## The Power of Tree Series Transducers of Type I and II

Andreas Maletti

February 21, 2005

- 1. Preliminaries
- 2. Tree Series Transducers
- 3. OI Tree Series Substitution
- 4. IO Tree Series Substitution

# Semirings

Definition:  $(A, +, \cdot, 0, 1)$  semiring, if

- (A, +, 0) commutative monoid,
- $(A,\cdot,1)$  monoid,
- $\bullet~\cdot$  distributes over +, and
- 0 is absorbing wrt.  $\cdot$  (i.e.,  $a \cdot 0 = 0 = 0 \cdot a$ ).

Definition:  $(A, +, \cdot, 0, 1)$  commutative semiring, if  $(A, \cdot, 1)$  commutative.

Examples: (all rings and fields are semirings)

- Natural numbers:  $(\mathbb{N}, +, \cdot, 0, 1)$  commutative,
- Boolean semiring:  $(\{\bot, \top\}, \lor, \land, \bot, \top)$  commutative,
- Tropical semiring:  $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$  commutative,
- Language semiring:  $(\mathcal{P}(\Sigma^*), \cup, \circ, \emptyset, \{\varepsilon\})$  non-commutative.

## $\aleph_0$ -complete Semirings

Definition:  $(A, +, \cdot, 0, 1) \aleph_0$ -complete semiring, if for all I with  $card(I) \leq \aleph_0$  there exists  $\sum_I : A^I \longrightarrow A$  such that

• 
$$\sum_{I} (a_i)_{i \in I} = a_j$$
, if  $I = \{j\}$ ,

• 
$$\sum_{I} (a_i)_{i \in I} = a_{j_1} + a_{j_2}$$
, if  $I = \{j_1, j_2\}$  with  $j_1 \neq j_2$ , and

• 
$$\sum_{I} (a_i)_{i \in I} = \sum_{J} \left( \sum_{I_j} (a_i)_{i \in I_j} \right)$$
, if  $I = \bigcup_{j \in J} I_j$  with  $\operatorname{card}(J) \leq \aleph_0$  and  $I_{j_1} \cap I_{j_2} = \emptyset$  for all  $j_1 \neq j_2$ .

**Convention**: We write  $\sum_{i \in I} a_i$  for  $\sum_{I} (a_i)_{i \in I}$ .

**Examples**: (no non-trivial ring or field is  $\aleph_0$ -complete)

- Natural numbers:  $(\mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)$ ,
- Boolean semiring:  $(\{\bot, \top\}, \lor, \land, \bot, \top)$ ,
- Tropical semiring:  $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ ,
- Language semiring:  $(\mathcal{P}(\Sigma^*), \cup, \circ, \emptyset, \{\varepsilon\}).$



Definition:

- $T_{\Sigma}(V)$  set of  $\Sigma$ -trees indexed by V,
- $T_{\Sigma} = T_{\Sigma}(\emptyset)$ ,
- t ∈ T<sub>Σ</sub>(V) linear (resp., nondeleting) in U, if every u ∈ U occurs at most (resp., at least) once in t,
- $\widehat{T_{\Sigma}}(V)$  set of linear and nondeleting  $\Sigma$ -trees indexed by V.

Examples:  $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$  and  $V = \{x_1, x_2\}$ 

- $\sigma(\alpha,\gamma(\alpha))\in T_{\Sigma}$ ,
- $\sigma(x_1, x_1) \in T_{\Sigma}(V)$  linear in  $\{x_2\}$  and nondeleting in  $\{x_1\}$ ,
- $\sigma(x_1, x_2) \in \widehat{T_{\Sigma}}(V).$

