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Abstract

These notes report on recent advances in the relatively new area of hyper-
minimization. Several open questions that were raised in the pioneering
article [Badr, Geffert, and Shipman. Hyper-minimizing minimized de-
terministic finite state automata. RAIRO Theor. Inf. Appl., 43(1):69–94,
2009] are addressed here and the solutions, which are mostly taken from the
literature, are presented in a uniform style. In particular, the most efficient
hyper-minimization algorithms for several error profiles are presented and
the languages of hyper-minimal automata are investigated.

1 Overview
Deterministic finite automata (dfa) [30] are a formal model of computation that
is simple and enjoys many good algorithmic properties. These qualities led to
very successful applications in areas as diverse as speech processing [28], pattern
matching [9], and linguistic analysis [21]. In many of its applications huge dfa
(i.e., dfa with several million states) are used. Since typically many operations are
applied to in a chain to a single dfa, it is important to keep the intermediate results
as small as possible, which typically is achieved by minimization [4]. A minimal
dfa is a dfa such that all dfas that recognize the same language are larger,
where the size is measured by the number of states. The asymptotically fastest
minimization algorithm is due to Hopcroft [17] and runs in time O(n log n),
where n is the size of the input dfa.

In a number of applications the input dfa is derived from noisy data (see,
for example, [28]). In these cases, it might be worthwhile to sacrifice the exact
preservation of the recognized language in order to achieve better compression
(i.e., smaller dfa). Hyper-minimization as introduced in [2] aims to compress dfa
beyond the classical notion of ‘minimal dfa’ at the expense of a finite number
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of errors. Variations such as cover automata minimization [7], which has been
explored before hyper-minimization due to its usefulness in compressing finite
languages, or k-minimization [11] restrict the length of the error strings instead of
their number.

In this survey, we review recent progress in the area of lossy compression for
dfa. In particular, we will consider:
• The original notion [2] of hyper-minimization, in which a finite number

of errors is allowed. We review the basic notions, recall the properties of
hyper-minimal dfa and then prove some basic properties about canonical
languages, which are the languages accepted by hyper-minimal dfa. This
answers an open question in [2].

• We present the hyper-minimization algorithms that have improved the cor-
responding algorithms of [2, 1]. The improved algorithms achieve the same
asymptotic run-time complexity as Hopcroft’s algorithm for classical dfa
minimization. However, all efficient hyper-minimization algorithms are based
on a fine-to-coarse approximation, whereas Hopcroft’s algorithm uses a
coarse-to-fine (i.e., partition refinement) approximation.

• Another open problem in [2] raised the question, whether we can optimize
the obtained hyper-minimal dfa with respect to a secondary criterion. This
question makes sense because there is no unique hyper-minimal dfa for a
given input language. We recall from the literature that we can optimize the
number of errors or the length of the longest error string easily, but that if
we want to optimize ratios (for example, saved states vs. errors made), then
the problem becomes intractable.

• Finally, we recall cover automata minimization and k-minimization and
demonstrate their usefulness in a combination, which is called ‘finite-factored
dfa’ in [1]. Such a dfa can exactly represent certain languages much more
succinctly. In particular, we show that the selection of the length bound can
be done automatically without any overhead.

These items closely correspond to the structure of the article. A more detailed
exposition to each problem including detailed references can be found in the cor-
responding section. The next section will refresh some very basic notions and can
safely be skipped on a first reading.

2 Preliminaries
The set of all integers is Z, and the subset of nonnegative integers is N. The
symmetric different between two sets S and T is S4T = (S \ T ) ∪ (T \ S). Each
finite set Σ is an alphabet, and the set of all strings over it is Σ∗, of which the
empty string is ε. The concatenation of two strings u, v ∈ Σ∗ is denoted by the
juxtaposition uv, and the length of the string w = a1 · · · ak with a1, . . . , ak ∈ Σ
is |w| = k. Any subset L ⊆ Σ∗ is a language over Σ.

