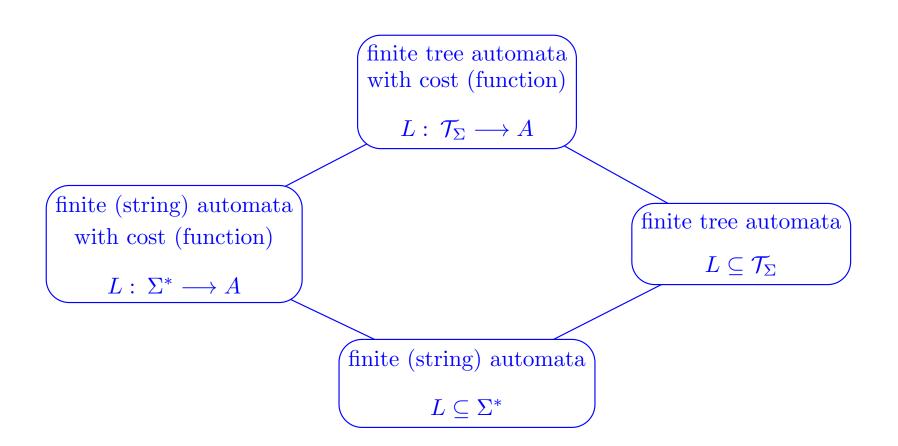
Boundedness of tree automata with polynomial cost function

Andreas Maletti

July 4, 2003

- 1. Introduction and Motivation
- 2. Tree Automata and Cost Functions
- 3. Monotonic Semirings
- 4. Boundedness Results

Generalization Hierarchy



Semirings

Definition: A *semiring* is an algebraic structure $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$, where

- A is the *carrier set*,
- \oplus and \odot are *associative*, i.e. $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ with $\otimes \in \{\oplus, \odot\}$,
- \oplus is *commutative*, i.e. $a \oplus b = b \oplus a$,
- 0 and 1 are the *unit elements* of addition and multiplication, respectively,
 i.e. 0 ⊕ a = a ⊕ 0 = a and 1 ⊙ a = a ⊙ 1 = a,
- \odot *distributes over* \oplus , i.e. $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ and $(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$ and
- **0** is *absorbing*, i.e. $\mathbf{0} \odot a = a \odot \mathbf{0} = \mathbf{0}$.

Semiring Examples

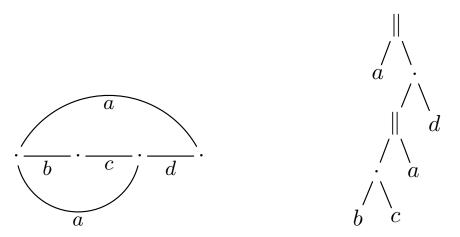
- the semiring of natural numbers $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1)$,
- the arctic semiring $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$,
- the tropical semiring $\mathbb{T} = (\mathbb{N} \cup \{+\infty\}, \min, +, +\infty, 0)$,
- the subset semiring $\mathbb{F} = (\mathcal{P}_f(\mathbb{N}), \cup, +, \emptyset, \{0\})$ with

$$A + B = \{ a + b \mid a \in A, b \in B \},\$$

• the boolean semiring $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top).$

Series-Parallel Graphs

Let $\Sigma = \{ \|^{(2)}, \cdot^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}, d^{(0)} \}$. The term $a \| (((b \cdot c) \| a) \cdot d)$ corresponds to the graphical representations



The leftmost node is called *source*, whereas the rightmost one is called *sink*. Assume we apply costs as follows:

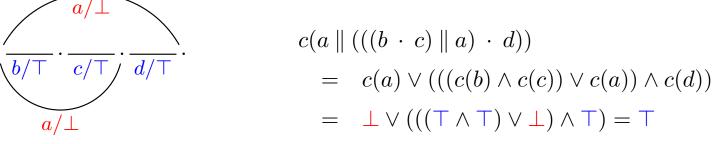
 $c(G_1 \parallel G_2) = c(G_1) \oplus c(G_2)$ and $c(G_1 \cdot G_2) = c(G_1) \odot c(G_2)$

5

Series-Parallel Graphs (cont'd)

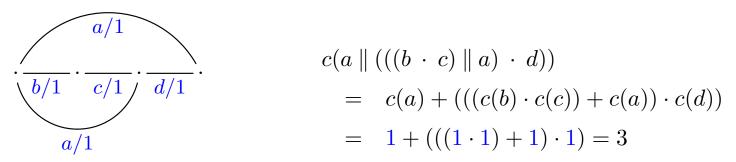
• in the Boolean semiring $\mathbb B$ with $c(b) = c(c) = c(d) = \top$ and $c(a) = \bot$:

