Trees Abound Part I: Tree Automata

Andreas Maletti

Institute for Natural Language Processing Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Paris — September 26, 2012

Trees Abound - Part I: Tree Automata

Motivation

Trees?

How to represent a set of trees?

enumerate them

- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG

Example

S ightarrow	NP VP
$NP \to$	NP PP
$MD \to$	must

 $\begin{array}{l} \mathsf{VP} \to \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $MD \rightarrow must$

 $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $MD \rightarrow must$

$\begin{array}{l} \mathsf{VP} \to \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $MD \rightarrow must$

 $\begin{array}{l} \mathsf{VP} \to \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $MD \rightarrow must$

$\begin{array}{l} \mathsf{VP} \rightarrow \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \rightarrow \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Example

 $MD \rightarrow must$

$\begin{array}{l} \mathsf{VP} \to \mathsf{MD} \; \mathsf{VP} \\ \mathsf{VP} \to \mathsf{VB} \; \mathsf{PP} \; \mathsf{NP} \end{array}$

Definition (GÉCSEG, STEINBY 1984)

A local tree grammar *G* is a finite set of CFG productions (together with a start nonterminal S)

Definition (Generated tree language)

L(G) contains exactly the trees in which

• the root is labeled S

• "label \rightarrow child labels" is a production of G for each internal node

Definition (GÉCSEG, STEINBY 1984)

A local tree grammar *G* is a finite set of CFG productions (together with a start nonterminal S)

Definition (Generated tree language)

- L(G) contains exactly the trees in which
 - the root is labeled S
 - "label \rightarrow child labels" is a production of G for each internal node

Theorem

Local tree grammars recognize exactly the parse forests of CFG

Properties

- ✓ simple
- no ambiguity (unique explanation for each recognized tree)
- * not closed under BOOLEAN operations (union/intersection/complement: X/√/X)
- X not closed under (non-injective) relabelings

Χ...

Theorem

Local tree grammars recognize exactly the parse forests of CFG

Properties

- 🗸 simple
- no ambiguity (unique explanation for each recognized tree)
- * not closed under BOOLEAN operations (union/intersection/complement: X/√/X)
- x not closed under (non-injective) relabelings

× ...

is in L(G) if and only if all the productions in it are in G

Theorem

Local tree languages are not closed under union

Proof.

The following single-element tree languages are local:

But their union is not local as it must also recognize:

My dog scored well *I sleeps

Universität Stuttgart

Trees Abound — Part I: Tree Automata

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

R₁

Ra

"Glue" fragments together to obtain larger trees:
 S

• But why only small tree fragments?

Universität Stuttgart

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

• "Glue" fragments together to obtain larger trees:

R₁

Ra

But why only small tree fragments?

Universität Stuttgart

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

• "Glue" fragments together to obtain larger trees:

R₁

Ra

• But why only small tree fragments?

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

• "Glue" fragments together to obtain larger trees:

R₁

Ra

But why only small tree fragments?

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

R₁

Ra

• "Glue" fragments together to obtain larger trees:

But why only small tree fragments?

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

R₁

Ra

• "Glue" fragments together to obtain larger trees:

But why only small tree fragments?

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

R₁

• "Glue" fragments together to obtain larger trees:

Ra

• But why only small tree fragments?

Generalization

 $\bullet~CFG$ production $L \to R_1~R_2~R_3$ represented by tree

R₁

• "Glue" fragments together to obtain larger trees:

Ra

• But why only small tree fragments?

Definition

A tree substitution grammar is a finite set of tree fragments (together with a start nonterminal S)

Definition

A tree substitution grammar is a finite set of tree fragments (together with a start nonterminal S)

Example (Typical fragments [Post, ACL 2011])

Theorem

local tree languages \subsetneq tree substitution languages

Proof.

Can trivially express all finite tree languages

Remarks

- can express many finite-distance dependencies
- extended domain of locality

Properties

- simple
- more expressive than local tree grammars
- × ambiguity (several explanations for a recognized tree)
- * not closed under BOOLEAN operations (union/intersection/complement: X/X/X)
- × not closed under (non-injective) relabelings

Χ...

Theorem

Tree substitution languages are not closed under union

Proof.

Counterexample must be infinite ~> artificial example

$$L_1 = \{ \mathbf{S}(\mathbf{C}^n(a), a) \mid n \in \mathbb{N} \} \qquad \qquad L_2 = \{ \mathbf{S}(\mathbf{C}^n(b), b) \mid n \in \mathbb{N} \}$$

Their union is not a tree substitution language

Theorem

Tree substitution languages are not closed under intersection

Proof.

Ideas?

