Mapping between the Dublin Core Abstract Model DCAM and the TMDM

TMRA 2007, Leipzig, 2007-10-12

Lutz Maicher, University of Leipzig maicher@informatik.uni-leipzig.de

Premise of the talk

- metadata is important
- metadata is subject-centric
- DC vocabulary should be (re-)used
- a marriage of Topic Maps and DC is obvious

The Dublin Core Abstract Model (DCAM)

- DC is intended to be independent from the used representation formats like RDF, HTML or Topic Maps
 - DCAM should assure interoperability of metadata descriptions irrespective of their representation format
- Dublin Core Abstract Model is metamodel of Dublin Core
 - latest version April 2007 (a lot have changed!)
- Three parts
 - DCMI resource model
 - defines how the world is composed through DCAM glasses
 - DCMI description set model

- specifies how information about resources are represented
- DCMI vocabulary model
 - abstract model of the vocabulary used in the descriptions

DCMI resource model (1/2)

- DCMI resource model specifies how the "real" world is composed through DCAM glasses
- the whole world is a set of *resources* (known from RDF)
 - a resource is similar to a subject
- each resource is composed of property / value pairs
 - a property is a specific aspect, characteristic, attribute, or relation used to describe a resource
 - to each property a value is assigned

- each value is by definition a resource
- a resource becomes a "described resource" when a proxy is created

DCMI resource model (2/2)

- separation of *literal* values and *non-literal* values
 - resource which is a *non-literal* value is represented by a proxy
 - resource which is a *literal* value is represented as literal

DCMI description set model (1/6)

 DCMI description set model specifies how information about resources – which are sets of property/value pairs – will be represented

the DCAM perspective

the TMDM perspective

DCMI description set model (2/6)

- The DCAM perspective
 - description is the proxy of a described resource
 - description sets are sets of related descriptions
 - a record is a serialised description

The TMDM perspective

- topic is the proxy of a subject
- topic map is a set of related subjects

DCMI description set model (3/6)

- Descriptions are composed of:
 - one described resource URI
 - a set of statements (proxies of the property/value pairs)
- Statements as basic modelling components of the DCAM are composed of:
 - one property URI
 - and value surrogate

• Distinction of Value surrogates in

- literal value surrogates
- non-literal value surrogates

DCMI description set model (4/6)

- non-literal value surrogate
 - is a value URI which is a reference to the description which is the value
 - and an encoding scheme URI can be assigned
 - to identify the vocabulary the used term is from

literal value surrogate

- is a value string, which is either

Institut für Informatik

- a plain value string
- a typed value string

UNIVERSITÄT LEIPZIG

TMRA 2007, Leipzig, Lutz Maicher (maicher@informatik.uni-leipzig.de)

10

DCMI description set model (5/6)

the DCAM perspective

the TMDM perspective

DCMI description set model (6/6)

- DCAM perspective
 - described resource URI
 - statement with non-literal value surrogate
 - as proxies for non-literal value properties
 - statement with literal value surrogate
 - as proxies for literal value properties

TMDM perspective

a set of subject identifiers / locators

- associations
 - as proxies for non-literal value properties
- internal occurrences
 - as proxies for literal value properties

DCMI vocabulary model

- DCMI vocabulary model is an abstract model of the vocabularies used in the descriptions
 - see i.e. the 40 additional elements and refinements introduced in Steve's talk (sub-property relationships)
 - the vocabulary model is in the scope of the authoring guidelines, not in the scope of the mapping

Standardising the usage of DC-vocabularies in Topic Maps

Towards authoring guidelines for DC in Topic Maps

- For standardisation of DC/TM interoperability we forsee a two layer approach:
 - DCAM $\leftarrow \rightarrow$ TMDM mapping as defined by this talk
 - assures general interoperability of DC metadata expressed in Topic Maps and DC metadata expressed in other representation formats
 - authoring guidlines as defined by Steve's talk
 - assures that a *authored* topic map is interoperable with DC metadata expressed in other representation format
 - assures the *mergeability* of authored topic maps (irrespective of the DCAM in the background)
 - assures that a defined set of TMQL queries can be used
 - is compliant to the DCAM $\leftarrow \rightarrow$ TMDM mapping
- DC encoding guideline for Topic Maps