 $c(G) = \top \iff$ there is a path from source to sink without edges labelled a in G



• in the semiring of natural numbers \mathbb{N} with c(a) = c(b) = c(c) = c(d) = 1:

c(G) = the number of different paths from source to sink in G



Series-Parallel Graphs (cont'd)

• in the *arctic semiring* A with c(a) = c(b) = c(c) = c(d) = 1:

c(G) = the number of edges in a longest path from source to sink (*critical path*) in G

$$\frac{a/1}{\frac{b/1}{c/1} \cdot \frac{c/1}{c/1} \cdot \frac{d/1}{d/1}} = \max(c(a), \max(c(b) + c(c), c(a)) + c(d)) = \max(1, \max(1+1, 1) + 1) = 3$$

• in the *tropical semiring* \mathbb{T} with c(a) = 7, c(b) = 3, c(c) = 2 and c(d) = 1:

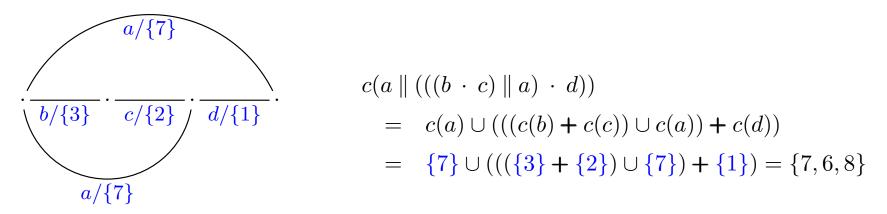
c(G) = the length of a shortest path from source to sink in G

$$\frac{a/7}{\frac{b/3}{a/7}} \cdot \frac{c/2}{c/2} \cdot \frac{d/1}{d/1}} \cdot c(a \parallel (((b \cdot c) \parallel a) \cdot d)) \\
= \min(c(a), \min(c(b) + c(c), c(a)) + c(d)) \\
= \min(7, \min(3 + 2, 7) + 1) = 6$$

Series-Parallel Graphs (cont'd)

• in the subset-semiring \mathbb{F} with $c(a) = \{7\}$, $c(b) = \{3\}$, $c(c) = \{2\}$ and $c(d) = \{1\}$:

c(G) = the set of all path lengths from source to sink in G



Those computations can be incorporated into finite tree automata.

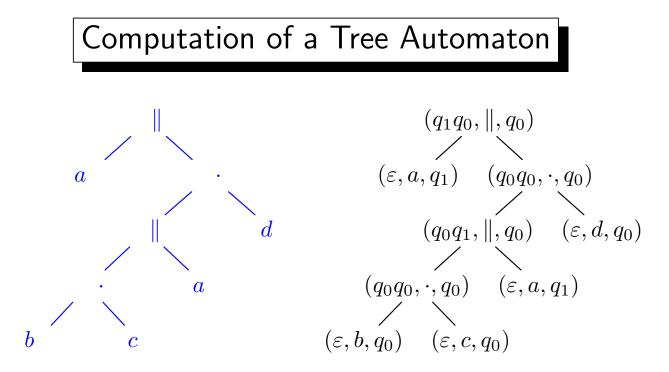
Tree Automata

Definition: A *tree automaton* is a quadruple $M = (Q, \Sigma, \delta, F)$, where

- Q is a finite, non-empty set of *states*,
- Σ is a ranked alphabet of *input symbols*,
- $\delta \subseteq \bigcup_{k \in \mathbb{N}} Q^k \times \Sigma \times Q$ is a set of *transitions* and
- $F \subseteq Q$ is the set of *final states*.

Example: Let $\Sigma = \{ \|^{(2)}, \cdot^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}, d^{(0)} \}$ be as before, $Q = \{q_0, q_1\}$, $F = \{q_1\}$ and the transitions are specified in the following tables.

9

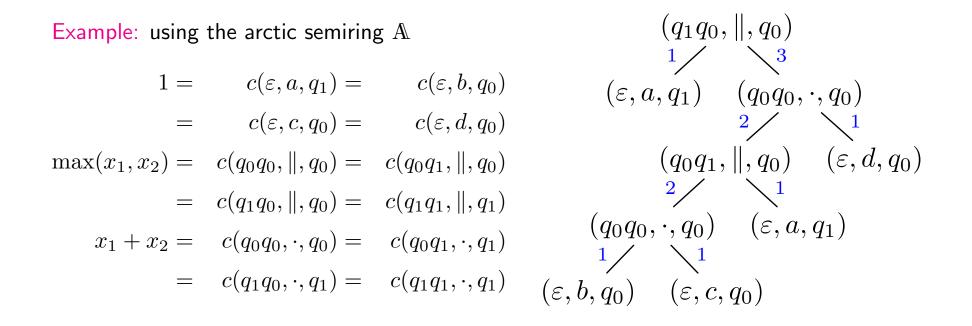


Since this is the only possible computation tree for the given input tree and $q_0 \notin F$, the input tree is rejected, i.e. does not belong to the (tree) language accepted by the tree automaton.

