Tree Automata in Parsing and Machine Translation

Andreas Maletti

Institute of Computer Science
Universität Leipzig, Germany

Dagstuhl — April 4, 2017
determining the syntactic structure of a sentence
subject to a given theory of syntax (encoded in the training data)

- constituent syntax
- dependency syntax

...
Parsing

- determining the syntactic structure of a sentence
- subject to a given theory of syntax (encoded in the training data)
 - constituent syntax
 - dependency syntax
 - ...

SNP-SBJNPNNPMr.NNPHahn
, NPNPDTthe ADJPNPCD62HYPH- NNyear
HYPH- JJold
NMLNMLNNchairman
CCand NMLJJchiefJJexecutiveNNofficer
PPINof NPNNPGeorgiaHYPH- NNPPacificNNPCorp.
VPVBZis VPVBGleading NPNPNPDTthe NMLNNforestHYPH- NNPPacificNNPCorp.
VPINfor NPNNPGreatNNPNorthernNNPNekoosaNNPCorp.
Example: *We must bear in mind the Community as a whole*
Example: We must bear in mind the Community as a whole

POS-tag: part-of-speech tag, “class” of a word
Constituent Parsing

Berkeley parser:

BLLIP parser:
Constituent Parsing

today

Linear-time dependency models; optimized by neural networks

2016

- Subcategorization
 automatic, e.g. Berkeley (2007)

2000

- Statistical approach (cheap, automatically trained)
 Penn and WSJ tree bank (1M and 30M words)
 automatically obtained weighted CFG

1990

- Chomskyan approach (perfect analysis, poor coverage)
 hand-crafted CFG, TAG (refined via POS tags)
 corrections and selection by human annotators
Constituent Parsing

<table>
<thead>
<tr>
<th>grammar</th>
<th>F_1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>w</td>
</tr>
<tr>
<td>CFG</td>
<td>62.7</td>
</tr>
<tr>
<td>TSG [Post, Gildea, 2009]</td>
<td>82.6</td>
</tr>
<tr>
<td>TSG [Cohn et al., 2010]</td>
<td>85.4 84.7</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Collins, 1999]</td>
<td>88.6 88.2</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Petrov, Klein, 2007]</td>
<td>90.6 90.1</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Petrov, 2010]</td>
<td>91.8</td>
</tr>
<tr>
<td>TSG$_{sub}$ [Shindo et al., 2012]</td>
<td>92.9 92.4</td>
</tr>
</tbody>
</table>
All models use weights for disambiguation:
Subcategorization

Tags:

- official tags often conservative
 - English: \(\approx 50 \) tags
 - German: \(\gg 200 \) tags
Subcategorization

Tags:
- official tags often conservative
 - English: \(\approx 50\) tags
 - German: \(\gg 200\) tags
- all modern parsers use refined tags \(\rightarrow\) subcategorization

```
NP-4

PRP$-3
My

NN-2
dog

VP-5

VBZ-7
sleeps
```

ADJA-Sup-Dat-Sg-Fem
Subcategorization

Tags:
- official tags often conservative
 - English: \(\approx 50 \) tags
 - German: \(\gg 200 \) tags
- all modern parsers use refined tags \(\rightarrow \) subcategorization
- but return parse over official tags \(\rightarrow \) relabeling

\[
\begin{array}{c}
S \\
\downarrow \\
NP & VP \\
\downarrow & \downarrow \\
PRP$ & NN & VBZ \\
My & dog & sleeps
\end{array}
\]
Subcategorization

These CFG derivations

```
S
  NP  VP
   PRP$ NN VBZ
   My dog sleeps
```

also admit

```
S
  NP  VP
   PRP VBP
   I sleep
```

```
S
  NP  VP
   PRP VBZ
   I sleeps
```
Constituent Parsing

Read off CFG productions:

\[
S \rightarrow NP \; VP \\
PRP$ \rightarrow My \\
NP \rightarrow PRP \\
VP \rightarrow VBZ \\
NP \rightarrow PRP \\
VP \rightarrow VBD \; ADVP \\
ADVP \rightarrow RB
\]

\[
NP \rightarrow PRP$ \; NN \\
NN \rightarrow dog \\
VBZ \rightarrow sleeps \\
PRP \rightarrow I \\
VBD \rightarrow scored \\
RB \rightarrow well
\]
Definition (Tree automaton)

