
Acta Cybernetica 1 (2011) 1–28.

Survey:

Weighted Extended Top-down Tree Transducers

Part I — Basics and Expressive Power

Andreas Maletti∗

Abstract

Weighted extended top-down tree transducers (transducteurs généralisés
descendants [Arnold, Dauchet: Bi-transductions de forêts. ICALP’76. Edin-
burgh University Press. 1976]) received renewed interest in the field of Natural
Language Processing, where they are used in syntax-based machine trans-
lation. This survey presents the foundations for a theoretical analysis of
weighted extended top-down tree transducers. In particular, it discusses es-
sentially complete semirings, which are a novel concept that can be used to
lift incomparability results from the unweighted case to the weighted case
even in the presence of infinite sums. In addition, several equivalent ways
to define weighted extended top-down tree transducers are presented and the
individual benefits of each presentation is shown on a small result.

Keywords: tree transducer, weighted tree transducer, expressive power

1 Introduction

Tree automata theory [24, 25] and computational linguistics [42, 30] were tightly
intertwined at their inception. In particular, top-down tree transducers were de-
vised by Thatcher [47] and Rounds [44] for applications in natural language
processing (NLP). However, this tight connection was lost early on and the two
fields went separate ways. NLP research focussed on the algorithmic and scaling
issues, whereas the tree automata theory research focussed on refining and extend-
ing models of automata and transducers. In particular, the following devices were
investigated:
• bottom-up tree transducers [48] and attributed tree transducers [18],
• macro tree transducers [7, 15] and modular tree transducers [16],

∗Universitat Rovira i Virgili, Departament de Filologies Romàniques, Avinguda Catalunya 35,
43002 Tarragona, Spain. E-mail: andreas.maletti@urv.cat. The author now is at: Universität
Stuttgart, Institut for Natural Language Processing, Azenbergstraße 12, 70174 Stuttgart, Ger-
many

2 Andreas Maletti

• tree bimorphisms [3], and various models with synchronization (e.g., [43]).
Due to the technical difficulties and algorithmic and scaling complexities encoun-
tered with tree automata, computational linguists had reverted to finite-state string
transducers [29], which are simple to understand, easy to train even on large
amounts of data, and have nice theoretical properties. However, finite-state string
transducers are not expressive enough for many applications in natural language
processing [32]. This realization recently sparked a revival of tree automata in NLP
research.

Shieber [46] and others have argued that the classical top-down tree transduc-
ers [47, 44] are generally inadequate for linguistic tasks without the use of copying
and deletion. In general, copying causes many operations to become intractable or
impossible, which severely limits even the use of copying top-down tree transducers.

A promising alternative is the extended top-down tree transducer, which was
originally conceived by [44] and has been further pursued by [8, 2, 27, 33, 41]. In
this survey we provide an in-depth review of some of the results for weighted ex-
tended top-down tree transducers. In fact, we assume that the reader has some
fundamental understanding of unweighted tree automata theory. The goal is to
present the common definitions and provide an overview of the various techniques
used in the weighted setting. In this aspect this survey differs significantly from [41],
which provides a detailed explanation of unweighted extended top-down tree trans-
ducers, their expressive power, and their essential features. In addition, [23] surveys
results on weighted top-down tree transducers. Contrary to traditional research pa-
pers, we do not aim for the most general results here, but rather try to keep the
material accessible.

In this survey, we introduce the theoretical foundations and showcase a general
method that allows to lift inequalities from the unweighted case to the weighted
setting. This is prepared in the first section with a detailed review of semirings and
some required properties. Then we introduce the basic notions and notations for
handling trees before we finally introduce the main model, the weighted extended
top-down tree transducer, in Section 3. Our reference semantics is based on rewrit-
ing, but we provide an alternative semantics that corresponds to the initial-algebra
semantics [23] of weighted top-down tree transducers. In addition, we relate the
linear and nondeleting version of weighted extended top-down tree transducers to
linear and complete bimorphisms [3]. The benefits of those additional representa-
tions and semantics are illustrated on typical constructions in Section 4. Moreover,
in Section 4 we demonstrate a general method to lift known results from the un-
weighted setting to the weighted setting. We use a part of the Hasse diagram
of [41] for classes of tree transformations computed by unweighted extended top-
down tree transducers and show how to translate it to the weighted setting using
the semiring basics introduced in Section 2.

Overall, we provide proof details whenever instructive, but it is generally safe to
skip them. However, the main purpose of this survey is to showcase the techniques,
so the proofs generally contain important information. Moreover, we provide ex-
amples for some interesting concepts and constructions. We refer to the original
research papers for the details and the most general forms of the statements re-

Weighted Extended Top-down Tree Transducers 3

produced or reported here. In addition, we refer to [23] for a survey of weighted
top-down tree transducers and to the forth-coming paper [21], which discusses an
even more general weighted model and contains some of the results reported here.

2 The Basics

In this section, we first recall the definition and cover some basic properties of our
weight structures: semirings [28, 26]. Recently, more general weight structures such
as bi-monoids have been proposed [10] for weighted automata and transducers on
strings and trees, but we will focus exclusively on semirings in this survey. To keep
the presentation self-contained, we try to present proof details whenever possible.

2.1 Semirings

Let · : A2 → A be a binary operation on a set A, which we write using juxtaposi-
tion (i.e., ab stands for a · b). It is associative if (ab)c = a(bc) for every a, b, c ∈ A.
Moreover, the operation · is commutative if ab = ba for every a, b ∈ A. An el-
ement 1 ∈ A is a neutral element if 1a = a = a1 for every a ∈ A. Finally, an
element 0 ∈ A is absorbing if a0 = 0 = 0a for every a ∈ A. In general, operations
that use “multiplicative” operation signs (like ·, ×, ⊗,

∏
, etc.) have precedence

over operations written using “additive” signs (like +, ⊕,
∑

, etc.). Thus, ab + c
stands for (a · b) + c and

∑
i∈I aibi stands for

∑
i∈I(ai · bi). As with · we often

drop multiplicative symbols altogether and write a product a ⊗ b simply as the
juxtaposition ab. As usual, the product a · · · a containing n ∈ N factors a ∈ A is
abbreviated by an.

A semiring [28, 26] is an algebraic structure (A,+, ·, 0, 1) with two binary op-
erations +, · : A2 → A and two constants 0, 1 ∈ A such that
• + and · are associative operations, of which + is also commutative,
• · distributes over + from both sides, which means that (a+ b)c = ac+ bc and
a(b+ c) = ab+ ac for every a, b, c ∈ A,

• 0 and 1 are the neutral elements for + and ·, respectively, and
• 0 is absorbing for ·.

In other words, the semiring (A,+, ·, 0, 1) consists of the commutative (additive)
monoid (A,+, 0) and the (multiplicative) monoid (A, ·, 1) such that · distributes

(both-sided) over finite sums
∑k
i=1 ai. The absorption property

a · 0 = a ·
0∑
i=1

ai =

0∑
i=1

aai = 0

corresponds to distributivity over the empty sum
∑0
i=1 ai = 0. If · is also commuta-

tive, then the semiring is commutative. It is a ring if there exists an element −1 ∈ A
such that (−1) + 1 = 0. By distributivity this yields that in a ring every element
a ∈ A has an additive inverse −a ∈ A. A ring is a field if for every a ∈ A there ex-
ists a multiplicative inverse a−1 ∈ A such that aa−1 = 1 = a−1a. Finally, given two

4 Andreas Maletti

semirings (A,+, ·, 0, 1) and (S,⊕,�,0,1) and a mapping h : A→ S, the mapping h
is a semiring homomorphism if h(0) = 0, h(1) = 1, h(a + b) = h(a) ⊕ h(b), and
h(a · b) = h(a)� h(b) for every a, b ∈ A. Consequently, a semiring homomorphism
is compatible with finite sums and products. For every mapping f : B → A, we let
supp(f) = {b ∈ B | f(b) 6= 0}.

Commonly used semirings include

• the commutative Boolean semiring ({0, 1},max,min, 0, 1) where 0 can be
understood as false and 1 as true,
• the commutative semiring of natural numbers (N,+, ·, 0, 1) with the usual

addition and multiplication,
• the tropical semiring (N ∪ {∞},min,+,∞, 0), which is also commutative,
• the commutative field (R,+, ·, 0, 1) of real numbers, and
• the (typically non-commutative) semiring (AQ×Q,+, ·, 0, 1) of Q×Q-matrices

over a semiring (A,+, ·, 0, 1) for every finite set Q where + and · are the usual
operations of matrix addition and multiplication, respectively, 0 is the zero
matrix, and 1 is the unit matrix.

A semiring (S,⊕,�,0,1) is a subsemiring of a semiring (A,+, ·, 0, 1) if S ⊆ A
and the identity mapping id: S → A such that id(s) = s for every s ∈ S is a
semiring homomorphism. In other words, 0 = 0, 1 = 1, a ⊕ b = a + b, and
a�b = ab for every a, b ∈ S, which states that the subsemiring shares the constants
0 and 1 and uses the same operations restricted to its (smaller) carrier set. Given
a set S ⊆ A, we denote by 〈S〉 the carrier set of the subsemiring generated by S;
i.e., the carrier set of the smallest subsemiring of (A,+, ·, 0, 1) that contains S. The
subsemiring (S,⊕,�, 0, 1) is finitely generated if there exists a finite set C ⊆ A
such that S = 〈C〉. Due to the distributivity law, every element a ∈ 〈S〉 with

S ⊆ A can be presented as
∑k
i=1

(∏ni
j=1 aij

)
with k, n1, . . . , nk ∈ N and aij ∈ S for

every 1 ≤ i ≤ k and 1 ≤ j ≤ ni. This representation as a sum of products will be
important later on.