Experiment [POST, GILDEA, ACL 2009]

grammar	size	Prec.	Recall	F1
CFG	46k	75.37	70.05	72.61
"spinal" TSG	190k	80.30	78.10	79.18
"minimal subset" TSG	2,560k	76.40	78.29	77.33

(on WSJ Sect. 23)

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables

Definition (SHINDO et al., ACL 2012 best paper)

A tree substitution grammar with latent variables is a tree substitution grammar together with a functional relabeling

Remark

Typically symbols that are relabeled to X are written as X-n

Definition (SHINDO et al., ACL 2012 best paper) A tree substitution grammar with latent variables is a tree substitution grammar together with a functional relabeling

Remark

Typically symbols that are relabeled to X are written as X-n

Example (Typical fragments)

Definition (SHINDO et al., ACL 2012 best paper) A tree substitution grammar with latent variables is a tree substitution grammar together with a functional relabeling

Remark

Typically symbols that are relabeled to X are written as X-n

Example (Typical fragments)

Experiment [SHINDO et al., ACL 2012 best paper]

	F1 score	
grammar	<i>w</i> ≤ 40	full
TSG [POST, GILDEA, 2009]	82.6	
TSG [Сонм et al., 2010]	85.4	84.7
CFGlv [COLLINS, 1999]	88.6	88.2
CFGIv [PETROV, KLEIN, 2007]	90.6	90.1
CFGlv [PETROV, 2010]		91.8
TSGlv (single)	91.6	91.1
TSGlv (multiple)	92.9	92.4
Discriminative Parsers		
CARRERAS et al., 2008		91.1
CHARNIAK, JOHNSON, 2005	92.0	91.4
Huang, 2008	92.3	91.7

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables
- parse forest of a CFG with latent variables

• . . .

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables
- parse forest of a CFG with latent variables

Let us look at a really old model

• . . .

Overview

Regular Tree Grammars

Theoretical Properties

Universität Stuttgart

Definition (BRAINERD, 1969)

A regular tree grammar is a tuple $G = (Q, \Sigma, I, P)$ with

- alphabet of nonterminals Q
- alphabet of terminals Σ
- initial nonterminals $I \subseteq Q$
- finite set of productions $P \subseteq Q \times T_{\Sigma}(Q)$

Remark

```
Instead of (q, r) we write q \rightarrow r
```


Example

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$
- $\Sigma = \{VP, NP, S, \dots\}$
- $I = \{q_0\}$
- and the following productions:

Definition (Derivation Semantics) Sentential forms: $t, u \in T_{\Sigma}(Q)$

$$t \Rightarrow_G u$$

if there exist position $w \in \text{pos}(t)$ and production $q \rightarrow r \in P$

Definition (Recognized tree language)

$$L(G) = \{t \in T_{\Sigma} \mid \exists q \in I \colon q \Rightarrow^*_G t\}$$

Definition (Derivation Semantics) Sentential forms: $t, u \in T_{\Sigma}(Q)$

$$t \Rightarrow_G u$$

if there exist position $w \in \text{pos}(t)$ and production $q \rightarrow r \in P$

•
$$t = t[q]_w$$

• $u = t[r]_w$

Definition (Recognized tree language)

$$L(G) = \{t \in T_{\Sigma} \mid \exists q \in I \colon q \Rightarrow^*_G t\}$$

Example (Productions)

Example (Derivation)

Universität Stuttgart

Example (Productions)

Example (Derivation)

$$q_0 \Rightarrow_G \bigvee_{\substack{f = 0 \\ f = 0 \\ g_1}} S$$

Example (Productions)

Example (Derivation)

Theorem

tree substitution languages \subsetneq regular tree languages

Proof.

We can express the union counterexample easily

Remarks

• can organize finite information transport (even over unbounded distance)

Properties

🗸 ...

- simple
- more expressive than tree substitution grammars
- × ambiguity (several explanations for a recognized tree)
- closed under all BOOLEAN operations (union/intersection/complement:
- closed under (non-injective) relabelings

Definition (BRAINERD, 1969) *G* is in normal form if $r = \sigma(q_1, \ldots, q_k)$ with $\sigma \in \Sigma$ and $q_1, \ldots, q_k \in Q$ for all $q \to r \in P$

Definition (BRAINERD, 1969) *G* is in normal form if $r = \sigma(q_1, ..., q_k)$ with $\sigma \in \Sigma$ and $q_1, ..., q_k \in Q$ for all $q \to r \in P$

Example (Productions)

Theorem (BRAINERD, 1969)

Any G is equivalent to a regular tree grammar in normal form

Proof.