# Tree Series

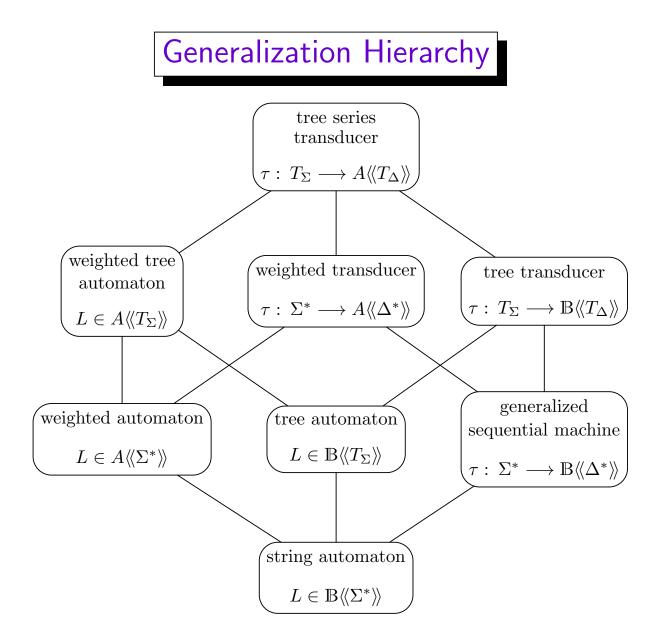
Definition:  $\varphi: T_{\Sigma}(V) \longrightarrow A$  tree series, where  $(A, +, \cdot, 0, 1)$  semiring

- $A\langle\!\langle T_{\Sigma}(V) \rangle\!\rangle$  class of all tree series,
- $\operatorname{supp}(\varphi) = \{ t \in T_{\Sigma}(V) \mid \varphi(t) \neq 0 \},\$
- $\varphi$  polynomial, if  $\operatorname{supp}(\varphi)$  finite,
- $A\langle T_{\Sigma}(V)\rangle$  class of all polynomial tree series,
- $(\varphi + \psi)(t) = \varphi(t) + \psi(t)$ ,
- $(a \cdot \varphi)(t) = a \cdot \varphi(t).$

**Convention**: We write  $(\varphi, t)$  instead of  $\varphi(t)$  and  $\sum_{t \in T_{\Sigma}(V)} (\varphi, t) t$  for  $\varphi$ .

Example:

- $\psi_{\text{height}} = \sum_{t \in T_{\Sigma}} \text{height}(t) t$ ,
- $(\psi_{\text{height}}, \sigma(\gamma(\gamma(\alpha)), \alpha)) = 4.$



Tree Representations

 $(A, +, \cdot, 0, 1)$  semiring,  $\Sigma$ ,  $\Delta$  ranked alphabets, Q finite set Definition: Family  $(\mu_k)_{k \in \mathbb{N}}$  of  $\mu_k : \Sigma^{(k)} \longrightarrow A\langle\!\langle T_{\Delta}(X) \rangle\!\rangle^{Q \times Q(X_k)^*}$  tree representation, if

- $\mu_k(\sigma)_{q,w} \neq \widetilde{0}$  for only finitely many  $(q,w) \in Q \times Q(X_k)^*$ ,
- $\mu_k(\sigma)_{q,w} \in A\langle\!\langle T_\Delta(X_{|w|})\rangle\!\rangle.$

Convention: All entries left unspecified are assumed to be  $\widetilde{0}$ .

#### Definition: $\mu$ is

- linear (resp., nondeleting), if for all (q, w) such that  $\mu_k(\sigma)_{q,w} \neq \widetilde{0}$  both w is linear (resp., nondeleting) in  $X_k$  and  $\mu_k(\sigma)_{q,w}$  is linear (resp., nondeleting) in  $X_{|w|}$ ,
- of type II (resp., top-down), if all  $\mu_k(\sigma)_{q,w}$  are linear (resp., linear and nondeleting),
- bottom-up, if for all (q, w) such that  $\mu_k(\sigma)_{q,w} \neq \tilde{0}$  we have  $w = q_1(x_1) \dots q_k(x_k)$ .

### Example Tree Representation

Example: 
$$\Sigma = \Delta = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}, Q = \{\star, \bot\}$$
, semiring  
Arct =  $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$   

$$\begin{array}{c|c} \mu_2(\sigma)_{\downarrow, \rightarrow} & \star(x_1) \bot (x_2) & \star(x_2) \bot (x_1) & \bot (x_1) \bot (x_2) \\ \hline \star & 1 \sigma(x_1, x_2) & 1 \sigma(x_2, x_1) & \widetilde{-\infty} \\ \bot & \widetilde{-\infty} & 0 \sigma(x_1, x_2) \end{array}$$

$$\begin{array}{c|c} \mu_0(\alpha)_{\downarrow, \rightarrow} & \varepsilon \\ \hline \star & 1 \alpha \\ \hline \bot & 0 \alpha \end{array}$$

$$\begin{array}{c|c} \mu_1(\gamma)_{\downarrow, \rightarrow} & \star(x_1) & \bot (x_1) \\ \hline \star & 1 \gamma(x_1) & \widetilde{-\infty} \\ \bot & \widetilde{-\infty} & 0 \gamma(x_1) \end{array}$$

is a linear and nondeleting top-down tree representation, but not bottom-up.

