
MAT Learners for Tree Series – an Abstract
Data Type and Two Realizations

Frank Drewes1, Johanna Högberg1, and Andreas Maletti2,?

1 Department of Computing Science, Ume̊a University
S–901 87 Ume̊a, Sweden, {drewes,johanna}@cs.umu.se

2 Universitat Rovira i Virgili, Departament de Filologies Romàniques
Av. Catalunya 35, 43002 Tarragona, Spain, andreas.maletti@urv.cat

Abstract. We propose abstract observation tables, an abstract data
type for learning deterministic weighted tree automata in Angluin’s min-
imal adequate teacher model. Besides the “classical” observation table,
we show that abstract observation tables can also be implemented by
observation trees. The advantage of the latter is that they often require
fewer queries to the teacher.

UMINF 09.22 Copyright c© 2009 ISSN 0348-0542

1 Introduction

We study the problem of learning deterministic weighted (bottom-up) tree au-
tomata (dwta) [5, 7] over a semifield S. A weighted tree automaton computes a
recognizable tree series [4], i.e., a function that maps trees to values in S. This is
accomplished by assigning a weight in S to every transition. The weight of a com-
putation (also called a run) is the product of all its transitions, multiplied with
an additional final weight that is associated with the final state reached. Finally,
the weight of a tree is the sum of the weights of all its runs. In other words, the
addition of the semifield is used to handle nondeterminism. Ordinary bottom-up
tree automata correspond to the special case obtained by choosing the Boolean
semifield as S. We recommend [14] for an introduction to recognizable tree series.

As mentioned above, this article is devoted to the problem of algorithmically
learning dwta, also called grammatical inference. The general setting considered
in grammatical inference is characterized by a series ψ (or, in the traditional
case, a language) for which, a priori, no explicit representation is available. The
learning algorithm (henceforth called the learner) only has access to some re-
stricted information. Its goal is to derive, from this information, an automaton
computing ψ.

There exist various learning models that make this general picture more pre-
cise. Most of them fall into one of the following categories: Gold’s learning from
examples with identification in the limit [16], Valiant’s probably approximately

? Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760.

1

correct (PAC) learning [23], and Angluin’s query learning [2]. In this article, we
focus on the most prominent type of query learning, proposed in [1], in which
the learner has access to an oracle called minimal adequate teacher (MAT).
Angluin’s original model was designed for learning ordinary deterministic finite
automata (dfa). Its first generalization to bottom-up tree automata was proposed
by Sakakibara in [21] and later improved in [12].

In the weighted case, if ψ is the target tree series, then a MAT is an oracle
able to answer two types of queries. A coefficient query passes a tree t to the
MAT and receives ψ(t) as the answer. An equivalence query passes a dwta A, the
hypothesis, to the MAT. If A computes ψ, a special token is returned. Otherwise,
the answer is a counterexample, i.e., a tree t such that A(t) 6= ψ(t). One of the
first extensions of the MAT learner for dfa to stochastic automata appears in [9].
This algorithm is extended in [20] to certain cancellative semirings [15], which
makes the algorithm applicable to string transducers. The first extension to
dwta is found in [13]. This learner generalizes the learner in [12] from bottom-up
tree automata to ‘all-accepting’ dwta, and was in turn extended to general dwta
in [19]. In both cases, the weight structure is a semifield (i.e., a semiring, in which
multiplicative inverses exist). All those algorithms learn deterministic devices.
In [17], the first MAT learner for nondeterministic weighted tree automata over
fields was presented. An overview of MAT learners for weighted and unweighted
tree automata can be found in [10].

Typically, MAT learnability results are based on Myhill-Nerode-like char-
acterizations of recognizability. In essence, the learner learns (representatives of)
equivalence classes, which it refines in the light of the counterexamples provided
by the teacher. This process terminates when the equivalence has converged to
the Myhill-Nerode equivalence. The learners in [12, 13, 19] are all very simi-
lar. Following Angluin’s original approach, they maintain an observation table,
whose rows are indexed by trees representing the states and transitions of an
automaton. The columns are indexed by contexts (trees with a “hole”) whose
purpose is to separate the discovered equivalence classes from each other. From
the table, the learner repeatedly constructs a dwta consistent with the informa-
tion in the table and asks an equivalence query. If the MAT accepts the dwta,
then the learning process has converged. Otherwise, the counterexample received
is inspected by a technique known as contradiction backtracking [22]. This will
either reveal a tree not yet in the table, that represents a new transition, or a
context that separates previously equivalent trees in the table, thus making the
learner discover a new state.

In [18, Chapter 8], Kearns and Vazirani give a rough description of Angluin’s
original learner (for regular string languages), in which the observation table
has been replaced by a tree-like data structure. As we shall see in Section 5, a
generalized version of these observation trees can be used even in the case of
dwta, thus yielding an alternative version of the learner in [19]. In Section 6,
we shall see that this learner often asks fewer coefficient queries, and is thus
supposed to have advantages in practical applications.

2

Looking at all these different but closely related learners and their correct-
ness proofs, one cannot but realize that the same algorithms and arguments are
repeated over and over again, with only slight differences. Thus, rather than
cloning [19] to come up with a version using observation trees, we propose an
abstract data type called abstract observation table (aot), in Section 3 of this
paper. To obtain a concrete realization, one needs to implement an interface
consisting of a few abstract routines that have to satisfy certain conditions. The
learning algorithm itself is hidden within the aot, and its correctness is estab-
lished once and for all (depending on the correct implementation of the interface,
of course). In this way, the common parts of the correctness proofs of different
realizations of the learner are encapsulated. What remains to be considered in
each individual case is what is specific to the particular realization at hand.

We provide two such realizations. Firstly, the learner in [19] can easily be seen
to be an instance of the aot. Secondly, in Section 5, we develop the one based
on observation trees and give a correctness proof (which becomes easy thanks
to the results of Section 3). As mentioned above, we expect observation trees to
have the advantage of requiring fewer coefficient queries than observation tables,
even though the theoretical best and worst cases coincide. To confirm this, we
have implemented both learners and have conducted a set of experiments whose
results are reported in Section 6. Finally, we show in Section 6 how to optimize
the equivalence test derived from [6, Corollary 5.6] to run in linear time in
the product of the number of transitions of the two dwta. The straightforward
algorithm derived from [6, Corollary 5.6] runs in linear time in the product of
the size of the transition tables, which could be exponentionally larger than the
number of actual transitions.

In summary, the structure of this paper is the following. In the next sec-
tion, the necessary preliminaries around trees, tree series, and MAT learning are
gathered. In Section 3, we present the aot and prove its correctness. This is the
first major contribution of this paper. In Section 4, we show briefly that the
learner in [19] is an instance of the aot. Section 5 introduces the instance based
on observation trees. Together with Section 6, which confirms that observation
trees often use fewer coefficient queries than observation tables, this is the second
major contribution of the paper. In addition, Section 6 presents the algorithm
for deciding the equivalence of dwta over semifields that we have used in our
experiments for the purpose of implementing the teacher. This represents the
final major contribution.

2 Preliminaries

The set of natural numbers (including 0) is denoted by N. For every k ∈ N the set
{1, . . . , k} is denoted by [k]. For a set S, the set of all finite sequences (or strings)
over S, including the empty sequence ε, is denoted by S∗. The cardinality of S
and the length of w ∈ S∗ are denoted by |S| and |w|, respectively.

The index of an equivalence relation≡ on a set A is the number of equivalence
classes induced by ≡, i.e., the cardinality of the quotient set A/≡.

3

Given a function f : A→ B and pairs (a1, b1), . . . , (an, bn), where the ai are
pairwise distinct, we let f〈a1 := b1, . . . , an := bn〉 denote the function g : A′ → B′

with A′ = A ∪ {a1, . . . , an} and B′ = B ∪ {b1, . . . , bn} such that g(ai) = bi
for i ∈ [n], and g(a) = f(a) for all a ∈ A \ {a1, . . . , an}. If f is a func-
tion with empty domain, then we also write 〈a1 := b1, . . . , an := bn〉 instead of
f〈a1 := b1, . . . , an := bn〉.