Next, we discuss infinite sums in a semiring (A,+, ·, 0, 1). Since we will only
encounter sums with countably many summands, we only define countably complete
semirings [11, 36, 28, 26, 31]. Recall that a set I is countable if |I| ≤ ℵ0 where
ℵ0 = |N| (i.e., if it has at most as many elements as the natural numbers). Moreover,
a partition of a set I is a set J of nonempty, pairwise disjoint subsets of I such
that their union is I. Formally, J is a partition of I if (i) ∅ /∈ J , (ii) J ∩ J ′ = ∅ for
every J, J ′ ∈ J with J 6= J ′, and (iii) I =

⋃
J∈J J . Note that any partition of a

countable set is itself countable. An infinitary sum operation
∑

is a family (
∑
I)I

of mappings
∑
I : AI → A for every countable index set I. We generally write∑

i∈I f(i) instead of
∑
I f . The semiring (A,+, ·, 0, 1) together with the infinitary

sum operation
∑

is countably complete if

(B)
∑
i∈{j,j′} ai = aj + aj′ for all j 6= j′ and aj , aj′ ∈ A,

(P)
∑
i∈I ai =

∑
J∈J

(∑
i∈J ai

)
for every countable index set I, partition J of I,

and element ai ∈ A with i ∈ I, and
(D) a

(∑
i∈I ai

)
=
∑
i∈I aai and

(∑
i∈I ai

)
a =

∑
i∈I aia for every a ∈ A, count-

able index set I, and ai ∈ A with i ∈ I.

Weighted Extended Top-down Tree Transducers 5

The axioms (B), (P), and (D) are also called binary sum, partition, and distribu-
tivity axiom, respectively, and they guarantee that the usual laws of associativity,
commutativity and distributivity also hold for sums of countably many summands.
The literature often also lists the following two additional axioms (E)

∑
i∈∅ ai = 0

and (U)
∑
i∈{j} ai = aj . Next we show that they are valid in any countably com-

plete semiring, and we will use them freely after the proof. In addition, we present
another interesting known property [28, 26] of such semirings.

Proposition 1. If (A,+, ·, 0, 1) is countably complete with respect to
∑

, then
•
∑
i∈I 0 = 0 for every countable index set I,

•
∑
i∈{j} ai = aj for every j and aj ∈ A, and

• a+ b = 0 implies a = 0 = b for every a, b ∈ A.

Proof. To illustrate the handling of infinite sums, we prove these statements for-
mally. For the third item, we present the proof of [26, Proposition 22.28]. First,
the distributivity axiom immediately yields∑

i∈I
0 =

∑
i∈I

0ai
(D)
= 0 ·

∑
i∈I

ai = 0

for every countable index set I and ai ∈ A with i ∈ I. This proves the first item
and Axiom (E), which is a special case of the first item. Next, let j be an arbitrary
element and aj ∈ A. We prove the unary sum axiom (U) by adding the neutral
element 0 to a. In this way, we can form binary sums. Let j′ be such that j′ 6= j
and aj′ = 0. Then∑

i∈{j}

ai =
(∑
i∈{j}

ai

)
+ 0

†
=
(∑
i∈{j}

ai

)
+
(∑
i∈{j′}

ai

)
(B)
=

∑
J∈{{j},{j′}}

(∑
i∈J

ai

)
(P)
=

∑
i∈{j,j′}

ai
(B)
= aj + aj′ = aj + 0 = aj

where we used the first item in the step marked †. For the last statement, let
a, b ∈ A be such that a+ b = 0. Consider the following two partitions of N:

J = {{2j, 2j + 1} | j ∈ N}
J ′ = {{0}} ∪ {{2j + 1, 2j + 2} | j ∈ N} .

Moreover, for every i ∈ N, let ai = a if i is even and ai = b otherwise. Intuitively,
consider the sum

∑
i∈N ai. The partition J always pairs a2j and a2j+1, which are

a and b, respectively. Thus, all subsums under this partition will be a+ b = 0. The
partition J ′ is similar. It pairs a2j+1 and a2j+2, which are b and a, respectively,
but it keeps a0 = a separate. Thus, the subsum for {0} will be a and the remaining
subsums will be b+a = 0. Using the first item, we can then prove that

∑
i∈N ai = 0

using the partition J because all the subsums are 0, but we can also prove that∑
i∈N ai = a using the partition J ′. Clearly, this proves that a = 0. Formally, let

6 Andreas Maletti

J ′′ = J ′ \ {{0}}. Then

a = a+ 0
(U),†
=
(∑
i∈{0}

ai

)
+
∑
J∈J ′′

0 =
(∑
i∈{0}

ai

)
+
∑
J∈J ′′

(b+ a)

(B)
=
(∑
i∈{0}

ai

)
+
∑
J∈J ′′

(∑
i∈J

ai

)
(P)
=
(∑
i∈{0}

ai

)
+
∑
i∈N+

ai
(B)
=

∑
J∈{{0},N+}

(∑
i∈J

ai

)
(P)
=
∑
i∈N

ai
(P)
=
∑
J∈J

(∑
i∈J

ai

)
(B)
=
∑
J∈J

(a+ b) =
∑
J∈J

0
†
= 0 ,

where we used the first item in the steps marked †. Clearly, this also yields that
b = 0 + b = a+ b = 0.

Now let Q be a finite set and (A,+, ·, 0, 1) be a countably complete semiring
with respect to

∑
. Then the matrix semiring (AQ×Q,+, ·, 0, 1) is a (typically

non-commutative) semiring that is countably complete with respect to the usual
generalization of matrix addition to countable sums. Consequently, we can define a
Q×Q-matrix M∗ for every Q×Q-matrix M ∈ AQ×Q over A by M∗ =

∑
n∈NM

n.
Recall that M0 = 1 and Mn+1 = M ·Mn for every n ∈ N. If we interpret M as
the incidence matrix of a weighted graph, then the entry M∗p,q with p, q ∈ Q equals
the sum of the weights of all paths leading from p to q where the weight of a path
is obtained by multiplying the weights of the edges. For example, in the tropical
semiring, M∗p,q equals the smallest weight of path from p to q.

Proposition 2. Every ring (A,+, ·, 0, 1) with 0 6= 1 is not countably complete with
respect to any

∑
.

Proof. Suppose that it is countably complete with respect to some
∑

. Since there
exists an element −1 ∈ A such that (−1) + 1 = 0, we conclude by Proposition 1
that −1 = 0 = 1, which contradicts the assumption 0 6= 1.

Finally, we consider semiring homomorphisms that preserve certain countably
infinite sums. Let (A,+, ·, 0, 1) be a countably complete semiring with respect
to
∑

and (S,⊕,�,0,1) be a countably complete semiring with respect to
⊕

. In
addition, let h : A → S be a semiring homomorphism and B ⊆ A. Then h is
B-complete if h(

∑
i∈I ai) =

⊕
i∈I h(ai) for every countable index set I and every

ai ∈ B with i ∈ I. A semiring homomorphism is essentially complete [21] if it
is 〈B〉-complete for every finite set B ⊆ A. The traditional notion of a complete
semiring homomorphism [34, 17] requires that it is A-complete. In other words,
an essentially complete homomorphism preserves countable sums, of which the
summands all belong to a finitely-generated subsemiring, whereas the traditional
notion requires that all countable sums need to be preserved. The relaxed notion
of ‘essential completeness’ is typically sufficient for weighted finite-state devices
because their finitely many transitions carry only finitely many weights. Thus,
most weighted finite-state devices [36, 9] (whether over trees, strings, pictures,
etc.) compute in a finitely-generated subsemiring.

Weighted Extended Top-down Tree Transducers 7

We say that a semiring is proper if it is not a ring. For example, the Boolean
semiring is proper. Wang proved in [49, Theorem 2.1] and [50, Lemma 3.1] that
for every proper commutative semiring there exists a semiring homomorphism from
it to the Boolean semiring. This important result essentially yields that weighted
devices over proper commutative semirings behave as the corresponding unweighted
(i.e., Boolean weighted) devices. Here, we extend this result to include infinite
summation, which is present in some finite-state models [9]. However, we first recall
the original construction of the semiring homomorphism by [49, 50]. To this end,
we introduce some additional notions for a commutative semiring (A,+, ·, 0, 1). A
set C ⊆ A is a co-ideal if

• cc′ ∈ C for all c, c′ ∈ C and
• a+ c ∈ C for every a ∈ A and c ∈ C.

In other words, co-ideals are closed under multiplication of its elements and closed
under addition of one of its elements with any semiring element. Dually, an
ideal I ⊆ A is such that

• ai ∈ I for every a ∈ A and i ∈ I and
• i+ i′ ∈ I for all i, i′ ∈ I.

Note that if 0 ∈ C for a co-ideal C, then C = A. Now consider the smallest co-
ideal C({1}) that contains 1. An easy exercise (using distributivity) shows that
C({1}) = {1 + a | a ∈ A}. More generally, for every S ⊆ A, the smallest co-ideal
containing S is

C(S) = {s1 · · · sk + a | k ∈ N, s1, . . . , sk ∈ S, a ∈ A} .

