
⋃
x∈L1,y∈L2

(x�y) for L1,L2 ⊆ Σ∗.
Let Γ ⊆ Σ. The projection homomorphism πΓ : Σ∗ → Γ∗ is the homomorphism given by

πΓ(x)= x for x∈Γ, πΓ(x)= ε otherwise and extended by πΓ(ε)= ε and πΓ(wx)= πΓ(w)πΓ(x)
for w ∈ Σ∗ and x ∈ Σ. As a shorthand, we set, with respect to a given naming Σ = {a1, . . . ,ak},
πj = π{aj}. Then πj(w) = a

|w|aj
j . For L⊆ Σ∗, we set πΓ(L) = {πΓ(u) | u ∈ L}.

A quintuple A = (Σ,Q,δ,q0,F ) is a finite deterministic and complete automaton, where
Σ is the input alphabet, Q the finite set of states, q0 ∈ Q the start state, F ⊆ Q the set of
final states and δ : Q×Σ→ Q is the totally defined state transition function. The transition
function δ : Q×Σ→ Q extends to a transition function on words δ∗ : Q×Σ∗→ Q by setting
δ∗(q,ε) := q and δ∗(q,wa) := δ(δ∗(q,w),a) for q ∈Q, a ∈ Σ and w ∈ Σ∗. In the remainder, we
drop the distinction between both functions and will also denote this extension by δ. Here, we
do not consider incomplete automata. The language recognized (or accepted) by an automaton
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A= (Σ,Q,δ,q0,F ) is L(A) = {w ∈ Σ∗ | δ(q0,w) ∈ F}. A language L⊆ Σ∗ is called regular if
L= L(A) for some finite automaton A.

A language L ⊆ Σ∗ is a group language, if there exists a permutation automaton A =
(Σ,Q,δ,q0,F ), i.e., an automaton such that the map q 7→ δ(q,a) is a permutation for each a ∈ Σ,
recognizing L. An automaton A = (Σ,Q,δ,q0,F ) is a counter-free automaton, if for all words
w ∈ Σ∗, states q ∈Q and n≥ 1, the condition δ(q,wn) = q implies δ(q,w) = q.

A language L ⊆ Σ∗ is commutative, if, for u,v ∈ Σ∗ such that |v|x = |u|x for every x ∈ Σ,
we have u ∈ L if and only if v ∈ L.

In [1] the state complexity of the shuffle operation on general regular languages has been
investigated and the following upper bound (with complete automata as a model) was obtained

f(n,m) = 2nm−1 +2(m−1)(n−1)(2m−1−1)(2n−1−1).

Let u,v ∈ Σ∗. Then, u is a subsequence of v, denoted by u4 v, if and only if v ∈ u�Σ∗. The
thereby given order is called the subsequence order. Let L ⊆ Σ∗. Then, we define the upward
closure ↑L = L�Σ∗ = {u ∈ Σ∗ : ∃v ∈ L : v 4 u} and the downward closure ↓L = {u ∈ Σ∗ :
u�Σ∗∩L 6= ∅}= {u ∈ Σ∗ : ∃v ∈ L : u4 v}.

2. Results on General Commutative and Regular Languages
For general commutative regular languages, state complexity results are summarized in Table 1.

Operation Upper B. Lower Bound Ref.
πΓ(U)
∅ 6= Γ⊆ Σ

n n [3, 7]

U�V

{
(2nm)|Σ| |Σ|> 1
nm |Σ|= 1

nm |Σ| ≤ 2

max
{(

n−2
|Σ|−1 +1

)|Σ|−1
·m,nm

}
|Σ|> 2

[3, 4]

↑U n|Σ| Ω

((
n
|Σ|

)|Σ|)
[3, 6]

↓U n|Σ| n [3, 6]
U ∩V , U ∩V nm sharp, for each Σ [3, 4]

Table 1: Bounds for various operations on commutative regular languages U,V ⊆ Σ∗ accepted by au-
tomata with n and m states. For shuffle we actually have the upper bound min{(2nm)|Σ|,f(n,m)}.
Also, the lower bound from Table 2 for shuffle could also be added, but has been left out due to space.