A (commutative) semiring S = (S,+, ·, 0, 1) consists of a set S together with
binary addition and multiplication operations + and ·, respectively, as well as
distinct elements 0, 1 ∈ S such that (i) (S,+, 0) and (S, ·, 1) are commutative
monoids, (ii) multiplication distributes over addition, and (iii) 0 is absorbing
with respect to multiplication. The product a1 · . . . ·ak of finitely many elements
a1, . . . , ak ∈ S is denoted by

∏k
i=1 ai or equivalently

∏
i∈[k] ai (note that the order

is irrelevant since we consider only semirings with commutative multiplication).
We say that S is a semifield if every element a ∈ S \ {0} has a multiplicative
inverse, which is denoted by a−1 (i.e., a · a−1 = 1). Throughout the rest of this
paper, we let S be a semifield, which we simply denote by its domain S. In fact,
since we will only consider deterministic weighted tree automata, we will not
need the addition of S. For sequences α, β ∈ S∗, we write α ∼ β if β is a multiple
of α; i.e., if there exists a ∈ S \ {0} such that a · α = β (where multiplication is
extended to a function on S × S∗ → S∗ in the obvious way). Note that ∼ is an
equivalence relation due to the fact that S has multiplicative inverses.

Alphabets, Trees, and Contexts

A ranked set is a set Σ =
⋃
k∈N Σk of labels (also called symbols) consisting of

(not necessarily disjoint) subsets Σk. The labels in Σk are said to have rank k.
We write f (k) to indicate that f ∈ Σk. The set TΣ of all trees over Σ consists
of all mappings t : N → Σ (called trees) with the following properties:

– The set N of nodes of t is a finite and non-empty prefix-closed subset of N∗.
Thus, for every vw ∈ N with v, w ∈ N∗, it holds that v ∈ N .

– For all v ∈ N , there is k ∈ N such that t(v) ∈ Σk and {i ∈ N | vi ∈ N} = [k].

For a tree t : N → Σ, we also write nodes(t) for N . The height of t is de-
noted by hg(t), i.e., hg(t) = max{|v| | v ∈ nodes(t)}. Given a tree t and a
node v ∈ nodes(t), the subtree of t rooted at v is denoted by t/v. It is de-
fined by nodes(t/v) = {w ∈ N∗ | vw ∈ nodes(t)} and (t/v)(w) = t(vw) for all
w ∈ nodes(t/v). The set leaves(t) of all leaves of t is the set

leaves(t) = {v ∈ nodes(t) | vi /∈ N for all i ∈ N} .

We shall denote a tree t as f [t1, . . . , tk] if t(ε) = f , N ∩N = [k], and t/i = ti
for all i ∈ [k]. In the special case where k = 0 (i.e., nodes(t) = {ε}), the brackets
may be omitted, thus denoting t as f . For a set T of trees, the set of all trees of
the form f [t1, . . . , tk] such that f ∈ Σk and t1, . . . , tk ∈ T is denoted by Σ(T).

We will frequently decompose a tree into a context and a subtree. For this
purpose, let us reserve the special symbol 2 of rank 0 (and no other rank) that

4

does not occur in Σ. A tree c ∈ TΣ∪{2} in which 2 occurs exactly once is
called a context (over Σ). The set of all contexts over Σ is denoted by CΣ .
Given a context c ∈ CΣ and a tree t, we denote by ct the concatenation of
c and t at 2, which is obtained by substituting t for the unique leaf labelled 2

in c. More precisely, if v ∈ nodes(c) is the unique node such that c(v) = 2,
then nodes(ct) = nodes(c) ∪ {vw | w ∈ nodes(t)} with ct(w) = c(w) for all
w ∈ nodes(c) \ {v}, and ct/v = t.

For every k ∈ N, t, t1, . . . , tk ∈ TΣ , and v1, . . . , vk ∈ nodes(t) such that vi is
not a prefix of vj for any i, j ∈ [k], we denote by t[v1 ← t1, . . . , vk ← tk] the tree
obtained by replacing t/vi by ti for every i ∈ [k].

Tree Series and Weighted Tree Automata

A tree series over S is a mapping ψ : TΣ → S. Its support is

supp(ψ) = {t ∈ TΣ | ψ(t) 6= 0} .

A tree t ∈ TΣ is called live if there exists c ∈ CΣ such that ct ∈ supp(ψ). Such
a context c is also called a sign of life for t.

We now recall the definition of deterministic weighted (bottom-up finite-
state) tree automata [4, 5, 7] (dwta, for short) over S. Such a dwta is a tuple
A = (Σ,Q, δ, λ) where

– Σ is the finite input ranked set,
– Q is the finite set of states, considered as symbols of exclusive rank 0,
– δ : Σ(Q)→ Q× (S \ {0}) is the partial transition function, and
– λ : Q→ S is the final weight mapping.

Intuitively, δ(f [q1, . . . , qk]) = (q, a) determines the behaviour of the dwta in the
situation, in which it processes an occurrence of the symbol f of rank k and
the k subtrees t1, . . . , tk of f have already been processed in states q1, . . . , qk,
respectively. Then the dwta continues in state q and charges the weight a.

The transition function δ extends to trees in a straightforward way, which
yields the partial function δ̂ : TΣ(Q)→ Q× (S \ {0}) such that δ̂(q) = (q, 1) for
every q ∈ Q and, for every f [t1, . . . , tk] with f ∈ Σk and t1, . . . , tk ∈ TΣ(Q):

– If δ̂(ti) = (qi, ai) for every i ∈ [k] and δ(f [q1, . . . , qk]) = (q, a) are all defined,
then δ̂(f [t1, . . . , tk]) = (q, a ·

∏k
i=1 ai).

– Otherwise, δ̂(f [t1, . . . , tk]) is undefined.

The tree series computed by A is given as follows. For all t ∈ TΣ , if δ̂(t) = (q, a),
then A(t) = a · λ(q). Otherwise, A(t) = 0.

Every dwta can be made total without affecting the tree series computed,
where a dwta A is total if δ is a total function. This is achieved by adding a non-
final (i.e., final weight 0) sink state that is the target of all missing transitions
(using, for example, weight 1).

5

Throughout the remainder of this paper, let Σ be a finite ranked set,
ψ : TΣ → S be a tree series, and S = (S,+, ·, 0, 1) be a commutative
semifield.

Let s, t ∈ TΣ . For C ⊆ CΣ , we write s ≡C t if there exists a ∈ S \ {0} such
that ψ(cs) = a · ψ(ct) for every c ∈ C. Note that ≡C is an equivalence relation
on TΣ . The relation ≡CΣ is simply denoted by ≡.

Theorem 1 (see [5, Theorems 2 and 3]). The tree series ψ can be computed
by some dwta if and only if ≡ has finite index. Moreover, any dwta computing ψ
has at least |L/≡| states where L = {t ∈ TΣ | t live}.

An easy but important observation for the learning algorithms considered
in this paper concerns the question how one can establish that t 6≡ t′ for trees
t, t′ ∈ TΣ having a common sign of life c. Let ψ(ct′) = a · ψ(ct). By definition,
t ≡ t′ is equivalent to saying that ψ(c′t′) = a · ψ(c′t) for all c′ ∈ CΣ . In other
words, we have the following lemma, that we will usually make use of without
explicitly mentioning this fact.

Lemma 2. Let t, t′ ∈ TΣ have a common sign of life c. Then t ≡ t′ if and only
if, for all c′ ∈ CΣ,

ψ(c′t)
ψ(ct)

=
ψ(c′t′)
ψ(ct′)

.

The Minimal Adequate Teacher

In the following, we will consider grammatical inference of ψ. The aim is to build
a dwta computing ψ (if such a dwta exists) using an appropriately extended ver-
sion of Angluin’s minimal adequate teacher (MAT) as the source of information
about ψ (cf. [1, 2, 3]).

A learning algorithm that infers a dwta computing ψ will henceforth be called
a learner. Such a learner may ask coefficient and equivalence queries to the MAT
(and the MAT will answer them correctly):

Coefficient: Given a tree t ∈ TΣ (provided by the learner), what is ψ(t)?
Equivalence: Given a dwta A (provided by the learner), does A compute ψ?