If (A,+, ·, 0, 1) is a ring, then 0 ∈ C({1}), and thus C({1}) = A. However, if it
is proper, then clearly 0 /∈ C({1}), and thus C({1}) 6= A. Now Zorn’s Lemma
guarantees that in the latter case there exists a maximal co-ideal C such that
C({1}) ⊆ C ⊆ A \ {0}. The remaining elements A \ C form an ideal that con-
tains 0. This is verified as follows. Let a ∈ A and i, i′ ∈ A \C. Since i, i′ /∈ C there
exist c, c′ ∈ C, n, n′ ∈ N, and b, b′ ∈ A such that inc + b = 0 and (i′)n

′
c′ + b′ = 0

by maximality of C. Indeed, if such elements do not exist, then i or i′ can be
added to C to induce an even larger, proper co-ideal C(C ∪ {i}) or C(C ∪ {i′}).
We show that ai /∈ C and i + i′ /∈ C, which proves that A \ C is an ideal. Since
(ai)nc + anb = an(inc + b) = 0, we have (ai)n /∈ C because c ∈ C. In fact,
if (ai)n ∈ C, then also (ai)nc ∈ C and (ai)nc + anb ∈ C, which contradicts
0 /∈ C because (ai)nc + anb = 0. Consequently, ai /∈ C because if ai ∈ C, then
(ai)n ∈ C for every n ∈ N. Similarly, (i + (i′))mcc′ where m = n + n′ can be
presented as a sum of elements of the form aj = ij(i′)m−jcc′ where j ∈ [m]. Mind
that the same summand can occur multiple times in the sum. Let j ≥ n. Then
ij(i′)m−jcc′+ bij−n(i′)m−jc′ = (inc+ b)ij−n(i′)m−jc′ = 0. Let bj = bij−n(i′)m−jc′.
An analogous argument applies to the case j < n, which yields that m − j ≥ n′.
Thus, for every summand aj there exists an element bj ∈ A such that aj + bj = 0,
which proves that also for (i+ (i′))mcc′, which is finite sum of summands aj , there
exists an element b′′ ∈ A such that (i + (i′))mcc′ + b′′ = 0, which proves that
i+ i′ /∈ C.

8 Andreas Maletti

Now we can define the semiring homomorphism h by

h(a) =

{
1 if a ∈ C
0 otherwise

for every a ∈ A. Since C is a co-ideal and A \ C is an ideal, this mapping h is a
semiring homomorphism.

Theorem 1. For every countably complete semiring (A,+, ·, 0, 1) with respect to
∑

there exists an essentially complete semiring homomorphism to the Boolean semi-
ring, which is countably complete with respect to max.

Proof. We start with the semiring homomorphism h that we constructed above.
Recall that C ⊆ A \ {0} is maximal co-ideal with 1 ∈ C. It remains to prove that
h is essentially complete. Let I be an index set, S ⊆ A be finite, and ai ∈ 〈S〉 for
every i ∈ I. We have to prove that

h
(∑
i∈I

ai

)
= max

i∈I
h(ai) , (1)

which yields two (mutually exclusive) cases:
• there exists i ∈ I such that h(ai) = 1 (i.e., ai ∈ C) or
• h(ai) = 0 (i.e., ai ∈ I) for all i ∈ I.

In the former case, the right-hand side of (1) evaluates to 1. This yields that
we have to prove that

∑
i∈I ai ∈ C. Let j ∈ I be such that aj ∈ C. Then∑

i∈I ai = aj +
∑
i∈I\{j} ai using the axioms (P), (B), and (U). Since aj ∈ C, also

aj +
∑
i∈I\{j} ai ∈ C because C is a co-ideal, which proves that

∑
i∈I ai ∈ C.

In the second case, the right-hand side of (1) evaluates to 0. Thus, we need to
prove that

∑
i∈I ai /∈ C. Since each ai is in 〈S〉, we can represent it as a (finite)

sum
∑ni
j=1 bij of products bij of elements of S as already remarked. Clearly, bij /∈ C

for every 1 ≤ j ≤ ni because otherwise ai ∈ C. Consequently, we can write

∑
i∈I

ai =
∑
i∈I

(ni∑
j=1

bij

)
=
∑
i∈I′

bia
′
i

for some index set I ′, and bi ∈ S \ C and a′i ∈ A for every i ∈ I ′. The existence
of the factors bi /∈ C follows from the fact that ai /∈ C. The set B = {bi | i ∈ I ′}
is finite because B ⊆ S. Let B = {e1, . . . , en}. Since C is maximal, we know that
for each b ∈ B there exist `b ∈ N, cb ∈ C, and db ∈ A such that b`bcb + db = 0.
Otherwise, the co-ideal C(C∪{b}) would still be different from A, which contradicts
the maximality of C. By Proposition 1, we know that b`bcb = 0 (and db = 0). Let
` =

∑
b∈B `b and c =

∏
b∈B cb. Then(∑

i∈I
ai

)`
c =

(∑
i∈I′

bia
′
i

)`
·
∏
b∈B

cb =
∑
i∈I′′

e`i11 · · · e`inn a′′i ce1 · · · cen

Weighted Extended Top-down Tree Transducers 9

for some index set I ′′, `i1, . . . , `in ∈ N and a′′i ∈ A for every i ∈ I ′′ such that∑n
j=1 `ij = `. From the last expression it is clear that each summand contains a

factor bmcb = 0 for some b ∈ B and m ≥ `b. Thus, each summand is 0 and the sum
is 0 by Proposition 1, which proves that (

∑
i∈I ai)

`c = 0. However, since c ∈ C,
we proved that

∑
i∈I ai cannot be in C because it would yield 0 ∈ C, which is a

contradiction. Consequently,
∑
i∈I ai /∈ C, which proves the statement.

Consequently, we proved that h is 〈S〉-complete, and since S was chosen arbi-
trarily, we also proved that h is essentially complete.

For the rest of this paper, let (A,+, ·, 0, 1) be an arbitrary nontrivial
(i.e., 0 6= 1) commutative semiring.

2.2 Sets, relations, and trees

We denote the set of all nonnegative integers (including 0) by N. For every n ∈ N,
the subset {i ∈ N | 1 ≤ i ≤ n} is denoted by [n]. We fix the set X = {x1, x2, . . . } of
(formal) variables and let Xn = {xi | i ∈ [n]} for every n ∈ N.

Now, let S, T , and U be countable sets. A relation from S to T is a subset
of S × T . Let R ⊆ S × T and R′ ⊆ T × U . The inverse relation of R, denoted
by R−1, is {(t, s) | (s, t) ∈ R} and the composition of R and R′, denoted by R ;R′, is
{(s, u) | ∃t ∈ T : (s, t) ∈ R, (t, u) ∈ R′}. These notions extend to classes of relations
in the standard manner. A relation on S is a subset of S ×S. For every set L ⊆ S
we denote by idL the relation {(s, s) | s ∈ L}. The reflexive and transitive closure
of a relation R ⊆ S × S is denoted by R∗.

Next, we extend these notions to the weighted setting. A weighted relation
from S to T is a mapping of ρ : S×T → A. Let ρ : S×T → A and ρ′ : T ×U → A.
The inverse relation of ρ, denoted by ρ−1, is such that ρ−1(t, s) = ρ(s, t) for every
s ∈ S and t ∈ T , and the composition of ρ and ρ′, denoted by ρ ; ρ′, is such that
(ρ ; ρ′)(s, u) =

∑
t∈T ρ(s, t)ρ′(t, u) for every s ∈ S and u ∈ U . Depending on the

set T and the weighted relations ρ and ρ′, the sum in the definition of ρ ;ρ′ might be
infinite. If it is, then we typically assume that (A,+, ·, 0, 1) is countably complete
with respect to

∑
. We will discuss this issue in more detail later on. Again, these

notions extend to classes of weighted relations in the standard manner. A weighted
relation on S is a mapping ρ : S × S → A. For every weighted set ϕ : S → A, we
denote by idϕ the weighted relation such that idϕ(s, s) = ϕ(s) and idϕ(s, s′) = 0
for every s, s′ ∈ S such that s 6= s′. If ϕ(s) = 1 for every s ∈ S, then we also just
write id instead of idϕ. Given that (A,+, ·, 0, 1) is countably complete with respect
to
∑

, the reflexive and transitive closure of a weighted relation ρ : S × S → A
is denoted by ρ∗ and is defined by ρ∗(s, s′) =

∑
n∈N ρ

n(s, s′) where ρ0 = id and

ρk+1 = ρ ; ρk for every k ∈ N. Note that all weighted notions over the Boolean
semiring correspond to the unweighted notions via the mapping ‘supp’. For ex-
ample, the weighted relation ρ : S × T → {0, 1} corresponds to the (unweighted)
relation supp(ρ).

The set of all finite sequences (words) over S is denoted by S∗, of which ε denotes
the empty sequence (the empty word). The concatenation of the words v, w ∈ S∗

10 Andreas Maletti

is denoted by v.w or simply by vw. The length of a word w ∈ S∗ (i.e., the number
of occurrences of elements of S in w) is denoted by |w|.

An alphabet Σ is a nonempty and finite set, of which the elements are called
symbols. Next, we define trees using only alphabets. In contrast to many definitions
in the literature [12, 24, 25, 23], we do not assume a ranked alphabet, which means
that a symbol can have different numbers of children in a tree. This is only a
simplification because our automata model will still have only a finite number of
rules, which thus determine a maximal rank for each used symbol. Let Q be an
alphabet and L a countable set of leaf labels. For every set T , we let

Q(T) = {q(t) | q ∈ Q, t ∈ T} .

The set TΣ(L) of Σ-trees with leaf labels L is the smallest set T such that L ⊆ T and
σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ T . We generally assume
that Σ∩L = ∅, and thus we write α() simply as α for every α ∈ Σ. Given another
alphabet ∆ and T ⊆ T∆(L), we treat elements of TΣ(T) and Q(T) as particular
trees of TQ∪Σ∪∆(L). For every γ ∈ Σ, we abbreviate the tree γ(γ(· · · γ(t) · · ·)) with
n symbols γ on top of t ∈ TΣ(L) simply by γn(t). Finally, we write TΣ for TΣ(∅).
Note that TΣ(L) is countable and that the elements of L can only appear as leaves
in trees of TΣ(L).