A deterministic finite automaton (dfa) is a tuple A = (Q,Σ, q0, δ, F ), in which
Q is a finite set of states, Σ is an alphabet of input symbols, q0 ∈ Q is an initial
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state, δ : Q × Σ → Q is a transition mapping, and F ⊆ Q is a set of final states.
The transition mapping δ extends to a mapping δ : Q×Σ∗ → Q by δ(q, ε) = q and
δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and w ∈ Σ∗. For every q ∈ Q, let
L(q) = {w ∈ Σ∗ | δ(q, w) ∈ F}. Intuitively, L(q) contains all strings that take A
from q into a final state. The dfa A recognizes the language L(A) = L(q0).

Let A = (Q,Σ, q0, δ, F ) and B = (P,Σ, p0, µ,G) be two dfa. A mapping
h : Q→ P is a transition homomorphism if h(δ(q, σ)) = µ(h(q), σ) for every q ∈ Q
and σ ∈ Σ. If additionally q ∈ F if and only if h(q) ∈ G for every q ∈ Q,
then h is a (dfa) homomorphism. In both cases, h is an isomorphism if it is
bijective. We say that the dfa A and B are (transition and dfa) isomorphic if
there exists a (transition and dfa, respectively) isomorphism h : Q → P . The
dfa A and B are equivalent if L(A) = L(B). Clearly, (dfa) isomorphic dfa are
equivalent. The dfa A is minimal if there does not exist a dfa with strictly
fewer states that recognizes the language L(A). A minimal dfa that is equivalent
to A can be computed efficiently using Hopcroft’s algorithm [16], which runs in
time O(n log n) where n = |Q|. Moreover, minimal dfa are equivalent if and only
if they are isomorphic.

3 Hyper-minimality and canonical languages
As already mentioned in the Introduction, many applications of regular languages
require dfa of enormous sizes. For example, dfa in the area of natural language
processing or speech recognition easily have several million states [28]. Minimiza-
tion [4] of the involved dfa can often help to address this problem, but there are
applications in which even the minimal dfa is still too large to handle efficiently.
To reduce the size of such dfa further, we can change the model (e.g., cover au-
tomata [7], k-entry dfa [23, 15], nondeterministic finite-state automata [30], etc.)
or allow errors. The latter approach leads to the area of lossy compression, which
was popularized with the ‘MPEG-2 Audio Layer III’ (MP3) standard [18] for sound
files. The MP3 sound file format encodes a (sampled) sound while allowing errors
as long as they are outside of the audible spectrum or masked by another sound
(for the typical human).

Hyper-minimization [2] of dfa is a form of lossy compression that allows any
finite number of errors. We will discuss more refined error profiles in later sec-
tions. Formally, two dfa A and B are almost-equivalent if L(A)4L(B) is finite.
Clearly, almost-equivalence is an equivalence relation. Given a dfa A, hyper-
minimization aims to construct an almost-equivalent dfa B such that no dfa
that is smaller than B is almost-equivalent to A. Since almost-equivalence is an
equivalence relation, we can replace the requirement “almost-equivalent to A” by
“almost-equivalent to B” and call a dfa B hyper-minimal if no (strictly) smaller
dfa is almost-equivalent to it. Then the goal of hyper-minimization becomes the
computation of an almost-equivalent hyper-minimal dfa B. Before we proceed
with the minimization algorithms in the next section, we first investigate hyper-
minimality following roughly the general presentation of [2].
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Definition 1 (see [2, Section 2]).
• The languages L1, L2 ⊆ Σ∗ are almost-equal if L14L2 is finite.
• The dfa A and B are almost-equivalent if L(A) and L(B) are almost-equal.
• The states q ∈ Q and p ∈ P are almost-equivalent if L(q) and L(p) are
almost-equal.

F J M

B E I L Q

A D H R P

0 C G

2

Figure 1: Sample dfa, where the almost-equivalence is indicated. The example is
a minor modification (state L is nonfinal here) of [26, Figure 1].

Example 2. Figure 1 shows a dfa, in which we marked almost-equivalence of
states. States L and M are almost-equivalent because

L(L) = −→+ | 99K+ | 99K+−→−→+

L(M) = 99K∗ | 99K∗−→−→+ ,

which yields that L(L)4L(M) = {ε,−→}. The two dfa in Figure 2 are almost-
equivalent and both almost-equivalent to the dfa of Figure 1.