Simply cut large rules introducing new states

Theorem (FOLK, LORE, 1972) regular tree languages = relabeled local tree languages

30

Theorem (FOLK, LORE, 1972)

regular tree languages = relabeled local tree languages

Berkeley Parser

Example (Berkeley parser — English grammar)

- $S-1 \rightarrow ADJP-2 \ S-1 \qquad 0.00354$
- $\text{S-1} \rightarrow \text{ADJP-1 S-1}$
- $\text{S-1} \rightarrow \text{VP-5 VP-3}$
- $\text{S-2} \rightarrow \text{VP-5} \text{ VP-3}$
- $\text{S-1} \rightarrow \text{PP-7 VP-0}$
- $\text{S-9} \rightarrow \text{``NP-3}$

 $0.0035453455987323125 \cdot 10^{0}$

- $2.108608433271444 \cdot 10^{-6}$
- $1.6367163259885093\cdot 10^{-4}$
 - $9.724998692152419\cdot 10^{-8}$
- $1.0686659961009547\cdot 10^{-5}$
- $0.012551243773149695\cdot 10^{0}$

~ Regular tree grammar

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper] can be implemented in the BERKELEY parser

Remark

• the main contribution of SHINDO et al. is not the TSGlv

it is probably the intricate 3-layer back-off model

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper] can be implemented in the BERKELEY parser

Remark

• the main contribution of SHINDO et al. is not the TSGlv

• it is probably the intricate 3-layer back-off model

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper] can be implemented in the BERKELEY parser

Remark

- the main contribution of SHINDO et al. is not the TSGlv
- it is probably the intricate 3-layer back-off model

Overview

Tree Automaton

Definition (THATCHER, 1970; ROUNDS, 1970)

tree automaton is a regular tree grammar in normal form

Remarks

- bottom-up: rules written as $X(q_1, \ldots, q_k) \rightarrow q$
- top-down: rules written as $q \rightarrow X(q_1, \ldots, q_k)$

Tree Automaton

Definition (THATCHER, 1970; ROUNDS, 1970)

tree automaton is a regular tree grammar in normal form

Remarks

- bottom-up: rules written as $X(q_1, \ldots, q_k) \rightarrow q$
- top-down: rules written as $q \rightarrow X(q_1, \ldots, q_k)$

Definition

- top-down deterministic if ∀q ∈ Q, k ∈ N, X ∈ Σ
 ∃ at most one q₁,..., q_k ∈ Q: q → X(q₁,..., q_k) ∈ P
- bottom-up deterministic if ∀k ∈ N, X ∈ Σ, q₁,..., q_k ∈ Q
 ∃ at most one q ∈ Q: X(q₁,..., q_k) → q ∈ P

(red determines blue)

Theorem (THATCHER, WRIGHT, 1968; DONER, 1970) top-down deterministic \subseteq bottom-up deterministic = RTL

Proof.

By a standard subset construction and a simple counterexample

Universität Stuttgart

Remark

finite tree languages ⊈ top-down deterministic

Universität Stuttgart

Remark

finite tree languages ⊈ top-down deterministic

Universität Stuttgart

Remark

finite tree languages $\not\subseteq$ top-down deterministic

Operations on Regular Tree Languages

Theorem

Regular tree languages are closed under

- all BOOLEAN operations
- substitution (quotients) and iteration
- (non-deterministic) relabelings
- linear homomorphisms
- inverse homomorphisms

Operations on Regular Tree Languages

Theorem

Regular tree languages are closed under substitution

Definition

 $\textit{L},\textit{L}' \subseteq \textit{T}_{\Sigma}$ tree languages and $X \in \Sigma$

$$L[\mathsf{X} \leftarrow L']$$

contains all trees obtained from a tree of L by replacing each leaf labeled X by a tree of L'

Operations on Regular Tree Languages

Theorem

Regular tree languages are closed under substitution

$$L[\mathsf{X} \leftarrow L']$$

$$t \in L$$

 $t_1, t_2, t_3 \in L'$

Efficient Representation

Definition

A tree automaton is minimal in C if all equivalent tree automata of C are at least as large

Theorem

Complexity of minimization problems:

outp. \setminus inp. model	DTA	NTA
$\mathcal{C}=DTA$	NL	(EXPTIME)
$\mathcal{C} = NTA$	PSPACE	PSPACE

Overview

2 Regular Tree Grammars

3 Theoretical Properties

Definition (BERSTEL, REUTENAUER, 1982)

A weighted tree automaton is a tree automaton together with a map $c \colon P \to S$

- S forms a semiring $(S, +, \cdot, 0, 1)$
- production weights are multiplied (.) in a derivation
- weights of multiple (left-most) derivations for the same tree are summed (+)

Definition (BERSTEL, REUTENAUER, 1982)

A weighted tree automaton is a tree automaton together with a map $c \colon P \to S$

- S forms a semiring $(S, +, \cdot, 0, 1)$
- production weights are multiplied (\cdot) in a derivation
- weights of multiple (left-most) derivations for the same tree are summed (+)

Definition (BERSTEL, REUTENAUER, 1982)

