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Motivation

Tree series transducers are a straightforward generalization of

(i) tree transducers, which are applied in

• syntax-directed semantics,

• functional programming, and

• XML querying,

(ii) weighted automata, which are applied in

• (tree) pattern matching,

• image compression and speech-to-text processing.

Applications:

• can be used for code selection [Borchardt 04]

• potential uses in connection with tree banks
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Generalization Hierarchy

tree series
transducer

τ : TΣ −→ A〈〈T∆〉〉

weighted tree
automaton

L ∈ A〈〈TΣ〉〉

weighted transducer

τ : Σ∗ −→ A〈〈∆∗〉〉

tree transducer

τ : TΣ −→ B〈〈T∆〉〉

weighted automaton

L ∈ A〈〈Σ∗〉〉

tree automaton

L ∈ B〈〈TΣ〉〉

generalized

sequential machine

τ : Σ∗ −→ B〈〈∆∗〉〉

string automaton

L ∈ B〈〈Σ∗〉〉
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Trees

Σ ranked alphabet, Σk ⊆ Σ symbols of rank k, X = { xi | i ∈ N+ }

• TΣ(X) set of Σ-trees indexed by X,

• TΣ = TΣ(∅),

• t ∈ TΣ(X) is linear (resp., nondeleting) in Y ⊆ X, if every y ∈ Y occurs at most

(resp., at least) once in t,

• t[t1, . . . , tk] denotes the tree substitution of ti for xi in t
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Semirings

A semiring is an algebraic structure A = (A,⊕,�)

• (A,⊕) is a commutative monoid with neutral element 0,

• (A,�) is a monoid with neutral element 1,

• 0 is absorbing wrt. �, and

• � distributes over ⊕.

Examples:

• semiring of non-negative integers N∞ = (N ∪ {∞},+, ·)

• Boolean semiring B = ({0, 1},∨,∧)

• tropical semiring T = (N ∪ {∞},min,+)

• any ring, field, etc.
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Properties of Semirings

We say that A is

• commutative, if � is commutative,

• idempotent, if a⊕ a = a,

• complete, if there is an operation
⊕
I : A

I −→ A such that

1.
⊕
i∈I ai = ai1 ⊕ · · · ⊕ ain , if I = {i1, . . . , in}, and

2.
⊕
i∈I ai =

⊕
j∈J
⊕
i∈Ij ai, if I =

⋃
j∈J Ij is a partition of I, and

3.
⊕
i∈I(a� ai) = a�

⊕
i∈I ai and

⊕
i∈I(ai � a) =

(⊕
i∈I ai

)
� a,

• completely idempotent, if it is complete with
⊕
i∈I a = a for every non-empty I.

Semiring Commutative Idempotent Complete Completely Idempotent

N∞ YES no YES no

B YES YES YES YES

T YES YES YES YES
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Tree Series

A = (A,⊕,�) semiring, Σ ranked alphabet

Mappings ϕ : TΣ(X) −→ A are also called tree series

• the set of all tree series is A〈〈TΣ(X)〉〉,

• the coefficient of t ∈ TΣ(X) in ϕ, i.e., ϕ(t), is denoted by (ϕ, t),

• the sum is defined pointwise (ϕ1 ⊕ϕ2, t) = (ϕ1, t)⊕ (ϕ2, t),

• the support of ϕ is supp(ϕ) = { t ∈ TΣ(X) | (ϕ, t) 6= 0 },

• ϕ is linear (resp., nondeleting in Y ⊆ X), if supp(ϕ) is a set of trees, which are

linear (resp., nondeleting in Y),

• the series ϕ with supp(ϕ) = ∅ is denoted by 0̃.

Example: ϕ = 1 α+ 1 β+ 3 σ(α,α) + . . .+ 3 σ(β,β) + 5 σ(α, σ(α,α)) + . . .
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Tree Series Substitution

A = (A,⊕,�) complete semiring, ϕ,ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉

Pure substitution of (ψ1, . . . , ψk) into ϕ:

ϕ←− (ψ1, . . . , ψk) =
⊕

t∈supp(ϕ),
(∀i∈[k]): ti∈supp(ψi)

(ϕ, t)� (ψ1, t1)� · · · � (ψk, tk) t[t1, . . . , tk]

o-substitution of (ψ1, . . . , ψk) into ϕ:

ϕ
o←−(ψ1, . . . , ψk) = ⊕

t∈supp(ϕ),
(∀i∈[k]): ti∈supp(ψi)

(ϕ, t)�(ψ1, t1)|t|x1�· · ·�(ψk, tk)|t|xk t[t1, . . . , tk]

Example: 5 σ(x1, x1)←− (2 α) = 10 σ(α,α) and 5 σ(x1, x1)
o←− (2 α) = 20 σ(α,α)
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Distributivity

(⊕
i∈I

ϕi

)
m←− (⊕

i1∈I1

ψ1i1 , . . . ,
⊕
ik∈Ik

ψkik

)
=

⊕
i∈I,

(∀j∈[k]): ij∈Ij

ϕi
m←− (ψ1i1 , . . . , ψkik)

Substitution Sufficient condition for distributivity

pure substitution always

o-substitution ϕi linear, A completely idempotent

OI-substitution ϕi linear and nondeleting [Kuich 99]
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Associativity

