J. Theoret. Neurobiol. 4, 61-71 (1985)
Printed in Australia

REPOLARIZING CURRENTS AND PERIODIC ACTIVITY IN NERVE
MEMBRANE*

A. V. HOLDEN,! M. A. MUHAMAD? and A. K. SCHIERWAGEN3

(Received February 25, 1985)

Abstract

Equilibrium solutions of membrane excitation equations lose their stability,
and give rise to periodic solutions, at Hopf bifurcation points. These occur in
response to a depolarizing applied current, or a reduced repolarizing current,
produced by either a reduction in the maximal potassium conductance gg,ora
shift in the Nernst potential for K*. In both the Vg —1 and the gg —I plane
there is a region where there are 3 equilibrium solutions: this is the projection of
a cusp catastrophe.

1. Introduction

The electrical activity of isopotential neuronal membrane may be represented by
an excitation equation of the form )

(1 dvidt=F(V,x,y)

with xg[0,1]/ and _Vs[O,l]" the /-activation and k-inactivation gating variables con-
trolling voltage dependent ionic conductances. The Hodgkin-Huxley system is an
example of an excitation equation, with two activation variables (m and n) and an
inactivation variable /; other excitable membranes have different number of gated
conductances and gating variables. Mathematical and comparative aspects of exci-
‘tation systems are reviewed in Holden (1982) and Holden and Winlow (1984).
The quasi-threshold behaviour of an excitable membrane is determined by the fast
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processes that give rise to the upswing of the action potential: this is the basis of the
two-dimensional reduced V-m system of FitzHugh (1960). However. with the
exception of the giant axons of escape systems of invertebrates, an action potential in
a neurone has little consequence on the behaviour of an animal. The normal
operating mode of a neuron is an irregular, repetitive discharge. This repetitive
activity may be idealized as periodic solutions of the membrane excitation
system.

Periodic solutions are influenced by the ionic currents that produced repolarization
and that flow during the interspike interval: these are K *-selective currents. For a
uniformly polarized membrane with some independent conductance systems g; in
parallel with a capacity C,, the membrane current /,, can be described by the
equation

dv
(2) Iy=Cpm—+ X g(V=1))

dt j
where V'is the membrane voltage and g;=g;( V') are the voltage-controlled conduct-
ances for ion species j=1, 2, . ... The corresponding electro-chemical equilibrium

potential ¥} is determined by the Nernst formula

where = is the valence of the ion, C; and C, are the inside and outside ion concen-
. . RT .
trations, respectively, and T is the usual constant.

The number and kind of the conductances determine membrane behaviour of
different complexity. If only a single species of ion is permeable through the
membrane, i.e. for i=1, inexcitability follows as the I,,— V relation for a single
conductance can have only a single root 1,,,= 0 that is necessarily stable. The minimal
number of conductances required for excitation is two to generate the N-shaped
1,,— V relation that characterizes excitability. Thus the nodal membrane of rabbit
myelinated nerve seems to be one of the simplest possible excitable membranes (Chiu
etal., 1979).

The standard H-H model involves three conductances gna, gk and g, which is a
constant. The time and voltage dependence of gn, and gk is given as

(3) gNa= BNa/M h gk = g 1

where the bar denotes maximal conductances (mS/cm?), and the activation and
inactivation variables follow first order kinetics.
dx
—=0a,(1 —x)— Byx
d’ X( ) ﬂx
for x=m, h, n and the rate coefficients a,, B, are voltage dependent.

Recent voltage clamp results show that the membranes of the soma and of the pre-
synaptic terminal of molluscan nerves are more complex than that of the axon
(Kandel, 1980). Thus it is now established that there are at least three independent
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K* channels in the cell body membrane (Hagiwara et al., 1961; Neher & Lux, 1971,
Meech, 1974): an early or fast K* conductance g4, a conventional slow H-H K*
conductance gk (both go and gg are controlled by activation and inactivation
processes), and a calcium activated K+ conductance &K(ca) that overlaps in time with
the slow gk. Each of these repolarization conductances is implicated in rhythmic
activity, though in different ways: the fast g, is considered to be instrumental in deter-
mining the repetitive discharge characteristics by changing the interspike interval, g
contributes to the repolarization phase of the action potential, and gg(ca) may be
responsible for modulation of firing behaviour (Heyer & Lux, 1978).

All the major currents of the molluscan neuronal cell body can also be found in
vertebrate neurons, including those of mammals, whose neuron somata can contain
an even richer variety of conductances (Llinas, 1984). Some of these newly discovered
conductance systems can be described by H-H like equations, as for example the early
or fast K conductance g4 of Connor and Stevens which is analogous to the transient
outward current described by Gustaffson ez al. (1982) in hippocampal CA3 neurons
of the guinea pig.