The set pos(t) ⊆ N∗ of positions of a tree t ∈ TΣ(L) is inductively defined by
pos(`) = {ε} for every ` ∈ L and

pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(L). Let t, t′ ∈ TΣ(L) and w ∈ pos(t).
The label of t at position w is t(w), and the subtree of t that is rooted at w is t|w.
We can define these notions inductively as follows: `(ε) = `|ε = ` for every ` ∈ L
and

t(w) =

{
σ if w = ε

ti(v) if w = iv with i ∈ [k]
and t|w =

{
t if w = ε

ti|v if w = iv with i ∈ [k]

where t = σ(t1, . . . , tk) for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(L). For every
set of labels S ⊆ Σ ∪ L, we let posS(t) = {w ∈ pos(t) | t(w) ∈ S}. For S = {s}
we abbreviate posS(t) simply by poss(t). We say that s ∈ S occurs |poss(t)| times
in t. Finally, t[u]w denotes the tree that is obtained from t ∈ TΣ(L) by replacing
the subtree t|w at w by u ∈ T∆(L).

The height ht(t) of t is max{|w| + 1 | w ∈ pos(t)}, and the size |t| of the
tree t is |t| = |pos(t)|. Recall the special set X of formal variables. We let
var(t) = {x ∈ X | posx(t) 6= ∅} for every t ∈ TΣ(L ∪ X). The tree t is linear
(respectively, nondeleting) in V ⊆ X, if every x ∈ V occurs at most (respectively,
at least) once in t. Every t ∈ TΣ(V) that is linear and nondeleting in V is a
V -context of TΣ(V). The set of all V -contexts of TΣ(V) is denoted by CΣ(V).
For every such context and x ∈ var(t), we identify the unique element of posx(t)
with posx(t). If t is linear and nondeleting in Xk for some k ∈ N and the vari-
ables occur in order (i.e., posxi(t) < posxj (t) in the usual lexicographic ordering

Weighted Extended Top-down Tree Transducers 11

σ

5 γ

4

σ

8 12 α

Figure 1: Graphical representation of the tree σ(5, γ(4), σ(8, 12, α)).

for all 1 ≤ i < j ≤ k), then t is called normalized. For every V ⊆ X, a map-
ping θ : V → TΣ(L) is a substitution. The substitution θ can be applied to a
tree t ∈ TΣ(L ∪ X), written tθ, which yields the tree that is obtained by replacing
(in parallel) all occurrences of a variable x ∈ V by θ(x). Formally, xθ = θ(x) for
every x ∈ V , and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for every k ∈ N, σ ∈ Σ, and
t1, . . . , tk ∈ TΣ(L ∪X). To avoid explicitly defining a substitution θ : Xk → TΣ(L),
we sometimes write t[θ(x1), . . . , θ(xk)] for tθ.

Example 1. Let Σ = {σ, γ, α}. Then t = σ(5, γ(4), σ(8, 12, α)) is a tree of TΣ(N).
Its graphical representation is displayed in Figure 1. Its set pos(t) of positions is
{ε, 1, 2, 2.1, 3, 3.1, 3.2, 3.3} and posσ(t) = {ε, 3}. The tree σ(x1, x3, x2, x2) is linear
and nondeleting in {x1, x3}, but not linear in X3.

3 The Model

In this section, we will recall the main model of this survey: the weighted extended
top-down tree transducer [2, 3, 38, 40]. However, we first recall the corresponding
automaton model: the weighted tree automaton [6, 34, 17, 23]. A weighted tree
language (or tree series) is simply a weighted set of trees; i.e., a mapping ϕ : TΣ → A
for some alphabet Σ.

Definition 1. A weighted (bottom-up) tree automaton (wta) is a tuple (Q,Σ, δ, F)
such that
• Q is an alphabet of states,
• Σ is an alphabet of input symbols such that Q ∩ Σ = ∅,
• δ : Q∗ × Σ×Q→ A is a transition weight mapping with finite supp(δ), and
• F ⊆ Q is a set of final states.

The transition weight mapping δ of the wta M = (Q,Σ, δ, F) is extended to a
mapping δ : TΣ ×Q→ A as follows:

δ(σ(t1, . . . , tk), q) =
∑

q1,...,qk∈Q
δ(q1 · · · qk, σ, q) ·

k∏
i=1

δ(ti, qi)

for every q ∈ Q, k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ. In the sequel, we will sim-
ply write δ instead of δ. The weighted tree language ϕM : TΣ → A recognized
by M is such that ϕM (t) =

∑
q∈F δ(t, q) for every t ∈ TΣ. A weighted tree lan-

guage ϕ : TΣ → A is recognizable if there exists a wta M such that ϕM = ϕ.

12 Andreas Maletti

The recognizable weighted tree languages are the natural generalization of the
recognizable tree languages [24, 25]. For the Boolean semiring the two notions
coincide. An excellent introduction into the subject is presented in [23]. Here we
just present a quick example.

Example 2. Let us consider the artic semiring (N ∪ {−∞},max,+,−∞, 0) and
the wta (Q,Σ, δ, F) with

• Q = {z, h} and F = {h},
• Σ = {σ, α}, and
• δ returns −∞ except in the following cases:

δ(ε, α, z) = 0 δ(z, α, z) = 0 δ(zz, σ, z) = 0

δ(ε, α, h) = 1 δ(h, α, h) = 1 δ(zh, σ, h) = 1

δ(hz, σ, h) = 1 .

This wta rejects (i.e., assigns weight −∞ to) all trees t that contain a symbol α
with at least two children [i.e., trees t that have a position w ∈ posα(t) such that
a.2 is also in pos(t)] or a symbol σ with anything but 2 children. Moreover, it
assigns the height ht(t) to the remaining trees t.

Next, we recall the weighted extended top-down tree transducer [8, 2, 27, 33].
For simplicity, we will henceforth just call them “extended tree transducer” (xtt).
We essentially follow the definitions of [38, 41], in which the corresponding un-
weighted device is discussed in detail. We will lift the results obtained in [38, 41] to
the weighted setting either directly or using the semiring homomorphism introduced
in Section 2. We start with the definition of the general device.

Definition 2. A (weighted) extended (top-down) tree transducer (xtt) is a tuple
M = (Q,Σ,∆, I, R) where

• Q is an alphabet of states,
• Σ and ∆ are alphabets of input and output symbols such that Q∩(Σ∪∆) = ∅,
• I ⊆ Q is a set of initial states, and
• R : Q(TΣ(X)) × T∆(Q(X)) → A assigns rule weights such that supp(R) is

finite, l is linear in X and var(r) ⊆ var(l) for every (l, r) ∈ supp(R).

If for every (l, r) ∈ supp(R) there exist k ∈ N, q ∈ Q, and σ ∈ Σ such that
l = q(σ(x1, . . . , xk)), then M is a top-down tree transducer [35, 14].

In the sequel, we often write l → r ∈ supp(R) instead of (l, r) ∈ supp(R), and

we write l
a→ r ∈ R instead of R(l, r) = a. The xtt M is linear (respectively, non-

deleting if r is linear (respectively, nondeleting) in var(l) for every l→ r ∈ supp(R).
A rule of the form q(x) → r with q ∈ Q, x ∈ X, and r ∈ T∆(Q(X)) is called input
ε-rule, and any rule of the form l → q(x) with q ∈ Q, x ∈ X, and l ∈ Q(TΣ(X)) is
called output ε-rule. A rule that is both an input and an output ε-rule is called a
pure ε-rule. The set of all pure ε-rules of supp(R) is denoted by Rε. Any remaining
rule contains at least one input or output symbol.

Weighted Extended Top-down Tree Transducers 13

Example 3 (see [41, Section 3]). Let us consider the field (R,+, ·, 0, 1) of real
numbers. The xtt (Q,Σ,∆, {q}, R) with

Q = {q, qS, qV, qNP}
Σ = Γ ∪ {saw , the, boy , door}
∆ = Γ ∪ {ra’aa, atefl , albab}
Γ = {CONJ,S,VP,V,DT,NP,N}

and the following weighted rules of R

q(x1)
.2→ qS(x1) (ρ1)

q(x1)
.8→ S(CONJ(wa-), qS(x1)) (ρ2)

qS(S(x1,VP(x2, x3)))
1→ S′(qV(x2), qNP(x1), qNP(x3)) (ρ3)

qV(V(saw))
.7→ V(ra’aa) (ρ4)

qNP(NP(DT(the),N(boy)))
.6→ NP(N(atefl)) (ρ5)

qNP(NP(DT(the),N(door)))
.5→ NP(N(albab) (ρ6)

is linear and nondeleting. In addition, it has 2 input ε-rules, 1 output ε-rule, and
1 pure ε-rule. It is not a top-down tree transducer.

