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Abstract. The expressive power of regularity-preserving multi bottom-
up tree transducers (mbot) is investigated. These mbot have very at-
tractive theoretical and algorithmic properties. However, their expressive
power is not well understood. It is proved that despite the restriction
their power still exceeds that of composition chains of linear extended
top-down tree transducers with regular look-ahead (xtopR), which are a
natural super-class of stsg. In particular, topicalization can be modeled
by such mbot, whereas composition chains of xtopR cannot implement
it. However, the inverse of topicalization cannot be implemented by any
mbot. An interesting, promising, and widely applicable proof technique
is used to prove those statements.

1 Introduction

Statistical machine translation [15] deals with the automatic translation of nat-
ural language texts. A central component of each statistical machine transla-
tion model is the translation model, which is the model that actually performs
the translation. Various other models support the translation (such as language
models), but the type of transformations computable by the system is essentially
determined by the translation model. Various different translation models are
currently in use: (i) Phrase-based [23] systems essentially use a finite-state trans-
ducer [13]. (ii) Hierarchical phrase-based systems [4] use a synchronous context-
free grammar (scfg), and (iii) syntax-based systems use a form of synchronous
tree grammar such as synchronous tree substitution grammars (stsg) [5], syn-
chronous tree-adjoining grammars (stag) [24], or synchronous tree-sequence
substitution grammars (stssg) [25]. In this contribution, we will focus on syntax-
based systems. Since machine translation systems are trained on large data, the
used translation model must meet two contradictory goals. Its expressive power
should be large in order to be able to model all typical phenomena that occur in
translation. On the other hand, the model should have nice algorithmic proper-
ties and important operations should have low computational complexity. The
mentioned models cover a wide spectrum along this axis with scfg and stsg
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as the weakest models with the best parsing complexities. It is thus essential
for the evaluation of a translation model to accurately determine its expressive
power and the complexities of its principal operations [14].

A relatively recent proposal for another translation model suggests the multi
bottom-up tree transducer (mbot) [18,19]. It can be understood as an exten-
sion of stsg that allows discontinuity on the output side or as a restriction of
stssg that disallows discontinuity on the input side. mbot are thus a natural
(half-way) model in between stsg and stssg. In addition, [18,19] demonstrated
that mbot have very good theoretical and algorithmic properties in compari-
son to both stsg and stssg. They have been implemented [2] in the machine
translation framework Moses [16] and were successfully evaluated in an English-
to-German translation task, in which they significantly outperformed the stsg
baseline. However, mbot also have a feature called finite copying [7], which
on the positive side yields that the output string language can be a multiple
context-free language (or equivalently a linear context-free rewriting system lan-
guage) [12]. Since this class of languages is much more powerful than context-free
languages, its algorithmic properties are not as nice as those of the regular tree
languages [10,11], which can be used to represent the parse trees of context-free
grammars. It is not clear whether this added complexity is necessary to model
common discontinuities like topicalization.

In this contribution we demonstrate that the regularity-preserving mbot
(i.e., those whose output is always a regular tree language) retain the power
to compute discontinuities such as topicalization. Moreover, these mbot remain
more powerful than arbitrary composition chains [22] of stsg. In particular, no
chain of stsg can implement topicalization. However, whereas stsg can trivially
be inverted, neither mbot nor regularity-preserving mbot can be inverted in
general. In fact, we show that the inverse of topicalization cannot be implemented
by any mbot, which confirms the bottom-up nature of mbot. Overall, these
results allow us to relate the expressive power of regularity-preserving mbot to
the other classes (see Figure 6). Secondly, we want to promote the use of explicit
links as a tool for analyses. Links naturally record which parts of the input and
output tree have to develop synchronously in a derivation step. However, once
expanded, the “used” links are typically dropped [3]. Here we retain all links in
a special component of the sentential form in the spirit of [20,9]. We investigate
the properties of these links and then use them to prove our main results. With
the links the proofs split into a standard technical part that establishes certain
mandatory links [9] and a rather straightforward high-level argumentation that
refutes that the obtained link ensemble is well-formed. We believe that this proof
method holds much potential and can successfully be applied to many additional
setups.