In spite of the great number and staggering variety of conductances found in both
vertebrate and invertebrate neuron somata, the original H-H model still provides a
framework for the analysis of the functional role of the ionic currents in the electrical
behaviour of neuronal excitable membranes.

2. Methods

The membrane current density and potential for an isopotential patch of mem-
brane were given by the standard 6.3°C 1952 Hodgkin-Huxley equations, with a
maintained applied current /, and the maximal potassium conductance g and the
Nernst potential for potassium Vg treated as bifurcation parameters. Numerical
solutions were obtained using the simple Euler method of integration, with an
integration step of 0.02 ms, with specified initial conditions (V,myg. hg.ng).

The Jacobian matrix for the Hodgkin-Huxley system, evaluated at a stationary
point where dV/dt=dm/dt=dh/dt=dn/dt=0, is

_GF  _8F  _9F  _0F
av am an dh

YmMs —Ym 0 0

YnNéo 0 ~Tn 0

Yhhoo 0 0 ~Yh

with y,= a,+ By, for x=m,n,h, and F(V,m,n,h) given by the Hodgkin-Huxley
membrane equations.
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The eigenvalues of this Jacobian were calculated using algebraic methods, and the
characteristics were evaluated according to the methods of Marsden and McCracken
(1976). Calculations were performed in BASIC on a microcomputer (Zilog MCZ
1/20), and in FORTRAN 77 on the University of Leeds mainframe Amdahl V/470.
Further details are given in Holden and Schierwagen (1985).

3. Results

The Hodgkin-Huxley equations may be driven into repetitive activity by a main-
tained depolarizing current density, a decrease in the maximal Kt conductance, or by
moving the Nernst potential for K™ in the depolarizing direction. In all these cases
large amplitude period solutions are obtained, as illustrated in Fig. 1, which shows a
family of solutions arising from a standard initial condition as Vg is moved towards
the standard resting potential.

Although such large amplitude periodic solutions correspond to a repetitive dis-
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Fig. 1. Numerical solutions of the standard Hodgkin-Huxley membrane equations as the Nernst
potential for K¥, Vk, is moved in the depolarizing direction from —5 mV towards the standard
resting potential of 0 mV. The standard Vg is — 12 mV.
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charge of action potentials, one would expect small amplitude periodic solutions to
emerge as the equilibrium solution loses its stability. The equilibrium solution is
unstable ifany of its eigenvalues have positive real parts: ata Hopf bifurcation a single
complex conjugate pair of eigenvalues crosses the imaginary axis. Numerical evalu-
ation of the eigenvalues show, that as a depolarizing current / is increased, or the
maximal K% conductance is decreased, or as Vg moves in the depolarizing direction,
a single complex conjugate pair of eigenvalues crosses the imaginary axis (Hassard,
1978: Holden and Yoda, 1981). Thus Hopf bifurcations into small amplitude
periodic solutions occur. For the standard Hodgkin-Huxley equations at 6.3°C, these
Hopf bifurcations occur at / close to 9.8 uA cm ™2, and gk close to 19.7 mS cm 2,
and Vg close to —1.9mV. In all these three cases the small amplitude periodic
solutions that emerge are unstable: they are subcritical Hopf bifurcations. The
unstable periodic solutions that emerge at such a subcritical Hopf bifurcation will not
be seen in experiments, or in numerical integrations: they will provide the transient
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Fig. 2. Peak-to-peak amplitude v of periodic solutions of the standard Hodgkin-Huxley equations as

the depolarizing current density is increased, for gg of 18 and 36 mS cm ~2, Filled circles mark sub-

critical Hopf bifurcations; /| and I, are the sub- and the supercritical Hopf bifurcation points for the
standard, unmodified H-H membrane equations driven by a depolarizing current density.
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pathway to the stable, large amplitude periodic solutions that correspond to action
potentials.

Just below such a subcritical Hopf bifurcation, there is a narrow range of the bifur-
cation parameter within which there is a stable, large amplitude, periodic solution, an
unstable, small amplitude periodic solution, and a stable equilibrium solution. Thus
there is the possibility of the annihilation of a repetitive discharge of action potentials
within this parameter range, by an appropriate perturbation (Best, 1979); this has
been seen experimentally (Guttman et al., 1980).
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Fig. 3. Hopf bifurcation curve in the gx — I plane. Where the curve crosses over itself there is a region
of multiple equilibria.
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The peak-to-peak amplitude of the periodic solutions produced by a maintained
depolarizing current density decreases as the current density increases, until the
periodic solutions vanish in a stable, depolarized, equilibrium solution. This depolar-
ized equilibrium solution emerges at a supercritical Hopf bifurcation. This is shown
for two values of maximal potassium conductance in Fig. 2: the small amplitude,
stable periodic solutions found close to the bifurcation into the stable, depolarized
equilibrium will be seen in experiments and numerical integrations.

