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Abstract. This paper presents a method to mathematically analyze the nerve impulse propagation 
in nonuniform axons. Starting from the general, nonlinear one-dimensional cable equations with 
spatially varying cable diameter, the problem is shown to be eqiuvalent (under some variable 
transformations) to the case of uniform axons. Characterized by the same normal form, six functions 
for analytically treatable axon diameter variations are determined. For this class of nonuniform 
axons, exact solutions describing the propagation of the front of the action potential are derived. The 
results are used to evaluate the impact of geometric non-uniformity on the properties of propagating 
action potentials. 

Keywords: Action potential, nonuniform axon geometry, nonlinear cable equation, analytical so­
lutions. 
PACS: 87.10.Ca, 87.19.1b, 87.19.11 

1. INTRODUCTION 

A central goal of Mathematical Neuroscience is to develop exphcit mathematical models 
of neuronal systems that enable the explanation and prediction of systems behavior. 
Because of the complexity of the nervous system, mathematical modeling has been used 
since the early years of neuroscience to facilitate the understanding of neural functions 
and mechanisms. 
In modeling single neurons, two types of complexity must be dealt with: the intricate 
interplay of active conductances underlying the complex neuronal excitation dynamics, 
and the elaborate dendritic morphology that allows neurons to receive and process inputs 
from many other neurons (e.g. [1]). 
In this paper, we will discuss a method that has been used to mathematically analyze the 
electrical signaling function of spatially complex neurons. We will begin with presenting 
the model assumptions underlying the general cable model for neuronal processes. We 
then discuss the method used to derive analytical solutions for the electrical behavior of 
nonuniform neuronal segments. We then show how the results can be applied to impulse 
propagation in nonuniform, unmyelinated axons. Elsewhere the theory has been applied 
to branching dendritic trees with active membrane [2]. 
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2. BIOLOGICAL NEURONS: MORPHOLOGY AND SIGNALING 
FUNCTION 

The main anatomical features of neurons are as follows (Figure 1): from the cell body 
two kinds of processes - the dendrites and the axon - emanate. Generally, dendrites 
are regarded to provide receptive surfaces for input signals to the neuron. The input 
contacts are made by synapses which are distributed primarily over the widely branched 
dendritic trees. The input signals are conducted with decrement to the soma and the 
axon hillock. There the signals usually are converted into sequences of nerve impulses 
(action potentials, or spikes) which are propagated without attenuation along the axon 
to target cells, i. e. other neurons, muscle cells etc. 

extracellular fluid 

FIGURE 1. A typical textbook neuron with soma and neurites (dendrites and axon). Displayed is the 
current flow in a neurite segment (core conductor model) and the equivalent electrical circuit. Inside the 
membrane is the conducting core consisting of cell plasm, outside the extracellular fluid. In the equivalent 
circuit, the extracellular resistivity is neglected. 

Of course, many neurons are known where this classical identification of the pro­
cessing steps within a neuron must be supplemented with additional processes, such as 
dendritic spikes, intermittent conduction or spikeless transmission [3, 4]. Thus neurons 
may deviate in various ways from the above concepts which collectively comprise an 
idealized "standard neuron", but many of the principles seem to be common to almost 
all cells and probably provide the basis of neuronal operation. 
The ideahzed neuron exhibits regionally different electrical characteristics. The soma 
and the dendrites have fixed ionic permeabilities, thus a change of polarization produced 
somewhere on the dendritic tree will spread and decay as it is conducted "electroton-
ically", as in a passive, leaky cable. In the axon hillock, on the other hand, the ionic 
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permeabilities depend on the membrane potential, and the integration of the electrotonic 
potentials will result in the initiation of spike trains. These two kinds of membranes 
are referred to as passive and active. In both cases, the spatial distribution of membrane 
voltage can be studied with the aid of (linear or nonlinear) cable theory. 