Our reference semantics of the xtt M = (Q,Σ,∆, I, R) is given by rewriting [13,
22, 41]. Let ζ, ξ ∈ T∆(Q(TΣ)) and ρ = (l → r) ∈ supp(R). The leftmost redex in ζ
is the least position w ∈ posQ(ζ) with respect to the lexicographic (total) ordering
on N∗. In other words, the leftmost redex is the leftmost position in the tree that
is labeled with a state. We say that ζ rewrites to ξ using ρ, denoted by ζ ⇒ρ

M ξ, if
there exist a minimal position w ∈ posQ(ζ) and a substitution θ : var(l)→ TΣ such
that ζ|w = lθ and ξ = ζ[rθ]w. Intuitively, we identify a rule, of which the left-hand
side matches the subtree at the leftmost redex, and then we replace this subtree
by the corresponding instantiated right-hand side. The weighted relation τM (or
weighted tree transformation) computed by M is given by

τM (t, u) =
∑

q∈I,k∈N,ρ1,...,ρk∈supp(R)

q(t)⇒ρ1
M ···⇒

ρk
M u

R(ρ1) · · ·R(ρk) (2)

for every t ∈ TΣ and u ∈ T∆. Two xtt M and M ′ are equivalent if τM = τM ′ .
The sum in (2) can be infinite. Let us present a short example before we dis-
cuss the finiteness of the sum of (2) in some detail. The semantics shows that
variables can be consistently renamed without effect. Consequently, for every
xtt M = (Q,Σ,∆, I, R) there exists an equivalent xtt M ′ = (Q,Σ,∆, I, R′) such
that for every (l, r) ∈ supp(R′) there exists k ∈ N with var(l) = {x1, . . . , xk}. In
the following, we will silently assume this normal form.

14 Andreas Maletti

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

N

door

⇒∗M

S

CONJ

wa-
[and]

S’

V

ra’aa
[saw]

NP

N

atefl

[the boy]

NP

N

albab
[the door]

Figure 2: English-to-Arabic translation on syntax trees.

Example 4. Let us reconsider the xtt M of Example 3, and let

t = S(NP(DT(the),N(boy)),VP(V(saw),NP(DT(the),N(door)))) ,

which is depicted in Figure 2. Then

q(t)⇒ρ2

M S(CONJ(wa-), qS(t))

⇒ρ3

M S(CONJ(wa-),S′(qV(V(saw)), qNP(NP(DT(the),N(boy))),

qNP(NP(DT(the),N(door)))))

⇒ρ4

M S(CONJ(wa-),S′(V(ra’aa), qNP(NP(DT(the),N(boy))),

qNP(NP(DT(the),N(door)))))

⇒ρ5

M S(CONJ(wa-),S′(V(ra’aa),NP(N(atefl)), qNP(NP(DT(the),N(door)))))

⇒ρ6

M S(CONJ(wa-),S′(V(ra’aa),NP(N(atefl)),NP(N(albab)))) = u .

Since this is the only derivation from q(t) to u, we conclude that

τM (t, u) = R(ρ2)R(ρ3)R(ρ4)R(ρ5)R(ρ6) = 0.8 · 1 · 0.7 · 0.6 · 0.5 = 0.168 .

For illustration, t and u are displayed in Figure 2.

Let us return to the sum in (2). Clearly, the length k of the derivation is at
most |t|+ |u| if no pure ε-rule is used (i.e., if ρi /∈ Rε for all i ∈ [k]). In this case, the
sum in (2) is finite, which yields that the semantics of any top-down tree transducer
is well-defined. In the presence of pure ε-rules, we assume that (A,+, ·, 0, 1) is
countably complete with respect to

∑
. Consequently, the sum is well-defined.

We will get rid of this case distinction after an important characterization result
that relates linear nondeleting xtt to another device that computes weighted tree
transformations: the weighted linear complete bimorphism.

A linear and complete tree homomorphism f : TΓ → TΣ is such that for every
k ∈ N and γ ∈ Γ there exists fk(γ) ∈ CΣ(Xk) such that

f(γ(s1, . . . , sk)) = fk(γ)[f(s1), . . . , f(sk)] .

Weighted Extended Top-down Tree Transducers 15

If additionally fk(γ) 6= x1 for every k ∈ N and γ ∈ Γ, then f is ε-free.
Since wta are rather unsuitable for the next result, we use another model: the

weighted regular tree grammar [1]. Such a grammar is tuple G = (N,Σ, S, P) where
N is a finite set of nonterminals, Σ is an alphabet of input symbols, S ⊆ N is a
set of start symbols, and P : N × TΣ(N)→ A assigns weights to productions such
that supp(P) is finite. It computes in a step-wise fashion. Given ξ ∈ TΣ(N), let
w ∈ posN (ξ) be the leftmost position (i.e., the smallest of posN (ξ) with respect to
the lexicographic ordering on N∗). If there exists a production ρ = (n, s) ∈ supp(P)
such that n = ξ(w), then we write ξ ⇒ρ

G ζ where ζ = ξ[s]w. In other words, the
nonterminal is replaced by the corresponding right-hand side of the production.
The semantics of G is then given by

ϕG(t) =
∑

s∈S,k∈N,ρ1,...,ρk∈supp(P)

s⇒ρ1
G ···⇒

ρk
G t

P (ρ1) · · ·P (ρk)

for every t ∈ TΣ. To avoid a discussion of infinite summations here, we assume that
s /∈ N for every (n, s) ∈ supp(P), which guarantees that the above sum is finite. It
is known that such weighted regular tree grammars also compute the recognizable
weighted tree languages [1, Proposition 3.1] (also see [23] for a detailed account).
The following important result is well-known from the literature [35, 17].

Theorem 2 (see [35] and [17, Corollary 6.10]). For every linear, complete, and
ε-free tree homomorphism f : TΓ → TΣ and every recognizable weighted tree lan-
guage ψ : TΓ → A, the weighted tree language ϕ : TΣ → A, which is given by
ϕ(t) =

∑
s∈TΓ,f(s)=t ψ(s), is again recognizable.

Proof. Intuitively, we translate a symbol γ ∈ Γ with the help of f into a context,
which we then process in a single step charging the original weight. Now let us
construct a weighted regular tree grammar for ϕ. Formally, let M = (Q,Γ, δ, F) be
a wta recognizing ψ. The weighted regular tree grammar G = (Q,Σ, F, P) is such
that

P (q, s) =
∑

k∈N,q1,...,qk∈Q
s=fk(γ)[q1,...,qk]

δ(q1 · · · qk, γ, q)

for every q ∈ Q and s ∈ TΣ(Q). Clearly, s /∈ Q for every (q, s) ∈ supp(P).
Moreover, it should be clear that ϕG = ϕ, which proves that ϕ is recognizable.

A weighted linear and complete bimorphism [3, 21] is a tuple B = (f, ϕ, g) such
that f : TΓ → TΣ and g : TΓ → T∆ are linear and complete tree homomorphisms
and ϕ : TΓ → A is recognizable. The weighted tree transformation computed by B
is

τB(t, u) =
∑
s∈TΓ

f(s)=t,g(s)=u

ϕ(s)

for every t ∈ TΣ and u ∈ T∆.

16 Andreas Maletti

Theorem 3 (see [38, Theorem 4] and [21]). For every linear and nondeleting xtt
there exists an equivalent weighted linear and complete bimorphism and vice versa.

Proof. We have to prove both directions. Let B = (f, ϕ, g) be a weighted linear
and complete bimorphism with f : TΓ → TΣ and g : TΓ → T∆. Moreover, let
N = (Q,Γ, δ, F) be a wta such that ϕN = ϕ. Roughly speaking, we use the control
structure of N as control structure of the xtt M that we construct and use f and g
to determine the left- and right-hand sides of the rules, respectively. Formally,
we construct the linear nondeleting xtt M = (Q,Σ,∆, F,R) as follows. For every
l ∈ Q(TΣ) and r ∈ T∆(Q(X)), let

R(l, r) =
∑

(q1···qk,γ,q)∈supp(δ)
l=q(fk(γ)),r=gk(γ)[q1(x1),...,qk(xk)]

δ(q1 · · · qk, γ, q) .

Note that M is linear and nondeleting.

For the converse, let a linear and nondeleting xtt M = (Q,Σ,∆, I, R) be given.
Without loss of generality, we suppose that for every l→ r ∈ supp(R) there exists
k ∈ N with var(l) = {x1, . . . , xk}. We construct f , g, and a wta N = (Q,Γ, δ, I)
with Γ = supp(R) as follows. For every ρ ∈ supp(R), we have ρ = q(l) → rθ with
l ∈ CΣ(Xk), r ∈ C∆(Xk), and q, q1, . . . , qk ∈ Q where θ is the substitution such
that xiθ = qi(xi) for every i ∈ [k]. For this rule ρ, let fk(ρ) = l, gk(ρ) = r, and
δ(q1 · · · qk, ρ, q) = R(ρ). The remaining values of fk(γ) and gk(γ) are irrelevant and
all unmentioned values of δ are 0.

For both directions it remains to prove that τM = τB . To this end, it can be
shown for every q ∈ Q, t ∈ TΣ, and u ∈ T∆ that∑

n∈N,ρ1,...,ρn∈supp(R)

q(t)⇒ρ1
M ···⇒

ρn
M u

R(ρ1) · · ·R(ρn) =
∑
s∈TΓ

f(s)=t,g(s)=u

δ(s, q) .

The proof of that statement is omitted here. The unweighted case is proved in [38,
Theorem 4] and the weighted case is discussed in [20, 21].

It follows immediately from Theorem 3 that linear and nondeleting xtt are
symmetric; i.e., for every linear and nondeleting xtt M = (Q,Σ,∆, I, R) there
exists a linear and nondeleting xtt M ′ such that τM ′(u, t) = τM (t, u) for every
t ∈ TΣ and u ∈ T∆. This property is not quite obvious from the definition of such
xtt, but can trivially be observed on the bimorphism representation.

Now, we will eliminate pure ε-rules in the standard manner in order to avoid
infinite sums, which only occur in the semantics of xtt with pure ε-rules. To this
end, let (A,+, ·, 0, 1) be countably complete with respect to

∑
, and let

Ep,q =
∑

l→r∈Rε
l(ε)=p,r(ε)=q

R(l, r)

Weighted Extended Top-down Tree Transducers 17

for every p, q ∈ Q. Using the matrix E∗, which is well-defined due to the countable
completeness, we can construct the equivalent xtt M ′ = (Q,Σ,∆, I, R′) such that

R′(l, r) = 0 for all l, r ∈ Q(X)

R′(p(`), r) =
∑
q∈Q

E∗p,qR(q(`), r) for all p, q ∈ Q, ` ∈ TΣ(X), and r ∈ T∆(Q(X)) .