3. Permutation Automata and Counter-Free Automata
The state complexity on general permutation automata was investigated in [8] and the state
complexity on counter-free automata was investigated in [2]. Of particular interest are these
language classes in case of commutative languages, as every regular commutative language
could be written as a finite union of shuffle products of a language accepted by a permutation
automaton and a language accepted by a counter-free automaton [4, Theorem 11]. The results
from [6] are summarized in Table 2.
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Perm. Aut. Counter-Free Automata
Op. ≤ ≥ ≤ ≥ Ref.
πΓ(U) n n n n [6, 7]

U�V (nm)|Σ| nm (n+m−1)|Σ|


Ω

(
m−n

2 +
(
n
2

)2
)
(m> n)

if |Σ|> 1
n+m−1

if |Σ|= 1

[2, 6]

↑U n|Σ| n min{n|Σ|,2n−2 +1} Ω

((
n
|Σ|

)|Σ|)
[6, 9]

↓U 1 1 min{n|Σ|,2n−1} n [6, 9]
U ∩V
U ∪V

nm nm

{
nm |Σ| ≥ 2
max{n,m} |Σ|= 1

{
nm |Σ| ≥ 2
max{n,m} |Σ|= 1 [2, 6]

Table 2: The state complexities of various operations for commutative input languages accepted by
automata with n and m states. The upper bound (≤) and the best known lower bound (≥) are indicated.

4. Minimal Automata of Product-Form
A commutative regular language has a minimal automaton of product-form, if there exists an
automaton A = (Σ,Q,δ,q0,F ) with the minimal number of states accepting the language such
that

δ(q0,u) = δ(q0,v)⇔∀a ∈ Σ : δ(q0,a
|u|a) = δ(q0,a

|v|a). (1)

It could be shown that for commutative languages, the implication from right to left is always
true. For a commutative regular language with a minimal automaton of product-form , it is in
fact true that the minimal automaton is isomorphic to an automaton whose state set is a cartesian
product, see [5] for details. See Figure 1 for an example and a non-example.

Operation Upper Bound Lower Bound Reference
πΓ(U), Γ⊆ Σ n n [5]

U�V 2nm Ω(nm) [5]
↑U ,↓U n n [5]

U ∩V , U ∪V nm tight for each Σ [5]

Table 3: State Complexity results on the subclass of commutative languages with product-form minimal
automaton for input languages accepted by automata with n and m states.
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Figure 1: The automaton on the left accepts {u ∈ {a,b}∗ : |u|b > 0∨ |u| = 0} and does not have a
minimal automaton of product-form (for the given automaton, set u = ab and v = bb in Equation (1)).
The language {u ∈ {a,b}∗ : |u|a > 0∧ |u|b > 0∨ |u| = 0} is accepted by the automaton on the right,
which is an automaton with the least number of states fulfilling the defining Equation (1). Hence, this
language has a a minimal automaton of product-form.
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A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, · , q0,F ), where Q is the
finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the
set of accepting states, and the transition function · maps Q×Σ to Q. The language accepted
by the DFA A is defined as

L(A) = {w ∈ Σ
∗ | q0 ·w ∈ F },

where the transition function is recursively extended to a mapping Q×Σ∗ → Q in the usual
way. Obviously, every letter a ∈ Σ induces a mapping on the state set Q to Q by q 7→ δ(q,a),
for every q ∈Q. A DFA is unary, if the input alphabet Σ is a singleton set, that is, Σ = {a}, for
some input symbol a. Moreover, a DFA is said to be a permutation-reset automaton (PRFA),
if every input letter induces either a permutation or a constant mapping on the state set. If
every letter of the automaton induces only permutations on the state set, then we simply speak
of a permutation automaton (PFA). Finally, a DFA is said to be a reset automaton (RFA), if
every letter induces either the identity or a constant mapping on the state set. The class of
reset, permutation, permutation-reset, and deterministic automata in general are referred to as
RFA, PFA, PRFA, and FA, respectively. It is obvious that inclusions XFA ⊆ PRFA ⊆ FA,
where X ∈ {P,R}, holds. Moreover, it is not hard to see that the classes RFA and PFA are
incomparable.

The cascade product [2] is originally introduced for semi-automata, which are automata
with no initial nor final states. For our needs we enrich the cascade product with initial and final
states and follow for the definition of the final states the lines of [1]. The cascade product of
two DFAs A= (QA,Σ, ·A , q0,A,FA) and B = (QB,QA×Σ, ·B , q0,B,FB), denoted by A◦B, is
defined as the automaton

A◦B = (QA×QB,Σ, · ,(q0,A, q0,B),FA×FB),

This is an extended abstract of: M. Holzer, C. Rauch. The Range of State Complexities of Languages Re-
sulting from the Cascade Product - The Unary Case (Extended Abstract). In S. Maneth (ed.), Proceedings of
the 25th International Conference on Implementation and Application of Automata. Number 12803 in LNCS,
Springer, Bremen, Germany, 2021, 90–101 and M. Holzer, C. Rauch. The Range of State Complexities of Lan-
guages Resulting from the Cascade Product - The General Case (Extended Abstract). In N. Moreira and R. Reis
(eds.), Proceedings of the 25th International Conference on Developments in Language Theory. Number 12811 in
LNCS, Springer, Bremen, Germany, 2021, 229–241.
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where the transition function is given by

(p,q) ·a= (p ·A a,q ·B (p,a)),

for p∈QA, q ∈QB , and a∈Σ. We say thatA is the first automaton andB the second automaton
in the cascade product A◦B.

