
M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 201–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Better Hyper-Minimization
Not as Fast, but Fewer Errors

Andreas Maletti?

Departament de Filologies Romàniques, Universitat Rovira i Virgili
Avinguda de Catalunya 35, 43002 Tarragona, Spain

andreas.maletti@urv.cat

Abstract. Hyper-minimization aims to compute a minimal determinis-
tic finite automaton (dfa) that recognizes the same language as a given
dfa up to a finite number of errors. Algorithms for hyper-minimization
that run in time O(n logn), where n is the number of states of the given
dfa, have been reported recently in [Gawrychowski and Jeż: Hyper-
minimisation made efficient. Proc. Mfcs, Lncs 5734, 2009] and [Holzer
and Maletti: An n logn algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theor. Comput. Sci. 411, 2010]. These algo-
rithms are improved to return a hyper-minimal dfa that commits the
least number of errors. This closes another open problem of [Badr, Gef-
fert, and Shipman: Hyper-minimizing minimized deterministic finite
state automata. Rairo Theor. Inf. Appl. 43, 2009]. Unfortunately, the
time complexity for the obtained algorithm increases to O(n2).

1 Introduction

Although nondeterministic and deterministic finite automata (nfa and dfa, re-
spectively) are equally expressive [15], nfa can be exponentially smaller than
dfa [12,14], where the size is measured by the number of states. Nfa and dfa are
used in a vast number of applications that require huge automata like speech pro-
cessing [13] or linguistic analysis [11]. Consequently, minimization of automata
was studied early on. The minimization problem for dfa (nfa) is the computa-
tion of an equivalent dfa (nfa) that has the minimal size (i.e., number of states)
of all equivalent dfa (nfa). On the bright side, it was shown that dfa can be
efficiently minimized in time O(n log n) [9], where n is the size of the given dfa.
However, minimization for nfa is Pspace-complete [10] and thus impractical.

Here we focus on dfa. Although, they can be efficiently minimized, it is often
desirable (or even necessary) to sacrifice correctness to minimize further. This
leads to the area of lossy compression, in which certain errors are tolerated in
order to allow even smaller dfa. A particularly simple error profile is studied
in hyper-minimization [3,1,2,5,6,7], where any finite number of errors is allowed.
The algorithms of [5,6,7] run in time O(n log n), and thus, are asymptotically as
efficient as classical minimization. Given a dfa M , they both return a dfa that
? The author was supported by the Ministerio de Educación y Ciencia (MEC) grants
JDCI-2007-760 and MTM-2007-63422.

andreas.maletti@urv.cat

202 A. Maletti

– recognizes the same language as M up to a finite number of errors, and
– is minimal among all dfa with the former property (hyper-minimal).

Further, Gawrychowski and Jeż [5] report an algorithm that disallows errors
on strings exceeding a specified length. This restriction yields a slightly stricter
error profile, but their minimization algorithm still runs in time O(n log n).

In this paper, we extend the basic hyper-minimization algorithms such that,
in addition, the returned dfa commits the least number of errors among all dfa
with the two, already mentioned properties. A dfa with those three properties is
called ‘hyper-optimal’. Note that hyper-optimality depends on the input dfa (or
better: its recognized language). Moreover, we return the number of committed
errors as a quality measure. It allows a user to disregard the returned dfa if
the number of errors is unacceptably large. Our result is based essentially on a
syntactic characterization [3, Theorems 3.8 and 3.9] of hyper-minimal dfa. Two
dfa are almost-equivalent if their recognized languages differ on only finitely
many strings (note that this corresponds to the first item mentioned earlier).
A preamble state is a state that can be reached by only finitely many strings
from the initial state of the dfa. All remaining states are kernel states. The
characterization [3, Theorems 3.8 and 3.9] states that the kernels (i.e., the part
of the automaton consisting of the kernel states) of all hyper-minimal, almost-
equivalent dfa are isomorphic. Moreover, the preambles are almost-isomorphic,
which means that they are isomorphic up to the finality of the states. This yields,
as already pointed out in [3], that two hyper-minimal, almost-equivalent dfa dif-
fer in only three aspects: (i) the finality of preamble states, (ii) the transitions
from preamble states to kernel states, and (iii) the initial state. Thus, the charac-
terization allows us to easily consider all hyper-minimal, almost-equivalent dfa
to find a hyper-optimal one. We thus solve an open problem stated in [3]. Un-
fortunately, the time complexity for the obtained algorithm is O(n2). Whether
it can be improved to O(n log n) remains an open problem.