In fact, the countable completeness is only required if there are cyclic pure ε-rules.
We omit the proof that M and M ′ are equivalent. Clearly, the xtt M ′ has no pure
ε-rules.

Theorem 4. If (A,+, ·, 0, 1) is countably complete with respect to
∑

, then for
every xtt we can construct an equivalent xtt without pure ε-rules.

Example 5. Recall the xtt (Q,Σ,∆, {q}, R) of Example 3, which has the pure
ε-rule ρ1. Pure ε-rule elimination as outlined above yields the xtt with the rules
(ρ2)–(ρ6) with their original weight and the new rule

q(S(x1,VP(x2, x3)))
.2→ S′(qV(x2), qNP(x1), qNP(x3)) . (ρ′3)

For the rest of the section, we will assume that all used xtt do not have pure
ε-rules. This assumption is often made immediately in the literature [40, 20] to
ensure that the sum in (2) is always well-defined. The countable completeness of
the semiring is thus only needed in the elimination of the pure ε-rules. The class
of weighted tree transformations computed by xtt is denoted by XTOP. The sub-
classes computed by linear and linear nondeleting xtt are denoted by l-XTOP and
ln-XTOP, respectively. The corresponding classes of weighted tree transformations
computed by top-down tree transducers are TOP, l-TOP, and ln-TOP.

The rewrite semantics is very illustrative, but difficult to handle in proofs due
to its essentially non-recursive specification. Next, we are going to present an
alternative way to recursively define the semantics and then show that for every
xtt both semantics indeed define the same weighted tree transformation. We need
one additional notion. Let Σ be an alphabet and t ∈ TΣ. Then

match(t) = {(c, θ) | k ∈ N, c ∈ CΣ(Xk), θ : Xk → TΣ with t = cθ} .

Note that match(t) is finite. Recall that a normalized tree is linear and nondeleting
in Xk for some k ∈ N and its variables {x1, . . . , xk} occur in order.

Definition 3. Let M = (Q,Σ,∆, I, R) be an xtt (without pure ε-rules). We define
the mapping hR : Q(TΣ)× T∆ → A for every ξ ∈ Q(TΣ) and u ∈ T∆ by

hR(ξ, u) =
∑

l→r∈supp(R)
(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(var(l))
r=sθ

R(l, r) ·
∏

x∈var(s)

hR(xθθ′, xθ′′) .

18 Andreas Maletti

Note that this recursion is well-defined because |xθθ′| ≤ |t| and |xθ′′| ≤ |u|
and one of the inequalities is strict due to the fact that {l, r} 6⊆ Q(X) for every
l → r ∈ supp(R). Consequently, we can define the weighted tree transforma-
tion τ ′M : TΣ × T∆ → A by

τ ′M (t, u) =
∑
q∈I

hR(q(t), u)

for every t ∈ TΣ and u ∈ T∆.

Theorem 5. For every xtt M (without pure ε-rules) we have τM = τ ′M .

Proof. The statement follows immediately from the following statement, which we
prove by induction on |ξ|+ |u|.

hR(ξ, u) =
∑

k∈N,ρ1,...,ρk∈supp(R)

ξ⇒ρ1
M ···⇒

ρk
M u

R(ρ1) · · ·R(ρk)

for every ξ ∈ Q(TΣ), and u ∈ T∆.∑
k∈N,ρ1,...,ρk∈supp(R)

ξ⇒ρ1
M ···⇒

ρk
M u

R(ρ1) · · ·R(ρk)

=
∑

k∈N,ρ1,...,ρk∈supp(R)
ρ1=l→r,θ : var(l)→TΣ,ξ=lθ

ξ⇒ρ1
M rθ⇒ρ2

M ···⇒
ρk
M u

R(ρ1) · · ·R(ρk)

=
∑

l→r∈supp(R)
(l,θ)∈match(ξ)

R(l, r) ·
(∑
k∈N,ρ2,...,ρk∈supp(R)

rθ⇒ρ2
M ···⇒

ρk
M u

R(ρ2) · · ·R(ρk)
)

=
∑

l→r∈supp(R)
(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(X)
r=sθ

R(l, r) ·
∏

w∈posQ(r)

(∑
n∈N,ρ′1,...,ρ

′
n∈supp(R)

rθ′|w⇒
ρ′1
M ···⇒

ρ′n
M u|w

R(ρ′1) · · ·R(ρ′n)
)

=
∑

l→r∈supp(R)
(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(X)
r=sθ

R(l, r) ·
∏

x∈var(s)

(∑
n∈N,ρ′1,...,ρ

′
n∈supp(R)

xθθ′⇒ρ′1
M ···⇒

ρ′n
M xθ′′

R(ρ′1) · · ·R(ρ′n)
)

I.H.
=

∑
l→r∈supp(R)

(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(X)
r=sθ

R(l, r) ·
∏

x∈var(s)

hR(xθθ′, xθ′′)

Weighted Extended Top-down Tree Transducers 19

= hR(ξ, u) ,

where we isolated the first derivation step in the first 2 steps, split the subderivations
in the third step, and simplified the obtained expression in the fourth step before
we used the induction hypothesis in the fifth step.

In the following, we will often use this alternative semantics of xtt to prove the
correctness of constructions. We will not explicitly recall that it yields the same
results as our reference semantics based on rewriting.

Example 6. Let us reconsider the xtt M of Example 5, and let

t = S(NP(DT(the),N(boy)),VP(V(saw),NP(DT(the),N(door))))

u = S(CONJ(wa-),S′(V(ra’aa),NP(N(atefl)),NP(N(albab))))

u′ = S′(V(ra’aa),NP(N(atefl)),NP(N(albab)))

as in Example 4. Then

hR(q(t), u) =
∑

l→r∈supp(R)
(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(var(l))
r=sθ

R(l, r) ·
∏

x∈var(s)

hR(xθθ′, xθ′′)

= R(ρ2) · hR(qS(t), u′)

= R(ρ2) · hR(qNP(NP(DT(the),N(boy))),NP(N(atefl)))

· hR(qV(V(saw)),V(ra’aa))

· hR(qNP(NP(DT(the),N(door))),NP(N(albab)))

where we see that the subtrees are evaluated independently and in parallel, whereas
the derivation processed the leftmost subtree first. In addition, nondeterminism
inside a particular subtree translation is handled locally, whereas nondeterminism
is always handled globally in the rewrite semantics.

4 Expressive Power

In this section, we explore the expressive power of xtt and compare the introduced
classes of weighted tree transformations. The number of classes was intentionally
kept low in order to illustrate a particular approach. A more complete picture is
shown in [21], but can also easily be obtained using the techniques recalled here.

Let us first recall the Hasse diagram for the unweighted case of [41, Figure 4.5].
Figure 3 shows the relevant subpart that we are interested in. The contribution [41]
contains a much more refined Hasse diagram that relates many more classes. The
interested reader might consult [41, Figure 4.5] and translate those additional re-
sults to the weighted setting using the approach demonstrated here.

20 Andreas Maletti

XTOP

l-XTOP TOP

ln-XTOP l-TOP

ln-TOP

Figure 3: Hasse diagram of the classes of weighted tree transformations computed
by xtt.

Theorem 6 (see [41, Theorem 4.11]). Figure 3 is a Hasse diagram if (A,+, ·, 0, 1)
is the Boolean semiring.

The approach that we want to demonstrate only concerns the strictness of the
inclusions or the incomparability of classes. Variations of the approach are (implic-
itly and explicitly) used, for example, in [19, 37, 23]. Since the approach only covers
inequalities, the inclusions have to be shown in the standard way. We choose the
set of classes of weighted tree transformations such that all inclusions of Figure 3
trivially hold in every semiring. Now let us show how to lift a statement of the form
C 6⊆ C′ from the Boolean semiring to proper semirings. Recall that a nontrivial
semiring is proper if it is not a ring and that every countably complete semiring is
proper by Proposition 2.

First we lift the application of a semiring homomorphism h : A→ B from semi-
ring elements to weighted tree transformations and to xtt. Given a weighted tree
transformation τ : TΣ × T∆ → A, we write h(τ) for the weighted tree transfor-
mation h(τ) : TΣ × T∆ → B such that h(τ)(t, u) = h(τ(t, u)) for every t ∈ TΣ

and u ∈ T∆. Moreover, given an xtt M = (Q,Σ,∆, I, R) we write h(M) for the
xtt h(M) = (Q,Σ,∆, I, h(R)) where h(R) is such that supp(h(R)) ⊆ supp(R) and
h(R)(ρ) = h(R(ρ)) for every ρ ∈ supp(R).

The next theorem shows that applying an essentially complete semiring ho-
momorphism h to an xtt M yields an xtt h(M) that computes the weighted tree
transformation h(τM). In other words, such a homomorphism is also compatible
with xtt and its computed weighted tree transformations.

Theorem 7. Let h : A → B be an essentially complete semiring homomorphism.
Then τh(M) = h(τM) for every xtt M .