Tuple \((Q, \Sigma, I, R)\):
- finite set \(Q\) of states
- finite set \(\Sigma\) of terminals
- initial states \(I \subseteq Q\)
- finite set \(R\) of rules of the form \(q \rightarrow \sigma(q_1, \ldots, q_k)\)

\((\sigma \in \Sigma, k \geq 0, q, q_1, \ldots, q_k \in Q)\)

Example rules

- \(q_4 \rightarrow \frac{\text{VP}}{\quad}\)
- \(q_0 \rightarrow \frac{S}{\quad q_1 \quad q_4}\)
- \(q_0 \rightarrow \frac{S}{\quad q_6 \quad q_2}\)
Tree Automaton

Definition (Derivation semantics and recognized tree language)

Let \((Q, \Sigma, I, R)\) tree automaton

- for each leaf position labeled \(q\) and rule \(q \rightarrow r \in R\)

\[
\begin{align*}
q & \quad \Rightarrow \\
\Rightarrow & \quad r
\end{align*}
\]

- recognized tree language

\[
\{ t \mid \exists q \in I: \ q \Rightarrow^* t \}
\]
Constituent Parsing

F_1-score

| grammar | $|w| \leq 40$ | full |
|--------------------------------|--------------|-------|
| CFG | | 62.7 |
| TSG [Post, Gildea, 2009] | 82.6 | |
| TSG [Cohn et al., 2010] | 85.4 | 84.7 |
| CFG$_{sub}$ [Collins, 1999] | 88.6 | 88.2 |
| CFG$_{sub}$ [Petrov, Klein, 2007] | 90.6 | 90.1 |
| CFG$_{sub}$ [Petrov, 2010] | | 91.8 |
| TSG$_{sub}$ [Shindo et al., 2012] | 92.9 | 92.4 |

Hence, subcategorization = finite-state in all modern models equivalent to tree automata in expressive power.
Constituent Parsing

<table>
<thead>
<tr>
<th>grammar</th>
<th>F_1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>CFG</td>
<td>62.7</td>
</tr>
<tr>
<td>TSG [Post, Gildea, 2009]</td>
<td>82.6</td>
</tr>
<tr>
<td>TSG [Cohn et al., 2010]</td>
<td>85.4 84.7</td>
</tr>
<tr>
<td>(CFG_{sub}) [Collins, 1999]</td>
<td>88.6 88.2</td>
</tr>
<tr>
<td>(CFG_{sub}) [Petrov, Klein, 2007]</td>
<td>90.6 90.1</td>
</tr>
<tr>
<td>(CFG_{sub}) [Petrov, 2010]</td>
<td>91.8</td>
</tr>
<tr>
<td>(TSG_{sub}) [Shindo et al., 2012]</td>
<td>92.9 92.4</td>
</tr>
</tbody>
</table>

Hence: subcategorization \(\approx\) finite-state all modern models equivalent to tree automata in expressive power
Constituent Parsing

<table>
<thead>
<tr>
<th>Grammar</th>
<th>F_1-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td>CFG</td>
<td>62.7</td>
</tr>
<tr>
<td>TSG [Post, Gildea, 2009]</td>
<td>82.6</td>
</tr>
<tr>
<td>TSG [Cohn et al., 2010]</td>
<td>85.4</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Collins, 1999]</td>
<td>88.6</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Petrov, Klein, 2007]</td>
<td>90.6</td>
</tr>
<tr>
<td>CFG$_{sub}$ [Petrov, 2010]</td>
<td></td>
</tr>
<tr>
<td>TSG$_{sub}$ [Shindo et al., 2012]</td>
<td>92.9</td>
</tr>
</tbody>
</table>

Hence:

- subcategorization = finite-state
- all modern models equivalent to tree automata in expressive power
Constituent Parsing

Comparison:
- rule of subcategorized CFG vs. corresponding rule of tree automaton

\[S-1 \rightarrow \text{ADJP-2} \quad S-1 \rightarrow S(\text{ADJP-2, S-1}) \]

Advances in NLP
- best learning algorithms from positive data (state splitting & EM)
- fastest evaluators of weighted tree automata (coarse-to-fine parsing)
- fastest \(n \)-best derivation extraction
- …
Parsing

- determining the syntactic structure of a sentence
- subject to a given theory of syntax (encoded in the training data)
 - constituent syntax
 - dependency syntax
 - ...
John saw a dog yesterday which was a Yorkshire Terrier.

