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Abstract - We present tools for 3D object retrieval in which a model,
a polygonal mesh, serves as a query and similar objects are retrieved from
a collection of 3D objects. Algorithms proceed first by a normalization
step (pose estimation) in which models are transformed into a canonical
coordinate frame. Second, feature vectors are extracted and compared
with those derived from normalized models in the search space. Using
a metric in the feature vector space nearest neighbors are computed
and ranked. Objects thus retrieved are displayed for inspection, selec-
tion, and processing. For the pose estimation we introduce a modified
Karhunen-Loeve transform that takes into account not only vertices or
polygon centroids from the 3D models but all points in the polygons of
the objects. Some feature vectors can be regarded as samples of func-
tions on the 2-sphere. We use Fourier expansions of these functions
as uniform representations allowing embedded multi-resolution feature
vectors. Our implementation demonstrates and visualizes these tools.

INTRODUCTION AND PREVIOUS WORK

Objects in databases traditionally have been accessed using attached in-
formation such as textual annotation. Recently, methods for retrieving mul-
timedia documents using audio-visual content as a key are developed and
standardized in MPEG-7 [3]. Many similarity-based retrieval systems were
designed for still image, audio and video, while only a few techniques for
content-based 3D model retrieval have been reported [2, 3, 4, 5, 6, 7]. In this
paper we discuss two tools for 3D object retrieval in which a 3D model given
as a triangle mesh serves as a query key and similar objects are retrieved
from a collection of 3D objects. Content-based 3D model retrieval algorithms
typically proceed in three steps:

1. Normalization (pose estimation). 3D models are given in arbitrary
units of measurement and in unpredictable positions and orientations
in 3D-space. The normalization step transforms model into a canonical
coordinate frame. The goal of this procedure is that if one chose a dif-
ferent scale, position, rotation, or orientation of an original model, then



the representation in the canonical coordinate frame would still be the
same. Moreover, since objects may have different levels-of-detail (e.g.,
after a mesh simplification to reduce the number of polygons), their nor-
malized representations should be the same as much as possible. The
normalization step ensures that models can be retrieved regardless of
the choices their authors have made for their mesh representation.

2. Feature extraction. The features capture the 3D shape of the objects.
Proposed features range from simple bounding box parameters [5] to
complex image-based representations [2]. Usually, the features are stored
as vectors with real-valued components and fixed dimension. There is
a tradeoff between the required storage, computational complexity, and
the resulting retrieval performance.

3. Similarity search. The features are designed so that similar 3D-objects
are attributed vectors that are close in feature vector space. Using a
suitable metric nearest neighbors are computed and ranked. A variable
number of objects are thus retrieved by listing the top ranking items.

There have been several approaches for the normalization step, the most
prominent one being the princple component analysis (PCA) that produces
an affine transformation of space, that is also known as the Karhunen-Loeve
or Hotelling transform. The transform is defined by a set of vectors, e.g.,
the set of vertices of a 3D model. After a translation of the set moving its
center of mass to the origin of the coordinate system a rotation is applied so
that the largest spread of the transformed points (the variance) is along the
x-axis. Then a rotation around the x-axis is carried out so that the maximal
spread in the yz-plane occurs along the y-axis. Finally, the object is scaled
to a certain unit size. Essentially, that is the approach taken in [3]. A serious
problem is that differing sizes of triangles are not taken into account which
may cause widely varying normalized coordinate frames for models that are
identical except for finer triangle resolution in some parts of the model. As
a solution to this issue we introduced appropriately choosen vertex weights
for the PCA [7], while Paquet et al. [5] used centers of gravity of triangles
as vectors for the PCA with weights proportional to triangle areas. Such
methods improve retrieval results, see Figure 2.

The shape descriptor in [6] is invariant only with respect to rotations of
90 degrees around coordinate axes. The invariance was attained using a well
known general principle. Any feature vector can be made invariant with
respect to a finite group of transformations of space by summing or averaging
feature vectors computed from all possible transformations of an object.

