
Hyper-Optimization for Deterministic Tree AutomataI

Andreas Malettia,1,∗

aInstitute for Natural Language Processing, Universität Stuttgart, Pfaffenwaldring 5b, 70569 Stuttgart, Germany

Abstract

Hyper-minimization is a lossy minimization technique that allows a finite number of errors. It was already demon-
strated that hyper-minimization can be performed efficiently for deterministic string automata and (bottom-up) deter-
ministic tree automata (DTAs). The asymptotically fastest DTA hyper-minimization algorithms run in timeO(m·log n),
where m is the size of the DTA and n is the number of its states. In this contribution, the committed errors are inves-
tigated. First, the structure of all hyper-minimal DTAs for a given tree language is characterized, which also yields a
formula for the number of such hyper-minimal DTAs. Second, an algorithm is developed that computes the number
of errors that a given hyper-minimal DTA commits when compared to a given reference DTA. Third, it is shown that
optimal hyper-minimization (i.e., computing a hyper-minimal DTA that commits the least number of errors of all
hyper-minimal DTAs) can be achieved in time O(m · n). Finally, a discussion of various other error measures (besides
only their number) is provided.

Keywords: hyper-minimization, deterministic tree automaton, lossy compression, error analysis, error optimization
2010 MSC: 68Q45, 68R05, 68Q25

1. Introduction

In many application areas, large finite-state models are approximated automatically from data. Classical examples
in the area of natural language processing include the estimation of probabilistic tree automata [1–3] for parsing [4],
probabilistic finite-state automata [5] for speech recognition [6], and probabilistic finite-state transducers [7] for ma-
chine translation [8]. Since those models tend to become huge, various efficient minimization techniques (such as the
merge-steps in the Berkeley parser training [4] or bisimulation minimization [9, 10]) are used. Unfortunately, already
the computation of an equivalent minimal nondeterministic finite-state automaton (NFA) [11] given an input NFA is
PSPACE-complete [12] and thus inefficient; this remains true even if the input NFA is deterministic. However, given
a deterministic finite-state automaton (DFA) the computation of an equivalent minimal DFA is very efficient [13].
Consequently, we restrict our focus to deterministic finite-state devices. Exactly, the same situation exhibits itself for
tree automata [14, 15], which are the finite-state models used in this contribution. In addition, (bottom-up) deter-
ministic tree automata are as expressive as (nondeterministic) tree automata, which recognize exactly the regular tree
languages.

In several applications (e.g., digital audio compression) it is beneficial to reduce the size at the expense of er-
rors. This approach is generally called ‘lossy compression’, and naturally, there are application-specific constraints
on the permitted errors. In hyper-minimization [16] we simply allow any finite number of errors; i.e., the obtained
representation might recognize a language that has a finite symmetric difference to the language recognized by the
original representation. This constraint is rather simplistic, but it allows a convenient theoretical treatment [16] and

IThis is an extended and revised version of [A. Maletti: Hyper-optimization for deterministic tree automata. Proc. 18th CIAA, LNCS 7982,
p. 244–255, Springer 2013].
∗Corresponding author
Email address: andreas.maletti@ims.uni-stuttgart.de (Andreas Maletti)

1The author was financially supported by the German Research Foundation (DFG) grant MA 4959 / 1-1.

Preprint submitted to Theoretical Computer Science February 9, 2014

efficient minimization algorithms [17–20]. Besides there are models for which finitely many errors are absolutely in-
consequential [21]. Moreover, refined constraints often yield NP-hard minimization problems [22] and thus inefficient
minimization procedures. Recently, an efficient hyper-minimization algorithm [23] for (bottom-up) deterministic tree
automata (DTAs) was developed. It runs in time O(m · log n), where m is the size of the input DTA and n is the number
of its states. Thus, it is asymptotically as efficient as the fastest classical minimization algorithms [10] for DTAs.

All existing hyper-minimization algorithms for DTAs are purely qualitative in the sense that they guarantee that the
returned DTA meets the error constraint and is hyper-minimal, which means that all DTAs with strictly fewer states2

than the returned DTA violate the error constraint (i.e., recognize tree languages that have infinite difference to the tree
language recognized by the input DTA). Consequently, the returned DTA is as small as possible subject to our error
constraint. However, there is no (non-trivial) bound on the number of errors it might commit. In general, there are
many (non-isomorphic) hyper-minimal DTAs for a given tree language. Our first result characterizes the differences
between such alternatives in the spirit of [16, Theorems 3.8 and 3.9]. It shows that two such hyper-minimal DTAs
permit a bijection between their states such that the distinction into preamble (i.e., those states that can only be reached
by finitely many trees) and non-preamble (or kernel) states is preserved. Moreover, the two DTAs behave equivalently
on their preambles except for their acceptance decisions and isomorphically on their kernels. In summary, such DTAs
can only differ in two aspects:
• the finality (i.e., whether the state is final or not) of preamble states, and
• transition targets for transitions from exclusively preamble states to a kernel state.

Since we can easily count the number of permissible options, our characterization allows us to predict how many such
hyper-minimal DTAs exist for the given input DTA.

The main application of the characterization is the calculation of the number of errors committed by a given
hyper-minimal DTA inspired by the approach of [24]. In this sense we deliver a much more refined, quantitative
analysis of hyper-minimization. To calculate the errors we first associate the errors to the states in which they occur.
For preamble states the choice of their finality directly impacts which errors are caused. Due to the close connection
between such DTAs we can easily compute the tree language recognized in each preamble state. Consequently, all
errors associated to preamble states can be easily explained by the choice of finality. The analysis is slightly more
complicated for errors associated to kernel states. Clearly, such error trees must have subtrees in which they took a
special transition, which is a transition from exclusively preamble states to a kernel state, at the root. All kernel errors
are then attributed to the special transitions. Since an error tree might have several such subtrees, we need to select a
unique special transition for each error tree. Otherwise we would count the same error tree several times. We chose
to select the left-most special transition, but other selections are possible. Fortunately, the restriction to left-most
special transitions can be incorporated easily into the approach of [24]. Overall, we obtain an algorithm that computes
the number of errors committed by a hyper-minimal DTA N in comparison to a reference DTA M (that recognizes a
finitely different tree language) in time O(m · n), where m is the size of M and n is the number of states of M. Since
our association and attribution of errors is such that the choices do not impact another, we can simply optimize each
choice such that it causes the least number of errors locally. In this way we obtain a DTA that also globally commits
the least number of errors. Thus, we can also compute an optimal hyper-minimal DTA N′ in time O(m · n), where
‘optimal’ means that it commits the least number of errors among all hyper-minimal DTAs that recognize a finitely
different tree language. Naturally, we can also compute the exact number of errors committed by this optimal DTA.
Finally, we quickly discuss alternative optimality criteria since the number of errors is only one natural criterion. We
focus on criteria that score the error trees since this approach meets our requirements. We discuss more realistic
scoring functions might add up the error tree sizes or calculate the maximal height of an error tree. Unfortunately, not
all such scoring functions can easily be incorporated into our algorithm.

2. Preliminaries

The set N contains all nonnegative integers, and we let [k] = {i ∈ N | 1 ≤ i ≤ k} for all k ∈ N. The symmetric
difference S 	 T of sets S and T is (S − T) ∪ (T − S). If a set S is finite, then we write |S | for its cardinality. A
binary relation � ⊆ S × S is an equivalence relation if it is reflexive (i.e., s � s for all s ∈ S), symmetric (i.e.,

2Since we consider only deterministic devices, we can as well use the number of transitions as a size measure.

2

s � s′ implies s′ � s for all s, s′ ∈ S), and transitive (i.e., s � s′ and s′ � s′′ imply s � s′′ for all s, s′, s′′ ∈ S).
Given such an equivalence relation �, the equivalence class [s]� of s ∈ S is [s]� = {s′ ∈ S | s � s′}. Moreover,
(S/�) = {[s]� | s ∈ S }.

An alphabet Σ is a finite set, of which the elements are usually called symbols. A ranked alphabet (Σ, rk) consists
of an alphabet Σ and a mapping rk : Σ → N that assigns a rank to each symbol of Σ. The set of all symbols of rank k
is Σk = {σ ∈ Σ | rk(σ) = k} for every k ∈ N. We typically denote a ranked alphabet (Σ, rk) by just Σ and assume
that the ranks are clear from the context (or irrelevant). Similarly, we often omit universal quantifications like “for
all k ∈ N” especially for ranks. Whenever we want to explicitly indicate the rank of a symbol, we write σ(k) for
a k-ary symbol σ. For every set T , we let Σ(T) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T } contain all trees with a
root node labeled by a symbol from Σ (used according to its rank) and direct subtrees that are taken from T . The
set TΣ(Q) of Σ-trees with states Q is the smallest set T such that Q ∪ Σ(T) ⊆ T . We write TΣ for TΣ(∅). Given a unary
symbol γ ∈ Σ, n ∈ N, and t ∈ TΣ(Q), we write γn(t) for the tree consisting of n γ-symbols on top of the tree t. The
mapping height ht(t) : TΣ(Q)→ N is defined by ht(q) = 0 for all q ∈ Q and ht(σ(t1, . . . , tk)) = 1 + max {ht(ti) | i ∈ [k]}
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). The subset CΣ(Q) ⊆ TΣ∪{�}(Q) of contexts contains all trees in which the
special nullary symbol � occurs exactly once. Again, we write CΣ for CΣ(∅). For all c ∈ CΣ(Q) and t ∈ TΣ∪{�}(Q), we
write c[t] for the tree obtained from c by replacing � by t. The tree t is a subtree of c[t] for all contexts c ∈ CΣ(Q).