Adapting the notion of [3] on the determinization of nondeterministic finite automata, state
numbers that cannot be reached by a binary operation on two finite state devices of a particular
size are called “magic.” So we specify which numbers are magic and which are reachable.
Clearly we can distinguish here the size of the input alphabet Σ of the left automaton. In the
unary case it turns out that a lot of magic numbers exist. The reachable state complexities in
case the first automaton is unary are summarized in Table ; in most cases magic numbers exist,
as highlighted by the gray shaded results.

Automata State complexities of minimal DFAs for L(A◦B)

A B for unary A

RFA

RFA [1,3]
PFA

PRFA [1,m+1]
DFA

P[R]FA

RFA [1,2n]
PFA {1}∪{nx | 1≤ x≤m}∪

⋃
t|n

t∈{2,3,...,n−1}

{ tx | 1≤ x <m}

PRFA [1,2n]∪{nx | 1≤ x≤m}∪
⋃
t|n

t∈{2,3,...,n−1}

{ tx | 1≤ x <m}

DFA [1,nm]

DFA

RFA [1,2n]
PFA

⋃n
k=1(Mk⊕ [0,n−k]), where

PRFA Mk = {1}∪{kx | 1≤ x≤m}∪
⋃
t|k

t∈{2,3,...,k−1}

{ tx | 1≤ x <m}

DFA [1,nm]

Table 1: The range of state complexities for the cascade product of a minimal unary n-state automaton A
and a minimal m-state finite state device B of the mentioned types. Moreover, the operation ⊕ on sets
of numbers S1 and S2 is defined as S1⊕S2 = {x+ y | x ∈ S1 and y ∈ S2 }. In all cases where magic
numbers exist (gray shaded results), except for the cascade product of two RFAs, the number nm− 1
turns out to be magic.

If we now increase the alphabet size of A to be at least equal to two we obtain that there are
nearly no magic numbers anymore.

Theorem 1 Let X,Y ∈ {RFA,PFA,PRFA,DFA} with {X,Y } 6= {PFA}. Moreover, let
n,m ≥ 2, where n (m, respectively) is restricted to 2 in case X = RFA (Y = RFA, respec-
tively). Then for every α with 1≤ α ≤ nm, there exists a minimal binary n-state automaton A
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of type X and a minimal m-state automaton B of type Y such that the minimal DFA for the
language L(A◦B) has α states.

For PFAs we see that there are also for arbitrary alphabet sizes a lot of magic numbers.

Theorem 2 Let n,m≥ 2. For every α that is not in

{1}∪{nx | 1≤ x≤m}∪
⋃
t|n

t∈{2,3,...,n−1}

{ tx | 1≤ x <m}∪
⋃
t|n

t∈{2,3,...,n−1}

{ tm},

there exists no minimal n-state PFA A and a minimal m-state PFA B such that the minimal
DFA for the language L(A◦B) has α states.

We observe that for the PFA A being unary the numbers in the first three sets are reachable.
For some numbers in the fourth set

⋃
t|n

t∈{2,3,...,n−1}

{ tm} we have shown that they are reachable

if A is allowed to be at least binary. However it remains to prove the following conjecture.

Conjecture 3 Let n,m≥ 2. For every α in⋃
t|n

t∈{2,3,...,n−1}

{ tm},

there exists a minimal binary n-state PFA A and a minimal binary m-state PFA B such that the
minimal DFA for the language L(A◦B) has α states.
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Abstract

An absent factor of a string w is a string u which does not occur as a contiguous sub-
string (a.k.a. factor) inside w. We extend this well-studied notion and define absent sub-
sequences: a string u is an absent subsequence of a string w if u does not occur as sub-
sequence (a.k.a. scattered factor) inside w. Of particular interest to us are minimal absent
subsequences, i.e., absent subsequences whose every subsequence is not absent, and short-
est absent subsequences, i.e., absent subsequences of minimal length. We show a series of
combinatorial and algorithmic results regarding these two notions. For instance: we give
combinatorial characterisations of the sets of minimal and, respectively, shortest absent
subsequences in a word, as well as compact representations of these sets; we show how we
can test efficiently if a string is a shortest or minimal absent subsequence in a word, and we
give efficient algorithms computing the lexicographically smallest absent subsequence of
each kind; also, we show how a data structure for answering shortest absent subsequence-
queries for the factors of a given string can be efficiently computed.
This paper was accepted at RP 2021. The full paper can be found on arXiv: https:
//arxiv.org/abs/2108.13968
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Abstract

Two-dimensional hexagonal arrays seen on a triangular grid can be treated as two-
dimensional representations of three-dimensional rectangular parallelopipeds. We are in-
troducing weighted three directions on-line tessellation automata (W3OTA) and investigate
formal power series on hexagonal pictures.

