Introduction to

Weighted Tree Automata and Tree Series Transducers

Andreas Maletti

Technische Universität Dresden Department of Computer Science

June 22, 2006

Table of Contents

2 Weighted Tree Automata

Tree

Definition (Ranked, labelled, ordered trees)

Let Σ ranked alphabet and X set. Smallest set T such that

• $X \subseteq T$

• $\sigma(t_1, \ldots, t_k) \in T$ for every $k \in \mathbb{N}$, $\sigma \in \Sigma_k$, and $t_1, \ldots, t_k \in T$ denoted by $T_{\Sigma}(X)$.

Convention

• Elements of $T_{\Sigma}(X)$ are called Σ -trees indexed by X

•
$$T_{\Sigma} = T_{\Sigma}(\emptyset)$$

• $t|_x$ number of occurrences of $x \in X$ in $t \in \mathcal{T}_{\Sigma}(X)$

Tree Properties

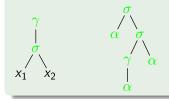
Definition

Let
$$t\in T_{\Sigma}(X)$$

- t linear in X, if every $x \in X$ occurs at most once in t
- t nondeleting in X, if every $x \in X$ occurs at least once in t

Example

$$\Sigma = \{ lpha^{(0)}, \gamma^{(1)}, \sigma^{(2)} \}$$
 and $X = \{ x_1, x_2 \}$



- Both trees linear in X
- Left tree nondeleting in X

Semiring

Definition

A semiring $\mathcal A$ is an algebraic structure $(\mathcal A,+,\cdot,0,1)$ such that

- (A, +, 0) is a commutative monoid
- $(A,\cdot,1)$ is a monoid
- \bullet · distributes (both-sided) over +
- ullet 0 is absorbing with respect to \cdot

Example

- Booleans ($\{0,1\}, \lor, \land, 0, 1$)
- Natural numbers $(\mathbb{N},+,\cdot,0,1)$
- Probabilities $([0, 1], \max, \cdot, 0, 1)$
- Positive reals ([0, ∞), +, \cdot , 0, 1)
- Subsets $(\mathfrak{P}(A), \cup, \cap, \emptyset, A)$

Semiring Properties

Definition

Semiring $(A, +, \cdot, 0, 1)$ is

- commutative, if $a \cdot b = b \cdot a$
- idempotent, if a + a = a
- semifield, if $(A \setminus \{0\}, \cdot, 1)$ is a group
- locally finite, if $\langle B \rangle$ is finite for every finite $B \subseteq A$

Example					
semiring	commutative	idempotent	semifield	locally finite	
$\{0,1\}$	yes	yes	yes	yes	
\mathbb{N}	yes	NO	NO	NO	
[0, 1]	yes	yes	NO	NO	
\mathbb{R}_+	yes	NO	yes	NO	
$\mathfrak{P}(A)$	yes	yes	yes	yes	

Tree Languages

Definition

- Any $L \subseteq T_{\Sigma}(X)$ is a tree language
- Can be seen as mapping $\psi \colon T_{\Sigma}(X) \to \{0,1\}$

$$t\in L \quad \Longleftrightarrow \quad \psi(t)=1$$

• Set of tree languages $B\langle\!\langle T_{\Sigma}(X) \rangle\!\rangle$ where $B = \{0,1\}$

Tree Series

Definition

- Tree series is mapping $\psi \colon T_{\Sigma}(X) \to A$
- Set of tree series $A\langle\!\langle T_{\Sigma}(X)\rangle\!\rangle$

Example

- Height height: $\mathcal{T}_{\Sigma}(X) \to \mathbb{N}$ is a tree series
- Size size: $T_{\Sigma}(X) \to \mathbb{N}$ is a tree series

Conventions

- A usually endowed with semiring structure
- $\bullet~\widetilde{0}$ is tree series that maps every tree to 0
- $\psi(t)$ written as (ψ, t)

