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ABSTRACT

The functional role of a neuron within a network is influenced by the geometry of its
dendrites. In the present study we have used a new model of dendritic arborization to
analyze how metrical and topological parameters interact to shape a certain dendritic
tree. One of the specific questions addressed is how to change topological variability in
a systematic way while preserving the metrical features. The second problem concerns
the effect of topology on the relationship between dendritic size and the distribution of
dendritic surface area with radial distance from soma. The simulation results reproduce
features of dendritic architecture found in neocortical pyramidal cells and cat superior
colliculus neurons.
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1. Introduction

In many neurons of the central nervous system, dendrites constitute more than
90 % of the membrane surface area, thus receiving the majority of synaptic inputs.
The structure of the dendrites therefore can influence the way in which the neuron
processes incoming synaptic potentials (see, e.g. [6,8,12]).

Intracellular staining techniques (HRP, Biocytin etc.) as well as the use of Golgi
impregnation have enabled quantitative studies of dendritic morphology in various
neuron species, comprising motorneurons (e.g. [5]), pyramidal cells of the cortex
[4] and superior colliculus neurons [7]. As yet, most quantitative descriptions of
neuronal dendrites have considered either metrical features (dimensions and statis-
tical variability of soma size, diameters and lengths of dendritic segments, surface
area and volume of the dendritic trees) and correlations between them, or topo-
logical characteristics (the types and variability of the connectivity pattern of the
dendritic segments). Metrical and topological aspects of dendritic shape, however,
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are obviously intermingled, and their relative contribution must be assessed. In the
present study we have analyzed how metrical and topological parameters interact
to shape individual dendritic trees. After summarizing measures of metrical tree
properties, parameters of topological variability are introduced which have been
proved powerful descriptors. Based on experimental findings in the neuron species
cited above, a small set of basic variables is specified which completely determines
a dendritic tree. The model system devised to simulate dendritic trees possesses a
unique feature in that it allows to control topological features independently from
the metrical parametrization. Elsewhere this model has been employed to study
the impact of topological variability on dendritic information processing [12].

Two specific questions are addressed in this article which may be regarded as
part of the aim to derive general rules of dendritic organization. The first is the
metrical normalization problem for dendritic trees, i.e. how to change topological
variability in a systematic way while preserving the metrical features. The sec-
ond problem concerns the effect of topology on the relationship between dendritic
size and the distribution of dendritic surface area with radial distance from soma
(see [3]). To test the model performance, we have used it to produce topology-
determined features of dendritic architecture which could be shown to resemble the
findings in rat neocortical pyramidal cells [4] and cat superior colliculus neurons [7].

2. Parameters of Dendritic Shape

From the literature a variety of parameters describing specific aspects of dendritic
architecture can be extracted, including correlations between these parameters (e.g.
[1-5,7]). Parameters of dendritic shape may be differentiated into global (tree) char-
acteristics (e.g. total membrane surface area, total volume, number of dendritic
terminals) and local, segmental quantities (diameters and lengths of intermediate
and terminal segments, branching diameter ratio, segment taper etc.), see [2]. The
local parameters of dendritic shape give rise to the global characteristics branching
pattern, total cross-sectional area, volume, dendritic length and surface area. Ob-
viously, the connectivity pattern of the segments in the dendritic tree — termed
“tree topology” — decisively influences the way of making the global shape from
segmental quantities. In the following, we will focus on topology while metrical
complexity and variability of segments is strongly reduced.

2.1. Metrical Parameters
2.1.1. Segmental Parameters

Basic to the metrical description of dendrites are the dimensions of their segments.
Assuming simple cylindric shape, segment dimensions are defined by lengths and
diameters. Curvature and taper of segments will be not considered in this study.
The 3-dimensional orientation of the segments is assumed to be in radial direction
with respect to the soma.
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Segment diameter. Although segment diameters exhibit large variation, a common
feature in most neurons studied so far is the steep decline of segment diameter
with branching order. According to Hillman [1], diameters of terminal segments are
constrained by values of less than 1 ym. In many neurons, the diameter relationship
at points where segments branch, i.e. between diameters of the parent (d,) and
daughter segments (d; and d2) has been described by the branch power, viz. the
exponent e fullfilling the equation dj = df + d5.

