Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

A Roadmap of my Thesis: "The Power of Tree Series Transducers"

Andreas Maletti

Department of Computer Science

April 12, 2006

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Applications

- ... of (weighted/probabilistic) tree automata:
 - Syntactic Pattern Matching (e.g. handwritten digit recognition) [López, Piñaga: Syntactic Pattern Recognition by Error Correcting Analysis on Tree Automata, 2000]
 - Tree Banks [Liakata, Pulman: Learning Theories from Text, 2004]

... of tree series transducers:

- Code Selection [Borchardt: Code Selection by Tree Series Transducers, 2004]
- Natural Language Processing [Graehl, Knight: Training Tree Transducers, 2004]

Department of Computer Science, TU Dresden

Applications

- ... of (weighted/probabilistic) tree automata:
 - Syntactic Pattern Matching (e.g. handwritten digit recognition) [López, Piñaga: Syntactic Pattern Recognition by Error Correcting Analysis on Tree Automata, 2000]
 - Tree Banks

[Liakata, Pulman: Learning Theories from Text, 2004]

... of tree series transducers:

- Code Selection [Borchardt: Code Selection by Tree Series Transducers, 2004]
- Natural Language Processing [Graehl, Knight: Training Tree Transducers, 2004]

Department of Computer Science, TU Dresden

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

 Σ ranked alphabet, ${\rm Z}$ set

Definition:

Set $T_{\Sigma}(\mathbf{Z})$ of trees is smallest T such that

 $\blacktriangleright \ \mathbf{Z} \subseteq T$

• $\sigma(t_1, \ldots, t_k) \in T$ for all $k, \sigma \in \Sigma^{(k)}$, and $t_1, \ldots, t_k \in T$

Example:

ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$ and $Z = \{z_1, z_2, \ldots\}$

 $\blacktriangleright \mathbf{z_1} \quad \mathbf{z_2} \quad \cdots \quad \alpha \quad \bigwedge_{\mathbf{z_1}}^{\sigma} \quad \cdots \quad \bigwedge_{\alpha \quad \alpha}^{\sigma} \quad \cdots$

•
$$T = \{z_1, z_2, \ldots\}$$

Abbreviation: $T_{\Sigma} := T_{\Sigma}(\emptyset)$

・ロト・日本・日本・日本・日本・日本

Department of Computer Science, TU Dresden

The Power of Tree Series Transducers

 Σ ranked alphabet, ${\rm Z}$ set

Definition:

Set $T_{\Sigma}(\mathbf{Z})$ of trees is smallest T such that

- $\blacktriangleright \ \mathbf{Z} \subseteq T$
- $\sigma(t_1, \ldots, t_k) \in T$ for all $k, \sigma \in \Sigma^{(k)}$, and $t_1, \ldots, t_k \in T$

Example:

ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$ and $Z = \{z_1, z_2, \ldots\}$

Abbreviation: $T_{\Sigma} := T_{\Sigma}(\emptyset)$

Department of Computer Science, TU Dresden

The Power of Tree Series Transducers

 Σ ranked alphabet, Z set

Definition:

Set $T_{\Sigma}(Z)$ of trees is smallest T such that

- \triangleright Z \subset T
- $\sigma(t_1,\ldots,t_k) \in T$ for all $k, \sigma \in \Sigma^{(k)}$, and $t_1,\ldots,t_k \in T$

Example:

ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$ and $Z = \{z_1, z_2, \ldots\}$

$$z_1 \quad z_2 \quad \dots \quad \alpha \quad \bigwedge_{z_1}^{\sigma} \quad \dots \quad \bigwedge_{\alpha \quad \alpha}^{\sigma} \quad \dots \\ T = \{ z_1, z_2, \dots, \alpha, \sigma(z_1, z_1), \dots, \sigma(\alpha, \alpha), \dots \}$$

→ E → < E →</p> Department of Computer Science, TU Dresden

590

æ

 Σ ranked alphabet, Z set

Definition:

Set $T_{\Sigma}(Z)$ of trees is smallest T such that

 \triangleright Z \subset T

•
$$\sigma(t_1, \ldots, t_k) \in T$$
 for all $k, \sigma \in \Sigma^{(k)}$, and $t_1, \ldots, t_k \in T$

Example:

ranked alphabet $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$ and $Z = \{z_1, z_2, \ldots\}$

Abbreviation:

 $T_{\Sigma} := T_{\Sigma}(\emptyset)$

Department of Computer Science, TU Dresden

500

E

★ E > ★ E

< 口 > < 🗗

The Power of Tree Series Transducers

Semirings

Definition:

algebraic structure $(A, +, \cdot, 0, 1)$ such that

- (A, +, 0) commutative monoid
- ▶ $(A, \cdot, 1)$ monoid
- \blacktriangleright · distributes (both-sided) over +
- ▶ 0 is absorbing wrt. ·

Examples:

- natural numbers $(\mathbb{N}, +, \cdot, 0, 1)$
- reals $(\mathbb{R}, +, \cdot, 0, 1)$
- subsets $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$
- any ring, field, distributive complete lattice

Department of Computer Science, TU Dresden

Semirings

Definition:

algebraic structure $(A, +, \cdot, 0, 1)$ such that

- (A, +, 0) commutative monoid
- ▶ $(A, \cdot, 1)$ monoid
- \blacktriangleright · distributes (both-sided) over +
- ▶ 0 is absorbing wrt. ·

Examples:

- natural numbers $(\mathbb{N}, +, \cdot, 0, 1)$
- reals $(\mathbb{R}, +, \cdot, 0, 1)$
- ▶ subsets $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$
- any ring, field, distributive complete lattice

Department of Computer Science, TU Dresden

Complete Semirings

Definition:

Semiring is complete, if there exists \sum such that

•
$$\sum_{i \in \{j_1, j_2\}} a_{j_1} + a_{j_2}$$
 with $j_1 \neq j_2$

•
$$\sum_{i \in I} a_i = \sum_{j \in J} (\sum_{i \in I_j} a_i)$$
 with $I = \bigcup_{j \in J} I_j$ such that $I_{j_1} \cap I_{j_2} = \emptyset$ $(j_1 \neq j_2)$

 $\blacktriangleright (\sum_{i \in I} a_i) \cdot (\sum_{j \in J} a_j) = \sum_{(i,j) \in I \times J} (a_i \cdot a_j)$

Examples:

- natural numbers $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$
- tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- subsets $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$
- any distributive complete lattice (but no ring or field)

Note: It follows that $\sum_{i \in \emptyset} a_i = 0$ and $\sum_{i \in \{j\}} a_i = a_j$.

Department of Computer Science, TU Dresden

= 990

イロト イヨト イヨト イヨト

Complete Semirings

Definition:

Semiring is complete, if there exists \sum such that

•
$$\sum_{i \in \{j_1, j_2\}} a_{j_1} + a_{j_2}$$
 with $j_1 \neq j_2$

•
$$\sum_{i \in I} a_i = \sum_{j \in J} (\sum_{i \in I_j} a_i)$$
 with $I = \bigcup_{j \in J} I_j$ such that $I_{j_1} \cap I_{j_2} = \emptyset$ $(j_1 \neq j_2)$

 $\blacktriangleright \ \left(\sum_{i \in I} a_i \right) \cdot \left(\sum_{j \in J} a_j \right) = \sum_{(i,j) \in I \times J} (a_i \cdot a_j)$

Examples:

- natural numbers $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$
- tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- subsets $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$
- any distributive complete lattice (but no ring or field)

Note: t follows that $\sum_{i \in \emptyset} a_i = 0$ and $\sum_{i \in \{j\}} a_i = a_j$.

Department of Computer Science, TU Dresden

= 990

・ロン ・回 と ・ ヨン・

Complete Semirings

Definition:

Semiring is complete, if there exists \sum such that

•
$$\sum_{i \in \{j_1, j_2\}} a_{j_1} + a_{j_2}$$
 with $j_1 \neq j_2$

- $\sum_{i \in I} a_i = \sum_{j \in J} (\sum_{i \in I_j} a_i)$ with $I = \bigcup_{j \in J} I_j$ such that $I_{j_1} \cap I_{j_2} = \emptyset$ $(j_1 \neq j_2)$
- $\blacktriangleright (\sum_{i \in I} a_i) \cdot (\sum_{j \in J} a_j) = \sum_{(i,j) \in I \times J} (a_i \cdot a_j)$

Examples:

- natural numbers $(\mathbb{N}\cup\{\infty\},+,\cdot,0,1)$
- tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- subsets $(\mathcal{P}(S), \cup, \cap, \emptyset, S)$
- any distributive complete lattice (but no ring or field)

Note: It follows that $\sum_{i \in \emptyset} a_i = 0$ and $\sum_{i \in \{j\}} a_i = a_j$.