2 Preliminaries

The integers and nonnegative integers are denoted by ZZ and IN, respectively. If
the symmetric difference (S\T)∪(T \S) is finite, then S and T are almost-equal.
For finite sets Σ, also called alphabets, the set of all strings over Σ is Σ∗, of which
the empty string is ε ∈ Σ∗. Concatenation of strings is denoted by juxtaposition
and the length of the word w ∈ Σ∗ is |w|. A language L over Σ is a subset of Σ∗.
A deterministic finite automaton (for short: dfa) is a tupleM = (Q,Σ, q0, δ, F),
in which Q is a finite set of states, Σ is an alphabet of input symbols, q0 ∈ Q
is an initial state, δ : Q × Σ → Q is a transition function, and F ⊆ Q is a set
of final states. The transition function δ extends to a mapping δ : Q×Σ∗ → Q
as follows: δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and
w ∈ Σ∗. For every q ∈ Q, let L(M)q = {w ∈ Σ∗ | δ(q0, w) = q}. The dfa M
recognizes the language L(M) =

⋃
q∈F L(M)q.

Two states p, q ∈ Q are equivalent, denoted by p ≡ q, if δ(p, w) ∈ F if and
only if δ(q, w) ∈ F for every word w ∈ Σ∗. The dfa M is minimal if it does not

Better Hyper-Minimization 203

Algorithm 1 Structure of the hyper-minimization algorithm [6,7].
Require: a dfa M

M ←Minimize(M) // Hopcroft’s algorithm; O(m logn)
2: K ← ComputeKernel(M) // compute the kernel states; O(m)
∼ ← AEquivalentStates(M) // compute almost-equivalence; O(m logn)

4: M ←MergeStates(M,K,∼) // merge almost-equivalent states; O(m)
return M

have equivalent states (i.e., p ≡ q implies p = q). The name ‘minimal’ is justified
by the fact that no dfa with (strictly) fewer states recognizes the same language
as a minimal dfa. For every dfa M = (Q,Σ, q0, δ, F) an equivalent minimal
dfa can be computed efficiently using Hopcroft’s algorithm [8], which runs in
time O(m log n) where m = |Q×Σ| and n = |Q|.

3 Hyper-minimization

Let us quickly recall hyper-minimization from [3,1,2,6,7]. We will follow the
presentation of [6,7]. Hyper-minimization is a form of lossy compression with
the goal of compressing minimal dfa further at the expense of a finite number of
errors. Two dfa M1 and M2 such that L(M1) and L(M2) are almost-equal are
almost-equivalent. Moreover, a dfaM that admits no almost-equivalent dfa with
(strictly) fewer states is hyper-minimal. Consequently, hyper-minimization [3,1,2]
aims to find an almost-equivalent, hyper-minimal dfa.

In the following, let M = (Q,Σ, q0, δ, F) be a minimal dfa. Let m = |Q×Σ|
be the number of its transitions and n = |Q| be the number of its states.

Definition 1 (cf. [3, Definition 2.2]). Two states p, q ∈ Q are k-equivalent
with k ∈ IN, denoted by p ∼k q, if δ(p, w) = δ(q, w) for every w ∈ Σ∗ such that
|w| ≥ k. The almost-equivalence ∼ ⊆ Q×Q is ∼ =

⋃
k∈IN∼k.

Both k- and almost-equivalence are equivalence relations. The set Pre(M) of
preamble states is {q ∈ Q | L(M)q is finite}, and Ker(M) = Q\Pre(M) is the set
of kernel states. The contributions [5,6,7] report hyper-minimization algorithms
that run in time O(m log n). The overall structure of the hyper-minimization
algorithm [6,7] is displayed in Algorithm 1, and MergeStates is displayed in
Algorithm 2. The merge of p ∈ Q into q ∈ Q redirects all incoming transitions
of p to q. If p = q0 then q is the new initial state. The finality of q is not changed
even if p is final. Clearly, the state p can be deleted after the merge if p 6= q.