In [4] the pose estimation is based on moments of solid objects. Howewer,
3D models are not guaranteed to consist of closed surfaces bounding one or
more solids, and it would be a difficult and questionable undertaking to en-
force objects to be solids by stitching up surfaces with boundaries. Therefore,
the approach is suitable only for a small class of 3D models.



In this paper we propose two tools for Steps 1 and 2 of any algorithm
following the general layout. For the pose estimation previous we generalize
the Karhunen-Loeve transform so that all of the (infinitely many) points in
the polygons of an object are equally relevant for the transformation. For the
feature vectors we notice that a class of them can be regarded as taking sam-
ples of functions on the 2-sphere. Using Fourier expansions of these functions
provides a new uniform approach which facilitates embedded multi-resolution
feature vectors. Our implementation demonstrates and visualizes these tools.

CANONICAL COORDINATE FRAME

In this section we outline the details for our continuous PCA and the
associated Karhunen-Loeve transform. We regard a given triangle mesh as
consisting of a set of triangles T = {T1, . . . , Tm}, Ti ⊂ R

3, given by a set
of vertices (geometry) P = {p1, . . . ,pn},pi = (xi, yi, zi) ∈ R

3, and a table
with a list of indices of three vertices for each triangle (topology). Then
I =

⋃m
i=1 Ti is the point set of all triangles, i.e., our given object. Our goal

is to derive an affine map τ : R
3 → R

3 in such way that for an arbitrary
concatenation σ of translations, rotations, reflections, and scaling the desired
invariance property of τ , namely τ(I) = τ(σ(I)) holds where we have set
σ(I) := {σ(v)|v ∈ I} and similarly for τ . Let Si be the area of triangle Ti,
i = 1, ..., m. For simplicity of notation we may assume that the triangles
intersect only on subsets of measure zero so that we may write the overall
surface in the model as S := S1 + . . . + Sm =

∫
I
dv.

The translation invariance is accomplished by translating the center of
gravity of a model, c, to the origin, i.e., by forming the point set I1 := I−c =
{u | u = v−c, v ∈ I}. To secure the rotation invariance we apply the PCA on
the set I1. First, we calculate the covariance 3×3-matrix M = 1

S

∫
I1

v ·vT dv.
The remaining part of this step follows the standard PCA. Since the matrix
M is a symmetric real matrix its eigenvalues are real and the eigenvectors
orthogonal. We calculate the eigenvalues of M , sort them in decreasing order,
compute the corresponding eigenvectors and scale them to Euclidean unit
length. We form the rotation matrix R, which has the scaled eigenvectors
as rows. Afterwards, we rotate the set I1 and obtain a new point set I2 =
R·I1 = {v | v = R·u, u ∈ I1}. To ensure the reflection invariance we multiply
points in I2 by a diagonal matrix F = diag(sign(fx), sign(fy), sign(fz)), where
fx = 1

S

∫
I2

sign(vx)v2
xdv, (fy, fz similar), and v = (vx, vy, vz) ∈ I2. Scaling

invariance is achieved by scaling the set I2 by the inverse of s = [(s2
x +

s2
y + s2

z)/3]1/2, where sx, sy, and sz denote the average distances of points
v ∈ I2 from the yz-, xz-, and xy-coordinate hyperplanes, respectively, i.e.,
sx = 1

S

∫
I2
|vx|dv and likewise for sy, sz.

Putting all the above together, the affine map τ , defined by τ(v) = s−1 ·
F · R · (v − c) is applied to all points of the original object I. In practice, it
suffices to transform only the set of vertices P .



In contrast to the usual application of the PCA we work with sums of inte-
grals over triangles in place of sums over vertices which makes our approach
more complete taking into account all points of the model I with equal weight.
The calculation of the integrals is only slightly more expensive. Due to space
restrictions we omitt the formulas which can easily be derived.