A (total bottom-up) deterministic (finite-state) tree automaton (DTA) [1, 2] is a tuple M = (Q,Σ, δ, F) where Q is
the finite, nonempty set of states, Σ is the ranked alphabet of input symbols, δ : Σ(Q) → Q is the transition mapping,
and F ⊆ Q is the set of final states. The transition mapping δ extends to δ : TΣ(Q)→ Q by δ(q) = q for all q ∈ Q and

δ
(
σ(t1, . . . , tk)

)
= δ

(
σ(δ(t1), . . . , δ(tk))

)
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). We let L(M)q

q′ = {c ∈ CΣ | δ(c[q′]) = q} for all q, q′ ∈ Q. Moreover,
L(M)q′ =

⋃
q∈F L(M)q

q′ contains all (stateless) contexts that take q′ into a final state, and L(M)q = {t ∈ TΣ | δ(t) = q}
contains all (stateless) trees that are recognized in the state q. A state q ∈ Q is a kernel (respectively, preamble)
state [16] if L(M)q is infinite (respectively, finite). The sets Ker(M) and Pre(M) contain all kernel and preamble states,
respectively. The DTA M recognizes the tree language L(M) =

⋃
q∈F L(M)q, and all DTAs that recognize the same

tree language are equivalent. A DTA is minimal if there exists no equivalent DTA with strictly fewer states. We can
compute a minimal DTA that is equivalent to M using an adaptation [10] of Hopcroft’s algorithm [13], which runs in
time O(|M| · log n) where |M| =

∑
k∈N k · |Σk | · nk is the size of M and n = |Q|.

Example 1. Let us establish a running example. Let Mex be the DTA Mex = (Q,Σ, δ, F), where
• Q = {qα, qβ, qη, qγ, qΓ, qσ, qΣ,⊥} and F = {qη, qΓ, qΣ},
• Σ = {α(0), β(0), η(0), γ(1), σ(2)}, and
• δ is defined by3

δ(α) = qα δ(γ(qα)) = qγ δ(γ(qγ)) = qΓ δ(σ(q, q′)) = qσ δ(σ(qα, qσ)) = qΣ

δ(β) = qβ δ(γ(qβ)) = qγ δ(σ(qα, qΣ)) = qΣ

δ(η) = qη δ(γ(qη)) = qγ

for every q, q′ ∈ Q − {qσ, qΣ,⊥}.
For the sake of compactness, let ∆ = Σ − {σ}. The DTA Mex recognizes the tree language

L(Mex) = L ∪ {cn[σ(t1, t2)] | t1, t2 ∈ T∆, n ≥ 1} with L = T∆ − {α, β, γ(α), γ(β), γ(η)} ,

where c1 = σ(α,�) and cn+1 = cn[c1] for every n ≥ 1. We illustrate the shape of the recognized trees in Figure 1.
Moreover, we easily observe that Ker(Mex) = {qΓ, qσ, qΣ,⊥}, so all other states are preamble states. More precisely,

L(Mex)qα = {α} L(Mex)qβ = {β} L(Mex)qη = {η} L(Mex)qγ = {γ(α), γ(β), γ(η)} .

3We generally assume that ⊥ is a sink states, so all transitions that are not explicitly stated return ⊥.

3

η

γ

γ

...

γ

α | β | η

σ

α σ

α ...

σ

α σ

t1 t2

Figure 1: Illustration of the tree language L(Mex). Trees of the second shape need to have at least two γ-symbols and trees of the third shape need
to contain at least two σ-symbols. Moreover, t1 and t2 are arbitrary trees that do not contain any σ-symbol.

In fact, Mex is minimal, which can be established by exhibiting the context languages L(Mex)q for all q ∈ Q:

L(Mex)qσ = {cn | n ≥ 1} L(Mex)qΣ
= L(M)qσ ∪ {�}

L(Mex)qΓ
= {cn[σ(γm(�), t)] | m ∈ N, n ≥ 1, t ∈ T∆} ∪ L(Mex)qγ = L(Mex)qΓ

− {�}

∪ {cn[σ(t, γm(�))] | m ∈ N, n ≥ 1, t ∈ T∆} ∪ L(Mex)qβ = L(Mex)qΓ
− {�, γ(�)}

∪ {γm(�) | m ∈ N} L(Mex)qη = L(Mex)qΓ
− {γ(�)}

L(Mex)qα = L(Mex)qβ ∪ {c
n[σ(�, t)] | n ∈ N, t ∈ L(Mex)} ,

where c0 = �. Since the context languages are all different, we can conclude that Mex is minimal [15, Section 1.5].

3. Structural characterization of hyper-minimal DTAs

The goal of this section is the development of a characterization of almost equivalent, hyper-minimal DTAs. In
the string case, such a characterization was proved in [16, Theorems 3.8 and 3.9]. The characterization will tell
us how to modify a given hyper-minimal DTA such that it remains hyper-minimal and its recognized tree language
remains almost equivalent to the tree language recognized by the input DTA. Thus, the characterization shows us
the alternatives that we need to consider when we search for an optimal hyper-minimal DTA, which is the DTA that
commits the least number of errors.4 However, before we start, we recall the basic notions (e.g., almost equivalence
and hyper-minimality).

Throughout the paper, let M = (Q,Σ, δ, F) and N = (P,Σ, µ,G) be minimal DTAs over the same ranked alphabet Σ

of input symbols. Since we ultimately want to compare two DTAs, we introduce all basic notions for M and N.
However, this does not exclude the case that M = N, which we will actually use often. For every q ∈ Q and p ∈ P,
let Eq,p = L(M)q 	 L(N)p be the set of errors in the context languages recognized by q and p. The states q and p are
almost equivalent [23, Definition 1], written q ∼ p or p ∼ q, if Eq,p is finite.5 Naturally, we also say that q and p
disagree on each element of Eq,p. If Eq,p = ∅, then q and p are in fact equivalent, which is written q ≡ p or p ≡ q. It
is well-known [15, Section 1.5] that minimal DTAs do not have different, but equivalent states. Correspondingly, the
DTAs M and N are almost equivalent, also written M ∼ N, if E = L(M) 	 L(N) is finite. As before, M and N are said
to disagree on each element of the error set E.

Example 2. Recall the DTA Mex of Example 1. The states qβ, qη, qγ, and qΓ are obviously almost equivalent (see
Example 1 for their context languages). Similarly, we can observe that the state qα is not almost equivalent to qΓ

because {c[σ(�, t)] | t ∈ L(Mex)} ⊆ L(Mex)qα demonstrates an infinite difference to L(Mex)qΓ
. In addition, the states

qσ and qΣ are almost equivalent.

4We discuss other optimality criteria briefly in Section 5.
5We often consider ∼ as an equivalence relation on Q ∪ P, which then includes pairs of almost equivalent states inside the same DTA.

4

Lemma 3 (see [23, Lemma 4]). If M ∼ N, then δ(t) ≡ µ(t) and δ(t′) ∼ µ(t′) for all t, t′ ∈ TΣ with ht(t) > |Q × P|.6

Proof. The property δ(t′) ∼ µ(t′) is proven in [23, Lemma 4]. For the equivalence on sufficiently tall trees, we
consider the product DTA M × N = (Q × P,Σ, δ × µ, F ×G), where

(δ × µ)
(
σ(〈q1, p1〉, . . . , 〈qk, pk〉)

)
=

〈
δ(σ(q1, . . . , qk)), µ(σ(p1, . . . , pk))

〉
for all σ ∈ Σk and 〈q1, p1〉, . . . , 〈qk, pk〉 ∈ Q × P. Clearly, (δ × µ)(t) = 〈δ(t), µ(t)〉 for all t ∈ TΣ. If ht(t) > |Q × P|, then
(δ × µ)(t) is a kernel state of M × N because the tree t can be pumped [1, 2]. For the sake of a contradiction, suppose
that δ(t) . µ(t); i.e., there exists a disagreement context c ∈ Eδ(t),µ(t). Since 〈δ(t), µ(t)〉 is a kernel state of M × N, there
exist infinitely many u ∈ TΣ such that 〈δ(u), µ(u)〉 = 〈δ(t), µ(t)〉. However, for each such tree u we have c[u] ∈ L(M) if
and only if c[u] < L(N), which yields c[u] ∈ E. Consequently, the set E is infinite, which contradicts the assumption
that M ∼ N. �

Example 4. Recall the DTA Mex = (Q,Σ, δ, F) of Example 1. In addition, consider the DTA Nex = (P,Σ, µ,G) given
by
• P = {pα, pΓ, pσ, pΣ,⊥} and G = {pΓ, pΣ}, and
• the transition function µ as specified below.

µ(α) = pα µ(γ(p)) = pΓ µ(σ(pα, pΓ)) = pσ µ(σ(pα, pα)) = pΣ

µ(β) = pΓ µ(σ(pΓ, p)) = pσ µ(σ(pα, p′)) = pΣ

µ(η) = pΓ

for all p ∈ {pα, pΓ} and p′ ∈ {pσ, pΣ}.
It is easily established that Mex and Nex are almost equivalent because L(Nex) = L(Mex)∪ {β, γ(α), γ(β), γ(η), σ(α, α)}.
Moreover, both DTAs are minimal, so we can apply Lemma 3 to them to obtain that

qα ∼ pα qβ ∼ pΓ qη ∼ pΓ qγ ∼ pΓ qΓ ≡ pΓ qσ ≡ pσ qΣ ≡ pΣ and ⊥ ≡ ⊥ .

Lemma 3 shows that almost equivalent DTAs are in almost equivalent states after processing the same (stateless)
tree. If the tree is tall, then they are even in equivalent states. Before we proceed with the structural characterization of
almost equivalent, hyper-minimal DTAs, we recall the notion of hyper-minimality and the main result used to check
whether a given DTA is hyper-minimal. Formally, a DTA is hyper-minimal if all almost equivalent DTAs have at least
as many states.

Theorem 5 ([23, Theorem 7]). A minimal DTA is hyper-minimal if and only if all pairs of different, but almost equiv-
alent states consist only of kernel states.