Theorem 2 ([3, Section 4] and [7, Theorem 13]). In time O(m log n) Al-
gorithm 1 returns a hyper-minimal dfa that is almost-equivalent to M .

4 An Example

In this section, we illustrate the problem that we address in this contribution.
Namely, we propose an algorithm that not only returns a hyper-minimal, almost-

204 A. Maletti

Algorithm 2 MergeStates: Merge almost-equivalent states [6,7].
Require: a minimal dfa M , its kernel states K, and its almost-equivalent states ∼

for all B ∈ (Q/∼) do
2: select q ∈ B with q ∈ K if B ∩K 6= ∅ // select q ∈ B, preferably a kernel state

for all p ∈ B \K do
4: merge p into q // merge all preamble states of the block into q

return M

equivalent dfa, but rather one that commits the minimal number of errors among
all hyper-minimal, almost-equivalent dfa. Moreover, we return the exact num-
ber of errors, and we could also return the error strings (at the expense of an
increased run-time). We thus solve an open problem of [3].

Throughout this section, we consider the minimal dfa M of Fig. 1, which
is essentially the minimal dfa of [3, Fig. 2] with two new states 0 and 2. We
added those states because all hyper-minimal dfa that are almost-equivalent
to the original dfa of [3] commit exactly 9 errors. Consequently, the existing
algorithms already yield dfa with the minimal number of errors. The two new
states 0 and 2, of which 0 is the new initial state, change the situation.

The kernel states of M are Ker(M) = {E,F, I, J, L,M,P,Q,R} and the
almost-equivalence (represented as a partition) is

{{0}, {2}, {A}, {B}, {C,D}, {E}, {F}, {G,H, I, J}, {L,M}, {P,Q}, {R}} .

Both Ker(M) and ∼ can be computed with the existing algorithms of [3,2,5,6,7].
The hyper-minimization algorithm of [6,7] might return the hyper-minimal dfaM1

of Fig. 2 (left), which is almost-equivalent to M . Another such hyper-minimal,
almost-equivalent dfa M2 is presented in Fig. 2 (right). To the author’s knowl-
edge there is no hyper-minimization algorithm that can produce M2. All known
algorithms merge both G and H into one of the almost-equivalent kernel states
I and J (see Algorithm 2). For example, M1 is obtained by merging G and H
into I. However, M2 is obtained by merging H into J and G into I. Now, let
us look at the errors that M1 and M2 make in comparison to M . The following
display lists those errors forM1 (left) andM2 (right), of which the specific errors
of one of the two dfa are underlined.

{aa, aaa, aaaaa, aaabaa, {aaa, aaabaa
aabb, aabbbaa, abb, abbbaa, aabb, aabbbaa, abb, abbbaa,

babb, babbaa, babbbaa, bbaaa, bab, babaaa, babb, babbaa, babbbaa,

bb, bba, bbabaa, bbbb, bbbbbaa} bba, bbabaa, bbbb, bbbbbaa}

We observe that M1 commits 17 errors, whereas M2 commits only 15 errors.
Consequently, there is a qualitative difference in different hyper-minimal, almost-
equivalent dfa. To be more precise, the quality of the obtained hyper-minimal
dfa depends significantly on how the merges are performed.

Let us take a closer look at the cause of the errors. Since the final state C is
merged into the non-final state D to obtain M1, the combined state D of M1 is

Better Hyper-Minimization 205

F J M

B E I L Q

A D H R P

0 C G

2

Fig. 1. An example dfa with a-transitions (straight lines) and b-transitions (dashed
lines). The initial state is 0.

non-final. Consequently, all strings of L(M)C = {aa, bb}, which were accepted
in M , are now rejected in M1. Analogously, the error bab of M2 is caused by
the merge of D into C. The number of those errors can easily be computed
with a folklore algorithm (see Algorithm 3 and [4, Lemma 4]) that computes the
number of paths from q0 to each preamble state. Mind that the graph of a dfa
restricted to its preamble states is acyclic.

Theorem 3 (see [4, Lemma 4]). Algorithm 3 computes the number of paths
to each preamble state in time O(m).

