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Generalization Hierarchy

finite tree automata
with cost (function)

L : TΣ −→ A

finite (string) automata

with cost (function)

L : Σ∗ −→ A

finite tree automata

L ⊆ TΣ

finite (string) automata

L ⊆ Σ∗
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Semirings

Definition: A semiring is an algebraic structure A = (A,⊕,�,0,1), where

• A is the carrier set,

• ⊕ and � are associative, i.e. a⊗ (b⊗ c) = (a⊗ b)⊗ c with ⊗ ∈ {⊕,�},

• ⊕ is commutative, i.e. a⊕ b = b⊕ a,

• 0 and 1 are the unit elements of addition and multiplication, respectively,

i.e. 0⊕ a = a⊕ 0 = a and 1� a = a� 1 = a,

• � distributes over ⊕, i.e. a� (b⊕ c) = (a� b)⊕ (a� c) and

(b⊕ c)� a = (b� a)⊕ (c� a) and

• 0 is absorbing, i.e. 0� a = a� 0 = 0.
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Semiring Examples

• the semiring of natural numbers N = (N,+, ·, 0, 1),

• the arctic semiring A = (N ∪ {−∞},max,+,−∞, 0),

• the tropical semiring T = (N ∪ {+∞},min,+,+∞, 0),

• the subset semiring F = (Pf (N),∪,+++, ∅, {0}) with

A+++B = { a+ b | a ∈ A, b ∈ B } ,

• the boolean semiring B = ({⊥.>},∨,∧,⊥,>).
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Series-Parallel Graphs

Let Σ = {‖(2), ·(2), a(0), b(0), c(0), d(0)}. The term a ‖ (((b · c) ‖ a) · d) corresponds to

the graphical representations

· · · ·

a

b

a

c d

‖

a ·

‖

·

b c

a

d

The leftmost node is called source, whereas the rightmost one is called sink. Assume

we apply costs as follows:

c(G1 ‖G2) = c(G1)⊕ c(G2) and c(G1 · G2) = c(G1)� c(G2)
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Series-Parallel Graphs (cont’d)

• in the Boolean semiring B with c(b) = c(c) = c(d) = > and c(a) = ⊥:

c(G) = > ⇐⇒ there is a path from source to sink without edges labelled a in G

· · · ·

a/⊥

b/>

a/⊥

c/> d/>
c(a ‖ (((b · c) ‖ a) · d))

= c(a) ∨ (((c(b) ∧ c(c)) ∨ c(a)) ∧ c(d))

= ⊥ ∨ (((> ∧>) ∨ ⊥) ∧ >) = >

• in the semiring of natural numbers N with c(a) = c(b) = c(c) = c(d) = 1:

c(G) = the number of different paths from source to sink in G

· · · ·

a/1

b/1

a/1

c/1 d/1

c(a ‖ (((b · c) ‖ a) · d))

= c(a) + (((c(b) · c(c)) + c(a)) · c(d))

= 1 + (((1 · 1) + 1) · 1) = 3
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Series-Parallel Graphs (cont’d)

• in the arctic semiring A with c(a) = c(b) = c(c) = c(d) = 1:

c(G) = the number of edges in a longest path from source to sink (critical path) in G

· · · ·

a/1

b/1

a/1

c/1 d/1

c(a ‖ (((b · c) ‖ a) · d))

= max(c(a),max(c(b) + c(c), c(a)) + c(d))

= max(1,max(1 + 1, 1) + 1) = 3

• in the tropical semiring T with c(a) = 7, c(b) = 3, c(c) = 2 and c(d) = 1:

c(G) = the length of a shortest path from source to sink in G

· · · ·

a/7

b/3

a/7

c/2 d/1

c(a ‖ (((b · c) ‖ a) · d))

= min(c(a),min(c(b) + c(c), c(a)) + c(d))

= min(7,min(3 + 2, 7) + 1) = 6
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Series-Parallel Graphs (cont’d)

• in the subset-semiring F with c(a) = {7}, c(b) = {3}, c(c) = {2} and c(d) = {1}:

c(G) = the set of all path lengths from source to sink in G

· · · ·

a/{7}

b/{3}

a/{7}

c/{2} d/{1}
c(a ‖ (((b · c) ‖ a) · d))

= c(a) ∪ (((c(b) +++ c(c)) ∪ c(a)) +++ c(d))

= {7} ∪ ((({3}+++ {2}) ∪ {7}) +++ {1}) = {7, 6, 8}

Those computations can be incorporated into finite tree automata.
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Tree Automata

Definition: A tree automaton is a quadruple M = (Q,Σ, δ, F ), where

• Q is a finite, non-empty set of states,

• Σ is a ranked alphabet of input symbols,

• δ ⊆
⋃

k∈NQ
k × Σ×Q is a set of transitions and

• F ⊆ Q is the set of final states.