Tree Series

Definition

Let $\psi \in A\langle\!\langle T_{\Sigma}(X) \rangle\!\rangle$

$$\mathsf{supp}(\psi) = \{t \in \mathcal{T}_{\Sigma}(X) \mid (\psi, t) \neq 0\}$$

i.e. set of nonzero-weighted trees

Example

Let $L \subseteq T_{\Sigma}(X)$ and ψ characteristic mapping for L

$$\mathsf{supp}(\psi) = L$$

Definition

• ψ linear in X, if t linear in X for every $t \in \operatorname{supp}(\psi)$

• ψ nondeleting in X, if t nondeleting in X for every $t \in \text{supp}(\psi)$

Tree Series

Convention

• tree series
$$\psi$$
 written as $\sum_{t\in \mathcal{T}_{\Sigma}(X)}(\psi,t)$ t

•
$$(\psi + \varphi, t) = (\psi, t) + (\varphi, t)$$

•
$$(a \cdot \psi, t) = a \cdot (\psi, t)$$

Example

•
$$\psi = 5 \alpha + 23 \gamma(\alpha) + 1 \sigma(\alpha, \alpha)$$

•
$$\varphi = 2 \ lpha \ + \ 10 \ \sigma(\gamma(lpha), lpha)$$

ullet scalar multiplication 2 \cdot ψ gives

$$2 \cdot \psi = 10 \ \alpha \ + \ 46 \ \gamma(lpha) \ + \ 2 \ \sigma(lpha, lpha)$$

• sum
$$\psi + \varphi$$
 gives

 $\psi + \varphi = 7 \alpha + 23 \gamma(\alpha) + 1 \sigma(\alpha, \alpha) + 10 \sigma(\gamma(\alpha), \alpha)$

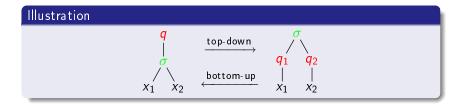
Weighted Rewrite Rules

top-down

$$q(\sigma(x_1,\ldots,x_k)) \stackrel{a}{\to} \sigma(q_1(x_1),\ldots,q_k(x_k))$$

bottom-up

$$\sigma(q_1(x_1),\ldots,q_k(x_k)) \xrightarrow{a} q(\sigma(x_1,\ldots,x_k))$$



Tree Representation

Definition

A tree representation $\mu = (\mu_k)_{k \in \mathbb{N}}$ over Σ , Q, and \mathcal{A} consists of mappings

$$\mu_k \colon \Sigma_k \to A^{Q \times Q^k}$$

Example

Tree representation μ over $\{\alpha^{(0)}, \gamma^{(1)}, \sigma^{(2)}\}$, $\{1, 2\}$, and $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$

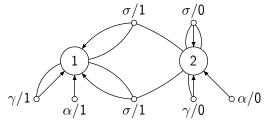
 $\begin{array}{ll} \mu_0(\alpha)_1 = 1 & \mu_0(\alpha)_2 = 0 \\ \mu_1(\gamma)_{1,1} = 1 & \mu_1(\gamma)_{2,2} = 0 \\ \mu_2(\sigma)_{1,12} = 1 & \mu_2(\sigma)_{2,22} = 0 \\ \mu_2(\sigma)_{1,21} = 1 & \end{array}$

Tree Representation

• Just a transition matrix for every input symbol

$$\mu_{0}(\alpha) = \begin{pmatrix} 1\\0 \end{pmatrix}$$
$$\mu_{1}(\gamma) = \begin{pmatrix} 1 & -\infty\\ -\infty & 0 \end{pmatrix}$$
$$\mu_{2}(\sigma) = \begin{pmatrix} -\infty & 1 & 1 & -\infty\\ -\infty & -\infty & -\infty & 0 \end{pmatrix}$$

• Graphically represented:



Weighted Tree Automata

Definition

- $(Q, \Sigma, \mathcal{A}, \mathcal{F}, \mu)$ weighted tree automaton
 - Q finite, nonempty set of states
 - Σ ranked alphabet
 - $\mathcal{A} = (A, +, \cdot, 0, 1)$ semiring
 - $F: Q \rightarrow A$ final distribution
 - μ tree representation over Σ , Q, and ${\cal A}$

