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1. Introduction

Automata minimization has a long and well-studied history. For deterministic finite (string)
automata (dfa) efficient algorithms exist. The renowned algorithm by Hopcroft [1] runs in time
O (m log n) where m and n are, respectively, the number of transitions and states of the input
automaton. The situation is worse for general finite-state automata (fsa), which include non-
deterministic finite automata (nfa). The minimization problem for nfa is PSPACE-complete [2]
and cannot even be efficiently approximated within the factor o(n) unless P = PSPACE [3–5].
The problem must thus be restricted to allow algorithms of practical value, and one possibility
is to settle for a partial minimization. This was done in [6] for finite-state tree automata (fta),
which are a generalization of fsa that recognize tree languages and are used in applications such
as model checking [7] and natural language processing [8].

The minimization algorithm in [6] was inspired by a partitioning algorithm due to Paige and
Tarjan [9], and relies heavily on bisimulation; a concept introduced by Milner as a formal
tool for investigating transition systems. Intuitively, two states are bisimilar if they can simulate
each other, or equivalently, the observable behavior of the two states coincides. Depending on the
capacity of the observer, we obtain different types of bisimulation. In all cases we assume that
the observer has the capacity to inspect the final reaction to a given input (i.e., the acceptance or
rejection of a given tree). The presence of bisimilar states in an automaton indicates redundancy.
Thus, identifying bisimilar states allows us to reduce the size of the input automaton, but we are
not guaranteed to obtain the smallest possible automaton. In this work we extend the approach
of [6] in two ways: (i) we relax the constraints for state equivalence, and (ii) we introduce a new
bisimulation relation that can be applied to deterministic (bottom-up) tree automata (dta) [10]
with practical effects. As [6], the only previous known minimization algorithm for tree automata,
is ineffective on dta and no more effective on fta than the extensions presented in this work, we
are able to obtain smaller automata than previously possible.

The two extensions correspond, respectively, to two types of bisimulation: backward and for-
ward bisimulation [11]. In a forward bisimulation on an automaton M , bisimilar states are re-
stricted to have identical futures (i.e., the observer can inspect what will happen next). The
future of a state q is the set of contexts (i.e., trees in which there is a unique leaf labeled by
the special symbol 2) that would be recognized by M , if the (bottom-up) computation starts
with the state q at the unique 2-labeled node in the context. By contrast, backward bisimulation
uses a local condition on the transitions to enforce that the past of any two bisimilar states is
equal (i.e. the observer can inspect what has already happened). The past of a state q is the
language that would be recognized by the automaton if q were its only final state (cf., left and
right congruence [12] for string languages).

Both types of bisimulation yield efficient minimization procedures, which can be applied to
arbitrary fta. Further, forward bisimulation minimization is useful on dta. It computes the unique
minimal dta recognizing the same language as the input dta (see Theorem 4.7). More importantly,
it is shown in Theorem 4.12 that the asymptotic time complexity of our minimization algorithm
is O(rm log n), where r is the maximal rank of the symbols in the input alphabet and m and n are
respectively the number of transitions and states of the input automaton. Thus, our algorithm
supersedes the currently best minimization algorithm [10] for dta, whose complexity is O(rmn),
and coincides with the Hopcroft-algorithm on dfa (r = 1 for dfa). Backward bisimulation,
though slightly harder to compute, has great practical value as well. Our backward bisimulation is
weaker than the bisimulation of [6]. Consequently, the fta obtained by our backward bisimulation
minimization algorithm will have at most as many states as the fta obtained by the minimization
algorithm of [6]. In addition, the asymptotic time-complexity of our algorithm (see Theorem 3.22),
which is O

(
r2m log n

)
, is the same as the one for the minimization algorithm of [6]. Note that
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in [6] the run time O(rm′ log n) is reported with m′ = rm.
Finally, there are advantages that support having two types of bisimulation. First, forward

and backward bisimulation minimization only yield fta that are minimal with respect to the
respective type of bisimulation. Thus applying forward and backward bisimulation minimization
in an alternating fashion commonly yields even smaller fta (see Sect. 5). Recently, [13] considered
our backward bisimulation minimization followed by one variant of forward bisimulation min-
imization, which is called “composed bisimulation”. Second, in certain domains only one type
of bisimulation minimization is effective. For example, backward bisimulation minimization is
ineffective on dta because no two different states of a dta have the same past.

Including this introduction, the paper has 6 sections. In Sect. 2, we define basic notions and
notations. We then proceed with backward bisimulation and the minimization algorithm based on
it. In Sect. 4, we consider forward bisimulation. Finally, in Sect. 5 we demonstrate our algorithms
on a typical task in natural language processing and conclude in Sect. 6.

2. Preliminaries

We write N to denote the set of natural numbers including zero. The set {i | k ≤ i ≤ n} is
abbreviated to [k, n], the cardinality of a set S is denoted by |S|, and the subtraction of elements
of set B from set S is denoted by S\B. We abbreviate Q×Q to Q2 and write q1 · · · qk ∈ D1 · · ·Dk

instead of (q1, . . . , qk) ∈ D1 × · · · ×Dk.
Let R and P be equivalence relations on S. We say that R is coarser than P (or equivalently:

P is a refinement of R), if P ⊆ R. The equivalence class (or block) of s ∈ S with respect to R
is [s]R = {s′ | (s, s′) ∈ R}. Whenever R is obvious from the context, we simply write [s] instead
of [s]R. It should be clear that [s] and [s′] are equal if (s, s′) ∈ R and disjoint otherwise, so R
induces a partition (S/R) = {[s] | s ∈ S} of S.

A ranked alphabet is a finite set of symbols Σ =
⋃
k∈N Σ(k) that is partitioned into pairwise

disjoint subsets Σ(k). The set TΣ of trees over Σ is the smallest language over Σ such that
f t1 · · · tk ∈ TΣ for every f ∈ Σ(k) and all t1, . . . , tk ∈ TΣ. To improve readability we write
f [t1, . . . , tk] instead of f t1 · · · tk unless k = 0. Any subset of TΣ is called a tree language.

By Σ(Q) we denote the set {f(q1, . . . , qk) | f ∈ Σ(k), q1, . . . , qk ∈ Q} for every ranked al-
phabet Σ and set Q. A finite-state tree automaton (for short: fta) is a tuple M = (Q,Σ, δ, F )
where Q is a finite set of states, Σ is a ranked alphabet, and δ is a finite set of transitions
of the form w → q for some w ∈ Σ(Q) and q ∈ Q. We call an fta deterministic and (com-
plete) if for every w ∈ Σ(Q) there exists exactly one q ∈ Q such that w → q ∈ δ. Fi-
nally, F ⊆ Q is a set of accepting states. To indicate that a transition w → q is in δ, we
write w δ→ q. In the obvious way, δ extends to trees yielding a mapping δ : TΣ → P(Q); i.e.,
δ(t) = {q | f(q1, . . . , qk) δ→ q and qi ∈ δ(ti) for all i ∈ [1, k]} for t = f [t1, . . . , tk] in TΣ. For
every q ∈ Q we denote {t ∈ TΣ | q ∈ δ(t)} by L(M)q. The tree language recognized by M is
L(M) =

⋃
q∈F L(M)q. Two fta M1 and M2 are equivalent if L(M1) = L(M2). Finally, we say

that a state q in Q is useless if L(M)q = ∅. For every fta M we can construct an equivalent fta
without useless states in time O(m) where m = |δ| is the number of transitions of M .