If so, the teacher returns the token ⊥ indicating that A = ψ. Otherwise, a
counterexample is returned; i.e., a tree t ∈ TΣ such that A(t) 6= ψ(t).

The algorithms presented in this paper are all supposed to have access to
a MAT. In particular, this implies that these algorithms can obtain ψ(t) for
t ∈ TΣ by asking a coefficient query. Thus, the reader should bear in mind
that every mention of ψ(t) in our algorithms indicates that a coefficient query is
asked (unless ψ(t) has already been asked for earlier, in which case a reasonable
implementation would have memorized the value).

6

3 An abstract data type for MAT learners

In this section, we will develop an abstract data type specification, called abstract
observation table, for MAT learners [1, 2, 3]. The commonly used ‘observation
table’ [1, 11, 12, 13, 19] will be an instance of this specification, but in the next
section we will present another data type, called observation tree, that avoids (in
our experiments) some of the coefficient queries typically asked when the learner
fills the observation table.

In essence, our abstract data type manages the two sets, S and T , which are
the states and the transitions of the deterministic weighted tree automaton that
we construct. Moreover, it maintains two mappings, sol : S → CΣ and ρ : T → S,
which assign a sign of life and a representative. To simplify the notation (and
to avoid some parentheses), we write tρ instead of ρ(t) for every t ∈ T . Let
us present a mathematical definition of the universal invariant of an abstract
observation table.

Definition 3 (cf. [19, Definition 8]). Let S ⊆ T ⊆ Σ(S) be finite subsets
of TΣ, sol : S → CΣ, and ρ : T → S. Then (S, T, sol, ρ) is an abstract observa-
tion table if

1. sol(tρ) = 2 for every t ∈ T ∩ supp(ψ) (trivial sign of life for support)
2. sol(tρ)t ∈ supp(ψ) for every t ∈ T (sol(tρ) witnesses that t is live)
3. t 6≡ s for every t ∈ T and s ∈ S \ {tρ} (t distinct from other states)

In the following, we will abbreviate sol(tρ) by sol(t) (for t ∈ TΣ) whenever
appropriate. Thus, with this convention in mind, the first condition becomes
sol(t) = 2 for every t ∈ T ∩ supp(ψ), and the second becomes sol(t)t ∈ supp(ψ)
for every t ∈ T .

Note that the third condition yields sρ = s for every s ∈ S because triv-
ially s ≡ s. In addition, this implies that s1 6≡ s2 for all distinct s1, s2 ∈ S.
Finally, for every t ∈ T , t ∈ supp(ψ) if and only if tρ ∈ supp(ψ), which can be
seen as follows. If t ∈ supp(ψ) or tρ ∈ supp(ψ), then sol(t) = 2 by the first
condition and thus t ∈ supp(ψ) and tρ ∈ supp(ψ) by the second condition.

Conceptually, we note that all known variants of Angluin’s original algorithm
(at least those we are aware of) maintain a set of contexts for the purpose of
distinguishing between the equivalence classes of trees in T . In our abstract ver-
sion, the only contexts that are explicitly required to be maintained are the signs
of life for the trees in T . Thus, it might, in principle, be possible to implement
abstract observation tables without managing additional contexts. The difficulty
is, of course, to make sure that the third condition is satisfied, because this is
usually what separating contexts are used for (cf. the definition of ≡).

In the following, we will use the following interface to manipulate an abstract
observation table. To simplify the description of the semantic properties, let
(S, T, sol, ρ) and (S′, T ′, sol′, ρ′) be the abstract observation table before and
after execution, respectively.

7

– initialize (constructor)
• Post-condition: S′ = T ′ = ∅

– addTransition(t, c) with t ∈ Σ(S) and c ∈ CΣ (add new transition)
• Pre-conditions: t /∈ T and ct ∈ supp(ψ)
• Post-conditions: S ⊆ S′ and T ∪ {t} ⊆ T ′

– addState(t, c) with t ∈ T and c ∈ CΣ (add new state)

• Pre-condition:
ψ(ct)

ψ(sol(t)t)
6= ψ(c(tρ))
ψ(sol(t)(tρ))

• Post-conditions: S ∪ {t} ⊆ S′ and T ⊆ T ′

In the next definition, it is shown how to construct a dwta Aaot from an
abstract observation table (S, T, sol, ρ). The motivation for the pre-conditions of
addTransition and addState is closely related to this definition. As we shall
see, the trees in S will be turned into the states of Aaot, whereas the trees in T
will give rise to its transitions. As a consequence, it will turn out that δ̂(t) is
undefined for trees t ∈ Σ(S)\T . In other words, t is not live with respect to Aaot,
whereas the second part of the precondition states that it, in fact, should be.
Thus, t must be added to T . The pre-condition of addState is motivated by
the fact that Aaot maps t and tρ to the same state (namely tρ), while the pre-
condition expresses that sol(t) and c separate tρ from t (by Lemma 2). Hence,
t should rather be mapped to a new state.

Definition 4 (cf. [5, Definition 4 and p. 9]). Let aot = (S, T, sol, ρ) be an
abstract observation table. Let ψaot : T → S be such that for every t ∈ T

ψaot(t) =
ψ(sol(t)t)
ψ(sol(t)(tρ))

.

We construct the deterministic weighted tree automaton Aaot = (Σ,S, δ, λ) with

– λ(s) = ψ(s) for every s ∈ S,
– δ(t) = (tρ, ψaot(t)) for every t ∈ T , and
– δ(t) is undefined for all t ∈ Σ(S) \ T .

Let us observe some easy properties of the constructed automaton. First,
note that ψaot(s) = 1 for every s ∈ S (as sρ = s). Second, Aaot computes ψ on
all trees of T , which we prove in the next lemma.

Lemma 5 (see [19, Lemma 12]). Let aot = (S, T, sol, ρ) be an abstract ob-
servation table. Then Aaot(t) = ψ(t) for every t ∈ T .

Proof. Let Aaot = (Σ,S, δ, λ). First, we claim that δ̂(t) = (tρ, ψaot(t)) for ev-
ery t ∈ T . Since T ⊆ Σ(S), we have t = f [s1, . . . , sk] for some f ∈ Σk and
s1, . . . , sk ∈ S. By the induction hypothesis, δ̂(si) = (si, 1) because siρ = si and
ψaot(si) = 1 for every i ∈ [k]. Since δ(t) = (tρ, ψaot(t)), we obtain

δ̂(t) =
(
tρ, ψaot(t) ·

k∏
i=1

1
)

= (tρ, ψaot(t)) .

8

Algorithm 1 Learn a minimal deterministic weighted tree automaton for ψ
Post-conditions: returned dwta computes ψ

aot.initialize // initialize data structure
2: loop

t← Equal?(Aaot) // ask equivalence query
4: if t = ⊥ then

return Aaot // return the approved automaton
6: else

aot← Extend(aot, t) // extend the data structure

This proves the claim. Now we can prove the statement as follows.

Aaot(t) = ψaot(t) · λ(tρ) =
ψ(sol(t)t)
ψ(sol(t)(tρ))

· ψ(tρ)

=

ψ(t)
ψ(tρ)

· ψ(tρ) if t ∈ supp(ψ)

0 otherwise

= ψ(t) ,

where the penultimate equality uses the first condition of Definition 3. ut

The principal structure of the MAT learner [11, 12, 13, 19] is shown in Al-
gorithm 1. Note that we only adapted it to work with our abstract observation
table. We start with the initial empty data structure aot and iteratively query
the teacher for counterexamples to our current hypothesis (the current deter-
ministic weighted tree automaton Aaot), which is constructed from the current
abstract observation table (see Definition 4). We update our abstract data struc-
ture with the returned information (using Extend), and if the teacher eventually
approves our dwta, then we simply return it. We say that an algorithm works
correctly if whenever the pre-conditions are met at the beginning of the algo-
rithm, then (i) the algorithm terminates and (ii) the post-conditions hold at the
point of return. For the next statements, we additionally assume that a correct
implementation of our abstract observation table is used.