Almost-equality and almost-equivalence, which are both equivalence relations,
are usually denoted by ∼ in the following; i.e., A ∼ B expresses that A and B are
almost-equivalent. Hyper-minimality was characterized in [2] using the additional
notion of a preamble state.

Definition 3 (see [2, Definition 2.11]). A state q ∈ Q of A is a kernel state if
{w ∈ Σ∗ | δ(q0, w) = q} is infinite. Otherwise, it is a preamble state.

Example 4. The kernel states of all dfa displayed in Figures 1 and 2 are

{E,F, I, J, L,M,P,Q,R} .
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F J M

B E I L Q

A D R P

0 2

F J M

B E I L Q

A C R P

0 2

Figure 2: Sample dfa, where the almost-equivalence is indicated. The example is
a minor modification (state L is nonfinal here) of [26, Figure 2].

Recall that a (trim) dfa is minimal if and only if it does not have a pair of
different, but equivalent states. In analogy, [2] presents a characterization for
hyper-minimality.

Theorem 5 (see [2, Theorem 3.4]). A minimal dfa is hyper-minimal if and only
if it has no pair of different, but almost-equivalent states such that at least of them
is a preamble state.

Example 6. Using Theorem 5 we can conclude that the dfa of Figure 1 is not
hyper-minimal because the preamble state G is almost-equivalent to I. In contrast,
both dfa of Figure 2 are hyper-minimal since {I, J, L,M,P,Q} are kernel states
in both dfa (see Example 4).

An open question in [2] suggests to call a language L ⊆ Σ∗ canonical if it is
recognized by a hyper-minimal dfa. In other words, the language L is canonical
if and only if the minimal dfa for L is hyper-minimal. The canonical languages
are obviously a proper subset of the recognizable languages [2] because no non-
empty finite language is canonical. Moreover, canonical languages are closed under
complementation because the complement of a hyper-minimal dfa is still hyper-
minimal by Theorem 5. It remained open in [2] which other closure properties
canonical languages have.

Theorem 7. Canonical languages are neither closed under union nor closed under
intersection.

Proof. Consider the dfa A [left] and B [right] of Figure 2. We already remarked
that they are almost-equivalent and both are hyper-minimal with 14 states. Con-
sequently, L(A) and L(B) are canonical. A simple computation confirms that
L(A)∪L(B) and L(A)∩L(B) are also almost-equivalent to L(A) and L(B). Thus,
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F J M

B E I L Q

A C I ′ L′ P

0 2 R

F J M

B E I L Q

A C I, J L,M P

0 2 R

Figure 3: Minimal dfa recognizing the union [left] and the intersection [right] of
the languages recognized by the dfa of Figure 2, where almost-equivalence is again
indicated.

Algorithm 1 Structure of the hyper-minimization algorithms.
Require: a dfa A
Return: an almost-equivalent hyper-minimal dfa

A ←Minimize(A)
2: K ← ComputeKernel(A)
∼ ← ComputeAlmostEquivalence(A)

4: return MergeStates(A,K,∼)

the minimal dfa for L(A)∪L(B) and L(A)∩L(B) should also have 14 states, but it
can easily be verified that they have 16 states (see Figure 3). Equivalently, we can
observe that I ′ and L′ (the states (I, J) and (L,M), respectively) are preamble
states that are almost-equivalent to other states, which proves that both dfa of
Figure 3 are not hyper-minimal by Theorem 5.

As indicated by the naming of states in Figure 3 [left], we need to keep 2 copies
of the state L (the states L and L′) that differ only in finality for the union. This
split also causes the split of the states I and I ′. Similarly, we need to keep two
nontrivial paired states as seen in Figure 3 [right] for the intersection.

Overall, the author believes that those negative properties render canonical
languages rather uninteresting. Consequently, we skip an investigation of other
classical closure properties (closure under homomorphism, etc).
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4 Hyper-minimization
All hyper-minimization algorithms [2, 1, 11, 14] share the overall structure that
is displayed in Algorithm 1. Before we can explain it in detail, we need one more
notion. The merge of the state p ∈ Q into another (i.e., p 6= q) state q ∈ Q
redirects all incoming transitions of p to q. If p is the initial state, then q is the
new initial state. However, the finality of q is not changed. Since the state p no
longer has incoming transitions and no longer is the initial state, it can be deleted
after the merge.