Using Theorem 5 we can easily conclude that the DTA Nex of Example 4 is in fact hyper-minimal, whereas the
DTA Mex of Example 1 is clearly not hyper-minimal. With the main notions established, we can now investigate how
almost equivalent, hyper-minimal DTAs differ. The central relating notion is the transition homomorphism. Given
a mapping h : Q → P we can extend it to a mapping h : TΣ(Q) → TΣ(P) by h(σ(t1, . . . , tk)) = σ(h(t1), . . . , h(tk)) for
every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). Such a mapping h : Q → P is a transition homomorphism7 if h(δ(s)) = µ(h(s))
for every s ∈ Σ(Q). Transition homomorphisms are relations between states of two DTA that are preserved by taking
transitions. Moreover, the mapping h is a DTA homomorphism if additionally h(q) ∈ G if and only if q ∈ F. Thus,
DTA homomorphisms additionally need to preserve finality of the states. As usual, a bijective homomorphism is
called isomorphism. Next, we show that two almost equivalent hyper-minimal DTAs have DTA-isomorphic kernels
and transition-isomorphic preambles.

Theorem 6. If M ∼ N and both M and N are hyper-minimal, then there exists a bijection h : Q→ P such that

6If M = N, then δ = µ, so in particular δ(t) = µ(t) for all t ∈ TΣ. In this case, ht(t) > |Q| is actually sufficient.
7or a homomorphism between the Σ-algebras [1, 2] associated with M and N

5

1. h is bijective on Ker(M) × Ker(N),
2. h(q) ∈ G if and only if q ∈ F for all q ∈ Ker(M), and
3. h(δ(s)) = µ(h(s)) for every s ∈ Σ(Q) − {s ∈ Σ(Pre(M)) | δ(s) ∈ Ker(M)}.

Proof. Clearly, |Q| = |P| since M and N are both hyper-minimal. For every q ∈ Q we select tq ∈ L(M)q such that
ht(tq) > |Q × P| whenever q ∈ Ker(M).8 In other words, we select an access tree for each state of Q such that
access trees for the kernel states Ker(M) are tall. The bijection will be established by evaluating the access trees in N.
Formally, we let h : Q → P be such that h(q) = µ(tq) for every q ∈ Q, which immediately proves that h(q) ∈ Ker(N)
for all q ∈ Ker(M) because ht(tq) > |Q × P|. Moreover, for each q ∈ Ker(M) the facts M ∼ N and ht(tq) > |Q × P|
imply q = δ(tq) ≡ µ(tq) = h(q) by Lemma 3. Thus, h is injective on Ker(M)×Ker(N) because h(q1) ≡ q1 . q2 ≡ h(q2)
for all different q1, q2 ∈ Ker(M).9 Finally, for every p ∈ Ker(N), select up ∈ L(N)p such that ht(up) > |Q× P|. Clearly,
δ(up) ∈ Ker(M) and by Lemma 3 we obtain p = µ(up) ≡ δ(up) ≡ h(δ(up)). Since N is minimal, we can conclude that
p = h(δ(up)), which shows that h is surjective on Ker(M) × Ker(N), thereby proving the first item.

Recall from the previous paragraph that q ≡ h(q) for every q ∈ Ker(M). Thus, h(q) ∈ G if and only if q ∈ F, which
proves the second item. For the third objective, let s = σ(q1, . . . , qk) ∈ Σ(Q). Then

δ
(
s
)

= δ
(
σ(tq1 , . . . , tqk)

) †
∼ µ

(
σ(tq1 , . . . , tqk)

)
= µ

(
σ(µ(tq1), . . . , µ(tqk))

)
= µ

(
σ(h(q1), . . . , h(qk))

)
= µ

(
h(s)

)
,

where the step marked † is due to Lemma 3. In the following, assume that s < Σ(Pre(M)), which yields that there
exists i ∈ [k] such that qi ∈ Ker(M). Consequently, ht(σ(tq1 , . . . , tqk)) > |Q × P| by the selection of tqi , which can
be used in Lemma 3 to show that the step marked † is actually equivalence (≡). We obtain that δ(s) ≡ µ(h(s)) and
δ(s) ∈ Ker(M). Thus, h(δ(s)) ≡ δ(s) ≡ µ(h(s)) by the argument in the previous paragraph. Since N is minimal, we can
conclude that h(δ(s)) = µ(h(s)) as desired.

Before we prove the missing case, in which s ∈ Σ(Pre(M)) with δ(s) ∈ Pre(M), we prove that h is bijec-
tive on Pre(M) × Pre(N), which automatically also proves that h : Q → P is a bijection. Since h is bijective on
Ker(M) × Ker(N) by the proven first item, which yields |Ker(M)| = |Ker(N)|, and additionally |Q| = |P|, we obtain
that |Pre(M)| = |Pre(N)|. Suppose that h(q) ∈ Ker(N) for some q ∈ Pre(M). Then q ∼ h(q) = µ(uh(q)) ∼ δ(uh(q)) with
ht(uh(q)) > |Q × P| because h(q) ∈ Ker(N), where the almost equivalences are due to Lemma 3. Clearly, δ(uh(q)) is a
kernel state of M, which yields that q , δ(uh(q)). Together with q ∼ δ(uh(q)) and q ∈ Pre(M), these facts contradict
the hyper-minimality of M by Theorem 5. It remains to prove that h is injective on Pre(M) × Pre(N), which due
to |Pre(M)| = |Pre(N)| also proves that h is surjective. For the sake of a contradiction, let q1, q2 ∈ Pre(M) be such
that q1 , q2 but h(q1) = h(q2). Using Lemma 3 we obtain q1 ∼ h(q1) = h(q2) ∼ q2, which together with q1 , q2
contradicts the hyper-minimality of M by Theorem 5. Consequently, h is bijective on Pre(M) × Pre(N).

Now we return to the final missing objective, which requires us to show that h(δ(s)) = µ(h(s)) if δ(s) ∈ Pre(M).
Recall that δ(s) ∼ µ(h(s)) for all s ∈ Σ(Q). Moreover, if δ(s) ∈ Pre(M), then h(δ(s)) ∈ Pre(N) by the results of
the previous paragraph and additionally h(δ(s)) ∼ δ(s) ∼ µ(h(s)) by Lemma 3. Consequently, we have a preamble
state h(δ(s)) of N that is almost equivalent to µ(h(s)). Since N is hyper-minimal, we have h(δ(s)) = µ(h(s)) by
Theorem 5. �

The previous theorem states that two almost equivalent, hyper-minimal DTAs are indeed very similar. They have
a bijection between their states that preserves the distinction between preamble and kernel states. Moreover, via this
bijection the two DTAs behave equally (besides acceptance) on the preamble states and isomorphically on the kernel
states. Thus, two such DTAs can only differ in two aspects, which mirror the corresponding aspects for deterministic
finite-state string automata [16]:

1. the finality (i.e., whether the state is final or not) of preamble states, and
2. transitions from exclusively preamble states to a kernel state.

This is slightly surprising in light of the changes required to generalize the hyper-minimization algorithm [19] from
deterministic finite-state string automata to DTAs [23]. Several key statements required for hyper-minimization had
to be adjusted in [23] because their natural generalizations do not hold for DTAs. However, Theorem 6 is the natural

8Such trees exist because each state is reachable (by hyper-minimality) and L(M)q is infinite for each kernel state q.
9We have q1 . q2 because M is minimal.

6

generalization of the corresponding characterization of [16]. For a detailed discussion of the required adjustments, we
refer the reader to [23].

Example 7. Let us illustrate Theorem 6 using the DTA Nex of Example 4. We already remarked that Nex is hyper-
minimal. We can immediately conclude that each almost equivalent, hyper-minimal DTA M must also have 4 kernel
states (corresponding to the 4 kernel states {pΓ, pσ, pΣ,⊥} of Nex) and 1 preamble state q (corresponding to the pream-
ble state pα of Nex). Due to the transition homomorphism property and the DTA isomorphism on the kernels, we
immediately have that M has exactly the same structure as Nex except for the following:

1. its preamble state q might be final, and
2. the transition targets δ(γ(α)) and δ(σ(α, α)) need not coincide with the corresponding transition targets in µ.

However, by Lemma 3 we know that δ(γ(α)) ∼ µ(γ(α)) = pΓ ∈ Ker(Nex). By Theorem 6 for each of the 4 kernel states
of Nex there is an equivalent kernel state of M (and vice versa), so in particular, there exists a state q′ ≡ pΓ. None
of the other kernel states is almost equivalent to pΓ, so the transition target can only be q′ or the preamble state q.
However, if the transition target is q, then q and q′ are almost equivalent, which contradicts the hyper-minimality of M
by Theorem 5 because q ∈ Pre(M). Thus, we have δ(γ(α)) = q′. In summary, the structure of M must exactly match
that of Nex except for (i) the finality of q, and (ii) the transition target δ(σ(α, α)), which can either be the state that is
equivalent to pσ or the state that is equivalent to pΣ. Consequently, for the tree language L(Nex) and thus also for the
tree language L(Mex) of the DTA Mex of Example 1 there are only 4 almost equivalent, hyper-minimal DTAs (up to
isomorphism).

We end this section by showing that the characterization trivially allows us to compute the number of almost
equivalent, hyper-minimal DTAs for the given minimal DTA M. To this end, we simply compute one almost equiva-
lent, hyper-minimal DTA N using the algorithms of [23] (see Algorithm 1). Then we can easily count the number of
variations of the finality of preamble states of N and the target variations for the transitions from exclusively pream-
ble states to a kernel state of N. In fact, once we know the almost equivalence ∼ for M we can easily predict the
hyper-minimal DTA N (see Algorithm 1), so we can even compute the number based on M and ∼ alone.

Corollary 8 (of Theorem 6 and Lemma 3). For every minimal DTA M there are exactly 2|B| · g almost equivalent,
hyper-minimal DTAs, where
• B = {B ∈ (Q/∼) | B ⊆ Pre(M)} is the set of exclusively preamble state blocks, and
• g is the number of kernel state alternatives for the transitions from exclusively preamble states to a kernel state;

i.e.
g =

∏
σ∈Σk ,[q1]∼,...,[qk]∼∈B

[δ(σ(q1,...,qk))]∼<B

|[δ(σ(q1, . . . , qk))]∼ ∩ Ker(M)| .