Generally speaking: This tree automaton accepts series-parallel graphs, in which every path from the source to the sink contains at least one a.

Cost Function

Definition: Given a tree automaton $M = (Q, \Sigma, \delta, F)$, a cost function for M over semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is a mapping $c : \delta \longrightarrow A[X]$.



Monotonic Semirings

Definition: A semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is called *monotonic*, iff

- there is a partial order (A, \preceq) such that
- $a \preceq a \odot b$ and $b \preceq a \odot b$ for every $a, b \in A \setminus \{\mathbf{0}\}$,
- $a \preceq a \oplus b$ and
- $a \prec a \odot a$ for every $a \notin \{0, 1\}$.

Examples:

- Semiring of natural numbers IN,
- Arctic semiring \mathbb{A} ,
- (Finite language) semiring L = (P_f(Σ*), ∪, ∘, Ø, {ε}) with the common operations of union and concatenation.

Naturally Ordered and Additively Idempotent Semirings

Observation: Let $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ be an *additively idempotent* semiring, i.e. the equality $\mathbf{1} \oplus \mathbf{1} = \mathbf{1}$ holds. Then \mathcal{A} is monotonic, if $a \prec a \odot a$ for every $a \notin \{\mathbf{0}, \mathbf{1}\}$, where $\preceq \subseteq A \times A$ is defined by

$$a \leq b \quad \iff \quad a \oplus b = b.$$

Observation: Let $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ be a *naturally ordered* semiring, i.e. the relation $\Box \subseteq A \times A$ with

$$a \sqsubseteq b \quad \iff \quad (\exists c \in A) : a \oplus c = b$$

is a partial order over A. Then \mathcal{A} is monotonic, if for every $a \notin \{0, 1\}$ the condition $a \prec a \odot a$ holds.

Star Search

Definition: The *star* of a semiring element $a \in A$ is defined as:

$$a^* = \lim_{n \to \infty} \sum_{i=0}^n a^i$$
 (compare $\Sigma^* = \lim_{n \to \infty} \bigcup_{i=0}^n \Sigma^i$ and reflexive, transitive closure).

Example: The star of 0 exists in any semiring and is always 1.

- in the semiring of natural numbers \mathbb{N} : no more stars exist
- in the arctic semiring A: 0* exists
- in the tropical semiring \mathbb{T} : 0^* exists
- in the subset semiring \mathbb{F} : $\{0\}^*$ exists
- in the boolean semiring \mathbb{B} : \top^* exists
- in the (finite language) semiring \mathbb{L} : $\{\varepsilon\}^*$ exists

Some More Properties of Semirings

Definition: A monoid $\mathcal{A} = (A, \otimes, \mathbf{1})$ is *periodic*, if for every element $a \in A$ there exist $i, j \in \mathbb{N}$ with i < j and $a^i = a^j$.

Example: Every additively idempotent semiring is additively periodic with i = 1 and j = 2.

Definition: A monoid $\mathcal{A} = (A, \otimes, \mathbf{1})$ is *locally finite*, if for every finite $B \subseteq A$ also $\langle B \rangle$ is finite.

Example: Every additively idempotent semiring is additively locally finite.

Observation: Given a semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$, \mathcal{A} is additively locally finite, iff \mathcal{A} is additively periodic.

Observation: Given a semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ where $\mathbf{1}^*$ exists. Then \mathcal{A} is additively periodic. Moreover, on monotonic semirings: $\mathbf{1}^*$ exists, iff \mathcal{A} is additively periodic.

Finitely Factorizing Semirings

Definition: A semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is *finitely factorizing*, if both monoids $(A, \oplus, \mathbf{0})$ and $(A \setminus \{\mathbf{0}\}, \odot, \mathbf{1})$ are finitely factorizing, i.e. given a monoid $(B, \otimes, \mathbf{1})$ for every $b \in B$ the set $\{ (c, d) \in B^2 \mid b = c \otimes d \}$ is finite.

Example: The semirings \mathbb{N} , \mathbb{A} and \mathbb{L} are finitely factorizing, while \mathbb{T} and \mathbb{F} are not.

E-states

Definition: Let $M = (Q, \Sigma, \delta, F)$ be a tree automaton with cost function $c: \delta \longrightarrow A[X]$ over a semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ and $E \subseteq A$. The set of *E*-states of M, denoted Q_E , is

$$Q_E = \{ q \in Q \mid \text{ for every } q \text{-computation } \psi : c(\psi) \in E \}.$$

Lemma: For monotonic semirings we can effectively determine $Q_{\{0\}}$ and $Q_{\{0,1\}}$.