= 990

ヘロト ヘアト ヘビト ヘビト

Tree Series

 Σ ranked alphabet, $\mathcal{A}=(A,+,\cdot,0,1)$ semiring

Definition:

mapping $\psi \colon S \longrightarrow A$ with $S \subseteq T_{\Sigma}(\mathbf{Z})$

Notation:

- $\blacktriangleright \ (\psi,s) \text{ denotes } \psi(s)$
- $\blacktriangleright \operatorname{supp}(\psi) = \{ s \in S \mid (\psi, s) \neq 0 \}$
- $\widetilde{0}$ such that $\operatorname{supp}(\widetilde{0}) = \emptyset$
- $\blacktriangleright \ (\psi+\varphi,s)=(\psi,s)+(\varphi,s)$
- $\blacktriangleright \ A \langle\!\langle S \rangle\!\rangle \text{ set of all tree series over } \mathcal{A} \text{ and } S$
- $A\langle S \rangle$ set of all polynomial (i.e., finite support) tree series

Definition:

- ψ linear, if t linear for all $t \in \operatorname{supp}(\psi)$
- ψ nondeleting, if t nondeleting for all $t \in \text{supp}(\psi)$

Department of Computer Science, TU Dresden

Tree Series

 Σ ranked alphabet, $\mathcal{A}=(A,+,\cdot,0,1)$ semiring

Definition:

mapping $\psi \colon S \longrightarrow A$ with $S \subseteq T_{\Sigma}(\mathbf{Z})$

Notation:

- $\blacktriangleright \ (\psi,s) \text{ denotes } \psi(s)$
- $\blacktriangleright \operatorname{supp}(\psi) = \{ s \in S \mid (\psi, s) \neq 0 \}$
- $\tilde{0}$ such that $\operatorname{supp}(\tilde{0}) = \emptyset$
- $\blacktriangleright \ (\psi+\varphi,s)=(\psi,s)+(\varphi,s)$
- $A\langle\!\langle S \rangle\!\rangle$ set of all tree series over $\mathcal A$ and S
- $A\langle S \rangle$ set of all polynomial (i.e., finite support) tree series

Definition:

- ψ linear, if t linear for all $t \in \operatorname{supp}(\psi)$
- ψ nondeleting, if t nondeleting for all $t \in \text{supp}(\psi)$

Department of Computer Science, TU Dresden

Tree Series

 Σ ranked alphabet, $\mathcal{A}=(A,+,\cdot,0,1)$ semiring

Definition:

mapping $\psi \colon S \longrightarrow A$ with $S \subseteq T_{\Sigma}(\mathbf{Z})$

Notation:

- $\blacktriangleright \ (\psi,s) \text{ denotes } \psi(s)$
- $\blacktriangleright \operatorname{supp}(\psi) = \{ s \in S \mid (\psi, s) \neq 0 \}$
- $\tilde{0}$ such that $\operatorname{supp}(\tilde{0}) = \emptyset$

•
$$(\psi + \varphi, s) = (\psi, s) + (\varphi, s)$$

- $\blacktriangleright A \langle\!\langle S \rangle\!\rangle$ set of all tree series over ${\cal A}$ and S
- ► $A\langle S \rangle$ set of all polynomial (i.e., finite support) tree series

Definition:

- ψ linear, if t linear for all $t \in \operatorname{supp}(\psi)$
- ψ nondeleting, if t nondeleting for all $t \in \text{supp}(\psi)$

Department of Computer Science, TU Dresden

Tree Series Substitutions

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathbf{Z}_n) \rangle\!\rangle$.

$$\psi \leftarrow (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \operatorname{supp}(\psi), \\ t_1 \in \operatorname{supp}(\psi_1), \\ \dots, \\ t_n \in \operatorname{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1) \cdot \dots \cdot (\psi_n, t_n) t[t_1, \dots, t_n]$$

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathbb{Z}_n) \rangle\!\rangle.$

$$\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \text{supp}(\psi), \\ t_1 \in \text{supp}(\psi_1), \\ \dots, \\ t_n \in \text{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1)^{|t|_{z_1}} \cdots (\psi_n, t_n)^{|t|_{z_n}} t[t_1, \dots, t_n]$$

・ロ・・母・・ヨ・・ヨ・ しょうくろ

Department of Computer Science, TU Dresden

Andreas Maletti

Tree Series Substitutions

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathbf{Z}_n) \rangle\!\rangle$.

$$\psi \leftarrow (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \operatorname{supp}(\psi), \\ t_1 \in \operatorname{supp}(\psi_1), \\ \dots, \\ t_n \in \operatorname{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1) \cdot \dots \cdot (\psi_n, t_n) t[t_1, \dots, t_n]$$

Definition:

Let $\psi, \psi_1, \ldots, \psi_n \in A\langle\!\langle T_{\Sigma}(\mathbf{Z}_n) \rangle\!\rangle$.