Example 4. Algorithm 3 computes the following for M .

w(0) = w(2) = w(A) = w(B) = w(D) = 1 w(C) = 2 w(G) = 3 w(H) = 6

The remaining errors of M1 are caused by the merges of G and H into the
almost-equivalent kernel state I. Let us denote by Ep,q the number of errors made
between almost-equivalent states p ∼ q. More formally, this is the number of
strings in the symmetric difference of L(Mp) and L(Mq), where for every q′ ∈ Q,
the dfa Mq′ is (Q,Σ, q′, δ, F). In other words, Mq′ is the same dfa as M with
initial state q′. Clearly, Eq,q = 0 and Ep,q = Eq,p for every p, q ∈ Q. For example,
EG,I = 2 and EH,I = 3 and the corresponding error strings are {b, bbaa} and
{ε, aa, baa}, respectively. Actually, we only need to consider transitions of M1

206 A. Maletti

F J M

B E I L Q

A D R P

0 2

F J M

B E I L Q

A C R P

0 2

Fig. 2. Two resulting hyper-minimal dfa with a-transitions (straight lines) and b-
transitions (dashed lines). The initial state is 0 in both cases.

Algorithm 3 CompAccess: Compute the number of paths to preamble states.
Require: a minimal dfa M = (Q,Σ, q0, δ, F), its preamble states P , and a topological

sorting o : IN→ P of the preamble states
w(o(0))← 1 // the path ε leads to q0 = o(0)

2: for i = 1 to |P | do
w(o(i))←

∑
q∈Q,σ∈Σ
δ(q,σ)=o(i)

w(q) // for each transition (q, σ) leading to o(i) add w(q)

4: return w

that connect preamble to kernel states due to a characterization result of [3]. For
example, for the transition D a−→ I of M1, we first identify the states of M that
were merged into D of M1. These are C and D of M . Next, we compute the
number of paths (in M) to them for each such state q and multiply it with the
number of errors made between δ(q, a) and I. The such obtained error counts
are summed up for the total error count. For the three relevant transitions inM1

we obtain:
D

a−→ I D
b

99K I 2
b

99K I
w(C) · Eδ(C,a),I = 6 w(C) · Eδ(C,b),I = 4 w(2) · Eδ(2,b),I = 2
w(D) · Eδ(D,a),I = 0 w(D) · Eδ(D,b),I = 3

Sum = 6 Sum = 7 Sum = 2

Thus, we identified 6+7+2 = 15 errors. Together with the 2 errors that were
caused by the non-finality of D we obtained all 17 errors committed by M1.

5 Optimal State Merging

The approach presented in the previous section suggests how to compute a hyper-
optimal dfa for a given minimal dfa M = (Q,Σ, q0, δ, F) with m = |Q×Σ| and
n = |Q|. We can simply compute the number of errors for all hyper-minimal,

Better Hyper-Minimization 207

Algorithm 4 CompErrors: Compute the number of errors made between
almost-equivalent states.
Require: minimal dfa M = (Q,Σ, q0, δ, F) and states p ∼ q
Global: error matrix E ∈ ZZQ×Q initially 0 on the diagonal and −1 everywhere else

if Ep,q 6= −1 then
2: return Ep,q // if already computed, then return stored value
c← ((p ∈ F) xor (q ∈ F)) // set errors to 1 if p and q differ on finality

4: Ep,q ← c+
∑
σ∈Σ

CompErrors(M, δ(p, σ), δ(q, σ)) // add errors from follow-states

return Ep,q // return the computed value

almost-equivalent dfa and select a dfa with a minimal error count. We have
already seen that different parts (finality and merges) are responsible for the
errors. The different parts do not affect each other, which yields that we can
compute the number of errors for each choice and greedily select the best one.

First, let us address how to compute the values Ep,q for p ∼ q. Our algorithm
is presented in Algorithm 4. It inspects the global matrix E whether the value
was already computed. If not, then it checks whether p and q differ on finality
(i.e., whether ε is in the symmetric difference of L(Mp) and L(Mq)) and adds
the error counts Eδ(p,σ),δ(q,σ) for each σ ∈ Σ.

Theorem 5. Algorithm 4 computes all Ep,q with p ∼ q in time O(mn).