Segment length. Distributions of segment lengths also show large variation. A
general observation in many dendrites, however, is that terminal segments have a
greater mean length than intermediate segments (e.g. [4,7]). Typical values for the
distribution means of intermediate and terminal segment lengths are given below.
More specific findings such as order dependency of terminal segment lengths will
not be included here.

2.1.2. Global Parameters

The combination of segmental parameters forms a set of global parameters which
are used to relate the shape of a neuron to its function. The major parameters
considered here are total surface area, volume and length of the dendritic segments
and their spatial distribution.

2.2. Dendritic Topology

Categorizing dendritic trees according to topological type depends on the pattern-
ing of segments, and is independent of metrical and orientation features. For a
given number of segments only a finite number of different connectivity patterns
(tree types) is possible, although this number rapidly increases with the number
of terminal segments (the degree of the tree) [10]. An efficient measure for tree
topology is the tree asymmetry [11], defined as the mean value of the asymmetry
of its partitions

A= — D Ap(riysi). (1)

n-—1
The summation runs over all n — 1 branch points of the tree with degree n while

the partition (r;,s;) denotes the degrees of both subtrees at branch point 7, and 4,
denotes the partition asymmetry

Ir = s|

pzm if r+s>2 and Ap(l,].):O (2)

The values of tree asymmetry range from zero for perfectly symmetrical trees to
approaching one for most asymmetrical trees [11]. From experimental observations
on neuronal dendritic trees we know that the various tree types do not occur with
equal likelihood. Model studies on the growth of tree patterns have shown that
among the large number of possible tree types only a limited number of them have
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a higher probability of occurrence which depends on the mode of growth of the den-
drites. In the QS model [9], the growth of trees is described by a series of branching
events during which a new terminal segment is attached to an existing one. The
parameter @ defines the ratio for the branching probabilities of intermediate and
terminal segments, and the parameter S defines how the branching probabilities
depend on the branching order. Two particular growth modes have received much
attention, viz. the random terminal growth mode in which only terminal segments
branch with the same probability (i.e. @ = 0, S = 0), and the random segmental
growth mode in which all segments with equal probability branch (Q = 0.5, S = 0).
In a recent study it was shown that the expectation of the tree asymmetry depends
strongly on the mode of growth and that the expected value is almost independent
of tree degree [11]. Observed mean (+SD) values for the tree asymmetry are, e.g.,
0.38 (£0.22) for basal dendrites of pyramidal cells and 0.43 (+0.26) for dendrites of
multipolar nonpyramidal neurons [11]. By appropriate parameter choices, the QS
model could reproduce these observed asymmetry values.

3. Parametrization of Dendritic Trees and Model Construction

In order to analyze the impact of topology on dendritic shape, the complexity
and variability of segmental dimensions was excluded. Therefore, we used a fixed
parametrization for the metrical properties. First, all terminal segments have equal
diameter d;. Second, a branch power relation was used for calculating the diameters
of intermediate segments. The diameter d, of an intermediate segment s is obtained
then by

ds = dynl/e, 3)
where n, denotes the degree of the subtree emanating from segment s. In particular,
we yield for the root diameter d,

d, = dyn'/e, (4)

from which follows that the root diameter d, is independent of the topological tree
type. Finally, lengths /; and I, of intermediate and terminal segments, respectively,
were taken fixed, resulting in a fixed length ratio r;; = %: Different topological
tree types were produced with the @S growth model, using (@, S) = (0,0) (random
terminal growth mode) and (Q,S) = (0.5,0) (random segmental growth mode).
The most symmetrical and asymmetrical trees were also included to cover the total
range of topological variation.

Thus, generation of dendritic trees proceeded in two steps: (1) a topological
“skeleton” of a certain asymmetry value A; was produced via the (Q, S) model to
which (2) “flesh” was attached using a specific metrical parametrization.