Theorem 6 (see [19, Theorem 13]). If Extend works correctly (see the pre-
and post-conditions given in Algorithm 2) and ψ can be computed by some dwta,
then Algorithm 1 terminates and returns a minimal dwta computing ψ.

Proof. Suppose that ψ can be computed by some dwta. Then ≡ has finite in-
dex by Theorem 1. Let n = |TΣ/≡|. Clearly, by the third condition in Defini-
tion 3, the set S of an abstract observation table (S, T, sol, ρ) contains at most
n elements. Trivially, Extend is always called with a counterexample, because
the counterexample is provided by the teacher. Since |S| and |T | are uniformly
bounded and each call to Extend increases |S|+ |T |, there can only be finitely
many calls to Extend, which yields that Algorithm 1 terminates. Moreover, the
returned dwta Aaot was approved by the teacher, so Aaot trivially computes ψ.

9

Algorithm 2 Function Extend(t) for aot = (S, T, sol, ρ)
Pre-conditions: t ∈ TΣ with Aaot(t) 6= ψ(t)
Post-conditions: return an abstract observation table aot′ = (S′, T ′, sol′, ρ′) such

that S ⊆ S′ and T ⊆ T ′ and one inclusion is strict

Decompose t into t = cu where c ∈ CΣ and u ∈ Σ(S) \ S
2: if u /∈ T then

return aot.addTransition(u, c) // u not reachable so far; add transition

4: else if
ψ(cu)

ψ(sol(u)u)
6= ψ(c(uρ))

ψ(sol(u)(uρ))
then

return aot.addState(u, c) // add new state u
6: else

return Extend(aot, c(uρ)) // normalize and continue

By the construction of Aaot (see Definition 4), we know that it has at most
n states. Since all states (recall that they are trees) of Aaot are live, this shows
that it is a minimal dwta computing ψ by Theorem 1. ut

Finally, let us discuss the function Extend, which is displayed in Algo-
rithm 2. Given the counterexample, we search for a minimal subtree of it that is
still a counterexample, using a technique called contradiction backtracking [22].
Let aot = (S, T, sol, ρ) be the abstract observation table and t ∈ TΣ be the
counterexample; i.e., a tree t such that Aaot(t) 6= ψ(t). We decompose t into a
context c ∈ CΣ and a tree u that is itself not in S but whose direct subtrees are
all in S. In some sense, this is a minimal subtree that could possibly be offend-
ing, because Aaot computes the correct coefficient on all trees in T by Lemma 5.
Moreover, such a subtree must exist, because t /∈ S (since t is a counterexample).

Now, we distinguish two cases. If u was already seen (i.e., u ∈ T), then
by Lemma 5, Aaot returns ψ(u) if applied to u. Thus an error is made when
processing the context c. To this end, we test whether the context c separates
u and uρ; the latter is the state that represents u. Provided that c does not
distinguish between u and uρ, then we continue our search for an error with the
simplified counterexample c(uρ). In the other cases, either u and uρ could be
separated or u was not seen before. Thus, we either add u as a new state (in the
former case) or as a new transition (in the latter case). Thus the post-condition
of the algorithm is trivially met.

It is clear that the pre-conditions of aot.addState and aot.addTransition
are met as well. It remains to prove that the recursive call of Extend meets
the pre-conditions of Extend. To this end, we need to prove that c(uρ) is also
a counterexample in line 7. This is shown in the next lemma.

Lemma 7 (cf. [19, Lemma 16]). Let aot = (S, T, sol, ρ) be an abstract obser-
vation table, t ∈ T , and c ∈ CΣ such that

ψ(ct)
ψ(sol(t)t)

=
ψ(c(tρ))

ψ(sol(t)(tρ))
. (1)

If Aaot(ct) 6= ψ(ct), then also Aaot(c(tρ)) 6= ψ(c(tρ)).

10

Proof. Let Aaot = (Σ,S, δ, λ). By the claim in the proof of Lemma 5 it follows
that δ̂(t) = (tρ, ψaot(t)) and δ̂(tρ) = (tρ, 1) because t ∈ T . Trivially, the former
yields that δ̂(ct) is defined if and only if δ̂(c(tρ)) is defined. Moreover, if they are
defined, then there exist s ∈ S and a ∈ S \ {0} such that δ̂(ct) = (s, a · ψaot(t))
and δ̂(c(tρ)) = (s, a). Now we distinguish three cases:

– First, let ct /∈ supp(Aaot). Then clearly also c(tρ) /∈ supp(Aaot), because
Aaot(t) = ψ(t) 6= 0. Since ct is a counterexample, we have ct ∈ supp(ψ) and
thus also c(tρ) ∈ supp(ψ) by (1), which proves that Aaot(c(tρ)) 6= ψ(c(tρ)).

– Second, let ct /∈ supp(ψ). Since ct is a counterexample by assumption,
we obtain that ct ∈ supp(Aaot) and thus also c(tρ) ∈ supp(Aaot). More-
over, equation (1) yields that c(tρ) /∈ supp(ψ), which again proves that
Aaot(c(tρ)) 6= ψ(c(tρ)).

– Third, let ct ∈ supp(Aaot)∩ supp(ψ). By the same reasoning as in the previ-
ous cases, this yields that c(tρ) ∈ supp(Aaot) ∩ supp(ψ). By the observation
above,

Aaot(ct) = a · ψaot(t) · λ(s) =
ψ(sol(t)t)
ψ(sol(t)(tρ))

·Aaot(c(tρ))

=
ψ(ct)
ψ(c(tρ))

·Aaot(c(tρ))

by (1). Since all factors are nonzero, we obtain

Aaot(ct)
ψ(ct)

=
Aaot(c(tρ))
ψ(c(tρ))

.

By assumption, the left-hand side is different from 1, which proves that
Aaot(c(tρ)) 6= ψ(c(tρ)). ut

Consequently, the recursive call of Extend is correct. An easy size argument
(counting the subtrees of t that are not in T) can be used to show that the
recursion terminates (see [13, Lemma 5.3]). Thus we obtain the main statement
of this section.

Corollary 8 (of Theorem 6). If ψ can be computed by some dwta, then Al-
gorithm 1 terminates and returns a minimal dwta computing ψ.

4 Observation Tables

Let us briefly present the “classical” implementation of our abstract observation
table: the ‘observation table’. Several similar implementations exist; the one
presented here corresponds to the one in [19].

Definition 9 (see [19, Definition 8]). Let T ⊆ Σ(T) and C ⊇ {2} be finite
subsets of TΣ and CΣ, respectively. An observation table is a (T ×C)-matrix P
with P (t, c) = ψ(ct) for every t ∈ T and c ∈ C such that, for every t ∈ T , there
exists c ∈ C with P (t, c) 6= 0.

Given a set S ⊆ T , the pair (S,P) is an S-observation table, if

11

– S ⊆ Σ(S),
– s1 6≡C s2 for all s1, s2 ∈ S, and (no ≡C-equivalent rows in S)
– for every t ∈ T there exists s ∈ S such that t ≡C s. (no new rows in T)

Note that t ≡C t′ for trees t, t′ ∈ T means that the row indexed by t is
a multiple of the one indexed by t′ (by a nonzero factor). It has essentially
been shown in [12, 13, 19] that every observation table P can be turned into
an S-observation table by choosing an appropriate set S ⊆ T , and that the
operations of our abstract observation table can be implemented with the help
of observation tables. Let us quickly show how this works.

Lemma 10. Observation tables implement abstract observation tables.

Proof. Let (S,P : T ×C → S) be an S-observation table. The abstract observa-
tion table (S, T ′, sol, ρ) represented by (S,P) is given follows:

– T ′ = T ∩Σ(S),
– for every s ∈ S,

sol(s) =

{
2 if s ∈ supp(ψ)
c otherwise, for some c ∈ C such that cs ∈ supp(ψ)

(by Definition 9, such an element exists for every s ∈ S), and
– tρ = s where s ∈ S is such that t ≡C s (by the second and third condition

for S-observation trees s exists and is unique).

To verify the conditions of our abstract observation table, let t ∈ T ′.