Proof. Clearly, the initialization and the recursion for Ep,q are correct because
each error string w is either the empty string ε or it starts with a letter σ ∈ Σ.
In the latter case, w′ ∈ Σ∗ with w = σw′ is an error string for Eδ(p,σ),δ(q,σ). For
every p ∼ q there exists k ∈ IN such that p ∼k q and thus δ(p, w) = δ(q, w) for
every w ∈ Σ∗ with |w| ≥ k. Consequently, at most k nested recursive calls can
occur in the computation of Ep,q, which proves that the recursion terminates. It
remains to prove the time bound. Obviously, if Ep,q was already computed, then
the algorithm returns immediately. Thus, it makes at most n2 calls because then
all values Ep,q are computed. Moreover, there are at most |Σ|+ 1 summands in
line 7. Consequently, each call executes in time O(|Σ|) apart from the recursive
calls, which yields that the algorithm runs in time O(|Σ|n2) = O(mn). ut

Example 6. Let us illustrate Algorithm 4 on the example dfa of Fig. 1 and
the almost-equivalence ∼. We list some error matrix entries together with the
corresponding error strings. Note that the error strings are not computed by the
algorithm, but are presented for illustrative purposes only.

EQ,P = 1 {ε} EH,J = 2 {ε, baa} EG,J = 3 {aa, b, bbaa}
EL,M = 1 {a} EH,I = 3 {ε, aa, baa} EG,I = 2 {b, bbaa}
EI,J = 1 {aa} EG,H = 5 {ε, aa, b, baa, bbaa}

208 A. Maletti

Algorithm 5 CompFinality: Determine finality of a block of preamble states.
Require: a minimal dfa M = (Q,Σ, q0, δ, F), a block of preamble states B, and the

number w(p) of access paths for each preamble state p
Global: error count e

(f, f)←
(∑
q∈B∩F

w(q),
∑

q∈B\F

w(q)
)

// errors for non-final and final state

2: e← e+min(f, f) // add smaller value to global error count
select q ∈ B such that q ∈ F if f > f // select final state if fewer errors for
finality

4: return q // return selected state

Next, we need to shortly discuss the structural similarities between hyper-
minimal, almost-equivalent dfa. It was shown in [3, Theorems 3.8 and 3.9] that
two such dfa have isomorphic kernels and almost-isomorphic (by an isomorphism
not necessarily respecting finality) preambles. This yields that those dfa only
differ on three aspects, which were already identified in [3]:

– the finality of preamble states,
– transitions from preamble states to kernel states, and
– the initial state.

All of the following algorithms will use a global variable e, which will keep
track of the number of errors. Initially, it will be set to 0 and each discovered error
will increase it. First, we discuss ComputeFinality. For the given block B of
almost-equivalent preamble states it computes the number of access paths to final
and non-final states in B. Each such path represents a string of

⋃
q∈B L(M)q.

After the merge all those strings will take the hyper-minimal dfa into the same
state. Thus, making this state final, will cause the number f of errors computed
in the algorithm because each access path to a non-final state of B will now
access a final state after the merge.

Lemma 7. ComputeFinality(M,B,w) adds the number of errors made in
state p when merging all states of the block B of almost-equivalent preamble
states into the state p that is returned by the call.

Next, we discuss the full merging algorithm (see Algorithm 6). We assume
that all values Ep,q with p ∼ q are already computed. In lines 5–7 we first handle
the already discussed decision for the finality of blocks B of preamble states and
perform the best merge into state q. In lines 8–11 we investigate the second
structural difference between hyper-minimal, almost-equivalent dfa: transitions
from preamble to kernel states. Clearly, the preamble state represents a set of
exclusively preamble states in the input dfa M and the kernel state represents
a set of almost-equivalent states of M that contains at least one kernel state.
Consequently, we can simply check whether δ(q, σ) is almost-equivalent to a
kernel state. We then consider all almost-equivalent kernel states q′ ∼ δ(q, σ)
and compute the error-count for rerouting the transition to q′. This error count

Better Hyper-Minimization 209

Algorithm 6 OptMerge: Optimal merging of almost-equivalent states.
Require: a minimal dfa M = (Q,Σ, q0, δ, F), its kernel states K, and its almost-

equivalent states ∼
Global: error count e; initially 0

P ← Q \K // set P to preamble states
2: o← TopoSort(P) // topological sorting of preamble states; o : IN→ P
w ← CompAccess(M,P, o) // compute the number of access paths for preamble