Note

- top-down and bottom-up equivalent
- weight for leaving the system

Weighted Tree Automata

Example

 $\mathit{M}_{\mathrm{ht}} = (\mathit{Q}, \Sigma, \mathcal{A}, \mathit{F}, \mu)$ with

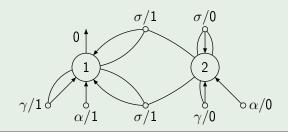
•
$$Q = \{1, 2\}$$

•
$$\Sigma = \{\alpha^{(0)}, \gamma^{(1)}, \sigma^{(2)}\}$$

•
$$\mathcal{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$$

•
$$F_1=0$$
 and $F_2=-\infty$

 $\bullet~\mu$ as shown before



Semantics of WTA

Definition (Initial algebra semantics)

$$M = (Q, \Sigma, \mathcal{A}, F, \mu)$$
 wta

•
$$h_{\mu}: T_{\Sigma} \rightarrow A^Q$$
 given by

$$egin{aligned} &h_\mu(\sigma(t_1,\ldots,t_k))_q\ &=\sum_{q_1,\ldots,q_k\in Q}\mu_k(\sigma)_{q,q_1\cdots q_k}\cdot h_\mu(t_1)_{q_1}\cdot\ldots\cdot h_\mu(t_k)_{q_k} \end{aligned}$$

• Semantics of M, denoted by $||M|| \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$

$$(\|M\|,t) = \sum_{q \in Q} F_q \cdot h_\mu(t)_q$$

Example

$$\|\textit{M}_{\rm ht}\| = {\tt height}$$

Alternative Semantics

Definition (Run semantics)

$$\textit{M} = (\textit{Q}, \Sigma, \mathcal{A}, \textit{F}, \mu)$$
 wta

• set of runs:
$$R_M = T_{\langle \Sigma, Q \rangle}$$

• runs on t:
$$R_M(t) = \{r \in R_M \mid \pi_1(r) = t\}$$

• runs on t ending in q: $R_M(t,q) = \{r \in R_M(t) \mid \pi_2(r(\varepsilon)) = q\}$

• weight of a run
$$r=\langle\sigma,q
angle(r_1,\ldots,r_k)$$

$$c_M(r) = \mu_k(\sigma)_{q,q_1\cdots q_k} \cdot c_M(r_1) \cdot \ldots \cdot c_M(r_k)$$

where $q_i = \pi_2(r(i))$

Semantics of M, denoted by $|M| \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$

$$(|M|, t) = \sum_{q \in Q} F_q \cdot \left(\sum_{r \in R_M(t,q)} c_M(r)\right)$$

Illustration of Run Semantics

Illustration Using the semiring $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ $(\sigma, 1)$ $(\alpha, 2) \quad (\sigma, 1)$ $(\gamma, 1) \quad (\alpha, 2)$ $(\alpha, 1)$ input tree weight run

This run has weight 1 + 0 + 1 + 1 + 0 + 1 = 4

Equivalence of Initial Algebra and Run Semantics

Theorem

$$M = (Q, \Sigma, \mathcal{A}, F, \mu)$$
 wta

$$|M| = \|M\|$$

Definition

- $A^{
 m rec}\langle\!\langle T_{\Sigma} \rangle\!
 angle$ class of recognizable tree series
- $A_d^{\rm rec}\langle\!\langle T_\Sigma \rangle\!\rangle$ class of deterministically (bottom-up) recognizable tree series

Major Theorems—Determinization

Theorem (Borchardt, Vogler 03)

 ${\cal A}$ locally finite semifield

$$A^{
m rec}\langle\!\langle T_{\Sigma}
angle\!\rangle = A^{
m rec}_{
m d}\langle\!\langle T_{\Sigma}
angle\!
angle$$

(proved for automata with final states)

Theorem (Borchardt 04)