Tree Series Transducers

Definition:  $(Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$  tree series transducer, if

- Q finite set of *states*,
- $\Sigma$  and  $\Delta$  ranked alphabets of *input* and *output symbols*, resp.,
- $\mathcal{A} = (A, +, \cdot, 0, 1)$  semiring,
- $F \in A\langle\!\langle \widehat{T_{\Delta}}(X_1) \rangle\!\rangle^Q$ ,
- $\mu$  tree representation (over Q,  $\Sigma$ ,  $\Delta$ , and A).

Convention: Tree series transducer inherits properties of its tree representation.

Example:  $M_{\text{height}} = (\{\star, \bot\}, \Sigma, \Sigma, \text{Arct}, F, \mu)$  with  $\mu$  from the previous example and  $F_{\perp} = \widetilde{0}$  and  $F_{\star} = 0 x_1$  is a

linear and nondeleting top-down tree series transducer.

### **IO** Tree Series Substitution

 $\aleph_0$ -complete semiring  $(A, +, \cdot, 0, 1)$ , ranked alphabet  $\Delta$ 

Definition:  $\varphi \in A\langle\!\langle T_{\Delta}(X_k) \rangle\!\rangle$ ,  $\psi_1, \dots, \psi_k \in A\langle\!\langle T_{\Delta} \rangle\!\rangle$  $\varphi \longleftarrow (\psi_1, \dots, \psi_k) = \sum_{\substack{t \in T_{\Delta}(X_k), \\ t_1, \dots, t_k \in T_{\Delta}}} (\varphi, t) \cdot (\psi_1, t_1) \cdot \dots \cdot (\psi_k, t_k) t[t_1, \dots, t_k]$ 

Example:  $(\mathbb{N}, +, \cdot, 0, 1)$ 

$$2 \sigma(x_1, x_1) \longleftarrow (2 \alpha, 3 \gamma(\alpha)) = 12 \sigma(\alpha, \alpha)$$

#### **IO** Tree Series Transformations

 $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$  tree series transducer

• Consider the  $\Sigma\text{-algebra }(A^Q,(\,\mu(\sigma)\,)_{\sigma\in\Sigma})$  with

$$\mu(\sigma)(V_1, \dots, V_k)_q = \sum_{\substack{w \in Q(X_k)^*, \\ w = q_1(x_{i_1}) \dots q_n(x_{i_n})}} \mu_k(\sigma)_{q,w} \longleftarrow ((V_{i_1})_{q_1}, \dots, (V_{i_n})_{q_n})$$

• Let  $h_{\mu}$  be the unique homomorphism from  $T_{\Sigma}$  to  $A^Q$ .

Definition: IO tree series transformation induced by M is  $||M|| : A\langle\!\langle T_{\Sigma} \rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$ 

$$||M||(\varphi) = \sum_{t \in T_{\Sigma}} (\varphi, t) \cdot \sum_{q \in Q} F_q \longleftarrow (h_{\mu}(t)_q)$$

Example:  $||M_{\text{height}}|| (\sum_{t \in T_{\Sigma}} 0 t) = \psi_{\text{height}}$ 

Decomposition

Theorem: Let  $\mathcal{A}$  be a commutative,  $\aleph_0$ -complete semiring.

$$\begin{split} & [p][b][l]-GST(\mathcal{A}) \subseteq [l]bh-TOP(\mathcal{A}) \circ [p][b][l]-BOT(\mathcal{A}) \\ & [p][b][l]-TOP_{\!_{+}}(\mathcal{A}) \subseteq [l]bh-TOP(\mathcal{A}) \circ [p][b]l-BOT(\mathcal{A}) \end{split}$$