Proof. Let M = (Q,Σ,∆, I, R), t ∈ TΣ, and u ∈ T∆. Then

h(τM)(t, u) = h
(∑
q∈I,k∈N,ρ1,...,ρk∈supp(R)

q(t)⇒ρ1
M ···⇒

ρk
M u

R(ρ1) · · ·R(ρk)
)

Weighted Extended Top-down Tree Transducers 21

†
=

∑
q∈I,k∈N,ρ1,...,ρk∈supp(R)

q(t)⇒ρ1
M ···⇒

ρk
M u

h
(
R(ρ1) · · ·R(ρk)

)

=
∑

q∈I,k∈N,ρ1,...,ρk∈supp(R)

q(t)⇒ρ1
M ···⇒

ρk
M u

h(R(ρ1)) · · ·h(R(ρk))

=
∑

q∈I,k∈N,ρ1,...,ρk∈supp(h(R))

q(t)⇒ρ1
M ···⇒

ρk
M u

h(R)(ρ1) · · ·h(R)(ρk)

= τh(M)(t, u) ,

where we used the essential completeness of h in the step marked †. The sum-
mands R(ρ1) · · ·R(ρk) in the previous step clearly are in the finitely generated
subsemiring 〈C〉 where C = {R(ρ) | ρ ∈ supp(R)}, which is a finite set.

With the help of the previous theorem we can now prove that if an inclusion is
valid in the proper semiring (A,+, ·, 0, 1), then it must also be valid in the Boolean
semiring. Intuitively, this is achieved by just applying the essentially complete
semiring homomorphism h of Section 2. We will typically use this statement as
contraposition, if two classes are not contained in the Boolean semiring, then they
also are not contained in the proper semiring (A,+, ·, 0, 1), which is the desired lift
result.

Theorem 8. Let C, C′ ∈ {ln-TOP, l-TOP,TOP, ln-XTOP, l-XTOP,XTOP}. If
C ⊆ C′ holds in the proper commutative semiring (A,+, ·, 0, 1), then it also holds in
the Boolean semiring.

Proof. Let h be the essentially complete semiring homomorphism discussed in Sec-
tion 2. For every xtt N with the properties required by C over the Boolean
semiring, we can easily construct an xtt M (with the same properties) over the
proper semiring (A,+, ·, 0, 1) such that h(M) = N . This can be achieved by rein-
terpreting N (up to the identity of the unit elements 0 and 1) as an xtt over
the semiring (A,+, ·, 0, 1). By Theorem 7, we have h(τM) = τh(M) = τN . Since
C ⊆ C′ is true in the proper semiring (A,+, ·, 0, 1), there exists an xtt M ′ with the
properties required by C′ such that τM ′ = τM . Note that both M and M ′ com-
pute over (A,+, ·, 0, 1). Again we use Theorem 7 to conclude that the xtt h(M ′)
computes τh(M ′) = h(τM ′) = h(τM) = τN over the Boolean semiring. It is an
easy exercise to verify that h(M ′) has the same properties (linear, nondeleting, top-
down tree transducer) as M ′. Thus, we proved that for every xtt over the Boolean
semiring with the properties required by C we can construct an equivalent xtt also
over the Boolean semiring with the properties required by C′, which proves the
statement.

Since the inclusions of Figure 3 are trivial and the inequalities can be lifted from
the unweighted case using Theorem 8, we can immediately conclude the following
theorem.

22 Andreas Maletti

Theorem 9. Figure 3 is a Hasse diagram for every proper commutative semiring
(A,+, ·, 0, 1).

As already indicated the presented method applies just as well to other weighted
devices such as weighted string transducers, weighted tree-walking automata, etc.
In fact, it would be relatively easy to lift even the full Hasse diagram of [41,
Figure 4.5] to the weighted case but since that involves a number of additional
notions such as look-ahead, we leave this exercise to the reader.

We end this section with a demonstration of the usefulness of the different
semantics and presentations of xtt. Again we do not strive to obtain the most
general results, but rather we want to illustrate the principles. We start with
domain and range. Let τ : TΣ × T∆ → A be a weighted tree transformation. Then
the domain of τ is the weighted tree language ϕ : TΣ → A such that

ϕ(t) =
∑
u∈T∆

τ(t, u)

for every t ∈ TΣ. Mind that the sum might be infinite. It is finite if for every t ∈ TΣ

there exist only finitely many u ∈ T∆ such that (t, u) ∈ supp(τ). For example, if
τ is computed by an xtt without input ε-rules, then this property holds and the
sum is finite. Intuitively, if an xtt does not have input ε-rules, then each derivation
step consumes at least one input symbol. Thus, the number of derivation steps
is limited by |t|, which can be used to derive an upper bound for the size of any
output tree. If the sum is infinite, then we assume that the semiring (A,+, ·, 0, 1)
is countably complete with respect to

∑
as usual. Dually, the range of τ is the

weighted tree language ψ : T∆ → A such that

ψ(u) =
∑
t∈TΣ

τ(t, u)

for every u ∈ T∆.
To keep the presentation simple, let τ = τM for some linear and nondeleting xtt

without input ε-rules. As already remarked the absence of input ε-rules guarantees
that the sum in the definition of the domain is finite. Using our approach the
result for arbitrary linear and nondeleting xtt over countably complete semirings
can be derived using a result of [35] (see [17, Corollary 6.10]). Here we focus on
the domain ϕ of τM . Since M is linear and nondeleting we can use Theorem 3 to
obtain an equivalent weighted linear and complete bimorphism B = (f, ψ, g) with
ψ : TΓ → A. Since τB = τM , we can equivalently consider the domain of τB . By
definition

ϕ(t) =
∑
u∈T∆

τB(t, u) =
∑
u∈T∆

(∑
s∈TΓ

f(s)=t,g(s)=u

ψ(s)
)

=
∑

s∈TΓ,u∈T∆

f(s)=t,g(s)=u

ψ(s)

=
∑

s∈TΓ,f(s)=t

ψ(s) ,

which can be rewritten as ϕ =
∑
s∈TΓ

ψ(s).f(s) where

Weighted Extended Top-down Tree Transducers 23

• ψ(s).f(s) is the weighted tree language that is 0 everywhere besides f(s)
where the weight is ψ(s), and

• weighted tree languages are added componentwise.
This last presentation shows that the domain is just the application of the linear,
complete, and ε-free tree homomorphism f to the recognizable weighted tree lan-
guage ψ, where ε-free means that fk(γ) 6= x1 for every k ∈ N and γ ∈ Γ and it
follows from the fact that M has no input ε-rule.

Theorem 10 (see [20, Corollary 8]). The domain of a linear and nondeleting xtt
without input ε-rules is a recognizable weighted tree language.

Proof. Using the steps presented above and Theorem 2 we immediately obtain the
statement.

Clearly, the range of a linear and nondeleting xtt without output ε-rules is
recognizable due to symmetry.

Finally, let us consider the input and the output product, which together with
domain and range can be used to prove preservation of recognizability [20, 21].
But let us first define the mentioned input and output product. Given a weighted
tree transformation τ : TΣ × T∆ → A and weighted tree languages ϕ : TΣ → A and
ψ : T∆ → A, the input product ϕ / τ of τ by ϕ and the output product τ . ψ of τ
by ψ are defined by

(ϕ / τ)(t, u) = ϕ(t) · τ(t, u) and (τ . ψ)(t, u) = τ(t, u) · ψ(u) ,

respectively, for every t ∈ TΣ and u ∈ T∆.
Often input and output products are handled by specialized Bar-Hillel con-

structions [5, 45] or compositions [4, 12]. We will discuss the composition approach
in the third part of this survey, but let us present an input product construction
for weighted tree transformations computed by linear and nondeleting weighted
top-down tree transducers and recognizable weighted tree languages. We will show
that every such input product can again be computed by a linear and nondeleting
weighted top-down tree transducer. A more detailed overview on input and output
products can be found in [39].

From now on, let M = (Q,Σ,∆, I, R) be a linear and nondeleting weighted top-
down tree transducer and N = (P,Σ, δ, F) be a wta. We want to construct a linear
and nondeleting weighted top-down tree transducer M ′ such that τM ′ = ϕN / τM .
Since M is linear and nondeleting, it visits each input subtree exactly once.

Definition 4. The input product N /M is the weighted top-down tree transducer
(Q′,Σ,∆, I ′, R′) where
• Q′ = Q× P ,
• I ′ = {(q, p) | q ∈ I, p ∈ F}, and
• R′(l, r) = δ(p1 · · · pk, σ, p) · R(l′, r′) for all l ∈ Q′(TΣ(X)) and r ∈ T∆(Q′(X))

where
– l′ and r′ are obtained from l and r, respectively, by dropping the second

component in the states that occur in l′ and r′,

24 Andreas Maletti

– p ∈ P , k ∈ N, and σ ∈ Σ are such that l = (q, p)(σ(x1, . . . , xk)) for some
q ∈ Q, and

– for every i ∈ [k], the state pi is such that there is a position wi ∈ posQ′(r)
in the right-hand side with r|wi = (qi, pi)(xi) for some qi ∈ Q.

To illustrate the use of the alternative semantics, we will prove that the input
product transducer indeed computes the input product as desired.

Theorem 11 (see [39, Theorem 2]). τ(N/M) = ϕN / τM .