Example 9. Recall the DTA Mex of Example 1. Since we only have one block [qα]∼ = {qα} of exclusively preamble
states, we have B = {{qα}} and thus |B| = 1. In addition, we have to consider the transitions β, η, γ(qα), and σ(qα, qα)
for the second item in Corollary 8. However, [δ(β)]∼ = [δ(η)]∼ = [δ(γ(qα))]∼ = {qβ, qη, qγ, qΓ}, which contains only
the kernel state qΓ, so those transitions give factors 1. For the transition σ(qα, qα) we obtain [δ(σ(qα, qα))]∼ = {qσ, qΣ},
which contains two kernel states, so we obtain the factor 2. Consequently, there are 21 · 2 = 4 hyper-minimal DTAs
that are almost equivalent to Mex according to Corollary 8.

A reviewer of the conference version [25] suggested to consider those languages L ⊆ TΣ, for which the minimal
DTA is already hyper-minimal. Since the minimal DTA is a faithful representation of L, it commits no errors and
is thus automatically optimal (for most sensible measures). In other words, the reviewer asked to consider the tree
languages recognized by hyper-minimal DTAs. Clearly, such tree languages exist (e.g., TΣ is such a tree language),
and in the string case such languages are called canonical regular languages [16]. They were investigated a bit in [26,
Section 5] and those (rather negative) results all naturally translate to DTAs.

4. Computing the number of errors

Now we want to compute the number of errors made by a particular hyper-minimal DTA N that is almost equivalent
to the reference DTA M. Once we solve this problem, we can hope to use the characterization of Theorem 6 to obtain

7

a hyper-minimal DTA that commits the least number of errors among all almost equivalent hyper-minimal DTAs.
Such a DTA is also called a hyper-optimal DTA for M, and the problem of computing such a DTA is called hyper-
optimization. It is shown in [27] how to reduce DTA hyper-minimization to hyper-minimization for deterministic
finite-state string automata (DFAs), for which efficient algorithms exist [18, 19]. Similarly, efficient DFA hyper-
optimization algorithms exist [24]. However, the reduction mentioned in [27] fails to work for hyper-optimization.
Moreover, to the author’s knowledge we can only use the existing hyper-optimization for DFAs using a reduction that
constructs a huge DFA for the given DTA, which naturally hurts the efficiency.10 It is possible to adjust the existing
hyper-optimization for DFAs such that an efficient reduction is possible, but this would require us to prove that the
adjustment remains correct. For these reasons, we will not attempt a reduction to the DFA case here.

For the rest of the section, let N be hyper-minimal and almost equivalent to M, which itself is not necessarily
hyper-minimal. Recall that E = L(M) 	 L(N) is the set of error trees. Our goal is to determine the cardinality of E
efficiently. To this end, we first partition E into E =

⋃
p∈P Ep, where Ep = L(N)p ∩ E for every p ∈ P. In other

words, we associate each error tree t ∈ E with the state µ(t). In the following development, we distinguish errors
associated to preamble and kernel states of N. Theorem 6 shows that the preamble-kernel error distinction is stable
among all almost equivalent, hyper-minimal DTAs.11 Finally, [23, Section 4] shows how to obtain one hyper-minimal
DTA N′ that is almost equivalent to M (see Algorithm 1). Roughly speaking, we identify the almost equivalence ∼
on M and then merge preamble states into almost equivalent states. Formally, for every two different states q, q′ ∈ Q,
the DTA merge(M, q→ q′) is (Q − {q},Σ, δ′, F − {q}) where δ′(s) = q′ if δ(s) = q and δ′(s) = δ(s) otherwise for every
s ∈ Σ(Q − {q}).

Example 10. Let us reconsider the DTA Mex of Example 1. We already remarked in Example 2 that qβ, qη, qγ,
and qΓ are almost equivalent. Since only qΓ is a kernel state, we would merge qβ, qη, and qγ into qΓ according to
Algorithm 1. Note that we cannot merge qσ and qΣ since both are kernel states. In fact, after those merges we obtain
the DTA M′ = (Q′,Σ, δ′,G′) given by
• Q′ = {qα, qΓ, qσ, qΣ,⊥} and G′ = {qΓ, qΣ}, and
• the transition function δ′ as specified below.

δ′(α) = qα δ′(γ(q)) = qΓ δ′(σ(q, q′)) = qσ δ′(σ(qα, qσ)) = qΣ

δ′(β) = qΓ δ′(σ(qα, qΣ)) = qΣ

δ′(η) = qΓ

for all q, q′ ∈ {qα, qΓ}.
We already know from Example 4 that |L(Nex) 	 L(Mex)| = {β, γ(α), γ(β), γ(η), σ(α, α)}, so Nex commits 5 errors.
However, |L(M′) 	 L(Mex)| = {β, γ(α), γ(β), γ(η)}, so it only commits 4 errors (with the same number of states as Nex)
and would thus be preferred over Nex. In fact, as we will see later, M′ is hyper-optimal.

4.1. Errors recognized in preamble states
We start with the errors Ep associated to a preamble state p ∈ Pre(N). Let N′ be another almost equivalent, hyper-
minimal DTA. In our application the DTA N′ will be obtained from Algorithm 1 applied to M and ∼. Since the
preambles of N and N′ are transition-isomorphic by Theorem 6, we can essentially compute with N′ and only need to
remember that the preamble states of N and N′ can differ in finality.

Lemma 11. Let N′ = merge(M, q → q′) for some q ∼ q′ with [q]∼ ⊆ Pre(M). Then L(N′)q′ = L(M)q ∪ L(M)q′ . If
N′′ is the DTA returned by Algorithm 1 applied to M and ∼ and B ∈ (Q/∼) is such that B ⊆ Pre(M), for which the
state qB was selected in Algorithm 1, then L(N′′)qB =

⋃
q∈B L(M)q.

Proof. Clearly, L(M)q ⊆ L(N′)q′ because the preamble state q is reached only at the root in all trees of L(M)q. To show
that L(M)q′ ⊆ L(N′)q′ , we first show that no subtree of a tree of L(M)q′ can be processed in q. For a contradiction,

10In fact, the author believes that the constructed DFA might even be exponentially larger than the given DTA.
11An error associated to a preamble state of N can only be associated to a preamble state of another almost equivalent hyper-minimal DTA N′.

Naturally, the error can be avoided in N′, but the same error cannot be associated to a kernel state of N′.

8

Algorithm 1 Merging step in the DTA hyper-minimization algorithm [23].
Require: a minimal DTA M and its almost equivalence ∼ ⊆ Q × Q
Return: an almost equivalent, hyper-minimal DTA

for all B ∈ (Q/∼) do
2: select qB ∈ B such that qB ∈ Ker(M) if possible

for all q ∈ B − Ker(M) do
4: M ← merge(M, q→ qB)

return M

suppose that there exists c ∈ L(M)q′
q ; i.e., q′ = δ(c[q]). Then q ∼ q′ = δ(c[q]) ∼ δ(c[q′]) = δ(c2[q]) ∼ δ(c2[q′]) = · · ·

by [23, Lemma 3], and thus, q ∼ q′′ for some q′′ ∈ Ker(M), which contradicts the assumption [q]∼ ⊆ Pre(M).
Consequently, L(M)q′

q = ∅, which also proves that L(M)q′ ⊆ L(N′)q′ . The inclusion L(N′)q′ ⊆ L(M)q ∪ L(M)q′ is easy
to establish. �

Example 12. If we apply the second part of Lemma 11 to the DTAs Mex and Nex of Examples 1 and 4, respectively,
then we obtain that L(Nex)pα = L(Mex)qα = {α}. Note that we cannot compute L(Nex)pΓ using Lemma 11 because
{qβ, qη, qγ, qΓ} * Pre(Mex).

The next lemma shows that the tree languages recognized in corresponding preamble states of two almost equiv-
alent, hyper-minimal DTAs are always equal. Together with Lemma 11 we thus know exactly which trees are recog-
nized in the preamble states Pre(N) of N.

Lemma 13. Let N = (P,Σ, µ,G) and N′ = (P′,Σ, µ′,G′) be almost equivalent, hyper-minimal DTAs. Moreover, let
h : P→ P′ be the bijection of Theorem 6. Then L(N)p = L(N′)h(p) for all p ∈ P.

Proof. Let us first prove the inclusion L(N)p ⊆ L(N′)h(p) for all p ∈ P by induction. Suppose thatσ(t1, . . . , tk) ∈ L(N)p

for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. Moreover, let pi = µ(ti) for every i ∈ [k]. By the induction hypothesis we know
that ti ∈ L(N′)h(pi) for all i ∈ [k]. In addition, we have µ(σ(p1, . . . , pk)) = p and due to the transition homomorphism
property of h we also have h(p) = µ′(σ(h(p1), . . . , h(pk))). Consequently,

µ′(σ(t1, . . . , tk)) = µ′(σ(µ′(t1), . . . , µ′(tk))) = µ′(σ(h(p1), . . . , h(pk))) = h(p) ,

as desired. The converse inclusion can simply be proven by exchanging the roles of N and N′. �

Now let N′ be the DTA returned by Algorithm 1 when applied to M and ∼. By Theorem 6 there exists a map-
ping h : P′ → P such that N′ and N are transition-isomorphic on their preambles via h. Putting Lemmata 11 and 13
together we have

L(N)h(qB) = L(N′)qB =
⋃
q∈B

L(M)q (‡)

for every B ∈ (Q/∼) with B ⊆ Pre(M),12 where qB is the state selected for block B in Algorithm 1. Thus, we have
now expressed the recognized tree languages for all preamble states of N in terms of unions of the recognized tree
languages of certain preamble states of M. To compute the number of errors Ep we still need to compute which trees
in L(N)p are now incorrectly classified. We first demonstrate how to compute the number of recognized trees for each
preamble state of M. To simplify the notation, let aq = |L(M)q| for every q ∈ Pre(M), so we need to compute |L(M)q|

for each state q ∈ Pre(M).

