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Algorithms for (nondeterministic) finite-state tree automata (FTAs) are often tested on random FTAs,
in which all internal transitions are equiprobable. The run-time results obtained in this manner are
usually overly optimistic as most such generated random FTAs are trivial in the sense that the number
of states of an equivalent minimal deterministic FTA is extremely small. It is demonstrated that
nontrivial random FTAs are obtained only for a narrow band of transition probabilities. Moreover,
an analytic analysis yields a formula to approximate the transition probability that yields the most
complex random FTAs, which should be used in experiments.

1 Introduction

Nondeterministic finite-state tree automata (FTAs) play a major role in several areas of natural lan-
guage processing. For example, the BERKELEY parser [10] uses a (weighted) FTA as do syntax-based
approaches to statistical machine translation. Toolkits [9, 7] for FTAs allow users to easily run experi-
ments. However, algorithms like determinization typically cannot be tested on real-world examples (like
the FTA of the BERKELEY parser) due to their complexity. In such cases, the inputs are often random
FTAs, which are typically created by fixing densities, which are the probabilities that any given poten-
tial transition (of a certain group) is indeed a transition of the generated FTA (see [12] and [8] for the
generation of random finite-state string automata).

It is known [2] that for string automata most random automata are trivial in the sense that the equiv-
alent minimal deterministic finite-state string automaton is extremely small. Here, we observe the same
effect for FTAs, which means that testing algorithms on random FTAs also has to be done carefully to
avoid vastly underestimating their actual run-time. To simplify such experiments and to make them more
representative we provide both empirical and analytic evidence for the nontrivial (difficult) cases. In the
empirical evaluation we create many random FTAs with a given number n of (useful) states using a given
transition density d. We then determinize and minimize them, and we record the number of states of the
resulting canonical FTA (i.e., the equivalent minimal deterministic FTA). As expected, outside a narrow
density band the randomly generated FTAs yield very small canonical FTA, which means that they are in
a sense trivial.1 It can be observed that if the density is above the upper limit of the band, then the FTAs
accept almost everything, whereas FTAs with densities below the lower limit accept almost nothing. This
observation also justifies calling them trivial.

∗Financially supported by the German Research Foundation (DFG) grant MA / 4959 / 1-1.
1Trivial here does not mean that the recognized tree language is uninteresting, but rather it only relates to its complexity.
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12 Random Generation of FTAs

In the analytic evaluation, given a number n of states, we compute densities d(n), for which we expect
the most difficult FTAs. Looking at the empirical results, the formula predicts the narrow density band
belonging to complex random FTAs very well. Consequently, we promote experiments with random
FTAs that use exactly these predicted densities in order to avoid experiments with (only) trivial FTAs.
Finally, we discuss how parameter changes affect our results. For example, adding another binary input
symbol does not move the interesting narrow density band, but it generally does increase the sizes of
the obtained canonical FTA. Moreover, it shows that whenever we obtain large deterministic FTA after
determinization (i.e., before minimization), then the corresponding canonical FTA are also large (i.e.,
after minimization). This demonstrates that our implementation of determinization is rather efficient.

2 Finite tree automata

The power set of a set S is P(S) = {S′ | S′ ⊆ S}. The set of nonnegative integers is denoted by N. An
alphabet is simply a finite set of symbols. A ranked alphabet (Σ, rk) consists of an alphabet Σ and a map-
ping rk : Σ→N, which assigns a rank to each symbol. For every k ∈N, we let Σk = {σ ∈ Σ | rk(σ) = k}
be the set of symbols of rank k. We also write σ (k) to indicate that the symbol σ has rank rk(σ) = k. To
keep the presentation simple, we typically write just Σ for the ranked alphabet (Σ, rk) and assume that
the ranking ‘rk’ is clear from the context. Moreover, we often drop obvious universal quantifications like
‘k ∈ N’ in expressions like ‘for all k ∈ N and σ ∈ Σk’. Our trees have node labels taken from a ranked
alphabet Σ and leaves can also be labeled by elements of a finite set Q. The rank of a symbol σ ∈ Σ

determines the number of direct children of all nodes labeled σ . Given a set T , we write Σ(T ) for the set
{σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}. The set TΣ(Q) of Σ-trees indexed by Q is defined as the smallest
set T such that Σ(T )∪Q⊆ T . We write TΣ for TΣ( /0).

