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Tree

De�nition (Ranked, labelled, ordered trees)

Let Σ ranked alphabet and X set. Smallest set T such that

X ⊆ T

σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σk , and t1, . . . , tk ∈ T

denoted by TΣ(X ).

Convention

Elements of TΣ(X ) are called Σ-trees indexed by X

TΣ = TΣ(∅)
t|x number of occurrences of x ∈ X in t ∈ TΣ(X )
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Tree Properties

De�nition

Let t ∈ TΣ(X )

t linear in X , if every x ∈ X occurs at most once in t

t nondeleting in X , if every x ∈ X occurs at least once in t

Example

Σ = {α(0), γ(1), σ(2)} and X = {x1, x2}

γ

σ

x1 x2

σ

α σ

γ

α

α

Both trees linear in X

Left tree nondeleting in X
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Semiring

De�nition

A semiring A is an algebraic structure (A,+, ·, 0, 1) such that

(A,+, 0) is a commutative monoid

(A, ·, 1) is a monoid

· distributes (both-sided) over +

0 is absorbing with respect to ·

Example

Booleans ({0, 1},∨,∧, 0, 1)
Natural numbers (N,+, ·, 0, 1)
Probabilities ([0, 1],max, ·, 0, 1)
Positive reals ([0,∞),+, ·, 0, 1)
Subsets (P(A),∪,∩, ∅,A)
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Semiring Properties

De�nition

Semiring (A,+, ·, 0, 1) is

commutative, if a · b = b · a
idempotent, if a + a = a

semi�eld, if (A \ {0}, ·, 1) is a group

locally �nite, if 〈B〉 is �nite for every �nite B ⊆ A

Example

semiring commutative idempotent semi�eld locally �nite
{0, 1} yes yes yes yes
N yes NO NO NO
[0, 1] yes yes NO NO
R+ yes NO yes NO
P(A) yes yes yes yes
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Tree Languages

De�nition

Any L ⊆ TΣ(X ) is a tree language

Can be seen as mapping ψ : TΣ(X )→ {0, 1}

t ∈ L ⇐⇒ ψ(t) = 1

Set of tree languages B〈〈TΣ(X )〉〉 where B = {0, 1}
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Tree Series

De�nition

Tree series is mapping ψ : TΣ(X )→ A

Set of tree series A〈〈TΣ(X )〉〉

Example

Height height : TΣ(X )→ N is a tree series

Size size : TΣ(X )→ N is a tree series

Conventions

A usually endowed with semiring structure

0̃ is tree series that maps every tree to 0

ψ(t) written as (ψ, t)
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Tree Series

De�nition

Let ψ ∈ A〈〈TΣ(X )〉〉

supp(ψ) = {t ∈ TΣ(X ) | (ψ, t) 6= 0}

i.e. set of nonzero-weighted trees

Example

Let L ⊆ TΣ(X ) and ψ characteristic mapping for L

supp(ψ) = L

De�nition

ψ linear in X , if t linear in X for every t ∈ supp(ψ)

ψ nondeleting in X , if t nondeleting in X for every t ∈ supp(ψ)
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Tree Series

Convention

tree series ψ written as
∑

t∈TΣ(X )(ψ, t) t

(ψ + ϕ, t) = (ψ, t) + (ϕ, t)

(a · ψ, t) = a · (ψ, t)

Example

ψ = 5 α + 23 γ(α) + 1 σ(α, α)

ϕ = 2 α + 10 σ(γ(α), α)

scalar multiplication 2 · ψ gives

2 · ψ = 10 α + 46 γ(α) + 2 σ(α, α)

sum ψ + ϕ gives

ψ + ϕ = 7 α + 23 γ(α) + 1 σ(α, α) + 10 σ(γ(α), α)
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Weighted Rewrite Rules

top-down

q(σ(x1, . . . , xk))
a→ σ(q1(x1), . . . , qk(xk))

bottom-up

σ(q1(x1), . . . , qk(xk))
a→ q(σ(x1, . . . , xk))

Illustration
q

σ

x1 x2

top-down−−−−−→

bottom-up←−−−−−−

σ

q1

x1

q2

x2
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Tree Representation

De�nition

A tree representation µ = (µk)k∈N over Σ, Q, and A consists of
mappings

µk : Σk → AQ×Qk

Example

Tree representation µ over {α(0), γ(1), σ(2)}, {1, 2}, and
(N ∪ {−∞},max,+,−∞, 0)