A locally finite semiring

$$A^{
m rec}\langle\!\langle T_{\Sigma}
angle\!\rangle = A^{
m rec}_{
m d}\langle\!\langle T_{\Sigma}
angle\!
angle$$

(proved for automata with final weights)

Kleene Characterization

Definition (Rational Tree Series)

- Polynomials (finite support tree series) are rational
- Closed under:
 - o sum
 - scalar product
 - top-concatenation
 - α -concatenation ($\alpha \in \Sigma_0$)
 - α -Kleene-star ($\alpha \in \Sigma_0$)

Theorem (Droste, Pech, Vogler 05)

 ${\mathcal A}$ commutative semiring

$$A^{\mathrm{rec}}\langle\!\langle T_{\Sigma}\rangle\!\rangle = A^{\mathrm{rat}}\langle\!\langle T_{\Sigma}\rangle\!\rangle$$

Major Theorems

Further Characterizations

- Myhill-Nerode characterization [Borchardt 04]
- Systems of Equations [Kuich 97, Bozapalidis 99]
- Weighted automata using fixpoints [Kuich 97]
- Syntactic algebras [Bozapalidis 91]

Tree Series Substitutions

Definition (ε - or pure substitution)

$$\psi \in A\langle\!\langle T_{\Sigma}(X_k) \rangle\!\rangle$$
 and $\psi_1, \ldots, \psi_k \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$

$$(\psi \stackrel{\varepsilon}{\leftarrow} (\psi_1, \ldots, \psi_k), u) = \sum_{\substack{t \in \mathcal{T}_{\Sigma}(X_k) \\ t_1, \ldots, t_k \in \mathcal{T}_{\Sigma} \\ u = t[t_1, \ldots, t_k]}} (\psi, t) \cdot (\psi_1, t_1) \cdot \ldots \cdot (\psi_k, t_k)$$

Definition (o-substitution)

$$\psi \in A\langle\!\langle T_{\Sigma}(X_k) \rangle\!\rangle$$
 and $\psi_1, \dots, \psi_k \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$

$$(\psi \stackrel{o}{\leftarrow} (\psi_1, \ldots, \psi_k), u) = \sum_{\substack{t \in \mathcal{T}_{\Sigma}(X_k) \\ t_1, \ldots, t_k \in \mathcal{T}_{\Sigma} \\ u = t[t_1, \ldots, t_k]}} (\psi, t) \cdot (\psi_1, t_1)^{|t|_{x_1}} \cdot \ldots \cdot (\psi_k, t_k)^{|t|_{x_k}}$$

Tree Series Transducer

Definition

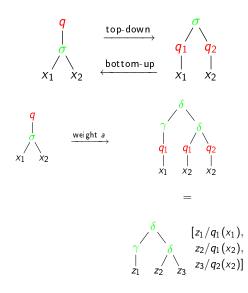
 $M = (Q, \Sigma, \Delta, A, F, \mu)$ tree series transducer, if

- Q finite set of states
- Σ and Δ input and output ranked alphabet
- \mathcal{A} semiring
- $F \subseteq Q$ set of designated states
- $\mu = (\mu_k)_{k \in \mathbb{N}}$ with

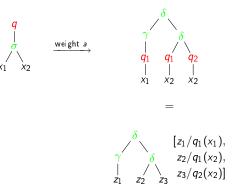
$$\mu_k \colon \Sigma_k \to A\langle\!\langle T_\Delta(X) \rangle\!\rangle^{Q \times Q(X_k)^*}$$

Looks bad, but wait!