Definition 8 (see [27, Section 3]). For all p, q ∈ Q with p 6= q, we let mergeA(p→ q)
be the dfa (P,Σ, p0, µ, F ), where P = Q \ {p} and for every r ∈ Q and σ ∈ Σ

p0 =

{
q if q0 = p

q0 otherwise
and µ(r, σ) =

{
q if δ(r, σ) = p

δ(r, σ) otherwise.

Lemma 9 (see [27, Lemma 2]). Let p, q ∈ Q and B = mergeA(p→ q). Then

L(A)4L(B) = {uw | δ(q0, u) = p, w ∈ L(q)4L(p),∀u′ < u : δ(q0, u
′) 6= p}

where ≤ is the usual prefix order on Σ∗.

Using Lemma 9 we see that A and mergeA(p → q) are almost-equivalent if
(i) q and p are almost-equivalent, which yields that L(q)4L(p) is finite, and
(ii) p is a preamble state, which yields that there are only finitely many u ∈ Σ∗

such that δ(q0, u) = p. All the known hyper-minimization algorithms [2, 1, 11, 14]
only perform such merges.

Let us come back to the discussion of the hyper-minimization algorithms. In
line 1 of Algorithm 1 we minimize the input dfa using, for example, Hopcroft’s
algorithm [16]. In the next step, we compute the set K of kernel states of A using
any algorithm that computes strongly connected components in a directed graph
(for example, Tarjan’s algorithm [29]). Such an algorithm can be used due to
the fact [11, 14] that a state is a kernel state if and only if it is reachable from (i) a
nontrivial strongly connected component (i.e., a component of at least 2 states)
or (ii) a state with a self-loop. Then in line 3 we compute the almost-equivalence
on the states Q, which is the most interesting part and also the part where the
algorithms [2, 1, 11, 14] differ. Finally, we merge almost-equivalent states in the
way suggested by Theorem 5 until the obtained dfa is hyper-minimal. Since each
such merge introduces only finitely many errors, the obtained hyper-minimal dfa
is trivially almost-equivalent to the input dfa.

The most interesting part is the computation of the almost-equivalence on the
states Q. Let n = |Q|. The original algorithm of [2] runs in time O(n3) and was
improved in [1] to run in time O(n2). Finally, [11, 14] independently improved the
bound to O(n log n), which coincides with the well-known bound for classical dfa
minimization [16]. All mentioned algorithms that compute the almost-equivalence
use the following observation.
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Algorithm 2 Algorithm of [14] computing the almost-equivalence ∼.
Require: minimal dfa A
Return: the almost-equivalence relation ∼ represented as a partition

π(q)← {q} for all q ∈ Q // initial block of q contains just q itself
2: h← ∅ // hash map of type h : QΣ → Q
I ← Q // current states

4: while I 6= ∅ do
select and remove q from I // remove state from I

6: succ← 〈δ(q, σ) | σ ∈ Σ〉 // compute successors using current δ
if HasValue(h, succ) then

8: p← Get(h, succ) // retrieve state in bucket ‘succ’ of h
if |π(p)| ≥ |π(q)| then

10: Swap(p, q) // exchange roles of p and q
I ← I ∪ {r ∈ Q \ {p} | ∃σ : δ(r, σ) = p} // add predecessors of p

12: A ← mergeA(p→ q) // merge p into q
π(q)← π(q) ∪ π(p) // p and q are almost-equivalent

14: h← Put(h, succ, q) // store q in h under key ‘succ’
return π

Lemma 10 (cf. [2, Definition 2.2]). Let A be minimal. The states q, p ∈ Q are
almost-equivalent if and only if there is k ∈ N such that δ(q, w) = δ(p, w) for all
w ∈ Σ∗ with |w| ≥ k.