1. If t ∈ supp(ψ) then tρ ∈ supp(ψ) because t ≡C tρ. Consequently, sol(t) = 2.
2. By definition, sol(t)(tρ) ∈ supp(ψ). Again t ≡C tρ and since sol(t) ∈ C, we

obtain sol(t)t ∈ supp(ψ).
3. Let s ∈ S \{tρ}. By the definition of ρ and the first condition of Definition 9,
t ≡C tρ and tρ 6≡C s. Since ≡C is an equivalence relation and ≡ ⊆ ≡C (see
remarks below [19, Definition 7]), this yields t 6≡C s and t 6≡ s.

It remains to define initialize, addTransition, and addState. Of course,
initialize returns (∅,Pε), where Pε is the empty matrix (i.e., T = C = ∅). The
function addTransition simply adds t to T and c to C (and extends P by
means of coefficient queries).3 If necessary, it completes S by adding elements
of T ∪ {t} to it until the third condition of Definition 9 is fulfilled. Similarly,
addState adds t to S and c to C, updates P , and completes S. For both
addTransition and addState, it is straightforward to check that the resulting
pair (S′,P ′) is an S′-observation table, and that the abstract observation table
it represents fulfills the post-condition of the respective function. ut

3 In fact, C can be left unchanged if it already contains a sign of life for t.

12

5 Observation Trees

We are now going to show that the abstract data type proposed in the previous
section can alternatively be implemented by an observation tree. For MAT learn-
ing of regular string languages, this idea has roughly been described earlier by
Kearns and Vazirani in [18, Chapter 8]. The expected advantage of observation
trees over observation tables is that they require a smaller number of coefficient
queries to be asked. This is important if we want to make practical use of MAT
learners for recognizable tree series, because such uses normally require an (exact
or approximate) simulation of the teacher, which means that the complexity of
answering coefficient and equivalence queries cannot be neglected.

To understand the idea behind observation trees, it is useful to have a look
at Definition 9 and the proof of Lemma 10. Intuitively, the major purpose of the
matrix P is to be able to guarantee that condition (iii) of Definition 3 holds.
In other words, the collected contexts provide explict evidence that trees t, t′

with tρ 6= t′ρ belong to distinct congruence classes. Suppose that, at some stage
of the algorithm, there are trees t, t′ ∈ T such that tρ = s = t′ρ, but the
teacher provides the learner with a counterexample that, via Extend, reveals a
separating context c. The addition of c to the table divides the set T ′ = ρ−1(s)
into subsets T ′1, . . . , T

′
k with k ≥ 2. The addition of c may also subdivide some

of the other sets ρ−1(s′) with s′ ∈ S \ {s} as a side effect. Although this side
effect is welcomed (because it speeds up convergence), it has the disadvantage
of forcing us to query the teacher for all the coefficients ψ(ct′) with t′ ∈ T . To
avoid the latter, we may organize our data in a tree, where the internal nodes
are contexts and the leaves are the sets in T/ker(ρ).4 In the situation considered
above, when the new context c has been discovered, the leaf T ′ would be replaced
with c[T ′1, . . . , T

′
k]. Then, only the coefficients ψ(ct′) for all t′ ∈ T ′ need to be

asked for.
Formally, let Ω be the infinite ranked set such that Ω0 = fin(TΣ) and

Ωk = CΣ for every k ≥ 1. For a tree τ ∈ TΩ and v ∈ nodes(τ) \ leaves(τ),
we let Cτ (v) denote the set of contexts on the path from the root of τ to v, in-
cluding the latter. In other words, if v1 = ε, . . . , vn = v are the prefixes of v, then
Cτ (v) = {τ(v1), . . . , τ(vn)}. Below, we also use the notation T (τ) to designate
the set

⋃
v∈leaves(τ) τ(v).

Definition 11. A tree τ ∈ TΩ is an observation tree if

1. τ(ε) ∈ {2, ∅},
2. for all v ∈ nodes(τ) \ leaves(τ), if τ/v = c[τ1, . . . , τk], then

T (τ/v)/Cτ (v) = {T (τ1), . . . , T (τk)} , and

3. for all v ∈ leaves(τ) and t ∈ τ(v), Cτ (v) contains a sign of life for t.

Given a set S such that S ⊆ T (τ) ⊆ Σ(S), the pair (S, τ) is an S-observation
tree if τ = ∅ or |τ(v) ∩ S| = 1 for all v ∈ leaves(τ).
4 T/ker(ρ) denotes the quotient of T under the equivalence {(t, t′) ∈ T 2 | tρ = t′ρ}. For

technical convenience, we let T/ker(ρ) = {∅} in the special case where T = ∅.

13

Algorithm 3 Function addTransition(t, c) for an abstract observation ta-
ble (S, T, sol, ρ) represented by (S, τ)
Pre-conditions: t ∈ Σ(S) \ T and c ∈ CΣ with ct ∈ supp(ψ)
Post-conditions: return an S′-observation tree (S′, τ ′) such that S ⊆ S′ and

T ∪ {t} ⊆ T (τ ′), representing an abstract observation table aot′ = (S′, T ′, sol′, ρ′)

v ← nodτ (t)
2: if τ = ∅ then

return ({t},2[c[{t}]]) // aot′ = ({t}, {t}, 〈t := c′〉, 〈t := t〉), c′ ∈ {c,2}
4: else if v ∈ leaves(τ) then

return (S, τ [v ← τ(v) ∪ {t}]) // aot′ = (S, T ∪ {t}, sol, ρ〈t := s〉)
// where S ∩ τ(v) = {s}

6: else
let τ/v = c′[τ1, . . . , τk]

8: if {ψ(dt) | d ∈ Cτ (v)} 6= {0} then
return (S ∪ {t}, τ [v ← c′[τ1, . . . , τk, {t}]]) // sign of life c not needed

// aot′ = (S ∪ {t}, T ∪ {t},
// sol〈t := d〉, ρ〈t := t〉)

10: else
return (S ∪ {t}, τ [v ← c′[τ1, . . . , τk, c[{t}]]]) // aot′ = (S ∪ {t}, T ∪ {t},

// sol〈t := c〉, ρ〈t := t〉)

Let us now see how observation trees can implement abstract observation
tables. For this, let (S, τ) be an S-observation tree. We define the abstract ob-
servation table (S, T, sol, ρ) represented by (S, τ), as follows. The set T is given
by T (τ). By the second condition, for every tree t ∈ T , there is a unique leaf u of τ
such that t ∈ τ(u). Henceforth, we denote u by nodτ (t). Now, for every s ∈ S,
define sol(s) = τ(v) where v is the shortest prefix of nodτ (s) such that τ(v) is a
sign of life for s. By the third condition, v exists, and by the first condition it
is equal to ε (yielding sol(s) = 2) if s ∈ supp(ψ). Finally, the definition of ρ is
straightforward: tρ is the unique element of τ(nodτ (t)) ∩ S for every t ∈ T .

It should be clear that the tuple (S, T, sol, ρ) constructed in this way fulfils
the conditions of Definition 3. It remains to give implementations of initialize,
addTransition, and addState. Unsurprisingly, initialize returns (S, τ) with
S = ∅ and τ = ∅. The functions addTransition and addState are given in
Algorithms 3 and 4, respectively. In their definitions, we use the following exten-
sion of nodτ . For a tree t ∈ TΣ , let nodτ (t) be the maximal node v ∈ nodes(τ)
(with respect to |v|) such that t ≡Cτ (u) t

′ for all t′ ∈ T (τ/v) and all proper
prefixes u of v. Note that v is uniquely determined, and that the requirement
“t ≡Cτ (u) t

′ for all t′ ∈ T (τ/v)” is equivalent to “t ≡Cτ (u) t
′ for a t′ ∈ T (τ/v)”

(both by the second condition). The latter makes it possible to find nodτ (t) ef-
ficiently. The reader should also notice that the extension of nodτ is consistent
with the earlier definition of nodτ (t) for t ∈ T .