Practical results:
- Linear-time statistical parsers
- Google’s “Parsey McParseface” [Andor et al., 2016]
- 94% F1-score; linguists achieve 96–97%
John saw a dog yesterday which was a Yorkshire Terrier.

Practical results:
- Linear-time statistical parsers
- Google's "Parsey McParseface" [Andor et al., 2016]
 - 94% F1-score; linguists achieve 96–97%
John saw a dog yesterday which was a Yorkshire Terrier.

Practical results:
- linear-time statistical parsers
- Google’s “Parsey McParseface” [Andor et al., 2016] 94% F_1-score; linguists achieve 96–97%
Dependency Parsing

Theoretical problems

Given edge-weighted directed graph, extract “best” edge cover

- (general) \[\text{[Edmonds, 1965]}\]
- that is a tree \[\text{[Chu-Liu & Edmonds, 1965–1967]}\]
- that is projective tree \[\text{[Eisner, 1996]}\]
- that is acyclic \[\text{NP-hard [Guruswami et al., 2011]}\]
- that is a tree with page-number 2 \[\text{[Gómez-Rodríguez & Nivre, 2013]}\]
- that has page-number \(k \geq 2\) \[\text{NP-hard [Kuhlmann & Jonsson, 2015]}\]
- that is a tree with page-number \(k \geq 3\) \[\text{open}\]
The lexicon generates string language \(\mathcal{L} \) with \(\mathcal{L} \cap c^+d^+e^+ = \{c^id^ie^i | i \geq 1\} \) for goal item \(D \)

\[
L(c) = \{C\} \\
L(d) = \{D/E/C, D/E/D/C\} \\
L(e) = \{E\}
\]
Under a suitable relabeling, characterize the set of valid proof trees:

- for just applications \(\rightarrow \) sub-regular tree languages
- for compositions of order 1 \(\rightarrow \) open (probably still regular)
- for compositions of order \(k \geq 2 \) \(\rightarrow \) open
- for arbitrary compositions \(\rightarrow \) context-free tree language

ongoing work with Marco Kuhlmann
Lexicalization

Definition (lexicalized)
A grammar is **lexicalized** if each rule contains a lexical item

Existing results
- CFG weakly lexicalize themselves
- TAG weakly lexicalize themselves
- TAG strongly lexicalize CFG and TSG
- CFTG strongly lexicalize TAG and themselves
- $(d + 1)$-TAG strongly lexicalize d-TAG

Greibach normal form
- [Schabes, 1990]
- [Schabes, 1990]
- [M, Engelfriet, 2012]
- [De Santo et al., 2016]
Lexicalization

Multiple context-free tree grammar:

\[
A \rightarrow T_1 \quad \sigma \quad T_2 \quad T_3
\]

\[
B \rightarrow B \quad B' \quad x_1 \quad T_1 \quad T_2 \quad T_3 \quad \alpha \quad \beta \quad \gamma
\]

\[
S \rightarrow \alpha \quad A
\]

\[
B \quad x_1 \rightarrow x_1
\]

\[
B' \quad x_1 \rightarrow x_1
\]

\[
T_1 \quad \tau \quad \nu
\]
Lexicalization

Derivation tree and evaluation:

MCFTG strongly lexicalize themselves and inv. of their expressive power
ongoing work with Joost Engelfriet and Sebastian Maneth
Lexicalization

Derivation tree and evaluation:

MCFTG strongly lexicalize themselves and inv. of their expressive power ongoing work with Joost Engelfriet and Sebastian Maneth
1. The room it is not narrowly was a simple, bathtub was also attached.
2. Wi-fi, TV and I was available.
3. Church looked When morning awake open the curtain.
4. But was a little cold, morning walks was good.
<table>
<thead>
<tr>
<th>Review translation [by Google Translate]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The room it is not narrowly was a simple, bathtub was also attached.</td>
</tr>
<tr>
<td>2. Wi-fi, TV and I was available.</td>
</tr>
<tr>
<td>3. Church looked When morning awake open the curtain.</td>
</tr>
<tr>
<td>4. But was a little cold, morning walks was good.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original [Japanese — © tripadvisor]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 部屋もシンプルでしたが狭くなく、バスタブもついていました。</td>
</tr>
<tr>
<td>2. Wi-fi、テレビも利用出来ました。</td>
</tr>
<tr>
<td>3. 朝起きてカーテンを開けると教会が見えました。</td>
</tr>
<tr>
<td>4. ちょっと寒かったけれど、朝の散策はグッドでしたよ。</td>
</tr>
</tbody>
</table>
1. The room was simple, but it was not small, and the bathtub was also attached.
2. Wi-fi, TV was also available.
3. When I woke up in the morning and opened the curtain, I saw the church.
4. It was a bit cold, but walking in the morning was good.

Original [Japanese — © tripadvisor]
1. 部屋もシンプルでしたのが狭くなく、バスタブもついていました。
2. Wi-fi、テレビも利用出来ました。
3. 朝起きてカーテンを開けると教会が見えました。
4. ちょっと寒かったけれど、朝の散策はグッドでしたよ。
Machine Translation

Short History:

today
- Neural networks

2016
- Reformation
 phrase-based and syntax-based systems
 statistical approach (cheap, automatically trained)

1991
- Dark age
 rule-based systems (e.g., SYSTRAN)
 Chomskyan approach (perfect translation, poor coverage)

1960
Machine Translation

Vauquois triangle:

Translation model: string-to-string
Machine Translation

Vauquois triangle:

Translation model: string-to-tree
Machine Translation

Vauquois triangle:

Translation model: tree-to-tree
parallel corpus, word alignments, parse tree

I would like your advice about Rule 143 concerning inadmissibility.

Könnten Sie mir eine Auskunft zu Artikel 143 im Zusammenhang mit der Unzulässigkeit geben.
parallel corpus, word alignments, parse tree

I would like your advice about Rule 143 concerning inadmissibility via GIZA++ [Och, Ney: A systematic comparison of various statistical alignment models. Computational Linguistics 29(I), 2003]
I would like your advice about Rule 143 concerning inadmissibility

Weighted Synchronous Grammars

Synchronous tree substitution grammar: productions $N \rightarrow (r, r_1)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand side r_1 of tree substitution grammar production

Weighted Synchronous Grammars

Synchronous tree substitution grammar: productions $N \rightarrow (r, r_1)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand side r_1 of tree substitution grammar production
- (bijective) synchronization of nonterminals

Synchronous Grammars

Production application:

- Selection of synchronous nonterminals
Synchronous Grammars

Production application:

- Selection of synchronous nonterminals
Production application:

1. Selection of synchronous nonterminals
2. Selection of suitable production
Synchronous Grammars

Production application:

1. Selection of synchronous nonterminals
2. Selection of suitable production
3. Replacement on both sides
Synchronous Grammars

Production application:

1. synchronous nonterminals
Synchronous Grammars

Production application:

1 synchronous nonterminals
Production application:

1. synchronous nonterminals
2. suitable production
Synchronous Grammars

Production application:
1. synchronous nonterminals
2. suitable production
3. replacement
I would like your advice about Rule 143 concerning inadmissibility.

would like your advice about Rule 143 concerning inadmissibility

would like your advice about Rule 143 concerning inadmissibility

I would like your advice about Rule 143 concerning inadmissibility.

would like your advice about Rule 143 concerning inadmissibility following [Galley, Hopkins, Knight, Marcu: What’s in a translation rule? Proc. NAACL, 2004]
I would like your advice about Rule 143 concerning inadmissibility.
Removal of extractable production:

Könnten Sie eine Auskunft zu Artikel 143 geben?
PPER would like your advice about Rule 143.