3. GENERAL MODEL FOR NEURONAL CABLES 

A model of a neuronal cable (axon or dendrite) can be set up by combining the nonlin­
ear ordinary differential equations for an excitable membrane with the parabolic partial 
differential equations for a core conductor. Figure 1 schematically displays a standard 
neuron, the core conductor model used to represent the neurite segments and its equiv­
alent electrical circuit. The cable equation for the transmembrane potential V{x,t) and 
the axial current ja (x, ?) is as follows (x represents distance in axial direction): 

. i_dV_ _dj^_ . _ . ^ . ,,, 
^"^ ra{x)dx' dx^-''"^-''^-" ^' 

where jm{x,t) denotes the membrane current consisting of a capacitive component, 
jc, and a resistive one, j ; . 
We assume that the current, j ; , created by the ionic channels in the membrane can be 
written as a product of a resting conductance g{x) which depends on the membrane 
surface at x , and a nonlinear voltage function fo{V,ui,...,UN) reflecting the threshold 
behavior of the voltage-dependent channels as a specific membrane property (i.e. per 
unit membrane surface). The latter may be time-dependent, so additional (auxiliary) 
variables Uk{x, t) defined by first order differential equations have to be included: 

ic = c W ^ ' Ji=8{x)fo{V,ui,...,UN) (2) 

jm = c{x)-^+g{x)fo{V,Ul,...,UN) (3) = c[x 

-^=fk{V,Ul,...,UN){OTl<k<N. (4) 

Combining equations (1) to (3) we obtain 

= c ( x ) 3 - + g{x)fo{V,ui,...,UN)- (5) 
dx \ra{x) dx J dt 

3.1. Specific assumptions 

In most cases the axial resistance ra{x) is assumed inversely proportional to the cross-
section of the segment whereas the membrane conductance g{x) and the membrane ca-
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pacitance c(x) (all quantities per unit length) are proportional to the membrane surface: 

4 

C{X) = Cr„7td{x)\ll + ^[^] (6) 

g{x) = GmTtd{x 

where d{x) denotes the variable cable diameter, Ri the specific intracellular resistance. 
Cm and Gm the specific membrane capacitance and the resting conductance, respectively. 
The latter is the conductance in the nearly linear subthreshold range around the resting 
potential. 
In the following, we will use the above equations for cables with circular cross-section. 

Further, we assume that \ /1 + H | f ) ~ 1 > i-C- there is only weak taper, which should 

be satisfied in most cases. The results derived below are valid, however, also for more 
general r-, g-, and c-functions. 

3.1.1. Linear cable 

The simplest cable model (no auxihary variables Uk , i.e., Â  = 0) is the linear one for 
passive cables. The voltage function reduces to /o(V) = V (resting potential set to zero) 
so the linear cable equations reduce to 

-g{x)V. (7) 

3.1.2. Nonlinear cable 

A model of a cable with active membrane is set up by choosing suitable ionic current 
ji and voltage function f = (/i, .../AT)^ . With such functions, system (4), (5) has been 
shown to simulate essential features of membrane excitation conduction. Models of 
increasing complexity (i.e., number of auxiliary variables) are 

1. the bistable (wavefront) equation equation [5, 6] (Â  = 0) 
2. the FitzHugh-Nagumo / Bonhoeffer-Van der Pol equations [7, 8] (Â  = 1) 
3. the Goldstein-Rail equations [9] (N = 2) 
4. the Hodgkin-Huxley equations [10] (Â  = 3). 

Hodgkin-Huxley model. The Hodgkin and Huxley (HH) model has been used as 
basis of most of the conductance-based models. In the original version, the model 
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consists of a four-dimensional system of nonlinear differential equations [10]. The 
ionic current, j ; , is determined by three conductances where two of them are voltage-
dependent: 

ji = JNa + JK + JL 
= gNa{V-ENa)+gK{V-EK)+gL{V-EL) (8) 

= m\gNa{V-ENa)+n^gK{V-EK)+gL{V-EL), 

and gNa, gK are the maximal conductance values of the sodium and potassium chan­
nels, and gi is the (constant) value of the passive leak conductance. ui = m and U2 = h 
are the activation and inactivation variables for sodium, M3 = « is the activation variable 
for potassium,0 <m,n,h< 1 , and the following differential equations hold 

OTU 

- ^ = / i = Omil - m) -pmm 

^ = / 2 =a„( l -M)-i3„M (9) 

-^ =h = ah{l - h) - Phh 

where Om,^m, Oin,^n, Oih^^h, '^^ empirical functions of the voltage V. The leak con­
ductance ghix) = GiTtd^x), according to (6). We rewrite (8) as 

ji = g-MV,m,n,h) = g{x)(^rrPh{V-ENa) + ^n\V-EK) + {V-EL)]. (10) 
\gL gL J 

Thus the part of the current ji depending on cable diameter is separated from the 
voltage-depending part, in accordance with the general cable equation (5). 