$$\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n) = \sum_{\substack{t \in \operatorname{supp}}(\psi), \\ t_1 \in \operatorname{supp}(\psi_1), \\ \dots, \\ t_n \in \operatorname{supp}(\psi_n)}} (\psi, t) \cdot (\psi_1, t_1)^{|t|_{\mathbb{Z}_1}} \cdots (\psi_n, t_n)^{|t|_{\mathbb{Z}_n}} t[t_1, \dots, t_n]$$

Department of Computer Science, TU Dresden

イロト イヨト イヨト イヨト

DQC

3

Andreas Maletti

Illustration

Department of Computer Science, TU Dresden

Andreas Maletti

Illustration

토 🕨 🔺 토 🕨 Department of Computer Science, TU Dresden

< □ > < 同

æ

999

Andreas Maletti

Illustration

(신문) (신문) Department of Computer Science, TU Dresden

< 🗇 ▶

æ

DQC

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Notes on Substitution

- pure substitution introduced in [Bozapalidis: Context-free Series on Trees, 2001]
- o-substitution introduced in [Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]
- potentially infinite sum
- usually only considered for polynomial tree series or in complete semirings

$$\sum_{\substack{i \in I, \\ 1 \in I_1, \dots, i_n \in I_n}} \psi_i \stackrel{?}{\leftarrow} (\psi_{i_1}, \dots, \psi_{i_n}) = \left(\sum_{i \in I} \psi_i\right) \stackrel{?}{\leftarrow} \left(\sum_{i_1 \in I_1} \psi_{i_1}, \dots, \sum_{i_n \in I_n} \psi_{i_n}\right)$$

$$(a \cdot a_1 \cdot \ldots \cdot a_n) \cdot \psi \stackrel{?}{\leftarrow} (\psi_1, \ldots, \psi_n) = (a \cdot \psi) \stackrel{?}{\leftarrow} (a_1 \cdot \psi_1, \ldots, a_n \cdot \psi_n)$$

→ 프 → < 프 →</p> Department of Computer Science, TU Dresden

200 э.

< 🗇 🕨

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Notes on Substitution

- pure substitution introduced in [Bozapalidis: Context-free Series on Trees, 2001]
- o-substitution introduced in [Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]
- potentially infinite sum
- usually only considered for polynomial tree series or in complete semirings

Properties:

distributive:

$$\sum_{\substack{i \in I, \\ i_1 \in I_1, \dots, i_n \in I_n}} \psi_i \stackrel{?}{\leftarrow} (\psi_{i_1}, \dots, \psi_{i_n}) = \left(\sum_{i \in I} \psi_i\right) \stackrel{?}{\leftarrow} \left(\sum_{i_1 \in I_1} \psi_{i_1}, \dots, \sum_{i_n \in I_n} \psi_{i_n}\right)$$

linear:

$$(a \cdot a_1 \cdot \ldots \cdot a_n) \cdot \psi \stackrel{?}{\leftarrow} (\psi_1, \ldots, \psi_n) = (a \cdot \psi) \stackrel{?}{\leftarrow} (a_1 \cdot \psi_1, \ldots, a_n \cdot \psi_n)$$

★ 문 ► ★ 문 ► Department of Computer Science, TU Dresden

590 æ

Andreas Maletti

Overview

Department of Computer Science, TU Dresden

Andreas Maletti

Some Results

Theorem:

	pure	
distributive	yes	
linear	commutative $\mathcal A$	

Theorem:

• \mathcal{A} commutative, continuous, and idempotent; ψ linear

 $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n)$ recognizable

 A commutative, continuous; ψ nondeleting and linear [Kuich: Tree Transducers and Formal Tree Series, 1999]

 $\psi[\psi_1,\ldots,\psi_n]$ recognizable

Department of Computer Science, TU Dresden

Andreas Maletti

Determin

Some Results

Theorem:

	pure	o-substitution
distributive	yes	continuous idempotent \mathcal{A} , linear ψ_i $(i \in I)$
linear	commutative ${\cal A}$	_

Theorem:

• \mathcal{A} commutative, continuous, and idempotent; ψ linear

 $\psi \stackrel{\circ}{\leftarrow} (\psi_1, \dots, \psi_n)$ recognizable

 A commutative, continuous; ψ nondeleting and linear [Kuich: Tree Transducers and Formal Tree Series, 1999]

 $\psi[\psi_1,\ldots,\psi_n]$ recognizable

Department of Computer Science, TU Dresden

Andreas Maletti

Some Results

Theorem:

	pure	o-substitution
distributive	yes	continuous idempotent \mathcal{A} , linear ψ_i ($i \in I$)
linear	commutative 1	
lineal	commutative A	