2 Notation

We write N for the set of all nonnegative integers (including 0). Given a rela-
tion R ⊆ S1 × S2 and S ⊆ S1, we let R(S) = {s2 | ∃s1 ∈ S : (s1, s2) ∈ R}
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and R−1 = {(s2, s1) | (s1, s2) ∈ R} be the elements of S2 related to elements
of S (via R) and the inverse relation of R, respectively. Instead of R({s}) with
s ∈ S1 we also write R(s). The composition of two relations R1 ⊆ S1 × S2 and
R2 ⊆ S2 × S3 is the relation R1 ;R2 ⊆ S1 × S3 given by

R1 ;R2 = {(s1, s3) | R1(s1) ∩R−12 (s3) 6= ∅} .

As usual, S∗ denotes the set of all (finite) words over a set S with the empty
word ε. We simply write v.w or vw for the concatenation of the words v, w ∈ S∗,
and the length of a word w ∈ S∗ is |w|. Given languages L,L′ ⊆ S∗, we let
L · L′ = {v.w | v ∈ L,w ∈ L′}. An alphabet Σ is a nonempty and finite set of
symbols. Given an alphabet Σ and a set S, the set TΣ(S) of Σ-trees indexed
by S is the smallest set such that S ⊆ TΣ(S) and σ(t1, . . . , tk) ∈ TΣ(S) for all
k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S). We write TΣ for TΣ(∅).

Whenever we need to address specific parts of a tree, we use positions. Each
position is a word of N∗. The root of a tree has position ε and the position i.p
with i ∈ N and p ∈ N∗ addresses the position p in the ith direct child of the root.
The set pos(t) denotes the set of all positions in a tree t ∈ TΣ(S). We note that
positions are totally ordered by the lexicographic order v on N∗ and partially
ordered by the prefix order ≤ on N∗. The total order v allows us to turn a finite
set P ⊆ N∗ into a vector P by letting P = (w1, . . . , wm) if P = {w1, . . . , wm}
with w1 @ · · · @ wm. Given a tree t ∈ TΣ(S) its size |t| is the number of its
nodes (i.e., |t| = |pos(t)|), and its height ht(t) coincides with the length of the
longest position (i.e., ht(t) = maxw∈pos(t)|w|).

We conclude this section with some essential operations on trees. To this
end, let t, u ∈ TΣ(S) be trees and w ∈ pos(t) be a position in t. The label
of t at w is t(w). For every s ∈ S, we let poss(t) = {w ∈ pos(t) | t(w) = s}
be those positions in t that are labeled by s. The tree t ∈ TΣ(S) is linear if
|poss(t)| ≤ 1 for every s ∈ S. We let idx(t) = {s ∈ S | poss(t) 6= ∅}. Finally, the
expression t[u]w denotes the tree that is obtained from t by replacing the subtree
at w by u. We also extend this notation to sequences u = (u1, . . . , um) of trees
and positions w = (w1, . . . , wm) of t that are pairwise incomparable with respect
to ≤. Thus, t[u]w denotes the tree obtained from t by replacing the subtree at wi
by ui for all 1 ≤ i ≤ m. Formally, t[u]w = (· · · (t[u1]w1) · · · )[um]wm .

3 Formal Models

The main transformational grammar formalism under discussion is the multi
bottom-up tree transducer (mbot), which was introduced by [17,1]. An English
theoretical treatment can be found in [6]. In general, mbot are synchronous
grammars [3] with potentially discontinuous output sides, which makes them
more powerful than the commonly used stsg [5]. Thus, each rule of an mbot
specifies potentially several parts of the output tree. We essentially recall the
definition of [20].

Definition 1. A multi bottom-up tree transducer (for short: mbot) is a tuple
G = (N,Σ, S, P ), where
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Fig. 1. Example productions.

– N is its finite set of nonterminals,
– Σ is its alphabet of input and output symbols,
– S ∈ N is its initial nonterminal, and
– P ⊆ TΣ(N)×N × TΣ(N)∗ is its finite set of productions such that ` /∈ N ,
` is linear, and

⋃
1≤i≤|r| idx(ri) ⊆ idx(`) for every 〈`, n, r〉 ∈ P .

If all productions 〈`, n, r〉 ∈ P obey |r| ≤ 1, then G is a (linear) extended top-
down tree transducer with regular look-ahead (xtopR) [21], and if they even
fulfill |r| = 1, then it is a (linear) nondeleting extended top-down tree transducer
(n-xtop).

In comparison to [20] we added the requirement of ` /∈ N , which could be
called input ε-freeness. To avoid repetition, we henceforth let G = (N,Σ, S, P )
be an arbitrary mbot. As usual, ` and r of a production 〈`, n, r〉 ∈ P are called

left- and right-hand side, respectively. We also write `
n
— r instead of 〈`, n, r〉.