We present the algorithm of [14, Algorithm 4] in Algorithm 2. Roughly speak-
ing, it computes the successor states for each state and stores them into a hash
map in order to avoid pairwise comparisons. Once it finds a pair of states with the
same successors (i.e., two states that behave the same for all strings of length at
least 1), it merges them and forms a new block in the partition that will eventually
represent the almost-equivalence. For efficiency reasons, the merging is performed
such that the state representing the bigger block survives (see Lines 10 and 12).
Since for each state the size of the “losing” block containing it at least doubles, we
obtain that each state is considered at most log n times. Overall, the algorithm
runs in time O(n log n) [14, Theorem 9], which answered a question raised in [2].

Theorem 11 (see [14, Theorem 13]). Hyper-minimization can be performed in
time O(n log n).

5 Hyper-optimization
Another question raised in [2] was whether we can optimize another criterion
such as the number of errors or the length of the longest error. We have already
remarked that both dfa of Figure 2 are hyper-minimal and almost-equivalent to
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the input dfa of Figure 1, but they differ in the errors that they commit relative
to the input dfa. More precisely, they commit the following errors, where a = −→
and b = 99K. The specific errors of only one dfa are underlined.

{baba, baba2, baba3, bababa, bababa2, {baba, baba2, baba3, bababa, bababa2,

a2b2, a2b3a, a2b3a2, b4, b5a, b5a2 a2b2, a2b3a, a2b3a2, b4, b5a, b5a2

ab2, ab3a, ab3a2, aa, bb, ab2, ab3a, ab3a2, bab,

a3, a4, a5, a3ba, a3ba2, a3, a3ba, a3ba2,

b2a, b2a2, b2a3, b2aba, b2aba2} b2a, b2aba, b2aba2, baba2, baba3}

In summary, the dfa of Figure 2 [left] commits 26 errors (displayed left), whereas
the dfa of Figure 2 [right] commits only 23 errors (displayed right). The 23 errors
coincide with the minimal number of errors, so that the dfa of Figure 2 [right]
is optimal. Thus, there indeed is a qualitative difference between the different
almost-equivalent hyper-minimal dfa. An example in [27] shows that the gap can
be significant.

The question asking for a hyper-minimal dfa with the least errors was answered
positively in [26], where it was shown that an almost-equivalent hyper-minimal dfa
that commits the least number of errors among all such dfa can be computed in
time O(n2).

Theorem 12 (see [26, Corollary 9]). We can compute an almost-equivalent hyper-
minimal dfa in time O(n2) that commits the least number of errors among all
almost-equivalent hyper-minimal dfa.

This result is based on a characterization [2] of the relation between almost-
equivalent hyper-minimal dfa. Roughly speaking, such dfa can only differ in
3 aspects:
• the finality of preamble states,
• the target of transitions from preamble to kernel states, and
• the initial state.

Before reading the next theorem, the reader might want to recall the notions of a
transition and a dfa homomorphism from the Preliminaries.

Theorem 13 (see [2, Theorem 3.9]). Let A and B be almost-equivalent hyper-
minimal dfa. Then there exists a mapping h : Q→ P such that
• q ∼ h(q) for every q ∈ Q,
• h yields a transition isomorphism between preamble states of A and B, and
• h yields a dfa isomorphism between kernel states of A and B.

The simple approach in [26] works because (i) all three aspects are responsi-
ble for different errors and (ii) the number of errors introduced in a single merge
can easily be computed. However, in contrast to the existing hyper-minimization
algorithms the procedure of [26] uses transition merges (rerouting a single tran-
sition) instead of state merges (rerouting all incoming transitions). Whether a
preamble state should be final or nonfinal can simply be determined by computing
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Algorithm 3 CompE(q, p): Compute |L(q)4L(p)|.
Require: minimal dfa A and almost-equivalent states q ∼ p
Global: error matrix E ∈ ZQ×Q initially 0 on diagonal and −1 elsewhere

if Eq,p = −1 then
2: c← (q ∈ F ) xor (p ∈ F ) // 1 error if q and p differ on finality

Eq,p ← c+
∑
σ∈Σ

CompE(δ(q, σ), δ(p, σ)) // recursive calls

4: return Eq,p // return the computed value

the number of errors in each case. To decide the target of a rerouted transition
from a preamble state to a kernel state, we need to compute the number of errors
caused by each potential rerouting. This is achieved with the help of Lemma 9.
In all relevant cases, mergeA(p → q) is called such that q ∼ p, which yields that
L(q)4L(p) is finite, and p is a preamble state, which yields that there are only
finitely many u ∈ Σ∗ such that δ(q0, u) = p. The number of strings that take A
into state p can easily be computed, and Algorithm 3 shows how |L(q)4L(p)| can
be computed recursively.