Theorem:

• \mathcal{A} commutative, continuous, and idempotent; ψ linear

 $\psi \stackrel{\mathrm{o}}{\leftarrow} (\psi_1, \dots, \psi_n)$ recognizable

 A commutative, continuous; ψ nondeleting and linear [Kuich: Tree Transducers and Formal Tree Series, 1999]

 $\psi[\psi_1,\ldots,\psi_n]$ recognizable

Department of Computer Science, TU Dresden

= 990

イロト イヨト イヨト イヨト

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism

Syntax

Definition:

Tst $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ polynomial, if

- $\blacktriangleright \ F_q \text{ polynomial for every } q \in Q$
- $\mu_k(\sigma)_{q,w}$ polynomial for all $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(\mathbb{Z}_k)^*$

Department of Computer Science, TU Dresden

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminis

Syntax

Definition:

Tst $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ polynomial, if

- ▶ F_q polynomial for every $q \in Q$
- $\mu_k(\sigma)_{q,w}$ polynomial for all $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(\mathbf{Z}_k)^*$

Department of Computer Science, TU Dresden

Bottom-up and Top-down

Definition:

Tst $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ is

- ▶ bottom-up (bu), if $w = q_1(z_1) \cdots q_k(z_k)$ for every $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(Z_k)^*$ such that $\mu_k(\sigma)_{q,w} \neq 0$
- ▶ top-down (td), if $\mu_k(\sigma)_{q,w}$ nondeleting and linear for every $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(\mathbb{Z}_k)^*$

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ト 国 - のへの

Department of Computer Science, TU Dresden

The Power of Tree Series Transducers

Bottom-up and Top-down

Definition:

Tst $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ is

- ▶ bottom-up (bu), if $w = q_1(z_1) \cdots q_k(z_k)$ for every $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(Z_k)^*$ such that $\mu_k(\sigma)_{q,w} \neq 0$
- ▶ top-down (td), if $\mu_k(\sigma)_{q,w}$ nondeleting and linear for every $k, \sigma \in \Sigma^{(k)}, q \in Q$, and $w \in Q(\mathbb{Z}_k)^*$

Example:

is bottom-up, but not top-down!

Department of Computer Science, TU Dresden

Andreas Maletti

Semantics

 $\mathsf{Tst}(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$

Definition: $h_{\mu}^{?}: T_{\Sigma} \longrightarrow A \langle\!\langle T_{\Delta} \rangle\!\rangle^{Q}$

$$h_{\mu}^{?}(\sigma(t_{1},\ldots,t_{k}))_{q} = \sum_{\substack{w \in Q(Z_{k})^{*} \\ w = q_{1}(z_{i_{1}})\cdots q_{n}(z_{i_{n}})}} \mu_{k}(\sigma)_{q,w} \stackrel{?}{\leftarrow} (h_{\mu}^{?}(t_{i_{1}})_{q_{1}},\ldots,h_{\mu}^{?}(t_{i_{n}})_{q_{n}})$$

Example:

 $h_{\mu}^{o}(\alpha, \alpha), \alpha)$ $(1 \ z_1, 1 \ z_2)$ $h_{\mu}^{o}(\alpha)_{\star} = 0 \ \alpha$ $h_{\mu}^{o}(\alpha(\alpha, \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (0 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\sigma(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\sigma(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha))_{\star} = \max(1 \ z_1, 1 \ z_2) \stackrel{\circ}{\leftarrow} (1 \ \alpha, 0 \ \alpha) = h_{\mu}^{o}(\alpha(\alpha, \alpha), \alpha) = h_{\mu}^{o}(\alpha(\alpha,$

Department of Computer Science, TU Dresden

イロト イヨト イヨト イヨト

DQA

E

Andreas Maletti

Semantics

Tst $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$

Definition: $h_{\mu}^{?} \colon T_{\Sigma} \longrightarrow A \langle\!\langle T_{\Delta} \rangle\!\rangle^{Q}$

$$h_{\mu}^{?}(\sigma(t_{1},\ldots,t_{k}))_{q} = \sum_{\substack{w \in Q(\mathbb{Z}_{k})^{*} \\ w = q_{1}(\mathbb{Z}_{i_{1}}) \cdots q_{n}(\mathbb{Z}_{i_{n}})}} \mu_{k}(\sigma)_{q,w} \xleftarrow{?} (h_{\mu}^{?}(t_{i_{1}})_{q_{1}},\ldots,h_{\mu}^{?}(t_{i_{n}})_{q_{n}})$$