Institut für Informatik

DCAM→TMDM mapping + TMDM serialisation specifications (i.e. XTM)

DCAM → TMDM mapping (simplified)

- Scope: transformation of a description set into a topic map
- each description D will be mapped to a topic item r
 - described resource URI will be subject identifier or subject locator
 - as defined (recommended!) by the authoring guidelines
 - must be compliant with the TMDM semantics
 - described resource URI will be value of a typed occurrence
- each statement S of D must be mapped
 - if S is a non-literal value surrogate an association will be created
 - a value topic (incl. identity) must be created which represents the value
 - type of the association is topic with property URI as subject identifier
 - roles are defined terms (see Steve's talk)
 - if S is a literal value surrogate a typed occurrence must be added
 - type of occurrence is topic with property URI as subject identifier
 - value of occurrence is value string
 - add syntax encoding scheme URI as datatype of occurrence
 - add value string language as scope

DCAM → TMDM mapping (simplified)

- Naming the resource topic → Topic Names
 - for a better readability the value of a property which has naming characteristics can be additionally assigned as unscoped and untyped name of r
 - such topic names are only *informative*

Typing the resource topic

- for a better readability the type of a resource can be additionally assigned as type-instance relationship
- such a type-instance relationship is only informative

TMDM→DCAM mapping (simplified)

- Scope: transformation of topic maps (which represent metadata using the DC vocabulary) into description sets
 - transforms only such information which is documented in the topic map using the DC vocabulary
 - all other information in a topic map is ignored
 - which uses other vocabularies
 - which uses the DC vocabulary in an incorrect way
- this transformation might always imply a loss of information
 - main problem: sets of subject identifiers to one described resource URI

TMDM→DCAM mapping (simplified)

- For each topic item r, which represents a described resource, a new description D must be created.
- A topic item is eligible:
 - it has an occurrence item which is typed by a DC term
 - it plays a role in an association which is typed by a DC term
- For each eligible topic, the described resource URI of D is
 - the value of the occurrence of type dc:identifier,
 - if not available, one (randomly chosen) subject identifier or locator
 - if not available, the item identifier
- ... for more details see the paper!

Towards authoring guidelines for DC in Topic Maps

- Standardised Authoring guidelines should include:
 - First, it must be defined how a described resource and statements with literal-value and statements with non-literal values have to be represented when authoring a topic map. This standardisation must be strictly compatible to the TMDM→DCAM mapping defined here.
 - Second, for each term of the DC-vocabularies it *must* be decided, in which cases it should used as a property for a non-literal value and when it should be used as a property for a literal-value. No further specifications are mandatory for any term.
 - *Third,* guidelines for the representation of the described resources which are non-literal values *might* be defined. For example, best practice for choosing identifiers of persons, countries, dates, etc. can be defined. The more specific these specifications are, the better the mergeability of the resulting topic maps.
 - Fourth, it must be defined how relationships between terms of the DCvocabulary (i.e. sub-property relationships, etc.) should be represented in Topic Maps to be compliant to the DCMI vocabulary model

Conclusion

- Benefits of the defined DCAM ← → TMDM mapping
 - assuring full interoperability between DC in Topic Maps and all other representation formats (like RDF, HTML) via the DCAM
 - providing a clear basis for the authoring guidelines
 - having DC encoding guidelines for Topic Maps
 - DCAM→TMDM + TMDM serialisation

Questions? Questions!

Lutz Maicher (maicher@informatik.uni-leipzig.de)

Institut für Informatik

TMRA 2007, Leipzig, Lutz Maicher (maicher@informatik.uni-leipzig.de)