µ0(α)1 = 1 µ0(α)2 = 0

µ1(γ)1,1 = 1 µ1(γ)2,2 = 0

µ2(σ)1,12 = 1 µ2(σ)2,22 = 0

µ2(σ)1,21 = 1
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Tree Representation

Just a transition matrix for every input symbol

µ0(α) =

(
1
0

)
µ1(γ) =

(
1 −∞
−∞ 0

)
µ2(σ) =

(
−∞ 1 1 −∞
−∞ −∞ −∞ 0

)
Graphically represented:

1 2

σ/1

σ/1α/1
α/0

σ/0

γ/1
γ/0
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Weighted Tree Automata

De�nition

(Q,Σ,A,F , µ) weighted tree automaton

Q �nite, nonempty set of states

Σ ranked alphabet

A = (A,+, ·, 0, 1) semiring

F : Q → A �nal distribution

µ tree representation over Σ, Q, and A

Note

top-down and bottom-up equivalent

weight for leaving the system
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Weighted Tree Automata

Example

Mht = (Q,Σ,A,F , µ) with

Q = {1, 2}
Σ = {α(0), γ(1), σ(2)}
A = (N ∪ {−∞},max,+,−∞, 0)
F1 = 0 and F2 = −∞
µ as shown before

1 2

0

σ/1

σ/1α/1
α/0

σ/0

γ/1
γ/0
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Semantics of WTA

De�nition (Initial algebra semantics)

M = (Q,Σ,A,F , µ) wta

hµ : TΣ → AQ given by

hµ(σ(t1, . . . , tk))q

=
∑

q1,...,qk∈Q
µk(σ)q,q1···qk · hµ(t1)q1 · . . . · hµ(tk)qk

Semantics of M, denoted by ‖M‖ ∈ A〈〈TΣ〉〉

(‖M‖, t) =
∑
q∈Q

Fq · hµ(t)q

Example

‖Mht‖ = height
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Alternative Semantics

De�nition (Run semantics)

M = (Q,Σ,A,F , µ) wta

set of runs: RM = T〈Σ,Q〉

runs on t: RM(t) = {r ∈ RM | π1(r) = t}
runs on t ending in q: RM(t, q) = {r ∈ RM(t) | π2(r(ε)) = q}
weight of a run r = 〈σ, q〉(r1, . . . , rk)

cM(r) = µk(σ)q,q1···qk · cM(r1) · . . . · cM(rk)

where qi = π2(r(i))

Semantics of M, denoted by |M| ∈ A〈〈TΣ〉〉

(|M|, t) =
∑
q∈Q

Fq ·
( ∑
r∈RM(t,q)

cM(r)
)
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Illustration of Run Semantics

Illustration

Using the semiring (N ∪ {−∞},max,+,−∞, 0)

σ

α σ

γ

α

α

input tree

(σ, 1)

(α, 2) (σ, 1)

(γ, 1)

(α, 1)

(α, 2)

run

1

0 1

1

1

0

weight

This run has weight 1 + 0 + 1 + 1 + 0 + 1 = 4
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Equivalence of Initial Algebra and Run Semantics

Theorem

M = (Q,Σ,A,F , µ) wta

|M| = ‖M‖

De�nition

Arec〈〈TΣ〉〉 class of recognizable tree series

Arec

d
〈〈TΣ〉〉 class of deterministically (bottom-up) recognizable

tree series
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Major Theorems�Determinization

Theorem (Borchardt, Vogler 03)

A locally �nite semi�eld

Arec〈〈TΣ〉〉 = Arec

d 〈〈TΣ〉〉

(proved for automata with �nal states)

Theorem (Borchardt 04)

A locally �nite semiring

Arec〈〈TΣ〉〉 = Arec

d 〈〈TΣ〉〉

(proved for automata with �nal weights)
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Kleene Characterization

De�nition (Rational Tree Series)

Polynomials (�nite support tree series) are rational
Closed under:

sum
scalar product
top-concatenation
α-concatenation (α ∈ Σ0)
α-Kleene-star (α ∈ Σ0)

Theorem (Droste, Pech, Vogler 05)

A commutative semiring

Arec〈〈TΣ〉〉 = Arat〈〈TΣ〉〉
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Major Theorems

Further Characterizations

Myhill-Nerode characterization [Borchardt 04]

Systems of Equations [Kuich 97, Bozapalidis 99]

Weighted automata using �xpoints [Kuich 97]

Syntactic algebras [Bozapalidis 91]
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Tree Series Substitutions

De�nition (ε- or pure substitution)