The last case distinction in addTransition is needed only for efficiency
reasons; i.e., to keep the observation tree small. If efficiency is not a concern, then

14

Algorithm 4 Function addState(t, c) for an abstract observation table
(S, T, sol, ρ) represented by (S, τ)

Pre-conditions: t ∈ T and c ∈ CΣ with
ψ(ct)

ψ(sol(t)t)
6= ψ(c(tρ))

ψ(sol(t)(tρ))
Post-conditions: return an S′-observation tree (S′, τ ′) such that S ∪ {t} ⊆ S′ and

T ⊆ T (τ ′), representing an abstract observation table aot′ = (S′, T ′, sol′, ρ′)

let nodτ (t) = v = ui with i ∈ N and {T1, . . . , Tk} = τ(v)/≡Cτ (u)∪{c}
2: choose s1 ∈ T1, . . . , sk ∈ Tk, such that {t, tρ} ⊆ {s1, . . . , sk}

return (S ∪ {s1, . . . , sk}, τ [v ← c[T1, . . . , Tk]])
// aot′ = (S∪{s1, . . . , sk}, T, sol′, ρ′), where
// sol′ = sol〈s1 := sol(t), . . . , sk := sol(t)〉,
// ρ′(ti) = si for i ∈ [k] and ti ∈ Ti, and
// ρ′(u) = uρ for u ∈ T \ τ(v)

(S, τ [v ← c′[τ1, . . . , τk, c[{t}]]]) can be returned in either case. In fact, a similar
case distinction could be made in line 3, because c is not needed if t ∈ supp(ψ).

Lemma 12. Observation trees implement abstract observation tables.

Proof. It sufffices to show that addTransition and addState are correct, i.e.,
that they return S′-observation trees (S′, τ ′) with S ⊆ S′ and T ∪ {t} ⊆ T (τ ′)
(in case of addTransition), resp. S ∪ {t} ⊆ S′ and T ⊆ T (τ ′) (in case of
addState).

Correctness of addTransition. The return statement in line 3 is obvi-
ously correct, because c is a sign of life for t.

If the condition in line 4 holds, and u is the parent node of v, then t ≡Cτ (u) t
′

for all t′ ∈ τ(v). Hence, it follows that the addition of t to τ(v) does not violate
any of the requirements imposed on S-observation trees.

Finally, consider the third case. By the definition of nodτ (t), for all t′ ∈ τ(v),
it holds that t 6≡Cτ (v) t

′ but t 6≡Cτ (u) t
′ for all proper prefixes u of v. Conse-

quently, (S ∪ {t}, τ [v ← c′[τ1, . . . , τk, {t}]]) satisfies all conditions imposed on
S-observation trees, with the possible exception of condition 3. If condition 3 is
violated, then (S ∪ {t}, τ [v ← c′[τ1, . . . , τk, c[{t}]]]) satisfies it, since c is a sign
of life for t. (Clearly, the remaining conditions are not affected by the insertion
of c.) Hence, the two return statements in lines 9 and 11 are correct.

Correctness of addState. Let (S′, τ ′) be the pair returned by the algo-
rithm. Concerning line 1, notice first that v 6= ε, because T 6= ∅ and, thus,
τ(ε) = 2. The pre-condition ensures that t 6≡Cτ (u)∪{c} tρ, i.e., t ∈ Ti and tρ ∈ Tj
for distinct i, j ∈ [k] in line 1. Hence, s1, . . . , sk can be chosen as required in line 2,
which means that (S′, τ ′) with S′ = S∪{s1, . . . , sk} and τ ′ = τ [v ← c[T1, . . . , Tk]]
satisfies condition 2 of Definition 11. Further, condition 3 is satisfied since τ sat-
isfies it, T (τ ′) = T = T (τ), and Cnodτ (t′) ⊆ Cnodτ′ (t

′) for all t′ ∈ T . Hence,
(S′, τ ′) is an S′-observation tree. ut

Let us roughly compare the size of an observation table P , and the number
of coefficient queries required to build it, with the corresponding numbers for an

15

observation tree τ . Clearly, the number of rows of P is equal to the cardinality
of T (τ), because both are equal to |T |. For non-trivial cases, the number K of
columns of P lies between 2 and |S|. These bounds are sharp. On the one hand,
two contexts may separate any number of equivalence classes from each other.
On the other hand, |S| contexts may be needed to separate the |S| equivalence
classes from each other. Thus, P has between 2|T | and |S||T | cells, requiring as
many coefficient queries.

When using an observation tree τ , the number of coefficient queries required
to build it is determined by the depth d at which the trees in T reside in τ . More
precisely, let d(t) = |nodτ (t)| for t ∈ T . Then, since a coefficient query has to
be asked for each node v such that v is a proper prefix of nodτ (t), the overall
number of coefficient queries used to build τ is D(τ) =

∑
t∈T d(t). From the

observation that d(t) ≤ |S|+ 1 for all t ∈ T , we obtain the worst-case estimation
D(τ) ≤ (|S| + 1)|T |, which is essentially the same as above. In the best case,
d(t) = 2 for all t ∈ T , again yielding the same estimation as above.

So, why should τ have an advantage over P ? The reason is that, in most
cases, one may expect the average of the d(t) to be considerably smaller than
the number K of columns of P . This is because the contexts indexing the
columns of P must simultaneously separate all trees in S from each other,
whereas the contexts in Cτ (u), for a leaf v = ui of τ , only need to separate
one tree in S (the one in nodτ (v)) from the remaining ones. In other words,
we expect davg = 1

|T |
∑
t∈T d(t) to be considerably smaller than K, and thus,

D(τ) = davg|T | to be considerably smaller than K|T |.
Of course, in concrete cases, there are many factors that can affect davg.

A thorough study of davg and its relation with K is beyond the scope of this
article. Such a study should take into account the properties of the tree series ψ
to be learned and suitable probabilistic assumptions regarding the behaviour of
the MAT.

6 Experiments

As established in Section 5, observation trees and observation tables are both
proper realizations of the abstract observation table (aot) of Section 3. The ter-
mination and correctness of the learner are thus guaranteed when instantiated
with either data structure. As argued in Section 5, observation trees are expected
to have an advantage over observation tables as the former should usually require
fewer coefficient queries, but only slightly more equivalence queries, than the lat-
ter. To confirm this expectation, we implemented the relevant data structures
and algorithms in Java and conducted a series of experiments.5 In particular, the
aot is implemented as an abstract class, the learner as an algorithm instantiated
with an aot, and the observation tree and observation table as data structures
realizing the aot. The teacher is implemented for various restricted and unre-
stricted weighted tree automata over semifields. From here on, we refer to the

5 The source files can be downloaded from http://www.cs.umu.se/∼johanna/adt/.

16

learner as Ltable
∗ when instantiated with an observation table, and as Ltree

∗ when
instantiated with an observation tree.

In our experiments, we record both the number of coefficient and equiva-
lence queries – the latter because one may suspect that Ltable

∗ , if it by chance
receives contexts separating many trees from each other, may use fewer equiva-
lence queries than Ltree

∗ .

6.1 Results and discussion

We investigate the performance of Ltable
∗ and Ltree

∗ with respect to five families
of tree series, each parameterized by a natural number, namely Tower, Size,
Numbers, DisMod and PowSet. Their definitions read as follows.

Tower The tree series Towern, n ∈ N, is defined over the field R and the
ranked alphabet Σ = Σ0 ∪ Σ1, where Σ0 = {⊥} and Σ1 = {f1, . . . , fn}. For
every t ∈ TΣ ,

Towern(t) =

{
1 if t = f inn · · · f

i1
1 ⊥ with i1, . . . , in ≥ 1, and

0 otherwise .

Size The tree series Sizen, n ∈ N, is defined over the max-plus semiring
(N ∪ {−∞},max,+,−∞, 0) and the ranked alphabet Σ = {a(0), f (2)}. For ev-
ery t ∈ TΣ ,

Sizen(t) =

{
n if n = |nodes(t)|, and
−∞ otherwise .

Numbers The tree series Numbersn, n ∈ N, over R and Σ = Σ0 ∪ Σ2,
where Σ0 = [n] and Σ2 = {f}, is such that for every t ∈ TΣ ,

Numbersn(t) =

∏

v∈leaves(t)

t(v) if hg(t) ≥ 1, and

0 otherwise .