Let R be an equivalence relation on Q. The aggregated fta (with respect to M and R), denoted
by (M/R), is the fta ((Q/R),Σ, δ′, F ′) given by F ′ = {[q] | q ∈ F} and

δ′ = {f([q1], . . . , [qk])→ [q] | f(q1, . . . , qk) δ→ q} .

Note that, in general,
⋃
p∈[q] L(M)p ⊆ L((M/R))[q] for every q ∈ Q.
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Fig. 1. Example tree automaton N of Example 3.2.

3. Backward Bisimulation

3.1. Foundation

We first introduce the notion of backward bisimulation for a fta M . This type of bisimulation
requires bisimilar states to recognize the same tree language, but it is irrelevant whether the
states are final states or not. Clearly, the presence of two backward bisimilar states indicates a
redundancy. For the rest of this section, let M = (Q,Σ, δ, F ) be a fta.
Definition 3.1 (cf. [11, Definition 4.1]) An equivalence relation R on Q is a backward bi-
simulation on M if f(p1, . . . , pk) δ→ p implies that for every i ∈ [1, k] there exists qi ∈ [pi] such
that f(q1, . . . , qk) δ→ q for every (p, q) ∈ R, symbol f of Σ(k), and sequence p1, . . . , pk ∈ Q.

Note that in the special case of a nullary symbol f ∈ Σ(0), we obtain that f() δ→ p implies
f() δ→ q for every (p, q) ∈ R. Let us illustrate backward bisimulation on an example.
Example 3.2 Let Σ = Σ(2) ∪ Σ(0) be the ranked alphabet with Σ(2) = {f} and Σ(0) = {a, b}.
We want to recognize the tree language L = {f [a, b], f [a, a]}. To this end, we first construct fta
N1 and N2 that recognize {f [a, b]} and {f [a, a]}, respectively. Then we construct N by disjoint
union of N1 and N2. We obtain the fta N = ([1, 6],Σ, δ, {3, 6}), which is illustrated in Fig. 1,
with

a() δ→ 1 b() δ→ 2 f(1, 2) δ→ 3 a() δ→ 4 a() δ→ 5 f(4, 5) δ→ 6 .

Let P be the equivalence induced by the partition {{1, 4, 5}, {2}, {3}, {6}}. In fact, P is a back-
ward bisimulation on N . In order to justify this claim, we only need to check the transitions
leading to 1, 4, or 5. Trivially, the condition of Definition 3.1 is met for such transitions because
a()→ q is in δ and b()→ q is not in δ for every state q ∈ {1, 4, 5}.

The aggregated fta (N/P) is (Q′,Σ, δ′, F ′) where Q′ = {[1], [2], [3], [6]}, F ′ = {[3], [6]}, and

a() δ′→ [1] b() δ′→ [2] f([1], [2]) δ′→ [3] f([1], [1]) δ′→ [6] .

We display (N/P) in Fig. 2. 2

Next, we show that, for every backward bisimulation R on M , the fta M and (M/R) are
equivalent. We prepare this statement with a key lemma, which states that the state q of M and
the state [q] of (M/R) recognize the same tree language. For the rest of this section, let R be a
backward bisimulation on M .
Lemma 3.3 (cf. [11, Theorem 4.2] and [14, Lemma 8]) For every state q of M we have
L((M/R))[q] = L(M)q.

PROOF. Let (M/R) = (Q′,Σ, δ′, F ′). We already remarked that L(M)q ⊆ L((M/R))[q] holds
in general. We prove the remaining direction for every t ∈ TΣ by induction. Suppose that
t ∈ L((M/R))[q] with t = f [t1, . . . , tk] for some f ∈ Σ(k) and t1, . . . , tk ∈ TΣ. Then [q] ∈ δ′(t) and
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Fig. 2. Aggregated tree automaton (N/P) of Example 3.2.

thus there exist D1, . . . , Dk ∈ Q′ such that f(D1, . . . , Dk) δ
′
→ [q] and Di ∈ δ′(ti) for every i ∈ [1, k].

By definition of (M/R), there exist p, p1, . . . , pk ∈ Q such that f(p1, . . . , pk) δ→ p, p ∈ [q], and
pi ∈ Di for every i ∈ [1, k]. With the help of Definition 3.1, we conclude that there also exist
q1, . . . , qk ∈ Q such that f(q1, . . . , qk) δ→ q and qi ∈ Di for every i ∈ [1, k] because (p, q) ∈ R.
Finally, by the induction hypothesis, we have ti ∈ L(M)qi and consequently qi ∈ δ(ti) for every
i ∈ [1, k] because ti ∈ L((M/R))[qi]. This yields q ∈ δ(t) and t ∈ L(M)q as desired. 2

Clearly, the previous lemma shows that backward bisimilar states in M recognize the same
tree language. Moreover, we can now show that (M/R) recognizes exactly L(M).
Corollary 3.4 (cf. [11, Theorem 4.2] and [14, Theorem 2]) L((M/R)) = L(M).

PROOF. A tree t is in L((M/R)) if and only if there exists a state q of M such that q ∈ F
and t ∈ L((M/R))[q]. By Lemma 3.3, the latter holds precisely when t ∈ L(M)q. Consequently,
t ∈ L((M/R)) if and only if t ∈ L(M). 2

Clearly, among all backward bisimulations on M , the coarsest one yields the smallest aggre-
gated fta. Next we show that this smallest aggregated fta admits only the trivial (i.e., iden-
tity) backward bisimulation, and thus, cannot be further minimized with the help of backward
bisimulations. An fta that admits only the identity as backward bisimulation is called backward
bisimulation minimal. We now prove that the coarsest backward bisimulation P on M yields a
backward bisimulation minimal fta (M/P) that is equivalent to M .
Theorem 3.5 For every fta M there exists a coarsest backward bisimulation P on M , and
(M/P) is an equivalent backward bisimulation minimal fta. 2

PROOF. Suppose that a coarsest backward bisimulation P on M exists. Then any two states
that are bisimilar in (M/P), are already bisimilar in M , which together with Theorem 3.4 proves
the second part of the statement.