Example: Let Σ = {‖(2), ·(2), a(0), b(0), c(0), d(0)} be as before, Q = {q0, q1}, F = {q1}
and the transitions are specified in the following tables.

symbol (q0, q0) (q0, q1) (q1, q0) (q1, q1)

‖ q0 q0 q0 q1

· q0 q1 q1 q1

symbol ε

a q1

b, c, d q0
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Computation of a Tree Automaton

‖

a ·

‖

·

b c

a

d

(q1q0, ‖, q0)

(ε, a, q1) (q0q0, ·, q0)

(q0q1, ‖, q0)

(q0q0, ·, q0)

(ε, b, q0) (ε, c, q0)

(ε, a, q1)

(ε, d, q0)

Since this is the only possible computation tree for the given input tree and q0 /∈ F , the

input tree is rejected, i.e. does not belong to the (tree) language accepted by the tree

automaton.

Generally speaking: This tree automaton accepts series-parallel graphs, in which every

path from the source to the sink contains at least one a.
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Cost Function

Definition: Given a tree automaton M = (Q,Σ, δ, F ), a cost function for M over

semiring A = (A,⊕,�,0,1) is a mapping c : δ −→ A[X].

Example: using the arctic semiring A

1 = c(ε, a, q1) = c(ε, b, q0)

= c(ε, c, q0) = c(ε, d, q0)

max(x1, x2) = c(q0q0, ‖, q0) = c(q0q1, ‖, q0)

= c(q1q0, ‖, q0) = c(q1q1, ‖, q1)

x1 + x2 = c(q0q0, ·, q0) = c(q0q1, ·, q1)

= c(q1q0, ·, q1) = c(q1q1, ·, q1)

(q1q0, ‖, q0)

(ε, a, q1) (q0q0, ·, q0)

(q0q1, ‖, q0)

(q0q0, ·, q0)

(ε, b, q0) (ε, c, q0)

(ε, a, q1)

(ε, d, q0)

1 3

2

2

1 1

1

1
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Monotonic Semirings

Definition: A semiring A = (A,⊕,�,0,1) is called monotonic, iff

• there is a partial order (A,�) such that

• a � a� b and b � a� b for every a, b ∈ A \ {0},

• a � a⊕ b and

• a ≺ a� a for every a /∈ {0,1}.

Examples:

• Semiring of natural numbers N,

• Arctic semiring A,

• (Finite language) semiring L = (Pf (Σ∗),∪, ◦, ∅, {ε}) with the common operations

of union and concatenation.
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Naturally Ordered and Additively Idempotent Semirings

Observation: Let A = (A,⊕,�,0,1) be an additively idempotent semiring, i.e. the

equality 1⊕ 1 = 1 holds. Then A is monotonic, if a ≺ a� a for every a /∈ {0,1},
where � ⊆ A×A is defined by

a � b ⇐⇒ a⊕ b = b.

Observation: Let A = (A,⊕,�,0,1) be a naturally ordered semiring, i.e. the relation

v ⊆ A×A with

a v b ⇐⇒ (∃c ∈ A) : a⊕ c = b

is a partial order over A. Then A is monotonic, if for every a /∈ {0,1} the condition

a ≺ a� a holds.
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Star Search

Definition: The star of a semiring element a ∈ A is defined as:

a∗ = lim
n→∞

n∑
i=0

ai (compare Σ∗ = lim
n→∞

n⋃
i=0

Σi and reflexive, transitive closure).

Example: The star of 0 exists in any semiring and is always 1.

• in the semiring of natural numbers N: no more stars exist

• in the arctic semiring A: 0∗ exists

• in the tropical semiring T: 0∗ exists

• in the subset semiring F: {0}∗ exists

• in the boolean semiring B: >∗ exists

• in the (finite language) semiring L: {ε}∗ exists
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Some More Properties of Semirings

Definition: A monoid A = (A,⊗,1) is periodic, if for every element a ∈ A there exist

i, j ∈ N with i < j and ai = aj .

Example: Every additively idempotent semiring is additively periodic with i = 1 and

j = 2.

Definition: A monoid A = (A,⊗,1) is locally finite, if for every finite B ⊆ A also 〈B〉
is finite.

Example: Every additively idempotent semiring is additively locally finite.

