Minimization of Weighted Automata

Andreas Maletti

Universitat Rovira i Virgili Tarragona, Spain

Wrocław — May 19, 2010

Minimization of Weighted Automata

- ZOLTÁN ÉSIK, University of Szeged, Hungary
- JOHANNA HÖGBERG, Umeå University, Sweden
- MARKUS HOLZER, Universität Giessen, Germany
- JONATHAN MAY, USC, Los Angeles, CA, USA
- HEIKO VOGLER, TU Dresden, Germany

Table of Contents

Quick Recall: Unweighted Automata

Unweighted automata

Example (Unweighted automaton)

Unweighted automata (Cont'd)

Minimization methods

- HOPCROFT's algorithm for DFA $O(m \log n)$ [HOPCROFT 1971]
- TARJAN's algorithm for NFA O(m log n) (bisimulation minimization) [TARJAN 1987]
- NFA minimization is PSPACE-complete [JIANG, RAVIKUMAR 1993]

Special cases

- Cover automata *O*(*m* log *n*) [KÖRNER 2002]
- Hyper-minimization O(m log n) [GAWRYCHOWSKI, JEŻ 2009; HOLZER, ~ 2010]

Unweighted automata (Cont'd)

Minimization methods

- HOPCROFT's algorithm for DFA $O(m \log n)$ [HOPCROFT 1971]
- TARJAN's algorithm for NFA O(m log n) (bisimulation minimization) [TARJAN 1987]
- NFA minimization is PSPACE-complete [JIANG, RAVIKUMAR 1993]

Special cases

- Cover automata O(m log n) [KÖRNER 2002]
- Hyper-minimization O(m log n) [GAWRYCHOWSKI, JEŻ 2009; HOLZER, ~ 2010]

Minimization Procedures

Minimization Procedures

Minimization Procedures

Hopcroft (for DFA)

Minimization Procedures

Hopcroft (for DFA)

Table of Contents

2 Weighted Automata

Syntax

Example

Definition (Weighted automaton)

 (Q, Σ, μ, I, F)

- Q finite set of states
- Σ alphabet
- $\mu: \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q} \to \mathbf{A}$
- $I: Q \rightarrow A$ initial weights
- $F: Q \rightarrow A$ final weights

- BERSTEL, REUTENAUER: Rational series and their languages. Springer, 1988
- KUICH, SALOMAA: *Semirings, automata, languages.* Springer, 1986

Syntax

Example

Definition (Weighted automaton)

 (Q, Σ, μ, I, F)

- Q finite set of states
- Σ alphabet
- $\mu: \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q} \to \mathbf{A}$
- $I: Q \rightarrow A$ initial weights
- $F: Q \rightarrow A$ final weights

- BERSTEL, REUTENAUER: *Rational series and their languages*. Springer, 1988
- KUICH, SALOMAA: *Semirings, automata, languages*. Springer, 1986

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

Definition (Semantics)
$$h_{\mu} \colon \Sigma^* o A^Q$$
 $h_{\mu}(\varepsilon)_q = I(q)$ $h_{\mu}(wa)_q = \sum_{p \in Q} h_{\mu}(w)_p \cdot \mu(p, a, q)$

$$h_{\mu}(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $h_{\mu}(aaa) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

$$\begin{array}{l} \text{Definition (Semantics)} \\ h_{\mu} \colon \Sigma^{*} \to \mathcal{A}^{Q} \\ h_{\mu}(\varepsilon)_{q} = \mathit{I}(q) \\ h_{\mu}(\textit{wa})_{q} = \sum_{p \in Q} h_{\mu}(\textit{w})_{p} \cdot \mu(p,a,q) \end{array}$$

$$h_{\mu}(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $h_{\mu}(aaa) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