Let R and P be backward bisimulations on M . Then there exists a backward bisimulation R′
on M such that R ∪ P ⊆ R′. From this statement, the existence of the coarsest backward
bisimulation easily follows. Let R′ be the smallest equivalence containing R ∪ P. We now show
that R′ is a backward bisimulation. Let (p, q) ∈ R′. Thus there exist n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. Clearly, every block D ∈ (Q/R′) is a union of blocks of (Q/R) as well
as a union of blocks of (Q/P). Let f ∈ Σ(k) and q1, . . . , qk ∈ Q be such that f(q1, . . . , qk) δ→ p1.
We prove by induction that for every m ∈ [1, n] and for every i ∈ [1, k] there exists q′i ∈ [qi]R′

such that f(q′1, . . . , q
′
k) δ→ pm. For m = 1, this is trivial. Now let 1 < m ≤ n. By induction
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hypothesis, for every i ∈ [1, k] there exists q′i ∈ [qi]R′ such that f(q′1, . . . , q
′
k) δ→ pm−1. Since

(pm−1, pm) ∈ R ∪ P, we have (pm−1, pm) ∈ R or (pm−1, pm) ∈ P. Suppose the former; the
reasoning is analogous in the latter case. Since R is a backward bisimulation we have that for
every i ∈ [1, k] there exists q′′i ∈ [q′i]R such that f(q′′1 , . . . , q

′′
k ) δ→ pm. Clearly, q′′i ∈ [q′i]R′ for every

i ∈ [1, k] because R ⊆ R′. Finally, [q′i]R′ = [qi]R′ and hence q′′i ∈ [qi]R′ for every i ∈ [1, k]. This
completes the induction, which proves the auxiliary statement. 2

Let us conclude this section with a comparison of our notion of backward bisimulation to the
notion of bisimulation in [6]. For the reader’s convenience, we repeat the main definition of [6].
Definition 3.6 (cf. [6, Sect. 5]) Let P be an equivalence relation on Q. We say that P is an
AKH-bisimulation on M , if for every (p, q) ∈ P we have

(i) if p ∈ F , then q ∈ F ; and
(ii) for every symbol f ∈ Σ(k), index j ∈ [1, k + 1], and sequence p1, . . . , pk+1 ∈ Q such that

f(p1, . . . , pk) δ→ pk+1 with pj = p we have that for every i ∈ [1, k + 1] there exists qi ∈ [pi]
such that f(q1, . . . , qk) δ→ qk+1 and qj = q.

We immediately observe that this notion of bisimulation is closely related to our notion of
backward bisimulation. The next lemma expresses this formally.
Lemma 3.7 Every AKH-bisimulation on M is a backward bisimulation on M .

PROOF. Clearly, the condition of Definition 3.1 is met by setting j to k+1 in Definition 3.6. 2

It follows that the coarsest backward bisimulation R on M must be coarser than the coarsest
AKH-bisimulation P on M . Hence (M/R) has at most as many states as (M/P).

3.2. Minimization algorithm

At this point we know that there exists a coarsest backward bisimulation R on every fta M
(Corollary 3.5), and that (M/R) is an equivalent fta of size less or equal to that of M . These
results now allow us to define a minimization algorithm for fta that proceeds as follows. The
algorithm, which we henceforth refer to as Alg. 3, searches for the coarsest backward bisimula-
tion R on M by producing increasingly refined equivalence relations R0,R1,R2, . . . on the state
space of M . The first of these is the coarsest possible candidate solution. The relation Ri+1 is
derived from Ri by removing pairs of states that prevent Ri from being a backward bisimulation.
The algorithm also produces an auxiliary sequence of relations P0,P1,P2, . . . that are used to
determine these offending pairs in a time-efficient way. When Pi eventually coincides with Ri,
the relation Ri is the coarsest backward bisimulation on M . What then remains is to compute
the aggregated fta (M/Ri). Before we discuss these steps in closer detail, it is necessary to extend
our notation. From here on, we use m and n to denote the number of transitions and states of M
(in other words, m = |δ| and n = |Q|). The maximal rank of any symbol in the input signature Σ
of M is r = max{k | Σ(k) 6= ∅}.

To obtain a time-efficient algorithm, we apply a counting argument by Paige and Tarjan.
The argument goes as follows: If we already know that there are n f -transitions that lead from el-
ements of the word D1 · · ·Dk to the state q, and we count that there are m f -transitions that lead
from elements of the word C1 · · ·Ck to q, where Ci ⊆ Di for every i ∈ [1, k], then it is immediate
that there are n−m f -transitions that lead from elements of (D1×· · ·×Dk)\ (C1×· · ·×Ck) to
the state q. When we, in Alg. 3, need to test the implication of Definition 3.1, we can thus reduce
the number of transitions that must be inspected explicitly, provided that we keep a record of
the number of transitions that we counted in previous iterations. For this purpose, we introduce
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the observation mapping obsq, which, given a left-hand side f(D1, . . . , Dk) ∈ Σ(P(Q)), tells us
the number of f -transitions that lead from elements of D1 · · ·Dk to the state q.
Definition 3.8 For every q ∈ Q, the mapping obsq : Σ(P(Q))→ N is given by

obsq(f(D1, . . . , Dk)) = |{q1 · · · qk ∈ D1 · · ·Dk | f(q1, . . . , qk) δ→ q}|
for every f(D1, . . . , Dk) ∈ Σ(P(Q)).

As we will shortly see, we discard (q, q′) from our maintained set of bisimilar states should
obsq(w) and obsq′(w) disagree in the sense that one counter is positive whereas the other is zero
for some w ∈ Σ(P(Q)).

To prove correctness we also need a vocabulary that lets us express how the rules of an
aggregated fta (M/R) relate to the rules of M . Intuitively, Li is the set of left-hand sides that
are possible in an fta with state space (Q/Pi) and input alphabet Σ. In each iteration of Alg. 3,
a pivot block B is selected. Since we often address those entries in a set of left-hand sides L in
which B occur, we abbreviate this subset by L(B).
Definition 3.9 Let B and D be subsets of Q, i ∈ N be an index, and L ⊆ Σ(P(Q)) be a
language. We use
– Li to abbreviate the set Σ((Q/Pi)),
– L(B) to abbreviate the set

{f(D1, . . . , Dk) ∈ L | Di = B for some i ∈ [1, k]} ,
– L(B,¬D) to abbreviate the set

{f(D1, . . . , Dk) ∈ L(B) | Di 6= D for every i ∈ [1, k]} ,
– Lw for some w = f(D1, . . . , Dk) ∈ Σ(P(Q)) to abbreviate the set of elements in L of the form
f(C1, . . . , Ck) where Ci ⊆ Di for every i ∈ [1, k].
Let us now give an informal description of the mappings cut, split and splitn that appear

in Alg. 3, before we state their definitions. The first of these, cut, takes as argument a block
B ⊆ Q and returns a subset of Q × Q. Subtracting cut(B) from an equivalence relation R on
Q ensures that B is a separate block in (Q/(R \ cut(B))) provided, of course, that B2 ⊆ R.
The mapping split takes as argument a language L of left-hand sides and returns those pairs of
states that can be proven not to be bisimilar by inspecting only transitions with left-hand sides in
L. The mapping splitn implements the previously discussed counting argument by Paige and
Tarjan; it takes left-hand-side languages L and L′ and returns all those pairs of destintation
states where one state may be reached from some left-hand-sides in L \ L′ and the other may
not.
Definition 3.10 Let B be a subset of Q and L,L′ ⊆ Σ(P(Q)) be languages. We write
– cut(B) for the subset (Q2 \B2) \ (Q \B)2 of Q×Q;
– split(L) for the set of all (q, q′) in Q×Q for which there exists w ∈ L such that exactly one

of obsq(w) and obsq′(w) is zero; and
– splitn(L,L′) for the set of all (q, q′) in Q×Q such that there exists w ∈ L such that

obsp(w) =
∑

w′∈(L′)w

obsp(w′)

holds for either p = q or p = q′ but not both.
Let us briefly discuss how the sets L0, L1, L2, . . . that are generated by Alg. 3 relate to each

other. The set L0 is equal to Σ({Q}). Every f(D1, . . . , Dk) in the set Li+1 is in either already
in Li or w = f(D′1, . . . , D