A weighted tree automaton is a tree automaton together with a map $c \colon P \to S$

- S forms a semiring $(S, +, \cdot, 0, 1)$
- production weights are multiplied (.) in a derivation
- weights of multiple (left-most) derivations for the same tree are summed (+)

Definition (BERSTEL, REUTENAUER, 1982)

A weighted tree automaton is a tree automaton together with a map $c \colon P \to S$

- S forms a semiring $(S, +, \cdot, 0, 1)$
- production weights are multiplied (.) in a derivation
- weights of multiple (left-most) derivations for the same tree are summed (+)

Remarks

- BERKELEY parser uses weighted tree automata
- but has a best-derivation semantics

- Minimization wrt. best-derivation semantics
- Minimization wrt. n-best-derivation semantics
- Foundational investigation of those semantics

Remarks

- BERKELEY parser uses weighted tree automata
- but has a best-derivation semantics

- Minimization wrt. best-derivation semantics
- Minimization wrt. n-best-derivation semantics
- Foundational investigation of those semantics

Remarks

- BERKELEY parser uses weighted tree automata
- but has a best-derivation semantics

- Minimization wrt. best-derivation semantics
- Minimization wrt. n-best-derivation semantics
- Foundational investigation of those semantics

Remarks

- BERKELEY parser uses weighted tree automata
- but has a best-derivation semantics

- Minimization wrt. best-derivation semantics
- Minimization wrt. *n*-best-derivation semantics
- Foundational investigation of those semantics

Remarks

- BERKELEY parser uses weighted tree automata
- but has a best-derivation semantics

- Minimization wrt. best-derivation semantics
- Minimization wrt. *n*-best-derivation semantics
- Foundational investigation of those semantics

Bisimulation Minimization

(needs additive cancellation)

Experiment with BERKELEY parser

	states		productions	
English grammar	1,133	100%	1,842,218	100%
backward minimal	548	48%	626,600	34%
forward minimal	791	70%	767,153	42%
backward/forward minimal	366	32%	272,675	15%
forward/backward minimal	381	34%	309,845	17%
f/b/f/b minimal	375	33%	295,836	16%

These might be buggy

Bisimulation Minimization

(needs additive cancellation)

Experiment with BERKELEY parser

	states		productions	
English grammar	1,133	100%	1,842,218	100%
backward minimal	548	48%	626,600	34%
forward minimal	791	70%	767,153	42%
backward/forward minimal	366	32%	272,675	15%
forward/backward minimal	381	34%	309,845	17%
f/b/f/b minimal	375	33%	295,836	16%

These might be buggy

Full Minimization

Theorem (BERSTEL, REUTENAUER, 1982)

Weighted tree automata over fields can effectively be minimized

Remarks

- even smaller than bisimulation-minimal WTA
- implementations for weighted string automata are efficient
- no implementation for WTA yet

Summary

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables
- parse forest of a CFG with latent variables

regular tree grammar

•

Summary

How to represent a set of trees?

- enumerate them
- enumerate them cleverly (e.g., add sharing)
- parse forest of a CFG
- tree substitution grammar
- tree substitution grammar with latent variables
- parse forest of a CFG with latent variables

regular tree grammar

Many theoretical results still to be tried in practice!

•

Trees Abound — Part I: Tree Automata

Trees Abound Part II: Tree Transducers

Andreas Maletti

Institute for Natural Language Processing Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Paris — September 26, 2012

Trees Abound — Part II: Tree Transducers

Idea

Synchronous grammars have synchronous (linked) non-terminals that develop at the same time

- join two productions $q_1 \rightarrow r_1$ and $q_2 \rightarrow r_2$ to $(q_1, q_2) \rightarrow (r_1, r_2)$
- demand $q_1 = q = q_2$ for simplicity and write $r_1 \frac{q}{r_2}$
- productions develop input and output trees at the same time

Idea

Synchronous grammars have synchronous (linked) non-terminals that develop at the same time

- join two productions $q_1
 ightarrow r_1$ and $q_2
 ightarrow r_2$ to $(q_1,q_2)
 ightarrow (r_1,r_2)$
- demand $q_1 = q = q_2$ for simplicity and write $r_1 \stackrel{q}{-} r_2$
- productions develop input and output trees at the same time

Idea

Synchronous grammars have synchronous (linked) non-terminals that develop at the same time

- join two productions $q_1
 ightarrow r_1$ and $q_2
 ightarrow r_2$ to $(q_1, q_2)
 ightarrow (r_1, r_2)$
- demand $q_1 = q = q_2$ for simplicity and write $r_1 \frac{q}{r_2}$
- productions develop input and output trees at the same time

Idea

Synchronous grammars have synchronous (linked) non-terminals that develop at the same time