$$\begin{array}{l} \text{Definition (Semantics)} \\ h_{\mu} \colon \Sigma^{*} \to \mathcal{A}^{Q} \\ h_{\mu}(\varepsilon)_{q} = \mathit{I}(q) \\ h_{\mu}(\textit{wa})_{q} = \sum_{p \in Q} h_{\mu}(\textit{w})_{p} \cdot \mu(p,a,q) \end{array}$$

$$h_{\mu}(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $h_{\mu}(aaa) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

$$\begin{array}{l} \text{Definition (Semantics)} \\ h_{\mu} \colon \Sigma^{*} \to \mathcal{A}^{Q} \\ h_{\mu}(\varepsilon)_{q} = \mathit{I}(q) \\ h_{\mu}(\textit{wa})_{q} = \sum_{p \in Q} h_{\mu}(\textit{w})_{p} \cdot \mu(p,a,q) \end{array}$$

$$h_{\mu}(a) = egin{pmatrix} 1 \ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = egin{pmatrix} 2 \ 1 \end{pmatrix}$ $h_{\mu}(aaa) = egin{pmatrix} 3 \ 2 \end{pmatrix}$

Overview

Results				
Method	Nondet.	Det.	Complexity	Reference
Pushing & HOPCROFT	_	х	$O(m \log n)$	Монкі
Forward Bisimulation	х	х	$O(m \log n)$	BUCHHOLZ
Backward Bisimulation	х	_	$O(m \log n)$	BUCHHOLZ
Backward Simulation	х	_	O(mn)	Ranzato,
Full minimization	х	х	$O(mn^2)$	Berstel,

Notation

- *m*: number of transitions
- n: number of states

Pushing & HOPCROFT [MOHRI]

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Nove weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Nove weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Pushing & HOPCROFT [MOHRI]

1. Push

Nove weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

$$3 \xrightarrow{\qquad 0 \qquad a/1, b/2} 1 \xrightarrow{a/2, b/3} 2 \xrightarrow{b/1} 5 \xrightarrow{\qquad 1}$$

Pushing & HOPCROFT [MOHRI]

Prerequisites (ala EISNER)

- Automaton deterministic
- Semiring multiplicatively cancellative
- Semiring allows greedy factorization

Definition (Greedy factorization)

There exists a mapping $f: A^2 \rightarrow A$ such that for all $a, b, c \in A$ with $c \neq 0$:

If
$$a|c$$
 and $b|c$, then $\frac{c}{a \cdot f(a,b)} = \frac{c}{b \cdot f(b,a)}$

Forward Bisimulation [BUCHHOLZ]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Forward Bisimulation [BUCHHOLZ]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Forward Bisimulation [BUCHHOLZ]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Forward Bisimulation [BUCHHOLZ]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Forward Bisimulation [BUCHHOLZ]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(p,a,r)=\sum_{r\in[q]}\mu(p',a,r)$$

for every $p \equiv p'$, state q, and symbol a.

$$3 \xrightarrow{\qquad } 0 \xrightarrow{a/1, b/2} 1 \xrightarrow{a/2, b/3} 2 \xrightarrow{b/1} 5 \xrightarrow{} 1$$

Unweighted Forward Simulation [ABDULLA et. al.]

Definition (Forward bisimulation unweighted)

Reflexive, symmetric, and transitive relation \equiv on states such that F(p) = F(p') and

$$\exists q' \equiv q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \equiv p'$, state q, and symbol a.

Unweighted Forward Simulation [ABDULLA et. al.]

Definition (Forward bisimulation unweighted)

Reflexive, symmetric, and transitive relation \equiv on states such that F(p) = F(p') and

$$\exists q' \equiv q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \equiv p'$, state q, and symbol a.

Unweighted Forward Simulation [ABDULLA et. al.]

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \le p'$, state q, and symbol a.

Example $1 \longrightarrow 0 \xrightarrow{a/1} 1 \xrightarrow{a/1, b/1} 2 \xrightarrow{b/1} 5 \longrightarrow 1$ $b/1 \xrightarrow{b/1} 4 \xrightarrow{b/1} 4$

Unweighted Forward Simulation [ABDULLA et. al.]