′
k) is in Li where D′j = Si if Dj ∈ {Bi, Si \Bi} and D′j = Dj otherwise

for every j ∈ [1, k]. Note that in the latter case f(D1, . . . , Dk) ∈ (Li)w.
Example 3.11 The execution of Alg. 3 is traced on the fta N of Example 3.2. In the initializa-
tion, State 2 can be separated from the block [1, 6] since only obs2(b()) is non-zero (and b() ∈ L0).
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input: a fta M = (Q,Σ, δ, F );

initially:
P0 := Q×Q;
R0 := P0 \ split(L0);
i := 0;

while Ri 6= Pi:
choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut(Bi);
Ri+1 :=

(
Ri \ split(Li+1(Bi))

)
\ splitn(Li(Si), Li+1(Bi));

i := i+ 1;

return: the fta (M/Ri);

Alg. 3. A minimization algorithm for finite-state tree automata

Similarly, states 3 and 6 differ from 1, 4, and 5, as obs3(f(Q,Q)) and obs6(f(Q,Q)) are both
non-zero. When the initialization is complete, we thus have

P0 = Q×Q and R0 = {1, 4, 5}2 ∪ {2}2 ∪ {3, 6}2 .

In the first iteration, we let S0 = Q and B0 = {2}. The algorithm can now use the left-hand
side w = f({1, 3, 4, 5, 6}, {2}) in L1(B0) to distinguish between state 3 and state 6, as obs3(w) > 0
whereas obs6(w) = 0. The next pair of equivalence relations is then:

P1 = {2}2 ∪ {1, 3, 4, 5, 6}2 and R1 = {1, 4, 5}2 ∪ {2}2 ∪ {3}2 ∪ {6}2 .

As the states in {1, 4, 5} do not appear at the left-hand side of any transition, this block will
not be further divided. However, another two iterations are needed before Pi equals Ri and the
algorithm terminates. 2

Our next task is to verify that Alg. 3 computes the coarsest backward bisimulation on M as
claimed. For this, we use the notations introduced in the outline above.
Lemma 3.12 The relation Ri is a refinement of Pi for all i ∈ {0, 1, 2, . . . }.

PROOF. The proof is by induction on i. The base case is satisfied by the initialization of
P0 to Q × Q. For the induction step, we proceed as follows. By definition, Ri+1 ⊆ Ri and
Pi+1 = Pi \ cut(Bi). Since Bi ∈ (Q/Ri), we also have the equality Ri ∩ cut(Bi) = ∅, and by the
induction hypothesis, the inclusion Ri ⊆ Pi. It follows that

Ri+1 ⊆ Ri = Ri\cut(Bi) ⊆ Pi\cut(Bi) = Pi+1 . 2

Lemma 3.12 thus assures that Ri is a proper refinement of Pi, for all i ∈ {0, . . . , t−1} where t
is the value of i at termination. This means that up to the termination point t we can always
find blocks Bi ∈ (Q/Ri) and Si ∈ (Q/Pi) such that Bi is contained in Si, and the size of Bi is at
most half the size of Si. The check of the termination criterion can hence be combined with the
choice of Si and Bi, as we can only fail to choose these blocks if Ri and Pi are equal. Termination
in less than |Q| iterations is guaranteed by Lemma 3.13.
Lemma 3.13 There exists a t < |Q| such that Rt = Pt.

PROOF. Clearly, the algorithm only terminates if Rt and Pt coincide for some t in N. Up until
termination, i.e. for all i less than t, we have that
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|(Q/Ri)| > |(Q/Pi)| and |(Q/Pi+1)| > |(Q/Pi)|

hold by Lemma 3.12. The size of both (Q/Ri) and (Q/Pi) is bounded from above by |Q|.
Should the algorithm reach iteration |Q| − 1 before terminating, we have by necessity that both
|(Q/P|Q|−1)| and |(Q/R|Q|−1)| are equal to |Q|, so R|Q|−1 and P|Q|−1 coincide. Consequently,
there exists an integer t less than |Q| such that Rt and Pt are equal. 2

As mentioned earlier, Alg. 3 constructs in parallel two sequences of equivalence relations
(Ri)i∈N and (Pi)i∈N. The former represents the current hypothesis, and the latter has an aux-
iliary function in that it directs our search. We say that the relation Ri is stable with respect
to Pi if, for every pair (q, q′) ∈ Ri, the observations made about q agree with those about q′,
provided that we restrict our view to the context of Pi.
Definition 3.14 Let R and P be two equivalence relations on Q such that P is coarser than R.
We say that R is stable with respect to P if, for every (q, q′) in R and w ∈ Σ((Q/P)),

obsq(w) = 0 if and only if obsq′(w) = 0 .

We say that R is stable if it is stable with respect to itself.
Note that every stable equivalence relation R is a backward bisimulation on M . Let us now

make two remarks concerning Definition 3.9 that will help us understand the relationship between
a left-hand side in Li and those left-hand sides in Li+1 that are descendant from w.
Remark 3.15 For every i ∈ [0, t− 1] and w ∈ Li(Si), it holds that

obsq(w) =
∑

w′∈Lw
i+1(Bi)

obsq(w′) +
∑

w′∈Lw
i+1(Si\Bi,¬Bi)

obsq(w′) .

Moreover, there is a unique w′ ∈ Lwi+1(Si \Bi,¬Bi).
We are now equipped to state and prove Lemma 3.16.

Lemma 3.16 The relation Ri is stable with respect to Pi, for all i ∈ [0, t].

PROOF. By Lemma 3.12, the relation Pi is coarser than Ri. The remaining proof is by induc-
tion on i. The base case follows from the definitions of R0 and P0. Now, let (q, q′) ∈ Ri+1. We
show that obsq′(w) = 0 if obsq(w) = 0 for every w ∈ Li+1. Depending on w, there are three
cases, and we examine each case.