- join two productions $q_1
 ightarrow r_1$ and $q_2
 ightarrow r_2$ to $(q_1, q_2)
 ightarrow (r_1, r_2)$
- demand $q_1 = q = q_2$ for simplicity and write $r_1 \frac{q}{r_2}$
- productions develop input and output trees at the same time

From Automata to Transducers

q

Next rule:

q

From Automata to Transducers

Used rule:

Next rule:

From Automata to Transducers

Used rule:

Next rule:

Universität Stuttgart

From Automata to Transducers

Used rule:

Next rule:

From Automata to Transducers

Used rule:

Next rule:

N N | <u>r</u> | boy atefl

Universität Stuttgart

Used rule:

From Automata to Transducers

Used rule:

Next rule:

Used rule:

Next rule:

Remarks

- synchronization breaks the normalization proof
- the grammar/automaton model makes a difference

Output model: RTG and input model:

- NTA ~> linear top-down tree transducer
- RTG ~> linear extended top-down tree transducer

Extended Top-down Tree Transducers

Extended Multi Bottom-up Tree Transducers

Rule Transformation

Synchronous grammar rule:

Top-down tree transducer rule:

Top-down Tree Transducer

Definition (THATCHER, 1970)

A top-down tree transducer is a system $M = (Q, \Sigma, \Delta, I, R)$ with

- alphabet of states Q
- input alphabet Σ; output alphabet Δ
- initial states $I \subseteq Q$
- finite set of rules R ⊆ Q(Σ(X)) × T_Δ(Q(X)) such that var(r) ⊆ var(ℓ) and ℓ is linear for all (ℓ, r) ∈ R

Top-down Tree Transducer

Example

Mirror-image top-down tree transducer $(Q, \Sigma, \Sigma, Q, R)$ with

- $Q = \{q\}$
- $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$
- the following rules in R

Top-down Tree Transducer

Definition

Sentential forms $\xi, \zeta \in T_{\Delta}(Q(T_{\Sigma}))$

$$\xi \Rightarrow_M \zeta$$

if there exist $\ell \to r \in R$, position $w \in pos(\xi)$, substitution $\theta \colon X \to T_{\Sigma}$

•
$$\xi = \xi[\ell\theta]_w$$

•
$$\zeta = \xi [r\theta]_w$$

Derivation Example

Example

Derivation Semantics

Definition

$$M = \{ \langle t, u \rangle \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in I \colon q(t) \Rightarrow^*_M u \}$$

Derivation Semantics

Definition

$$M = \{ \langle t, u \rangle \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in I \colon q(t) \Rightarrow^*_M u \}$$

Example

Top-down tree transducer N with

$$\{\langle \sigma(t, u), \sigma(u, t) \rangle \mid t, u \in T_{\{\gamma, \alpha\}}\} \subseteq N$$

Definition

Transducer $M = (Q, \Sigma, \Delta, I, R)$ is

- <u>linear</u> if *r* is linear for every $\ell \rightarrow r \in R$
- <u>nondeleting</u> if $var(r) = var(\ell)$ for every $\ell \rightarrow r \in R$
- strict if $r \notin Q(X)$ for every $\ell \to r \in R$

Definition

Transducer $M = (Q, \Sigma, \Delta, I, R)$ is

- <u>linear</u> if *r* is linear for every $\ell \rightarrow r \in R$
- <u>nondeleting</u> if $var(r) = var(\ell)$ for every $\ell \rightarrow r \in R$
- strict if $r \notin Q(X)$ for every $\ell \to r \in R$

Example

Mirror-image transducer is linear, nondeleting, and strict (Ins-TOP)

Properties [ENGELFRIET, 1975]

T1 "Copying of an input tree and processing the copies differently"

T2 Cannot inspect deleted input tree

Remark

T2 has been addressed ~ top-down tree transducers with regular look-ahead [ENGELFRIET, 1977]

Properties [ENGELFRIET, 1975]

T1 "Copying of an input tree and processing the copies differently"

T2 Cannot inspect deleted input tree

Remark

T2 has been addressed → top-down tree transducers with regular look-ahead [ENGELFRIET, 1977]

Regular Look-Ahead

Can be simulated by allowing un-linked nonterminals on the input side

- these develop without effect on the output
- can generate any regular tree language

Composition

Definition (COMP)

 $\tau \subseteq \mathit{T}_{\Sigma} imes \mathit{T}_{\Delta} ext{ and } \tau' \subseteq \mathit{T}_{\Delta} imes \mathit{T}_{\Gamma}$

$$\tau ; \tau' = \{ (s, u) \mid \exists t \in T_{\Delta} : (s, t) \in \tau, (t, u) \in \tau' \}$$

Example (Double mirror-image)

