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This paper is focused on quantification (morphometry) and modeling of neuronal morphological complexity. 
First, computer-aided methods for reconstruction, processing, and analysis of raw morphological data are 
reviewed. Then, topological and metrical measures are touched upon. Fractal measures (together with the 
extension of multiscale fractal dimension) are presented more explicitly. Models of neuronal arborizations 
are differentiated between reconstruction models and growth models (stochastic or mechanistic). The growth 
model approach is discussed in more detail. The methods presented are applied to several types of neurons 
and shown to have considerable discriminative power. Recent developments stress the importance of these 
methods for optimizing virtual neuronal trees in view of functional characteristics of the neurons.
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INTRODUCTION

To understand the brain, its organization must be 
studied at different levels from both ontogenetic and 
phylogenetic aspects. At the cellular level, neurons in 
different brain regions of one species and in the same 
brain region of different species must be compared with 
respect to their structural and functional properties.

The nervous system shows a great variety in neuronal 
shapes and cell types, as well as a large variability within 
these neuron classes (Fig. 1 from Ramon y Cajal [1] and 
Schierwagen and Grantyn [2]). The neuronal structure 
is characterized by elongated processes (neurites); 
among them, two kinds can be differentiated, axons 
and often-branching dendrites. From a functional point 
of view, axons and dendrites are conduits for electrical 
and chemical signals. The shapes of neurites determine 
not only the routes for signal transmission within the 
nervous system but also the way in which electrical 
signals are processed and transmitted. Neurons attain 
their shapes as a result of developmental processes in 
which intracellular mechanisms and interactions with 
local environments are operating in concert. Activity-
dependent mechanisms make the morphological 

Fig. 1. Variety of the neuronal forms. Neuron shapes range from a 
pyramidal neuron of the cerebral cortex (A) to a Purkinje cell of the 
cerebellum (B), and a multipolar neuron of the superior colliculus 
(C). A and B) From Ramon y Cajal [1], C) from Schierwagen and 
Grantyn [2].
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development also a function of the neuron’s connectivity 
with other neurons and the electrical activity in the 
neuronal network. 

The intricate interplay between the morphological 
parameters and the complexities of excitable neuronal 
membranes is still poorly understood. Formal and 
simulation approaches have been established to 
provide support for dealing with it (e.g., [3-5]). In the 
following, I give a review (concededly biased by my own 
contributions to the field) on morphological quantification
(neuromorphometry) and mathematical modeling 
approaches to the neuron structure and function.

PROCESSING AND QUANTIFYING 
NEURONAL MORPHOLOGICAL DATA

A basic requisite for realistic modeling is the 
acquisition, processing, reconstruction, analysis, 
and visualization of neuronal morphological data. 
The quantitative characterization of the neuronal 
shape requires morphological reconstruction. For 
this, neurons are stained with a contrast substance 
(e.g., by means of Golgi techniques, HRP, or 
immunocytochemistry). 

Recent methods are characterized by sophisticated 
and adaptive segmentation procedures and automation 

of the reconstruction process of 3D neuronal 
arborizations from stacks of digitized (confocal) 
images. In turn, images are thresholded resulting in 
binary images with 1- and 0-voxels representing the 
neuronal shape and background regions, respectively. 
The morphology files created are processed with, 
e.g., CVAPP [6], a Java application for cell viewing, 
editing, and format converting (Fig. 2). Programs like 
CVAPP are also used to prepare structures digitized 
with reconstruction software for modeling with 
simulators like NEURON (http://www.neuron.yale.
edu) or GENESIS (http://www.genesis-sim.org).

Neurons are 3D objects, and the location of 
their cell bodies within the nerve tissue, as well as 
the number, spatial extent, branching complexity, 
and 3D embedding of their axonal and dendritic 
arborizations, are prominent shape characteristics that 
may be significantly dissimilar in different cell types. 
Morphological quantification of these characteristics 
(neuromorphometry) requires appropriate measures 
that have been developed over the years. In short, they 
can be described as follows.