Observation: Given a semiring A = (A,⊕,�,0,1), A is additively locally finite, iff A is

additively periodic.

Observation: Given a semiring A = (A,⊕,�,0,1) where 1∗ exists. Then A is

additively periodic. Moreover, on monotonic semirings: 1∗ exists, iff A is additively

periodic.
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Finitely Factorizing Semirings

Definition: A semiring A = (A,⊕,�,0,1) is finitely factorizing, if both monoids

(A,⊕,0) and (A \ {0},�,1) are finitely factorizing, i.e. given a monoid (B,⊗,1) for

every b ∈ B the set
{

(c, d) ∈ B2 | b = c⊗ d
}

is finite.

Example: The semirings N, A and L are finitely factorizing, while T and F are not.
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E-states

Definition: Let M = (Q,Σ, δ, F ) be a tree automaton with cost function

c : δ −→ A[X] over a semiring A = (A,⊕,�,0,1) and E ⊆ A. The set of E-states of

M , denoted QE , is

QE = { q ∈ Q | for every q-computation ψ: c(ψ) ∈ E } .

Lemma: For monotonic semirings we can effectively determine Q{0} and Q{0,1}.

Example: The set of all {0}-states Q{0} ⊆ Q can be computed as follows:

• Set Q0 = Q.

• For every n ∈ N set

Qn+1 = Qn \

{
q ∈ Qn

∣∣∣∣∣ (∃τ = (q1 . . . qk, σ, q) ∈ δ)
(
∃m ∈ mon(c(τ))

)
(∀j ∈ var(m)) : qj ∈ Q \Qn

}
.

Then Q{0} = Qω.

Boundedness results 17 July 4, 2003



Boundedness

Classical notion of boundedness fails, since there are several semirings (e.g. T) which

possess a maximal element (w.r.t. some partial order). Every tree automaton with cost

function over such a semiring would then be bounded.

Definition: A tree automaton M = (Q,Σ, δ, F ) with cost function c : δ −→ A[X] over

a semiring A = (A,⊕,�,0,1) is bounded, if

c(M) = { c(ψ) |ψ is an accepting computation of M }

is finite.

Observation: Every tree automaton with cost function over a finite semiring is

bounded.
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Boundedness Result

Theorem: Let M = (Q,Σ, δ, F ) be a tree automaton with cost function

c : δ −→ A[X] over a finitely factorizing and monotonic semiring A = (A,⊕,�,0,1).

M is bounded, iff for every q-q-computation ψ with q /∈ Q{0,1} either

• c(ψ) = x1 + a for some a ∈ A and (1∗ exists or a = 0) or

• c(ψ) is a constant.

p
...
q
...
q

t1

;

p
...
q
...
q
...
q

t1
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Boundedness Result (cont’d)

Rationale: The cases c(ψ) = x1 and c(ψ) = a for some a ∈ A are straightforward. Let

c(ψ) = x1 + a, thus 1∗ exists. It follows that A is additively periodic, hence additively

locally finite.

Rationale: Let c(ψ) = bx1 with b /∈ {0,1}. By b ≺ b� b pumping yields

unboundedness.

Rationale: Let c(ψ) = x2
1. By q /∈ Q{0,1} and b ≺ b� b pumping again yields

unboundedness.
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Examples

Example: Let M = (Q,Σ, δ, F ) be a tree automaton with cost function c : δ −→ N[X]

over the semiring (N,+, ·, 0, 1). M is bounded if and only if for every q-q-computation

ψ with q /∈ Q{0,1} either

• c(ψ) = a for some a ∈ N or

• c(ψ) = x1 holds.

Example: Let M = (Q,Σ, δ, F ) be a tree automaton with cost function

c : δ −→ (N ∪ {−∞})[X] over the arctic semiring (N ∪ {−∞},max,+,−∞, 0). M is

bounded if and only if for every q-q-computation ψ with q /∈ Q{0,1} either

• c(ψ) = a for some a ∈ (N ∪ {∞}) or

• c(ψ) = max(x1, c0) for some c0 ∈ (N ∪ {−∞}) holds.
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Remaining Questions

• Can we decide the property required for all q-q-computations?

• Can we also characterize boundedness by some property which is based on single

transitions rather than q-q-computations?

• Which properties of monotonic semirings are obsolete when restricting ourselves to

tree automata with linear cost functions?

• Can we characterize unboundedness of tree automata with cost function over

certain semirings which are not finitely factorizing?

• Can we establish sufficient or necessary criteria for boundedness/unboundedness

with less restrictions on the semiring?
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