Lemma 14. For every q ∈ Pre(M)
aq =

∑
σ∈Σk ,q1,...,qk∈Q
δ(σ(q1,...,qk))=q

(aq1 · . . . · aqk) .

9

Algorithm 2 Implementation of the counting argument of Lemma 14.
Require: a minimal DTA M
Return: a vector a : Q→ N such that a(q) = aq = |L(M)q| for every q ∈ Pre(M)

for all q ∈ Q do
2: a(q)← 0 // initialize vector to ~0

for all q ∈ Pre(M) do
4: Compute(a, q) // compute the entry a(q); the vector a is a reference here

return a

6: Compute(a, q) : // function Compute fills the vector a and returns a(q)
if a(q) = 0 then

8: a(q)←
∑
σ∈Σk ,q1,...,qk∈Q
δ(σ(q1,...,qk))=q

Compute(a, q1) · . . . · Compute(a, qk) // use formula of Lemma 14, store value

return a(q) // and return it (or just return value if already computed)

It is clear that the equations in Lemma 14 yield a linear-time algorithm (i.e., a O(|M|) time algorithm) if we avoid
the recomputation of already computed values. A straightforward implementation is shown in Algorithm 2.

Example 15. For our example DTA Mex of Example 1 we obtain

|L(Mex)qα | = aqα = 1 |L(Mex)qβ | = aqβ = 1 |L(Mex)qη | = aqη = 1 and |L(Mex)qγ | = aqγ = 3 .

With the help of (‡) we can now compute the number of errors made due to the finality of preamble states. For
every p ∈ Pre(N) there exists a preamble state qB ∈ Pre(N′) by Theorem 6, for which we know that it was selected in
Algorithm 1 for a block B ⊆ Pre(M) of exclusively preamble states of M. Consequently, Lemma 11 can be applied to
compute the number of errors associated to p.

Theorem 16. For every p ∈ Pre(N), let up ∈ L(N)p be arbitrary. Then

|Ep| =

∑

q∈[δ(up)]∼−F aq if p ∈ G∑
q∈[δ(up)]∼∩F aq otherwise.

Proof. By definition we have Ep = L(N)p ∩ E = L(N)p ∩ (L(M) 	 L(N)) = (L(N)p ∩ L(M)) 	 (L(N)p ∩ L(N)) and
L(N)p =

⋃
q∈[δ(up)]∼ L(M)q by Theorem 6 and (‡). Thus, if p ∈ G, then L(N)p ⊆ L(N) and

Ep =

(⋃
q∈[δ(up)]∼∩F

L(M)q
)
	

(⋃
q∈[δ(up)]∼

L(M)q
)

=
⋃

q∈[δ(up)]∼−F

L(M)q .

Since the sets L(M)q with q ∈ Q are pairwise disjoint, we can simply add their cardinalities, and thus we proved the
first case. On the other hand, if p < G, then L(N)p ∩ L(N) = ∅ and

Ep =

(⋃
q∈[δ(up)]∼∩F

L(M)q
)
	 ∅ =

⋃
q∈[δ(up)]∼∩F

L(M)q ,

which proves the statement. �

Since L(N)p and L(N)p′ are disjoint for two different states p , p′, the total number of errors associated to
preamble states is

∑
p∈Pre(N)|Ep|. To obtain the minimal number of errors, we simply select the finality of p such that

|Ep| is minimal (see Algorithm 4).13

12The union is actually disjoint as TΣ =
⋃

q∈Q L(M)q is a partition of TΣ.
13Clearly, the DTA remains hyper-minimal and almost equivalent as only a finite number of errors is introduced by making p final or non-final.

10

Example 17. The hyper-minimal DTA Nex of Example 4 only has the preamble state pα, which corresponds to the
block [qα]∼ ⊆ Pre(M). Correspondingly, |Epα | = 0 because [qα]∼ ∩ F = ∅. If pα would be in G (i.e., a final state
in Nex), then |Epα | would be 1 because [qα]∼ − F = {qα} and aqα = |L(M)qα | = 1 by Example 15. Consequently,
having pα as a non-final state already represents the optimal choice (with respect to the number of caused errors).

4.2. Errors recognized in kernel states
It remains to compute the number

∑
p∈Ker(N)|Ep| of errors associated to kernel states of N. Recall that N′ is the hyper-

minimal DTA returned by Algorithm 1 applied to the reference DTA M and its almost equivalence ∼. In addition,
the DTA N is an arbitrary almost equivalent, hyper-minimal DTA, for which we want to compute the number of
committed errors in comparison to M. Theorem 6 shows that the preambles of N and N′ are transition-isomorphic
and the kernels are DTA-isomorphic, but the transitions from exclusively preamble states to a kernel state are not
covered in this characterization. Thus, for a given kernel state p ∈ Ker(N), it is difficult to express L(N)p in terms
of (L(M)q)q∈Q because we lose the tight connection at the transitions from exclusively preamble states to kernel states.
Consequently, instead of assigning the errors made in kernel states to the kernel states themselves, we will attribute
them to the transitions from exclusively preamble states to a kernel state. This approach works because
• we know what happens before taking such a transition as we know L(N)p for each p ∈ Pre(N), and
• we know what happens after taking such a transition as we have a DTA-isomorphism on the kernels of N and N′.

This approach was also successful in the string case [24], however in the tree case it is complicated by the fact that
a single error tree can use such exclusively-preamble-states-to-kernel-state-transitions, also called special transitions,
several times as the next example demonstrates.

Example 18. Let us again consider the DTA Nex of Example 4. We know that it commits the error σ(α, α) in the
kernel state qΣ. According to our strategy of attributing kernel state errors to special transitions, we would attribute
this error to the transition µ(σ(pα, pα)) = qΣ because this transition is used at the root of σ(α, α) and uses only the
preamble state pα as source and the kernel state qΣ as target.

In general, the attribution is not that straightforward. To see this, let us consider the DTA M = (Q,Σ, δ, {q}) with
Q = {q, qβ, qσ(β,β)}, Σ = {α(0), β(0), σ(2)}, and

δ(α) = q δ(σ(q, q)) = q δ(σ(q, qβ)) = q δ(σ(q, qσ(β,β))) = q

δ(β) = qβ δ(σ(qβ, q)) = q δ(σ(qβ, qβ)) = qσ(β,β) δ(σ(qβ, qσ(β,β))) = q

δ(σ(qσ(β,β), q)) = q δ(σ(qσ(β,β), qβ)) = q δ(σ(qσ(β,β), qσ(β,β))) = q .

Obviously, L(M) = TΣ − {β, σ(β, β)}. An almost equivalent, hyper-minimal DTA is N = ({>},Σ, µ, {>}), where µ is
such that µ(α) = µ(β) = µ(σ(>,>)) = >. Since L(N) = TΣ, we have that L(M) 	 L(N) = {β, σ(β, β)}. Clearly, N has
only the kernel state >, so both errors occur in a kernel state. Moreover, when N processes the error tree σ(β, β), it
will take two special transitions (both times µ(β) = >).

To avoid counting errors multiple times, we need to make the attribution of the kernel state errors to the special
transitions unique. We solve this problem by selecting the left-most occurrence of a special transition, but any other
selection would work equally well. In order to define left-most occurrences, we first need to introduce positions. Let
∆ be a ranked alphabet and t ∈ T∆(Q). The set pos(t) ⊆ N∗ of positions in t is defined by pos(q) = {ε} for every
q ∈ Q and pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k],w ∈ pos(ti)} for all σ ∈ ∆k and t1, . . . , tk ∈ T∆(Q). For every
w ∈ pos(t), we write t|w for the subtree of t that is rooted in position w. A position u ∈ pos(t) is to the left of another
position w ∈ pos(t), written u @ w, if u � w and u � w, where � and ≤ are the lexicographic and prefix order on N∗,
respectively.

Example 19. Let t = σ(α, σ(α, σ(γ(α), α))), which we also display left in Figure 2. The positions of t are

pos(t) = {ε, 1, 2, 21, 22, 221, 2211, 222} .

• The position 1 is to the left of position 21.
• The position 2211 is to the left of position 222.
• The position 2 is not to the left of position 222.

11

σ(ε)

α(1) σ(2)

α(21) σ(22)

γ(221)

α(2211)

α(222)

σ(ε)

α(1) σ(2)

�(21) σ(22)

γ(221)

α(2211)

α(222)

σ(ε)

α(1) σ(2)

α(21) σ(22)

γ(221)

γ(2211)

α(22111)

�(222)

σ(ε)

α(1) σ(2)

α(21) σ(22)

γ(221)

α(2211)

�(222)

Figure 2: A tree with indicated positions (left) and three contexts.

Recall that M is our minimal reference DTA. In a context c ∈ CΣ(Q) the unique position of � is denoted by pos�(c).
Now we can define the set LC of left-most contexts, which have no subtree to the left of (the occurrence of) � that is
recognized (by M) in a state that is almost equivalent to a kernel state, as follows:

LC = {c ∈ CΣ | ∀w ∈ pos(c) : w @ pos�(c) implies [δ(c|w)]∼ ⊆ Pre(M)} .

Example 20. We show three contexts right in Figure 2. For the purpose of the example, let M = Mex of Example 1,
so the evaluation is done with Mex.
• The first context (leftmost in Figure 2) is in LC because the only position that is to the left of � is processed in

state qα, which is not almost equivalent to a kernel state.
• The second context (middle in Figure 2) is not in LC because the position 221 is to the left of � and processed

in state qΓ, which is a kernel state.
• The third context (rightmost in Figure 2) is also not in LC because position 221 is again to the left of �, but this

time processed in state qγ, which is almost equivalent to the kernel state qΓ.