1. Introduction
Siromoney had defined an arrowhead catenation for the two-dimensional hexagonal arrays.
These arrays on a triangular grid can be viewed or treated as its two-dimensional representations
of three-dimensional rectangular parallelopipeds [5]. Hexagonal cellular automata (HCA) was
introduced as a variation of the rectangular two-dimensional cellular automata (RCA). Equiva-
lence of HCA and RCA was shown. Hexagonal arrays, patterns are found in literature on picture
processing, scene analysis. Hexagonal Image Processing (HIP) provides an introduction to the
processing of hexagonally sampled images. The utility of the HIP framework is demonstrated
by implementing several basic image processing techniques. The HIP framework serves as a
tool for comparing processing of images defined on a square vs hexagonal grid [4].

In [3] two classes namely (i) local hexagonal picture languages (HLOC) and (ii) reognizable
hexagonal picture languages (HREC) were introduced also hexagonal wang systems (HWS)
and hexagonal tiling systems (HTS) were used to study the coincidence of these languages.
In [6] three directions on-line tessellation automata was introduced to recognize HREC. Jaya
Abraham et al [1] studied characterizations of hexagonal recognizable picture series through
weighted hexapolic picture automata (WHPA).

Now, in this paper, we introduce weighted three directions on-line tessellation automata
(W3OTA) and investigate formal power series on hexagonal pictures. We show that W3OTA
recognizable series are WHPA recognizable.
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2. Hexagonal Pictures
In this section, we shall briefly recall some of the required standard notations and definitions of
two-dimensional hexagonal pictures and languages [3, 6].

2.1. Two-dimensional Hexagonal Pictures and Languages
A hexagonal picture p over the finite alphabet Σ is a hexagonal array of symbols from Σ. The
set of all non-empty hexagonal pictures over Σ is denoted by Σ++H . Let p ∈ Σ++H , we get the
bordered version of p denoted by p̂ when the special symbol # /∈ Σ is added as boundary to p.

Definition 2.1 [3] A hexagonal tiling system (HTS) is a 4-tuple T = (Σ,Γ,π,Θ), where Σ and
Γ are two finite alphabets, π : Γ→ Σ is a projection and Θ is a finite set of hexagonal tiles over
the alphabet Γ∪{#}.

Note that HREC [3, 6] is exactly the family of all hexagonal picture languages recognizable by
hexagonal tiling systems L(HTS).

3. Weighted Automata over Hexagonal Pictures
In this section, we shall briefly recall some of the required standard notations and definitions
with respect to picture series and hexagonal picture series.

3.1. Series on Hexagonal Pictures
A hexagonal picture series [1] is a mapping S : Σ++H → K. We let K〈〈Σ++H〉〉 contains all
hexagonal picture series over Σ. We write (S,p) for S(p), then a hexagonal picture series S is
written as S = Σp∈Σ++H (S,p) ·p. The set supp(S) = {p ∈ Σ++H | (S,p) 6= 0} is the support of
S. For a language L ⊆ Σ++H , the characteristic series 1L : Σ++H →K is defined by setting
(1L,p) = 1 if p∈L, and (1L,p) = 0 otherwise. ForK =B, the mapping L 7→ 1L gives a natural
bijection between languages over Σ and series in B〈〈Σ++H〉〉.

We recall rational operations on hexagonal picture series �, �, �, � and � referred to
as sum, Hadamard product, x-directional multiplication, y-directional multiplication and z-
directional multiplication respectively, and also · : K×K〈〈Σ++H〉〉 →K〈〈Σ++H〉〉, the scalar
multiplications with elements of the semiring [1].

In this paper, we introduce W3OTA and in order to prove the equivalence of W3OTA and
WHPA, we consider two types of devices for our study on quantitative setting:

1. 3 directions on-line tessellation automata (3OTA) [6].