Universität Stuttgart

Trees Abound — Part II: Tree Transducers

composition closure indicated in subscript

Desirable Properties

Rotations

$$\mathsf{RoT} = \{ \langle \sigma(\sigma(t_1, t_2), t_3), \sigma(t_1, \sigma(t_2, t_3)) \rangle \mid t_1, t_2, t_3 \in T_{\Sigma} \}$$

Preservation of regularity (PRES)

Given $\tau \subseteq T_{\Sigma} \times T_{\Delta}$ and $L \subseteq T_{\Sigma}$ regular, is $\tau(L)$ regular?

$$\tau(L) = \{ u \mid \exists t \in L \colon (t, u) \in \tau \}$$

Desirable Properties

Rotations

$$\mathsf{RoT} = \{ \langle \sigma(\sigma(t_1, t_2), t_3), \sigma(t_1, \sigma(t_2, t_3)) \rangle \mid t_1, t_2, t_3 \in T_{\Sigma} \}$$

Preservation of regularity (PRES)

Given $\tau \subseteq T_{\Sigma} \times T_{\Delta}$ and $L \subseteq T_{\Sigma}$ regular, is $\tau(L)$ regular?

$$\tau(L) = \{ u \mid \exists t \in L \colon (t, u) \in \tau \}$$

Summary

Model \setminus Criterion	Rot	Sym	Pres	Pres ⁻¹	Сомр
Ins-TOP	×	X	1	1	1
In-TOP	X	X	1	1	1
ls-TOP	×	X	1	1	×2
I-TOP	×	X	1	1	×2
ls-TOP ^R	×	X	1	1	1
I-TOP ^R	×	X	1	1	1
TOP	1	×	×	1	\varkappa_{∞}
TOP ^R	 Image: A second s	×	×	1	\varkappa_{∞}

(SYM = symmetric)

Overview

Extended Top-down Tree Transducers

Universität Stuttgart

Trees Abound — Part II: Tree Transducers

Definition (GRAEHL et al., 2009)

- A top-down tree transducer is a system $M = (Q, \Sigma, \Delta, I, R)$
 - finite set of states Q
 - input alphabet Σ; output alphabet Δ
 - initial states $I \subseteq Q$
 - finite set of rules R ⊆ Q(Σ(X)) × T_Δ(Q(X)) such that var(r) ⊆ var(ℓ) and ℓ is linear for all (ℓ, r) ∈ R

Definition (GRAEHL et al., 2009)

An extended top-down tree transducer is a system $M = (Q, \Sigma, \Delta, I, R)$

- finite set of states Q
- input alphabet Σ; output alphabet Δ
- initial states $I \subseteq Q$
- finite set of rules R ⊆ Q(T_Σ(X)) × T_Δ(Q(X)) such that var(r) ⊆ var(ℓ) and ℓ is linear for all (ℓ, r) ∈ R

Definition

Sentential forms $\xi, \zeta \in T_{\Delta}(Q(T_{\Sigma}))$

$$\xi \Rightarrow_{M} \zeta$$

if there exist $\ell \to r \in R$, position $w \in \text{pos}(\xi)$, substitution $\theta \colon X \to T_{\Sigma}$

•
$$\xi = \xi [\ell \theta]_{\mathsf{M}}$$

•
$$\zeta = \xi [r\theta]_w$$

Definition

$M = \{ \langle t, u \rangle \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in I \colon q(t) \Rightarrow^*_M u \}$

Universität Stuttgart

Definition

Sentential forms $\xi, \zeta \in T_{\Delta}(Q(T_{\Sigma}))$

$$\xi \Rightarrow_{M} \zeta$$

if there exist $\ell \to r \in R$, position $w \in \text{pos}(\xi)$, substitution $\theta \colon X \to T_{\Sigma}$

•
$$\xi = \xi[\ell\theta]_{W}$$

•
$$\zeta = \xi [r\theta]_w$$

Definition

$$M = \{ \langle t, u \rangle \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in I \colon q(t) \Rightarrow^*_M u \}$$

Derivation Example

Example

Simulation by Copying and Deletion

Example

Definition

Extended top-down tree transducer $M = (Q, \Sigma, \Delta, I, R)$ is

- linear, nondeleting, strict as before
- $\underline{\varepsilon}$ -free if $\ell \notin Q(X)$ for every $\ell \to r \in R$

Definition

Extended top-down tree transducer $M = (Q, \Sigma, \Delta, I, R)$ is

- linear, nondeleting, strict as before
- $\underline{\varepsilon}$ -free if $\ell \notin Q(X)$ for every $\ell \to r \in R$

Definition

Extended top-down tree transducer $M = (Q, \Sigma, \Delta, I, R)$ is

- linear, nondeleting, strict as before
- $\underline{\varepsilon}$ -free if $\ell \notin Q(X)$ for every $\ell \to r \in R$