## Decomposition Theorem — Proof

#### Proof:

- $M = (Q, \Sigma, \Delta, A, F, \mu)$  tree series transducer, construct td-homomorphism top-down tree series transducer  $M_1$  and bottom-up tree series transducer  $M_2$
- $\max = \max\{ |w|_{x_j} | q \in Q, k \in \mathbb{N}, \sigma \in \Sigma_{(k)}, j \in [k], w \in Q(X_k)^*, \mu_k(\sigma)_{q,w} \neq \widetilde{0} \}$ and  $\Gamma^{(k \cdot \max)} = \Sigma^{(k)}$  and  $\Gamma^{(n)} = \emptyset$  otherwise.
- construct  $M_1 = (\{\star\}, \Sigma, \Gamma, \mathcal{A}, F_1, \mu_1)$  with  $(F_1)_{\star} = 1 x_1$

$$(\mu_1)_k(\sigma)_{\star,\underbrace{\star(x_1)\ldots\star(x_1)}_{\text{mx times}}\ldots\underbrace{\star(x_k)\ldots\star(x_k)}_{\text{mx times}}} = 1 \ \sigma(x_1,\ldots,x_{k\cdot\text{mx}}) \ .$$

•  $Q' = Q \cup \{\perp\}, M'_2 = (Q', \Gamma, \Delta, \mathcal{A}, F_2, \mu'_2) \text{ with } (F_2)_q = F_q \text{ and } (F_2)_\perp = \widetilde{0} \text{ and}$   $(\mu'_2)_{k \cdot \mathrm{mx}}(\sigma)_{q, \mathrm{ren}(w, I)} = \mu_k(\sigma)_{q, w}$  $(\mu'_2)_{k \cdot \mathrm{mx}}(\sigma)_{\perp, \perp(x_1) \dots \perp (x_{k \cdot \mathrm{mx}})} = 1 \sigma(x_1, \dots, x_{k \cdot \mathrm{mx}})$ 

# Composition

Theorem: Let  $\mathcal{A}$  be a commutative and  $\aleph_0$ -complete semiring.

$$\begin{split} & [I]h-TOP(\mathcal{A}) \circ [p][I][h]-BOT(\mathcal{A}) \subseteq [p][I][h]-GST(\mathcal{A}) \\ & [I]h-TOP(\mathcal{A}) \circ [p][h]I-BOT(\mathcal{A}) \subseteq [p][I][h]-TOP_{\!+}(\mathcal{A}) \\ & [I]h-TOP(\mathcal{A}) \circ [p][h]nI-BOT(\mathcal{A}) \subseteq [p][I][h]-TOP(\mathcal{A}) \end{split}$$

#### Proof:

- $M_1 = (\{\star\}, \Sigma, \Gamma, \mathcal{A}, F_1, \mu_1)$  homomorphism top-down tree series transducer and  $M_2 = (Q, \Gamma, \Delta, \mathcal{A}, F, \mu_2)$  bottom-up tree series transducer
- construct tree series transducer  $M = (Q, \Sigma, \Delta, A, F, \mu)$  for  $w = q_1(x_{i_1}) \dots q_n(x_{i_n}) \in Q(X_k)^*$  set

$$\mu_k(\sigma)_{q,w} = h_{\mu_2}^{q_1...q_n}((\mu_1)_k(\sigma)_{\star,\star(x_{i_1})...\star(x_{i_n})})_q$$

Characterization Theorem

Theorem: Let  $\mathcal{A}$  be a commutative and  $\aleph_0$ -complete semiring.

$$[p][I]-GST(\mathcal{A}) = [I]bh-TOP(\mathcal{A}) \circ [p][I]-BOT(\mathcal{A})$$
$$[p][I]-TOP_{+}(\mathcal{A}) = [I]bh-TOP(\mathcal{A}) \circ [p]I-BOT(\mathcal{A})$$

#### OI Tree Series Substitution

 $\aleph_0\text{-complete semiring }(A,+,\cdot,0,1)\text{, ranked alphabet }\Delta$ 

Definition:  $\varphi \in A\langle\!\langle T_{\Delta}(X_k) \rangle\!\rangle$ ,  $\psi_1, \dots, \psi_k \in A\langle\!\langle T_{\Delta} \rangle\!\rangle$   $x_j[\psi_1, \dots, \psi_k] = \psi_j$  $\sigma(t_1, \dots, t_n)[\psi_1, \dots, \psi_k] = \sigma(t_1[\psi_1, \dots, \psi_k], \dots, t_n[\psi_1, \dots, \psi_k])$ 

where

$$\sigma(\psi_1,\ldots,\psi_k) = \sum_{t_1,\ldots,t_k \in T_\Delta} (\psi_1,t_1) \cdot \ldots \cdot (\psi_k,t_k) \, \sigma(t_1,\ldots,t_k).$$