Könnten Sie eine Auskunft zu Artikel 143 geben?
PPER would like your advice about Rule 143.
Könnten Sie eine Auskunft zu Artikel 143 geben?
/ppr would like your advice about Rule 143

Könnten Sie eine Auskunft zu Artikel 143 geben?
PER would like your advice about Rule 143.
KÖNNTEN SIE EINE AUSKUNFT ZU ARTIKEL 143 GEBEN?
Advantages:

- very simple
- implemented in framework ‘Moses’
- “context-free”
Synchronous Tree Substitution Grammars

Advantages:

- very simple
- implemented in framework ‘Moses’
- “context-free”

Disadvantages:

- problems with discontinuities
- composition and binarization not possible
- “context-free”
Evaluation

English → German translation task:

(higher BLEU is better)

<table>
<thead>
<tr>
<th>Type</th>
<th>System</th>
<th>BLEU</th>
<th>BLEU</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vanilla</td>
<td>WMT 2013</td>
<td>WMT 2015</td>
</tr>
<tr>
<td>string-to-string</td>
<td>FST</td>
<td>16.8</td>
<td>20.3</td>
<td>25.2</td>
</tr>
<tr>
<td>string-to-tree</td>
<td>STSG</td>
<td>15.2</td>
<td>19.4</td>
<td>24.5</td>
</tr>
<tr>
<td>tree-to-tree</td>
<td>STSG</td>
<td>14.5</td>
<td>—</td>
<td>15.3</td>
</tr>
</tbody>
</table>

STSG = synchronous tree substitution grammar

English → German translation task: (higher BLEU is better)

<table>
<thead>
<tr>
<th>Type</th>
<th>System</th>
<th>BLEU vanilla</th>
<th>WMT 2013</th>
<th>WMT 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>string-to-string</td>
<td>FST</td>
<td>16.8</td>
<td>20.3</td>
<td>25.2</td>
</tr>
<tr>
<td>string-to-tree</td>
<td>STSG</td>
<td>15.2</td>
<td>19.4</td>
<td>24.5</td>
</tr>
<tr>
<td>tree-to-tree</td>
<td>STSG</td>
<td>14.5</td>
<td>—</td>
<td>15.3</td>
</tr>
</tbody>
</table>

STSG = synchronous tree substitution grammar

Observations:

- syntax-based systems competitive with manual adjustments
- much less so for vanilla systems
- very unfortunate situation (more supervision yields lower scores)

very specific production

every production for ‘advice’ contains sentence structure

(syntax “in the way”)
Synchronous multi tree substitution grammar: $N \rightarrow (r, \langle r_1, \ldots, r_n \rangle)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand sides r_1, \ldots, r_n of regular tree grammar production
Synchronous multi tree substitution grammar: $N \rightarrow (r, \langle r_1, \ldots, r_n \rangle)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand sides r_1, \ldots, r_n of regular tree grammar production
Synchronous Grammars

Synchronous multi tree substitution grammar: \(N \rightarrow (r, \langle r_1, \ldots, r_n \rangle) \)

- nonterminal \(N \)
- right-hand side \(r \) of context-free grammar production
- right-hand sides \(r_1, \ldots, r_n \) of regular tree grammar production

ART-NN-VV \(\rightarrow \) eine Auskunft geben

\[
\begin{array}{c}
\text{ART} \\
\text{NN} \\
\text{VV}
\end{array}
\]
Synchronous Grammars

Synchronous multi tree substitution grammar: $N \rightarrow (r, \langle r_1, \ldots, r_n \rangle)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand sides r_1, \ldots, r_n of regular tree grammar production

ART-NN-VV about Rule 143 PP

NP-VV →

ART NN APPR NN CD PP VV

zu Artikel 143
Synchronous multi tree substitution grammar: $N \rightarrow (r, \langle r_1, \ldots, r_n \rangle)$

- nonterminal N
- right-hand side r of context-free grammar production
- right-hand sides r_1, \ldots, r_n of regular tree grammar production
- synchronization via map NT r_1, \ldots, r_n to NT r
Synchronous Grammars

Production application:

- synchronous nonterminals
Synchronous Grammars

Production application:

- synchronous nonterminals
Production application:

1. synchronous nonterminals
2. suitable production

1. synchronous nonterminals
 ART-NN-VV →
 about Rule 143 PP
 zu Artikel 143
 APPR NN CD PP
 NP
 ART NN

2. suitable production
 ART-NN-VV →
 eine Auskunft geben
 ART NN VV
Production application:
1 synchronous nonterminals
2 suitable production
3 replacement
PPER would like your advice about Rule 143

variant of [M.: How to train your multi bottom-up tree transducer. Proc. ACL, 2011]
voor your advice about Rule 143

variant of [M.: How to train your multi bottom-up tree transducer. Proc. ACL, 2011]
PPER would like your advice about Rule 143.