The branching complexity of neuronal arborizations 
is determined by topological and metrical properties. 
For topological characterization, a neuronal tree is 
reduced to a skeleton structure of points (branching or 
terminal points) and segments between these points. 

Fig. 2. Screenshot of CVAPP display of a 
pyramidal neuron from the cortex of the synRas 
transgenic mouse.
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Such a skeleton forms a specific rooted tree from a finite
set of possible different topological tree types. The tree-
asymmetry index provides a discriminative measure 
based on asymmetries in pairs of subtrees at bifurcations 
[7]. A segment can be labelled by its centrifugal order 
(number of segments on its path to the root). Metrical 
aspects include the length and diameter of the segments, 
path lengths (total length of the path from the dendritic 
root to a branch point or terminal tip), radial distances of 
terminal tips from the center of the cell, and branching 
angles. A different class of measures is concerned with 
the spatial embedding in 3D space and focuses on, e.g., 
the spatial extension, spatial density, spatial orientation, 
and space filling of the structure. Initially, such measures
were developed for projected 2D images. For example, 
Sholl [8] put an overlay of concentric circles on the 
projected image and counted the number of branch 
points within each circle (Sholl analysis). 

FRACTAL ANALYSES

Other selective measures for neuronal arborizations 
have been based on the observation that neuronal 
dendrites are tenous structures whose average density 
decreases with the distance from the soma. This is a 
property found generally in self-similar objects. A 
self-similar, or fractal, structure is an object whose 
statistical properties are unchanged under a change 
in spatial length scale. In other words, two pieces of 
an ideal fractal of different sizes are equivalent over 
all length scales. One quantitative measure of self-
similarity is the fractal dimension D introduced by 
Mandelbrot in 1983 [9], which is smaller than the 
Euclidean dimension d of the embedding space but 
greater than their topological dimension dt. 

Fractal Dimension. There are several methods for 
describing dendritic trees by fractal measurements, 
including the mass-radius, box-counting, and dilation 
methods [10]. In 1986, the cumulative intersection 
method for fractal analysis of neuronal dendritic trees 
was introduced [11, 12]. This approach was based on 
the method described by Sholl [8], and, later on, it 
was implemented in Fractop, a web-based program for 
automatic fractal analysis [13].

The method uses concentrically organized circles 
(in 2D) or spherical shells (in 3D) centered at the 
cell body. If a neuron corresponds to a 3D fractal, the 
relation between the total length N of all branches 
inside a shell of radius R should follow a power law

.

Thus, the number of branches n(R) at a given 
distance R from the soma is approximately given by 
(cf. [10])

.

The cumulative number of intersections n(R) between 
dendritic branches and shells of increasing radii R is 
counted. The slope of the log–log relationship between 
the cumulative number of intersections and radius is 
calculated by linear regression, and the fractal dimension 
is obtained. For example, the analysis of reconstructed 
neurons from the cat superior colliculus [2] yielded 
D ≈ 2.1 for deep-layer multipolar neurons, whereas 
specialized superficial-layer neurons had D ≈ 2.4-
2.7 (Fig. 3). Interestingly, these results are in general 
agreement with results derived from 3D simulations of 
the diffusion-limited growth (DLG) model for which 
D ≈ 2.5 was calculated [14] (see below). 

Fractal analysis has found widespread application 
in the field of neuroscience. Various authors have 
discussed classification systems of neurons using 
fractal analysis and proved that fractal dimension 
could categorize different classes of neurons from 
the superior colliculus, retina, spinal cord, and cortex 
(e.g., [12] and review by Costa et al [15]).

Multiscale Extension of Fractal Dimension. The 
application of fractal analyses to neuroscience data 
(and, in general, to physical, biological, and other 
structures in nature) is complicated by the fact that 
the latter objects are not perfectly self-similar. The 
scaling ranges of experimentally identified neuronal 
fractals are limited, often to less than two or three 
orders of similarity [15]. This problem can be suitably 
addressed by using the multiscale extension of the 
fractal dimension recently described [10, 16]; the 
respective approach involves numerical estimation of 
the first derivative of a log-log cumulative function. 
While the traditional fractal dimension corresponds to 
a single scalar value, the multiscale fractal dimension 
(MFD) D becomes a function f(s) of the spatial scale 
parameter s. 