DisMod The tree series DisModn, n ∈ N, over R and Σ = Σ0 ∪ Σ2,
where Σ0 = [dn/4e] and Σ2 = {f}, is such that for every t ∈ TΣ ,

DisModn(t) =

{
1 if t ∈ T{f,i}, i ∈ Σ0, and hg(t) ≡ 1 (mod n), and
0 otherwise .

PowSet The tree series PowSetn, n ∈ N, over R and Σ = Σ0 ∪ Σ2,
where Σ0 = 2[n] and Σ2 = {f}, is such that for every t ∈ TΣ ,

PowSetn(t) =

1 if

⋃
v∈leaves(t)

t(v) = [n], and

0 otherwise .

17

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

Fig. 1. The outcome of applying Ltable
∗ and Ltree

∗ to tree series Tower (left plot) and
Size (right plot). The x-axis is labeled with the size of the target dwta; the y-axis with
the number of queries posed. The curves are in turn (from above to below): the number
of coefficient queries posed by Ltable

∗ ; the number of coefficient queries posed by Ltree
∗ ;

and the number of equivalence queries posed by Ltable
∗ and Ltree

∗ (which coincide).

10

20

30

40

50

60

70

10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80

Fig. 2. The outcome of applying Ltable
∗ and Ltree

∗ to tree series Numbers (left plot) and
DisMod (right plot). Curves and labels are as in Figure 1.

18

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

Fig. 3. The outcome of applying Ltable
∗ and Ltree

∗ to the tree series PowSet. Curves and
labels are as in Figure 1.

The number of coefficient and equivalence queries posed by Ltable
∗ and Ltree

∗
when inferring the tree series are plotted in Figures 1, 2, and 3.

In all experiments, Ltree
∗ requires fewer coefficient queries than Ltable

∗ . The
only example in which it makes more equivalence queries than Ltable

∗ is given by
the tree series PowSet. To learn PowSet, Ltree

∗ needed 3–4% more equivalence
queries. However, the overall computation time (including the time consumed
by the teacher!) was still faster than Ltable

∗ . In our implementation, the overhead
of using observation trees is larger than for observation tables, so although Ltree

∗
is typically faster than Ltable

∗ , this was not the case for the tree series Numbers.
Here, the savings in terms of coefficient queries was too small to make up for the
additional overhead, so Ltree

∗ ran slightly slower than Ltable
∗ .

Let us, finally, discuss how we implemented the teacher. In our implementa-
tion, it is initialized with a dwta A computing the target tree series. To answer
a coefficient query for a tree t, the teacher simply runs A on t. To answer an
equivalence query; i.e., deciding whether A is equivalent to some dwta B, the
teacher searches for a tree on which A and B disagree. It is easy to see that if
A and B are dwta over the Boolean semiring, or are all-accepting dwta (meaning
that every final weight is non-zero) over a semifield, then such a tree can, if it
exists, be found in time O(nrmr) where r is the maximum rank of the ranked
set, and n and m are the number of states of A and B, respectively. It was shown
in [8] that the equivalence problem for probabilistic string automata over fields

19

is in time O(|Σ|(n + m)3). When the weights are taken from a semifield, the
problem can, as we shall see in the subsequent section, be solved in time O(rnm)
by an algorithm based on the pumping lemma of [6, Corollary 5.6].

6.2 Deciding the equivalence problem for dwta over semifields

In the following, for a function f : A → B1 × B2, we let fi (i ∈ [2]) denote the
composition of f with the projection onto Bi. In particular, for a total dwta
(Σ,P, δ, λ), δ1 : Σ(P) → P and δ2 : Σ(P) → S \ {0} are the (total) functions
such that δ(u) = (δ1(u), δ2(u)) for every u ∈ Σ(P).

Let A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) be total dwta. By [7, Theorem 6.1.6]
we can suppose, without loss of generality, that A and B have Boolean final
weights (i.e., λ : P → {0, 1} and ν : Q → {0, 1}). We first construct the direct
product total dwta A ·B−1 = (Σ,P ×Q, δ′, λ′) by

δ′(f [〈p1, q1〉, . . . , 〈pk, qk〉]) = (〈δ1(f [p1, . . . , pk]), η1(f [q1, . . . , qk])〉,
δ2(f [p1, . . . , pk]) · η2(f [q1, . . . , qk])−1)

and

λ′(〈p, q〉) =

{
1 if λ(p) = 1 = ν(q)
0 otherwise.

This construction (without the inverses) is taken from [6, Definition 3.7]. Next,
we observe that if any state 〈p, q〉 with λ(p) 6= ν(q) is reachable (i.e., δ̂′1(t) = 〈p, q〉
for some t ∈ TΣ), then clearly A and B are not equivalent because A(t) 6= B(t)
for any tree t that reaches this state. If such a pair does not exist, we can
eliminate all states 〈p, q〉 with λ(p) 6= ν(q) from A · B−1 without changing the
tree series computed. Moreover, in this case, for every t ∈ TΣ

(A ·B−1)(t) =

{
0 if A(t) = 0 = B(t)
A(t) ·B−1(t) otherwise

(essentially by [6, Lemma 3.8]). Thus, to decide whether A and B are equivalent,
it is sufficient to decide whether this reduced total dwta computes a Boolean tree
series (i.e., all coefficients are either 0 or 1). This can (effectively) be decided
by [6, Corollary 6.9].

In practice, we often find ourselves working with partial automata, and in
these cases it is, of course, sensible to use a decision algorithm that avoids pro-
cessing dead states in the product automaton (and their associated transitions),
because the transition table of a partial dwta may be exponentially smaller than
the corresponding total dwta. We therefore conclude with an algorithm that op-
erates on the same principle, but iterates over transitions rather than trees to
take advantage of sparsity in the transition table.

In the following, A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) are partial dwta with
Boolean final weights. It is computationally easy to decide if A and B have the
same support. Since we operate in a semifield, the support is regular, so it suffices

20

to test the equality of two regular languages. Moreover, the involved automata
already yield deterministic unweighted tree automata for the support by setting
every nonzero weight to one, so the size of the deterministic unweighted automata
for the support is the same as the size of the input automata. Thus, the equality
of the supports can be decided by the classical equivalence test for deterministic
tree automata, running in time O(|A||B|). Thus, we may henceforth assume that
A and B have the same support, and that A and B have been purged of useless
(i.e., unreachable or dead) states.

Lemma 13. Let A and B be partial dwta that contain no useless states, and
are such that supp(A) = supp(B). The automata A and B are equivalent iff
for every p ∈ P and q ∈ Q there is a constant ap,q ∈ S, such that, for all
t ∈ δ−1

1 (q) ∩ η−1
1 (p),

(i) ap,q = δ2(t)
η2(t)

, and
(ii) if p (and thus q) is final, then ap,q = 1.

Proof. For the “if” direction, we combine conditions (i) and (ii), and thus obtain
that if p and q are final states, then δ2(t) = η2(t) for all t ∈ δ−1

1 (p) ∩ η−1
1 (q).

For the opposite direction, let A and B be equivalent. Consider p ∈ P , q ∈ Q,
and t, u ∈ δ−1

1 (p) ∩ η−1
1 (q). To establish (i), we have to show that δ2(t)

η2(t)
= δ2(u)

η2(u) .
Since A contains no dead states and supp(A) = supp(B), there is a sign of life
c ∈ CΣ for t and u with respect to both A and B. Moreover,

δ2(ct)
δ2(t)

= δ2(cp) =
δ2(cu)
δ2(u)

and
η2(ct)
η2(t)

= η2(cq) =
η2(cu)
η2(u)

,

because δ1(t) = p = δ1(u) and η1(t) = q = η1(u). We can now compute as
follows:

δ2(t)
η2(t)

=
δ2(ct)
δ2(cp)

· η2(cq)
η2(ct)

=
δ2(ct) · δ2(u)

δ2(cu)
· η2(cu)
η2(ct) · η2(u)

=
δ2(ct) · δ2(u) · η2(cu)
η2(ct) · η2(u) · δ2(cu)

=
δ2(u)
η2(u)

because δ2(ct)
η2(ct)

= 1 = η2(cu)
δ2(cu) since A and B are equivalent and have Boolean final

weights. This last observation also shows that the second condition holds. ut

Algorithm 5 traverses the transitions of the product automaton A · B−1 to
compute a constant ap,q ∈ S for each pair of states 〈p, q〉 ∈ P × Q that is
reachable, i.e., each pair with δ−1

1 (p)∩ η−1
1 (q) 6= ∅. (Note that the constants ap,q

for unreachable pairs of states are irrelevant, as they can be chosen arbitrarily.)