First, let w ∈ Li. Since (q, q′) ∈ Ri+1 we have (q, q′) ∈ Ri because Ri is coarser than Ri+1.
Supporting ourselves on the induction hypothesis, we have that obsq′(w) = 0 if obsq(w) = 0.
Second, let w ∈ Li+1(Bi), and here the desired equality follows from the fact that (q, q′) is not
in split(Li+1(Bi)). Third, let w ∈ Li+1(Si \Bi,¬Bi). Let w = f(D1, . . . , Dk) for some f ∈ Σ(k)

and D1, . . . , Dk ∈ (Q/Pi+1). Moreover, let w′ = f(D′1, . . . , D
′
k) where D′i = Si if Di = Si \Bi and

D′i = Di otherwise for every i ∈ [1, k]. Note that w is the unique element of Lw
′

i+1(Si \ Bi,¬Bi)
and according to Remark 3.15

obsq(w′) =
∑

w′′∈Lw′
i+1(Bi)

obsq(w′′) + obsq(w) =
∑

w′′∈Lw′
i+1(Bi)

obsq(w′′) .

Since (q, q′) ∈ Ri+1 we have (q, q′) /∈ splitn(Li(Si),Li+1(Bi)). Consequently,

obsq′(w′) =
∑

w′′∈Lw′
i+1(Bi)

obsq′(w′′)

and by Remark 3.15 this yields obsq′(w) = 0. 2
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The next lemma serves to simplify the proof of Lemma 3.18, which states that if a backward
bisimulation R is a refinement of the initial hypothesis R0, then R is also a refinement of every
hypothesis Ri, i ∈ [0, t], that follows.
Lemma 3.17 Let R be a backward bisimulation, and let w ∈ Σ(P ) where

P =
{ ⋃
B∈S

B | S ⊆ (Q/R)
}
.

Then obsq′(w) = 0 if obsq(w) = 0 for every (q, q′) ∈ R.

PROOF. Suppose that obsq(w) = 0 with w = f(D1, . . . , Dk). Consequently, there do not exist
q1 · · · qk ∈ D1 · · ·Dk such that f(q1, . . . , qk) δ→ q. Since each Di is a union of blocks of (Q/R), we
obtain that obsq(w′) = 0 for every w′ = f(C1, . . . , Ck) with Ci ∈ (Di/R) for every i ∈ [1, k]. Due
to the facts that R is a backward bisimulation and (q, q′) ∈ R we can conclude that obsq′(w′) = 0
for every such w′. This clearly yields obsq′(w) = 0. 2

Lemma 3.18 Every backward bisimulation R on M is a refinement of Ri for every i ∈ [0, t].

PROOF. The proof is by induction on i, and the base case is easily checked. To cover the
induction step, we show that if (q, q′) ∈ R, then (q, q′) ∈ Ri+1. This is done by examining
how the minimization algorithm obtains Ri+1 from Ri. By the induction hypothesis we have
(q, q′) ∈ Ri. To have (q, q′) ∈ Ri+1, it must hold that (q, q′) /∈ split(Li+1(Bi)) and hence
obsq(w) = 0 if and only if obsq′(w) = 0 for every left-hand side w = f(D1, . . . , Dk) in Li+1(Bi).
Since Di is the union of blocks in (Q/Ri) and hence a union of blocks in (Q/R), for all i ∈ [1, k],
this condition is satisfied by Lemma 3.17.

Finally, we have to prove that (q, q′) /∈ splitn(Li(Si),Li+1(Bi)). Let w ∈ Li(Si) and w′′ be
the unique element of Lwi+1(Si \Bi,¬Bi). For every p ∈ {q, q′} we have

obsp(w) =
∑

w′∈Lw
i+1(Bi)

obsp(w′) if and only if
∑

w′∈Lw
i+1(Si\Bi,¬Bi)

obsp(w′) = 0

by Remark 3.15. The latter holds precisely when obsp(w′′) = 0 because w′′ is the only element
of Lwi+1(Si \ Bi,¬Bi). It remains to show that obsq(w′′) = 0 if and only if obsq′(w′′) = 0. This
holds by Lemma 3.17 because (i) Si \ Bi is a union of blocks of Ri and thus a union of blocks
of R and (ii) all other blocks D ∈ (Q/Pi+1) \ {Bi, Si \Bi} are blocks of (Q/Pi) and thus a union
of blocks of Ri and a union of blocks of R. 2

Now we collect the separate results in a final correctness theorem. In conjunction with Theo-
rem 3.5 it shows that Alg. 3 really computes a backward bisimulation minimal fta (M/Rt).
Theorem 3.19 Rt is the coarsest backward bisimulation on M .

PROOF. Lemma 3.13 guarantees that Alg. 3 terminates and Lemma 3.16 shows that Rt is
stable with respect to Pt. Since Rt = Pt, the equivalence relation Rt is stable and hence a back-
ward bisimulation on M (see Definition 3.1). Now let P be an arbitrary backward bisimulation
on M . Obviously, P is a refinement of Rt by Lemma 3.18, which proves that Rt is the coarsest
backward bisimulation on M . 2

Let us now analyze the running time of Alg. 3 on M . In the complexity calculations, we write
δL, where L ⊆ Σ(P(Q)), for the subset of δ that contains entries of the form f(q1, . . . , qk)→ q,
where q1 · · · qk ∈ B1 · · ·Bk for some f(B1, . . . , Bk) ∈ L and q ∈ Q. Our computation model is
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the random access machine [15], which supports indirect addressing, and thus allows the use of
pointers. This means that we can represent each block in a partition (Q/R) as a record of two-
way pointers to its elements, and that we can link each state to its occurrences in the transition
table. Given a state q and a block B, we can then determine [q]R in constant time, and δL, where
L ⊆ Σ(P(Q)), in time proportional to the number of entries.

To avoid pairwise comparison between states, we hash each state q in Q using obsq as key,
and then inspect which states are mapped to the same positions in the hash table. Since a
random access machine has unlimited memory, we can always implement a collision-free hash,
for instance, by interpreting the binary representation of obsq as a memory address. The time
required to hash a state q is consequently proportional to the size of the representation of obsq.

The overall time complexity of the algorithm is

O
(
Init +

t−1∑
i=0

(Selecti + Cuti + Spliti + Splitni) + Aggregate
)
,

where
– Init is the complexity of the initialization phase;
– Selecti is the complexity of the choice of Si and Bi;
– Cuti is the complexity of the computation of Pi \ cut(Bi);
– Spliti is the complexity of the computation of Ri \ split(Li+1(Bi));
– Splitni is the complexity of the subtraction of splitn(Li(Si),Li+1(Bi)); and
– Aggregate is the complexity of the construction of the aggregated automaton (M/Rt).

The next lemma shows the complexities of the mentioned parts of Alg. 3.
Lemma 3.20 Init and Aggregate are in O(rm+ n), whereas, for every i in [0, t− 1],
- Selecti is in O(1),
- Cuti is in O(|Bi|), and
- Spliti and Splitni are in O

(
r |δLi+1(Bi)|

)
.

The next lemma is based on an observation by Hopcroft [1].
Lemma 3.21 For each q ∈ Q we have |{Bi | i ∈ [0, t− 1] and q ∈ Bi}| ≤ log2 n.