Given that the fractal dimension D of real objects 
decreases at both micro and macro scales, a peak 
fractality, fM, is observed near the intermediate 
scales (in Fig. 4, near s = 2.0). This fact points to 
the advantages of the MFD over the traditional fractal 
dimension; it provides additional information about the 
analyzed shapes. Meaningful parameters are the peak 
fractality, fM, the corresponding spatial scale, sM , and 
the average fractality, <f>, to be calculated and used 
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as subsidy for quantifying and characterizing different 
types of the cells. Since the MFD is independent 
of size-related parameters like the surface area and 
volume, it is particularly suitable for studies of onto- 
and phylogenetic changes at the level of certain neuron 
types. For example, a multiscale fractal analysis 
has only recently been applied to quantitatively 
characterize the phenotype of pyramidal neurons in 
synRas transgenic mice ([16], cf. Fig. 4). In this mouse 
mutant, a permanently active Ras protein in post-
mitotic neurons is expressed. The computed features 
showed that transgenic neurons are less complex, as 
measured by the peak fractal dimension, as compared 
with their wild-type counterpart. At the same time, 
transgenic pyramidal neurons are characterized by 
increased dispersion, as compared with the wild-
type pyramidal neurons, suggesting that the enhanced 
Ras activity in transgenic mice may lead to a greater 
morphological variety of the cell phenotype.

A general drawback of these methods is that they 
cannot capture the internal connectivity structure of 
neuronal arborizations, thus making the measures less 
suited for reconstructing or synthesizing random trees. 

MODELING NEURONAL MORPHOLOGY

Different strategies are used in modeling the 
complexity and variety of neuronal arborizations. All 

strategies are aimed at synthesizing neuronal branching 
patterns that conform as much as possible to the shape 
characteristics of observed and reconstructed neurons. 
Strategies are dissimilar in the assumptions made, 
in the meaning of the model parameters, and in the 
procedures to find optimal values for them [17, 18].

Reconstruction models suppose to achieve 
defining minimal algorithms for generating trees, 
which reproduce statistical properties of the observed 
neuronal shapes [19]. Recent developments include the 
use of both stochastic and deterministic Lindenmayer 
systems [20] for generating synthetic trees (see, e.g., 
[21]. While these models are purely descriptive, 
growth models are aimed at finding elementary rules 
of development, to “explain” the eventual variation in 
full-grown arborizations. They can be differentiated 
into stochastic growth models, which assume the 
growth actions to be described as outcomes of 
stochastic processes, and mechanistic growth models, 
which are aimed at describing the outgrowth process 
on the basis of intra- and extracellular mechanisms. 

The approach used in stochastic growth models is 
exemplified by the BES model [18]. Dendritic growth 
is described by a stochastic nonstationary process 
of segment branching and elongation. Briefly, the 
branching probability of a terminal segment per time 
bin is given by , where N is the total 
number of time bins in the full period of development, 
and ni is the actual number of terminal segments 

Fig. 3. Illustration of the cumulative intersection method. A) With the soma in the center of a sphere of radius R, the number of branches 
n(R) at the distance R is counted. The fractal dimension D can be calculated by varying R (see the text). B) Double-logarithmic plot of n(R) 
vs R. These data refer to multipolar neurons from the superior colliculus [2].
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in the tree at a time bin i. Parameter B denotes the 
expected number of branching events at an isolated 
segment within the full period. Parameters E and S 
determine how strong the branching probability of 
a terminal segment depends on the actual number of 
segments and its proximal/distal location in the tree, 
respectively. Parameter γ denotes the centrifugal 
order of the terminal segment, and  is 
a normalization constant, with summation running 
over all ni terminal segments. 