2. weighted hexapolic picture automata (WHPA) [1]

We now present the definition of a weighted 3 directions on-line tessellation automata. It
generalizes in a straightforward way the automata-theoretic definition of recognizability for
hexagonal picture languages in terms of 3OTA.
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Definition 3.1 A weighted 3 directions on-line tessellation automata (W3OTA) over Σ is a
tuple H = (Q,E,I,F ), consisting of a finite set Q of states, a finite set of transitions E ⊆
Q×Q×Q×Σ×K×Q and sets of initial and final states I,F ⊆Q, respectively.

For a transition e= (qx, qy, qz,a,w,q) ∈ E, we set σx(e) = qx, σy(e) = qy, σz(e) = qz and
σ(e) = q. We denote by label(e) its label a and by weight(e) its weight w. We extend these both
functions to hexagonal pictures by setting, for c= (ci,j,k) ∈ E`×m×n:

label(c)(i, j,k) := label(ci,j,k), weight(c) = ∏
i,j,k

weight(ci,j,k).

It defines functions label : E++H → Σ++H and weight : E++H → K. We call label(c) the
label and weight(c) the weight of c. A run (or computation) in H is an element in E`×m×n

satisfying natural compatibility properties, more precisely, for c = (ci,j,k) ∈ E`×m×n we have
∀1≤ i≤ `,1≤ j ≤m,1≤ k ≤ n :

σx(ci,j,k) = σ(ci−1,j,k), σy(ci,j,k) = σ(ci,j−1,k), σz(ci,j,k) = σ(ci,j,k−1).

A run c ∈ E`×m×n is successful if for all 1 ≤ i ≤ `, 1 ≤ j ≤ m and 1 ≤ k ≤ n, we have
σx(c1,j,k),σy(ci,1,k),σz(ci,j,1) ∈ I and σ(c`,m,n) ∈ F . The set of all successful runs labelled
with a hexagonal picture p is denoted by I

p
; F .

We define a hexagonal picture series ||H|| as follows. If p ∈ Σ++H has no successful run in
H, ||H|| sends p to 0. Otherwise, we define

(||H||,p) = ∑
c∈I p

;F

weight(c).

Similar to common constructions on picture automata and using ideas in [2, 1], we have the
following.

Proposition 3.2 LetK be a commutative semiring. W3OTA-recognizable hexagonal picture se-
ries over K are closed under �, �, scalar multiplications with elements of K, projections and
inverse projections. For languages, inverse projections of languages that are deterministically
3OTA-recognizable are again recognizable by some deterministic 3OTA. If L is deterministi-
cally 3OTA-recognizable then 1L is W3OTA-recognizable.

Next we recall weighted hexapolic picture automata. These devices were introduced by A. Jaya
et al in [1]. The family of hexagonal picture series computed by WHPA over Σ will be denoted
by Krec〈〈Σ++H ,WHPA〉〉. We call elements of this family WHPA-recognizable.

4. W3OTA-Recognizable Series are WHPA-Recognizable
We shall now convert a weighted 3 directions on-line tessellation automaton into a weighted
hexapolic picture automaton. This inclusion is by defining some intermediate “hexagonal tiling"
device, describing the context of pixels within their computation. Here these hexagonal tiles are
encoded into the states of the new automaton.
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Let K be a commutative semiring. For the proof of Theorem 4.5 we will first convert a
given W3OTA into some “deterministic" device of a certain type via a projection similar to
a construction in [1] where a Kleene-Schützenberger Theorem for hexagonal picture series is
proved. However, in the present paper we apply this contruction to W3OTA rather than to
WHPA. The behaviour of the constructed deterministic automaton will then be proved to be
WHPA-recognizable.

Definition 4.1 A weighted 3 directions on-line tessellation automaton is called rule determin-
istic if for every input label a of the underlying alphabet there is at most one transition with
label a.

Given a rule determinsitic W3OTA with transition set E, for (qx, qy, qz,a,w,q) ∈ E as a
transition with label a we abbreviate (qx, qy, qz,a,w,q) by r(a).

Proposition 4.2 Let H be a W3OTA over Σ. There exists a rule deterministic W3OTA H′ over
an alphabet Γ and a projection π : Γ→ Σ satisfying ||H||= π(||H′||).

Proposition 4.3 Every hexagonal picture series that is recognizable by a rule deterministic
W3OTA is WHPA-recognizable.

Similar to Proposition 3.2 we can prove that the family of WHPA-recognizable series are
closed under projection.

Lemma 4.4 [1] Let π : Γ → Σ and S ∈ Krec〈〈Γ++H ,WHPA〉〉. Then π(S) ∈
Krec〈〈Σ++H ,WHPA〉〉

Theorem 4.5 Krec〈〈Σ++H ,W3OTA〉〉 ⊆Krec〈〈Σ++H ,WHPA〉〉
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