The productions of our running example mbot are displayed in Figure 1. The
initial nonterminal is S, and we omit an explicit representation of the set N of
nonterminals (containing the various slanted Nx and S) and the set Σ of symbols
because they can be deduced from the productions. For completeness’ sake, the
leftmost production on the first line in Figure 1 can be written as

〈S(Nw , NVP), S, S(Nw , NVP, NVP)〉 .

In contrast to [19,2], which present the semantics of mbot using a bottom-
up process based on pre-translations, we present a top-down semantics in the
style of [20] here. As usual [3], the top-down semantics requires us to keep track
of the positions that are supposed to develop synchronously in the input and
output. Such related positions are called linked positions, and the additional data
structure recording the linked positions is called the link structure. Although the
link structure might at first be seen as an overhead (since it is not required for the
bottom-up semantics), it will be an essential tool later on. In fact, all our later
arguments will be based on the link structure, so we explicitly want to promote
the use of link structures and an investigation into their detailed properties.

We start with the introduction of the link structure resulting from a single
production. In fact, the link structure of a production is implicit because we
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Fig. 2. Partial derivation using the productions of Figure 1. The active links are clearly
marked, whereas disabled links are light.

assume that an occurrence of a nonterminal n in the left-hand side is linked to
all its occurrences in the right-hand side. We usually depict these links as (light)
splines in graphical illustrations of productions (see Figure 1). However, once
we move to the derivation process, an explicit representation of these links is
required to keep track of synchronously developing nonterminals.

Definition 2. Given `
n′

— r ∈ P and positions v and w = (w1, . . . , wm) with
m = |r| to which the production should be applied, we define the link structure

linksv,w(`
n′

— r) by
⋃
n∈N,1≤i≤m

(
{v} · posn(`)

)
×
(
{wi} · posn(ri)

)
.

In other words, besides linking occurrences of the same nonterminal as al-
ready mentioned, we prefix the positions by the corresponding position given as a
parameter. These argument positions will hold the positions to which the produc-
tion shall be applied to. Now we are ready to present the semantics. Simply said,
we select an input position, its actively linked output positions, and a production
that has the right number of right-hand sides. Then we disable the selected links,
substitute the production components into the corresponding selected positions,
and add the link structure of the production to the set of active links. Formally,
a sentential form is simply a tuple 〈t, A,D, u〉 consisting of an input and an out-
put tree t, u ∈ TΣ(N) and two sets of links A,D ⊆ pos(t) × pos(u) containing
active and disabled links, respectively. We let SF(G) be the set of all sentential
forms, and D(G) is the set {〈t,D, u〉 | 〈t, ∅, D, u〉 ∈ SF(G), t, u ∈ TΣ} of all
potential dependencies for nonterminal-free input and output trees. In graphical
representations we only present the input and output trees and illustrate the
links of A and D as clear and light splines, respectively.

Definition 3. We write 〈t, A,D, u〉 ⇒G 〈t′, A′, D′, u′〉 for two sentential forms
〈t, A,D, u〉, 〈t′, A′, D′, u′〉 ∈ SF(G), if there exist a nonterminal n ∈ N , an input
position v ∈ posn(t) labeled by n, actively linked output positions A(v), and a

production `
n

— r ∈ P such that
– |r| = |A(v)| and w = A(v),
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– t′ = t[`]v and u′ = u[r]w, and

– A′ = (A\L)∪ linksv,w(`
n

— r) and D′ = D∪L with L = {(v, w) | w ∈ A(v)}.
As usual, ⇒∗G is the reflexive and transitive closure of ⇒G. The mbot G com-
putes the dependencies dep(G) ⊆ D(G) given by

{〈t,D, u〉 ∈ D(G) | 〈S, {(ε, ε)}, ∅, S〉 ⇒∗G 〈t, ∅, D, u〉} .

Finally, the mbot G computes the relation G ⊆ TΣ × TΣ, which is given by
G = {〈t, u〉 | 〈t,D, u〉 ∈ dep(G)}.

Note that disabled links are often not preserved in the sentential forms in the
literature [3], but we want to investigate and reason about those links as in [20,9],
so we preserve them. The first steps of a derivation using the productions of
Figure 1 are presented in Figure 2.