Example:  $(\mathbb{N}, +, \cdot, 0, 1)$  $2 \sigma(x_1, x_1) \longleftarrow (2 \alpha, 3 \gamma(\alpha)) = 8 \sigma(\alpha, \alpha)$ 

#### **OI** Tree Series Transformations

 $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$  tree series transducer

• Consider the  $\Sigma\text{-algebra}~(A^Q,(\,\mu^{\rm OI}(\sigma)\,)_{\sigma\in\Sigma})$  with

$$\mu^{\text{OI}}(\sigma)(V_1,\ldots,V_k)_q = \sum_{\substack{w \in Q(X_k)^*, \\ w = q_1(x_{i_1})\ldots q_n(x_{i_n})}} \mu_k(\sigma)_{q,w} \big[ (V_{i_1})_{q_1},\ldots, (V_{i_n})_{q_n} \big]$$

• Let  $h_{\mu}^{\text{OI}}$  be the unique homomorphism from  $T_{\Sigma}$  to  $A^Q$ .

**Definition:** OI tree series transformation induced by M is  $||M||^{\text{OI}} : A\langle\!\langle T_{\Sigma} \rangle\!\rangle \longrightarrow A\langle\!\langle T_{\Delta} \rangle\!\rangle$ 

$$\|M\|^{\mathrm{OI}}(\varphi) = \sum_{t \in T_{\Sigma}} (\varphi, t) \cdot \sum_{q \in Q} F_q \longleftarrow \left(h^{\mathrm{OI}}_{\mu}(t)_q\right)$$

### Considering Linearity and Deletion

Theorem: For every  $\aleph_0$ -complete semiring  $\mathcal{A}$ 

$$\label{eq:constraint} \texttt{[b][l][n][d][h]p-TOP}^{\mathsf{OI}}_{\!\!+}(\mathcal{A}) = \texttt{[b][l][n][d][h]p-GST}^{\mathsf{OI}}(\mathcal{A}) \ .$$

Theorem: For every  $\aleph_0$ -complete semiring  $\mathcal{A}$ 

$$\label{eq:plice} [p][b][l][n][d][h] - TOP_+^{OI}(\mathcal{A}) = [p][b][l][n][d][h] - TOP^{OI}(\mathcal{A}) \ .$$

### Considering Deletion — Proof

Proof:

- $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$  tree series transducer
- $j \in \mathbb{N}_+$  maximal s.t. there exist  $k \in \mathbb{N}$ ,  $\sigma \in \Sigma_{(k)}$ ,  $q \in Q$ ,  $w \in Q(X)^*$ , and  $t \in \operatorname{supp}(\mu_k(\sigma)_{q,w})$  such that  $j \leq |w|$  and  $|t|_{x_j} = 0$ .
- construct tree series transducer  $M' = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu')$  with  $w = q_1(x_{i_1}) \dots q_n(x_{i_n}) \in Q(X_k)^*$  such that j > n set  $\mu'_k(\sigma)_{q,w} = \mu_k(\sigma)_{q,w}$  and otherwise

$$\mu'_{k}(\sigma)_{q,w} = \sum_{\substack{t \in T_{\Delta}(X), \\ |t|_{x_{j}} \ge 1}} (\mu_{k}(\sigma)_{q,w}, t) t + \\ + \sum_{\substack{w' \in Q(X_{k})^{n+1}, \\ w = w'_{1} \dots w'_{j-1} w'_{j+1} \dots w'_{n+1}, \\ t \in T_{\Delta}(X \setminus \{x_{j}\})}} (\mu_{k}(\sigma)_{q,w'}, t) t[x_{1}, \dots, x_{j}, x_{j}, \dots, x_{n}]$$

Characterization Theorem

Theorem: For every  $\aleph_0$ -complete semiring  $\mathcal{A}$ 

$$\begin{split} & [b][l][n][d][h]p-TOP(\mathcal{A}) = [b][l][n][d][h]p-TOP^{OI}(\mathcal{A}) \\ & = [b][l][n][d][h]p-TOP^{OI}_{\!\!+}(\mathcal{A}) = [b][l][n][d][h]p-GST^{OI}(\mathcal{A}) ~. \end{split}$$