The modular structure of the model facilitates the 
determination of optimal parameter values. In short, 
parameter S is estimated from the topological structure 
via the asymmetry index, and parameters B and E are 
estimated from the empirical distribution of segment 
numbers. 

Simulation studies with growth models have 
shown that the dendritic morphological complexity 
can accurately be reproduced. Results of several 
morphometry and modeling studies with the BES 
model have been presented for dendritic trees of 
rat pyramidal cells in the cortical layers 2/3 and 5, 
guinea-pig cerebellar Purkinje cells, and multipolar 
neurons of the cat superior colliculus [18, 22]. The 
dendritic trees of each of the neuron classes have 
been effectively represented by a specific set of 
model parameters B, E, and S (Fig. 5). In this way, a 
considerable compression of the morphological data 
has been obtained, and the analysis and comparison 
of the dendritic shapes of neuron classes during the 
development, maturity, and disease become feasible. 

An example of a mechanistic growth model is given 
by the diffusion-limited growth model (DLG) (see 
the Fractal Analysis section). Using evidence from 
developmental neurobiology, DLG was suggested to 
provide a guiding principle to explain basic aspects 

of dendritic growth [11, 12]. These ideas have been 
adopted by Caserta et al. [23] and currently revived 
by Luczak [24].

CONCLUSION

In this paper, I have reviewed various approaches 
to morphometry and to modeling the morphological 
complexity of neurons. Computer-aided methods 
for reconstruction, processing, and analysis of raw 
morphological data were mentioned. Then, topological 
and metrical measures were touched upon. Fractal 
measures (together with the extension of multiscale 
fractal dimension) were presented more explicitly. 

Models of neuronal arborizations have been 
assorted into reconstruction models and growth 
models (stochastic or mechanistic). The growth model 
approach was discussed in more detail. Both the 
morphometry and modeling methods presented were 
applied to several types of neurons and were shown to 
have a discriminative power. 

One of the reasons for defining shape parameters 
and establishing growth models has been the neuronal 
form-function problem, which reads in its updated 
version: What is the influence of neuronal morphology 
on the computational capabilities of a neuron? 

Fig. 4. Multiscale fractal analysis for the transgenic pyramidal cell 
displayed in Fig. 2. Shown is the multiscale fractal dimension f(s) 
as a function of the spatial scale parameter s, the maximum (peak) 
fractality fM, and the corresponding spatial scale sM. Adapted from 
Schierwagen et al. [16].
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Fig. 5. Scatterplot of the growth model parameters B and E optimized 
for rat cortical pyramidal neurons (a), rat cortical multipolar non-
pyramidal neurons (b), rat motoneurons (c), human dentate granule 
cells (d), cultured cholinergic interneurons (e), cat motoneurons (f), 
frog motoneurons (g), and cat superior colliculus neurons (h). From 
van Pelt and Schierwagen [18].
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Very recently, studies were published, which seem 
promising for the investigation of this problem. Virtual 
neurons were generated and validated via Genetic 
Algorithms with respect to a prespecified fitness 
criterion, which is a specific computational function 
of the neurons. An example could be the coincidence 
detection, and the required criterion would be the 
neuron tuning to a specific activation pattern. 

For example, an optimization procedure was 
used by Stiefel and Sejnowski [25] to find neuronal 
morphological structures (with passive electrical 
membrane properties only) for two computational 
tasks: for linearly summing excitatory synaptic 
potentials (EPSPs), and to distinguish the temporal 
order of EPSPs. The solutions resembled the 
morphology of real neurons. 

This kind of automated mapping between neuronal 
computations and structure seems undoubtedly 
attractive. It remains to be seen of how this approach 
can cope with the full complexities of neuron 
morphology and membrane conductances. While this 
is just a technical problem (how to do an effective 
multi-objective optimization), a more serious 
question is whether at all a specific computation can 
be identified for a given class of neurons. Elsewhere, 
I have discussed the trouble caused by this so-called 
neurocomputational conception [26]. Nevertheless, 
the methods have their importance for optimizing 
virtual neuronal trees in view of biophysical and 
physiological characteristics.
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