Next, we recall finite-state tree automata [4, 5] and the required standard constructions. In general,
finite-state tree automata (FTAs) offer an efficient representation of the regular tree languages. We dis-
tinguish a (bottom-up) deterministic variant called deterministic FTA, which will be used in our size
measurements. A finite-state tree automaton (FTA) is a system (Q,Σ,F,P), where (i) Q is a finite set of
states, (ii) Σ is a ranked alphabet of input symbols, (iii) F ⊆Q is a set of final states, and (iv) P⊆Σ(Q)×Q
is a finite set of transitions. It is deterministic if for every t ∈Σ(Q) there exists at most one q∈Q such that
(t,q) ∈ P. We often write a transition (t,q) ∈ Σ(Q)×Q as t → q. The size of the FTA M = (Q,Σ,F,P)
is |M|= |Q|. This is arguably a crude measure for the ‘size’, but it will mostly be used for deterministic
FTAs, where it is commonly used.

Example 1. As illustration we consider the FTA Mex = ({0,1,2,3},Σ,{3},P), where Σ = {σ (2),α(0)}
and P contains the following transitions. Clearly, this FTA is not deterministic.

α → 0 α → 2 σ(0,0)→ 1 σ(1,0)→ 1 σ(1,2)→ 3 σ(1,3)→ 3

In the following, let M = (Q,Σ,F,P) be an FTA. For every σ ∈ Σk, let σ : P(Q)k →P(Q) be
such that σ(Q1, . . . ,Qk) = {q ∈Q | ∀1≤ i≤ k, ∃qi ∈Qi : σ(q1, . . . ,qk)→ q ∈ P} for all Q1, . . . ,Qk ⊆Q.
Next, we define the action of the transitions on a tree t ∈ TΣ(Q). Let P : TΣ(Q)→P(Q) be such that
P(q) = {q} for every q∈Q and P(σ(t1, . . . , tk)) = σ(P(t1), . . . ,P(tk)) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ.
The FTA M accepts the tree language L(M), which is given by L(M) = {t ∈ TΣ | P(t)∩F 6= /0}. Two
FTAs M1 and M2 are equivalent if L(M1) = L(M2). For example, for the FTA of Example 1 we have
P(α) = {0,2} and P(σ(α,α)) = {1}. Moreover, σ(σ(σ(α,α),α),α) ∈ L(Mex). For our experiments,
we generate a random FTA, then determinize it and compute the number of states of the canonical
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FTA, which the equivalent minimal deterministic FTA. For an FTA M = (Q,Σ,F,P), we construct the
deterministic FTA P(M) = (P(Q),Σ,F ′,P′) such that F ′ = {Q′ ⊆ Q | Q′∩F 6= /0} and

P′ = {σ(Q1, . . . ,Qk)→ σ(Q1, . . . ,Qk) | σ ∈ Σk,Q1, . . . ,Qk ⊆ Q} .

Theorem 2 (see [3, Theorem 1.10]). P(M) is a deterministic FTA that is equivalent to M.

Example 3. For the FTA Mex of Example 1 an equivalent deterministic FTA is P(Mex), which is given
by P(Mex) = (P(Q),Σ,F ′,P′) with F ′ = {3,13,23,123} and P′ contains the (non-trivial) transitions2

α → 02 σ(02,02)→ 1 σ(1,02)→ 13 σ(13,02)→ 13 σ(1,13)→ 3 σ(1,3)→ 3 .

A deterministic FTA is minimal if there is no strictly smaller equivalent deterministic FTA. For
example, the deterministic FTA in Example 3 is minimal. It is known [1] that for every deterministic
FTA we can compute an equivalent minimal deterministic FTA, called the canonical FTA.

3 Random generation of FTAs

First, we describe how we generate random FTAs.3 We closely follow the random generation outlined
in [12], augmented by density parameters d2 and d0, which is similar to the setup of [8]. Both meth-
ods [12, 8] are discussed in [2], where they are applied to finite-state string automata [11]. For an
event E, let π(E) be the probability of E. To keep the presentation simple, we assume that the ranked
alphabet Σ of input symbols is binary (i.e., Σ = Σ2∪Σ0).4 Note that all regular tree languages [4, 5] can
be encoded using a binary ranked alphabet. In order to randomly generate an FTA M = (Q,Σ,F,P) with
n = |Q| states and binary and nullary transition densities d2 and d0, each transition (incl. the target state)
is a random variable and each state is a random variable representing whether it is final or not. More
precisely, we use the following approach:
• Q = {1, . . . ,n},
• π(q ∈ F) = 1

2 for all q ∈ Q (i.e., for each state q the probability that it is final is 1
2 ),

• π(α → q ∈ P) = d0 for all nullary α ∈ Σ0 and q ∈ Q, and
• π(σ(q1,q2)→ q ∈ P) = d2 for all binary symbols σ ∈ Σ2 and all states q1,q2,q ∈ Q.