Top-down Tree Series Transducer



Top-down Tree Series Transducer



Corresponding Tree Representation Entry

 $(\mu_k(\sigma)_{q,q_1(x_1)q_1(x_2)q_2(x_2)},\delta(\gamma(z_1),\delta(z_2,z_3))) = a$

Semantics of TST

Definition (Initial Algebra Semantics)

$$M = (Q, \Sigma, \Delta, A, F, \mu) \text{ tst, } \eta \in \{\varepsilon, o\}$$

• $h^{\eta}_{\mu} \colon T_{\Sigma} \to A\langle\!\langle T_{\Delta} \rangle\!\rangle^{Q}$
 $h^{\eta}_{\mu}(\sigma(t_{1}, \dots, t_{k}))_{q}$
 $= \sum_{w=q_{1}(x_{i_{1}})\cdots q_{n}(x_{i_{n}}) \in Q(X_{k})^{*}} \mu_{k}(\sigma)_{q,w} \xleftarrow{\eta} (h^{\eta}_{\mu}(t_{i_{1}})_{q_{1}}, \dots, h^{\eta}_{\mu}(t_{i_{n}})_{q_{n}})$
• Semantics of M , denoted $\|M\|^{\eta} \colon T_{\Sigma} \to A\langle\!\langle T_{\Delta} \rangle\!\rangle$

$$(\|M\|^\eta,t)=\sum_{q\in F}h^\eta_\mu(t)_q$$

Run Semantics and Properties of TST

Note

For pure (ε -) substitution there exists an equivalent run semantics [Fülöp, Vogler 04]

Definition

 $(Q, \Sigma, \Delta, A, F, \mu)$ top-down TST

- deterministic, if there is at most one rule with a given left hand side and at most one initial state
- linear, if (for every rule) every variable appears at most once in the right hand side
- nondeleting, if (for every rule) variables that occur in the left hand side also occur in the right hand side

Classes of Transformations

Definition		
denotation	class of transformations computed by	substitution
x -TOP $_{\varepsilon}(\mathcal{A})$	top-down TST with properties x	ε -subst.
$x ext{-TOP}_{0}(\mathcal{A})$	top-down TST with properties x	o-subst.
$x\text{-}BOT_\varepsilon(\mathcal{A})$	bottom-up TST with properties <i>x</i>	arepsilon-subst.
$x ext{-BOT}_{o}(\mathcal{A})$	bottom-up TST with properties x	<mark>o</mark> -subst.

Note

Bottom-up TST process input tree from the leaves toward the root.

Composition of Transformations

Definition

Let

•
$$\varphi : T_{\Sigma} \times T_{\Delta} \to A$$

•
$$\psi: T_{\Delta} \times T_{\Gamma} \to A$$

Composition of φ and ψ

$$\begin{aligned} (\varphi;\psi)\colon T_{\Sigma}\times T_{\Gamma}\to A\\ (t,v)\mapsto \sum_{u\in T_{\Delta}}\varphi(t,u)\cdot\psi(u,v)\end{aligned}$$

Composition Results

Theorem (see [Kuich 99] and [Engelfriet et al 02])

```
{\mathcal A} commutative semiring
```

 $\mathsf{nlp}\operatorname{-}\mathsf{BOT}(\mathcal{A})$; $\mathsf{p}\operatorname{-}\mathsf{BOT}(\mathcal{A}) = \mathsf{p}\operatorname{-}\mathsf{BOT}(\mathcal{A})$

p-BOT(A); bdth-BOT(A) = p-BOT(A)

Theorem

 \mathcal{A} commutative semiring

 $lp-BOT(\mathcal{A}); p-BOT(\mathcal{A}) = p-BOT(\mathcal{A})$ $p-BOT(\mathcal{A}); bd-BOT(\mathcal{A}) = p-BOT(\mathcal{A})$ $bdt-TOP(\mathcal{A}); lp-TOP(\mathcal{A}) \subseteq p-TOP(\mathcal{A})$

References

- Björn Borchardt.
- The Theory of Recognizable Tree Series. PhD thesis, Technische Universität Dresden, 2005.
- Joost Engelfriet, Zoltán Fülöp, and Heiko Vogler. Bottom-up and top-down tree series transformations. J. Autom. Lang. Combin., 7(1):11-70, 2002.
- 📄 Zoltán Ésik and Werner Kuich.
 - Formal tree series.
 - J. Autom. Lang. Combin., 8(2):219-285, 2003.

Andreas Maletti.

The Power of Tree Series Transducers. PhD thesis, Technische Universität Dresden, 2006.