With the help of the set LC we can now make the error attribution more formal. We already know that each
remaining error tree has a special transition that switches from exclusively preamble states to a kernel state. Moreover,
we will now prove that every such error tree decomposes uniquely into a context of LC, which encodes the part of the
tree that is processed after the left-most occurrence of a special transition, and a tree that uses a special transition at
the root.

Lemma 21. Every error tree t ∈ Ep with p ∈ Ker(N) decomposes uniquely via t = c[u] into a left-most context c ∈ LC
and u ∈ TΣ such that µ(u) ∈ Ker(N), but µ(u|w) ∈ Pre(N) for all w ∈ pos(u) with w , ε.

Proof. Since µ(t) ∈ Ker(N), there must exist positions w ∈ pos(t) such that µ(t|w) ∈ Ker(N) but µ(t|wv) ∈ Pre(N)
for all wv ∈ pos(t) with v , ε. Let w be the left-most such position (i.e., a minimal such position with respect
to @). It remains to show that t[�]w ∈ LC, where t[�]w denotes the context obtained from t by replacing the subtree
rooted at w by �. By the selection of w, all positions v @ w are such that µ(t|v) ∈ Pre(N). Thus, [δ(t|v)]∼ ⊆ Pre(M)
by Theorem 6 and (‡), which proves that t[�]w ∈ LC. Thus, we obtain the suitable decomposition t = c[t|w] with
c = t[�]w. The uniqueness is also easy to show as each other suitable position w′ obeys w @ w′ and µ(t|w) ∈ Ker(N),
which by Lemma 3 yields that δ(t|w) ∼ q for some q ∈ Ker(M). Consequently, t[�]w′ < LC for all other suitable
positions w′ , w. �

Example 22. Let us consider the DTAs Mex and Nex of Examples 1 and 4, respectively. We already observed that
σ(α, α) is an error tree of L(Mex) 	 L(Nex). Moreover, µ(σ(α, α)) = pΣ ∈ Ker(Nex), so the error is committed in a
kernel state of N. Its unique decomposition is c = � and u = σ(α, α). Similarly, the kernel state errors β and γ(α)
decompose such that c = �. Finally, the errors γ(β) and γ(η) decompose such that c = γ(�).

The decomposition t = c[u] of Lemma 21 already hints at the next steps. We can compute δ(u) and µ(u), for which
we know that δ(u) ∼ µ(u) by Lemma 3. For every q ∈ Q and p ∈ P, let Eq,p = L(M)q	L(N)p be the difference contexts

12

between states q and p in M and N, respectively. Consequently, all errors attributed to the last transition used when
processing u by N are made between those two states, so we have c ∈ Eδ(u),µ(u) for the context c of the decomposition.
Moreover, we know that c ∈ LC by the decomposition of Lemma 21. Let e ∈ Ep with p ∈ Ker(N) be an error
committed in a kernel state of N, and let e = c[u] be its unique decomposition according to Lemma 21. Moreover,
let σ(p1, . . . , pk) be the transition that is used at the root of u; i.e., u = σ(u1, . . . , uk) and pi = µ(ui) for every i ∈ [k].
In fact, it is clear from the decomposition of Lemma 21 that p1, . . . , pk ∈ Pre(N) and µ(σ(p1, . . . , pk)) ∈ Ker(N).
Formally, we say that the error e is attributed to the transition σ(p1, . . . , pk). Clearly, each error is attributed to a
unique special transition by Lemma 21.

Lemma 23. For each error e ∈ Ep with p ∈ Ker(N) that is attributed to the special transition σ(p1, . . . , pk), we have
c ∈ Eδ(u),µ(u), where e = c[u] is the unique decomposition of e according to Lemma 21. Moreover, for each q ∈ Q and
p ∈ P, every c ∈ Eq,p and u ∈ L(M)q ∩ L(N)p yields an error tree e ∈ E = L(M) 	 L(N).

Proof. Both properties are trivial observations on error trees. �

Example 24. Let us again consider the DTAs Mex and Nex of Examples 1 and 4, respectively. In particular, let us
look at the errors committed in kernel states of Nex and attribute them to the special transitions of Nex.
• The error σ(α, α) is attributed to the transition σ(pα, pα).
• The error β is attributed to the transition β.
• The errors γ(α), γ(β), and γ(η) are all attributed to γ(pΓ).

It remains to compute the number of attributed errors. To this end, we first translate the problem to M as we did
in the approach for the errors committed in preamble states. Note that for any decomposition e = c[u] according to
Lemma 21 we have µ(u) ∈ Ker(N), which with the help of Theorem 6 yields that there exists a state q ∈ Q such
that q ≡ µ(u). Consequently, instead of computing Eδ(u),µ(u) ∩ LC as required by Lemma 23, we can also compute
Eδ(u),q ∩ LC because Eδ(u),q = Eδ(u),µ(u) due to L(M)q = L(N)µ(u). Clearly, we only need the cardinality of those error
sets Eδ(u),q ∩ LC, or more generally, the cardinality of Eq,q′ ∩ LC for all q ∼ q′ with q′ ∈ Ker(M). Thus, for all q ∼ q′,
let d(q, q′) = |Eq,q′ ∩ LC| and

CM = CΣ(Q) ∩ Σ(Q ∪ {�})

CM =
{
σ(q1, . . . , qi,�, qi+1, . . . , qk) ∈ CM

∣∣∣∣ ⋃
j∈[i]

[q j]∼ ⊆ Pre(M), qi+1, . . . , qk ∈ Pre(M)
}
,

of which the elements are called transition and (left-most) preamble transition contexts, respectively. Roughly speak-
ing, transition contexts are contexts that have the shape of a transition, in which one source state was replaced by �.
Since we are mostly interested in special transitions, the preamble transition contexts are only those, in which all
the (remaining) source states are preamble states of M, and in particular, those to the left of � are such that their
whole equivalence class contains only preamble states (as in the definition of LC). To compute d, we adjust the
straightforward counting procedure of [24].

Lemma 25. For all q, q′ ∈ Q with q ∼ q′ we have

d
(
q, q

)
= 0

d
(
q, q′

)
=

(∑
c∈CM

c=σ(q1,...,qi,�,qi+1,...,qk)

aq1 · . . . · aqk · d
(
δ(c[q]), δ(c[q′])

))
+

1 if q ∈ F xor q′ ∈ F
0 otherwise.

Proof. The first equation is trivial and the second equation straightforwardly formalizes |Eq,q′ |, but only counts the
error contexts of LC. More precisely, the final summand checks whether � ∈ LC is in the difference Eq,q′ . Every other
difference context c′′ ∈ Eq,q′ decomposes via c′′ = c′[ξ] into

(i) a context ξ obtained from a transition context c = σ(q1, . . . , qi,�, qi+1, . . . , qk) of CM by replacing the states
q1, . . . , qk ∈ Pre(M) by t1 ∈ L(M)q1 , . . . , tk ∈ L(M)qk , respectively, which yields the factors aq1 , . . . , aqk , and

(ii) an error context c′ ∈ Eδ(c[q]),δ(c[q′]) for the states δ(c[q]) and δ(c[q′]), which yields the factor d(δ(c[q]), δ(c[q′])).

13

Algorithm 3 Implementation of the counting argument of Lemma 25.
Require: a minimal DTA M, its almost equivalence ∼, and aq for all preamble states q ∈ Pre(M)
Return: the matrix d : Q2 → N ∪ {∞} such that d(q, q′) = ∞ for all q � q′

for all (q, q′) ∈ Q2 do

2: d(q, q′)←

0 if q = q′

∞ otherwise
// initialize diagonal to 0; otherwise∞

for all q, q′ ∈ Q with q ∼ q′ do
4: Compute′(d, q, q′) // compute the entry d(q, q′); the matrix d is a reference here

return d

6: Compute′(d, q, q′) : // function Compute′ fills the matrix d and returns d(q, q′)
if d(q, q′) = ∞ then

8: d(q, q′)←

1 q ∈ F xor q′ ∈ F
0 otherwise

// check difference context �

d(q, q′)← d(q, q′) +
∑

c∈CM
c=σ(q1,...,qi,�,qi+1,...,qk)

aq1 · . . . · aqk · Compute
′(d, δ(c[q]), δ(c[q′])

)
// use formula of Lemma 25

10: return d(q, q′) // and return it (or just return value if already computed)

We can immediately restrict ourselves to preamble transition contexts because for all c ∈ CM−Σ(Pre(M)∪{�}) we have
δ(c[q]) = δ(c[q′]) by [23, Proposition 18], which yields that d(δ(c[q]), δ(c[q′])) = 0. Moreover, if the states q1, . . . , qi

to the left of � are not such that [q1]∼, . . . , [qi]∼ ⊆ Pre(M), then the context c′′ is not in LC and thus discarded. �

Example 26. Let us calculate the relevant differences on the DTA Mex of Example 1. According to Example 2 we
have that qβ ∼ qη ∼ qγ ∼ qΓ and qσ ∼ qΣ. As a demonstration, let us calculate d(qβ, qΓ). First, we notice that
qβ < F whereas qΓ ∈ F, so we already identified the difference context �. For the remaining differences we have to
consider the preamble transition contexts γ(�), σ(qα,�), and σ(�, q) for all q ∈ {qα, qβ, qη}. The first context yields
d(qγ, qΓ) = 1 difference, whereas the remaining contexts all yield d(qσ, qσ) = 0 differences. In total, we thus obtain
d(qβ, qΓ) = 2, and the exact differences are Eqβ,qΓ

= {�, γ(�)}.

Since we now have a recursive procedure to compute d, let us quickly analyze its time complexity. The analysis
is based on the idea that entries in d are never recomputed once they have been computed (see Algorithm 3).

Corollary 27 (of Lemmata 14 and 25). We can compute d(q, q′) in time O(m · n) for all q, q′ ∈ Q with q ∼ q′, where
m = |M| and n = |Q|.