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \le p'$, state q, and symbol a.

Example $1 \longrightarrow 0 \xrightarrow{a/1} 1 \xrightarrow{a/1, b/1} 2 \xrightarrow{b/1} 5 \longrightarrow 1$ $b/1 \xrightarrow{b/1} 4 \xrightarrow{b/1} 4$ $0 \quad 3 \le 1 \quad 4 \le 2 \le 4 \quad 5$

Unweighted Forward Simulation [ABDULLA et. al.]

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \le p'$, state q, and symbol a.

Note

Does in general not preserve the language!

Backward Simulation [ABDULLA et. al.]

Definition (Backward (bi)simulation)

A forward (bi)simulation on the reversed automaton.

Theorem

Reducing automaton by $\leq \cap \geq$ with \leq a backward simulation preserves the language.

Note

Slightly more general than backward bisimulation.

Backward Simulation [ABDULLA et. al.]

Definition (Backward (bi)simulation)

A forward (bi)simulation on the reversed automaton.

Theorem

Reducing automaton by $\leq \cap \geq$ with \leq a backward simulation preserves the language.

Note

Slightly more general than backward bisimulation.

Full Minimization [BERSTEL et. al.]

Requirements

weight structure is a field

Procedure

- prefix compression: select prefix-closed set W such that all h_µ(w) with w ∈ W are linearly independent
- suffix compression

- BERSTEL, REUTENAUER: *Rational series and their languages*. Springer, 1988
- BERSTEL, REUTENAUER: *Noncommutative Rational Series With Applications*, Cambridge Univ. Press, 2010

Simulation vs. Equivalence

Theorem

Two equivalent automata can be joined by forward and backward bisimulation (and weight inversion).

Extensions

- natural numbers
- integers
- rings, ...

- BERSTEL, REUTENAUER: *Rational series and their languages*. Springer, 1988
- BEAL, LOMBARDY, SAKAROVITCH: On the Equivalence of Z-Automata, ICALP 2005

Simulation vs. Equivalence

Theorem

Two equivalent automata can be joined by forward and backward bisimulation (and weight inversion).

Extensions

- natural numbers
- integers
- rings, ...

- BERSTEL, REUTENAUER: *Rational series and their languages*. Springer, 1988
- BEAL, LOMBARDY, SAKAROVITCH: On the Equivalence of Z-Automata, ICALP 2005

Table of Contents

Quick Recall: Unweighted Automata

2 Weighted Automata

Syntax

Definition (Weighted tree automaton)

 $(Q, \Sigma, (\mu_k)_{k \in \mathbb{N}}, F)$

- Q finite set of states
- Σ ranked alphabet
- $\mu_k : \mathbf{Q}^k \times \Sigma_k \times \mathbf{Q} \to \mathbf{A}$
- $F: Q \rightarrow A$ final weights

- BERSTEL, REUTENAUER: *Recognizable formal power series on trees.* Theor. Comput. Sci. 18, 1982
- BORCHARDT: *The theory of recognizable tree series*. PhD thesis, 2004

Syntax — Illustration

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

• Run on t: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$

• Weight of r

$$wt(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

• Recognized tree series

$$(||M||, t) = \sum_{r \text{ run on } t} F(r(\varepsilon)) \cdot \operatorname{wt}(r)$$

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

• Run on *t*: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$

• Weight of r

$$wt(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

Recognized tree series

$$(||M||, t) = \sum_{\substack{r \text{ run on } t}} F(r(\varepsilon)) \cdot \operatorname{wt}(r)$$

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

• Run on *t*: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$

• Weight of r

$$wt(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

Recognized tree series

$$(\|M\|, t) = \sum_{\substack{r \text{ run on } t}} F(r(\varepsilon)) \cdot \operatorname{wt}(r)$$