FitzHugh-Nagumo model. Below we will use the FitzHugh-Nagumo (FHN) model, 
a simplified version (Â  = 1) of the Hodgkin-Huxley model, to study nerve conduction. 
The FHN equations [7] can be written as: 

dV dV 
jm = c{x)-^ + gfo = c{x)-^+g{h{V) + u) 

^ = aV-pu (11) 
at 

with resting potential equal to zero and cubic h{V) = V{1 — y /y i ) ( l — V/V2) where 
0 < Vi < V2 are the roots of h . The constants a and /3 are positive so that u acts as a 
variable which takes the system from the excited state (near V2 ) back to the resting state 
V = 0. 
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4. TRANSFORMATION INTO NORMAL FORM 

We transform Eq. (5) by the variable transformation (applied already by Kelly and 
Ghausi [11] and later by Schierwagen [12]) 

T = - with T X = - ^ and 
T g{x) 

^= T 7 ^ with A(x) = ^ . (12) 
Jo Kx) ^ ' ^ra{x)g{x) 

For an uniform cable (i.e. c, g and fa independent of x ), A and T are constant and 
equal to the length and time constants of passive cable theory. 

Now Eqs. (4), (5) can be rewritten: 

d'^V dV dV 
0 = •^^ + Q{X)^-^-fo{V,ui,...,UN) 

-^ = T{X)fk{V,Ul,...,UN) fOTl<k<N (13) 

with 

Q{X) contains all geometry-dependent parts of the transformed cable equation and 
can therefore be used for classifying cable geometries. For example, in the standard case 
of a cable with circular cross-section, we obtain 

e(X) = Ain/)(X)i. (15) 

In particular, g = 0 for cylindrical cable geometries (i.e., TQ and g are constant), 
whereas Q remains nearly constant for a (slowly) exponentially tapering cable diameter 
in Eqs. (6), positive for increasing and negative for decreasing diameter. 

Using the transformations 

V{X,T)=F{X)-W{X,T) 

Uk{X,T)=F{X)-Wk{X,T) (16) 

with 

F(X) = e x p ( - i y e ( X ) d X ) = / ) ( X ) - t , (17) 

the equations (5) or (13), respectively, in normal form read 
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TABLE 1. Axon geometries as defined by the solutions of the special Riccati equation 
2Q' = 4P — Q^. The stationary solutionis denoted by Q\ = ± 2 V ^ (cf. [1]). C\ and C2 > 0 are 
fi-ee but constant parameters. 

Geometry type 

uniform 
power 

exponential 
hyperbolic 
sine 
hyperbolic 
cosine 
trigonometric 
cosine 

P 

P = 0; Q = 0 
P = 0 ; e / 0 

P>Q;Q^ = Q\ = 

P>0, \Q\>Qi 

P>0; \Q\<Qi 

P<0 

AP 

Q(x) 

0 
2 

X-Ci 
Qi 

e i c o t h ( ^ ) 

Q l t a n h ( ^ ) 

- l e i l t a n ( l e i l ^ ) 

&-)=p(^y' 
Ci 

C 2 ( l - ^ ) 
C2exp(2eiX) 

C2(s inh(e i^ ) )^ 

C2(cosh(e i^) )^ 

C2(cOsh( |ei |^))^ 

d^W fo{FW,Fwi,...,FwN) dW 
dX^ ^ ' F dT 

dj^^,MFW,Fwu...,Fw^) 
dT F - -

For linear functions fk (fe = 0, ..A )̂, the transformation function F{X) cancels in the 
equations. This is the case for, e.g., the bistable wavefront equation or the piecewise 
linear FitzHugh-Nagumo equations (see below). In the following, this case is assumed 
to hold. 