In the remaining part of this section, we recall the notion of regular tree
languages [10,11] and some properties on dependencies [20,9]. Any subset L ⊆ TΣ
is a tree language, and a tree language L ⊆ TΣ is regular [6] if and only if there
exists an mbot G = (N,Σ, S, P ) such that L = G−1(TΣ) (i.e., L is the domain
of G). A relation R ⊆ TΣ × TΣ preserves regularity if R(L) is regular for every
regular tree language L ⊆ TΣ .

Next, we recall the properties on dependencies of [20,9]. We only define them
for the input side, but assume that they are also defined (in the same manner)
for the output side.

Definition 4. A dependency 〈t,D, u〉 ∈ D(G) is
– input hierarchical if w2 6< w1 and there exists (v1, w

′
1) ∈ D with w′1 ≤ w2 for

all (v1, w1), (v2, w2) ∈ D with v1 < v2,
– strictly input hierarchical if (i) v1 < v2 implies w1 ≤ w2 and (ii) v1 = v2

implies w1 ≤ w2 or w2 ≤ w1 for all (v1, w1), (v2, w2) ∈ D,
– input link-distance bounded by b ∈ N if for all links (v1, w1), (v1v

′, w2) ∈ D
with |v′| > b there exists (v1v, w3) ∈ D such that v < v′ and 1 ≤ |v| ≤ b,

– strict input link-distance bounded by b if for all positions v1, v1v
′ ∈ pos(t)

with |v′| > b there exists (v1v, w3) ∈ D such that v < v′ and 1 ≤ |v| ≤ b.
The set dep(G) has those properties if each dependency 〈t,D, u〉 ∈ dep(G) has
them.

We also say that dep(G) is input link-distance bounded if there exists an
integer b ∈ N such that it is input link-distance bounded by b. We summarize
the known properties in Table 1.

4 Main Results

In this contribution, we want to investigate the expressive power of regularity-
preserving mbot, which constitute the class of all mbot whose computed rela-
tion preserves regularity. This class has very nice (algorithmic) properties (see
Table 1). It was already argued by [19] that regularity should be preserved by
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Table 1. Summary of the properties of the dependencies dep(G) for grammars G
belonging to the various grammar formalisms [20,9].

hierarchical link-distance bounded regular
Model \ Property input output input output domain range pres.

n-xtop strictly strictly strictly strictly 3 3 3

xtopR strictly strictly 3 strictly 3 3 3

mbot 3 strictly 3 strictly 3 7 7

reg.-pres. mbot 3 strictly 3 strictly 3 3 3

any grammar formalism (used in syntax-based machine translation) in order to
obtain an efficient representation of the output tree language. In fact, several
(syntactic) ways to obtain regularity preserving mbot are discussed there, but
these all yield subclasses of the class of all regularity-preserving mbot. On the
other hand, xtopR and n-xtop, which are both slightly more powerful than
the commonly used stsg [5] but strictly less powerful than regularity-preserving
mbot, are not closed under composition [21], but always preserve regularity.
Consequently, [22] consider the efficient evaluation of (composition) chains of
n-xtop, and their approach can easily be extended to xtopR. Obviously, every
chain of xtopR can be simulated by a regularity-preserving mbot because each
individual xtopR can be simulated and mbot are closed under composition [6].
However, the exact relation between these two classes remained open. This ques-
tion is interesting because it solves whether the (non-copying) features of mbot
(such as discontinuity) can be achieved by chains of xtopR. In particular, it
settles the question whether chains of xtopR can handle discontinuities, which,
in general, cannot be handled by a single xtopR.

The author assumes that the question remained open because both possible
answers require deep insight. If the classes coincide, then we should be able
to simulate each regularity-preserving mbot by a chain of xtopR, which is
complicated due to the fact that “regularity-preserving” is a semantic property
on the computed relation. Such a construction would (most likely) shed light
on the exact (syntactic) consequences of the restriction to regularity-preserving
mbot. On the other hand, if regularity-preserving mbot are more powerful than
chains of xtopR (which we prove in this contribution), then we need to exhibit
a relation that cannot be computed by any chain of xtopR, which requires deep
insight into the relations computable by chains of xtopR. Fortunately, there was
recent progress in the latter area. In [8] it was shown that a chain of 3 xtopR can
simulate any chain of xtopR. Together with the linking technique of [20,9], this
will allow us to present a regularity-preserving mbot that cannot be simulated
by any chain of xtopR. The counterexample is even linguistically motivated in
the sense that it abstractly represents topicalization (see Figure 3), which is a
common form of discontinuity.