variant of [M.: How to train your multi bottom-up tree transducer. Proc. ACL, 2011]
Können Sie eine Auskunft zu Artikel 143 geben?

variant of [M.: How to train your multi bottom-up tree transducer. Proc. ACL, 2011]
Synchronous Multi Tree Substitution Grammars

Advantages:

- complicated discontinuities
- implemented in framework ‘Moses’
- binarizable, composable
Synchronous Multi Tree Substitution Grammars

Advantages:
- complicated discontinuities
- implemented in framework ‘Moses’

 [Braune, Seemann, Quernheim, M.: Shallow local multi bottom-up tree transducers in SMT. *Proc. ACL*, 2013]
- binarizable, composable

Disadvantages:
- output non-regular (tree-level) or non-context-free (string-level)
 (in fact output is captured by MRTG = MCFTG without variables)
- not symmetric (input context-free; output not)
Evaluation

<table>
<thead>
<tr>
<th>Task</th>
<th>BLEU</th>
<th></th>
<th>STSG</th>
<th>SMTSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>English \rightarrow German</td>
<td>15.0</td>
<td>*15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English \rightarrow Arabic</td>
<td>48.2</td>
<td>*49.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English \rightarrow Chinese</td>
<td>17.7</td>
<td>*18.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English \rightarrow Polish</td>
<td>21.3</td>
<td>*23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English \rightarrow Russian</td>
<td>24.7</td>
<td>*26.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STSG = synchronous tree substitution grammar
SMTSG = synchronous multi tree substitution grammar

Observations:
- consistent improvements
- 1 magnitude more productions
- SMTSG alleviate some of the problems of syntax-based systems

Evaluation

<table>
<thead>
<tr>
<th>Task</th>
<th>BLEU</th>
<th>Productions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STSG</td>
<td>SMTSG</td>
<td>STSG</td>
<td>SMTSG</td>
</tr>
<tr>
<td>English → German</td>
<td>15.0</td>
<td>*15.5</td>
<td>14M</td>
<td>144M</td>
</tr>
<tr>
<td>English → Arabic</td>
<td>48.2</td>
<td>*49.1</td>
<td>55M</td>
<td>491M</td>
</tr>
<tr>
<td>English → Chinese</td>
<td>17.7</td>
<td>*18.4</td>
<td>17M</td>
<td>162M</td>
</tr>
<tr>
<td>English → Polish</td>
<td>21.3</td>
<td>*23.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>English → Russian</td>
<td>24.7</td>
<td>*26.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

STSG = synchronous tree substitution grammar
SMTSG = synchronous multi tree substitution grammar

Observations:
- consistent improvements
- 1 magnitude more productions
- SMTSG alleviate some of the problems of syntax-based systems

Evaluation

<table>
<thead>
<tr>
<th>Task</th>
<th>BLEU STSG</th>
<th>BLEU SMTSG</th>
<th>Productions STSG</th>
<th>Productions SMTSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>English → German</td>
<td>15.0</td>
<td>*15.5</td>
<td>14M</td>
<td>144M</td>
</tr>
<tr>
<td>English → Arabic</td>
<td>48.2</td>
<td>*49.1</td>
<td>55M</td>
<td>491M</td>
</tr>
<tr>
<td>English → Chinese</td>
<td>17.7</td>
<td>*18.4</td>
<td>17M</td>
<td>162M</td>
</tr>
<tr>
<td>English → Polish</td>
<td>21.3</td>
<td>*23.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>English → Russian</td>
<td>24.7</td>
<td>*26.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

STSG = synchronous tree substitution grammar
SMTSG = synchronous multi tree substitution grammar

Observations:

- consistent improvements
- 1 magnitude more productions
- SMTSG alleviate some of the problems of syntax-based systems

Synchronous Grammars

Evaluation properties:

- rotations implementable? (for arbitrary t_1, t_2, t_3)
- symmetric?
- domain regular?
- range regular?
- closed under composition?