Example:

$$\begin{array}{c} \underset{\alpha \neq 0}{\overset{\circ}{_{z_1}}} & \text{Input tree: } \sigma(\sigma(\alpha, \alpha), \alpha) \\ & & & \\$$

(신문) (문) Department of Computer Science, TU Dresden

크

590

 $\langle \Box \rangle \langle \Box \rangle$

Andreas Maletti

Determir

Semantics

Tst $M = (Q, \Sigma, \Delta, A, F, \mu)$ Definition: Transformation computed by M

Tree Level $||M||^? : T_{\Sigma} \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$:

$$\|M\|^{?}(t) = \sum_{q \in Q} F_{q} \stackrel{?}{\leftarrow} (h_{\mu}^{?}(t)_{q})$$

Series Level $||M||^{?} \colon A\langle\!\langle T_{\Sigma} \rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$:

$$||M||^{?}(\psi) = \sum_{t \in \text{supp}(\psi)} (\psi, t) \cdot ||M||^{?}(t)$$

Semantics

Tst $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ Definition: Transformation computed by M

Tree Level $||M||^? : T_{\Sigma} \longrightarrow A\langle\langle T_{\Delta} \rangle\rangle$:

$$|M||^{?}(t) = \sum_{q \in Q} F_{q} \stackrel{?}{\leftarrow} (h_{\mu}^{?}(t)_{q})$$

Series Level $||M||^? \colon A\langle\!\langle T_\Sigma \rangle\!\rangle \longrightarrow A\langle\!\langle T_\Delta \rangle\!\rangle$:

$$||M||^{?}(\psi) = \sum_{t \in \text{supp}(\psi)} (\psi, t) \cdot ||M||^{?}(t)$$

Andreas Maletti

The Power of Tree Series Transducers

프 에 제 프 어 ... Department of Computer Science, TU Dresden

3 200

A More Complex Example

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Bottom-up vs. Top-down Determinism

Definition:

 $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ bu-tst bu-deterministic, if

• for every $k, \sigma \in \Sigma^{(k)}$, and $q_1, \ldots, q_k \in Q$ there exists at most one $(q, u) \in Q \times T_{\Delta}(\mathbb{Z}_k)$ such that $(\mu_k(\sigma)_{q,w}, u) \neq 0$

I.e., deterministic state and output behavior

Definition:

 $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ td-tst td-deterministic, if

- For every $k, \sigma \in \Sigma^{(k)}$, and $q \in Q$ there exists at most one $(w, u) \in Q(\mathbb{Z}_k)^* \times T_{\Delta}(\mathbb{Z})$ such that $(\mu_k(\sigma)_{q,w}, u) \neq 0$
- there exists at most one $(q, u) \in Q \times T_{\Delta}(\mathbb{Z}_1)$ such that $(F_q, u) \neq 0$
- I.e., deterministic state and output behavior plus single initial state

Department of Computer Science, TU Dresden

Andreas Maletti

Bottom-up vs. Top-down Determinism

Definition:

 $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ bu-tst bu-deterministic, if

► for every $k, \sigma \in \Sigma^{(k)}$, and $q_1, \ldots, q_k \in Q$ there exists at most one $(q, u) \in Q \times T_{\Delta}(\mathbb{Z}_k)$ such that $(\mu_k(\sigma)_{q,w}, u) \neq 0$

I.e., deterministic state and output behavior

Definition:

 $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$ td-tst td-deterministic, if

- ► for every $k, \sigma \in \Sigma^{(k)}$, and $q \in Q$ there exists at most one $(w, u) \in Q(\mathbb{Z}_k)^* \times T_{\Delta}(\mathbb{Z})$ such that $(\mu_k(\sigma)_{q,w}, u) \neq 0$
- there exists at most one $(q, u) \in Q \times T_{\Delta}(\mathbb{Z}_1)$ such that $(F_q, u) \neq 0$

I.e., deterministic state and output behavior plus single initial state

Summary of Properties

Definition:

 $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu) x$ -tst x-homomorphism, if

- $\blacktriangleright Q = \{\star\}$
- ► M is x-deterministic and x-total
- $F_{\star} \in \{\widetilde{0}, 1 \ z_1\}$ (i.e., final state; no final weight)

Abbrev.	Property	Short description
d	determinism	unambiguous state and output behavior
t	totality	nonblocking state and output behavior
n	nondeletion	whole input tree is processed (td) and no processed part is deleted (bu)
I	linearity	each part of input tree processed only once (td) and no processed part is duplicated (bu)
h	homomorphism	single state, total and deterministic with final state