Example: The set of all $\{0\}$ -states $Q_{\{0\}} \subseteq Q$ can be computed as follows:

- Set $Q_0 = Q$.
- For every $n \in \mathbb{N}$ set

$$Q_{n+1} = Q_n \setminus \left\{ q \in Q_n \mid (\exists \tau = (q_1 \dots q_k, \sigma, q) \in \delta) (\exists m \in \operatorname{mon}(c(\tau))) \\ (\forall j \in \operatorname{var}(m)) : q_j \in Q \setminus Q_n \right\}$$

Then $Q_{\{0\}} = Q_{\omega}$.

Boundedness

Classical notion of boundedness fails, since there are several semirings (e.g. \mathbb{T}) which possess a maximal element (w.r.t. some partial order). Every tree automaton with cost function over such a semiring would then be bounded.

Definition: A tree automaton $M = (Q, \Sigma, \delta, F)$ with cost function $c: \delta \longrightarrow A[X]$ over a semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is *bounded*, if

 $c(M) = \{ c(\psi) \mid \psi \text{ is an accepting computation of } M \}$

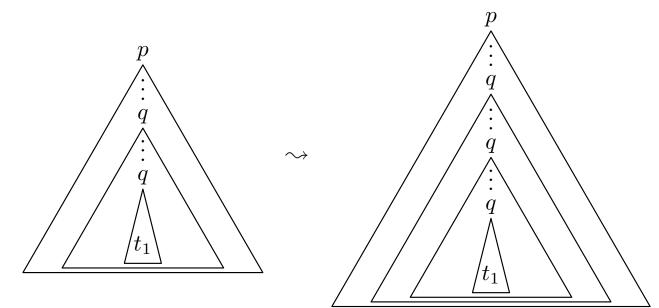
is finite.

Observation: Every tree automaton with cost function over a finite semiring is bounded.

Boundedness Result

Theorem: Let $M = (Q, \Sigma, \delta, F)$ be a tree automaton with cost function $c: \delta \longrightarrow A[X]$ over a finitely factorizing and monotonic semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$. M is bounded, iff for every q-q-computation ψ with $q \notin Q_{\{\mathbf{0},\mathbf{1}\}}$ either

- $c(\psi) = x_1 + a$ for some $a \in A$ and $(1^* \text{ exists or } a = 0)$ or
- $c(\psi)$ is a constant.



Boundedness Result (cont'd)

Rationale: The cases $c(\psi) = x_1$ and $c(\psi) = a$ for some $a \in A$ are straightforward. Let $c(\psi) = x_1 + a$, thus $\mathbf{1}^*$ exists. It follows that \mathcal{A} is additively periodic, hence additively locally finite.

Rationale: Let $c(\psi) = bx_1$ with $b \notin \{0, 1\}$. By $b \prec b \odot b$ pumping yields unboundedness.

Rationale: Let $c(\psi) = x_1^2$. By $q \notin Q_{\{0,1\}}$ and $b \prec b \odot b$ pumping again yields unboundedness.

Examples

Example: Let $M = (Q, \Sigma, \delta, F)$ be a tree automaton with cost function $c : \delta \longrightarrow \mathbb{N}[X]$ over the semiring $(\mathbb{N}, +, \cdot, 0, 1)$. M is bounded if and only if for every q-q-computation ψ with $q \notin Q_{\{0,1\}}$ either

- $\bullet \ c(\psi) = a \text{ for some } a \in \mathbb{N} \text{ or }$
- $c(\psi) = x_1$ holds.

Example: Let $M = (Q, \Sigma, \delta, F)$ be a tree automaton with cost function $c: \delta \longrightarrow (\mathbb{N} \cup \{-\infty\})[X]$ over the arctic semiring $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$. M is bounded if and only if for every q-q-computation ψ with $q \notin Q_{\{0,1\}}$ either

- $c(\psi) = a$ for some $a \in (\mathbb{N} \cup \{\infty\})$ or
- $c(\psi) = \max(x_1, c_0)$ for some $c_0 \in (\mathbb{N} \cup \{-\infty\})$ holds.

Remaining Questions

- Can we decide the property required for all *q*-*q*-computations?
- Can we also characterize boundedness by some property which is based on single transitions rather than *q*-*q*-computations?
- Which properties of monotonic semirings are obsolete when restricting ourselves to tree automata with linear cost functions?
- Can we characterize unboundedness of tree automata with cost function over certain semirings which are not finitely factorizing?
- Can we establish sufficient or necessary criteria for boundedness/unboundedness with less restrictions on the semiring?