4: for all B ∈ (Q/∼) such that B ⊆ P do
q ← CompFinality(M,B,w) // determine finality of merged state

6: for all p ∈ B do
merge p into q // perform the merges

8: for all σ ∈ Σ do
if B′ = {q′ ∈ K | q′ ∼ δ(q, σ)} 6= ∅ then

10: e← e+ min
q′∈B′

(∑
p∈B

w(p) · Eδ(p,σ),q′
)

// add best error count

δ(q, σ)← argmin
q′∈B′

(∑
p∈B

w(p) · Eδ(p,σ),q′
)

// update follow state

12: if B′ = {q′ ∈ K | q′ ∼ q0} 6= ∅ then
e← e+ min

q′∈B′
Eq0,q′ // add best error count

14: q0 ← argmin
q′∈B′

Eq0,q′ // set best initial state

return (M, e)

is simply obtained by multiplying the number of paths to a state p in the current
block B with the number Eδ(p,σ),q′ of errors performed between the designated
kernel state and the follow-state of the current state. Mind that δ(p, σ) was not
affected by the merge in lines 6–7 because the merge only reroutes incoming
transitions to p. If there are several states in the current block B, then we sum
the obtained error counts. The smallest such error count is then added to the
global error count in line 10 and the corresponding designated kernel state is
selected as the new target of the transition in line 11. This makes all preamble
states that are almost-equivalent to a kernel state unreachable, so they could be
removed. Finally, if the initial state is almost-equivalent to a kernel state, then
we perform the same steps as previously mentioned to determine the new initial
state (i.e., we consider the transition from “nowhere” to the initial state).

A dfa M ′ is hyper-optimal for L(M) if it is hyper-minimal and the cardinal-
ity of the symmetric difference between L(M) and L(M ′) is minimal among
all hyper-minimal dfa. Note that a hyper-optimal dfa for L(M) is almost-
equivalent to M .

Theorem 8. Algorithm 6 runs in time O(mn) and returns a hyper-optimal dfa
for L(M). In addition, the number of errors committed is returned.

Proof. The time complexity is easy to check, so we leave it as an exercise. Since
the choices (finality, transition target, initial state) are independent, all hyper-

210 A. Maletti

minimal, almost-equivalent dfa are considered in Algorithm 6 by [3, Theorems
3.8 and 3.9]. Consequently, we can always select the local optimum for each
choice to obtain a global optimum, which proves that the returned number is the
minimal number of errors among all hyper-minimal dfa. Mind that the number
of errors would be infinite for a hyper-minimal dfa that is not almost-equivalent
to M . Moreover, it is obviously the number of errors committed by the returned
dfa, which proves that the returned dfa is hyper-optimal for L(M). ut

Corollary 9 (of Theorem 8). For every dfa M we can obtain a hyper-optimal
dfa for L(M) in time O(mn).

References

1. Badr, A.: Hyper-minimization in O(n2). In: Proc. 13th Int. Conf. Implementation
and Application of Automata. LNCS, vol. 5148, pp. 223–231. Springer (2008)

2. Badr, A.: Hyper-minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), 735–746
(2009)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO Theor. Inf. Appl. 43(1), 69–94 (2009)

4. Eppstein, D.: Finding common ancestors and disjoint paths in DAGs. Tech. Rep.
95-52, University of California, Irvine (1995)

5. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science. LNCS, vol. 5734, pp. 356–
368. Springer (2009)

6. Holzer, M., Maletti, A.: An n logn algorithm for hyper-minimizing states in a
(minimized) deterministic automaton. In: Proc. 14th Int. Conf. Implementation
and Application of Automata. LNCS, vol. 5642, pp. 4–13. Springer (2009)

7. Holzer, M., Maletti, A.: An n logn algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theor. Comput. Sci. 411(38–39), 3404–3413 (2010)

8. Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 3rd edn. (2007)

10. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

11. Johnson, C.D.: Formal Aspects of Phonological Description. No. 3 in Monographs
on Linguistic Analysis, Mouton, The Hague (1972)

12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proc. 12th IEEE Annual Symp. Switching and Automata The-
ory. pp. 188–191. IEEE Computer Society Press (1971)

13. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

14. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Computers 20(10), 1211–1214 (1971)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 115–125 (1959)

	Better Hyper-Minimization