Example 5. Let Tpc = (N,Σ, S, P ) be the mbot with N = {S, T, T ′, T ′′, U},
symbols Σ = {σ, δ, γ, α}, and the productions P illustrated in Figure 3. It
is clearly regularity-preserving because it is straightforward to develop two n-
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Fig. 3. Productions of the counterexample mbot Tpc with x ∈ {T, T ′, T ′′} and relation
(topicalization) computed by it for all m ∈ N and arbitrary trees u, t1, . . . , tm, which
can contain binary δ-symbols, unary γ-symbols, and nullary α-symbols.

xtop G1 and G2 that compute transformations similar to topicalization (see Fig-
ure 3), but just preserving u and just preserving t1, . . . , tm, respectively. Thus,
the language Tpc(L) for a regular tree language L is obtained as G1(L)∩G2(L).
Since n-xtop preserve regularity [21], G1(L) and G2(L) are regular tree lan-
guages, and regular tree languages are closed under intersection [10,11]. The
relation computed by Tpc is depicted in Figure 3.

Theorem 6. The relation Tpc cannot be computed by any chain of xtopR.

Proof (Sketch). We already remarked that 3 xtopR suffice to simulate any chain
of xtopR according to [8]. Consequently, in order to derive a contradiction we as-
sume that there exist 3 xtopR G1, G2, G3 such that Tpc = G1 ;G2 ;G3. We know
that dep(G1),dep(G2),dep(G3) are input and output link-distance bounded (see
Table 1), so let b ∈ N be such that all link-distances (for all 3 xtopR) are bounded
by b. Using an involved technical argumentation based on the link properties and
size arguments [9] (using only the symbols γ and α for the trees u, t1, . . . , tm),
we can deduce the existence of the light dependencies depicted in Figure 4 (for
the input and output tree and two intermediate trees without the clearly marked
links), in which m� b3. Consequently, the ellipsis (clearly marked dots) in the
output tree (last tree in Figure 4) hides at least b2 links that point to this part
of the output because there must be a link every b positions by the link-distance
bound. Let (v′′1 , w

′′
1 ), . . . , (v′′m′′ , w

′′
m′′) with m′′ � b2 be those links such that

w′′1 < · · · < w′′m′′ . These links are marked with (1) in Figure 4. Clearly, w′′m′′
dominates (via ≤) the positions of the subtrees tm−1 and tm, but it does not
dominate that of the subtree u. The input positions of those links, which point
to positions inside the third tree in Figure 4, automatically fulfill v′′1 ≤ · · · ≤ v′′m′′
since dep(G3) is strictly output hierarchical. A straightforward induction can be
used to show that (for any xtopR) all links sharing the same input positions must
be incomparable with respect to the prefix order ≤ [9], which uses the restriction
that ` /∈ N for each production 〈`, n, r〉 ∈ P . Consequently, v′′1 < · · · < v′′m′′ .
Similarly, we can conclude v′′m′′ < w′tm−1

, v′′m′′ < w′tm , and v′′1 6≤ w′u, where the
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?
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Fig. 4. Illustration of the dependencies discussed in the proof of Theorem 6. Inverted
arrow heads indicate that the link points to a position below the one indicated by the
spline. The links relating the roots of the trees are omitted.

last statement uses that dep(G3) is strictly input hierarchical. Repeating essen-
tially the same arguments for dep(G2), we obtain links (v′1, w

′
1), . . . , (v′m′ , w

′
m′)

with m′ � b such that v′′1 ≤ w′1 < · · · < w′m′ ≤ v′′m′′ and v′1 < · · · < v′m′ . These
links are labeled by (2) in Figure 4. Moreover, v′m′ < wtm−1

, v′m′ < wtm , and
v′1 6≤ wu. Using the arguments once more for dep(G1), we obtain a link (v, w)
such that v′1 ≤ w ≤ v′m′ . This final link is marked (3) in Figure 4. Moreover,
we have v < vtm−1

and v < vtm , but v 6≤ vu. However, such a position does not
exist in the input tree, which completes the desired contradiction. ut

It is noteworthy that the proof can be achieved using high-level arguments
based on the links and their properties. In fact, the whole proof is rather straight-
forward once the basic links (light in Figure 4) are established using [9]. Ar-
guably, the omitted part of the proof that establishes those links is quite tech-
nical and involved (using size arguments and thus the particular shape of the
trees u, t1, . . . , tm), but it can be reused in similar setups as it generally estab-
lishes links in the presented way between identical subtrees (for which infinitely
many trees are possible). The proof nicely demonstrates that the difficult ar-
gumentation via two unknown intermediate trees reduces to (relatively) simple
arguments with the help of the links. The author believes that the links will pro-
vide a powerful and versatile tool in the future and have been neglected for too
long. From Theorem 6 it follows that (some) topicalizations cannot be computed
by any chain of xtopR (or any chain of n-xtop), and since Tpc is computed by
a regularity-preserving mbot, we can conclude that regularity-preserving mbot
are strictly more powerful than chains of xtopR.