SPHERICAL HARMONIC REPRESENTATION

Some feature vectors can be considered as samples of a function on the
sphere S2. For example, for a (normalized) model I define

r : S2 → R

u 
→ max{r ≥ 0 | ru ∈ I ∪ {0}}

where 0 is the origin. This function r(u) measures the extent of the object in
directions given by u ∈ S2, compare [7]. Similarly, one may consider a ren-
dered perspective projection of the object on an enclosing sphere as another
example (compare [2]). If we can characterize such maps with a small num-
ber of parameters then these can be regarded as good candidates for feature
vectors in 3D object retrieval. The Fourier transform on the sphere pro-
vides a suitable approach that uses the spherical harmonic functions Y m

l to
represent any spherical function r ∈ L2(S2) as r =

∑
l≥0

∑
|m|≤l r̂(l, m)Y m

l .
Here r̂(l, m) denotes a Fourier coefficient and the spherical harmonic ba-
sis functions are certain products of Legendre functions and complex ex-
ponentials. The (complex) Fourier coefficients can be efficiently computed
by a spherical FFT algorithm applied to samples taken at points uij =
(cos ϕi cos 2ϕj , cos ϕi sin 2ϕj , sinϕi), where ϕk = (2k + 1 − n)π/2n, k =
0, . . . , n−1 and i, j = 0, . . . , n−1. We cannot give more details here and refer
to the survey and software in [1]. A example output of the absolute values of
the spherical Fourier coefficients (up to l = 3) is given here:

0.37
0.020 0.052 0.020

0.068 0.012 0.012 0.012 0.068
0.0052 0.0025 0.0032 0.0026 0.0032 0.0025 0.0052

Feature vectors can be extracted from the first l rows of coefficients. This
implies that such a feature vector contains all feature vectors of the same type
of smaller dimension, thereby providing a novel embedded multi-resolution
approach for 3D shape feature vectors, see also Figure 1.

RESULTS

As a proof of concept we provide results from just two experiments. As
feature vectors we used the absolute values from the first 3, 5, and 9 rows of



Original 42 harmonics 82 harmonics 122 harmonics

162 harmonics 202 harmonics 242 harmonics

Figure 1: Multi-resolution representation of the function r(u) = max{r ≥
0 | ru ∈ I ∪ {0}} used to derive feature vectors from Fourier coefficients for
spherical harmonics.

spherical harmonic coefficients. Since the absolute values in each row are sym-
metric, we obtained feature vector dimensions 6, 15, and 45 (small, medium
and large dimension). The distance between vectors was calculated using the
l2 norm. We also compared the performance using three different PCAs, the
simple one based on mesh vertices [3], the one using vertices with weights
according to local triangle area [7], and the continuous PCA introduced here.

The 3D model database used for experiments contained around 1900 mod-
els. We had manually classified models by shape (e.g., cars, planes, bottles,
chairs, etc.) and used this classification in so-called precision/recall tests.
Briefly, precision is the proportion of retrieved models that are relevant and
recall is the proportion of the relevant models actually retrieved. By ex-
amining the precision/recall diagrams for different queries (and classes) we
obtained a measure of the retrieval performance. The results in Figure 2
indicate that increasing the dimension of the feature vectors improved the
retrieval results. Moreover, on average the KLT in the continuous form was
as good or better than the KLT based on weighted vertices, and much better
than the plain KLT without weights. For some individual queries we observed
that the continuous KLT performed best.

CONCLUSION

In summary we have introduced two tools useful in systems for 3D object
retrieval. The continuous Karhunen-Loeve transform ensures that all surface
points of the model receive equal weight during pose estimation. The Fast
Fourier Transform on the sphere with spherical harmonics provides a natural
approach for generating embedded multi-resolution 3D shape feature vectors.
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Figure 2: Precision vs. recall of queries averaged over five classes of objects
bottles, swords, chairs, cars, and planes). On the left different dimensions
are used and on the right different different PCAs were employed for the high
dimensional feature vector.

References

[1] D.M. Healy, D. Rockmore, P. Kostelec, and S. Moore, “FFTs for the
2-sphere — Improvements and variations,” Advances in Applied Math-
ematics, (to appear). Preprint and corresponding software, Spharmon-
icKit, are available at: http://www.cs.dartmouth.edu/g̃eelong/sphere/.

[2] M. Heczko, D. Keim, D. Saupe, and D.V. Vranić, “A method for similar-
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