Example

Our example transducer is linear, nondeleting, strict, and ϵ -free

Properties [GRAEHL et al., 2009]

- X1 Finite look-ahead
- X2 Deep attachment of variables
- X3 Infinitely many outputs for one input

Remark T1 and T2 still apply

Universität Stuttgart

Properties [GRAEHL et al., 2009]

- X1 Finite look-ahead
- X2 Deep attachment of variables
- X3 Infinitely many outputs for one input

Remark

T1 and T2 still apply

Summary

$\textbf{Model} \setminus \textbf{Criterion}$	Rot	Ѕүм	Pres	$PRES^{-1}$	Сомр
In-TOP	×	×	1	1	1
I-TOP	×	X	1	1	<mark>×</mark> 2
I-TOP ^R	X	X	1	1	1
TOP ^R	✓	×	×	 Image: A second s	\boldsymbol{X}_{∞}
Ins ε -XTOP	1	1	1	1	× 2
Ins-XTOP	1	X	1	1	\boldsymbol{X}_{∞}
lsε-XTOP ^(R)	1	X	1	✓	<mark>×</mark> 2
lε-XTOP	1	X	1	1	X 4
Iε-XTOP ^R	1	X	1	1	×3
(s)I-XTOP ^(R)	1	X	1	1	\boldsymbol{X}_{∞}
XTOP	1	×	×	1	\varkappa_{∞}
XTOP ^R	1	X	×	✓	\varkappa_{∞}

Overview

- 2 Top-down Tree Transducers
- 3 Extended Top-down Tree Transducers

Extended Multi Bottom-up Tree Transducers

Definition

An extended multi bottom-up tree transducer $M = (Q, \Sigma, \Delta, F, R)$ with

- ranked alphabet of states Q
- input alphabet Σ; output alphabet Δ
- final states $F \subseteq Q_1$ (all unary)
- finite set of rules R ⊆ T_Σ(Q(X)) × Q(T_Δ(X)) such that var(r) ⊆ var(ℓ) and ℓ is linear for all (ℓ, r) ∈ R

Properties

linear, nondeleting, strict, $\underline{\varepsilon}$ -free as before

Definition

An extended multi bottom-up tree transducer $M = (Q, \Sigma, \Delta, F, R)$ with

- ranked alphabet of states Q
- input alphabet Σ; output alphabet Δ
- final states $F \subseteq Q_1$ (all unary)
- finite set of rules R ⊆ T_Σ(Q(X)) × Q(T_Δ(X)) such that var(r) ⊆ var(ℓ) and ℓ is linear for all (ℓ, r) ∈ R

Properties

linear, <u>n</u>ondeleting, <u>strict</u>, $\underline{\varepsilon}$ -free as before

Example (Duplication)

Extended multi bottom-up tree transducer $(Q, \Sigma, \Sigma, \{f\}, R)$

- $Q = \{q^{(2)}, f^{(1)}\}$
- Σ = {σ, a, b, e}
- R contains:

Properties

linear, nondeleting, strict, and ε free

Example (Duplication)

Extended multi bottom-up tree transducer $(Q, \Sigma, \Sigma, \{f\}, R)$

- $Q = \{q^{(2)}, f^{(1)}\}$
- Σ = {σ, a, b, e}
- R contains:

Properties

linear, nondeleting, strict, and ε -free

Example (Derivation)

Example (Derivation)

Universität Stuttgart

Definition

$$\tau_{M} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in F \colon t \Rightarrow_{M}^{*} q(u)\}$$

Definition

$$\tau_{M} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in F \colon t \Rightarrow^{*}_{M} q(u)\}$$

Example (Duplication)

It computes
$$\{(t, \swarrow_{t=t}^{\sigma}) \mid t \in T_{\Sigma}\}$$

Its image is not a regular tree language

Subclasses

Definition

Extended multi bottom-up tree transducer $(Q, \Sigma, \Delta, F, R)$ is

- extended bottom-up tree transducer if $Q = Q_1$
- multi bottom-up tree transducer if $\ell \in \Sigma(Q(X))$ for all $\ell \to r \in R$
- bottom-up tree transducer if both previous conditions hold

Subclasses

Definition

Extended multi bottom-up tree transducer $(Q, \Sigma, \Delta, F, R)$ is

- extended bottom-up tree transducer if $Q = Q_1$
- multi bottom-up tree transducer if $\ell \in \Sigma(Q(X))$ for all $\ell \to r \in R$
- bottom-up tree transducer if both previous conditions hold

Example (Duplication)

Theorem (ENGELFRIET et al. '09)

$I-XTOP^R = I-XBOT$

Proof.