21

For this purpose, the algorithm maintains a partial mapping τ that assigns
to each pair of states 〈p, q〉 ∈ P × Q found reachable a constant in S that is
the current candidate for ap,q. In the algorithm, the domain of τ is denoted
by dom(τ). The algorithm starts with the totally undefined mapping ⊥ and
terminates when it discovers a violation of Lemma 13 or has reached a stable
state.

Algorithm 5 Decide if A and B are equivalent.
Pre-conditions: A = (Σ,P, δ, λ) and B = (Σ,Q, η, ν) are partial dwta with Boolean

final weights, contain no useless states, and are such that supp(A) = supp(B).
τ ← ⊥

2: repeat
unchanged ← true

4: for all 〈p, q〉 ∈ P ×Q such that
∃f ∈ Σk and 〈p1, q1〉, . . . , 〈pk, qk〉 ∈ dom(τ) with
δ1(f [p1, . . . , pk]) = p and η1(f [q1, . . . , qk]) = q

do
wA = δ2(f [p1, . . . , pk])

6: wB = η2(f [q1, . . . , qk])
ap,q ← wA · w−1

B · τ(〈p1, q1〉) · . . . · τ(〈pk, qk〉)
8: if p is final and ap,q 6= 1 then

return false
10: if 〈p, q〉 6∈ dom(τ) then

τ(〈p, q〉)← ap,q
12: unchanged ← false

else if τ(〈p, q〉) 6= ap,q. then
14: return false

until unchanged
16: return true

Lemma 14. Algorithm 5 decides if A and B are equivalent.

Proof. Termination is obvious, because every execution of the main loop except
the last enlarges dom(τ). We show that Algorithm 5 returns true if and only if
there is, for every p ∈ P and q ∈ Q, a constant ap,q ∈ S that fulfills Condition (i)
and (ii) of Lemma 13.

Suppose that Algorithm 5 returns false. This can happen in two cases.

– In the first case (lines 13 and 14), the algorithm has reached the same pair of
states 〈p, q〉 on distinct trees s and t, such that δ2(t)·η2(t)−1 6= δ2(s)·η2(s)−1.
This violates Condition (i) of Lemma 13.

– In the second case (lines 8 and 9), the algorithm has discovered that a pair
of final states 〈p, q〉 are reachable on a tree t, such that δ2(t) · η2(t)−1 6= 1.
This violates Condition (ii) of Lemma 13.

22

For the other direction, suppose that the algorithm returns true after some
iterations of the main loop. For a contradiction, assume that there is a minimal
tree t = f [t1, . . . , tk] ∈ δ−1

1 (p) ∩ η−1
1 (q), such that δ2(t)

η2(t)
6= τ(〈p, q〉) (including

the possibility that τ(〈p, q〉) is undefined). Let pi = δ1(ti) and qi = η1(ti), for all
i ∈ [k]. By the minimality assumption, δ2(ti)

η2(ti)
= τ(〈pi, qi〉).

Now, consider the last execution of the body of the main loop. At some point
during that execution, the body of the for all loop will be executed with the
given choice of 〈p, q〉, f , and 〈p1, q1〉, . . . , 〈pk, qk〉. Since neither the condition
in line 8 nor the one in line 10 is fulfilled (the latter because dom(τ) does not
change, according to the termination condition of the main loop), line 13 is
reached. However, since line 14 is not reached, this means that

= ap,q
= wA · w−1

B · τ(〈p1, q1〉) · . . . · τ(〈pk, qk〉)
= (wA · δ2(t1) · . . . · δ2(tk)) · (wB · η2(t1) · . . . · η2(tk))−1

= δ2(t)
η2(t)

,

contradicting the assumption that δ2(t)
η2(t)

= τ(〈p, q〉). ut

Lemma 15. Algorithm 5 executes in time O(|A||B|).

Proof. For an efficient implementation, we begin by calculating a sign of life for
every state in the smaller of the two automata. This is done by computing repre-
sentative trees for each state, at a cost of O(min(|A|, |B|)) operations, and then
searching for the shortest path from each state to an accepting state, consuming
another O(min(|P |2, |Q|2)) ≤ O(min(|A|2, |B|2)) operations.

In the worst case, the main loop must traverse every transition in A·B−1, but
since this is sufficient, the complexity of this loop, and of the entire algorithm,
is O(|A ·B−1|) = O(|A||B|). ut

We finally note that Algorithm 5 can easily be extended to return a coun-
terexample whenever A and B are found to be different. For this, it suffices to
store, along with each of the values τ(〈p, q〉), a corresponding tree tp,q, such that
δ2(tp,q)
η2(tp,q)

= τ(〈p, q〉). Then the two return statements in lines 9 and 14 can be
adapted in the obvious way to return a counterexample.

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Inform.
and Comput., 75(2):87–106, 1987.

[2] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
1987.

[3] Dana Angluin. Queries revisited. In Proc. 12th Int. Conf. Algorithmic Learning
Theory, volume 2225 of LNCS, pages 12–31. Springer, 2001.

[4] Jean Berstel and Christophe Reutenauer. Recognizable formal power series on
trees. Theoret. Comput. Sci., 18(2):115–148, 1982.

23

[5] Björn Borchardt. The Myhill-Nerode theorem for recognizable tree series. In
Proc. 7th Int. Conf. Developments in Language Theory, volume 2710 of LNCS,
pages 146–158. Springer, 2003.

[6] Björn Borchardt. A pumping lemma and decidability problems for recognizable
tree series. Acta Cybernet., 16(4):509–544, 2004.

[7] Björn Borchardt. The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden, 2005.

[8] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence
of probabilistic automata. J. Comput. System Sci., 18(4):761–779, 2007.

[9] Colin de la Higuera and José Oncina. Learning stochastic finite automata. In
Proc. 7th Int. Coll. Grammatical Inference, volume 3264 of LNCS, pages 175–
186. Springer, 2004.

[10] Frank Drewes. MAT learners for recognizable tree languages and tree series. Acta
Cybernet., 2009. To appear.

[11] Frank Drewes and Johanna Högberg. Learning a regular tree language from a
teacher. In Proc. 7th Int. Conf. Developments in Language Theory, volume 2710
of LNCS, pages 279–291. Springer, 2003.

[12] Frank Drewes and Johanna Högberg. Query learning of regular tree languages:
How to avoid dead states. Theory of Comput. Syst., 40(2):163–185, 2007.

[13] Frank Drewes and Heiko Vogler. Learning deterministically recognizable tree
series. J. Automata, Languages and Combinatorics, 12(3):332–354, 2007.

[14] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree transducers. In
Werner Kuich, Manfred Droste, and Heiko Vogler, editors, Handbook of Weighted
Automata, chapter 9, pages 313–403. Springer, 2009.

[15] Jonathan S. Golan. Semirings and their Applications. Kluwer Academic, Dor-
drecht, 1999.

[16] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[17] Amaury Habrard and Jose Oncina. Learning multiplicity tree automata. In Proc.
8th Int. Colloquium Grammatical Inference, volume 4201 of LNAI, pages 268–280.
Springer, 2006.

[18] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

[19] Andreas Maletti. Learning deterministically recognizable tree series — revisited.
In Proc. 2nd Int. Conf. Algebraic Informatics, volume 4728 of LNCS, pages 218–
235. Springer, 2007.

[20] José Oncina. Using multiplicity automata to identify transducer relations from
membership and equivalence queries. In Proc. 9th Int. Coll. Grammatical Infer-
ence, volume 5278 of LNCS, pages 154–162. Springer, 2008.

[21] Yasubumi Sakakibara. Learning context-free grammars from structural data in
polynomial time. Theoret. Comput. Sci., 76(2–3):223–242, 1990.

[22] Ehud Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Disserta-
tion. MIT Press, 1983.

[23] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984.

24