590

æ

イロト イヨト イヨト イヨト

Semiring Properties

Definition:

Semiring $\mathcal{A} = (A, +, \cdot, 0, 1)$

- commutative, if $a \cdot b = b \cdot a$ for every $a, b \in A$
- (mult.) periodic, if $\{a^n \mid n \in \mathbb{N}\}$ is finite for every $a \in A$
- ▶ zero-divisor free, if $a \cdot b = 0$ implies that $0 \in \{a, b\}$
- (mult.) idempotent, if $a \cdot a = a$ for every $a \in A$

Department of Computer Science, TU Dresden

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Boolean Semiring

DQC

æ

The Power of Tree Series Transducers

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Nonperiodic Semirings without Zero-Divisors

Department of Computer Science, TU Dresden

SQC

Andreas Maletti

Nonperiodic Semirings with Zero-Divisors

Department of Computer Science, TU Dresden

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Periodic Semirings without Zero-Divisors

Department of Computer Science, TU Dresden

Andreas Maletti

Periodic Semirings with Zero-Divisors

ъ Department of Computer Science, TU Dresden

DQC

æ

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Idempotent Semirings without Zero-Divisors

ъ Department of Computer Science, TU Dresden

DQC

æ

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Idempotent Semirings with Zero-Divisors

Department of Computer Science, TU Dresden

DQC

æ

Andreas Maletti

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Determini

Main Result

 $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } \mathbb{L}_S = (\mathcal{P}(S^*), \cup, \circ, \emptyset, \{\varepsilon\})$

Theorem:

[Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]

 $\begin{array}{l} p\text{-BOT}(\mathbb{N}) \bowtie p\text{-BOT}^{\mathrm{o}}(\mathbb{N}) \\ p\text{-BOT}(\mathbb{A}) \bowtie p\text{-BOT}^{\mathrm{o}}(\mathbb{A}) \\ p\text{-BOT}(\mathbb{L}_{S}) \bowtie p\text{-BOT}^{\mathrm{o}}(\mathbb{L}_{S}) \end{array}$

Definition:

semiring $(A, +, \cdot, 0, 1)$ ordered by $\leq \subseteq A^2$ if

- $a + a' \leq b + b'$ provided that $a \leq b$ and $a' \leq b'$
- $\blacktriangleright \ a \cdot a' \leq b \cdot b' \text{ provided that } a \leq b \text{ and } a' \leq b'$

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Department of Computer Science, TU Dresden

Andreas Maletti

Determini

Main Result

 $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0) \text{ and } \mathbb{L}_S = (\mathcal{P}(S^*), \cup, \circ, \emptyset, \{\varepsilon\})$

Theorem:

[Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003]

 $\begin{array}{l} \text{p-BOT}(\mathbb{N}) \Join \text{p-BOT}^{o}(\mathbb{N}) \\ \text{p-BOT}(\mathbb{A}) \bowtie \text{p-BOT}^{o}(\mathbb{A}) \\ \text{p-BOT}(\mathbb{L}_{S}) \bowtie \text{p-BOT}^{o}(\mathbb{L}_{S}) \end{array}$

Definition:

semiring $(A, +, \cdot, 0, 1)$ ordered by $\leq \subseteq A^2$ if

- $a + a' \leq b + b'$ provided that $a \leq b$ and $a' \leq b'$
- $\blacktriangleright \ a \cdot a' \leq b \cdot b' \text{ provided that } a \leq b \text{ and } a' \leq b'$

Department of Computer Science, TU Dresden

= 990

Andreas Maletti

General Result

Definition:

 $(A, +, \cdot, 0, 1)$ weakly growing if there exists $a \in A$ such that

- ▶ $a^0 < a^1 < a^2 < a^3 < \cdots$
- if $a^n = c + (b_1 \cdot b \cdot b_2)$ then there exists m such that $b \le a^m$

Theorem: ${\cal A}$ (add.) idempotent and weakly growing wrt. \leq

 $p\text{-BOT}(\mathcal{A}) \bowtie p\text{-BOT}^{\mathrm{o}}(\mathcal{A})$

Open:

How to prove a general statement including \mathbb{N} ?

Possible approach: Use (bounded) closure of sets instead of partial order!