Corollary 7. Regularity-preserving mbot are strictly more powerful than com-
position chains of xtopR (and composition chains of n-xtop).

Our next result will limit the expressive power of mbot. Using the linking
technique [9] once more (this time for mbot), we will prove that the inverse
relation Tpc−1 cannot be computed by any mbot. This confirms the bottom-up
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t2 σ
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Fig. 5. Illustration of the dependencies discussed in the proof of Theorem 8. Inverted
arrow heads indicate that the link points to a position below the one indicated by the
spline. The links relating the roots of the trees are omitted.

nature of the device. It can “grab” deeply nested subtrees and transport them
towards the root, but it cannot achieve the converse.

Theorem 8. The relation Tpc−1 cannot be computed by any (composition chain
of) mbot.

Proof (Sketch). Since mbot are closed under composition [6], we need to consider
only a single mbot. In order to derive a contradiction, let G = (N,Σ, S, P ) be an
mbot such that G = Tpc−1. As usual, we know that dep(G) is input and output
link-distance bounded (see Table 1), so let b ∈ N be a suitable bound. Moreover,
let a > |r| for all productions 〈`, n, r〉 ∈ P . Hence a is an upper bound for the
length of the right-hand sides. Finally, let k > max(a, b) be our main constant.

Again we need to use a (different, but similar) involved technical argumen-
tation [9] based on the link properties and size and height arguments (that uses
the symbols δ, γ, and α for the subtrees u, t1, . . . , tm) to deduce the existence of
the light dependencies shown in Figure 5, in which m � 2k. Consequently, the
ellipsis (clearly marked dots) in the output tree hides at least 2 links that point
to this part of the output because there must be a link every b positions by the
link-distance bound. Let (v, w), (v′, w′) be those links such that w < w′. These
links are clearly indicated in Figure 5.

Clearly, w′ dominates the positions of the subtrees tm and u. Since dep(G)
is strictly output hierarchical (see Table 1), we obtain that (i) v ≤ v′ and (ii) v′

dominates the input positions of the (light) links pointing into the subtrees
tm and u. Obviously, the root ε is the only suitable position, so v = v′ = ε as in-
dicated in Figure 5. Another straightforward induction can be used to show that
(for any mbot) all links sharing the same input positions must be incomparable
with respect to the prefix order ≤ [9], which uses the restriction that ` /∈ N for
each production 〈`, n, r〉 ∈ P . However, (ε, w) and (ε, w′) are two links with the
same source and comparable target because w < w′, so we derived the desired
contradiction. ut

Again we note that the proof could be straightforwardly achieved using high-
level arguments on the links and their interrelation after establishing the basic
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MBOT

reg.-pres. MBOT

(XTOPR)3 = (XTOPR)∗

n-XTOP∗ (XTOPR)2

n-XTOP2 XTOPR

n-XTOP

Fig. 6. Hasse diagram for the discussed classes, where C∗ is the composition closure
of class C and the dashed line just indicates that all powers in between form a chain
and are thus strictly contained as well.

links (light in Figure 5). Then the link-distance can be used to conclude the ex-
istence of links and their input and output target can be related to existing links
using the hierarchical properties. In this way, we could in both cases derive a
contradiction in rather straightforward ways, which would not have been possi-
ble without the links. Typically, such (negative) statements are proved using the
fooling technique (see [1] or [21] for examples), which requires a rather detailed
case analysis of all possible intermediate trees and applied productions, which
then individually have to be contradicted. In a scenario with 2 unknown inter-
mediate trees such an approach becomes (nearly) impossible to handle. Thus, we
strongly want to promote the use of links and their interrelations in the analysis
of translation models.

Theorem 8 yields that regularity-preserving mbot are not closed under in-
version. In other words, there are regularity-preserving mbot G (such as Tpc),
whose inverted computed relation G−1 cannot be computed by any mbot.

Corollary 9. Regularity-preserving mbot (and general mbot) are not closed
under inversion.

Let us now collect these results together with some minor consequences in a
Hasse diagram (see Figure 6).
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