Proof. We can compute all aq with q ∈ Pre(M) in time O(m) by Algorithm 2, and we can compute each entry in d
in time O(m

n) without the time needed to compute the recursive calls because there are
∑

k≥1 k · |Σk | · |Q|k−1 transition
contexts.14 Since there are at most n2 entries in d, we obtain the stated time-bound. �

Now we can identify and count the errors caused in kernel states of N. We look at all the special transitions in N
and compute the number of errors attributed to it. Let s = σ(p1, . . . , pk) ∈ Σ(Pre(N)) with µ(s) ∈ Ker(N) be a special
transition. The set Es of errors caused by this transition s is

Es = {c[σ(t1, . . . , tk)] | c ∈ Eδ(σ(t1,...,tk)),µ(s) ∩ LC, t1 ∈ L(N)p1 , . . . , tk ∈ L(N)pk } ,

14This actually needs another trick. Given a transition σ(q1, . . . , qk) ∈ Σ(Q) we obtain k transition contexts c1, . . . , ck by replacing in turn each
state q1, . . . , qk by �. To avoid a multiplication effort of O(k) we once compute aq1 · . . . · aqk and then compute the value for the context ci by
dividing this product by the value aqi .

14

which contains all errors that use the transition s as left-most special transition. This representation is still a bit
cumbersome to work with, but fortunately we know from Lemmata 11 and 13 and (‡) that for all i ∈ [k] there exists
Bi ⊆ Pre(M) such that L(N)pi =

⋃
q∈Bi

L(M)q. With this knowledge we can conclude that

Es = {c[σ(t1, . . . , tk)] | c ∈ Eδ(σ(t1,...,tk)),µ(s) ∩ LC, t1 ∈ L(N)p1 , . . . , tk ∈ L(N)pk }

=
{
c[σ(t1, . . . , tk)]

∣∣∣∣ c ∈ Eδ(σ(t1,...,tk)),µ(s) ∩ LC, t1 ∈
⋃

q1∈B1

L(M)q1 , . . . , tk ∈
⋃

qk∈Bk

L(M)qk
}

= {c[σ(t1, . . . , tk)] | q1 ∈ B1, . . . , qk ∈ Bk, c ∈ Eδ(σ(q1,...,qk)),µ(s) ∩ LC, t1 ∈ L(M)q1 , . . . , tk ∈ L(M)qk }

=
⋃

q1∈B1,...,qk∈Bk

{c[σ(t1, . . . , tk)] | c ∈ Eδ(σ(q1,...,qk)),µ(s) ∩ LC, t1 ∈ L(M)q1 , . . . , tk ∈ L(M)qk } ,

where the unions are disjoint. Hence we obtain a straightforward way to calculate |Es|.

Lemma 28. For every s = σ(p1, . . . , pk) ∈ Σ(Pre(N)) with µ(s) ∈ Ker(N)

|Es| =
∑

q1∈[δ(up1)]∼,...,qk∈[δ(upk)]∼

aq1 · . . . · aqk · d
(
δ(σ(q1, . . . , qk)), q

)
,

where up ∈ L(N)p is arbitrary for every p ∈ Pre(N) and q ∈ Ker(M) is such that q ≡ µ(s).

Proof. Let N′ = (P′,Σ, µ′,G′) be the DTA returned by Algorithm 1 when applied to M and ∼. Moreover, for every
i ∈ [k] let p′i = µ′(upi). Then L(N)pi = L(N′)p′i =

⋃
qi∈[δ(upi)]∼

L(M)qi by Theorem 6 and (‡) [see also Lemmata
11 and 13]. Moreover, L(N)µ(s) = L(M)q by assumption. Together with these statements, the equation is a straightfor-
ward implementation of the definition of Es as demonstrated earlier. �

Example 29. Let Mex and Nex once more be the DTAs of Examples 1 and 4. By inspection of Nex it has the following
special transitions:15

s1 : µ(β) = pΓ s2 : µ(η) = pΓ s3 : µ(γ(pα)) = pΓ and s4 : µ(σ(pα, pα)) = pσ .

Now let us compute |Esi | for i ∈ [4]. This is trivial for i ∈ {1, 2} because we just need to compute d(qβ, qΓ) and d(qη, qΓ),
respectively. From Example 26 we know that d(qβ, qΓ) = 2, so |Es1 | = 2, and more precisely, Es1 = {β, γ(β)}. Similarly,
we can show that d(qη, qΓ) = 1 because qη and qΓ are both final states (more precisely, Eqη,qΓ

= {γ(�)}). Thus, |Es2 | = 1
and Es2 = {γ(η)}. For the third transition, we fortunately have [qα]∼ = {qα} and aqα = 1, so the computation again
reduces to d(qγ, qΓ), which is 1 by Example 26. Hence, |Es3 | = 1 and Es3 = {γ(α)}. Finally, in the fourth transition we
have essentially the same situation, so we only need to compute d(qσ, qΣ), which is 1. More precisely, Eqσ,qΣ

= {�}, so
consequently, |Es4 | = 1 and Es4 = {σ(α, α)}. In this way, we identified all 5 errors and attributed them as demonstrated
in Example 24.

By Lemma 21 the sets Es for special transitions s ∈ Σ(Pre(N)) are pairwise disjoint, so the errors just add up. In
addition, any state p ∈ P such that p ∼ µ(s) is a valid transition target, so to optimize the number of errors, we can
simply select the transition target p ∈ P with p ∼ µ(s) that minimizes the number of caused errors. In summary, this
yields our main theorem (and Algorithm 4).

Theorem 30. Let m = |M| and n = |Q|. For every hyper-minimal DTA N that is almost equivalent to M we can
determine |L(M) 	 L(N)| in time O(m · n). Moreover, we can compute a hyper-minimal DTA N′ that minimizes the
number |L(M) 	 L(N′)| of errors in time O(m · n).

15We immediately also show the transition target, which simplifies the later discussion.

15

Algorithm 4 Hyper-optimization algorithm.
Require: a minimal DTA M = (Q,Σ, δ, F), its almost equivalence ∼, and

an almost equivalent, hyper-minimal DTA N = (P,Σ, µ,G)
Return: an almost equivalent, hyper-optimal DTA N

select up ∈ L(N)p for all p ∈ Pre(N) // select access tree for each preamble state
2: G ← (G − Pre(N)) ∪ {p ∈ Pre(N) |

∑
q∈[δ(up)]∼−F aq <

∑
q∈[δ(up)]∼∩F aq} // use Theorem 16 to decide finality

for all s = σ(p1, . . . , pk) ∈ Σ(Pre(N)) with µ(s) ∈ Ker(N) do
4: select p ∈ Ker(N) such that p ≡ arg minq∈Ker(M),q∼µ(s)

(∑
q1∈[δ(up1)]∼,...,qk∈[δ(upk)]∼ aq1 · . . . · aqk · d

(
δ(σ(q1, . . . , qk)), q

)
µ(s)← p // reroute transition according to the optimal choice according to Lemma 28

6: return N

5. Variations of the optimality criterion

Certainly, the number of errors is only one possible criterion that we can optimize. We can easily imagine other
sensible criteria. In fact, a reviewer of the conference version [25] suggested to use the sum of the error tree sizes
instead of their number as a more realistic measure. In other applications it might be better to keep the error trees as
small as possible, whereas the actual number of errors might be rather unimportant.

We tried to present our approach independent of the actual error scoring function as much as possible (without
obfuscating the actual approach). In principle, we can also compute the set E = L(M) 	 L(N) of errors directly and
then score them. In this way, given a scoring eval(N) =

⊕
e∈E f (e) for some domain D, associative and commutative

operator ⊕ : D × D → D, and function f : TΣ → D, we could calculate an explicit representation of E and then apply
the scoring. Many imaginable scoring functions fit this template. However, this approach will typically be expensive
as computing a list representation for E could have exponential length in the size of M.16 Finally, there are scoring
approaches (e.g., those based on edit distances) that do not fit our approach at all because the score might not be an
amalgamation over individually scored error trees e ∈ E.

For our hyper-optimization we kept the approach efficient in order to get efficient optimization algorithms. We
associated and attributed the actual errors and demonstrated how to use that knowledge to derive efficient formulas
for our optimality criterion. However, the general approach is much more flexible, which we showcase in 4 other
scenarios, which can be (potentially only inefficiently) scored and optimized using our approach.

(A) eval1(N) =
∑

e∈E |e| where |e| = |pos(e)|.
(B) eval2(N) =

∑
e∈E

(∑
σ∈Σ mσ · |e|σ

)
, where |e|σ is the number of occurrences of σ in e.

(C) eval3(N) = maxe∈E |e|.
(D) eval4(N) = maxe∈E ht(e).

In Scenario (A) we optimize the sum of the sizes of the error trees, which was suggested by a reviewer of the con-
ference version [25]. In Scenario (B) we score in a similar way as in Scenario (A), but different symbols now are
weighted using factors (mσ)σ∈Σ. This score can be used to avoid error trees containing selected symbols by making
those symbols very expensive. Finally, in Scenarios (C) and (D) we just want to keep the size and the height of the
error trees small at the expense of making potentially more errors, respectively.

For Scenario (A), the author is not aware of any efficient calculation of the score. We can abstract from the
explicit representation of a set T of trees to a vector showing how many trees of each size are present in T . However,
this representation still suffers from the inefficiencies of the explicit representation because the vector length can be
exponential in the size of M and the sum of the entries can also be exponential in M, so the vector need not be
sparse. Thus, we will not present a solution using this abstraction as it would be similarly inefficient as the trivial
solution, which consists of explicitly calculating the set E of errors and then scoring them. Optimization is possible
in this scenario as the best local choices are guaranteed to yield the best global result. Naturally, the process remains
inefficient as we have to score all alternatives, which we can efficiently represent, but the author does not know how to
efficiently score them. Thus, overall the inefficient scoring procedure makes the whole approach inefficient. Exactly

16The size of the trees in the list could also be exponential in the size of M.

16

t

c

ht(c[t]) = max
(
ht(c), |pos�(c)| + ht(t)

)

Figure 3: Height of a tree c[t].

the same problems occur in Scenario (B), so the author also does not know to efficiently score or optimize DTA using
this criterion.