The coefficient P(X) is defined by the simple Riccati equation [1, 11, 12]: 

P{X) = ^Q'{X) + ^Q{xf. (19) 

Various classes of nonuniform cable geometries may be obtained by choosing the 
function P = P{X) in condition (19). The simplest class to consider are those cables for 
which P is a constant. This class can be determined by solving the Riccati differential 
equation (19). The complete solution set and the corresponding diameter functions 
determined from (15) are given in Table 1. 

5. AXON GEOMETRIES REDUCIBLE TO THE UNIFORM CASE 

If we take a closer look at the function Q{X) defined by Eq. (15), we can derive explicit 
conditions relating the diameter of the cable in the range, D{X), and that of the domain, 
d{x). For this we calculate the back transform of the solutions from Table 1 from the 
range into the domain. This is not trivial because of the space-dependency of A. Table 2 
shows the transforms for the space variables X(x) and x{X) which follow from (12) with 
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X{x) = ^ ^ = = = ^ y ^ ) (20) 
^/ra{x)g{x) do 

where do = d{0), Ao = A(0). Appropriate transformations can be given also in the 
case of diameter changes which are not negligible [13]. 

By inverting the defining equation (17) for F{X) and using the Riccati equation (19), 
we find after some lengthy calculations 

(21) 

and with dx/dX = 

P(D) = ^ ' 

= l/A(x)(cf.Eq. (12)) 

3 (d{-f")" 
^ ' " ' lOGmRi rf(x)l/4 • ^^^^ 

For p{d) = 0 we can now analytically calculate the domain solutions of the image 
diameter functions for the uniform and power case (see Table (3)). In the other cases, an 
imphcit equation md = d{x) can be given: 

± ^ ^ x + C 2 = _ / ^ 5 ^ ^ ^ d r f (23) 

which only for ci = 0 can be solved in closed form. In this case, the domain solution 
of the exponential diameter function yields the quadratic geometry type (Table 3). 

6. TRAVELING WAVES IN NON-UNIFORM AXONS 

6.1. General model with nonuniform geometry 

In most cases, theoretical investigations of spike propagation assume uniform elec­
trical and geometric properties along the axon. From these analyses, much insight into 
propagation mechanisms has been gained, suggesting constant shape and velocity of the 
propagating spike in axons with uniform geometry. A linear or square root relationship 
between velocity and axonal diameter for myelinated and unmyelinated nerve fibres, re­
spectively was deduced [14]. 

TABLE 2. Transforms for the space variables X{x) and x{X), respectively. 

Geometry type P X{x) x{X) 

uniform P = 0; Q = 0 j - XXQ 

power P = 0;e/0 C{\-{\-^f^) lcMl-{l-i)h 

exponential P>Q\Q = Qi | - l n ( l + # x ) 3 Ao(exp(2l-X) - 1 ) 
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TABLE 3. Corresponding diameter functions d{x) and D{X) of 
nonuniform cable in the domain and in the range, respectively. 

Geometry type P D{X) d{x) 

uniform P = 0; Q = 0 do do 

power P = 0 ; e / 0 do(l-0 ^ 0 ( 1 - 3 ^ ) ^ 

exponential P>0;Q = Qi doexf{^QiX) do{§j^ + lf 

However, experimenters have noted several effects which could not be explained with 
this theory. Examples are blocking of impulse conduction, frequency modulation and 
changes of AP shape in regions of nonuniform axon geometries (for review, see [15]). 
Motivated by these observations, several investigators studied the effects of changing 
axonal geometry upon AP propagation, both by theoretical and computational meth­
ods (e.g. [16]). 
A drawback of a pure computer simulation approach has been, however, the impossibil­
ity of exploring analytically how the various physical parameters describing the inho-
mogeneous axon affect the solution. Goldstein and Rail [9] instead used results from di­
mensional analysis [17] to compare theoretical axons having different values of physical 
parameter but identical nonlinear membrane properties. Our analysis below is inspired 
by this approach. 
We consider traveling wave solutions of the normalized cable equations (13). Thus, we 
assume that in these equations only the geometry-defining parameter Q exphcitly de­
pends on the space variable X whereas all ft are independent of X, i.e. the voltage 
thresholds of all channels do not vary in space. The same should hold for the auxihary 
variables Uk{X, T). Then we make the ansatz W{X, T) = W{Y) with Y = X — @T, which 
means that a fixed voltage shape travels with constant velocity 0 along the cable (for 
positive 0 from left to right). Now the system of ordinary differential equations to be 
solved reads: 