Using essentially the same approach we could also compute an almost-equivalent
hyper-minimal dfa that has the shortest errors among all such dfa. However, we
will see in the next section, how this problem can be solved using existing methods.

An empirical evaluation of hyper-minimization and hyper-optimization on ran-
dom dfa can be found in [27]. In summary, hyper-minimization is effective on dfa
that are easy to minimize. Surprisingly, dfa that are hard to minimize are also
hard to hyper-minimize in the sense that only very few states are saved. The same
picture also presents itself for hyper-optimization. In those cases, in which many
states can be saved, we can avoid almost all errors using the hyper-optimal dfa.
Contrary, the few states saved in the difficult instances for both minimization and
hyper-minimization cause a large number of unavoidable errors [27, Section 6].

Finally, we might also be interested in optimizing a ratio in order to balance the
number of saved states versus the number of committed errors. Given the dfa A
and integers m and s, can we construct a hyper-minimal dfa B with at most
s states that commits at most m errors (i.e., |L(B)4L(A)| ≤ m)? Unfortunately,
it is shown in [12, Corollary 1] that deciding whether such a dfa exists is NP-
complete. Note that without the restriction on the number of states the problem
is easily solvable using the presented hyper-optimization.

6 Cover automata and k-minimization
Some applications only require large, but finite languages [28, 3, 25]. Hyper-
minimization would simply return the trivial dfa recognizing the empty lan-
guage or Σ∗, which is clearly not desired. It was realized in [7] that such a
language L ⊆ Σ∗ is best (exactly) represented by a model, the cover automa-
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ton [7], that is slightly different from the classical dfa. A cover automaton is a
dfa A together with an integer k. It accepts a string w ∈ Σ∗ if and only if (i) the
length of the string is at most k and (ii) A accepts w. This approach yields that
the dfa A need not represent the language L exactly, but rather it can make any
error on strings of length at least k + 1. More generally, given a dfa A and an
integer k, we can ask for minimal dfa B such that L(B) ∩ Σ≤k = L(A) ∩ Σ≤k,
where Σ≤k is the set of all strings of Σ∗ whose length is at most k. This problem
is generally known as the minimization problem for cover automata [7]. Dually,
we can ask for a minimal dfa B such that L(B) ∩ Σ≥k = L(A) ∩ Σ≥k, which is
known as k-minimization [11].

We will only consider k-minimization in detail here. Similar results hold for
cover automata minimization (see [7, 6, 24, 5, 8, 20]). The procedure for k-
minimization [11] is based on the equivalence ∼k, which is defined for every q ∈ Q
and p ∈ P by q ∼k p if and only if L(q)4L(p) ⊆ Σ≤k. The smallest k such
that q ∼k p is also called the gap between q and p and written gap(q, p). The
gap between equivalent states is −∞. Intuitively, the gap between q and p is the
length of a longest string on which q and p disagree. However, to limit the length
of the error strings, we also need to consider the length of the strings that take
the dfa into the states q and p. For example, if we only allow errors on strings of
length 8 or less, then a gap of 2 between two states q and p yields an error string
of length 9 provided that p has a string of length 7 leading to it. Consequently, we
need a more refined notion. Let levelA(q) be the length of a longest string taking
the dfa A into state q. Formally, levelA(q) = sup {|w| | δ(q0, w) = q}.

Definition 14 (see [11, Section 4.1]). Let q ∈ Q and p ∈ P . Then q and p are
k-similar if and only if

gap(q, p) + min(k, levelA(q), levelB(p)) ≤ k .