If the such created FTA is not trim5, then we start over and generate a new FTA. Thus, all our randomly
generated FTAs indeed have n useful states.

4 Analytic analysis

In this section, we present a short analytic analysis and compute densities, for which we expect the
randomly generated FTAs to be non-trivial. More precisely, we estimate for which densities the de-
terminization (and subsequent minimization) returns the largest canonical FTAs. It is known from the

2We abbreviate sets like {0,2} to just 02.
3These FTAs shall serve as test inputs for algorithms that operate on FTAs such as determinization, bisimulation mini-

mization, etc. Naturally, the size of an equivalent minimal FTA would be an obvious complexity measure for them, but it is
PSPACE-complete to determine it, and the size of the canonical FTA is naturally always bigger, so trivial FTAs according to
our measure are also trivial under the minimal FTA size measure.

4Our approach can easily be adjusted to accommodate non-binary ranked alphabets. We can imagine a model in which only
one density d governs all transitions, but this model requires a slightly more difficult analytic analysis.

5The FTA M is trim if for every q ∈ Q there exist t ∈ TΣ and t ′ ∈ TΣ({q})\TΣ such that (i) q ∈ P(t) and (ii) P(t ′)∩F 6= /0.
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n d2 d′2 conf. interval n d2 d′2 conf. interval
2 .6364 .6264 [.5769,.6804] 8 .0431 .0408 [.0317,.0526]
3 .2965 .2570 [.2091,.3159] 9 .0341 .0342 [.0272,.0430]
4 .1696 .1334 [.1024,.1737] 10 .0276 .0282 [.0231,.0343]
5 .1094 .0855 [.0642,.1138] 11 .0228 .0251 [.0208,.0303]
6 .0763 .0635 [.0475,.0848] 12 .0192 .0212 [.0182,.0248]
7 .0562 .0501 [.0380,.0662] 13 .0164 .0189 [.0162,.0219]

Table 1: Expected density d2 (see Theorem 4) and observed density d′2 (see Section 5) for the most
complex FTAs in Setting (A). We also report confidence intervals for the confidence level p > .95.

generation of random finite-state string automata [2] that the largest deterministic automata are obtained
during determinization if each state q∈Q occurs with probability 1

2 in the transition target of a transition,
in which the source states are selected uniformly at random. This observation was empirically confirmed
multiple times by independent research groups [8, 12, 2]. In addition, all transition target states are
equiprobable for input states that are drawn uniformly at random. This latter observation supports the
optimality claim by arguments from information theory because if all target states of a transition are
equiprobable, then the entropy of the transition is maximal. While these facts support our hypothesis
(and subsequent conclusions), we also rely on an empirical evaluation in Section 5 to validate it.

The determinization (see Section 2) constructs the state set P(Q). Let P(M) = (P(Q),Σ,F ′,P′) be
the deterministic FTA given the random FTA M with n= |Q|.6 According to our intuition, the probability
that a state Q′ ∈P(Q) is the transition target of a given transition σ(Q1,Q2), where Q1 and Q2 are
uniformly selected at random from P(Q), should be 2−n [i.e., π(σ(Q1,Q2)→Q′ ∈ P′) = 2−n]. Thus, in
particular, each given state q∈Q is in the (real) successor state Q′′ of the given transition σ(Q1,Q2) with
probability 1

2 [i.e., π(q ∈ Q′′) = 1
2 ]. Given σ ∈ Σ2 and q ∈ Q, let πσ ,q = π(q ∈ Q′′), where Q1 and Q2

are uniformly selected at random from P(Q) and Q′′ = σ(Q1,Q2). Similarly, given α ∈ Σ0 and q ∈ Q,
let πα,q = π(q ∈ α). It is easily seen that πσ ,q = πσ ′,q′ for all σ ,σ ′ ∈ Σ2 and q,q′ ∈ Q because in our
generation model all σ -transitions in M with σ ∈ Σ2 are equiprobable.7 Thus, we simply write π2 instead
of πσ ,q. The same property holds for nullary symbols, so we henceforth write π0 for πα,q. Moreover, as
in the previous section, let n be the number of states of the original random FTA, and let d2 and d0 be the
transition densities of it. For n = 1 the presented intuition cannot be met.

Theorem 4. Let n > 1. If d2 = 4(1− n2√
.5) and d0 =

1
2 , then π2 = π0 =

1
2 .