Proof. Let N /M = (Q′,Σ,∆, I ′, R′) as in Definition 4. We prove that

hR′((q, p)(t), u) = δ(t, p) · hR(q(t), u)

for every t ∈ TΣ, u ∈ T∆, q ∈ Q, and p ∈ P . Let ξ = (q, p)(t).

hR′(ξ, u)

=
∑

l→r∈supp(R′)
(l,θ′)∈match(ξ)
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q′(var(l))
r=sθ

R′(l, r) ·
∏

x∈var(s)

hR′(xθθ′, xθ′′)

=
∑

l→r∈supp(R)
(l,θ′)∈match(q(t))
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(var(l))
k=|var(s)|,p1,...,pk∈P

r=sθ

δ(p1 · · · pk, l(1), p) ·R(l, r) ·
k∏
i=1

hR′(((xiθ)(ε), pi)(xiθ
′), xiθ

′′)

†
=

∑
l→r∈supp(R)

(l,θ′)∈match(q(t))
(s,θ′′)∈match(u)
s normalized

θ : var(s)→Q(var(l))
k=|var(s)|,p1,...,pk∈P

r=sθ

δ(p1 · · · pk, l(1), p) ·R(l, r) ·
k∏
i=1

δ(xiθ
′, pi) · hR(xiθθ

′, xiθ
′′)

†
= δ(t, p) · hR(q(t), u) ,

where we used the induction hypothesis in the step marked †. With the auxiliary
statement established, the proof of the main statement is now easy. Let t ∈ TΣ and
u ∈ T∆. Then

τ(N/M)(t, u) =
∑
q′∈I′

hR′(q′(t), u) =
∑

q∈I,p∈F
hR′((q, p)(t), u)

=
∑

q∈I,p∈F
δ(t, p) · hR(q(t), u) = ϕN (t) · τM (t, u) = (ϕN / τM)(t, u) .

Weighted Extended Top-down Tree Transducers 25

Acknowledgments

The author would like to express his gratitude to the reviewers. Their insight and
remarks improved the article. In addition, the author would like to acknowledge
the financial support of the Ministerio de Educación y Ciencia (MEC) grant JDCI-
2007-760.

References

[1] Alexandrakis, Athanasios and Bozapalidis, Symeon. Weighted grammars and
Kleene’s theorem. Inf. Process. Lett., 24(1):1–4, 1987.

[2] Arnold, André and Dauchet, Max. Bi-transductions de forêts. In Proc. 3rd
Int. Coll. Automata, Languages and Programming, pages 74–86. Edinburgh
University Press, 1976.

[3] Arnold, André and Dauchet, Max. Morphismes et bimorphismes d’arbres.
Theoret. Comput. Sci., 20(4):33–93, 1982.

[4] Baker, Brenda S. Composition of top-down and bottom-up tree transductions.
Inform. and Control, 41(2):186–213, 1979.

[5] Bar-Hillel, Yehoshua, Perles, Micha, , and Shamir, Eliyahu. On formal prop-
erties of simple phrase structure grammars. In Bar-Hillel, Yehoshua, editor,
Language and Information: Selected Essays on their Theory and Application,
chapter 9, pages 116–150. Addison Wesley, 1964.

[6] Berstel, Jean and Reutenauer, Christophe. Recognizable formal power series
on trees. Theoret. Comput. Sci., 18(2):115–148, 1982.

[7] Courcelle, Bruno and Franchi–Zannettacci, Paul. Attribute grammars and
recursive program schemes. Theor. Comput. Sci., 17(1):163–191 & 235–257,
1982.

[8] Dauchet, Max. Transductions inversibles de forêts. Thèse 3ème cycle, Univer-
sité de Lille, 1975.

[9] Droste, Manfred, Kuich, Werner, and Vogler, Heiko, editors. Handbook of
Weighted Automata. EATCS Monographs on Theoret. Comput. Sci. Springer,
2009.

[10] Droste, Manfred, Stüber, Torsten, and Vogler, Heiko. Weighted finite au-
tomata over strong bimonoids. Inf. Sci., 180(1):156–166, 2010.

[11] Eilenberg, Samuel. Volume A: Automata, Languages, and Machines, volume 59
of Pure and Applied Math. Academic Press, 1974.

[12] Engelfriet, Joost. Bottom-up and top-down tree transformations: A compari-
son. Math. Systems Theory, 9(3):198–231, 1975.

26 Andreas Maletti

[13] Engelfriet, Joost. Top-down tree transducers with regular look-ahead. Math.
Systems Theory, 10(1):289–303, 1976.

[14] Engelfriet, Joost, Fülöp, Zoltán, and Vogler, Heiko. Bottom-up and top-down
tree series transformations. J. Autom. Lang. Combin., 7(1):11–70, 2002.

[15] Engelfriet, Joost and Vogler, Heiko. Macro tree transducers. J. Comput.
System Sci., 31(1):71–146, 1985.

[16] Engelfriet, Joost and Vogler, Heiko. Modular tree transducers. Theor. Comput.
Sci., 78(2):267–303, 1991.

[17] Ésik, Zoltán and Kuich, Werner. Formal tree series. J. Autom. Lang. Combin.,
8(2):219–285, 2003.

[18] Fülöp, Zoltán. On attributed tree transducers. Acta Cybernet., 5(1):261–279,
1981.

[19] Fülöp, Zoltán, Gazdag, Zsolt, and Vogler, Heiko. Hierarchies of tree series
transformations. Theoret. Comput. Sci., 314(3):387–429, 2004.

[20] Fülöp, Zoltán, Maletti, Andreas, and Vogler, Heiko. Preservation of recog-
nizability for synchronous tree substitution grammars. In Proc. 1st Workshop
Applications of Tree Automata in Natural Language Processing, pages 1–9.
Association for Computational Linguistics, 2010.

[21] Fülöp, Zoltán, Maletti, Andreas, and Vogler, Heiko. Weighted extended tree
transducers. submitted, 2011.

[22] Fülöp, Zoltán and Vogler, Heiko. Weighted tree transducers. J. Autom. Lang.
Combin., 9(1):31–54, 2004.

[23] Fülöp, Zoltán and Vogler, Heiko. Weighted tree automata and tree transducers.
In Droste et al. [9], chapter 9, pages 313–403.

[24] Gécseg, Ferenc and Steinby, Magnus. Tree Automata. Akadémiai Kiadó, Bu-
dapest, 1984.

[25] Gécseg, Ferenc and Steinby, Magnus. Tree languages. In Rozenberg, Grze-
gorz and Salomaa, Arto, editors, Handbook of Formal Languages, volume 3,
chapter 1, pages 1–68. Springer, 1997.

[26] Golan, Jonathan S. Semirings and their Applications. Kluwer Academic,
Dordrecht, 1999.

[27] Graehl, Jonathan and Knight, Kevin. Training tree transducers. In Proc. 2004
Human Language Technology Conf. NAACL, pages 105–112. Association for
Computational Linguistics, 2004.

[28] Hebisch, Udo and Weinert, Hanns J. Semirings — Algebraic Theory and
Applications in Computer Science. World Scientific, 1998.

Weighted Extended Top-down Tree Transducers 27

[29] Hopcroft, John E. and Ullman, Jeffrey D. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[30] Jurafsky, Daniel and Martin, James H. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Processing. Prentice-Hall, 2000.

[31] Karner, Georg. Continuous monoids and semirings. Theoret. Comput. Sci.,
318(3):355–372, 2004.

[32] Knight, Kevin. Capturing practical natural language transformations. Ma-
chine Translation, 21(2):121–133, 2007.

[33] Knight, Kevin and Graehl, Jonathan. An overview of probabilistic tree trans-
ducers for natural language processing. In Proc. 6th Int. Conf. Intelligent
Text Processing and Computational Linguistics, pages 1–24. Association for
Computational Linguistics, 2005.

[34] Kuich, Werner. Formal power series over trees. In Proc. 3rd Int. Conf. Develop-
ments in Language Theory, pages 61–101. Aristotle University of Thessaloniki,
1998.

[35] Kuich, Werner. Tree transducers and formal tree series. Acta Cybernet.,
14(1):135–149, 1999.

[36] Kuich, Werner and Salomaa, Arto. Semirings, Automata, Languages, volume 5
of Monographs in Theoretical Computer Science. An EATCS Series. Springer,
1986.

[37] Maletti, Andreas. The power of tree series transducers of type I and II. In
Proc. 9th Int. Conf. Developments in Language Theory, volume 3572 of LNCS,
pages 338–349. Springer, 2005.

[38] Maletti, Andreas. Compositions of extended top-down tree transducers. In-
form. and Comput., 206(9–10):1187–1196, 2008.

[39] Maletti, Andreas. Input and output products for weighted extended top-down
tree transducers. In Proc. 14th Int. Conf. Developments in Language Theory,
volume 6224 of LNCS, pages 316–327. Springer, 2010.

[40] Maletti, Andreas. Why synchronous tree substitution grammars? In Proc.
Human Language Technology Conf. NAACL, pages 876–884. Association for
Computational Linguistics, 2010.

[41] Maletti, Andreas, Graehl, Jonathan, Hopkins, Mark, and Knight, Kevin. The
power of extended top-down tree transducers. SIAM J. Comput., 39(2):410–
430, 2009.

[42] Manning, Chris and Schütze, Hinrich. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

28 Andreas Maletti

[43] Raoult, Jean-Claude. Rational tree relations. Bull. Belg. Math. Soc., 4(1):149–
176, 1997.

[44] Rounds, William C. Mappings and grammars on trees. Math. Syst. Theory,
4(3):257–287, 1970.

[45] Satta, Giorgio. Translation algorithms by means of language intersection.
Manuscript, 2011. available at: http://www.dei.unipd.it/~satta.

[46] Shieber, Stuart M. Synchronous grammars as tree transducers. In Proc. 7th
Int. Workshop Tree Adjoining Grammar and Related Formalisms, pages 88–95,
2004.

[47] Thatcher, James W. Generalized2 sequential machine maps. J. Comput. Sys-
tem Sci., 4(4):339–367, 1970.

[48] Thatcher, James W. Tree automata: an informal survey. In Aho, Alfred V.,
editor, Currents in the Theory of Computing, pages 143–172. Prentice Hall,
1973.

[49] Wang, Huaxiong. On characters of semirings. Houston J. Math., 23(3):391–
405, 1997.

[50] Wang, Huaxiong. On rational series and rational languages. Theoret. Comput.
Sci., 205(1–2):329–336, 1998.

Received April 13, 2011