(
ϕ

m←−(ψ1, . . . , ψk)) m←−(τ1, . . . , τn) = ϕ m←−(ψ1 m←−(τ1, . . . , τn), . . . , ψk m←−(τ1, . . . , τn))
Substitution Sufficient condition for associativity

pure substitution A completely idempotent, conforming partition ( Ij )j∈[k] of [n], τi boolean

τi singletons with idempotent coefficients

special associativity law

o-substitution ϕ,ψ1, . . . , ψk linear, A zero-divisor free and completely idempotent

ϕ linear, A zero-divisor free, τi singletons

OI-substitution ϕi linear and nondeleting [Kuich 99]

Special associativity law: partition ( Ij )j∈J of I with var(ψj) ⊆ XIj for every j ∈ J(
ϕ←− (ψj )j∈J

)←− ( τi )i∈I = ϕ←− (ψj←− ( τi )i∈Ij
)
j∈J
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Linearity

(a�ϕ) m←− (a1 �ψ1, . . . , ak �ψk) = a� a1 � · · · � ak �ϕ
m←− (ψ1, . . . , ψk)

Substitution Sufficient condition for distributivity

pure substitution always

o-substitution ai ∈ {0, 1} or special linearity law

OI-substitution ϕi linear and nondeleting [Kuich 99]

Special linearity law: tree t ∈ TΣ(Xk)

(a t)
o←− (a1 �ψ1, . . . , ak �ψk) = a� a|t|11 � · · · � a|t|kk �

(
t

o←− (ψ1, . . . , ψk)
)
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Tree Series Transducers

Definition: A (bottom-up) tree series transducer (tst) is a system

M = (Q,Σ,∆,A, F, µ)

• Q is a non-empty set of states,

• Σ and ∆ are input and output ranked alphabets,

• A = (A,⊕,�) is a complete semiring,

• F ∈ A〈〈T∆(X1)〉〉Q is a vector of final outputs,

• µ = (µk )k∈N with µk : Σk −→ A〈〈T∆(Xk)〉〉Q×Q
k

.

If Q is finite and µk(σ)q,~q is polynomial, then M is called finite.
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Semantics of Tree Series Transducers

m ∈ {ε, o}, q ∈ Q, t ∈ TΣ, ϕ ∈ A〈〈TΣ〉〉

Definition: The mapping hmµ : TΣ −→ A〈〈T∆〉〉Q is defined as

hmµ (σ(t1, . . . , tk))q =
⊕

q1,...,qk∈Q

µk(σ)q,(q1,...,qk)
m←− (hmµ (t1)q1 , . . . , h

m
µ (tk)qk)

and hmµ (ϕ)q =
⊕
t∈TΣ(ϕ, t)� h

m
µ (t)q.

• the m-tree-to-tree-series transformation ‖M‖m : TΣ −→ A〈〈T∆〉〉 computed by M

is (‖M‖m, t) =
⊕
q∈Q Fq

m←− (hmµ (t)q) and

• the m-tree-series-to-tree-series transformation |M|m : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉
computed by M is (|M|m, ϕ) =

⊕
t∈TΣ(ϕ, t)� (‖M‖m, t).
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Extension

(Q,Σ,∆,A, F, µ) tree series transducer, m ∈ {ε, o}, ~q ∈ Qk, q ∈ Q, ϕ ∈ A〈〈TΣ(Xk)〉〉

Definition: We define h~qµ,m : TΣ(Xk) −→ A〈〈T∆(Xk)〉〉Q

h~qµ,m(xi)q =

1 xi , if q = qi

0̃ , otherwise

h~qµ,m(σ(t1, . . . , tk))q =
⊕

p1,...,pk∈Q

µk(σ)q,p1...pk
m←− (h~qµ,m(t1)p1 , . . . , h

~q
µ,m(tk)pk)

We define h~qµ,m : A〈〈TΣ(Xk)〉〉 −→ A〈〈T∆(Xk)〉〉Q by

h~qµ,m(ϕ)q =
⊕

t∈TΣ(XI)

(ϕ, t)� h~qµ,m(t)q
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Composition Construction

M1 = (Q1, Σ, ∆,A, F1, µ1) and M2 = (Q2, ∆, Γ,A, F2, µ2) tree series transducer

Definition: The m-product of M1 and M2, denoted by M1 ·mM2, is the tree series

transducer

M = (Q1 ×Q2, Σ, Γ,A, F, µ)

• Fpq =
⊕
i∈Q2(F2)i

m←− hqµ2,m((F1)p)i

• µk(σ)pq,(p1q1,...,pkqk) = h
q1...qk
µ2,m ((µ1)k(σ)p,p1...pk)q.
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Main Theorem

A commutative and complete semiring, M1 and M2 tree series transducer

Theorem: |M1 ·mM2|
m = |M1|

m ◦ |M2|
m, if

• m = ε and M1 linear, or

• m = ε and M2 boolean and deterministic, or

• m = ε and M2 is deterministic and A is multiplicatively idempotent, or

• m = o and M1 is linear, M2 is nondeleting and linear, and A is

completely idempotent.
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Main Corollary

Corollary:

• l-BOTts-ts(A) ◦ BOTts-ts(A) = BOTts-ts(A).

• BOTts-ts(A) ◦ db-BOTts-ts(A) = BOTts-ts(A),

• BOTts-ts(A) ◦ d-BOTts-ts(A) = BOTts-ts(A), provided that A is multiplicatively

idempotent,

• l-BOTots-ts(A) ◦ nl-BOTots-ts(A) = l-BOTots-ts(A), provided that A is

completely idempotent.
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