Icons by interactivemania (http://www.interactivemania.com/) and UN Office for the Coordination of Humanitarian Affairs
Illustration of rotation:
Top-down Tree Transducer

Hasse diagram:

Model	Property
ns-TOP | X X ✓ ✓ ✓ ✓
n-TOP | X X ✓ ✓ ✓ ✓
s-TOP | X X ✓ ✓ X₂
s-TOPⁿ | X X ✓ ✓ ✓ ✓
TOP | X X ✓ ✓ X₂
TOPⁿ | X X ✓ ✓ ✓ ✓

(composition closure in subscript)
Synchronous Tree Substitution Grammars

Hasse diagram:

Model	Property

<table>
<thead>
<tr>
<th>Model</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-TOP</td>
<td>✗</td>
</tr>
<tr>
<td>TOP</td>
<td>✗</td>
</tr>
<tr>
<td>TOP<sup>R</sup></td>
<td>✗</td>
</tr>
<tr>
<td>ns-STSG</td>
<td>✓</td>
</tr>
<tr>
<td>n-STSG</td>
<td>✓</td>
</tr>
<tr>
<td>s-STSG<sup>(R)</sup></td>
<td>✓</td>
</tr>
<tr>
<td>STSG</td>
<td>✓</td>
</tr>
<tr>
<td>STSG<sup>R</sup></td>
<td>✓</td>
</tr>
</tbody>
</table>

(composition closure in subscript)

composition closures by
Advantages of SMTSG

- always have regular look-ahead
- can always be made nondeleting & shallow
- closed under composition

Advantages of SMTSG

- always have regular look-ahead
- can always be made nondeleting & shallow
- closed under composition

Disadvantages of SMTSG:

- non-regular range (theoretically interesting?)

Synchronous Multi Tree Substitution Grammars

Hasse diagram:

<table>
<thead>
<tr>
<th>Model</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-TOP</td>
<td>x</td>
</tr>
<tr>
<td>TOP</td>
<td>x</td>
</tr>
<tr>
<td>TOP<sup>R</sup></td>
<td>x</td>
</tr>
<tr>
<td>ns-STSG</td>
<td>✓</td>
</tr>
<tr>
<td>n-STSG</td>
<td>✓</td>
</tr>
<tr>
<td>s-STSG<sup>(R)</sup></td>
<td>✓</td>
</tr>
<tr>
<td>STSG</td>
<td>✓</td>
</tr>
<tr>
<td>STSG<sup>R</sup></td>
<td>✓</td>
</tr>
<tr>
<td>SMTSG</td>
<td>✓</td>
</tr>
<tr>
<td>reg. range</td>
<td>✓</td>
</tr>
<tr>
<td>symmetric</td>
<td>✓</td>
</tr>
</tbody>
</table>

(string-level) range characterization by

Synchronous Multi Tree Substitution Grammars

Theorem

\[(\text{STSG}^R)^3 \not\subseteq \text{reg.-range SMTSG}\]

Summary

Parsing:

- tree automata = CFG with subcategorization
 (which are the state-of-the-art models for many languages)
- wealth of open problems for non-constituent parsing
 (alternative theories seem to be on the rise; “Parsey McParseface”)

Machine translation:

- all major translation models in use are grammar-based
 (and their expressive power is often ill-understood)
- combination of parser and translation model challenging
 (although that is typically just a regular domain restriction)
- evaluation of theoretically well-behaved models (in practice)

Thank you for the attention.
Summary

Parsing:
- tree automata = CFG with subcategorization
 (which are the state-of-the-art models for many languages)
- wealth of open problems for non-constituent parsing
 (alternative theories seem to be on the rise; “Parsey McParseface”)

Machine translation:
- all major translation models in use are grammar-based
 (and their expressive power is often ill-understood)
- combination of parser and translation model challenging
 (although that is typically just a regular domain restriction)
- evaluation of theoretically well-behaved models (in practice)
Summary

Parsing:

- tree automata = CFG with subcategorization
 (which are the state-of-the-art models for many languages)
- wealth of open problems for non-constituent parsing
 (alternative theories seem to be on the rise; “Parsey McParseface”)

Machine translation:

- all major translation models in use are grammar-based
 (and their expressive power is often ill-understood)
- combination of parser and translation model challenging
 (although that is typically just a regular domain restriction)
- evaluation of theoretically well-behaved models (in practice)

Thank you for the attention.