PROOF. Let Bi and Bj , where i < j, be two blocks that both include the state q. Since Rj is
a refinement of Ri, we have that Bj is a subset of Bi. We know then that |Bj | is less or equal to
|Bi| /2, or else Bj would violate the selection criteria for the B-blocks. If we order the B-blocks
in which q occurs in descending order (with respect to their cardinality), we have that each block
in the list is at most half the size of its predecessor. The first block in which q occurs cannot be
larger than n, and the last block cannot be smaller than a singleton. Hence, the q is included in
at most log2 n distinct B-blocks. 2

We are now ready to compute the overall complexity of Alg. 3.
Theorem 3.22 The backward minimization algorithm is in O

(
r2m log n

)
.

PROOF. By Lemma 3.20 the time complexity of the algorithm can be written as

O
(

(rm+ n) +
t−1∑
i=0

(1 + |Bi|+ r |δLi+1(Bi)|+ r |δLi+1(Bi)|) + (rm+ n)
)
.

Omitting the smaller terms and simplifying, we obtain

O

(
r

t−1∑
i=0

|δLi+1(Bi)|

)
.
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According to Lemma 3.21, no state occurs in more than log2 n distinct B-blocks, so no transition
in δ will contribute by more than r log2 n to the total sum. As there are m transitions, the overall
time complexity of the algorithm is O(r2m log n). 2

Recall from Lemma 3.7 that every bisimulation in the sense of [6] is also a backward bisim-
ulation (but the opposite is not true). Since Alg. 3 for minimization via backward bisimulation
is computationally as efficient as the algorithm of [6] (see Theorem 3.22 and [6, Sect. 3]), Alg. 3
supersedes the algorithm of [6].

4. Forward Bisimulation

4.1. Foundation

In this section, we consider a computationally simpler notion of bisimulation. Minimization
via forward bisimulation will generalize classical minimization of deterministic tree automata
and actually coincide with it on deterministic tree automata (see Theorem 4.7). In addition,
the two minimization procedures greatly increase their potential when they are used together
in an alternating fashion (for practical experiments, see Sect. 5). Recently, [13] considered our
backward bisimulation minimization followed by a slight variant of forward bisimulation mini-
mization, which they called “composed bisimulation”. We note that the fta obtained by their
composed bisimulation minimization might be slightly different (better or worse) from the one
obtained by executing our two minimization procedures in the mentioned order. However, in
their evaluation [13] no essential difference presented itself. Moreover, their obtained fta also
have the disadvantageous properties that our obtained fta have (e.g., the resulting fta might
not be backward bisimulation minimal). On deterministic tree automata, composed bisimulation
minimization will coincide with our forward bisimulation minimization.

As before, let M = (Q,Σ, δ, F ) be a fta for the rest of this section.
Definition 4.1 We say that an equivalence relation R on Q is a forward bisimulation on M if
for every (p, q) in R we have

(i) if p ∈ F , then q ∈ F ; and
(ii) for every f ∈ Σ(k), i ∈ [1, k], and p′, q1, . . . , qk ∈ Q with f(q1, . . . , qi−1, p, qi+1, . . . , qk) δ→ p′

there exists q′ ∈ [p′] such that f(q1, . . . , qi−1, q, qi+1, . . . , qk) δ→ q′.
Note that Condition (ii) in Definition 4.1 is automatically fulfilled for all nullary symbols. Let

us continue Example 3.2.
Example 4.2 Recall the aggregated fta from Example 3.2. An isomorphic fta N is given by
([1, 4],Σ, δ, {3, 4}) with

a() δ→ 1 b() δ→ 2 f(1, 2) δ→ 3 f(1, 1) δ→ 4 .

We have seen in Example 3.11 that N is backward bisimulation minimal. Let us consider the
equivalence relation P induced by the partition {{1}, {2}, {3, 4}}. We claim that P is a forward
bisimulation on N . Condition (i) of Definition 4.1 is met, and since (1, 2) /∈ P and the states
3 and 4 only appear on the right hand side of rules, also Condition (ii) holds.

The aggregated fta (N/P), displayed in Fig. 4, is (Q′,Σ, δ′, F ′) withQ′ = {[1], [2], [3]}, F ′ = {[3]},
and

a() δ′→ [1] b() δ′→ [2] f([1], [2]) δ′→ [3] f([1], [1]) δ′→ [3] . 2

For the rest of this section, let R be a forward bisimulation on M . In the forward case, a
collapsed state of (M/R) functions like the combination of its constituents in M (cf. Sect. 3). In
particular, bisimilar states need not recognize the same tree language.
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ff

a b

Fig. 4. Aggregated tree automaton (N/P) of Example 4.2.

Lemma 4.3 (cf. [11, Theorem 3.1]) L((M/R))[q] =
⋃
p∈[q] L(M)p for every q ∈ Q.

PROOF. We have already seen that
⋃
p∈[q] L(M)p ⊆ L((M/R))[q] holds for every equivalence

relation R. For the remaining direction, let (M/R) = (Q′,Σ, δ′, F ′). We prove the statement by
induction for every t ∈ TΣ. Suppose that t = f [t1, . . . , tk] for some f ∈ Σ(k) and t1, . . . , tk ∈ TΣ.
By t ∈ L((M/R))[q] we have [q] ∈ δ′(t). The latter implies that there exist D1, . . . , Dk ∈ Q′

such that f(D1, . . . , Dk) δ
′
→ [q] and Di ∈ δ′(ti) for every i ∈ [1, k]. With the help of the induction

hypothesis, we obtain that there exist q1, . . . , qk ∈ Q such that qi ∈ Di and qi ∈ δ(ti) for every
i ∈ [1, k]. By construction of (M/R), there also exist p, p1, . . . , pk ∈ Q with p ∈ [q] such that
f(p1, . . . , pk) δ→ p and pi ∈ [qi] for every i ∈ [1, k]. It follows that f(q1, p2, . . . , pk) δ→ p, and conse-
quently, f(q1, . . . , qk) δ→ p by Definition 4.1. This yields that p ∈ δ(t) and t ∈

⋃
p∈[q] L(M)p. 2

With the above lemma, it is now easy to prove that (M/R) and M are equivalent provided that
R is a forward bisimulation on M . At this point, we will also use Condition (i) of Definition 4.1.
Theorem 4.4 (cf. [11, Corollary 3.4]) L((M/R)) = L(M).

PROOF. Let t ∈ TΣ. We have t ∈ L((M/R)) if and only if there exists a state q of M such
that q ∈ F and t ∈ L((M/R))[q]. By Definition 4.1 and Lemma 4.3, the latter holds if and only
if there exists a state p of M such that p ∈ F and t ∈ L(M)p. Clearly, this is exactly the case
when t ∈ L(M). 2

As before, the coarsest of all forward bisimulations on M naturally yields the smallest ag-
gregated fta. Any fta that admits only the identity as forward bisimulation is called forward
bisimulation minimal. Such an fta cannot be reduced further with the help of some forward
bisimulation.
Theorem 4.5 For every fta M there exists a coarsest forward bisimulation P on M , and (M/P)
is an equivalent forward bisimulation minimal fta.