The Hopf bifurcation points when two parameters are changed form curves in the
plane of those parameters. For the parameters gk and / all the bifurcation points fall
on a single curve in the plane gx — I as shown in Fig. 3. The curve crosses over itself at
low gk and hyperpolarizing current densities, as under such conditions there isacusp-
shaped region where there are three equilibrium solutions, and the two Hopf bifur-
cations are from different equilibrium solutions (Holden et al., 1983).
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F?g. 4. Bifurcation curves in the Vg — I plane. /| and /, are the same Hopf bifurcation points as in
Fig. 3; the dashed lines are the Hopf bifurcation curves and the solid curves enclose a region where
there are three equilibrium solutions.
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Such a region of multiple equilibria is also found with hyperpolarizing current
densities as Vi is moved in the depolarizing direction. These three equilibrium
solutions occur in the interior of the solid curves in Fig. 4 and 5, where the dashed
curves represent the Hopf bifurcation curves. The region of multiple equilibria in the
plane Vi —1 is the projection of a cusp.

The extent of this region of multiple equilibria increases in the Ik —Iplane as gk is
lowered: Fig. 5.
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Fig. 5. Bifurcation curves in the Vi plane at different values of gk . Solid curves enclose the region of
multiple equilibria, the dashed lines are the Hopf bifurcation curves.
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4. Discussion

Repolarization currents, with reversal potentials close to, or more negative than the
resting membrane potential, are usually thought of as contributing to the repolar-
ization of the action potential. However, Na™-inactivation, in the presence of a
voltage-independent leakage conductance, is sufficient for repolarization, and
provides the mechanism of repolarization in the nodal membrane of mammalian
myelinated fibres.

The numerical studies described here emphasize the role of repolarizing currents in
the control of endogenous, periodic activity. Whether or not a membrane is resting or
autorhythmic is determined by the stability of the equilibrim solution of its excitation
equation (2): for the modifications of the Hodgkin-Huxley membrane equations
considered here, the equilibrium loses its stability at a Hopf bifurcation.

The repolarizing current is the product of a conductance and a driving potential for
a conductance pathway with a linear instantaneous current-voltage relation. A Hopf
bifurcation occurs when the K*t-current is reduced by a reduction in either the
maximal K *-conductance (or potassium channel density) or in the driving potential.
(V—Vx). In both these cases there is a subcritical bifurcation into small amplitude
periodic solutions that are unstable, and so large amplitude periodic solutions that
correspond to a repetitive discharge of action potentials are seen in numerical
integrations. Thus, as the repolarizing current is being reduced, there is a narrow
region where a stable equilibrium or stable large-amplitude periodic solutions are
possible, before the equilibrium loses its stability at the Hopf bifurcation point.
Within this region small, appropriately timed perturbations could initiate or
annihilate the repetitive activity. If a membrane becomes autorhythmic by a gradual
reduction in gk or a gradual accumulation of [K ], the onset of repetitive activity will
be marked by irregular bursts, as the membrane is switched between the two stable
states of silence and repetitive activity.

Multiple equilibria are found in the presence of a hyperpolarizing current when the
repolarizing current is reduced by a reduction in either gg or by a shift of Vi in the
depolarizing direction. At one of these equilibrium solutions the sum of the Na* and
K™ currents is equal and opposite to the sum of the leakage current and the applied
hyperpolarizing current, and so the applied hyperpolarizing current is equivalent to
an increased leakage conductance.

A membrane with a low gk and a restricted extracellular space, within which the
accumulation of K1 can occur, will be liable to develop behaviour associated with
multiple equilibria: the low g, leads to autorhythmicity, which gives an increase in
[K*],. and a shift in Vg in the depolarizing direction. Membrane potential
trajectories would show repetitive activity, bursting, and complicated, paroxysmal
depolarizing shifts, similar to those seen in central neurones during epileptic
discharges. This behaviour would be prone to develop when the leakage conductance
was high, or when the cell was damaged. Although an increase in [K*],from3to10to
12 mM is seen during experimental epileptogenesis (see review by Prince and
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Schwartzkroin, 1978), this appears to be a consequence, rather than a cause, of the
convulsant activity.

In the region of multiple equilibria, a plot of the equilibrium value of the potential
V against the applied current density / is a section through a cusp, and so the current-
voltage relation is “N”-shaped, or has the characteristics of a cubic.
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