4. Simulation Results

By choosing specific sets of segmental parameters, two basic types of dendritic trees
were modeled. Type 1 dendritic trees were generated to reproduce the main features
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Fig. 1. Path distance analyses for (a) Type 1 and (b) Type 2 dendritic trees. Displayed are the
distribution of aggregate dendritic length, number of segments, volume, surface area and 3" d3/2,
each per 85 um (Type 1) and 10 pm (Type 2) bin length, as functions of path distance from
the soma. Each plate contains four curves, corresponding to the asymmetry values of the most
symmetrical (0.20) and most asymmetrical tree (0.83), and the mean asymmetry values of 100
trees grown in the random segmental (0.55) and terminal growth mode (0.48).
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Fig. 2. The global parameters of dendritic shape — total volume, surface area and dendritic
length — as functions of degree and topology for (a) Type 1 and (b) Type 2 trees. Each plate
displays three curves, labeled with the mean asymmetry values of 50 random trees obtained for
symmetrical trees (Q, S) = (0,4), trees grown in the random segmental mode (Q, S) = (0.5,0) and
asymmetrical trees (Q, S) = (0.99,0).

of large multipolar neurons, such as spinal motorneurons [5] and superior colliculus
neurons (7] of the cat. Parameter values used for the simulations were taken from
[7): degree n = 19, length of terminal segments l; = 107 um, segment length ratio
ri¢ = 0.8, diameter of terminal tips d; = 1 pm and branch power e = 1.47.

With Type 2 dendritic trees, the main features of smaller neurons, such as the
basal dendrites of neocortical pyramidal cells of the rat should be reproduced. The
parameter values used for generating Type 2 trees were taken from [4]: degree n =7,
length of terminal segments /; = 102 um, segment length ratio r;; = 0.1, diameter
of terminal tips d; = 0.6 pm and branch power e = 1.75.

The results of the first set of simulations are presented in Fig. 1. This figure
depicts the radial extent and spatial distribution of several characteristic quantities
for trees with variable topological asymmetry. Displayed is the distribution of accu-
mulated dendritic length, number of segments, dendritic volume, surface area and
dendritic trunk parameter 3 d%/2 (the latter parameter is an often used morpholog-
ical predictor of the passive electrotonic structure of the tree, cf. [8]). With increas-
ing asymmetry value the spatial distribution of the quantities is changed: dendrites
extend further, the height of the peak is decreased but its location remains more
or less unchanged. This is in good accordance with findings in motorneurons where
such differences have been ascribed variations within and between cell classes [1, 9].
In Type 2 dendrites, the spatial distribution curves reproduce the situation found
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in the basal dendrites of pyramidal cells [4]. For example, the number of segments
in the model shows the same course with distance from the root of the dendrite as
in Larkman’s experimental data: a rapid increase for the first 40-50 um, followed
by a plateau extending to 100-120 pum and a steep decline down to 160 ym. This
general picture is only slightly modified by topological variation (Fig. 1).

In the second set of simulations, the tree size (degree n) was varied while all
the other values of the parametrization remained fixed. We found that the rela-
tive impact of topological variability strongly depends on tree size. The metrical
parametrization used determines the basic level specified by the symmetrical trees
(Fig. 2). By comparing Type 1 and Type 2 tree simulations, it turns out that
among the metrical parameters branch power seems to have the most remarkable
effect on the global tree parameters. Total dendritic length does not depend on tree
asymmetry for the metrical parametrization used.

5. Discussion

The impact of topological asymmetry on global features of dendritic shape has been
studied, using a new model which allows to control the topological type (and thus
the asymmetry) of the tree while preserving the segmental characteristics. From the
various relations proved to exist between the parameters of a dendritic tree, we have
selected that between stem diameter and degree (via branch power) to attach met-
rical dimensions to the topological “skeleton” of the tree grown by the QS model.
To test the model performance, we have applied it to reproduce features in the orig-
inal data on superior colliculus neurons, motorneurons and cortical pyramidal cells
that have not been explicitly included in the model construction. The simulation
results might be summarized as follows. Dendritic trees of Type 1 and Type 2 are
distinctly different with respect to the distributional relationships studied. Strictly
speaking, topological variability is of significant influence in Type 1 trees whereas
it has negligible impact on Type 2 dendrites. Thus, it provides a natural explana-
tion for the observed differences in the degree of “remoteness” of dendritic trees,
i.e. the radial extent and spatial distribution of surface area, volume and dendritic
length found within and between neuron species. These findings are in accordance
with experimental results on many neuron types, stating that large dendritic trees
are not scaled-up versions of the smaller trees (e.g., [3]). A prediction of the sim-
ulation results is that for larger dendritic trees, the variability in topology should
have substantial effect on the strength of the correlation between stem diameter
and total surface area or volume: the larger the tree, the weaker the correlation
may be. These results are of general importance in analyses of neuronal form-
function relationship where the relative contribution of topology is assessed [12].
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