PROOF. The latter statement is again clear (using Theorem 4.4). For the former statement, let
R and P be forward bisimulations on M . We prove that there exists a forward bisimulation R′
on M such that R∪P ⊆ R′. Let R′ be the smallest equivalence containing R∪P. We now show
that R′ is a forward bisimulation. Let (p, q) ∈ R′. Thus there exist an integer n ∈ N and

(p1, p2), (p2, p3), . . . , (pn−2, pn−1), (pn−1, pn) ∈ R ∪ P

such that p1 = p and pn = q. It is immediately clear that q ∈ F whenever p ∈ F . Now
to Condition (ii) of Definition 4.1. Let f ∈ Σ(k), i ∈ [1, k], and p′, q1, . . . , qk ∈ Q be such

13



that f(q1, . . . , qi−1, p, qi+1, . . . , qk) δ→ p′. We will prove that there exists q′ ∈ [p′]R′ such that
f(q1, . . . , qi−1, pm, qi+1, . . . , qk) δ→ q′ for every m ∈ [1, n]. This is trivial for m = 1. Now let m > 1
and suppose that there exists q′ ∈ [p′]R′ such that f(q1, . . . , qi−1, pm−1, qi+1, . . . , qk) δ→ q′. More-
over, suppose that (pm−1, pm) ∈ R; the case that (pm−1, pm) ∈ P is handled analogously. By Def-
inition 4.1, there exists q′′ ∈ [q′]R such that f(q1, . . . , qi−1, pm, qi+1, . . . , qk) δ→ q′′. Since R ⊆ R′,
it follows that q′′ ∈ [p′]R′ . This completes the induction and proves the auxiliary statement. 2

Finally, we relate forward bisimulation with classical minimization of deterministic tree au-
tomata. Let us first recall the required notions.
Definition 4.6 The fta M is a dta ( deterministic and complete), if for every w ∈ Σ(Q) there
exists exactly one q ∈ Q such that w δ→ q.

It is an easy exercise to verify that the fta (M/R) is deterministic whenever M is so. Moreover,
there exists a unique (up to isomorphism) minimal (with respect to the number of states) dta N
that is equivalent to M [16,17]. The next theorem shows that N is isomorphic to (M/R) where
R is the coarsest forward bisimulation on M .
Theorem 4.7 Let M be a dta without useless states, and let R be the coarsest forward bisimu-
lation on M . Then (M/R) is an equivalent minimal dta.

PROOF. Let M ′ = (Q′,Σ, δ′, F ′) be the unique (up to isomorphism) equivalent minimal dta.
We prove that there exists a forward bisimulation R on M such that (M/R) and M ′ are iso-
morphic. By minimality of M ′ such a bisimulation must be the coarsest forward bisimulation
on M .

We define the relation ı = {(q, q′) ∈ Q×Q′ | L(M)q ∩ L(M ′)q′ 6= ∅}. Since M has no useless
states we have that L(M)q 6= ∅ for every q ∈ Q. Moreover, for every q ∈ Q there exists q′ ∈ Q′
such that L(M)q ⊆ L(M ′)q′ . Hence for every q ∈ Q there exists q′ ∈ Q′ such that (q, q′) ∈ ı.
Moreover, since M ′ is a dta, for every tree t ∈ TΣ, there exists exactly one q′ ∈ Q′ such that
t ∈ L(M ′)q′ , and thus, for every q ∈ Q there exists at most one q′ ∈ Q′ such that (q, q′) ∈ ı. Thus
ı : Q → Q′. Now suppose that there exists q′ ∈ Q′ so that there exists no q ∈ Q with ı(q) = q′.
Clearly, L(M ′)q′ = ∅ which contradicts to the minimality of M ′. Thus ı is surjective.

Let R = ker(ı), which, by definition, is an equivalence relation. We first prove Condition (i) of
Definition 4.1. Let (p, q) ∈ R. We have to prove that q ∈ F if p ∈ F . Since M has no useless states,
there exist trees t and u in TΣ such that t ∈ L(M)p and u ∈ L(M)q. Suppose that p ∈ F . Then
t ∈ L(M), and consequently, t ∈ L(M ′). Since L(M)p ⊆ L(M ′)ı(p) and L(M)q ⊆ L(M ′)ı(q), we
obtain that ı(p) = ı(q) ∈ F ′. Thus, also u ∈ L(M ′) and u ∈ L(M). This finally yields q ∈ F .

Now to Condition (ii). Let f ∈ Σ(k) be a symbol, i ∈ [1, k] be an index, and p′, q1, . . . , qk ∈ Q be
states such that f(q1, . . . , qi−1, p, qi−1, . . . , qk) δ→ p′. By determinism, there exists a unique state
q′ ∈ Q such that f(q1, . . . , qi−1, q, qi+1, . . . , qk) δ→ q′. Thus it remains to show that (p′, q′) ∈ R.
We observe that ı(p′) = ı(q′) if and only if there exists a state r ∈ Q′ such that L(M)p′ ∩L(M ′)r
and L(M)q′ ∩ L(M ′)r are nonempty. By assumption, (p, q) ∈ R and thus there exists a state
r′ ∈ Q′ and trees s and s′ of TΣ such that s ∈ L(M)p ∩ L(M ′)r′ and s′ ∈ L(M)q ∩ L(M ′)r′ .
Further, since M has no useless states, for every j ∈ [1, k] there exists a tree sj ∈ TΣ such that
sj ∈ L(M)qj . Since M ′ is deterministic, we obtain that there exists a state r ∈ Q′ such that

{f [s1, . . . , si−1, s, si+1, . . . , sk], f [s1, . . . , si−1, s
′, si+1, . . . , sk]} ⊆ L(M ′)r .

Clearly, f [s1, . . . , si−1, s, si+1, . . . , sk] ∈ L(M)p′ and f [s1, . . . , si−1, s
′, si+1, . . . , sk] ∈ L(M)q′ .

This proves that the intersections L(M)p′ ∩ L(M ′)r and L(M)q′ ∩ L(M ′)r are nonempty, and
thus (p′, q′) ∈ R. Hence Condition (ii) of Definition 4.1 is fulfilled and R is a forward bisimulation
on M .
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input: a fta M = (Q,Σ, δ, F );

initially:
P0 := Q×Q;
R0 := ((Q \ F )2 ∪ F 2) \ splitf(Q);
i := 0;

while Ri 6= Pi:
choose Si ∈ (Q/Pi) and Bi ∈ (Q/Ri) such that

Bi ⊂ Si and |Bi| ≤ |Si| /2;
Pi+1 := Pi \ cut(Bi);
Ri+1 :=

(
Ri \ splitf(Bi)

)
\ splitfn(Si, Bi);

i := i+ 1;

return: the fta (M/Ri);

Alg. 5. A minimization algorithm based on forward bisimulation

It remains to prove that the aggregated fta (M/R) is isomorphic to M ′. Clearly, (M/R) is
a dta, has |Q′| states, and is equivalent to M by Theorem 4.4. Thus (M/R) is a minimal dta
recognizing L(M) and by the uniqueness of such a dta isomorphic to M ′. 2