Example (Ru	ns)			
Input tree:	f	Runs:	6 with weight 0	
	a b		1 2	

Example (Ru	ns)			
Input tree:	f	Runs:	f with weight	
	a b		a b	

Example (Ru	ns)			
Input tree:	f	Runs:	f with weight 1	
	a b		1 b	

Example (Ru	ns)			
Input tree:	f	Runs:	f with weight 1	
	a b		1 2	

Example (Ru	ns)			
Input tree:	f	Runs:	3 with weight 0.3	
	a b		1 2	

Overview

Results				
Method	Nondet.	Det.	Complexity	Reference
Det. Minimization	-	х	O(rmn)	\sim
Forw. Bisimulation	x	х	$O(rm \log n)$	Högberg,
Backw. Bisimulation	x	_	$O(r^2 m \log n)$	Högberg,
Backw. Simulation	x	_	<i>O</i> (<i>r</i> ² <i>mn</i>)	Abdulla,
Full minimization	х	Х	Р	BOZAPALIDIS

Notation

- m: number of transitions
- n: number of states
- r: maximal rank of the input symbols

Forward Bisimulation [HÖGBERG, et. al.]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\ldots,p,\ldots,a,r)=\sum_{r\in[q]}\mu(\ldots,p',\ldots,a,r)$$

for every $p \equiv p'$, symbol *a*, and states *q* and

Backward Bisimulation [HÖGBERG, et. al.]

Definition (Backward bisimulation)

Equivalence relation \equiv on states such that

$$\sum_{q_1\cdots q_k\in \mathcal{B}_1\cdots \mathcal{B}_k}\mu(q_1,\ldots,q_k,a,p)=\sum_{q_1\cdots q_k\in \mathcal{B}_1\cdots \mathcal{B}_k}\mu(q_1,\ldots,q_k,a,p')$$

for every $p \equiv p'$, symbol *a*, and blocks B_1, \ldots, B_k .

Det. Minimization — Overview

Applicability

- Deterministic wta
- Commutative semifield (i.e. multiplicative inverses)

Roadmap

- MYHILL-NERODE congruence relation [BORCHARDT 2003]
- Determine signs of life
- Refinement

MYHILL-NERODE congruence

Definition

 $p \equiv q$: there exists nonzero *a* such that for every context *C*

 $(\|M\|, C[p]) = a \cdot (\|M\|, C[q])$

Notes

- Semifields are zero-divisor free
- Element *a* is unique if *p* is not dead

MYHILL-NERODE congruence

Definition

 $p \equiv q$: there exists nonzero *a* such that for every context *C*

$$(\|M\|, C[p]) = a \cdot (\|M\|, C[q])$$

Notes

- Semifields are zero-divisor free
- Element *a* is unique if *p* is not dead

Signs of Life

Definition

Sign of life of $q \in Q$: context *C* such that $(||M||, C[q]) \neq 0$

Stages

Definition

- **Stage** (Π, sol, *f*, *r*):
 - (i) \equiv refinement of \equiv_{Π}
 - (ii) $\operatorname{sol}(F) = \{\Box\}$
- (iii) for live q with p = r([q])

$(\|\boldsymbol{M}\|, \mathsf{sol}(\boldsymbol{p})[\boldsymbol{q}]) = f(\boldsymbol{q}) \cdot (\|\boldsymbol{M}\|, \mathsf{sol}(\boldsymbol{p})[\boldsymbol{p}])$

(iv) \equiv_{Π} congruence

(v) for symbol σ and context *C* with live $\delta_{\sigma}(C[q])$

 $f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q])) = c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p]))$

where $\delta_{\sigma} \colon Q^k \to Q$ and $c_{\sigma} \colon Q^k \to A$

Stages

Definition

Stable stage (Π, sol, f, r) :