Standard construction trading input-deletion for output-deletion see I-TOP \subseteq I-BOT by [ENGELFRIET '75]

Theorem (ENGELFRIET et al. '09)

$I-XTOP^R = I-XBOT$

Proof.

Standard construction trading input-deletion for output-deletion see I-TOP \subseteq I-BOT by [ENGELFRIET '75]

Theorem (ENGELFRIET et al. '09)

XMBOT = n-XMBOT

- guess subtrees that will be deleted
- process them in nullary states (i.e. look-ahead)

Theorem (ENGELFRIET et al. '09)

XMBOT = n-XMBOT

- guess subtrees that will be deleted
- process them in nullary states (i.e. look-ahead)

Theorem (ENGELFRIET et al. '09)

XMBOT = n-XMBOT

- guess subtrees that will be deleted
- process them in nullary states (i.e. look-ahead)

Theorem (ENGELFRIET et al. '09)

XMBOT = n-XMBOT

- guess subtrees that will be deleted
- process them in nullary states (i.e. look-ahead)

Theorem (ENGELFRIET et al. '09)

ε -XMBOT = MBOT

- decompose large left-hand sides using "multi"-states
- attach finite effect of ε-rules

Theorem (ENGELFRIET et al. '09)

ε -XMBOT = MBOT

- decompose large left-hand sides using "multi"-states
- attach finite effect of ε-rules

Theorem (ENGELFRIET et al. '09)

ε -XMBOT = MBOT

- decompose large left-hand sides using "multi"-states
- attach finite effect of ε-rules

Theorem (ENGELFRIET et al. '09)

ε -XMBOT = MBOT

- decompose large left-hand sides using "multi"-states
- attach finite effect of ε-rules

Definition XTOP *M* sensible if $|u| \in O(|t|)$ for all $(t, u) \in M$

Theorem (MALETTI '12)

sensible XTOP \subseteq In-MBOT

- use (essentially) construction of [ENGELFRIET, MANETH '03]
- obtain finitely copying ε-XTOP
- apply [ENGELFRIET et al. '09] to obtain $l\varepsilon$ -XMBOT
- previous theorems yield In-MBOT

Definition XTOP *M* sensible if $|u| \in O(|t|)$ for all $(t, u) \in M$

Theorem (MALETTI '12)

$\text{sensible XTOP} \subseteq \text{In-MBOT}$

- use (essentially) construction of [ENGELFRIET, MANETH '03]
- obtain finitely copying ε-XTOP
- apply [ENGELFRIET et al. '09] to obtain lε-XMBOT
- previous theorems yield In-MBOT

Definition XTOP *M* sensible if $|u| \in O(|t|)$ for all $(t, u) \in M$

Theorem (MALETTI '12)

sensible XTOP \subseteq In-MBOT

- use (essentially) construction of [ENGELFRIET, MANETH '03]
- obtain finitely copying ε-XTOP
- apply [ENGELFRIET et al. '09] to obtain lε-XMBOT
- previous theorems yield In-MBOT

Corollary

All relevant extended top-down tree transducers can be simulated by linear and nondeleting extended multi bottom-up tree transducers

Further Properties

Theorem

$\mathsf{In}\text{-}\mathsf{MBOT} \not\subseteq \mathsf{XTOP}^\mathsf{R}$

Theorem (GILDEA '12)

y_{out} (In-MBOT) = LCFRS

Universität Stuttgart

Trees Abound — Part II: Tree Transducers

Further Properties

Theorem

$\mathsf{In}\text{-}\mathsf{MBOT} \not\subseteq \mathsf{XTOP}^\mathsf{R}$

Theorem (GILDEA '12)

$\underset{\text{out}}{\textit{yield}}(\text{In-MBOT}) = \text{LCFRS}$

Summary

$\textbf{Model} \setminus \textbf{Criterion}$	Rot	Ѕүм	Pres	$PRES^{-1}$	Сомр
In-TOP	×	X	1	1	1
I-TOP	X	X	1	1	×2
I-TOP ^R	X	X	1	1	1
TOP ^R	1	×	×	1	\boldsymbol{X}_{∞}
Inse-XTOP	1	1	1	1	× 2
Ins-XTOP	-	X	1	1	\varkappa_{∞}
$Is \varepsilon$ -XTOP ^(R)	-	X	1	✓	×2
lε-XTOP	-	X	1	✓	× 4
Ιε-ΧΤΟΡ ^R	1	X	1	1	<mark>×</mark> 3
(s)I-XTOP ^(R)	1	X	1	1	X_{∞}
XTOP ^(R)	1	×	×	 Image: A second s	\boldsymbol{X}_{∞}
I(n)-XMBOT	1	×	×	1	1
XMBOT	-	×	×	1	\varkappa_{∞}
regpreserving I-XMBOT	-	×	1	1	1
invertable I-XMBOT	1	1	1	1	1