Proof. We start with π0. Let α ∈ Σ0 and q ∈ Q. Then π(q ∈ α) = π(α → q ∈ P) = d0 =
1
2 as required.

For π2 let Q1,Q2 ∈P(Q) be selected uniformly at random, σ ∈ Σ2, and q ∈ Q. Then

π(q ∈ σ(Q1,Q2)) = 1−π(q /∈ σ(Q1,Q2))

= 1− ∏
q1,q2∈Q

(
1−π(q1 ∈ Q1) ·π(q2 ∈ Q2) ·π(σ(q1,q2)→ q ∈ P)

)
= 1−

(
1− d2

4
)n2

= 1−
(
1−1+ n2√

.5
)n2

= 1− (
n2√
.5)n2

=
1
2

.

Table 1 lists some values d2 computed according to Theorem 4 for the sizes n ∈ {2, . . . ,13}.
6Note that the transitions of this DTA are random variables distributed according to the determinization construction of

Section 2 applied to M.
7Note that the individual σ -transitions of P(M) are not equiprobable. For example, the transition σ( /0, /0)→Q is impossible.
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Figure 1: Graphs plotting the mean size of the determinized FTAs obtained by determinization over the
density for FTAs of size 8 and 12. Minimization reduces the mean size, but does not move the peak.

5 Empirical analysis

In this section, we want to confirm that the computed densities indeed represent the most difficult in-
stances for the random FTAs constructed in Section 3. We use two settings:

(A) Σ = {α(0),σ (2)} and
(B) Σ = {α(0),σ (2),δ (2)}.

For both settings (A) and (B) and varying densities d2 = e
x·logDn

20 and d0 =
1
2 , where Dn = 4(1− n2√

.5),
for all 0 ≤ x ≤ 40 and sizes 2 ≤ n ≤ 13, we generated at least 40 trim FTAs. The ratio of trim FTAs
for various densities and state set sizes can be found in Table 2. Generally, larger state sets and higher
densities increase the chance of obtaining a trim FTA. The choice of densities we made ensures that
sufficiently many data points (in equally-spaced steps on a logarithmic scale) will exist on both sides of
the density that is predicted to generate the most difficult instances. We will discuss why we favored the
logarithmic scale over a linear scale in the next paragraph. These FTAs were subsequently determinized,
minimized, and the sizes of the canonical FTAs were recorded. These operations were performed inside
our new tree automata toolkit TALIB8.

Our experiments confirm the theoretical predictions. A peak in the mean size of the determinized
FTAs can be observed where it is predicted. Exemplary graphs for setting (A) and n ∈ {8,12} are
presented in Figure 1 on a logarithmic scale. Since these graphs appear to be log-normal distributions9,
we computed the mean and the variance of these log-normal distributions, interpreting the density as the
random variable and the number of states as the frequency. The relevant statistics are reported in Table 1
for setting (A). All predicted densities are in the confidence interval for the confidence level p > .95
(that is, the predicted density is within 1.96 ·σ distance of the observed mean, where σ is the standard
deviation).

It is worth noting that the location of the peak does not change between settings (A) and (B). This
means that the size of the alphabet of binary symbols does not influence the hardness of the problem; the
only difference is the size of the resulting determinized FTAs, which is generally larger in setting (B).
Also, minimization does not change the location of the peak, which means that hard instances for de-

8Additional information about TALIB is available at http://www.ims.uni-stuttgart.de/forschung/ressourcen/
werkzeuge/talib.en.html.

9A log-normal distribution is a distribution of a random variable whose logarithm is normally distributed. A log-normal
distribution usually arises as the product of independent normal distributions. We leave the question of how exactly this
distribution can be derived for further research.

http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/talib.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/talib.en.html
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d2 \n 2 4 6 7 8 9 10 11 12 13
.01 7% 11% 18% 27% 38% 50% 64%
.05 68% 82% 92% 98% 99% 100% 100% 100%
.10 54% 90% 96% 99% 99% 100% 100% 100% 100%
.25 83% 97% 98% 99% 100% 100% 100% 100% 100%
.50 47% 88% 96% 98% 100% 100% 100% 100% 100% 100%

Table 2: Ratio of trim FTAs in a set of randomly generated FTAs parameterized by density d2 (rows) and
number n of states (columns). Blank entries indicate that no such experiment was performed.

terminization are also hard instances for minimization. In addition, we also performed experiments
that confirmed the similar result of [2] for finite-state string automata using the string automata toolkit
FSM<2.0> of [6].
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