4.2. Minimization algorithm

We now consider an algorithm that minimizes with respect to forward bisimulation. As in
Sect. 3 this requires us to extend our notation. We denote by Σ2(Q) the of set of contexts of
Σ(Q∪{2}): the subset of elements of Σ(Q∪{2}) that contain the special symbol 2 /∈ Q exactly
once. We denote by c[[q]], where c ∈ Σ2(Q) and q ∈ Q, the element of Σ(Q) that is obtained by
substituting q for the unique occurrence of 2 in c.
Definition 4.8 For each state q in Q, the map obsq : Σ2(Q)×P(Q)→ N is defined by

obsq(c,D) = |{q′ ∈ D | c[[q]] δ→ q′}|

for every context c ∈ Σ2(Q) and set D ⊆ Q of states.
The mapping obsq is similar to the mapping obsq of Sect. 3.2 in that it is a local observation

of the properties of q. The difference between them is that obsq(c,D) is now the number of
transitions from c[[q]] to a state of D. In contrast, obsq looked from the other side of the rule.
Definition 4.9 Let D and D′ be subsets of Q.
– We write splitf(D) for the set of all pairs (p, q) in Q×Q, for which there exists c ∈ Σ2(Q)

such that exactly one of obsp(c,D) and obsq(c,D) is zero.
– Similarly, we write splitfn(D,D′) for the set of all pairs (q, q′) in Q × Q, for which there

exists c ∈ Σ2(Q) such that obsp(c,D) = obsp(c,D′) holds for either p = q or p = q′ but not
both.
The second minimization algorithm is Alg. 5. This algorithm can be obtained from Alg. 3 by

altering the way the family of relations (Ri)i≥0 is computed. The next example underlines the
difference between the two algorithms.
Example 4.10 Let us trace the execution of Alg. 5 on the fta N from Example 4.2. In the
initialization of R0, states 3 and 4 are separated out because they are both accepting. State 1
can also be distinguished as only obs1(f(2, 2), Q) is non-zero. This yields the equivalence relations

P0 = Q×Q and R0 = {1}2 ∪ {2}2 ∪ {3, 4}2 .
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As neither state 3 nor state 4 appear on a left-hand side of any transition, they will not be
separated. The algorithm thus terminates and outputs (M/R0) after a second iteration, during
which P0 was refined to coincide with R0. 2

Partial correctness and termination after t < |Q| iterations of Alg. 5 are proved analogously
to the case of backward bisimulation. For this reason we omit the explicit proofs (which can be
found in [18]) and proceed immediately to the main result of this section.
Theorem 4.11 Rt is the coarsest forward bisimulation on M .

The time complexity of the forward bisimulation algorithm is computed using the same assump-
tions and notations as in Sect. 3. Although the computations are quite similar, they differ in that
when the backward algorithm would examine every transition in δ of the form f(q1, . . . , qk)→ q,
where qj ∈ Bi for some j ∈ [1, k], the forward algorithm considers only those transitions that are
of the form f(q1, . . . , qk)→ q, where q ∈ Bi. Since the latter set is on average a factor r smaller,
we are able to obtain a proportional speed-up of the algorithm.
Theorem 4.12 Algorithm 5 runs in time O(rm log n).

5. Implementation

In this section, we present experimental results obtained by applying prototype implemen-
tations of Algorithms 3 and 5 to the problem of language modeling in the natural language
processing domain [19]. A language model is a formalism for determining whether a given sen-
tence is in a particular language. Language models are particularly useful in many applications
of natural language and speech processing such as translation, transliteration, speech recogni-
tion, character recognition, etc., where transformation system output must be verified to be an
appropriate sentence in the domain language. Recent research in natural language processing
has focused on using tree-based models to capture syntactic dependencies in applications such
as machine translation [20,21]. Thus, the problem is elevated to determining whether a given
syntactic tree is in a language. Language models are naturally representable as finite-state au-
tomata. For efficiency and data sparsity reasons, whole sentences are not typically stored, but
rather a sliding window of partial sentences is verified. In the string domain this is known as
n-gram language modeling. We instead model n-subtrees, fixed-size pieces of a syntactic tree.

We prepared a data set by collecting 3-subtrees (i.e., all subtrees of height 3) from sentences
taken from the Penn Treebank corpus of syntactically bracketed English news text [22]. An
initial fta was constructed by representing each 3-subtree in a single path. We then wrote an
implementation of the forward and backward minimization algorithms in Perl and applied them
to data sets of various sizes of 3-subtrees. To illustrate that the two algorithms perform different
minimizations, we then ran the forward algorithm on the result from the backward algorithm,
and vice-versa. As Tables 1 and 2 show, the combination of both algorithms reduces the automata
nicely, to less than half the size (in the sum of rules and states) of the original.

Tables 1 and 2 also include the state and rule count of the same automata after minimization
with respect to AKH-bisimulation [6]. As these figures testify, the conditions placed on an AKH-
bisimulation are much more restrictive than those met by a backward bisimulation. In fact,
Definition 3.6 is obtained from Definition 3.1 if the two-way implication in Definition 3.1 is
required to hold for every position in a transition rule (i.e. not just the last), while insisting that
the sets of accepting and rejecting states are respected.
Example 5.1 Consider the nfa M0 in Fig. 7 that recognizes the language L = {a, b, c, d, e}2.
The nfa M0 is backward bisimulation minimal, but an application of Alg. 5 yields the nfa M1

with the state set

{{q1, q2}, {q3}, . . . , {q9}, {p0}, {p1}} .
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trees original backward forward akh fwd, bwd bwd, fwd

58 353 252 286 353 185 180

161 953 576 749 953 378 356

231 1373 781 1075 1373 494 468

287 1726 947 1358 1726 595 563

Table 1

State set reduction after minimization.

trees original backward forward akh fwd, bwd bwd, fwd

58 353 252 341 353 240 235

161 953 576 905 953 534 512

231 1373 781 1299 1373 718 691

287 1726 947 1637 1726 874 842

Table 2
Rule set reduction after minimization.
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Fig. 6. The compression rate obtained by applying various kinds of bisimulation minimization. As AKH bisimu-
lation did not affect the size of the input automaton, the corresponding test series is not reported in the figure.

Now, Alg. 3 discovers that states {q1, q2} and {q3} are bisimilar, letting us form the even smaller
automaton M2. This turn-wise application of backward and forward bisimulation minimization
can be continued until an automaton M8 with three states is obtained. As this is the minimal
number of states needed to recognize L, convergence is surely reached. 2
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Fig. 7. The fta that is subject for minimization in Example 5.1.

6. Conclusion

We have introduced a general algorithm for bisimulation minimization of tree automata and
discussed its operation under forward and backward bisimulation. The algorithm has attractive
runtime properties and is useful for applications that desire a compact representation of large
finite-state tree automata. We plan to include a refined implementation of this algorithm in a
future version of the tree automata toolkit Tiburon, which is described in [23].
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[14] P. A. Abdulla, J. Högberg, L. Kaati, Bisimulation minimization of tree automata, International Journal of
Foundations of Computer Science 18 (4) (2007) 699–713.

[15] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[16] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiadó, 1984.
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