(24) 0 = 

duk 
dF 

^ + (0 + 2) 

= --Qfk{W,ui, 

dW 

dF~ 

• • •, m) 

fo{W,ui,. • •, m) 

forl<k<N. (25) 

For an uniform cylindrical cable, 2 = 0, after definition of Q in (15). Only in this 
case Eq. (24) remains invariant with respect to the substitution 0 -^ —0 and Y -^ —Y 
which means that for any leftwards traveling wave with velocity 0^ , there is also a wave 
traveling rightwards with velocity 0+ = —0^, and vice versa. 

For g > 0 (the analog is true for g < 0) in some part of the axon cable this symmetry 
is broken - the range of possible wave velocities will be 'shifted'. For the general case 
of Eq. (24) no exact quantitative value of this shift can be given. We can explore it 
quahtatively, however, by looking at the velocity of the leading wave-front. Assuming 
that the MJ;-kinetics are slower than the W-kinetics, we set Uk = 0 during the build-up of 
the leading impulse front [18]. Eq. (24) then reads: 
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<fW dW 
O = ^ + ( 0 + e ) ^ - / o W . (26) 

Let the uniform cable equation with Q = 0 admit two traveling wave fronts (an 
excitation from the resting potential to some excited state) at a speed of ©«„;, from right 
to left with 0 ^ = —@uni, and from left to right with 0+ = 0„„i. Then the nonuniform 
cable admits two wave solutions with the shifted propagation velocities 0 ^ = — (0«„j + 
Q) and 0+ = 0«„j — Q. For cable diameters increasing sufficiently strong from left to 
right (high values of the geometry parameter g ) we find two wave solutions traveling 
to the left ( 0 ^ < 0+ < 0) but none traveling to the right. Here the leftwards traveling 
front has also a much higher speed than the fronts in the uniform cable. These results 
demonstrate the direction-dependence of the spike propagation in non-uniform cables 
(see below and [2, 19]). 

6.2. FHN model 

As stated in Section 4, for linear functions fk{k = 0,..N), the transformation function 
F{X) cancels in the equations (18). Using the FHN model (11) with 

MW,Wi)=H{W) + Wi (27) 

where H (W) = fHiW — rii represents a piecewise linear membrane characteristic (Fig­
ure 2), we get from (18) 

d^W dW 
•{P{X)+fni)W + ni-w = 0 dX^ dT 

^ = T{aW-l5w). (28) 

For P{X) = const the system (28) corresponds to the basic equations of uniform cable 
geometry, thus the results derived by others (see [20] for review) and the present authors 
[2, 19] can be used. The equations then read: 

d^W dW 

^ = z{aW-pw) (29) 

while we set mi := P + m. 

For the linear regions of H{W) there are traveling wave solutions. Employing the 
results of Section 5, the system of ordinary differential equations (24), (25) can be 
written as: 
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FIGURE 2. Piecewise linear approximation H{W) =miW — ni of the membrane current-voltage char­
acteristic. In the general case, there are three linear regions of HiW), Ji = \Wj.,Wj.^^], each containg a 
zero. 

-r-T + 0 - ; mW + ni-w = 0 

@^ = -z{aW-l3w). (30) 

We will consider the bistable case; it is represented by OT2 ̂  °° where the middle zero, 
Wbj, merges with the boundaries Wjj, Wj, to give a threshold, WT := Wjj = Wj, = Woi 
(see Figure 2). 

Eq. (27) becomes 

Mw) 
m\W 
OT3(W-W03) 

for W < Woj 
else (31) 

The simplest case to consider is a = /3 = 0 , i.e. the propagation of a wave front 
(Figure 3) with velocity 0 , without recovery from the excited state. 