Department of Computer Science, TU Dresden

Andreas Maletti

General Result

Definition:

 $(A, +, \cdot, 0, 1)$ weakly growing if there exists $a \in A$ such that

- $\blacktriangleright \ a^0 < a^1 < a^2 < a^3 < \cdots$
- if $a^n = c + (b_1 \cdot b \cdot b_2)$ then there exists m such that $b \le a^m$

Theorem:

 ${\cal A}$ (add.) idempotent and weakly growing wrt. \leq

 $\mathsf{p}\text{-}\mathsf{BOT}(\mathcal{A}) \bowtie \mathsf{p}\text{-}\mathsf{BOT}^{\mathrm{o}}(\mathcal{A})$

Open:

How to prove a general statement including $\mathbb{N}?$

Possible approach: Use (bounded) closure of sets instead of partial order!

<ロ> 4日> 4日> 4日> 4日> 1日 りへの

Department of Computer Science, TU Dresden

The Power of Tree Series Transducers

General Result

Definition:

 $(A, +, \cdot, 0, 1)$ weakly growing if there exists $a \in A$ such that

- $\blacktriangleright \ a^0 < a^1 < a^2 < a^3 < \cdots$
- if $a^n = c + (b_1 \cdot b \cdot b_2)$ then there exists m such that $b \le a^m$

Theorem:

 ${\cal A}$ (add.) idempotent and weakly growing wrt. \leq

 $\text{p-BOT}(\mathcal{A}) \bowtie \text{p-BOT}^{\mathrm{o}}(\mathcal{A})$

Open:

How to prove a general statement including $\mathbb{N}?$

Possible approach: Use (bounded) closure of sets instead of partial order!

Department of Computer Science, TU Dresden

= 990

Motivation	Tree Series Substitution	Tree Series Transducers	Determinism	Nondeterminism	Compositions

Tree Series Substitution

Tree Series Transducers

Deterministic Tree Series Transducers

Nondeterministic Tree Series Transducers

Compositions of Transformations

Department of Computer Science, TU Dresden

Andreas Maletti

Composition

 $\tau_1 \colon T_{\Sigma} \longrightarrow A \langle\!\langle T_{\Delta} \rangle\!\rangle \text{ and } \tau_2 \colon T_{\Delta} \longrightarrow A \langle\!\langle T_{\Gamma} \rangle\!\rangle \text{; complete semiring } \mathcal{A} = (A, +, \cdot, 0, 1)$

Definition:

composition of τ_1 and τ_2 ; denoted by τ_1 ; τ_2

$$(\tau_1;\tau_2,t) = \sum_{u \in T_\Delta} (\tau_1(t), u) \cdot \tau_2(u)$$

Theorem:

[Engelfriet, Fülöp, Vogler: Bottom-up and Top-down Tree Series Transformations, 2002] ${\cal A}$ commutative

- nlp-BOT(A); h-BOT(A) = p-BOT(A)
- p-BOT(A); bh-BOT(A) = p-BOT(A)

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Department of Computer Science, TU Dresden

The Problem

Department of Computer Science, TU Dresden

Andreas Maletti

The Problem

Department of Computer Science, TU Dresden

Andreas Maletti

Determir

Main Theorem

Theorem:

 \mathcal{A} commutative

$$\begin{split} & \text{lp-BOT}(\mathcal{A}) \text{ ; p-BOT}(\mathcal{A}) = \text{p-BOT}(\mathcal{A}) \\ & \text{lp-BOT}(\mathcal{A}) \text{ ; lp-BOT}(\mathcal{A}) = \text{lp-BOT}(\mathcal{A}) \\ & \text{nlp-BOT}(\mathcal{A}) \text{ ; nlp-BOT}(\mathcal{A}) = \text{nlp-BOT}(\mathcal{A}) \end{split}$$

Theorem:

 \mathcal{A} commutative

$$\text{p-BOT}(\mathcal{A})\,;\text{bd-BOT}(\mathcal{A})=\text{p-BOT}(\mathcal{A})$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Department of Computer Science, TU Dresden

Andreas Maletti

References

- D. López, I. Piñaga: Syntactic Pattern Recognition by Error Correcting Analysis on Tree Automata, LNCS 1876, p. 133–142, 2000
- ► B. Borchardt: *The Theory of Recognizable Tree Series*, Akademische Abhandlungen zur Informatik, 2005
- W. Kuich: Tree Transducers and Formal Tree Series, Acta Cybernet. 14(1), p. 135–149, 1999
- J. Engelfriet, Z. Fülöp, H. Vogler: Bottom-up and Top-down Tree Series Transformations, J. Autom. Lang. Combin. 8(2), p. 219–285, 2003
- Z. Fülöp, H. Vogler: Tree Series Transformations that Respect Copying, Theory Comput. Syst. 36(3), p. 247–293, 2003

Thank you for your attention!

그가 나라 가 가 된 가 가 된 것 같아.

Department of Computer Science, TU Dresden

The Power of Tree Series Transducers