- (i) \equiv refinement of \equiv_{Π}
- (ii) $sol(F) = \{\Box\}$
- (iii) for live q with p = r([q])

$$(||M||, sol(p)[q]) = f(q) \cdot (||M||, sol(p)[p])$$

(iv) \equiv_{Π} congruence

(v) for symbol σ and context *C* with live $\delta_{\sigma}(C[q])$

 $f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q])) = c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p]))$

where $\delta_{\sigma} \colon Q^k \to Q$ and $c_{\sigma} \colon Q^k \to A$

Refining a Stage

Definition

Refinement of (Π, sol, f, r) : Partition Π' with $p \equiv_{\Pi'} q$ if

- (i) $p \equiv_{\Pi} q$
- (ii) $\delta_{\sigma}(C[p]) \equiv_{\Pi} \delta_{\sigma}(C[q])$
- (iii) if $\delta_{\sigma}(C[p])$ is live, then

 $f(p)^{-1} \cdot c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p])) = f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q]))$

for states p and q, symbol σ , and context C

Complete Algorithm

Algorithm

```
(\Pi', sol, D) \leftarrow COMPUTESOL(M)
```

2: repeat

```
(\Pi, \mathsf{sol}, f, r) \leftarrow \mathsf{COMPLETE}(M, \Pi', \mathsf{sol}, D)
```

```
4: \Pi' \leftarrow \mathsf{REFINE}(M, \Pi, \mathsf{sol}, f, r, D)
until \Pi' = \Pi
```

6: return minimized wta

Notes

- Algorithm runs in *O*(*rmn*⁴)
- Can be optimized to run in O(rmn) [~ 2008]
- Returns equivalent minimal deterministic wta

Complete Algorithm

Algorithm

```
(\Pi', \text{sol}, D) \leftarrow \text{ComputeSol}(M)
```

2: repeat

```
(\Pi, \mathsf{sol}, f, r) \leftarrow \mathsf{COMPLETE}(M, \Pi', \mathsf{sol}, D)
```

```
4: \Pi' \leftarrow \mathsf{REFINE}(M, \Pi, \mathsf{sol}, f, r, D)
until \Pi' = \Pi
```

6: return minimized wta

Notes

- Algorithm runs in O(rmn⁴)
- Can be optimized to run in O(rmn) [~ 2008]
- Returns equivalent minimal deterministic wta

Simulation vs. Equivalence

Theorem

Two equivalent tree automata over fields can be joined by forward and backward bisimulation (and weight inversion).

Extensions

- natural numbers
- integers
- rings, ...

- BOZAPALIDIS: Effective Construction of the Syntactic Algebra of a Recognizable Series on Trees. Acta Inf. 1991
- Ésiκ, ~: Simulations of weighted tree automata, 2010

Simulation vs. Equivalence

Theorem

Two equivalent tree automata over fields can be joined by forward and backward bisimulation (and weight inversion).

Extensions

- natural numbers
- integers
- rings, ...

- BOZAPALIDIS: Effective Construction of the Syntactic Algebra of a Recognizable Series on Trees. Acta Inf. 1991
- Ésiκ, ~: Simulations of weighted tree automata, 2010

Table of Contents

Quick Recall: Unweighted Automata

2 Weighted Automata

Experiments

State Count				
	Original	Minimal	Reduction to	
	98	68	69%	
	394	308	78%	
	497	381	77%	
	727	515	71%	
	2701	1993	74%	
	3686	1766	48%	

State & Transition Count

Error	Original	Minimal	Reduction to
10^{-4}	(727,6485)	(629,6131)	(87%,95%)
10^{-2}	(727, 6485)	(525, 3425)	(72%, 53%)

Experiments

State Count				
	Original	Minimal	Reduction to	
	98	68	69%	
	394	308	78%	
	497	381	77%	
	727	515	71%	
	2701	1993	74%	
	3686	1766	48%	

State & Transition Count

Error	Original	Minimal	Reduction to
10 ⁻⁴	(727,6485)	(629,6131)	(87%, 95%)
10 ⁻²	(727,6485)	(525, 3425)	(72%, 53%)

Some Experimental Results

The End

Thank You!