Eqs. (30) simplify to: 

(fW dW „ , ^ 
dy2 ^ dy 

(32) 

w\ 

WT, 

WT, 

, ^^03 

(0,0) Y 

FIGURE 3. Wave front moving to the left while changing the voltage level from 0 to W03. 
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The functions W(y) in the two regions separated by WQ^ can be specified as follows: 

W(y) = |S;o^^^P(^i^) , . v̂  Y "^^"^'^ (33) 
^ ' \ Wo^-{Wo^-Wo^)exp{}i2Y) else 

where 

0 / / 0 ^ ^ 
^i = - 2 + V 2 ' ^""^ 

0 / / 0 ^ ^ 
^' = -2-^ [2) +"^- ^̂ "̂  

This result is obtained by connecting two solutions for linear equations where W is 
greater or less than Wbj at the threshold boundary, W = Wbj. 

Scott ([20, p. 104] refers to work on neuristor research in the 1960s where for the 
model (31), (32) the traveling-wave speed is given by the expression (translated in our 
notation) 

miWl-m3{Wo,-Wo,f 
0 = . (35) 

y^imiWo, + m3{Wo, - Wo,)) {Wo, - Wo,)Wo,Wo, 
If mi =1713= fn, we get 

/ in 

an expression already given in [21]. 

7. IMPACT OF GEOMETRIC NONUNIFORMITY ON THE 
PROPERTIES OF THE ACTION POTENTIAL 

The results obtained so far can be used to evaluate the impact of geometric nonunifor-
mity on the properties of the action potential. We remember that the time constant as 
defined in equations (12) yields - via (6) - a constant both in the domain and the range, 

t{T) = T-t = ^ - t . (37) 

Thus a given duration and thus frequency of impulses in the range will not change in 
the domain. 
In contrast, space variables transform back from range into domain by 

x{X) = jX{X)dX = — ^ f^D(x)dX, (38) 
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2-

:d(x) ; : ; 
: : 1 : 1 
: ; 1 ; 1 

:0 • | 2 0 - 140 

; 1 
: 1 

1 
• 1 
; 1 

; 1 

!60 • 180 

1 

1 

1 
lOD 

: • • i • 1 X 
, , 1 , 1 

: • 1 • 1 

: : 1 : ' : : 1 : 1 
:D(X) 1 : ! 

; 1 
; 1 
! 1 
: 1 ; 1 
; 1 

1 
! 1 

Geometry type: uniform 

X 

1 
1 
1 

V 
mV| 

120 

40 

5,9 8,9 12 x/cm 

FIGURE 4. Propagation of traveling fronts along axons of the geometry types presented in Tables 1 and 
3, In the subfigures, the axon diameter functions d{x) and D{X) in the domain and range are displayed 
(top), and below snapshots of traveling fronts moving leftwards are presented. 

i.e., distances of equal length in the image space have in general different lengths in 
the domain. This is also true for potential values which transform space-dependent. 
A potential of amplitude W in the range yields in the domain a potential V depending on 
the cable diameter: 

V-
4Ri 

•D{X) - 3 / 4 
w. (39) 

Traveling front solutions of (constant) speed 0 in the range yield excitation fronts in 
the domain which propagate with space-dependent speed @x (Figure 4). Using Eqs. (37) 
and (38), we obtain 

^ dX X ̂  0 iGm ,, s ,.r., 
®x = -7: = -@ = 7^T^\-^d{x). (40) 

In Figure 4, the propagation of traveling fronts along axon cables obeying the diameter 
functions given in Tables 1 or 3, respectively, is presented. 
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ion 

Geometry type: exponential 

13 17 x/cm 7 x/cm 

lOP 

Geometry type: hyperbohc cosine 

0 2,3 4,6 6,9 9,2 x/cm 0 3,2 6,4 9,6 13 x/cm 

FIGURE 4. (continued). 
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To summarize, we can state the following conclusions on action potentials propagat­
ing along axons of the nonuniform geometry types presented in Tables 1 or 3, respec­
tively: 

If the diameter of the axon in the domain widens, 

• the speed of the action potential front increases, see (40) and Figure 4, 
• the length of the excited axon region increases, see (38) and Figure 4, 
• the spike height decreases, see (39) and Figure 4, and 
• the spike duration and frequency remain unchanged, see (37). 

The method presented in this paper has been also apphed to the problem of reducing 
a dendritic tree with active membrane to an equivalent cable [2]. In that paper, we have 
stated in a short note that for the piecewise linear FHN model (30),(31) traveling wave 
solutions can be analytically derived. We will present this case in detail in a forthcoming 
paper. 
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