Unfortunately, k-similarity is not an equivalence relation, but only a com-
patibility relation (reflexive and symmetric, but not necessarily transitive). The
complicated part of deciding whether q and p are k-similar is the computation
of gap(q, p). Fortunately, ‘gap’ behaves like an ultrametric [10], which allows us to
represent it in an ultrametric tree [13, 19, 22]. It is shown in [12, Theorem 5] that
this ultrametric tree can be computed in time O(n log n). Given the ultrametric
tree for ‘gap’, the computation of a k-minimal dfa becomes easy. Essentially, we
can treat the compatibility relation like an equivalence relation as long as we se-
lect the right representatives for each block. We skip the details here and refer the
interested reader to [11, 12]. Overall, k-minimization (as well as the minimization
of cover automata) can be performed in time O(n log n) [24, 11, 12].

Theorem 15. Minimization of cover automata as well as k-minimization can be
implemented to run in time O(n log n).

This answers another question of [2] positively. Instead of allowing any finite
number of errors as in hyper-minimization, we can as well restrict the length of
the errors. However, if we combine the restriction on the length of the errors with
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a bound on their number, then the minimization problem becomes intractable.
More formally, given integers k and m and a dfa A, it is NP-complete to decide
whether there exists a k-minimal dfa B such that |L(A)4L(B)| ≤ m by [12,
Corollary 2].

Let us conclude with an application that combines cover automata minimiza-
tion and k-minimization. We are given the dfa A and contrary to the theme of the
survey we want to keep exactly the original language. Thus, we have to change the
model. Here we select finite-factored dfa [1], which are a triple F = (B, k, C) of
two dfa B and C over the same alphabet Σ and an integer k. Such a finite-factored
dfa accepts the language

L(F) = {w ∈ Σ∗ | w ∈ L(B) ∩ Σ≤k or w ∈ L(C) ∩ Σ>k} .

In other words, based on the length of string w, the authorative dfa is selected. If w
has length at most k, then B is authorative. Otherwise, C decides acceptance. Note
that our notion here is slightly different from the one presented in [1, Section 3].

As in [1] (albeit with a smaller alphabet) let us consider the language L = L1∪L2

over Σ = {0, 1, a, b}, where
• L1 = {w ∈ {0, 1}∗ | 9 ≥ |w|} and
• L2 = {a, b}∗.

In other words, L contains all strings of exclusively digits as long as their length is
smaller than 9 and all strings of exclusively letters. A minimal dfa recognizing L
is depicted in Figure 4. It has 12 states, most of which are needed to perform the
counting. We can represent the same language L using a finite-factored dfa with
only 6 states. The finite-factored dfa is presented in Figure 5 [left]. Moreover, if
we allow sharing in the graphs of the two dfa constituting a finite-factored dfa,
then we only need 4 states. The shared version is depicted in Figure 5 [right].

0 A

1 9 8 7

2 ⊥ 6

3 4 5

0, 1

0, 1

0, 1

0, 1 0, 1

0, 1

0, 1

0, 10, 1

Σ

a, b
a, b

Σ

0,1

a,b

a,b

a,b a,b a,b

a,b

a,b

a,b

Figure 4: Minimal dfa.
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1

0 ⊥

A

0, 1

a, b

a, b

0, 1

Σ

0, 1

a, b

0 ⊥0, 1

a, b

Σ

1

0 ⊥

A

0, 1

a, b

a, b

0, 1

Σ

0, 1

a, b

Figure 5: Minimal finite-factored dfa (left: non-shared; right: shared) recognizing
the same language as the dfa of Figure 4.

In the previous example, we selected k = 9 because it was obviously the best
choice for the length split. Then we just minimized the cover automaton (A, k)
and k-minimized A to obtain B and C, respectively. Since both B and C can be
obtained in time O(n log n), we can obtain the finite-factored dfa of Figure 5 [left]
in timeO(n log n). Clearly, another choice of k would have yielded different results,
which begs the question how to select the optimal value for k. This question was
answered in [12, 20]. It is shown that the sizes of the relevant k-minimal dfa and
the cover automaton can be computed in time O(n log n) for all sensible values
of k. These sizes can then be used to compute the optimal value k, or they
can be used to compute a hyper-minimal dfa committing the shortest errors as
mentioned in the previous section. We obtain the following result, where the size
of a finite-factored dfa is simply the sum of the sizes of two constituting dfa.

Theorem 16 (see [12, Theorem 3] and [20, Theorem 11]). We can compute a
minimal finite-factored dfa recognizing L(A) in time O(n log n).
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