ψ ∈ A〈〈TΣ(Xk)〉〉 and ψ1, . . . , ψk ∈ A〈〈TΣ〉〉

(ψ
ε← (ψ1, . . . , ψk), u) =

∑
t∈TΣ(Xk)
t1,...,tk∈TΣ
u=t[t1,...,tk ]

(ψ, t) · (ψ1, t1) · . . . · (ψk , tk)

De�nition (o-substitution)

ψ ∈ A〈〈TΣ(Xk)〉〉 and ψ1, . . . , ψk ∈ A〈〈TΣ〉〉

(ψ
o← (ψ1, . . . , ψk), u)

=
∑

t∈TΣ(Xk)
t1,...,tk∈TΣ
u=t[t1,...,tk ]

(ψ, t) · (ψ1, t1)|t|x1 · . . . · (ψk , tk)|t|xk
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Tree Series Transducer

De�nition

M = (Q,Σ,∆,A,F , µ) tree series transducer, if

Q �nite set of states

Σ and ∆ input and output ranked alphabet

A semiring

F ⊆ Q set of designated states

µ = (µk)k∈N with

µk : Σk → A〈〈T∆(X )〉〉Q×Q(Xk)
∗

Looks bad, but wait!



Mathematical Basics Weighted Tree Automata Tree Series Transducer

Top-down Tree Series Transducer

q

σ

x1 x2

top-down−−−−−→

bottom-up←−−−−−−

σ

q1

x1

q2

x2

q

σ

x1 x2

weight a−−−−−→

δ

γ

q1

x1

δ

q1

x2

q2

x2

=

δ

γ

z1

δ

z2 z3

[z1/q1(x1),

z2/q1(x2),

z3/q2(x2)]
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Top-down Tree Series Transducer

q

σ

x1 x2

weight a−−−−−→

δ

γ

q1

x1

δ

q1

x2

q2

x2

=

δ

γ

z1

δ

z2 z3

[z1/q1(x1),

z2/q1(x2),

z3/q2(x2)]

Corresponding Tree Representation Entry

(µk(σ)q,q1(x1)q1(x2)q2(x2), δ(γ(z1), δ(z2, z3))) = a
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Semantics of TST

De�nition (Initial Algebra Semantics)

M = (Q,Σ,∆,A,F , µ) tst, η ∈ {ε, o}
hη

µ : TΣ → A〈〈T∆〉〉Q

hη
µ(σ(t1, . . . , tk))q

=
∑

w=q1(xi1 )···qn(xin )∈Q(Xk)∗

µk(σ)q,w
η← (hη

µ(ti1)q1 , . . . , h
η
µ(tin)qn)

Semantics of M, denoted ‖M‖η : TΣ → A〈〈T∆〉〉

(‖M‖η, t) =
∑
q∈F

hη
µ(t)q
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Run Semantics and Properties of TST

Note

For pure (ε-) substitution there exists an equivalent run semantics
[Fülöp, Vogler 04]

De�nition

(Q,Σ,∆,A,F , µ) top-down TST

deterministic, if there is at most one rule with a given left
hand side and at most one initial state

linear, if (for every rule) every variable appears at most once in
the right hand side

nondeleting, if (for every rule) variables that occur in the left
hand side also occur in the right hand side
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Classes of Transformations

De�nition

denotation class of transformations computed by substitution

x-TOPε(A) top-down TST with properties x ε-subst.

x-TOPo(A) top-down TST with properties x o-subst.

x-BOTε(A) bottom-up TST with properties x ε-subst.

x-BOTo(A) bottom-up TST with properties x o-subst.

Note

Bottom-up TST process input tree from the leaves toward the root.
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Composition of Transformations

De�nition

Let

ϕ : TΣ × T∆ → A

ψ : T∆ × TΓ → A

Composition of ϕ and ψ

(ϕ ;ψ) : TΣ × TΓ → A

(t, v) 7→
∑
u∈T∆

ϕ(t, u) · ψ(u, v)
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Composition Results

Theorem (see [Kuich 99] and [Engelfriet et al 02])

A commutative semiring

nlp-BOT(A) ; p-BOT(A) = p-BOT(A)

p-BOT(A) ; bdth-BOT(A) = p-BOT(A)

Theorem

A commutative semiring

lp-BOT(A) ; p-BOT(A) = p-BOT(A)

p-BOT(A) ; bd-BOT(A) = p-BOT(A)

bdt-TOP(A) ; lp-TOP(A) ⊆ p-TOP(A)
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