Scenario (C) is much simpler. Here, we do not add the sizes, but rather just want to keep the maximal size of the
error trees small. In this case we can represent a set T of trees by just the maximal size of a tree in T . Clearly, this
representation is efficient, and we will demonstrate that it is sufficient to compute the score and to optimize DTA. To
this end, we adjust the definition of (aq)q∈Pre(M) with aq ∈ N for all q ∈ Pre(M) as follows:

aq = max
{
1 +

∑
i∈[k]

aqi

∣∣∣∣ σ ∈ Σk, q1, . . . , qk ∈ Q, δ(σ(q1, . . . , qk)) = q
}
.

Then aq = max {|t| | t ∈ L(M)q} for all q ∈ Pre(M). Similarly, for every q, q′ ∈ Q with q ∼ q′ we let

d(q, q′) = max
{
1 +

∑
i∈[k]

aqi + d
(
δ(c[q]), δ(c[q′])

) ∣∣∣∣ c = σ(q1, . . . , qi,�, qi+1, . . . , qk) ∈ CM

}
.

Consequently, d(q, q′) = max {|c| − 1 | c ∈ L(M)q 	 L(M)q′ }. Finally, for every special transition s of N we obtain

max
e∈Es
|e| = max

{
1 +

∑
i∈[k]

aqi + d
(
δ(σ(q1, . . . , qk)), q

) ∣∣∣∣ q1 ∈
[
δ(up1)

]
∼, . . . , qk ∈

[
δ(upk)

]
∼

}
,

where s = σ(p1, . . . , pk) with p1, . . . , pk ∈ Pre(N), µ(s) ∈ Ker(N), up ∈ L(N)p arbitrary for every p ∈ P, and
q ∈ Ker(M) such that q ≡ µ(s). Again, the current approach (make the best local decisions) works for the optimization
with respect to this scoring function.

Finally, Scenario (D) is similar to Scenario (C), but with the height of the error trees instead of their size. Also
in this case we can represent a set T of trees by just the maximal height of a tree in it, which is again an efficient
representation. Again, we need to slightly adjust the major scoring definitions. This time, we let (aq)q∈Pre(M) with
aq ∈ N for all q ∈ Pre(M) be such that

aq = max
{
1 + max

i∈[k]
aqi

∣∣∣∣ σ ∈ Σk, q1, . . . , qk ∈ Q, δ(σ(q1, . . . , qk)) = q
}
.

Then aq = max {ht(t) | t ∈ L(M)q} for all q ∈ Pre(M). For the difference between almost equivalent states, we need a
slightly more elaborate representation. More precisely, we need to store two values: (i) the largest height of an error
context and (ii) the largest depth of the symbol � in an error context (see Figure 3 for an illustration). Given these two
values, we can predict the largest height of a combined error tree (i.e., tree substituted into a difference context). For
every q, q′ ∈ Q with q ∼ q′, let d(q, q′) ∈ N × N be given such that

d(q, q′) =
〈
max

{
max(d + 1 + max

i∈[k]
aqi , h)

∣∣∣∣ c = σ(q1, . . . , qi,�, qi+1, . . . , qk) ∈ CM , 〈h, d〉 = d
(
δ(c[q]), δ(c[q′])

)}
,

max
{
1 + d | c ∈ CM , 〈h, d〉 = d

(
δ(c[q]), δ(c[q′])

)} 〉
.

17

It is easy to show that

d(q, q′) =
〈
max {ht(c) | c ∈ L(M)q 	 L(M)q′ } , max {|pos�(c)| | c ∈ L(M)q 	 L(M)q′ }

〉
for all q, q′ ∈ Q with q ∼ q′. Finally, for every special transition s in N we obtain

max
e∈Es

ht(e) = max
{
max(d + 1 + max

i∈[k]
aqi , h)

∣∣∣∣ q1 ∈
[
δ(up1)

]
∼, . . . , qk ∈

[
δ(upk)

]
∼, 〈h, d〉 = d

(
δ(σ(q1, . . . , qk)), q

)}
,

where s = σ(p1, . . . , pk) with p1, . . . , pk ∈ Pre(N), µ(s) ∈ Ker(N), up ∈ L(N)p arbitrary for every p ∈ P, and
q ∈ Ker(M) such that q ≡ µ(s). Our approach of making the best local decisions works for the optimization with
respect to this scoring function.

Future work

Recently, [28] showed results in the string case for other regular languages of allowed differences (i.e., not just finite
difference). These results should translate straightforwardly to tree automata. The difference in the number of errors
between the optimal DTA and the worst DTA can be exponential, so the optimization can avoid a large number of
errors. A practical evaluation for DTA remains future work, but a simple experiment was already conducted in [24,
Section 6] for the string case.

References

[1] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
[2] F. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3, Springer, 1997, Ch. 1,

pp. 1–68.
[3] Z. Fülöp, H. Vogler, Weighted tree automata and tree transducers, in: M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted

Automata, EATCS Monographs on Theoretical Computer Science, Springer, 2009, Ch. 9, pp. 313–403.
[4] S. Petrov, L. Barrett, R. Thibaux, D. Klein, Learning accurate, compact, and interpretable tree annotation, in: Proc. 44th Ann. Meeting of the

ACL, Association for Computational Linguistics, 2006, pp. 433–440.
[5] J. Sakarovitch, Rational and recognisable power series, in: M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, EATCS

Monographs on Theoretical Computer Science, Springer, 2009, Ch. IV, pp. 105–174.
[6] M. Mohri, Finite-state transducers in language and speech processing, Comput. Linguist. 23 (2) (1997) 269–311.
[7] M. Mohri, Weighted finite-state transducer algorithms: An overview, in: C. Martín-Vide, V. Mitrana, G. Păun (Eds.), Formal Languages and

Applications, no. 148 in Studies in Fuzziness and Soft Computing, Springer, 2004, Ch. 29, pp. 551–564.
[8] G. Iglesias, C. Allauzen, W. Byrne, A. de Gispert, M. Riley, Hierarchical phrase-based translation representations, in: Proc. 2011 Conf.

Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2011, pp. 1373–1383.
[9] J. Högberg, A. Maletti, J. May, Bisimulation minimisation for weighted tree automata, in: T. Harju, J. Karhumäki, A. Lepistö (Eds.), Proc.

11th Int. Conf. Developments in Language Theory, Vol. 4588 of LNCS, Springer, 2007, pp. 229–241.
[10] J. Högberg, A. Maletti, J. May, Backward and forward bisimulation minimization of tree automata, Theoret. Comput. Sci. 410 (37) (2009)

3539–3552.
[11] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer, 1997, Ch. 2, pp. 41–110.
[12] G. Gramlich, G. Schnitger, Minimizing nfa’s and regular expressions, J. Comput. System Sci. 73 (6) (2007) 908–923.
[13] J. E. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in: Z. Kohavi, A. Paz (Eds.), Theory of Machines and

Computations, Academic Press, 1971, pp. 189–196.
[14] M. Nivat, A. Podelski (Eds.), Tree Automata and Languages, Studies in Computer Science and Artificial Intelligence, North-Holland, 1992.
[15] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree automata: Techniques and applica-

tions, http://tata.gforge.inria.fr/, release October, 12 (2007).
[16] A. Badr, V. Geffert, I. Shipman, Hyper-minimizing minimized deterministic finite state automata, RAIRO Theor. Inf. Appl. 43 (1) (2009)

69–94.
[17] A. Badr, Hyper-minimization in O(n2), Int. J. Found. Comput. Sci. 20 (4) (2009) 735–746.
[18] P. Gawrychowski, A. Jeż, Hyper-minimisation made efficient, in: Proc. 34th Int. Symp. Mathematical Foundations of Computer Science, Vol.

5734 of LNCS, Springer, 2009, pp. 356–368.
[19] M. Holzer, A. Maletti, An n log n algorithm for hyper-minimizing a (minimized) deterministic automaton, Theoret. Comput. Sci. 411 (38–39)

(2010) 3404–3413.
[20] A. Maletti, D. Quernheim, Hyper-minimisation of deterministic weighted finite automata over semifields, in: Proc. 13th Int. Conf. Automata

and Formal Languages, Nyíregyháza College, 2011, pp. 285–299.
[21] S. Schewe, Beyond hyper-minimisation — minimising DBAs and DPAs is NP-complete, in: Proc. 30th Int. Conf. Foundations of Software

Technology and Theoretical Computer Science, Vol. 8 of LIPIcs, Schloss Dagstuhl, 2010, pp. 400–411.
[22] P. Gawrychowski, A. Jeż, A. Maletti, On minimising automata with errors, in: Proc. 36th Int. Symp. Mathematical Foundations of Computer

Science, Vol. 6907 of LNCS, Springer, 2011, pp. 327–338.

18

[23] A. Jeż, A. Maletti, Hyper-minimization for deterministic tree automata, in: Proc. 17th Int. Conf. Implementation and Application of Automata,
Vol. 7381 of LNCS, Springer, 2012, pp. 217–228.

[24] A. Maletti, D. Quernheim, Optimal hyper-minimization, Int. J. Found. Comput. Sci. 22 (8) (2011) 1877–1891.
[25] A. Maletti, Hyper-optimization for deterministic tree automata, in: Proc. 18th Int. Conf. Implementation and Application of Automata, Vol.

7982 of LNCS, Springer, 2013, pp. 244–255.
[26] A. Maletti, D. Quernheim, Unweighted and weighted hyper-minimization, Int. J. Found. Comput. Sci. 23 (6) (2012) 1207–1225.
[27] A. Jeż, A. Maletti, Hyper-minimization for deterministic tree automata, Int. J. Found. Comput. Sci.To appear.
[28] M. Holzer, S. Jakobi, From equivalence to almost-equivalence, and beyond — minimizing automata with errors, in: Proc. 16th Int. Conf.

Developments in Language Theory, Vol. 7410 of LNCS, Springer, 2012, pp. 190–201.

19

